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ABSTRACT

Information access systems, such as search engines and recommender systems, often

display results in ranked order based on their estimated relevance. The fairness

of these rankings has received attention as an important evaluation criteria along

with traditional metrics capturing constructs such as utility or accuracy. Fairness

has many facets, including provider and consumer-side fairness at both group and

individual levels. Research on provider-side group fairness involve concerns regarding

measurement and optimization of fairness in ranking. Although there are several fair

ranking metrics to measure provider-side group fairness based on various “sensitive

attributes”, multiple open challenges still exist in this area to consider. Moreover,

the fair ranking research mostly focuses on linear layouts when items are displayed in

single-column list, often overlooking fairness issues in other layouts such as grid view.

In my dissertation, I work on the area of provider-side group fairness in ranking in

information access systems. I seek to understand the fairness concepts and practical

applications of existing fair ranking metrics and find ways to improve the metrics.

My work will aid researchers and practitioners in selecting fair ranking metrics by

pointing out the strengths, limitations, applicability and reliability of the metrics.

Moreover, I contribute to the advancement of fair ranking metrics by considering

various ranking layout models and further contribute to provider-side group fairness

optimization in ranking in widely-used but seldom-studied grid layout.
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1

CHAPTER 1:

INTRODUCTION

Information access systems (IAS), such as search and recommender systems, are

prevalent mechanisms of accessing relevant information from the large amount of

information available online1. For example, Google is one of the most widely used

search engines and Netflix is a popular streaming service which recommends movies

and TV shows. Users interact with these systems to satisfy their information needs

which the systems infer by analyzing user queries (explicit), user preferences (user

history inferred from users’ past interaction), and/or context of the requests. In re-

sponse to a user request, IAS often present results in top-N ranked lists based on their

relevance to user need and other measures of item utility and relationships (e.g. sim-

ilarity, as in maximum marginal relevance [28]). The quality of the ranked results are

often evaluated by traditional metrics (estimating accuracy or utility) that measure

system’s ability to find items that are relevant to user information need. However,

other constructs such as diversity [204], novelty [40], and fairness [62] have proven

important to develop a better and more complete understanding of the behavior of

IAS and allow researchers and practitioners to evaluate IAS on ethical and social

concerns by going beyond immediate user satisfaction.

1Portions of this dissertation reuses material from the author’s published work: [142], [143], [141],
[144] and [140], consistent with the ACM Author Agreement.
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Users are not only stakeholders who benefit from the IAS, however. Systems

expose items by displaying them in a ranking to consumers or users for selecting,

purchasing, or consuming. Item providers or producers get benefits or profits from

users noticing and interacting with their items, but user attention varies with the

ranking position [165]; users tend to engage more with items at the top of the list

(position bias) [198]. Systems do not always fairly distribute exposure among items,

thus causing disadvantage to item providers through disparate exposure allocation

[52]. Some providers or group of providers get more exposure than others in a way that

is somewhat unfair. Item providers are often associated with sensitive attributes such

as age, gender, or race and they are categorized in groups based on these demographic

attributes. Disparate exposure can disadvantage providers at both individual and

group level based on their sensitive attributes and can reflect historical discrimination

such as racial or gender discrimination.

The broader goal of my dissertation research is to improve group fairness of rank-

ing in IAS for providers of items retrieved or recommended across multiple layout

paradigms. With that goal, I work on the advancement of provider-side group fair-

ness measurement techniques in ranking of IAS and provide insights on measuring and

optimizing group-fairness for providers in popularly-used but inadequately-studied

display layout models.

My work provides comprehensive knowledge on theoretical and practical appli-

cations of the fair ranking metrics while identifying their strengths, limitations and

applicability; further providing informed guidance on the fairness-task specific metric

selection process. Moreover, I work to improve group fairness in ranking by consid-

ering one of the most emergent open questions regarding fairness measurement and
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optimization in grid layout in IAS. I do not aim to propose one universal metric for

every issue; rather, I want to produce knowledge needed to design fair ranking eval-

uations and intervention addressing some of the challenges in fairness in ranking in

IAS. With that goal, I design my research in the following steps:

Analyzing Fair Ranking Metrics Various metrics have been proposed to mea-

sure (un)fairness in rankings, with respect to protected groups of item providers for

different contexts; some in the form of fairness metrics, others as fairness constraints

[103, 62]. However, there is no comparative and empirical analysis of these fair rank-

ing metrics showing their conceptual differences and their applicability to specific

scenario or real-world IAS dataset. Consequently, it is challenging for researchers

and practitioners to find the suitable metric(s) for specific fairness tasks and imple-

ment them in real-world IAS ranking scenarios without knowing the challenges and

applicability of the existing metrics.

To fill that gap, I conduct a comprehensive and comparative analysis of the fair

ranking metrics that have been proposed so far in fair ranking research literature.

This work shows conceptual similarities and differences among the metric by de-

scribing them in a common notation. The study further connects the gaps between

theoretical and practical application of these metrics by implementing them in the

same real-world IAS datasets under the same experimental setup. I also conduct

a sensitivity analysis to evaluate the metrics stability regarding their dependency

on external factors and identified the best suited metric(s) in different fairness con-

texts. My purpose for this analysis is to support researchers and practitioners in

their metrics selection process and identify further improvements needed in the area

of measuring provider-side fairness in ranking.
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Beyond Linear Ranked List Fairness From studying existing fair ranking met-

rics, I observe that current fair ranking metrics to measure provider-side group fair-

ness in ranking are designed for linear layout, usually vertical representation of results.

However, many IAS use other layouts such as grid-view. There is no prior study on

measuring group fairness in grid layout which can show what happens to fairness

measurement in ranking with different layout models.

I address these issues by identifying various ranking layouts in IAS and further

implement fair ranking metrics for those scenarios by considering layout-appropriate

user attention models. Moreover, I identify factors that are important to consider

while designing and implementing fair ranking metrics in grid layout in order to

generate trustworthy and valid fairness measurements. This work elicits the appli-

cability of the fair ranking metrics in various ranking layout scenarios and how the

fairness scores change across layout models. The purpose of this component is to

aid the development of fair ranking metric(s) that are able to address broader issues

of real-world IAS applications and the applicability and reliability of the metrics on

frequently-used but little-studied layout models.

Generalized User Browsing Models By conducting a sensitivity analysis of the

fair ranking metrics and implementing them in grid layout, we recognize that the user

browsing model is a crucial component in fair ranking metric design which is used to

infer user provided attention to items in various positions in ranking [165, 52, 154, 16].

Various user browsing models have been proposed based on user browsing behavior

while interacting with ranked results in both linear and grid layouts [122, 43, 192].

With a similar underlying concept, these models differ in their component dependency

and parameter settings.
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In my work, I identify multiple user browsing models for ranking in IAS and unify

them in a generalized framework. The generalized framework of the user browsing

model can be re-configured based on tasks, ranking layouts, and available compo-

nents and it can be further extended to more advanced ranking scenarios and user

browsing behaviors. My goal is to provide theoretical knowledge on the existing user

browsing models and aid IAS evaluators in implementing user browsing models by

designing a single generalized browsing model that can be re-configured based on

their requirements.

Fairness-Aware Grid-Based Ranking The final stage of my dissertation works

towards improving provider-side fairness in grid layout in IAS. There are multiple

re-ranking techniques to optimize ranked results for utility, diversity, or fairness [95,

2, 111]. However, the existing re-ranking techniques are suitable for linear ranked list

overlooking the widely-used grid layout. The concerns regarding fairness optimization

of ranking in grid layout have not been well-studied.

My work contributes towards filling this gap by providing a preliminary analysis

on provider-side fairness optimization in grid layout. I provide a grid-aware re-ranking

technique by incorporating grid-layout suitable user browsing models in an existing re-

ranking algorithm. Both fair ranking and effectiveness metrics to measure fairness and

utility respectively are modified to take grid layout suitable user browsing behavior

into account. The modified grid-aware re-ranking algorithm is then used to optimize

provider-side group fairness in grid layout with minimum utility loss. Moreover, this

work identifies the impact of grid-layout specific factors such as user browsing models

and device sizes on fairness optimization in grid layout. The goal of this work is to

generate knowledge about designing and implementing re-ranking techniques for grid
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layout to improve provider-side group fairness in ranking.

My dissertation work contributes to provider-side group fairness in IAS ranking

by providing the first (to our knowledge) empirical analysis of the fair ranking metrics

regarding metric formulation and implications in real-world IAS. My work provides

several future research directions that were identified from the conceptual analysis

and implementations of the metrics. Moreover, by going beyond the linear ranked

list and considering ranking in grid layout, my work has expanded the applicability

of fair ranking measurements and techniques from rankings in linear layouts to grid

layouts which is commonly used in modern search and recommendation applications.

By providing a simple re-ranking technique to optimize ranking in grid layout for

provider-side fairness, my work will draw attention to a seldom-explored research

area on fairness in IAS ranking and provide further research directions in that area.
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CHAPTER 2:

BACKGROUND

My research work contributes in measurement and optimization of fairness in ranking

in information access systems, particularly concerning provider-side group fairness.

In this chapter, I introduce some of the relevant concepts regarding IAS workflow,

algorithmic fairness, and fairness and bias in ranking in IAS, and related research

work in these areas.

2.1 Information Access Systems

This section provides an overview on how IAS generate ranked results and how these

ranked results are evaluated.

There is a large volume of information available on the internet and more focused

corpora such as e-commerce inventories, but users often want to access a limited

amount of resources that are suitable for their information need. Information access

systems (IAS) such as search engines and recommender systems help users to find

relevant resources by retrieving items from a large pool of information [116, 150, 62]

thus reducing information overload. Users interact with IAS with specific information

requests to satisfy their information need. Users can express their requests in various

ways such as explicitly providing their query by writing in an unstructured text
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form [193] or using voice search [183]. Users’ past interactions with systems is a

rich source of user information that is commonly used to infer users’ information

preference to replace or supplement explicit queries [25]. Moreover, user context such

as, location, time, and demographic information are also used to infer user information

need [161, 187, 113, 180, 147, 175].

In search engines, users explicitly describe their need through a query and the sys-

tem retrieves items or documents relevant to the query [116, 102]. In recommendation

scenarios, users do not explicitly describe their information need, rather systems infer

user information preference from their past interaction with systems to recommend

items that will satisfy their need [4, 150]. While interacting with items in recom-

mender systems, users can provide both explicit (ratings and reviews) and implicit

(click and purchase) feedback and user preferences or requests are often inferred from

their past interactions with systems [63, 200].

Figure 2.1: Information access systems framework

In a multi-stage IAS, given a query or user preference, IAS identifies a candidate-

set of relevant items from a collection of items by measuring similarities or estimating

relevance of the items [48, 9, 36, 38]. From the retrieved candidate-set of items, the

top-most relevant items are presented to the user [45]. Figure 2.1 shows the basic

workflow of an IAS.

Search engines estimate relevance or measure similarities between queries and
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items or documents by using various information retrieval models such as Boolean,

probabilistic, vector space, and inference network models [151]. In a recommendation

scenario, user interacted items are used to determine similar users or items to a

particular user by estimating relevance or computing similarity scores [150, 139]. In

item-based recommendations, the candidate-set for an active user is generated by

finding items that are similar to user-interacted items [156]. For example, two items

can be considered similar if they are interacted with by the same user. In user-

based algorithms, top-most similar users are identified to generate a candidate-set

from their interacted items. For example, two users can be considered similar if

they interact with the same items. In matrix-factorization algorithms, the latent

features of user and items are used to predict user preferences [101]. Figure 2.2 shows

examples of user-user and item-item similarities. Collaborative-filtering [60, 101],

Figure 2.2: Two types of collaborative-filtering algorithms

content-based [131] (figure 2.3), or knowledge-based [24] models are some commonly

used families of algorithms to identify similar items or users from user interactions.

Most of these models use an user-item interaction matrix (figure 2.4) to create user

and item profiles which are used to estimate relevance or measure similarities [101, 20].

In content-based recommendations, item metadata such as title, description, tags, or

user reviews are also used to create and enrich user and item profiles or feature vectors
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Figure 2.3: Content-based recommendations

[157, 6]. Several natural language processing (NLP) techniques such as tokenization,

stemming, and stop-words removals are applied to process user queries and item

information. Traditional keyword-based approaches such as TF-IDF [146] and BM-

25 [171] or embedding-based techniques such as word2vec [148], or advanced language

models such as BERT [34] are popularly used techniques to analyze and represent

text.

Figure 2.4: User-item interaction matrix

After generating a candidate-set by computing relevance of items from the simi-

larity scores between information requests and items, relevant items are ranked based

on their relevance scores. The top-N most relevant items are displayed to users in a

ranked order [45, 44]. These ranked results can be displayed in various layouts such
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as list or grid [192, 165]. Learning to rank (LTR) are popular ranking methods to

optimize the ranking by training models for the target evaluation measures [110, 105].

Evaluation of IAS Evaluating ranked results is crucial in the process of designing

and developing an effective and efficient IAS and this process can be done both

in offline and online settings [164, 90, 138]. Online evaluation such as A/B test

[100, 82] is widely used in commercial settings in a controlled experimental setup

[90, 181] and this process analyzes user experience in real-time [133, 49]. On the

other hand, in offline settings, systems are evaluated in a supervised manner where the

ranked results are split into train and test sets [153, 30]. Offline evaluation is easier

to conduct and less time consuming than online evaluation [133, 3]. Traditionally

ranked results are evaluated based on user satisfaction or utility and several offline

effectiveness metrics have been proposed to measure quality of ranking [123, 83, 177].

Precision, recall, ndcg, and reciprocal-rank are some of the commonly used offline

effectiveness metrics [138, 35]. These metrics estimate how successfully systems satisfy

user information needs with ranked results [196]. Some metrics measure the error

in predicting relevance (rating) of documents for a given information request (for

example, mean absolute error [89]) while other metrics evaluate the top-N ranked

results and consider the position of relevant documents in the top-N ranking [182].

However, soon researchers and practitioners realized that in order to develop a

whole picture of the performance of the ranked results in IAS, the systems need to

be evaluated by going beyond accuracy or utility [119]. Diversity [204, 179], novelty

[40], fairness [136], and serendipity [70] are some of the other objectives that are

often used to evaluate IAS with respect to other important aspects of user experience

and social impact. Diversity, serendipity, and novelty ensure that users are having
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diverse, surprising, and new experiences respectively through the ranked results [95,

77]. Fairness, on the other hand, focuses on the social and ethical issues regarding

ranked results in IAS because IAS may introduce or reflect systematic bias through

their results [62, 52]. Fairness is an important and challenging concern regarding

performance of IAS and has received significant attention in recent years with several

metrics proposed to identify and measure fairness in ranking [142, 202, 66].

Top-N Ranking Evaluation Ranking position plays an important role in the

evaluation process of ranking in IAS [124]. The top-N effectiveness metrics are used to

investigate systems based on their ability of identifying relevant items and displaying

those relevant items in top positions in ranking [178]. Moreover, fair ranking metrics

often evaluate rankings based on their ability of fairly allocating relevant items in

ranking [63, 165, 52, 195]. Hence, both effectiveness and fair ranking metrics take

ranking position into account while evaluating a ranking. Most of these metrics rely

on the approximation of user browsing behavior to infer user attention which is used

to determine position weight in ranking [124, 16, 165, 52, 154].

For a given ranking, ranking positions have different weight depending on how

users browse a ranking because user attention varies across ranking positions [112].

For example, users provide higher attention to the top ranked items than items at

lower ranked positions [125]. There are several research works on analyzing and un-

derstanding user browsing behavior in ranking and there exists multiple user browsing

models to compute position weight in ranking [122, 33, 192, 43]. These studies also

showed that user browsing behavior depends on various factors such as ranking lay-

outs, task, or item metadata [124, 192, 170, 12, 53]. Most of the research works

on evaluating ranked results considering user browsing models are suitable for linear
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(single-column) ranking. However, systems often display items in other layouts such

as grid [192, 197], hence evaluating grid-based ranking by considering grid layout

suitable user browsing models is still an important area to explore.

2.2 Algorithmic Fairness

This section provides a brief review on algorithmic fairness to better understand the

basic concepts regarding fairness definitions, impact, mitigation, and measurement

issues.

The definition of algorithmic fairness is difficult to construct; it depends on the

fairness context and task [74, 160, 71]. Friedman and Nissenbaum [74] defined bias in

computer systems as the systematic and unfair discrimination against certain individ-

ual or group entities by denying opportunity and assigning unfair outcomes. Mitchell

et al. [121] defined algorithmic biases in form of both statistical bias (systematic

mismatch between the model output and real-world) and societal bias (systematic

discrimination towards groups reflecting social bias). Systems can discriminate at

both group and individual levels. Items can be categorized into groups based on

sensitive attributes, these sensitive attributes are also called protected attributes and

include race, gender, religion, age and other demographic attributes. Deldjoo et al.

[50] provide several categorizations of fairness definitions with examples; they iden-

tified the following categorizations that are often used to define fairness concepts in

literature: group vs individual [73], process vs outcome [199], direct vs indirect [129],

statistical vs predictive parity [154], static vs dynamic [109], and associative vs causal

[108].
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Research on algorithmic fairness often involves bias detection [5, 97], quantification

[15, 202], source identification [11, 120], and mitigation [57, 136, 185]. This research

area generally includes the following high-level fairness concepts:

• Fairness Level: What notion of fairness or dimension is considered? For exam-

ple, systematic unfairness can happen at both group and individual level.

• Fairness Side: Who is impacted by the unfairness of systems? For example,

both users and items in systems can receive systematic discrimination.

• Potential Harms: What kind of harm or negative impact is caused by systematic

unfairness? For example, systems can discriminate in resource allocation or can

misrepresent certain demographic groups through results.

• Fairness Application: What type of algorithms are studied regarding fairness

issues? For example, the algorithmic fairness concept includes fairness issues in

classification algorithms and ranking algorithms.

• Fairness Target: What is the fairness goal? For example, systems ensuring equal

opportunity for users with similar qualities or mitigating social stereotypes in

results.

One of the categorizations that is particularly relevant to my work is group vs

individual fairness. Individual fairness addresses the goal that similar individuals

should (statistically) receive similar decisions, but crucially depends on a robust con-

struct of similarity with respect to the task for which decisions are made, and there

is currently no consensus in assignment of task-relevant similarity among individu-

als [19, 57]. Group fairness aims to provide similar service for members of different
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groups; this is often framed as ensuring a protected group is not treated unfairly with

respect to a dominant group [56]. Group membership is often defined by sensitive

attributes such as race, gender, or ethnicity. In group fairness, considering one sen-

sitive attribute at a time can ignore fairness towards members of the intersection of

two groups [21].

In group fairness scenarios, systematic bias by algorithms can occur through both

indirect and direct discrimination; disparate impact, disparate treatment, and disparate

mistreatment are common notions of unfairness to differentiate between these con-

cepts. Disparate treatment happens when different groups receive different treatment

based on their protected or sensitive attributes, whereas disparate impact happens

when a system produces different outcomes for different groups [67, 199].

This systematic bias or discrimination by algorithms can cause both distributional

and representational harm [96]. Distributional harm refers to the discrimination in

resource allocation or distribution [39], whereas representation harm refers to the

misrepresentation of individuals or groups [129]. In 2015, Amazon stopped using AI-

based recruiting systems after they found out that the system was unfairly scoring

candidate resumes reflecting gender stereotypes associated with occupation [41] which

is an example of systems causing both distributional and representational harm.

Research work on algorithmic fairness includes fairness issues in classification and

ranking algorithms. In classification algorithms, entities are assigned to a certain

class based on their observed features. One common example of bias in classifica-

tion algorithm is in the task of identifying the risk of recidivism. It is not possible

to accurately identify the phenomena since the outcome is unobservable. Hence,

classification algorithms are used to assess a defendant’s likelihood of committing a
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crime based on their other observable aspects and previous studies showed that the

classification model can cause discrimination in outcome based on demographic at-

tributes [115, 54] especially disadvantaging African-Americans over white defendants

[39]. Similar problems appear in other classification algorithms such as loan approval,

college admission decisions, and hiring applications [134, 46, 159].

In ranking algorithms, fairness concerns involve both ranked items and users who

are interacting with the ranked results. Item position in ranking affects the advantage

that items receive from the system because items at the top position receive more

exposure and user engagement than items at lower positions [165]. However, items

with similar qualities do not always get the same position in the ranking, thus causing

position bias [43, 166]. Moreover, systematic discrimination in positioning items

in ranking can happen based on the sensitive attributes of items such as race and

gender[165, 186, 202]. On the other hand, user experience with ranking can vary

across users [1] and users can receive biased ranked results based on their sensitive

attributes [184, 126, 107]. Moreover, systems may misrepresent items through ranked

results [66]. For example, women are significantly under-represented in Google image

search results for “CEO” [68].

As I explained in section 2.1, IAS display results in ranking to users. Since al-

gorithms may reflect bias in ranking, fairness is a critical and important issue to

consider in IAS research.
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2.3 Fairness in Information Access Systems

This section provides a literature review on fairness in IAS showing the importance

and the challenges of evaluating ranking considering fairness and highlights the re-

search gaps in this area.

IAS may unfairly discriminate across items while displaying them to users which

can happen at both individual [176] and group levels [76, 162]. Bias in IAS can appear

in following ways:

• IAS can recommend or retrieve items with high user interaction thus causing

popularity bias [176] and reflecting rich gets richer effect.

• Systems can cause disparate exposure where items with similar quality do not

receive similar exposure because of their sensitive attributes, for example, in

micro-lending loan recommendation systems, borrowers from minority groups

can receive lower exposure [111] causing disparate exposure [52].

• Additionally, users may receive unfair ranked results based on their group mem-

bership such as users receiving biased job recommendations based on their gen-

der identity [152, 47].

• Systems can manifest and propagate pre-existing social stereotypes through

search results or recommendations [141, 65, 114]. For example Noble [129]

showed that search engines often negatively represent “black women” in re-

trieved results.

By denying fair distribution of opportunities and misrepresenting entities reflecting

social bias, ranking in IAS can cause both distributional and representational harm.
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Ekstrand et al. [63] provide a thorough survey on fairness and bias issues in IAS;

Pitoura et al. [136] provide a taxonomy of fairness definitions particularly focusing on

ranking and recommendations and Wang et al. [186] provide a taxonomy of fairness

definitions in the context of recommendations. Deldjoo et al. [50] provide overviews

of the research on fairness in recommender systems and highlight the potential future

directions in this area.

Fairness in IAS involves the concerns of multiple stakeholders since systems in-

volve users who interact with the systems to consume items and producers who create

or provide the items that users are interacting with. For example, in a book recom-

mendation system, users are interacting with books in the ranked list in order to read

(consume) them and each book is associated with book providers, such as authors

or publishers. Burke [26] and Sonboli et al. [167] introduced the terms provider fair-

ness and consumer fairness. Consumer fairness refers to the user-centric fairness who

interact or consume items in the ranking [184, 126] and provider fairness considers

fairness for item producers, creators, or providers in IAS [136]. Item providers or pro-

ducers are often associated with sensitive group attributes and items can be treated

unfairly based on their providers’ groups membership.

Fairness in Ranking in IAS As previously discussed in section 2.1, search engines

and recommender systems often present the retrieved or recommended results in a

ranked list form based on relevance to user information need or preference and bias

can appear in ranking algorithms [202]. Ranking may introduce or reflect systematic

bias; fairness in ranking in IAS focuses on social and ethical concerns in these systems

for both providers and consumers [62, 103, 130]. Provider-side fairness in ranking

involves systematic discrimination against providers while displaying items in ranking.
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Figure 2.5: Item exposure and relevance distribution ranked results in IAS

In ranking, items receive exposure through their position in ranked lists and users

provide attention to items which varies across positions of items in the ranked list

[154, 122]. Users tend to engage with items in the top-ranked position resulting in

position bias [198]. Figure 2.5 shows how user attention varies with the position of

items in ranking and how relevance and attention for items varies with positions.

A small change in ranking position may lead to significant changes in the attention

paid to a result [16, 136]. Since the items are usually associated with item producers

or providers, the discrepancy in attention affect the the economic return to item

providers. Thus systems can have disparate impact on item provider through ranking

[16]. For example, in the Spotify1 music recommender system, music artists make

profit from user interactions (play, share, or like) with their songs. Consequently, if a

song does not get enough exposure or user attention in recommended ranked lists, it

can economically disadvantage song artists. Moreover, systems can show systematic

discrimination in allocating exposure across items based on their sensitive attributes

1https://open.spotify.com/
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associated with items providers.

One way to measure this unfairness is demographic parity or statistical parity,

which argues that systems should derive balanced outcomes irrespective of sensitive

group attributes like race or gender ensuring similar decisions for both protected and

dominant groups [73]. Another goal is to achieve equality of opportunity where quali-

fied subjects should receive equal probability of favorable outcome regardless of group

membership [87]. Disparate mistreatment or equalized odds defines the difference in

error rates [199].

These systematic biases in ranking can appear due to existing bias in data and

during the relevance estimation stage. Bias mitigation from ranked results can in-

clude removing bias from underlying data (pre-processing), auditing algorithms for

bias in training phase (in-processing), and improve fairness in ranked results (post-

processing) [136]. Improving fairness in ranked results or the post-processing methods

often involve optimization of rankings for fairness [76, 166, 16, 195]. Various fairness

aware re-ranking techniques have been introduced to optimize the ranked results con-

sidering fairness [111, 59, 78, 127].

2.4 Organization and Position

The focus of this work is on provider-side group fairness in ranking in IAS where

the fairness concern is the distributional harm regarding unfair exposure distribution

that item providers can receive based on their group membership. Fairness in ranking

can be defined with respect to the discrepancy in incorrectly-distributed exposure for

different groups of item providers in ranked results based on their sensitive attributes.
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The existing fair ranking metrics significantly contribute to the area of measuring

fairness in ranked output in IAS. However, there are open questions regarding which

metrics to use, how to implement them, and how reliable they are. Furthermore,

there exist open problems that still need to be considered in designing and applying

fair ranking metrics in a real-world IAS setup. For example, measuring fairness in

ranking in grid layout and optimizing the grid layout for fairness by incorporating

grid layout suitable metrics are still open research questions to explore.

My work contributes to the fair ranking metric research by informing the research

community about the strengths and limitations of fair ranking metrics and providing

guidance to researchers and practitioners in selecting task-specific metrics and im-

plementing them in the real-world IAS setup. Several others have also contributed

fair ranking syntheses from various perspectives. Chapter 4 provides a comprehensive

analysis of fair ranking metrics and more thorough comparison of my synthesis with

those of my peers. Moreover, my work contributes to the advancement of measure-

ment of group-fairness in ranked results in IAS by considering user browsing models

that are suitable for grid layouts. Chapter 5 provides the modified fair ranking met-

rics with grid-based browsing models to measure provider-side fairness in grid layout.

The existing user browsing models are conceptually similar, hence I generalize the

existent user browsing models for both linear and grid layouts. Chapter 6 provides

the generalized framework of user browsing models which can be configured based

on ranking layouts, parameter settings, and the availability of several components.

Lastly, I contribute to the fairness in ranking research by working on the optimization

of ranking in grid layout for provider-side fairness. Previous research on fairness aware

re-ranking techniques mostly focus on linear layouts ignoring fairness optimization in
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ranking in other layouts. I work towards filling up this gap by providing fairness aware

re-ranking techniques for ranking in widely-used grid layout in Chapter 7. Through

my work on fairness in grid layouts, I provide potential research directions in this

important but seldom-studied research area.
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CHAPTER 3:

DATASET AND NOTATIONS USED IN THIS

PAPER

In my dissertation research, I use real-world IAS datasets for all of the experiments.

For some experiments, I use datasets for both search and recommendation scenarios.

Moreover, since all the works described in this paper are on provider-side group

fairness in ranking in IAS, I use consistent notations throughout the paper to provide

a cohesive story of my PhD research. This chapter provides the description on the

datasets I used in my work and the notations that are used throughout this paper.

3.1 Dataset

For most of the experiments, we use multiple datasets from real-world IAS setup

considering both search and recommendations scenarios.

Search Systems For search systems, we use the dataset from the TREC 2020 Fair

Ranking Track [18], which includes submitted runs (document rankings in response to

a query) from participants in the TREC conference for both retrieval and re-ranking

tasks. The participants’ systems had to retrieve relevant documents for queries from
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Table 3.1: Summary of experiment data.

Dataset Systems #Users #Items #Test Users |G+| |G−|
Amazon 4 8,026,324 2,268,142 5000 217032 490953

GoodReads 4 870,011 1,096,636 5000 177359 282857
Fair TREC20 Re-rank 23 195 2112 195 294 1632
Fair TREC20 Retrieval 5 189 2112 195 294 1632

Table 3.2: nDCG scores of the recommendation algorithms

Systems Amazon GoodReads
Item-Item 0.08 0.23
User-User 0.13 0.24
WRLS 0.10 0.26
BPR 0.03 0.13

the Semantic Scholar1 corpus; documents are associated (soft group association) with

author demographic information (socio-econnomic status of author’s country) which

was manually annotated by NIST assessors. The participants submitted multiples

sequences of ranking for each query. We consider each submission to be an individual

system. The participants provided details about their submitted systems in notebook

papers published in the TREC proceedings [68, 118, 155, 99, 7].

Recommender Systems For a recommendation scenario, we use two user-book

interaction datasets from GoodReads [183] and Amazon [117], integrated with the

PIReT Book Data Tools2 [59] to obtain author metadata. Table 3.1 shows the sum-

mary of datasets used in this paper. For both datasets, we generate 1000 person-

alized book recommendations for 5000 users using four collaborative filtering (CF)

algorithms: user-based CF (UU [88]), item-based CF (II [51]), matrix factorization

(WRLS [172]), and Bayesian Personalized Ranking (BPR [149]), as configured by

1https://www.semanticscholar.org/
2https://bookdata.piret.info
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Ekstrand and Kluver [59]. We used Lenskit for Python [58] to generate recommenda-

tions using user’s implicit feedback for items (binary feedback that was a 1 if the user

added a book to one of their shelves). Table 3.2 shows the Normalized Discounted

Cumulative Gain or nDCG scores [92] for the recommendation systems where a higher

score represents better recommendations.

Author gender identity is the sensitive attribute for our experiments. Due to limi-

tations of the underlying data set [61], this is a discrete but possibly unknown binary

gender attribute; we acknowledge the importance of more faithful representations of

gender in research [135], and the metrics that we study can all be used with a larger

set of gender identities as well as mixed or partial membership when such data can

be obtained.

3.2 Notations

These notations help to describe an information access systems that retrieves or

recommends a ranked list L of n documents or items d1, d2, . . . , dn ∈ D in response to

requests (e.g. queries in a search system or users and/or contexts in a recommender

system) q1, q2, . . . , qn ∈ Q (notation summarized in table 3.3). Items may have an

associated request-specific relevance score y(d|q), and the system may estimate this

by a predictor ŷ(d|q).

Providers are associated with one (or more) of g groups. We represent this by

giving each item an alignment vector G(d) ∈ [0, 1]g (s.t. ∥G(d)∥1= 1) indicating

its group association; generalizing from a categorical variable to a vector allows soft

association (mixed or partial membership) or uncertainty about membership [154].
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Table 3.3: Summary of notation.

d ∈ D document or item
q ∈ Q request (query or user)
L ranked results of N documents from D
L(i) the document in position i of linear (1-column) layout
L−1(d) rank of document d in linear layout
row(d) row number of document d in grid layout
L(k, ·) items in kth row in grid layout
L(k, c) items in row k and column c in grid layout
y(d|q) relevance of d to q
g number of groups
G(d) group alignment vector
G(L) group alignment matrix for documents in L
G+(L) set of documents in protected group in L
G−(L) set of documents non-protected group in L

p̂ target group distribution
aL attention vector for documents in L

aL(d) position weight of d in L
ϵL the exposure of groups in L (G(L)TaL)
Ei event: user examines the item at position i
Si event: user selects the item at position i
Ai event: user abandons the process after examining the item at position i
Kk event: user skipping the kth row.

Table 3.4: Parameters of browsing Models and the range of parameter values

Parameter Name Description Values
ψ Selection Probability Probability of selecting an item at position i {0.1, 0.2, ..., 0.9}
α Abandon Probability Probability of abandoning the process. {0.1, 0.2, ..., 0.9}
λ Continuation Probability Probability of continuing to the position i {0.1, 0.2, ..., 0.9}
γ Skipping Probability Probability of skipping an entire row. {0.1, 0.2, ..., 0.9}
β Decay Incorporate slow browsing tendency for grid layout {1.1, 1.2, ..., 2.0}
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We generalize G(d) to a list function, with G(L) denoting an n× g alignment matrix

whose rows correspond to the items in L and columns are groups. In the case of

definitively-known membership in a binomial pair of groups, G+(L) denotes the set

of items in L in the “protected” group and G−(L) the remaining items (dominant

group). The rest of the notations are explained later in the paper in the proper

context.
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CHAPTER 4:

FAIR RANKING METRICS ANALYSIS

As previously mentioned in chapter 2, fairness is a relatively new but important

aspect of rankings to measure, joining a rich set of metrics that go beyond traditional

accuracy or utility constructs to provide a more holistic understanding of IAS system

behavior1. To measure the (un)fairness of rankings, particularly with respect to the

protected group(s) of producers or providers, several metrics have been proposed in

the last several years. However, an empirical analyses of these metrics concerning

the applicability, usability, and reliability of these metrics is still lacking. We aim

to bridge the gap between theoretical and practical application of these metrics. In

this work, we describe several fair ranking metrics from the existing literature in a

common notation, enabling direct comparison of their approaches and assumptions,

and empirically compare them on the same experimental setup and data sets in the

context of information access tasks. We also provide a sensitivity analysis to assess

the impact of the design choices and parameter settings that go in to these metrics

and point to additional work needed to improve fairness measurement.

Kuhlman et al. [103] compare selected fair ranking metrics for measuring the sta-

tistical parity of rankings (whether they provide equal exposure to different groups),

1This chapter is adopted and modified from author’s previously published work [143] and [142]
where I collaborated with Dr. Michael Ekstrand
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and Zehlike et al. [202] provides a thorough conceptual survey of fair ranking con-

structs, but there has not yet been a systematic comparison of group fairness metrics

for ranked IAS outputs (where the system provides different rankings in response to

different information needs — both prior comparisons focus on rankings for a single

need), or direct comparisons within the same data set and experiment.

Moreover, many of the metrics have been tested primarily on small and/or syn-

thetic data sets that are not reflective of real-world information access applications

and experiments. Realistic experimental settings present challenges for applying many

metrics, including incomplete data (for both relevance and group membership) and

the occurrence of edge cases such as a group with no retrieved (or relevant) items.

Metrics need to be robust and usable in such situations in order to be practically

useful in experiments and for auditing deployed applications. Metric results may

also be heavily influenced by parameter choices and experimental designs. This is

an important factor to consider when choosing framework-applicable metrics because

metrics which are significantly sensitive towards external factors or design choices are

more complex to apply, as those decisions must be calibrated appropriately. There-

fore, despite the progress in metrics for measuring fairness, both practitioners and

researchers may have difficulty finding the most applicable metric for their problem

setting and its requirements.

In this chapter, we seek to fill this gap: to provide a comparative analysis of

fairness metrics in the context of information access, to better inform the community

of their relative strengths and weaknesses, and facilitate both better application of

existing metrics and further research to advance the state of the art in measuring

ranking fairness. Our goal is not to identify universally best metrics; the essentially
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contested nature of fairness [160] implies such a quest is futile. Rather, we want

to connect fair ranking metrics with applications by providing insight into how to

measure the provider-side group fairness of the ranked outputs in actual search and

recommender systems experiments using these metrics. Further, there is not a fixed

ground truth to use to assess external support for a metric — there are many potential

fairness objectives with varying degrees of compelling arguments. We therefore seek

to inform the discussion through internal support: documenting and comparing the

structure of the metrics, and their varying behaviors over real data, to assess and

suggest what strengths and weaknesses we can for each metric.

Our aim is to do for provider-side group fairness what Friedler et al. [72] did for

fair classification metrics; this complements the thorough conceptual survey of fair

ranking constructs and interventions in a general ranking setting by Zehlike et al.

[202] and Kuhlman et al. [103]. We provide a concise treatment of fair ranking

metrics specifically focused on measuring fairness in information access settings, and

implement these metrics in a common experimental setting to show their results on

the same data, systems, and tasks. This enables us to investigate the following:

• What is needed to apply these metrics to real IAS outputs, which often have

missing data (including relevance judgments and group annotations), may have

highly imbalanced outputs or relevant sets, or exhibit other edge-case behavior?

• What are the actual substantive differences between these metrics, once super-

ficial differences in framing and notation are resolved?

• What are the design decisions and parameters involved, and how sensitive are

the resulting metrics to those decisions?
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• What are the empirical differences in how these metrics assess the relative fair-

ness of different recommendation algorithms or retrieval runs?

In this work, we make four contributions:

• We describe rank fairness metrics in a unified notation for information access,

identifying similarities and differences.

• We identify gaps between the conceptual form and the practicalities of applying

the metrics to both search and recommender system evaluation experiments.

• We directly compare the outcomes of these metrics with the same data and

experimental settings2.

• We conduct sensitivity analysis to assess the impact of design choices and ex-

ternal factors on these metrics.

From our results we highlight the strengths and limitations of the metrics, finding

that some of them are particularly sensitive to edge cases and/or parameter settings.

We conclude with recommendations for choosing metrics from the current state of

the art for different experimental settings, and pointers to further research that is

needed to fill out our understanding of fair ranking measurement.

4.1 Related Work

In this section we introduce brief summary of previous research concerning the group-

side provider fairness measurement issue in ranking in IAS.

2https://github.com/BoiseState/rank-fairness-metrics
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Provider-side Fairness in Ranking Research on provider-side fairness often

focuses on the phenomenon of disparate exposure in ranking where systems shows

discrimination in distributing exposure across items. To identify if the uneven dis-

tribution of exposure is unfair, several research works have been done on fairness in

ranking, considering both individual and group fairness [16, 52, 165]. The fairness

target of these works consider equality of opportunity where the system should ensure

equal outcome for items with similar qualities [87]. Some of these works focused on

measuring fairness in ranking and proposed metrics for that purpose which I discuss

in this chapter.

Provider-side Group Fairness in Ranking Item producers or providers are

often associated with sensitive attributes like age, gender, and race etc and item

exposure can vary based on their association with particular protected attributes

[80, 188, 111, 78]. In figure 2.5, items are categorized into two groups- yellow and

green and in that ranking, we can see that items from group yellow are ranked over

group green, thus causing uneven distribution of exposure for these two groups.

Therefore, the fair ranking research area concerning provider-side group fairness

mostly target demographic parity and equality of opportunity [127] and several theo-

retical and practical methods have been proposed to measure fairness in this regard

[16, 154, 52, 14, 128, 165, 195, 202, 63, 31, 103]. In demographic or statistical parity,

the fairness metrics compares group distribution in ranking with target population

[195, 154]. In equality of opportunity, the fairness metrics measure if items with

similar relevance are receiving unequal exposure or attention based on their group

membership, thus this family of metrics compare the received attention or exposure

across group of items or item providers [165, 52, 16]. Furthermore, in any single rank-
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ing only one item may be placed at the top of the list, and will be the only item to

accrue the benefits of first position regardless of the merit of the second item. Hence,

it is impossible to ensure equal exposure for items in a single ranking which led to

the introduction of stochastic ranking or distribution over rankings [52].

Measuring fairness in ranking is a developing research area [158] with challenges

like multinomial protected attributes, non-binary group membership or soft-group

association, missing group labels [79], or uncertainty in demographic inference [80].

Intersectional-group fairness is gaining attention to ensure fair ranking for multiple

sensitive attributes simultaneously [81, 64]

The existing metrics significantly contribute to the area of measuring provider-side

fairness in ranked output in IAS. However, there are questions that remain regarding

which metric to use, how to implement them, and how reliable they are. Furthermore,

there exist open problems that still need to be considered in designing and applying

fair ranking metrics in real-world IAS setup. This work contributes to the fair ranking

metric research by informing the research community about the strengths and limita-

tions of fair ranking metrics and providing guidance to researchers and practitioners

in selecting task-specific metrics and implementing them in real-world IAS setup.

4.2 Fair Ranking Metrics

We begin by describing several fair ranking metrics, summarized in table 4.1 and

table 4.2, in a common framework and notation. This enables direct comparison

of their designs and theoretical behavior, and facilitates easier implementation in

IAS experiments. In some cases, we assign new name for metrics based on their
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functionality, purpose, and comparability within our synthesis.

4.2.1 Problem Formulation

We consider an information access system that retrieves or recommends a ranked

list L of n items d1, d2, . . . , dn ∈ D in response to requests (e.g. queries in a search

system or users and/or contexts in a recommender system) q1, q2, . . . , qn ∈ Q (notation

summarized in table 3.3). y(d|q) denotes the request-specific relevance score for an

item d, and the system may estimate this relevance by a predictor ŷ(d|q).

Item are associated with item provider or producers and item providers are associ-

ated with one (or more) of demographic g groups. The group membership of items are

represented by giving each item an alignment vector G(d) ∈ [0, 1]g (s.t. ∥G(d)∥1= 1);

generalizing from a categorical variable to a vector allows soft association (mixed or

partial membership) or uncertainty about membership [154]. We generalize G(d) to

a list function, with G(L) denoting an n× g alignment matrix whose rows correspond

to the documents in L and columns are groups. In the case of definitively-known

membership in a binomial pair of groups, G+(L) denotes the set of items in L in the

“protected” group and G−(L) the remaining items (dominant group).

Our goal is to measure exposure (sometimes called attention) for each item, content

provider, or group receives, and assess the fairness of this distribution to ensure

demographic or statistical parity (ensures comparable outcomes across groups) or

equality of opportunity (ensures equal treatment based on merit or utility irrespective

of the group membership). Accounting for the decreasing attention users are likely to

pay to items at deeper rank positions (position bias) requires a browsing model; some

metrics build this implicitly into their structure, while others explicitly model it as

a position weight vector aL for L. Table 4.4 describes the various weighting schemes



35

T
a
b
le

4
.1
:
S
u
m
m
a
ry

o
f
fa
ir

ra
n
k
in
g
m
e
tr
ic
s.

M
et
ri
c(
s)

G
oa
l

W
ei
g
h
ti
n
g

T
a
rg
et

P
re
F
∆

[1
95
]

E
ac
h
p
re
fi
x
re
p
re
se
n
ta
ti
ve

o
f
w
h
o
le

ra
n
k
in
g

—
p̂
fr
o
m

fu
ll
ra
n
k
in
g

A
W

R
F
∆

[1
54
]

W
ei
gh

te
d
re
p
re
se
n
ta
ti
on

m
a
tc
h
es

p
o
p
u
la
ti
o
n

G
eo
m
et
ri
c

co
n
fi
g
u
re
d
p̂

F
A
IR

[2
01
]

E
ac
h
p
re
fi
x
m
at
ch
es

ta
rg
et

d
is
tr
ib
u
ti
o
n

—
b
in
o
m
ia
l
p̂

lo
gD

P
[1
65
]

E
x
p
os
u
re

eq
u
al

ac
ro
ss

gr
o
u
p
s

L
o
g
a
ri
th
m
ic

eq
u
a
li
ty

lo
gE

U
R

[1
65
]

E
x
p
os
u
re

p
ro
p
or
ti
on

a
l
to

re
le
va
n
ce

L
o
g
a
ri
th
m
ic

∝
u
ti
li
ty

lo
gR

U
R

[1
65
]

D
is
co
u
n
te
d
ga
in

p
ro
p
or
ti
o
n
a
l
to

re
le
va
n
ce

L
o
g
a
ri
th
m
ic

∝
d
is
c.

u
ti
li
ty

IA
A

[1
6]

E
x
p
os
u
re

p
ro
p
or
ti
on

a
l
to

p
re
d
ic
te
d
re
le
va
n
ce

G
eo
m
et
ri
c

∝
es
t.

u
ti
li
ty

E
E
L
,
E
E
R

[5
2]

E
x
p
os
u
re

m
at
ch
es

id
ea
l
(f
ro
m

re
le
va
n
ce
)

C
a
sc
a
d
e,

R
B
P
.

f
(u
ti
li
ty
)

E
E
D

[5
2]

E
x
p
os
u
re

w
el
l-
d
is
tr
ib
u
te
d

C
a
sc
a
d
ea
,
R
B
P
.

eq
u
a
li
ty

P
A
IR

[1
4,

12
8]

P
ai
rw

is
e
p
re
fe
re
n
ce

ac
cu
ra
te
ly

m
o
d
el
ed

a
cr
o
ss

g
ro
u
p
s

—
eq
u
a
l
a
cc
u
ra
cy

a
C
as
ca
d
e
w
ei
gh

ti
n
g
al
so

in
co
rp
or
at
es

re
le
va
n
ce

in
to

ex
p
o
su
re
,
ev
en

if
ex
p
o
su
re

is
n
o
t
co
m
p
a
re
d
to

re
le
va
n
ce
.



36

Table 4.2: Summary of fair ranking metrics.

Metric(s) Binomial? Range More Fair

PreF∆ [195] Dep. on ∆a [0, 1] 0
AWRF∆ [154] Dep. on ∆ [0, 1] 0

logDP [165] Yes (−∞,∞) 0
logEUR [165] Yes (−∞,∞) 0
logRUR [165] Yes (−∞,∞) 0
IAA [16] No [0,∞) 0
EEL, EER [52] No [0,∞) EEL 0, EER >
EED [52] No [0,∞) 0

PAIR [14, 128] No [0, 1] 0

a∆RD and ∆RD both require binomial protected group attributes, but ∆KL generalizes.

Table 4.3: Parameters of weighting Models for computing aL(d) and the range
of parameter values with default values

Parameters Values Browsing Models Default Values
Abandon Probability α {0.1, 0.2, ..., 0.9} Cascade 0.5

Stopping Probability ψ {0.1, 0.2, ..., 0.9} Cascade
Geometric

0.5

Patience Probability λ {0.1, 0.2, ..., 0.9} RBP 0.5

used by the metrics we survey. The resulting exposure is then sometimes compared

with a target distribution p̂ that represents across groups. There are several ways of

computing p̂, including strict group equality, an estimate of the population of actual

or potential content providers, or the distribution among providers of relevant items.

4.2.2 Statistical Parity in Single Rankings

We begin with metrics that assess the fairness of a single ranking and only measure

exposure equity without considering relevance (that is, they target statistical parity).

These metrics can be aggregated over the rankings produced by a system, e.g. by

taking the mean, to produce an overall system fairness score.
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Table 4.4: Default weighting models for computing aL(d)

Metric Model Formula

AWRF, IAA Geometric ψ(1− ψ)L−1(d)−1

logDP, logEUR, logRUR Logarithmic 1/log2max{L−1(d), 2}
EER, EED, EEL RBP λL

−1(d)

EEL, EED, EER Cascade αL−1(d)−1
∏

j∈[0,L−1(d)) [1− ψ (y(L(j)|y))]

Table 4.5: Distance functions for comparing distributions.

Distance Function p̂a Formula

∆ND(L, p̂) Binomial |G+(L)|
N
− p̂

∆RD(L, p̂) Binomial |G+(L)|
|G−(L)| −

p̂
1−p̂

∆KL(L, p̂) Multinomial DKL(p̂(L)∥p̂)b

∆AD(ϵL, p̂) Binomial | |G
+(L)|
N
− p̂|

aBinomial p̂ is a scalar probability of the protected group.
bK-L divergence; p̂(L) is the probability distribution of groups in L.

The simplest way to measure the fairness of a single ranking is to measure the

proportion of items in each group [59], but this does not account for position bias.

Yang and Stoyanovich [195] proposed a family of statistical parity measures that

incorporate position bias by averaging parity over successive prefixes of the ranking;

we call this the prefix fairness family (PreF∆). These metrics are optimized when the

representation in each prefix matches the target p̂ as closely as possible, as measured

by a distance function ∆; Yang and Stoyanovich used the full ranking’s composition

as p̂, and instantiate PreF∆ with distance functions ∆ND, ∆RD, and ∆KD (from

Table 4.5) to yield different members of the family. The metric is defined as

PreF∆(L) =
1

Z

N∑
i=10,20,30,...

∆(L≤i, p̂)

log2 i
(4.1)

where normalizing scalar Z = maxL′ PreF′
∆(L

′, p̂) (taken over all L′ with the same
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length and group composition as L, where PreF′
∆ is the prefix fairness function with-

out the normalizer), scaling PreF∆ to the range [0, 1] where 1 is the maximum un-

fairness. ∆KL has the advantage of allowing multinomial protected attributes and

soft group association. PreF∆ does not work when G−(L) = ∅, and ∆RD does not

work when G−(L) is small. Z is also troublesome to compute with incomplete group

membership data.

Zehlike et al. [201] propose a similarly-motivated group fairness constraint for a

single list and fixed membership in binomial groups: L satisfies the FAIR constraint

if for every prefix L≤k with 1 ≤ k ≤ N , the protected group is not statistically signif-

icantly under-represented. Unlike PreF∆, FAIR does not penalize over-representing

the protected group. We convert this constraint into a metric by taking the average

of the binomial probabilities:

FAIR(L) =
1

N

N∑
k=1

PBinomial

(
m ≤ |G+(L≤k)|p̂, k

)
(4.2)

=
1

N

N∑
k=1

|G+(L≤k)|∑
j=1

(
k

j

)
(p̂)j(1− p̂)k−j

Sapiezynski et al. [154] provide a more general metric for single-list fairness by

using an explicit (and configurable) position weight model instead of embedding the

browsing model in the metric structure. Given an alignment matrix G(L) and suitably

normalized position weight vector aL, ϵL = G(L)TaL is a distribution that represents

the cumulative exposure of the various groups in L. The resulting unfairness metric,

which we call Attention-Weighted Rank Fairness (AWRF∆), is the difference between
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this exposure distribution and the population estimator:

AWRF∆(L) = ∆(ϵL, p̂) (4.3)

AWRF∆ allows soft association and multinomial protected attributes. The distance

function in Table 4.5 depends on application context; for assessing a particular pro-

tected class representation, difference in probability is suitable distance.

4.2.3 Statistical Parity in Multiple Rankings

In many cases, fair exposure cannot be achieved in a single ranking, because the at-

tention paid to rank positions often decreases more steeply than the utility (relevance)

of items [16, 52]. One solution is to measure fairness over sequences or distributions of

rankings so providers have comparable opportunity to be exposed in at least some ses-

sions or responses. This approach can be modeled as a request-dependent distribution

(or policy) π(L|q) over rankings [165, 52]. We extend this to include a distribution

over requests ρ(q), so a sequence of rankings L1, L2, . . . , Lñ [16] is a series of draws

from the distribution ρ(q)π(L|q). The group exposure within a single ranking from

Eq. 7.3, ϵL = G(L)TaL, is the fundamental building block of these metrics, along

with their expected value:

ϵ(q) = Eπ[ϵL] =
∑
L

π(L | q)ϵL

ϵπ = Eπρ[ϵL] =
∑
q

ρ(q)ϵ(q)

Singh and Joachims [165] and Diaz et al. [52] each propose metrics for measuring

statistical parity over ranking policies. Neither metric incorporates a target distribu-
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tion; they are optimal when all groups are equally exposed. Demographic parity [DP,

165] measures the difference in exposure between two groups3:

DP = ϵπ(G+)/ϵπ(G−) (4.4)

Expected exposure disparity [EED, 52] ensures well-distributed exposure by measur-

ing the inequality in exposure distribution across groups with the L2 norm:

EED = ∥ϵπ∥22 (4.5)

4.2.4 Equal Opportunity in Multiple Rankings

So far, none of the metrics we have discussed account for the utility of the ranked

results — rankings do well by exposing providers regardless of the utility of their

items. The intuition behind incorporating utility, articulated independently by Singh

and Joachims [165] and Biega et al. [16], is that exposure should be proportional to

relevance: if an item or a group contributes 10% of the relevance to a request (user

and/or query), it should receive approximately 10% of the exposure. This is a ranked

analog of the equality of opportunity construct from fair classification [87]: outcome

is conditionally independent of group given utility.

To measure deviation from this goal, Singh and Joachims [165] propose two met-

rics. The exposed utility ratio (EUR)4, measures deviation from the goal that each

3The original paper presented a constraint, not a metric, for demographic parity; we have imple-
mented it as a ratio to be consistent with the other metrics.

4Singh and Joachims [165] used the terms “disparate treatment ratio” and “disparate impact
ratio” for EUR and RUR, respectively, but this terminology is not consistent with the use of these
terms in the broader algorithmic fairness literature as we understand it. Exposure the system gives
to providers is an impact, not a treatment. We have changed the names to hopefully reduce confusion
going forward.
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group’s exposure is proportional to its contributed utility (measured by Υ(G) =

Eρ[
1
g

∑
i∈g y(d|q)]):

EUR =
ϵπ(G+)/Υ(G+)
ϵπ(G−)/Υ(G−)

(4.6)

The realized utility ratio (RUR) incorporates utility into both numerators and de-

nominators by measuring whether the discounted utility contributed by each group

(Γ(G) =
∑

d∈G Eπρ[aL(d)y(d|q)]) is proportional to its total utility:

RUR =
Γ(G+)/Υ(G+)
Γ(G−)/Υ(G−)

(4.7)

As they are based on ratios between group metrics, EUR and RUR do not support

multinomial protected groups or soft association.

Biega et al. [16] present the amortized attention construct to measure exposure

over the sequence of rankings. This compares rank exposure with expected utility

Υ̂ (computed with system-predicted utility ŷ(d|q)) instead of ground truth relevance

assessments y(d|q)), measuring whether the system allocates exposure proportional

to the utility it estimates items to have. Deviations from this goal are measured by

taking the L1 norm of the group exposure-utility differences, yielding the Inequity of

Amortized Attention (IAA) metric:

IAA = ∥ϵ− Υ̂∥1 (4.8)

Diaz et al. [52] build on this to integrate relevance in a different way. Rather than

relate exposure directly to relevance, they use relevance to derive target exposure

based on an ideal policy τ that assigns equal probability to all rankings that place
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items in non-decreasing order of relevance and 0 (or miniscule) probability to all

other rankings. The target exposure ϵ∗ is the expected exposure under the ideal

policy (ϵ∗ = Eτρ[ϵL]). They take the squared Euclidean distance between system

expected exposure and target exposure, yielding the Expected Exposure Loss :

EEL = ∥ϵπ − ϵ∗∥22 (4.9)

= ∥ϵπ∥22−2ϵπϵ∗ + ∥ϵ∗∥22 (4.10)

The decomposition in Eq. 4.9 yields expected exposure relevance EER = 2ϵTπ ϵ
∗ (mea-

suring the alignment of exposure and relevance, higher values represent better align-

ment) along with EED. Neither IAA nor the EE metrics distinguish between group

over- or under-exposure; for both, 0 is perfectly fair and larger values are unfair, with

no preferential treatment given to a protected group.

The common thread between these metrics, articulated by Diaz et al. [52], is

that for a fixed information need, differences in exposure between items with the

same relevance grade results in unjustifiably unfair outcomes. Relating exposure to

relevance sets the goal that items of comparable relevance should have comparable

opportunity to be exposed, as measured by expected or amortized exposure over

repeated rankings.

4.2.5 Pairwise Metrics

Beutel et al. [14] and Narasimhan et al. [128] define fairness objectives over pairwise

orderings instead of entire rankings; like Bayesian Personalized Ranking [149], this

treats the ranking problem as a binary classifier to predict relative ordering of pairs.

Pairwise fairness is then defined in terms of the pairwise accuracy for ranking relevant
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items in different groups:

AG1>G2 = P
(
d1 ≻L d2 | d1 ≻y|q d2, d1 ∈ G1, d2 ∈ G2

)
(4.11)

where

d1 ≻L d2 = L−1(d1) < L−1(d2) d1 ranks above d2

d1 ≻y|q d2 = y(d1 | u) > y(d2 | q) d1 more relevant than d2

A ranking satisfies pairwise equal opportunity if pairs of items are equally likely to be

ranked consistently with their relevance regardless of the group membership of the

items in the pair. This can be measured by the group’s pairwise accuracy with respect

to all items (AGi>:), its inter-group accuracy (AG1>G2), or its intra-group accuracy

(AG1>G1). Given protected and unprotected groups, we can define a fairness metric

as the difference in pairwise accuracy:

PairAcc = AG−>: − AG+>:

IntraAcc = AG−>G− − AG+>G+

InterAcc = AG−>G+ − AG+>G−

4.2.6 Assessing Metric Design

Rendering metrics in a common notation shows that the metrics are quite similar in

their basic concepts. The fundamental construct — weighted exposure — is the same

across most metrics (pairwise fairness being an exception), and they differ primarily
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in how they relate exposure to relevance and how they aggregate and compare ex-

posure distributions. The following questions help identify more precisely what their

salient differences are and how those may relate to particular IAS applications and

experimental settings.

Does the metric incorporate relevance? EEL, EER, EUR, RUR, IAA, and

PAIR directly incorporate relevance into metrics; others strictly measure statistical

parity. It is desired depending on the precise task and evaluation goal. Statistical

parity metrics are useful for measuring relative fairness of rankings already optimized

for utility, particularly when there is no relevance information available or the rele-

vant sets for a query are large. They can also be used to detect discrepancies that

may indicate unfairness in relevance data (if relevance data is unfair, such as by

systematically under-estimating the relevance of a group’s documents, a metric that

relates exposure to relevance will use the unfair relevance to justify unfair disparities

in exposure). However, using such metrics in isolation for evaluation or optimization

may reduce ranking quality.

How does it handle missing data? Real-world data sets are often incomplete,

missing relevance and/or group labels for many documents. Metrics that are less

sensitive to that problem will be easier to apply in such cases. Missing relevance data

affects EUR, RUR, EER, and EEL like it does classical IAS evaluation metrics such

as nDCG; the straightforward but biased approach is to treat items with unknown

relevance as irrelevant (y = 0). IAA’s use of system-estimated relevance allows it to

sidestep this problem.

Missing group labels require different handling. For many metrics, we can include

unlabeled items when computing attention weights but exclude them from further
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analysis, or treat “unknown” as an additional group identity. Unknown data is a

more significant problem for PreF∆ family because it treats a list with fewer than 10

known-group items as maximally fair, and the straightforward way of computing Z

— make the ranking maximally unfair by putting all protected items last — does not

work in the face of missing data.

How does it respond to edge cases? Realistic IAS experiments bring a number

of important edge cases, such as groups with no items relevant to or retrieved for a re-

quest. Ratio-based metrics and distance functions are particularly vulnerable to these

problems; the EUR metric and the ∆RD distance function, for example, approach

infinity as the number of non-protected-group items retrieved goes to zero. RUR is

even more brittle, as it requires nonzero relevance from retrieved non-protected-group

items to avoid infinity, and both it and EUR can be infinite or undefined if the set of

relevant items from either group is zero.

Reformulation of DP, EUR and RUR: Since these three metrics are ratios, their

maximally fair point is 1, with a nonlinear relationship between values favoring and

disfavoring the protected group, hindering interpretability; further, they approach∞

if the dominant group exposure is close to 0. To improve interpretability, we take the

logs of these ratios, so 0 is fair and distance is symmetric in either direction; and we

address the empty-group problem by adding a small damping constant to both sides

of the ratio. This yields the following reformulation for DP:

logDP = log
(
ϵ(G+) + 10−6

)
− log

(
ϵ(G−) + 10−6

)
logEUR and logRUR are defined equivalently. As log ratios, values greater than 0

indicate a bias in favor of the protected group.
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What is the target? PreF∆, FAIR, AWRF∆, EEL, and EER provide flexibility

in determining how the (un)fairness of exposure is ultimately assessed through selec-

tion of the target distribution, while targets are implicitly baked in to the structure

of others. This configurability is useful because it allows the metric to be adapted to

the fairness requirements of a particular task, although it can impair comparability

between experiments.

How does the metric compare the system with the target? Some metrics

(AWRF∆ and PreF∆) use an explicit distance function to compare distributions, while

others use ratios of specific proportions or norms of differences in distributions. Norms

and selected distance functions (such as ∆KL) can accommodate soft association,

while ratios and distance functions based on binomial probabilities require definitive

membership in binomial groups. They can be adapted to some multi-group situations

if only one group’s exposure needs to be considered.

What user model does it use? Most metrics allow different position weighting

strategies to be selected, both in its structure and its parameters. This configurabil-

ity allows the metric to be adapted to specific application but introduces potential

sensitivity towards the choices of weight functions and parameter values. PreF∆ and

FAIR are not configurable, as position weighting is built-in (as in PreF∆ and FAIR)

or unavailable (in PAIR).

The conceptual analysis of fair ranking metrics in a common framework and unified

notations shows that the metrics within same fairness goal are not compatible for

every experimental setting and fairness task. Figure 4.1 shows the common design

decomposition of fair ranking metrics and various ways of incorporating those factors

into measurement.
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Figure 4.1: Fair ranking metrics design decomposition

4.3 Experimental Setup

We now turn from our analytical treatment of the metrics to an empirical comparison,

using each of them (except for PreF∆, due to its difficulties with missing labels and

soft membership) in real-world IAS experiments for three tasks across two problem

settings:

1. Personalized book recommendations, measuring fairness with regards to author

gender.

2. Scholarly article retrieval (both retrieval and re-ranking of short candidate sets)

based on queries, measuring fairness with regard to the economic development

of the author’s country (as a proxy for the research resources available).

We further carry out a sensitivity analysis to understand how experimental outcomes

change in response to design decisions and parameter values in the metrics.

This section describes the experimental setup itself, and the considerations we

had to make when adapting the metrics in this setting. For our recommendation

experiments, we used the GoodReads data [183] and for search experiments, we used
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submitted runs and evaluations from the TREC Fair Ranking Track 2020 [18]. The

description of the dataset used in in this chapter are provided in chapter 3. Table 3.1

shows summary statistics for each dataset.

4.3.1 Recommendation (GoodReads)

We measure the fairness of each recommendation list with respect to the gender

of the book’s author, extracted from Virtual Internet Authority File (VIAF)5 (as

described by Ekstrand and Kluver [59]). Group membership in this data is binary but

incomplete, so we considered female authors to be the protected group G+ and male

authors G− for all two-group metrics (unknown-author books are therefore ignored).

Metric Implementation For AWRF∆, we used ∆AD (following the original pre-

sentation [154]), and the distribution of male and female authors among the set of

books in the data set as the population estimator. For IAA and the EE metrics, we

treat unknown gender as a third author group.

Pairwise accuracy does not just depend on the top-N list — it is a function of

the system’s overall ranking between items. Therefore, we did not compute it from

ranked output, but rather directly computed it from the recommendation model’s

scores for a sample of items. For each test item, we sampled 10,000 items not rated

by the target user as negative examples, and used these to estimate the probability

of correct orderings. This proved relatively efficient for our experiment size.

4.3.2 Search (FairTREC)

The runs from FairTREC data covered two tasks (re-ranking and full retrieval). We

considered each submitted run as an individual system and used the given sequences

5http://viaf.org/viaf/data/
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of rankings for each system. For the re-ranking task, we only used one run from

each participating team. The details about the systems can be found in participants’

notebook papers [68, 118, 155, 99]

Metric Implementation Unlike GoodReads, in the FairTREC data, each docu-

ment has a soft association with the economic development level of its author(s), and

thus we could not implement logDP, logEUR, and logRUR. Additionally, IAA uses

system predicted relevance as ground truth, which makes it inapplicable in TREC

setup (because systems do not provide scores for all items). We could not test these

metrics on FairTREC because we do not have access to full rankings or the systems’

relevance scores.

4.4 Empirical Results

We now present the results of our experiment, using both the metrics in their default

configurations and conducting a sensitivity analysis with respect to weighting methods

and parameters.

4.4.1 Direct Comparison

We begin by directly comparing the metrics with default parameter settings from their

original papers to see how they assess each system in our experiments. Table 4.4 shows

the default configuration of the metrics and table 4.3 shows the default values for the

parameters. This comparison allows us to get a first view of the differences in results

using each metric as originally presented, with minimal adjustments for practical

implementation (see Section 4.2). We applied AWRF∆ with two target distributions;

AWRF∆ computes p̂ from the distribution of providers in the full data set, while
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AWRF equal targets equal representation of protected and unprotected groups.

Figure 4.2 shows whether the metrics agree or disagree, and if this agreement is

consistent across experiments along with their Kendall tau correlations. This figure

does not show results from metrics that only worked on one experiment, but the

metrics do not show clear consensus across datasets; there are substantial differences

in their system orderings, and metrics that agree in one experiment don’t often don’t

agree on others. The most consistently agreeing pair is EEL and AWRF∆ with

an equal-exposure target (positive correlation in all experiments, and comparatively

high correlation in three of them). Figures 4.3 shows all the metric results from our

experiments.

From this analysis we observe two things:

• Metrics frequently disagree on system orderings.

• Metrics that agree in one experiment don’t necessarily agree on the others. The

most consistently-agreeing pair is FAIR and AWRF∆ metric, the two single-list

metrics we study.

4.4.2 Sensitivity Analysis

Section 4.2 demonstrates that the fair ranking metrics often incorporate several de-

sign choices such as weighting strategies and parameter settings. However, this does

not tell us how much difference these choices make in practice; if a metric is highly

sensitivity towards design choices, it is more difficult to make correct configuration

decisions (particularly in the absence of external guidance for those choices), increas-

ing the complexity of applying it and the likelihood of error. To further analyze the

applicability and sensitivity of these metrics, we need to know to what extent these
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Figure 4.2: Metric results and correlations. Arrows indicate the direction of
increasing fairness. Correlations computed with Kendall’s τ-c within each ex-
periment, ordering systems according to each metric’s directionality.

metrics are dependent on their decision choices. We now turn to understanding the

impact of design decisions and parameter settings within each metric.
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(a) GoodReads recommendation task

(b) FairTREC reranking task

(c) FairTREC full retrieval task

Figure 4.3: Fairness metrics GoodReads and FairTREC datasets using their
original configurations. Arrow indicates direction of maximal fairness; · means
0 is fair. System identities are not relevant to our results.
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As we noted in Section 4.2, the exposure-based metrics and AWRF∆ combine

position weights and relevance in various ways; each was presented with particular

position weighting strategy, but could be applied to any other. Further, most weight-

ing strategies have parameters that affect the strength of the discounting. We test the

sensitivity of metrics and conclusions drawn from them to the choice of ranked-list

size, position weight formula, patience parameter, and stopping probability.

Size of Ranked List To observe the sensitivity towards ranked list size we apply

the metrics lists of varying sizes (10–1000 for GoodReads recommendation, and 10–

100 for FairTREC full retrieval). Fig. 4.4 shows the outcome of fairness metrics with

the change of ranking length. We observe that:

• Changing ranked list size had no effect on any metric applied to FairTREC.

• AWRF∆, IAA, EEL, EED, and EER are mostly stable as the list length changes

in the GoodReads recommendation experiment; they show slight changes through

length 50, but without affecting system ordering, and then stabilize.

• logDP, logEUR and FAIR (on GoodReads) change notably, including reordering

algorithms, as the list size changes.

Sensitivity towards ranked-list size of ratio-based metrics and FAIR in recommenda-

tion task indicates the need of studying metric dependency on relevance and group

information availability.

Weighting Strategy For position-weighted metrics, we applied each metric to all

four position weight models: rbp, cascade, geometric, and logarithmic (summarized
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(a) GoodReads recommendation task

(b) FairTREC full retrieval task

Figure 4.4: Metric results with the change of ranked-list size.

in Table 4.4). Figure 4.5 shows the outcome of fairness metrics with the change of

position weighting strategy. We use a continuation probability of 0.5 for the patience

parameter and a stopping probability of 0.5. From these results, we observe:

• For the GoodReads recommendation task, logDP, logEUR, and AWRF∆, sys-

tems show differences with the change of weighting strategy, whereas for IAA,

EER and EED, algorithms remain stable and did not show much disagreement

across different weighting strategies. logRUR and EEL show extreme sensitivity

towards the change of weighting model.

• In FairTREC reranking (Fig. 4.5(b)), systems show small differences but gen-

erally maintain system orderings across weighting models. We observe a few

changes in order (e.g.AWRF∆ from cascade to logarithmic) but these are be-
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tween systems already very close.

• In FairTREC full retrieval (Fig. 4.5(c)), systems are generally stable across

position models.

From the analysis, we observe that browsing models can have effects over some

metrics’ behavior to some extent, specially on EEL and logRUR. However, this anal-

ysis does not let us conclude that these metrics which showed stability over various

weighting strategies will act uninfluenced with the change of parameters in weight-

ing strategies. For further investigation, we measure the metrics by changing the

parameter values.

Patience Parameter Figure 4.6 presents the response of the metrics across pa-

tience parameter changes for the rbp and cascade weightings where we can see the

following patterns:

• AWRF∆, EEL, EER, and EED show sensitivity towards the patience parame-

ter following the same pattern in all three tasks (full retrieval, reranking, and

recommendations)

• In EEL, EED, and EER, systems show mild separation with each other following

the same pattern across weighting strategies.

• On GoodReads recommendation tasks, logDP, logEUR, and IAA show sub-

stantial separation between systems; they also preserve system order as the

parameter changed but the differences between systems shifted. The systems

follow a similar pattern across weighting strategies.

• logRUR is extremely sensitive to patience parameter changes.
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(a) GoodReads recommendations task (b) FairTREC reranking task

(c) FairTREC full retrieval task

Figure 4.5: Metric results with the change of weighting strategy.
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(a) Patience parameter on recommendation tasks (b) Stopping probability on recommendation tasks

(c) Patience parameter on reranking task (d) Stopping probability reranking task

(e) Patience parameter on full retrieval task (f) Stopping probability on full retrieval task

Figure 4.6: Metric results with the change of external parameters.
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Stopping Probability

Figure 4.6 shows the outcome of fairness metrics on the generated recommendations

for geometric and cascade position weight models and the sensitivity towards the

change of stopping probability. We have made the following observations from the

charts:

• In FairTREC full retrieval and reranking tasks, metric results change with stop-

ping probability. However, the systems did not vary significantly in the changing

pattern.

• On the GoodReads recommendations task (figure 4.6(b)), IAA, logDP and lo-

gEUR shows sensitivity with the change of stopping probability and the sensi-

tivity is notable in the cascade weighting strategy.

• In all three tasks, systems show complete inversion across weighting strategies

for EEL, EED, and EER. In EEL, the pattern of sensitivity towards the stopping

parameter is different between recommendation and ad-hoc tasks.

• logRUR is extremely sensitive to patience parameter changes.

Almost all metrics show sensitivity towards parameter value changes, which im-

ply the necessity of identifying optimal parameter settings while implementing these

metrics.

Overall, we observe that metrics do vary in their responses with the change of

design choices, however, IAA, EER, EED and AWRF∆ showed the most stability.
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4.5 Discussion and Recommendations

We started this project with three goals:

1. Identify requirements to implement the fair ranking metrics in actual search

and recommendation frameworks.

2. Identify similarities and both analytical and empirical differences among metrics

to inform the metric selection process.

3. Identify the observable effects of different changes in the metric design or con-

figuration.

Our analysis provides significantly more in-depth knowledge about the fairness

goals, requirements, implementations, and effect of design decisions. In summary,

our key findings are the following:

• Many metrics are remarkably similar in their underlying concept of fairness.

• Metric implementation highly relies on crucial factors such as group size, ranked

list size, item relevance information, and group membership.

• Certain design choices can make metrics vulnerable to edge cases. For example,

ratio-based metrics have difficulties with empty groups and zero values, such as

a ranking that has no retrieved items from one of the groups.

• Despite having similar fairness goals, these metrics can differ in their sensitivity

towards external factors.
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This still leaves the question, however, of what we should do in the present to

measure (un)fairness in ranking from real IAS datasets using a fair ranking metric.

We propose to use metrics compatible with the following criteria:

• Allow multinomial protected attributes. Such metrics are applicable to a wider

range of fairness settings, and choosing one means that the metric is not a

reason to use a binary simplification of a multinomial attribute, such as gender.

• Allow soft group association (mixed or partial membership).

• Be stable with respect to design choices.

This last point is to support ease of use; if a metric is highly sensitive to de-

sign choices such as the attention weighting model, then its validity depends more

strongly on the correctness of those choices. While a metric’s validity with respect to

the fairness objective in a particular application setting is the most important factor,

given two comparably-appropriate metrics we would prefer one that is more robust

to misspecification in its configuration. Based on these requirements, combined with

our observations in sections 4.2 and 4.4, we make recommendations for different mea-

surement goals and context based on the current state of the art and knowledge about

fair ranking metrics:

Single Rankings All single-ranking metrics we considered are statistical parity

metrics — they do not incorporate relevance. From our analysis, AWRF∆ seems the

most generally useful, because it supports multinomial protected attributes with soft

assignment, and is adaptable to multiple attention models, target distributions, and

difference functions. We are not yet able to make concrete recommendations for the

choice of a difference function.
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Demographic Parity in Sequences logDP and EED measure statistical parity

on sequences of rankings. EED seems more generally useful because of its support

for multinomial groups with soft membership, and was relatively robust with respect

to design choices.

Equal Opportunity in Sequences The logEUR, logRUR, IAA, EER, and EEL

metrics use relevance to measure (un)fairness in sequence of ranking, aiming at some

version of equality of opportunity. We currently recommend using EER and EEL

because of their support for multinomial groups with soft assignment, and compara-

tive robustness. IAA shows comparable stability and can be adapted to multinomial

groups and soft assignment; exploring that possibility is future work. In each context,

position weighting model should be chosen based on user behavior in the expected

context of use.

4.6 Conclusion and Future Direction

This chapter presents a comparative analysis among several fairness metrics recently

introduced to measure fair ranking. We discuss the metric formulations and impli-

cations in an integrated notation and present the first (to our knowledge) empirical

comparison of fair ranking metrics for recommendation and search systems in com-

mon data sets and fairness goals. We believe this comprehensive presentation and

comparison among metrics will help future researchers and practitioners to make more

informed decisions about metric choice and configuration.

Our findings from this empirical analysis point to several directions for future

research. Further work is needed on the limitations we observe from implementing
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the metrics in real data: implications and corrective methods for missing or sparse

relevance information of items and missing [98], ambiguous, or multiple group associ-

ations [80] are not yet well-understood. Moreover, the instabilities we observe in our

sensitivity analysis point to the need to work towards designing robust and efficient

fair ranking metrics and developing a body of research that can lend external support

for choosing where in the design space best meets a particular fairness goal. We also

expect simulation studies will yield a much deeper insight into the differences we ob-

served while applying metrics across different tasks and datasets, understanding more

thoroughly the impact of factors like relevant set size, soft association, and missing

relevance information, among others.

Significant progress has been made in the last few years on measuring the fairness

of rankings, but more work is needed in order to understand how best to design and

apply these metrics in wider settings. For example, measuring fairness in grid-based

ranking layout has received limited attention even thought grid design is a widely

used ranking layout in IAS. The following chapter addresses this gap where I describe

my work on the advancement of fairness measurement in ranking by considering the

applicability and reliability of fair ranking metrics in grid layout.
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CHAPTER 5:

MEASURING PROVIDER-SIDE GROUP

FAIRNESS IN GRID LAYOUT

The thorough analysis on the various components and design factors of existing fair

metrics in chapter 4, shows that user attention (and probability of interaction) is

an important factor in measuring fairness in ranking. User attention varies with

items’ positions in a ranking and governs the items’ exposure to the users. Moreover,

ranking design, task, or item metadata can affect user browsing behavior in ranking

and the resulting attention [124, 192, 170, 12, 53]. However, the browsing models

I discussed in previous chapter are suitable for linear or vertical ranked list, thus

limiting the applicability of fair ranking metrics in wider range of ranking design

such as, grid layout. It is unknown whether and how existing fair ranking metrics

for linear layouts can be applied to grid-based displays. In this chapter1, I explain

our work on measuring provide-side group fairness in grid ranking layout. We extend

existing fair ranking concepts and metrics to study provider-side group fairness in

grid layouts, presenting an analysis of the behavior of these grid adaptations of fair

ranking metrics, and study how their behavior changes across different grid ranking

1This work was done in collaboration with Dr. Michael Ekstrand. This work was submitted to
RecSys’23 but got rejected and currently under-revision.
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layout designs and geometries.

In chapter 4, I discussed provider-side group fairness in the context of ranking in

IAS where provider-side exposure fairness is concerned with whether or not exposure

and its benefits are distributed fairly [16, 52, 165, 142]. An “equality of opportunity”

goal [87] would be to ensure that two providers whose items are equally useful to a

user’s information need have the same opportunity to be exposed to and consumed by

that user, but systems do not always meet this criteria, instead providing disparate

exposure [52]. Moreover, from analyzing existing fair ranking metrics, we realize

that how users browse ranked results and provide attention to the exposed items in

ranked results is important to know while measuring provider-side group fairness in

ranking. For example, in rankings in linear layout, users tend to pay more attention

to top-ranked items [198], so those items are more effectively visible to users and

accrue greater benefit to their providers. Most of the existing metrics discussed in

chapter 4 to measure fairness of exposure (or related constructs) in ranked lists [142]

are designed for linear — usually vertical — layout models (figure 5.1(a)). However,

many systems use other ranking layouts such visual grids or voice responses.

Grid layouts (figure 5.2) are particularly popular for streaming media platforms

and image search, but also appear elsewhere; unfortunately, there has been little

work to determine how to measure group fairness in such layouts, or how to measure

fairness under different layouts (more than one of which can be employed in the

same system). Measuring fairness of a ranking in grid layout using existing metrics

by simply mapping the position of items in a grid layout to a linear layout can be

problematic because user attention to items as a function of position varies between

layout models [37]. For the same set of recommended or retrieved items, user attention
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varies depending on how the items are being displayed, affecting item exposure and

therefore the fairness of that exposure. Using fair ranking metrics without taking

layout-specific user browsing behaviour into consideration may provide unreliable

and erroneous results.

Furthermore, based on the device (phone, tablet, TV, laptop, etc.) used to interact

with an information access system, the geometry of grid layouts varies, often re-

ranking the list as the number of available columns changes. There are also multiple

methods for adjusting the grid layout; for example, when moving from a wider to a

narrower screen, some systems truncate the list at the right-side while others re-wrap

the entire list where the right-most items appear in the left-most position. The impact

of these layout adjustments on fairness scores is unknown. In summary, researchers

and developers of IAS using grid layouts have little to work with when trying to

reason about how the system layouts affect equity of exposure or how to apply the

various metrics that have been developed to this setting.

In this chapter, we seek to fill this gap and broaden the applicability of fair ranking

metric research by extending fair ranking metrics to grid layouts, providing the first

(to our knowledge) study of metrics for this widely-used but under-studied paradigm.

We adapt existing metrics to grid layouts by incorporating user attention models

that are appropriate for grid displays in order to provide researchers and practi-

tioners insights into what to expect when translating existing concepts from linear

to grid layouts and lay groundwork for future research on measuring and providing

fair exposure in grid display and interaction formats. Our goal is not to provide a

metric recommendation that is suitable for grid layout rather, our study will guide re-

searchers and practitioners in identifying required components to implement existing
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fair ranking metrics in grid layout and understanding the applicability and reliability

of the metrics in grid layout by providing insights on how the fairness scores change

across layout models. Moreover, our findings will advance future research directions

regarding fairness measurement considering various ranking layouts. The purpose of

this work is to aid the development of fair ranking metric(s) that are able to ad-

dress broader issues of real-world IAS applications by incorporating a frequently used

layout model.

In this work, we observe what happens to group fairness for a list of recommended

items with the change of layout model by answering the following research questions:

• RQ1. Do fairness measurements remain consistent across layout models?

• RQ2. Do rankings optimized for fairness in linear layouts remain fair in grids?

• RQ3. How do fairness scores change as grid size changes?

- RQ3.a. Does the fair ranking metric score change when the grid layout

is truncated?

- RQ3.b. Does the fair ranking metric score change when the grid layout

is re-wrapped?

- RQ3.c Does the change in group-fairness score with column size reduc-

tion remain consistent across truncation and re-wrap approach?

The main contributions of this work are to:

• Describe various types of layouts that are often used to display retrieved or

recommended items in IAS.
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• Provide modified fair ranking metrics which incorporate suitable browsing mod-

els to measure fairness in a given layout model.

• Provide insights on fairness score consistency and applicability across layouts.

• Describe the impact of column reduction approaches on fairness scores within

a ranking in grid layout.

5.1 Problem Formulation

We consider an information access system that recommends or retrieves n items

d1, d2, . . . , dn ∈ D in response to information requests from users q1, q2, . . . , qm ∈ Q

based on their relevance to the request y(d|q) and presents the results in a layout

L (either 1-column, as in a classical linear layout, or a multi-column layout). Items

are associated with producers or providers who in turn can be associated with demo-

graphic attributes identifying them with one or more of g groups. We model group

membership of items with group alignment vector G(d) ∈ [0, 1]g (s.t. ∥G(d)∥1= 1)

forming a distribution over groups; this allows for mixed, partial, or uncertain mem-

bership in an arbitrary number of groups. Table 3.3 summarizes the notation used in

this paper.

5.1.1 Ranking Layouts

The items ranked and displayed to a user in response to their information preference

come from a multi-stage process. IAS first analyzes the user’s information request

(contextual data, and historical information like preferences inferred from a user’s

past interaction), selects a set of candidate items, ranks those items based on their

estimated utility with respect to user’s need, and finally presents them to users in
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ranking layout (the simplest of which is a list of the ranked results). To fairly allocate

exposure between different items, even though only one can be placed in the coveted

first position in a single ranking, the system may employ a stochastic ranking policy

(distribution over rankings) and present a draw from this distribution to the user [52].

Once items are scored and ranked for a particular user information request, there

are various layouts in which these results can be displayed. In this work, we consider

layouts in r × c grids, where r is the number of rows and c the number of columns;

this encapsulates at least four distinct models.

(a) Linear Ver-
tical Layout

(b) Linear Hori-
zontal Layout

Figure 5.1: Various types of linear layout models

(a) Wrapped Grid Layout (b) Multi-list Grid Layout

Figure 5.2: Various types of grid layout models
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Linear Layouts

Items are displayed in a single linear list. These come in two varieties:

Vertical Ranking Model Items are displayed in a multi-row single-column ranked

list (r × 1, see Figure 5.1(a)). Users generally see items from top to bottom. The

layout may be split into multiple pages.

Horizontal Ranking Model Items are displayed in single-rows with multiple col-

umn lists following 1× c pattern. Users see items from left to right. In Figure 5.1(b)

recommender results are ranked in a single row ranked list

Grid Layout

Items are displayed in multiple rows and columns (r×c). These also come in multiple

varieties:

Wrapped Grid Items are displayed as a single ranking in an r × c grid, without

being categorized into groups. The grid is formed by displaying the items in order

horizontally and starting a new row when the display runs out of space. Figure 5.2(a)

shows a grid list of recommended books.

Multi-ranking Grid Items are displayed in multiple rows, often based on cate-

gories or recommendation sources, and each row consists of a ranked list of items. In

figure 5.2(b), recommended items are categorized by genre which may facilitate users

to find them from their preferred categories.
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We focus on wrapped grid layout in this work due to the better availability of

browsing and attention models for this problem setting. Further work is needed to

provide usable models of user browsing behavior with multi-ranking grids before we

can attempt to measure their fairness.

5.1.2 Fair Ranking Metrics

We followed the metric recommendations from our comparative analysis of fair rank-

ing metrics in chapter 4 [142], and study two metrics: Attention-Weighted Rank Fair-

ness [AWRF∆, 154] to measure statistical parity in single ranking (averaging over

multiple rankings to measure overall system fairness), and Expected Exposure Loss

[EEL, 52] to measure equal opportunity in sequences or distributions over rankings.

These metrics measure the distribution of exposure (based on estimated user atten-

tion) across provider groups to measure the fairness of rankings. They represent user

attention with a position weight assigned to each item in a ranking.

Both metrics rely on a model of user attention (estimating the attention a user is

likely to give to items at different positions in ranking) in order to measure fairness;

it is important to know how users browse and interact with different positions in the

ranked layout. Several studies have used user eye gaze tracker to study user browsing

behavior [163, 53, 191, 203]. Some studies used user click behavior to infer browsing

behavior of users [191, 55] with respect to ranking positions. Simple models of user

browsing behavior, commonly used in information retrieval metrics and described in

the next sections, determine these weights based on items’ position in the ranking

(along with other information, such as the relevance of preceding items).

AWRF∆ is suitable to measure provider-side fairness in single ranking and it

measures the difference between group exposure and configurable population estimator
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(representing the ideal distribution of exposure over groups) using a distance function

∆. The exposure for each groups ϵL is derived from the attention vector and the group

alignment matrix (ϵL = G(L)TaL) which aggregates the attention given to items of

each group in proportion to their group membership as represented by the alignment

vector:

AWRF∆(L) = ∆(ϵL, p̂) (5.1)

EEL is suitable for stochastic ranking policy where fairness is measured over

user-dependant distribution over rankings ρ(L|q) since it is not possible to achieve

equal exposure in single ranking [52]. It can be drawn as distribution over rankings

L1, L2, . . . , Lñ from the distribution over requests ρ(q)π(L|q) [142]. EEL uses avail-

able relevance information to derive a target exposure ϵτ , based on an ideal policy τ

where relevant items are sorted in non-decreasing order in ranking and exposure is

fairly distributed across the relevant items. Using the ϵL of each ranking, the system

exposure is derived as ϵπ =
∑

L π(L|q)ϵL. EEL is computed as the squared Euclidean

distance between system exposure ϵπ and target exposure ϵτ :

EEL = ∥ϵπ − ϵτ∥22 (5.2)

EEL further decomposes into two constituent metrics, EER and EED, where Expected

Exposure Disparity (EED) measures demographic parity and Expected Exposure Rel-

evance (EER) shows the the extent to which exposure is bound to relevant items [52].

We focus only on the EEL metric in this work.

For both AWRF∆ and EEL, the fairness goal is to provide fair exposure across
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groups, thus they measure fairness by comparing exposure distribution with target

distribution (EEL) or population estimator (AWRF∆) which is not dependant on

layout. Hence, we can apply these metrics in both linear and grid layout by incorpo-

rating layout-suitable browsing models and measuring fairness with the same target

distribution regardless of layout.

5.1.3 Linear Browsing Models

In linear layout, users typically browse the list from top to bottom [43], with the

probability that they will continue (and thus view more items) decreasing as they

move down the list. This assumption underlies many common metrics for recom-

mendation effectiveness, including nDCG [92] and MRR [28]. There is a variety of

models of this scanning behavior with decaying attention; cascade and geometric are

commonly-used click models to estimate user interaction probability with ranking po-

sitions. These models have been employed to construct evaluation metrics to measure

utility [122, 29, 33, 10] or item exposure [52, 16, 154] in rankings.

Moffat and Zobel [122] proposed the rank-biased precision (RBP) evaluation met-

ric to weight precision based on user attention to different ranking positions. This

metric used a geometric browsing model with a continuation probability λ to esti-

mate the probability of users moving to the next item (position) or stopping (click)

at that position; the visit or interaction probability exponentially decreases with

ranking positions. Biega et al. [16] proposed a modified version where the position

weight decays geometrically with each position having the same probability of being

stopped (clicked). In this model, the visiting probability of item d in position L−1(d)

is determined by:

Pgeometric[Vd] = λL
−1(d) (5.3)
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Table 5.1: Parameters of Weighting Models for computing aL(d) and the range
of parameter values

Parameters Values Browsing Models Default Values
Skipping Probability γ {0.1, 0.2, ..., 0.9} Row Skipping 0.5

Continuation Probability λ {0.1, 0.2, ..., 0.9} Cascade
Geometric

0.5

Slow parameter β {1.1, 1.2, ..., 2.0} Slower Decay 1.9

Craswell et al. [43] proposed the cascade click model where users will view position

i if they have skipped items before that position, and whether users will click or skip

a position depends on the relevance of the item in that position and the relevance

of items in previous positions. Chapelle et al. [33] proposed a cascade-based metric

expected reciprocal rank (ERR) by extending the cascade model to include the prob-

ability of users terminating the entire process as an abandonment probability that

decays geometrically. In the cascade model, users will visit item d if they did not

stop at any position before that item in the ranked list which is determined by item

relevance. The continuation probability λ is now a function of relevance, and the

probability of visiting d is given by:

Pcascade[Vd] =
∏

j∈[0,L−1(d))

λ (y (L (j)|q)) (5.4)

5.1.4 Grid-based Browsing Models

Users do not interact with grid-based displays in the same way they interact with

linear displays — treating the display as a linear ranking read from left to right and

top to bottom is not an accurate model of user browsing behavior and attention.

Several studies have been performed to understand how users allocate attention to
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different items in grid layout.

Existing Literature on User Browsing Behavior in Grid Layouts

Tatler [173] observed that users have a tendency of central fixation where they tend

to put more attention in middle of the screen than on the edges. Djamasbi et al. [53]

found that users usually focus on results located at the top left-hand side and proceed

in an F-shaped reading pattern, but the viewing pattern varies based on task, content,

and complexity of web pages. Shrestha and Lenz [163] showed that in image-based

web pages users do not always show the F-shaped viewing pattern and identified the

need to consider page content while understanding user viewing patterns. Zhao et al.

[203] observed user gaze pattern in recommender system with grid-based interfaces to

predict user preference; their eye-tracking study infers that users show an F-pattern

while interacting with grid-based interfaces rather showing a center effect but they

showed that pattern can vary depending on task.

Xie et al. [192, 191] performed eye-tracking studies to understand user attention in

grid-based image search results and observed that users tend to put more attention

in middle position rather than results in left or rightmost positions (middle-bias).

Moreover, in grid-view, user attention decreases at a slower speed than in linear

search results (slower-decay) and users may not go through every row; they often

directly interact with results after skipping previous rows (row-skipping).

The studies mentioned above mostly focus on understanding user viewing patterns

in grid-based interfaces with the goal of providing and measuring user satisfaction.

There is limited research work concerning fairness issues when IAS results are dis-

played in grid layout. Guo et al. [85] proposed de-biasing techniques for grid-based
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product search result pages in e-commerce systems; consistent with the studies above,

they observed that user attention follows row-skipping and slower-decay while inter-

acting results in grid layout and modified cascade browsing model to account for these

in estimating user attention. Balyan et al. [12] argued that in e-commerce grid-based

product search results, item meta information has an impact on user viewing behav-

ior, and incorporated item metadata into their un-biased learning to rank technique.

Adapting Browsing Models to Grid-Based User Behavior

Since the previous studies showed that user attention varies between applications

depending on task, domain, device, and details of the layout, considering multiple

viable models from existing literature will provide insights useful to researchers and

practitioners in various contexts, as they can apply an appropriate model for their

systems. For this analysis, we consider two such behaviors: row-skipping (RS) and

slower-decay (SD) in the context of wrapped grid layout; we leave central fixation,

multi-list rankings, and incorporating multiple browsing model adjustments simulta-

neously to future work.

Since both AWRF∆ and EEL use position weights to capture user browsing behav-

ior, we can adapt them to ranking in grid layout by adapting the browsing models. We

adapt both the cascade and geometric browsing models to account for row-skipping

(RS) and slower-decay (SD).

For row-skipping behavior, the visiting probability of item d at row(d) and ranking

position L−1(d) depends on the skipping probability of a row γ; for each of the k

rows before row(d), the user either continued through that row, or skipped it with

probability γ. If users visited items in a row, that implies that a particular row was
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not skipped. With that assumption, visiting probability of item d in cascade-based

row-skipping model considering relevance:

PRS(cascade)[Vd] =

row(d)∏
k=0

(1− γ)
∏

i∈L(k,·)

λ(y(L(i)|q)) +
row(d)∏
k=0

γ

 ∏
i∈row(d)

λ(y(L(i)|q))

(5.5)

The visiting probability of item d in geometric-based row-skipping model is given

by2:

PRS(geometric)[Vd] =

row(d)∏
k=0

(1− γ)
∏

i∈L(k,·)

λ+

row(d)∏
k=0

γ

 ∏
i∈row(d)

λ (5.6)

With the slower-decay browsing behavior, visiting probability of items across a

row in a grid layout decays more slowly than in a vertical linear list, but jumps when

the user moves to the next row. This is modeled by a decay parameter β to modify

the continuation probability for items in ranked results based on the row in which

they appear. The visiting probability of item d in cascade-based slow-decay model is:

PSD(cascade)[Vd] = min(βrow(d)
∏

i=[0,L−1(d)]

λ(y(L(i)|q)), 1) (5.7)

The geometric visiting probability of item d with slower decay is (derived by [85]):

PSD(geometric)[Vd] = min(βrow(d)
∏

i=[0,L−1(d)]

λ, 1) (5.8)

Table 5.1 shows the parameters and range of values we consider to measure at-

2This model is derived by [85]) where they referred the model as cascade click model. However,
in our paper, we referred the model as geometric to keep the conceptual consistency.
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tention weight of items in ranking.

5.1.5 Changing Grid Layouts

Based on the device the user is using to interact with the system, grid layout can be

converted into a size suitable for a particular device using two different approaches:

truncation, where each row is truncated and item off-screen are no longer displayed,

and re-wrapping, where the rows are re-wrapped so the items that would be off-screen

are moved to the next row. These approaches may differ in their influence on the

fairness of the resulting display. For example, if ranked results are presented in a 4×5

wrapped grid layout, the attention distribution over groups may vary when the same

results are presented in 5× 4 wrapped grid layout or in a 4× 4 layout. Users need to

scroll more to see other items, affecting item visibility and exposure. To observe the

impact of column size and column reduction approaches on group fairness score, we

change the column size for a given ranking in grid layout using both truncation and

re-wrap approaches.

5.2 Experimental Setup

Our central goal is to understand how measurements and optimizations for classical

linear layouts apply to grid layouts, both to apply existing methods and to identify

where further research is needed to support fairness in these widely-used layouts.

To answer our research questions, we conduct several experiments by implementing

the metrics with adaptations for user behavior in grid layouts and using them to

measure outputs in real-world IAS datasets covering both search and recommendation

scenarios.
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5.2.1 Dataset

In this work, we use datasets from both search and recommendations scenario. For

search systems, we use the Fair Ranking Track 2020 dataset and for recommendation

scenario, we use two datasets from GoodReads and Amazon. The details of the

datasets are provided in chapter 3. Both recommendation datasets have incomplete

relevance judgements and incomplete group labels. We follow common practice and

consider documents without relevance data as non-relevant, and treat missing group

labels as a separate unknown category in our experiments.

5.2.2 Methodology

Across several different scenarios, we measure the fairness of recommendation and

retrieved ranked results.

RQ1. Consistency of Fair Ranking Metric Scores Across Layouts To ob-

serve the consistency of fair ranking measurements across layouts, we implement

AWRF∆ and EEL with user attention models modified to account for wrapped grid

layout.

• For a given set of recommended or retrieved items, we represent the items in

linear-vertical layout and 5-column wrapped grid layout.

• We measure fairness using each of the metrics in their default parameter settings

for both layouts.

• We compare the metric scores to observe if and how fairness scores change with

the choice of layout models and to what extent.
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RQ2. Consistency of Fairness Optimized Ranking Across Layouts To bet-

ter understand the fairness score differences across layouts, we want to identify if

fairness remains consistent across layouts — whether a ranked list optimized to be

fair for a certain layout model remains fair for other layout models.

• We apply group-fairness aware GreedyEQ re-ranking technique from Ekstrand

et al. [61] on ranked results to generate optimized linear vertical ranked lists.

• Then we represented the optimized linear ranked lists into 5-column grid layout

and measure group fairness in both linear and grid layouts.

• This experiment shows the persistence of fairness scores of a ranked list across

layouts.

RQ3. Consistency of Fair Ranking Metric Scores Across Devices Depend-

ing on devices, column size of grid layout is changed (reduced) to fit the screen size.

Users may access a system from different devices with different screen size (such as

phones, laptops. and TV set-top boxes), and thus the grid layout may be adjusted

to fit the user’s current screen, usually by reducing the number of columns displayed.

As noted in Section 5.1.5, column reduction can be done by either truncating or re-

wrapping the rows. These methods may have different impacts on the fairness scores

of system outputs. Further, fairness scores may change as column size changes re-

gardless of approach. To see the impact of column size on group fairness score and

the fairness score consistency across column-reduction approaches,

• We represent the set of retrieved and recommended items in grid layout changing

the column size in 10, 8, 6, 5, 4, 3 using both truncation and re-wrap approaches.
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• We compare fairness scores across column sizes and also across the reduction

approaches.

• Moreover, to identify the impact of initial column size on metric score for re-

duced column grid layout, we measure fairness with two different initial column

sizes.

5.3 Results and Discussion

We now present the results of our investigation into the behavior of fair ranking

measurements applied to ranked results in grid layouts.

RQ1: Do fairness measurements remain consistent across layout models?

Figure 5.3 shows the fair ranking metric scores change with the change of layout

models n both search and recommendation scenarios. Metric scores change within grid

layouts with the change of browsing behaviors (row-skipping, slower-decay). AWRF∆

is not consistent across grid adjustments to browsing models, keeping the same order

of systems, but the cascade and geometric browsing models rank systems in a different

order. In both cascade and geometric browsing models, EEL scores with row-skipping

model show notable inconsistency; this shift is significantly greater than the shift seen

in AWRF∆. Metric scores are consistent between grid layout with SD(geometric)

browsing model and list layout under the geometric browsing model.

Implications From RQ1, we have following observations:

• Fair raking metric scores are highly dependent on layout and user browsing

model.
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• Within a layout, metric score further varies across user browsing behavior.

• Since user attention is one of the required components of AWRF∆ and EEL

implementation and user attention for ranking positions is determined by user

browsing behavior, it is important to consider accurate browsing model while

applying these metrics.

RQ2: Do rankings optimized for fairness in linear layouts remain fair

in grids? In RQ2, we examine how models that are optimized for fairness under

linear layout score when measured under a group layout. From Figure 5.4, we see

that AWRF∆ scores are consistent across layouts specifically with geometric browsing

model. EEL score for a fairness optimized ranking can vary across layouts depending

on user browsing models. Within a grid layout, EEL with the row-skipping browsing

model provides different fairness scores and rankings than slower-decay.

Implications From RQ2, we made following observations:

• A ranking that is fair in linear layout can be represented as unfair depending

on the user browsing behavior we are assuming while measuring fairness. This

reinforces the need to incorporate accurate user browsing models in fairness

measurement techniques.

• Without considering layout-suitable browsing models, fair ranking metrics will

provide unreliable fairness scores.
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(b) Amazon Recommendations (c) GoodReads Recommendations

(d) FairTREC Retrieval Task

Figure 5.3: Metrics results with the change of weighting strategy
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(b) Amazon Fairness-aware Re-Ranked Recommen-
dations

(c) GoodReads Fairness-aware Re-Ranked Recom-
mendations

(d) FairTREC Re-ranking task

Figure 5.4: Metrics results with the change of weighting strategy in optimized
ranking
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RQ3: How do fairness scores change as grid size changes? RQ3 shows how

the metric score changes with the column size and the approach for reducing columns

within a grid layout. Figure 5.5 shows that metric score changes with column sizes

and they differ in their changing pattern with column reduction approaches. In all

three datasets, the impact of column sizes on metric score varies across systems.

RQ3.a. Does the fair ranking metric score change when the grid-based

list is truncated? When columns are reduced using the truncate approach, metrics

show some stability towards column size in both search and recommendations for most

of the systems. However, column size has more impact on AWRF∆ scores than EEL

with the truncate approach.

RQ3.b. Does the fair ranking metric score change when the grid-based

list is re-wrapped? When columns are reduced using the re-wrap approach, AWRF∆

shows high sensitivity towards column sizes in both search and recommendations for

most of the systems.

RQ3.c Does the change in group-fairness score with column size reduc-

tion remain consistent across truncation and re-wrap approach? Metric

scores vary with the change of column sizes and the direction of this change is differ-

ent between column reduction approaches. However, for some systems, metric scores

with both column reduction approaches converges at some column sizes. The metrics

are consistent across systems. In the truncate approach, the starting column size has

an impact on metric score changing pattern. Figure 5.6 shows the EEL scores in

GoodReads dataset (showing same pattern in Amazon dataset) with the change of
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(b) AWRF∆ in FairTREC retrieval task (c) EEL in FairTREC retrieval task

(d) AWRF∆ in Amazon Recommendations (e) EEL in Amazon Recommendations

(f) AWRF∆ in GoodReads Recommendations (g) EEL in GoodReads Recommendations

Figure 5.5: Metrics results with the change of column sizes across column
reduction approaches
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(b) Impact of starting column on EEL in trun-
cate column reduction

(c) Impact of starting column on EEL in re-
wrap column reduction

Figure 5.6: Impact of starting column on EEL across column reduction ap-
proaches

column size and the pattern of this change varies with the starting size. In re-wrap

column truncation approach, the starting column size has no affect on metric score

consistency. We do note that the truncate approach is primarily used with multi-list

layouts in practice, while our results here are for wrapped layouts; however, finding

that the use of truncation has significant effects on fairness has implications for fair

layouts regardless of the initial grid layout method.

Implications From RQ3 we have following observations:

• Device is an important factor in measuring fairness.

• With the change of device (column size) fairness scores show high sensitiv-

ity which indicates the importance of carefully selecting column-reduction ap-

proaches while re-ranking the grid layout.
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5.3.1 Discussion

Our findings provide insights on implementation and reliability of fair ranking met-

rics in grid layout. Our analysis provides knowledge on how metric behavior changes

across ranking layouts and across column-reduction approaches within grid layouts

as well. Our results suggest that metrics can vary in their consistency across ranking

layouts (AWRF∆ was more consistent across layouts than EEL). However, a metric

that is consistent across layouts may not be stable across device sizes within a particu-

lar grid layout (EEL was more consistent across column sizes than AWRF∆, while for

AWRF∆, the consistency of metric results notably varies depending on the column-

reduction approach.) Therefore, our results advise researchers and practitioners to

pay close attention to ranking layout, device sizes, and column-reduction approaches

while using a metric to measure fairness in ranking. Even though AWRF∆ metric

score is consistent across layouts to some extent, while using AWRF∆ in grid layouts,

practitioners should pay attention to column sizes and column-reduction approaches.

While using EEL to measure fairness in ranking, ranking layout must be taken into

account but the reduction approach has less impact on the measurements.

Furthermore, our results indicate that metrics can be highly affected by user

browsing behavior. Since the concept of provider-side fairness in ranking often relies

on the attention users pay to items in different positions, it is important to use

accurate models of user attention behavior when measuring provider-side fairness in

ranking. It is therefore necessary to develop a clear and detailed understanding of

user browsing behavior in order to generate valid and trustworthy fairness score using

fair ranking metrics. Our work is not able to directly provide those measurements,

but provides a first analysis of what to expect when applying existing measurements
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with the current public state of knowledge in user behavior modeling.

5.4 Conclusion

In this chapter, we consider a gap in the state of the art in measuring the provider-

side fairness of rankings by considering grid layouts. We apply existing fair ranking

metrics in linear and grid layouts to identify their consistency across layout models.

Our results show that metrics scores are dependant on user browsing models and

ranking layouts. Moreover, within grid layout, metric scores are inconsistent across

column sizes and column reduction approaches.

Researchers and practitioners can not just apply an arbitrary user browsing behav-

ior in order to measure the fairness of a system’s rankings with existing fair ranking

metrics; they need to account for users’ likely browsing behavior for a particular

layout, as the differences in assumed or observed behavior affect the fairness mea-

surement results. This highlights the need for additional research, in particular eye-

tracking and similar studies to develop and validate models of user browsing behavior

for different devices, domains, and other display parameters (such as the type and

quantity of item metadata provided in the display). Further, many recommendation

applications use multi-list grid layouts, but there is almost no public research on

browsing behavior that enables realistic models for such layouts.

Developing reliable fair ranking metrics for a range of layout configurations, and

the browsing models needed to implement them, will help ensure that this widely-

used display format for information access outputs provide equitable exposure and

opportunity to content creators. The results we presented here will help researchers
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and practitioners to identify potential risks and considerations in applying the existing

metrics, and lay the groundwork for further research to make information access

systems, in all their varied displays and interaction formats, fair.



90

CHAPTER 6:

UNIFIED BROWSING MODELS FOR LINEAR

AND GRID LAYOUTS

In the previous chapters (chapter 5), I described various types of ranking layouts

that are used to display the results along with several existing user browsing models

that are used to implement fair ranking metrics. The analysis of various browsing

models in chapter 5 for both linear and grid layouts shows that the underlying con-

cepts of these browsing models are often similar, including varying components and

parameter settings. In this chapter1, I seek to leverage that similarity to represent

multiple browsing models in a generalized, configurable framework which can be fur-

ther extended to more complex ranking scenarios. We describe a probabilistic user

browsing model for ranking linear layout, show how this can be configured to yield

models commonly used in current evaluation practice, and generalize this model to

also account for browsing behaviors in grid layouts. This model provides configurable

framework for estimating the attention that results from user browsing activity for

a range of IAS evaluation and measurement applications in multiple formats, and

also identifies parameters that need to be estimated through user studies to provide

1This work was done in collaboration with Dr. Michael Ekstrand. This was submitted to IC-
ITR’23 but was rejected and currently under-revision.
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realistic evaluation beyond ranked lists.

As previously described, IAS can display results in a linear ranked list (figure 5.1)

or ranked items can be displayed in a grid view with multiple rows and columns

(figure 7.1). In a linear ranking layout, items are displayed in a single-column list

whereas in grid layout, items are presented in multiple rows and columns. Depending

on the ranking layout, item position changes in the displayed page which affects user

attention and interaction with items. Users do not provide equal attention to every

item that are exposed in the ranking and user attention varies based on item position

[198]. Moreover, user attention varies across ranking layouts as well [191]. Thus

user browsing behavior describing how users interact with ranking helps to estimate

approximate user attention provided to items at various ranking positions.

Ranked results are often evaluated based on one or both criteria: user satisfaction

such as maximum marginal relevance [28, 32, 122] and social and ethical issues such

as fairness [121, 63, 142, 96]. User browsing behavior is a significant component

in evaluation metrics construction. Evaluation metrics regarding effectiveness [123]

(e.g. reciprocal rank [42] or nDCG [93]) and fairness (e.g. equal exposure [52, 165]

or statistical parity [154]) of rankings take user browsing behavior into consideration

since user attention changes with ranking position and items with similar relevance

do not necessarily get the same attention in ranking. Hence, user browsing behavior

is used to estimate the probability of user engagements with ranking positions which

helps to measure item utility [122] and exposure [165] in ranking.

There are research works on understanding user browsing behaviors and these

studies often involve eye-tracking [203, 53] and click models [85] and to date, we have

multiple user browsing models. However, these browsing models work with the same
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underlying concept that user attention changes with ranking positions but they differ

on their use of components such as, relevance information, and external parameters

settings. Moffat et al. [123, 124] identified three interchangeable functions that can be

used to describe user behaviors in ranking and showed that effectiveness metrics can

be represented by those functions. Their study focused particularly on linear ranking

layout and generalization of effectiveness metrics for ranking.

In this work, we unify many of the extant user browsing models into a single model

that accounts for both linear and grid layouts showing how particular models from the

literature can be derived from specific parameterization of our model and extending

them to a wider range of SERP designs. We identify the conceptual similarities

among these models and disintegrate them into components and parameters. We

provide a generalized framework of user browsing models that allows researchers and

practitioners to re-configure the core structure based on their required components.

This structure can be further extended to more complex ranking layout scenarios.

6.1 User Browsing Behaviors in Linear Layouts

Several research works observed user browsing behaviors when reviewing linear lay-

outs, particularly vertically-oriented linear lists, and proposed user browsing models

to approximate the attention users are likely to pay to different items in a linear

ranking. Two commonly-used models are the geometric [122] and cascade browsing

model [43], each of which estimates the probability that a user will attend to the item

in a particular ranking position. These models are developed on three fundamental

assumptions:
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• Users browse a linear ranking from top to bottom.

• User attention decays with ranking positions.

• Users stop the process once they select an item.

Given a ranking, both geometric and cascade models approximate the probability

of the user continuing to the next item. With similar underlying concepts, these

models can be described using state transition model (figure 6.1). Moffat and Zobel

[122] presented a similar model of user browsing behavior in linear ranked list; our

model distinguishes between the selection and abandon events, a distinction we use

in Section 6.1.2. Table 3.3 presents the list of notations used in this paper. Given a

linear ranked list L, for a given position i, user u can take following actions:

1. Examine (E): The user examines (or “visits”, “’views”, or “inspects” the item

at the current position (Ei is the event of examining the item at position i).

2. Select (S): The user selects (usually by clicking or tapping; other work has also

used the terms “stop” or “click”) the item at the current position.

3. Abandon (A): The user terminates their browsing process without selecting an

item.

4. Continue (C): If the user has not select the item at the current position or

abandoned the process, they move to the next position.

The probability of continuing to the item at position i + 1 depends on two fun-

damental probabilities: (1) the probability of selecting the item at position i and

(2) the probability of abandoning the page after examining item at position i. Some
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Figure 6.1: State transition model of user browsing a linear layout

treatments use other probabilities as the fundamental parameters; we discuss this

more later in section 6.2.

Selection Probability In figure 6.1, the event “select” has the probability of se-

lecting the item at position i; at a particular position, this probability is conditional

on user examining the item, and it can also depend on the relevance of that item to

the query. The conditional probability of user selecting item at position i is:

P [Si|Ei, y(L(i)|q)] = ψ(i) (6.1)

Hence, the selection probability can be defined as a function of relevance:

ψ(i) =

 ψrelwhen y = 1

ψ¬rel y = 0

 (6.2)

When relevance is not considered, the probability of selecting the item at position i is

a constant: ψ¬rel(i) = ψ. where S is the event of selecting or clicking on an item and

E refers to the event of examining or viewing that item. This selection probability

can be modified based on the availability and the type of relevance information.
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Abandon Probability A user can abandon the page with abandon probability

α which can be fixed at each position that has the effect of being cumulative over

the ranking positions. The abandon probability can be derived as position-based

exponential decay and it can also be extended as a conditional probability function

which can be dependant on relevance of items.

Therefore, the continuation probability or the probability of moving to the next

position can be derived from selection probability and abandon probability of the

current position. Users will continue to the item at position i + 1 if they have not

selected the item at position i and did not abandon the process after examining

the item and position i. For a given linear ranking L, the generalized model for

predicting the probability of user examining the item d at a particular position i

when user attention decays exponentially is:

P [Ei] = (1− α)i−1
∏

j∈[1,i−1)

(1− ψ(j)) (6.3)

6.1.1 Static User Browsing Models

In static user browsing models, only item position is taken into account to estimate

user attention to items in ranking [122, 33]. Moffat and Zobel [122] considered a

geometric browsing model to propose rank-biased precision metric (RBP) which is

an effectiveness metric for linear ranking. In their assumed browsing model, user

attention decays exponentially with ranking positions and the probability of the user

continuing to the next positions depends on the probability of a user selecting item

at the current positions. They proposed a persistence or continuation probability λ

to derive the possibility of user continuing to the next position. In this model, the
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continuation probability is not dependant on relevance of items and it is considered

as a constant, hence, their proposed model is not distinguishing between selection

probability and abandon probability. In this model, users will always examine the

item at the first position and hence the probability of examining item at ith position

is λi−1. For a given ranking L of size N , rank-biased precision can be derived as

RBP(L) = (1− λ)
∑

i=1,2,...N

y (L(i)|q)λi−1

where y (L(i)|q) denotes the relevance of item in position i to the user request q.

Since the persistence probability λ was not dependant on relevance in a geometric

user browsing model, the probability of examining item d at ranking position i is:

Pgeometric[Ei] =
∏

i∈[1,i−1)

λ

which can be derived from equation 6.1 without considering relevance information

and abandon probability.

P [Ei] =
∏

j∈[1,i−1)

(1− ψ¬rel) (6.4)

Biega et al. [16] proposed another version of a geometric model where the attention

decays geometrically and each position has the equal probability of being selected.

Whether we want to consider examine probability of prior positions or not, we can

represent both versions of geometric model through equation 6.1.
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6.1.2 Cascade Models

Craswell et al. [43] proposed another user browsing model that incorporates item

relevance when estimating users’ item selection behavior. Their proposed cascade

click model (called adaptive by [123]) incorporates item relevance into the selection

process, so that users are much more likely to select a relevant document than an

irrelevant one; the probability of examining an item at a particular ranking position

therefore depends on the relevance of items in previous positions. Specifically, the

probability of the user clicking or selecting an item d is a function of y(d|q) (the

relevance of d for a given query q, which may be binary or graded). The event

of user selecting an item at position i depends on the probability of user selecting

an item at position i and users skipped (did not select) all the items prior to that

position which are dependant on the relevance of items. Hence, the the probability of

user clicking or selecting an item at position i can be derived from the fundamental

relevance-dependant selection probability ψrel:

P [Si] = ψrel(i)
∏

j∈[1,i−1)

(1− ψrel(j))

In both the cascade and geometric models, user attention decays exponentially

with ranking position, but in the cascade model the user is much more likely to

stop at a relevant item, so the examination and selection probabilities at a particular

position differ from ranking to ranking, and jump at the positions of relevant items.

Pcascade[Ei] =
∏

j∈[1,i−1)

(1− ψrel(j)) (6.5)
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where ψrel(j) depends on the relevance of the item in position j to the user request

q and the relevance can be binary or graded.

Chapelle et al. [33] use a cascade model to derive an effectiveness metric, expected

reciprocal rank (ERR). Unlike RBP metric, ERR depends on the relevance of items

to infer probability of a user selecting an item at particular ranking position and

directly derives effectiveness from those probabilities instead of using them to weight

a precision metric. For a given ranking of size N ,

ERR(L) =
∑

i=1,2..N

1

i
P [Si]

where P [Si] is the probability of clicking or selecting an item at position i which is

same as the cascade click model.

Chapelle et al. extended the cascade model through an additional parameter, an

abandonment probability modeling the probability of user terminating their browsing

regardless of whether they have selected an item (either to abandon the search entirely,

or to reformulate their query). In this extended cascade model, the probability of an

user examining an item at position i is:

P [Ei] = (1− α)i−1
∏

j∈[1,i−1)

(1− ψrel(j)) (6.6)

Therefore, the probability of examining the item at position i can be derived using

equation 6.3 incorporating abandon probability and relevance information.
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Table 6.1: Parameters of browsing Models and the range of parameter values

Parameter Name Description Values
ψ Selection Probability Probability of selecting an item at position i {0.1, 0.2, ..., 0.9}
α Abandon Probability Probability of abandoning the process. {0.1, 0.2, ..., 0.9}
λ Continuation Probability Probability of continuing to the position i {0.1, 0.2, ..., 0.9}
γ Skipping Probability Probability of skipping an entire row. {0.1, 0.2, ..., 0.9}
β Decay Incorporate slow browsing tendency for grid layout {1.1, 1.2, ..., 2.0}

6.1.3 Unifying Ranking Browsing Models

We can see that the geometric and cascade browsing models are capturing the same

fundamental ideas, with the difference that the cascade model incorporates item rel-

evance into selection probabilities. We can therefore derive these browsing models

from our state model with two main probability parameters: the selection probability

and the abandon probability, where the selection probability may or may not depend

on item relevance. Abandon probability can also be extended as a conditional proba-

bility of relevance. Our generalized browsing model can be configured to implement

various browsing models in the following ways:

• To use the geometric browsing model, the relevance component of selection

probability function and the abandon probability will be ignored (setting the

value as α = 0).

• To use the cascade browsing model, the relevance component of selection prob-

ability can be binary or graded.

• Both models can further incorporate the abandon probability by setting appro-

priate parameter values.

Table 6.1 shows the list of discussed parameters that can be incorporated in browsing

models and their range of acceptable values. With suitable parameter choices, our
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Figure 6.2: State transition model of user browsing a grid layout

generalized model can therefore realize a wide range of probabilistic attention models

both from the literature and yet to be devised.

6.2 Extending Generalized Framework to Grid Lay-

out

In this section, we further extend the generalized user browsing model for linear

ranking layout to grid layout.

6.2.1 Linear Layout is Single-Column Grid Layout

In grid layout, users have similar actions as linear ranking layout with an additional

possibility of skipping row action. Unlike linear layout, in grid layouts, users can skip

an entire row and move to the next row. We denote this row-skipping event as K.

User actions in grid layout can be demonstrated by figure 6.2, the state-transition

model. Therefore, for a given ranking in grid layout L the probability of examining

item at position L(k, c + 1) (row is k and the column is c+ 1) depends on:
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• the probability of selecting the item at position L(k, c),

• the probability of abandoning the process after examining item at position

L(k, c), and

• the probability of skipping row k after examining item at position L(k, c).

For a 1-column grid layout or linear vertical layout, the row skipping probability

can be ignored. Hence, the continuation probability of or the probability of moving

to the next position in grid layout can be derived from selection probability, row-

skipping probability, and abandon probability at the current position. The generalized

conditional probability of user selecting the item position i in grid ranking L is:

P
[
SL(k,c)|EL(k,c), y (L(k, c)|q)

]
= ψ(L(k, c)) (6.7)

6.2.2 User Browsing Models for Grid Layouts

Several studies have sought to understand user browsing behavior in grid layouts,

identifying that user browsing behavior in a grid layout is different than it is in linear

layouts. Users do not necessarily view top-to-bottom while interacting with a grid-

based interface; rather, they show various distinct tendencies such as central fixation

[173] and F-shaped browsing [53]. Tatler [173] did an user eye-movement study and

showed that users have the tendency of central-fixation while viewing images showing

on screen and that tendency can persist for grid-based image search results. Eye-

tracking studies on grid-based web-pages [53] and on grid-based recommendations

[203] show that users often follow F-shaped viewing pattern but both studies indi-

cate that user browsing behavior depends on task and content. In grid-based image
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search results, Xie et al. [191, 192] observed several user browsing behavior tendencies

through eye-tracking study; (1) slower-decay where user attention decays at a slower

rate in grid layout than in linear layout, (2) row-skipping where users skip a row

and move to the next row, and (3) middle-bias where users put more attention to

items at the middle positions. However, Shrestha and Lenz [163] and Balyan et al.

[12] highlighted the need of considering page content while studying user behavior for

web-pages and item meta information for e-commerce product search results displayed

in a grid layout.

6.2.3 Generalized Browsing Model

Linear vertical layout can be treated as 1-column grid layout, and the existent brows-

ing models for ranking in linear vertical will further be modified for grid layouts

(and still capture the linear behavior when the number of columns is set to 1). Guo

et al. [85] observed a similar user browsing pattern as Xie et al. [192] in grid-based

e-commerce products search results and they proposed modified geometric (equa-

tion 6.4)2 browsing models incorporating slower-decay and row-skipping grid-based

layout specific user browsing behaviors to generate a user attention model suitable

for grid-based e-commerce search results.

For slower-decay (SD), a decay parameter β is used to incorporate users slow

browsing patterns for ranking in grid layout. These parameters can be plugged into

any linear browsing model to make the browsing model suitable for the grid layout.

The visiting probability of item d at ranking position i where the row number is r(i)

2The original study referred the model as cascade click model. However, in our paper, we referred
the model as geometric to keep the conceptual consistency.
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and column is c(i) which is:

PSD[Ei] = min(βr(i)
∏

j=[1,i−1]

(1− ψ(j), 1)) (6.8)

The selection probability may or may not incorporate relevance judgements or es-

timates. The parameter β can be modeled by the abandon probability with the

assumption of the probability of abandoning items increasing with rows; as users

move vertically in grid layout, the probability of abandoning the process increases.

Hence, the slower-decay user browsing behavior can be modeled by adjusting abandon

probability where the abandon probability will increase vertically with rows but the

horizontal (columns) abandon probability will remain the same across the columns in

each row.

PSD[Ei] = αr(i)−1
∏

j=[1,i−1]

(1− ψ(j), 1)) (6.9)

Users’ row-skipping (RS) behavior is incorporated in browsing models with an

assumption that if users examine any item in a row, that particular row is not skipped.

The parameter γ determines the probability of skipping each of the rows before r(i).

If users examined or selected any item in a particular row, that means that row was

not skipped. Hence the examining probability of item d at ranking position i (row

r(i), column c(i)) in the generalized browsing model is:

PRS[Ei] =

r(i)−1∏
k=1

(1− γ)
∏

j∈L(k,·)

(1− ψ(j)) +
r(i)−1∏
k=1

γ

 ∏
i∈L(k,·)

(1− ψ(i)) (6.10)
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Therefore, if we want to incorporate all the components and browsing behaviors,

the generalized browsing model of estimating the probability of a user examining an

item at position i in a given ranking is:

P [Ei] = P [¬Ar(i)]

r(i)−1∏
k=1

P [¬Kk]
∏

j∈L(k,·)

P [¬Aj|¬Sj,Ej] +

r(i)−1∏
k=1

P [Kk]

 ∏
i∈L(k,·)

P [¬Ai|¬Si,Ei]

(6.11)

Our generalized browsing model can be configured to implement various browsing

models and ranking layouts in the following ways:

• To consider slower-decay user browsing behavior without row-skipping tendency,

the row-skipping probability γ can be ignored with the value of 0.

• To consider a linear vertical layout or single-column ranking, the generalized

model can be used by ignoring row-skipping and slower-decay behavior. In that

case, the probability of skipping a row will be fixed (γ = 0) and the column

abandon probability will be 0 with a constant row abandon probability.

• The configuration of the discussed grid-layout suitable browsing models depend

on the parameterization of selection probability, row-skipping probability, and

abandon probability. Table 6.1 show the potential values of the mentioned

parameters.

• Based on the availability of relevance, the selection probability ψ(i) can be

relevance dependant (cascade) or constant (geometric).
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• The browsing models can incorporate abandon probability α at each position

of the ranking.

• The abandon probability can be derived as a function of relevance of items.

This generalized browsing model can be further extended to incorporate various

browsing patterns and complex ranking layouts.

• The generalized browsing model can be extended to incorporate middle-bias

which is a grid-layout suitable user browsing behavior by increasing selection

probability for the middle positions in rankings. Xie et al. [192] modified selec-

tion probability by considering that as a normal distribution.

• This generalized browsing model can also incorporate an F-shaped user brows-

ing tendency by adjusting skipping probability γ and selection probability ψ.

However, we need accurate user browsing pattern to derive the appropriate

value of the parameters.

6.3 Conclusion and Future Work

In this work, we identify user browsing models for ranking in linear layout in informa-

tion access systems and show that the existent user browsing models are conceptually

similar and they can be generalized and configured based on ranking layouts, avail-

ability of component like relevance information, and parameter settings. We provide

generalized configurable framework of the browsing models that can be extended to

grid layout by considering grid-layout suitable browsing behaviors. The proposed

unified framework relies on configurable parameters such as selection probability,
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abandon probability, row-skipping probability, and decay parameters and thus vari-

ous browsing behavior in various ranking layouts can be represented by calibrating

these parameters.

Our analysis indicates the importance of knowing accurate user browsing behav-

iors for various ranking layouts to estimate optimal parameter values and user-eye-

tracking studies in various ranking scenarios can help in this area. This work relies on

multiple common and existing assumptions of user browsing behaviors (mentioned in

section 6.1) excluding other possible user browsing behaviors that are seldom stud-

ied. For example, we assumed that the process will end once the user selects an

item. However, users may select an item and return to the result page. Future user

studies can consider this browsing behavior so that browsing models can incorporate

this multi-select user behavior; our theoretical treatment can be extended to account

for it by adding additional probability modeling whether the user continues or stops

their browsing after selecting an item.

Furthermore, in grid layout, users can skip a row even after examining some items

in that particular row and examining items in a row may not always follow a left-to-

right pattern. Future research work on understanding user browsing behaviors in grid

layout can focus on identifying users’ row-skipping behavior and their patterns in ex-

amining items in rows. Then the generalized browsing models can be further modified

and configured depending on users’ browsing patterns in grid-layout. Therefore, stud-

ies on user browsing behavior can emphasize on inferring optimal parameter setting to

generate reliable user attention scores for any given ranking layouts. Users’ browsing

behavior in a multi-list grid layout is still under-studied and the categories or genres

can have an affect on users browsing behavior. Hence, wrapped grid-layout suitable
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browsing models may not be applicable in multi-list grid layouts which indicate the

need to understand user browsing behaviors in multi-list ranking scenarios.
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CHAPTER 7:

OPTIMIZING GRID LAYOUT FOR

PROVIDER-SIDE FAIRNESS

In chapter 5, we modify fair ranking metrics to measure provider-side group fairness

in ranking in grid layouts and show the consistency of metric scores across ranking

layouts and browsing models as well. We observe whether a ranking that is optimized

for fairness in a particular layout still remains fair with the change of layout or not

and from figure 5.4, we find a linear ranked list that has been optimized for fairness

may not remain fair when the results are displayed in a grid layout. This observation

emphasizes the need of considering layout suitable browsing models while optimizing

ranked results for fairness. In this chapter1, I undertake that work and propose and

test methods for producing rankings that are optimized for fairness in grid layouts

by using browsing models suitable to grid layout.

In IAS, ranked results are often optimized for fairness and relevance to preserve a

balance between user satisfaction and fairness and there exist several fairness aware

re-ranking techniques [61, 201, 52, 111, 78]. TREC Fair Ranking Track 2019 [17] and

2022 [64] provided multiple fairness-aware re-ranking tasks for which participants

1I collaborated with Dr. Michael Ekstrand for this work. We will be preparing this chapter for
submission to WSDM 2023 or a similar venue after the defense
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optimized their information retrieval systems by optimizing for both fairness and

relevance. However, these efforts are limited to linear ranked lists and the problem

of optimizing ranking in grid layouts for fairness has received limited attention so

far. Chen et al. [37] proposed a re-ranking technique when recommended items are

displayed in a 2-D grid, but fairness was not in their scope. Re-ranking technique

suitable for grid layout to optimize provider-side group fairness is still unknown.

Moreover, as seen in chapter 4 and chapter 5, fair ranking metric scores vary de-

pending on user browsing behavior and user browsing behavior varies across ranking

layouts. For example, user attention decays more slowly in grid layouts than in lin-

ear ranked lists [192]. Hence, for the same set of ranked retrieved or recommended

results, items can receive different user attention depending on how they are dis-

played to users. There is limited research on understanding user browsing behavior

in grid layout in IAS but the browsing models that are available have not yet been

incorporated into fairness ranking strategies.

As previously stated in chapter 5, the geometry of grid layout changes depending

on user devices and the column size (number of columns) changes with screen sizes.

For example, the streaming service Disney+ displays movie recommendations in 3

columns on a phone, in 5 columns on a laptop, and in 4 columns on TV. In production,

systems often use whole-page optimization strategies where the ranking is optimized

for the device form factor when it is known in advance [8]. However, re-sizable or

re-orientable devices like laptop browsers, tablets, and phones etc. still need resizing

strategies. To adapt the layout to a particular device size, items are re-ranked by

either re-wrapping or cutting-off from the right side. The same set of recommended or

retrieved items are re-ranked based on device size to fit the screen. As a consequence,
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the exposure or attention items receive from ranked results vary with the change

of user device. Hence, with the change of column sizes the fairness score will be

different for provider groups. Moreover, optimizing a grid ranking for fairness with

a particular column size may not remain fair when the column size or user device

changes. Systems need to re-rank items in ranked results for device-suitable column

sizes to preserve fairness across devices.

Items can be presented in two ways in a grid layout: wrapped (figure 7.1(a)) and

multi-ranking lists (figure 7.1(b)). In a multi-ranking list, items are ranked in a list

of lists based on categories. Displaying items in groups facilitates users to find them

from their preferred categories. In a wrapped grid layout, items are ranked in multiple

rows and columns without being categorized into groups. A fairness-aware re-ranking

technique designed for wrapped grid layouts may not be applicable for multi-list grid

layout. There is no user eye-tracking studies to show how user allocate attention in

multi-list grid layouts specifically for search results or recommendations scenarios.

However, having a re-ranking method for general grid-based browsing models will

yield an optimization approach that can be fine-tuned for more precise attention

models.

Since fairness score varies across layouts and an optimized linear layout for fairness

does not remain fair in a grid layout, we need to optimize fairness for grid layouts

considering grid layout-suitable user browsing models. Our work will contribute to-

wards filling the gap in optimization of fairness in grid layouts by providing the first

re-ranking technique to optimize provider-side group fairness in grid layouts.

In this work, we work on optimizing ranking in grid layout for provider-side group

fairness in wrapped grid layout. We adapt a commonly used re-ranking techniques
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which is suitable for linear layout and modify that for grid layout by incorporating

grid-layout suitable browsing models. Since designing fairness-aware re-ranking tech-

niques for ranking in grid layouts depends on ranking design, user browsing behavior,

and column size or user device, we observe the impact of column sizes and browsing

models on grid-aware re-ranking techniques.

We answer the following research questions in these regards:

• RQ1. Does incorporating grid-aware browsing models to existing re-ranking

technique improve fairness for ranked results in grid layout?

• RQ2. Does a ranking in a grid layout optimized for fairness in a device remain

fair for other devices?

• RQ3. How can we optimize ranking in grid layouts for various screen sizes?

• RQ4. Do browsing models have an affect on the optimization of ranking in

grid layouts for fairness?

By providing a simple and initial re-ranking approach for general grid layouts,

we contribute to the improvement for provider-side group fairness in grid layouts. If

more specific user attention models are developed in the future for ranking in grid

layouts, they can be plugged into the proposed re-ranking models. Our analyses

help practitioners to design a more fine-tuned re-ranking approach for grid layout in

IAS considering item metadata, tasks and domain and elicit several future research

directions towards fairness concerns in multi-ranking grid layouts.
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7.1 Related Work

In this section, I review background work on re-ranking and fairness-aware re-ranking

techniques in information access systems; the fairness-specific background is provided

in chapter 2.

7.1.1 Re-Ranking Techniques

System retrieved or recommended results are often optimized for quality measures

derived from these evaluation criteria; for example, re-ranking the initial ranking

using various optimization approaches [132, 86]. Moreover, in multi-stage ranking

architectures, systems retrieve an initial set of candidate items based on relevance and

then various re-ranking techniques are applied to generate the final ranking [84, 69,

137]. Several re-ranking and learning to rank (LTR) approaches have been proposed

to optimize ranking for utility [23, 22, 27, 61, 75, 111, 106, 132, 190, 174]. LTR

methods learn to rank based on scoring functions which is used to determine an

optimized ranking; individual items, list, or pair of ranked items are considered to

measure loss function against ideal ranking. Depending on the design of the loss

function, the LTR approaches are categorized into pairwise, point-wise, and list-wise

approaches [132, 189].

Pairwise approaches are often based on the change in ranking quality with the

swap of each pair of items in ranking [149]. In RankNet [23] and LambdaMART

[22], ranking quality is optimized by predicting an optimal ordering for each pair of

items in ranked list before generating the final ranking. In point-wise optimization

approaches, the ranking model is trained to minimize loss function determined from

each individual item score [106]. In this approach, each of the item in candidate set
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is scored independently based on the target quality. Unlike previous two approaches,

list-wise approaches consider the entire ranked list and the ranking function is trained

on the entire list based on the minimization of the loss function [27, 104, 194].

7.1.2 Optimizing Ranking for Fairness

Fairness optimization in ranking often involves trade-off between utility and fairness

score [165, 52, 14, 57] where various LTR and re-ranking approaches focus on im-

proving fairness score with minimum utility loss. There are several approaches to

optimize ranking for fairness in IAS that are often categorized into pre-processing,

in-processing, and post-processing (typically re-ranking) techniques [136]. In pre-

processing approaches, the potential bias in dataset or training labels are investigated

in order to identify and mitigate bias in ranking [168, 94]. In in-processing approaches,

the IAS algorithms or models are optimizing for fairness or a combination of fairness

and utility in the training phase [128, 14] and LTR methods can be used in this

regard. In post-processing approaches, already ranked results are optimized for fair-

ness by applying re-ranking techniques to improve or optimize a fairness objective.

Items from the initial ranked results are used to generate a new ranking following

fairness objective such as target distribution [195]. Several constraint optimization

approaches have been used to re-rank the initial ranked results and generate an op-

timized ranking [111, 165, 52]; the optimization constraints often includes both user

satisfaction metrics and fair ranking metrics to preserve a balance between fairness

and utility.

Various fair ranking metrics are used to measure fairness in ranking and to deter-

mine the target fairness score. There are several greedy optimization techniques that

are proposed to generate fairness-aware rankings with minimum impact on ranking
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quality [61, 78]. Liu et al. [111] proposed a personalized fairness-aware re-ranking al-

gorithm for micro-lending recommendations where each item from the initial ranking

will be assigned to a position in the ranking based on the optimization or maximiza-

tion of personalization and group fairness. Singh and Joachims [165] and Diaz et al.

[52] considered exposure of provider-side in ranking in their fairness-aware ranking

optimization techniques. However, all the approaches I discussed above are proposed

and implemented in linear ranked results when items are displayed in single-column

list.

In this work, we modify a widely used pairwise swap re-ranking technique to

optimize ranking in grid layout for provider-side group fairness.

7.2 Problem Formulation

In this section we introduce the experimental settings for optimizing grid-based rank-

ing for fairness.

In this work, we consider a recommender system that recommends n items d1, d2, . . . , dn ∈

D in response to information requests from users q1, q2, . . . , qm ∈ Q based on their

relevance to the request y(d|q) and presents the results in a wrapped grid layout

L. Items are associated with producers or providers who in turn can be associated

with demographic attributes identifying them with one or more of g groups. We

model group membership of documents with group alignment vector G(d) ∈ [0, 1]g

(s.t. ∥G(d)∥1= 1) forming a distribution over groups; this allows for mixed, partial,

or uncertain membership in an arbitrary number of groups. Table 3.3 presented in

chapter 3 summarizes the notation used in this paper.
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The ranking will be optimized for provider-side group fairness while preserving a

balance between utility and fairness. Hence, we use grid layout-aware browsing models

in both fair ranking metrics to measure fairness in ranking and in an effectiveness

metric to measure utility in ranking.

(a) Wrapped Grid Layout (b) Multi-list Grid Layout

Figure 7.1: Various types of grid layout models

Ranking Layout IAS display ranked results in both linear or grid layout and in

grid layout (figure 7.1) items are displayed in multiple rows and multiple columns.

Grid layouts can further be classified into wrapped and multi-list layout. In multi-list

grid layout, items are displayed in a grid but each row represents different genre or

category (figure 7.1(b)). In wrapped grid layout, items are not categorized into any

categories (figure 7.1(a)), rather the recommended or retrieved items are displayed

horizontally in multiple rows.

There is no research yet (to our knowledge) on understanding user browsing be-

havior in multi-list grid ranking in IAS settings. Hence, in this work, we are providing

fairness aware re-ranking method considering wrapped grid layout which can be fur-

ther extended for multi-list layout with suitable browsing models.
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User Browsing Model Users do not provide equal attention to every position in

ranked results [16], item at the lower position of a ranked list will not receive similar

attention as the item at the top position. Since user attention varies across positions

in ranked results, the position weight for each position in ranking depends on how

users browse the displayed ranked results.

There are several user browsing models to demonstrate user browsing behavior

in linear ranked lists. Cascade [43] and geometric [122] are two popularly used user

browsing models to infer the the probability of user visiting an item in a particular

position in ranking. These models are explained in chapter 6 showing that these

models differ in their underlying components and parameter settings but can be cast

as different configurations of the same model. In both geometric and cascade models,

user attention or position weight decays exponentially with ranking positions but in

cascade browsing model, user selection probability is a function of item relevance.

To implement grid layout-aware evaluation metrics, it is important to understand

how users provide attention to items in grid layout or how user attention changes

across items when they are displayed in grid layout. Xie et al. [191] showed various

user browsing behaviors in grid layout in e-commerce search results and they showed

users show row-skipping, slower-decay, middle-bias while browsing items in grid lay-

out. Users often skips rows while browsing ranked results in a grid layout and they

tend to show higher attention to the middle position of columns in ranking. Moreover,

user attention decays slowly across items in grid layout than linear list.

In chapter 5, I described our proposed modified version of geometric and cascade

browsing models incorporating grid layout-suitable row-skipping and slower-decay

user browsing behaviors and I implemented fair ranking metrics in grid layouts by
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incorporating grid-aware browsing models. In chapter 6, a generalized configurable

framework of user browsing model is provided to estimate user attention in both

linear and grid layout based on required components and selected browsing behavior.

In this work, we use the generalized framework of user browsing models and re-

configure that to adapt row-skipping and slower-decay user behavior in geometric

browsing model to measure position weight in grid layout. Table 6.1 describes the

parameters for browsing models with their range of values.

As noted in chapter 6, for a given ranking in grid layout, the visiting probability

of item d in geometric-based row-skipping model is:

PRS(geometric)[Vd] =

row(d)∏
k=0

(1− γ)
∏

i∈L(k,·)

(1− ψ) +
row(d)∏
k=0

γ

 ∏
i∈row(d)

(1− ψ) (7.1)

and the geometric visiting probability of item d with slower decay is:

PSD(geometric)[Vd] = min(βrow(d)
∏

i=[0,L−1(d)]

(1− ψ), 1) (7.2)

Target Fairness The purpose of this work is to provide a preliminary approach

to develop fairness-aware re-ranking techniques for ranking in grid layout, so I fo-

cus on fairness optimization in a single-ranking setting, leaving fair grid layouts in

stochastic settings for future work. To measure provide-side group fairness in single

ranking layout, we follow recommendations from the comprehensive analysis of fair

ranking metrics in chapter 4 [142] and use AWRF. Sapiezynski et al. [154] proposed

attention-weighted rank fairness or AWRF which measures the difference between

group exposure and configurable target distribution p̂ which represents the ideal ex-
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posure distribution over groups. Attention vector and the group alignment matrix is

used to derive group exposure ϵL (ϵL = G(L)TaL) by aggregating the attention given

to items of each group in proportion to their group membership as represented by

the alignment vector. Since our distribution difference function in bounded by [0, 1],

we invert it so that AWRF = 1 at maximal fairness to be more directly comparable

to the effectiveness metrics:

AWRF(L) = 1−∆(ϵL, p̂) (7.3)

Target Utility To measure utility in ranking, we consider an effectiveness metric

that consider items position weights in measurement. Moffat and Zobel [122] proposed

rank-biased precision (RBP) which combined a geometric browsing model with binary

relevance to measure the overall effectiveness of a ranking in a manner similar to

nDCG, but with a re-configurable browsing model. The source of relevance can be

the actual relevance judgement which generates RBP or system estimated relevance

which generates ˆRBP. For a given ranking L, the rank-biased precision metric score

is

ˆRBP = ψ
∑

i=[0,L−1(d)]

y(L(i)|q)(̇1− ψ)i−1 (7.4)

where y(L(i)|q) is the systems estimated relevance score for the item in position i

and the stopping probability ψ is decaying exponentially with ranking position. This

metric can be adapted to measure ˆRBP in grid layout by incorporating grid layout

suitable browsing behavior. Thus, we modify the attention model used in this metric

by considering geometric-based row-skipping model (equation 7.1) and geometric-
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based slower-decay (equation 7.2).

7.2.1 Re-Ranking Algorithm

Pairwise swapping re-ranking is a commonly used post-processing approach that we

adapt to optimize ranking in grid layout for provider-side group fairness. For a given

initial ranking L, we optimize the ranking by considering alternative ranking position

for each pair of ranked items and finally generate a fairness-aware ranked result L′.

Starting from the top of the list, for each position i, we consider each potential

swap with positions j > i, items swap their position and temporarily generate a new

ranking Li←→j keeping all the other items at the same place. Then we measure the

lift in fairness as ∆AWRF(L,Li←→j) and the loss in utility as ∆RBP(L,Li←→j).

∆RBP(L,Li←→j) = RBP(Li←→j)− RBP(L) (7.5)

∆AWRF(L,Li←→j) = AWRF(Li←→j)− AWRF(L) (7.6)

Thus for each of the position i, we select the best swap by solving the maximization

of lift function, F (i←→ j|i, j ∈ {1, ..., N}, i < j):

F (i←→ j) = arg max
j∈i,...,N

{Λ∆AWRF(L,Li←→j) · (1− Λ) (1−∆RBP(L,Li←→j))} (7.7)

Algorithm 1 shows the formal algorithm for optimizing grid-ranking for provider-side

group fairness. In each iteration, item in position i is temporarily swapped with

items that are in higher position than i and for each swap, it measures the AWRF

improvement and inverse RBP loss. The swap that gives the maximum lift in fairness

score with minimum utility loss is selected to generate a new ranking. Λ is used as a
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configurable balancing factor between fairness and utility.

Algorithm 1 Fairness-Aware Re-ranking for Grid Ranking

Require: initial ranking L, user q, estimated relevance score y(L|u), balancing factor
Λ

Ensure: Re-ranked L′

1: procedure Re-rank(L)
2: L′ ← L
3: measure AWRF(L)
4: measure RBP(L)
5: for i ∈ 1, ..., N do
6: for j ∈ i, ..., N do
7: swap items in position i and j to generate Li←→j

8: measure ∆RBP(L,Li←→j)
9: measure ∆AWRF(L,Li←→j)
10: end for
11: i′ = argmaxj∈i,...,N{Λ∆AWRF(L,Li←→j) · (1− Λ) (1−∆RBP (L,Li←→j))}
12: if i′ ̸= i then
13: L

′ ← Li←→i′

14: AWRF(L)← AWRF(Li←→i′)
15: RBP(L)← RBP(Li←→i′)
16: end if
17: end for
18: return L′

19: end procedure

7.3 Experimental Setup

In this work, our goal is to observe whether and how the provider-side group fairness

improves in ranking when we modify existing re-ranking technique to be grid layout-

aware and apply that to optimize ranking in grid layout for fairness and utility.

To answer our research questions, we perform several experiments. We modify the

pairwise swap re-ranking technique to be grid-aware by incorporating grid-layout
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suitable browsing models. We further implement the modified grid-aware re-ranking

algorithm on real-world IAS dataset to observe how the algorithm performs in real-

world IAS scenario.

7.3.1 Dataset

In this work, we use GoodReads book dataset described in chapter 3.

7.3.2 Methodology

We optimize provider-side group fairness in grid layout using the modified re-ranking

technique considering two types of user browsing models. We also observe the affect

of device sizes or column sizes on fairness optimization in grid layout.

RQ1. Improvement of Fairness in Grid Layout To observe the group fairness

score improvement for provide-side fairness in grid layout,

• We implement the fair ranking metric AWRF to measure fairness in single

ranking. We use distribution of male and female authors in book dataset to

compute target distribution p̂. We compare the improvement of AWRF score

in the re-ranked grid ranking where 1 is the highest score of fairness.

• To measure utility, we implement effectiveness metric RBP.

• Both AWRF and RBP are implemented with grid-layout suitable browsing mod-

els, row-skipping and slower-decay with column size 5.

• We use 0.5 as the default value of the fairness-utility balancing parameter Λ.

RQ2. Consistency of Optimized Fairness Across Devices As previously

discussed, based on user devices, column size of grid layout changes. For example,
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Goodreads shows book recommendations in grid layout and the column size changes

across devices; books are displayed in 5 columns on laptop, 2 columns on phone, and

9 columns on iPad. Hence, the system can display the same set of items in various

column sizes depending on user device. Re-ranking the items by taking device size

into consideration can help to preserve fairness across devices because optimizing the

ranked results in grid layout for a particular device may not remain fair for other

devices.

• We observe if and how the optimized fairness score from a re-ranked grid layout

of column size n changes in other columns sizes.

• We optimize the grid-based ranked results with column size of 5 and use that

fairness-aware re-ranked results to measure provider-side group fairness by chang-

ing column size to 2, 3, 4, 7, and 9.

RQ3. Preserve Fairness Across Devices Since item exposure varies across

column sizes in grid layout which affect the fairness score for provider groups, we

want to preserve provider-side fairness across devices. With that goal,

• We implement the grid-aware re-ranking technique for multiple column sizes to

maintain group fairness across user devices and observe the change in fairness

optimization with the change of column sizes.

• We implement the grid-aware re-ranking algorithm for grid ranked results with

common columns sizes of 2, 3, 4, 5, 7, and 9.

RQ4. Impact of Browsing Models on Fairness Optimization To observe

the impact of browsing models on fairness optimization in grid layout, we implement
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both group fairness metric and effectiveness metric incorporating grid-layout suitable

row-skipping and slower-decay browsing models with their default parameter settings.

Table 4.3 shows the default parameters values for these browsing models.

7.4 Results and Discussion

This section provide the results from our experiments.

RQ1 Does incorporating grid-aware browsing models to existing re-ranking tech-

nique improve fairness for ranked results in grid layout?

Figure 7.2(a) shows that the AWRF score increases in all the recommendation

algorithms for both row-skipping and slower-decay browsing models. We do paired

t-test [91] to observe the significance of this fairness improvement and find that for

the algorithms in both browsing models, the AWRF score improvement is statistically

significant with pval < 10−20. We round up the p-values at α = 0.05 with Benjamini-

Hochberg correction [13]. In both browsing models, the fairness score varies across

recommendation algorithms during both pre and post-optimization showing the same

patterns. For all the recommendation algorithms, the fairness scores improves sig-

nificantly for ranking in grid layout when we consider grid-layout suitable browsing

models. Figure 7.2(b) shows the RBP score and Figure 7.2(c) shows the RBP∗AWRF

score differences in between pre and post-optimization. For the slower-decay brows-

ing model, the combined score improves in all the algorithms and the utility score

improves after re-ranking. This observation emphasizes the importance of using grid-

aware re-ranking technique while optimizing ranked results displayed in grid layout.
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(a) AWRF score difference (b) RBP score difference

(c) Fairness-Utility trade-off

Figure 7.2: Pre and post-optimization fairness and utility scores in grid layout
with column size 5
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Figure 7.3: An optimized grid layout with column size 5 is not fair for other
column sizes.

RQ2. Does a ranking in grid layout optimized for fairness in a device remain fair

for other devices?

RQ2 shows the impact of column sizes on fairness optimization in grid layout.

Figure 7.3 shows how fairness score for an optimized ranking changes with column

sizes. A fairness-aware re-ranked 5-column grid layout does not remain fair when the

column size is different and this pattern is true for all the algorithms. The pattern

is more notable in row-skipping browsing model for all the algorithms. This result

implies the need of considering appropriate column size to preserve fairness for the

same set of ranked items across devices.

RQ.3 How can we optimize ranking in grid layout for various screen sizes?

Figure 7.4 shows the improvement in fairness scores after optimizing ranking in

the grid layout for various column sizes and the result shows a consistency in fairness

improvement across various column sizes. For all the considered column sizes, AWRF
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(a) Row-skipping browsing model (b) Slower-decay browsing model

Figure 7.4: Improvement in fairness across column sizes in grid-aware browsing
models

score improve significantly in all the recommendation algorithms (pval < 0.0001

rounded at α = 0.05 with Benjamini-Hochberg correction) after optimizing rank-

ing in grid layout using grid-aware browsing models. By looking at figure 7.4, we

can see that fairness score varies with the change of column sizes and this pattern

remains consistent even after optimization in all the algorithms for both browsing

models. This result shows that, fairness optimization of a given grid layout of column

size n should consider the same column size while measuring position weight using

browsing models to improve fairness in that ranking.

RQ.4. Do browsing models have an affect on the optimization of ranking in grid

layout for fairness?

Figure 7.5 shows fairness improvement pattern across grid-layout suitable brows-

ing models: row-skipping and slower-decay. With both row-skipping and slower-decay



127

Figure 7.5: AWRF score varies across browsing models.

user browsing models, fairness scores are improved in all the algorithms and the al-

gorithms show the similar pattern is fairness score across the browsing models before

and after optimization. Even though fairness score improves with both browsing

models through grid-aware fairness optimization, figure 7.5 shows that the fairness

score differences across column sizes is more notable for row-skipping browsing model

than for slower-decay. In figure 7.2(b) and in figure 7.2(c), we observe that the utility

score improves for all the algorithms when we consider slower-decay browsing model

but that improvement does not hold for row-skipping browsing model. This result

shows that fairness score varies with the change of browsing model, thus fairness opti-

mization for a grid layouts requires to consider suitable grid-aware browsing models.

7.4.1 Discussion

This work provides a preliminary design of grid-aware re-ranking techniques to opti-

mize provider-side group fairness in grid layout. Through our experiments we provide
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insights on the impact of device sizes and browsing models on fairness optimization

in grid layout. Grid-aware re-ranking for fairness has not received enough attention

in fair ranking research especially concerning provider-side groups fairness. Hence, an

analysis on the implementation of fairness optimization technique in grid layout will

help researcher and practitioners in designing more advanced grid-aware re-ranking

strategies.

We have made several observations from our analysis. Our work shows that it is

possible to improve fairness in grid layout if we can make re-ranking techniques grid-

aware by incorporating grid-layout suitable browsing models. However, our results

also show that, the improvement in fairness score can vary depending on user browsing

models. This observation highlight the importance of considering suitable browsing

models while measuring and optimizing group fairness in grid layout. Understanding

how users browse grid layout and identifying various browsing tendencies can help

developing more accurate fairness optimization technique for grid layout.

Moreover, results from our analysis show that, device size is an important factor in

improving fairness in grid layout. Optimizing provider-side group fairness in ranking

in grid layout by considering a particular column size will not remain fair when the

column size is different. Hence, a ranked result which is optimized for fairness while

displaying in phone will not remain fair while displaying in a laptop. Optimizing a

grid layout considering a default column size will not provide fair outcome for provider

groups across devices such as phone, TV, and laptop. Therefore, to preserve fairness

across devices, a retrieved or recommended results displayed in a particular device

needs to be re-ranked considering the appropriate column size while displaying in

another device.
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Implementing fairness-aware re-ranking technique with different column sizes show

that the fairness improved in all the algorithms for both browsing models. However,

our results show that the consistency of fairness score across column sizes varies based

on browsing models. For row-skipping browsing model, the fairness score varies no-

tably across column sizes but for slower-decay, the fairness scores are more consistent

across column sizes. This observation emphasizes the need of selecting suitable brows-

ing model and column size while optimizing ranking in grid layout for provider-side

group fairness.

7.5 Conclusion

In this chapter, we work towards filling a gap in the research area of provider-side

group fairness in ranking in IAS by studying fairness improvement in grid layout. We

modify a widely used fairness-aware re-ranking technique to make it grid-aware by

incorporating grid-layout suitable user browsing models. We implement the modified

grid-aware re-ranking technique in real-world IAS dataset to observe the fairness

improvement in ranking in grid layout. Our analysis shows that device size and user

browsing models are crucial factors in designing fairness-aware re-ranking technique

to optimize provider-side group fairness in grid layout in IAS.

This work opens up several potential research directions in improving provider-

side fairness in grid layout. Our work shows the importance of using accurate user

browsing models in fairness optimization for grid layout. User browsing behavior in

ranking in grid layout has not received much attention yet, hence, further research

work on understanding user browsing behavior in grid layout will help ensuring fair-
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ness in grid layout with minimum utility loss.

Moreover, in this work, we do not consider multi-list grid layout where items are

displayed in multiple categories. Re-ranking technique designed for wrapped grid-

layout may not work for multi-list grid layout because in multi-list grid, each rows

represents different genre or categories. Moreover, same item can appear in multiple

rows. Hence, future work is needed to optimize multi-list grid ranking for fairness by

considering unique features and suitable user browsing models for multi-list ranking.

I believe this work will provide researcher and practitioners an guideline on what

to expect while designing an optimization technique for fairness in grid layout and

what factors to consider carefully.
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CHAPTER 8:

CONCLUSION

In my dissertation, I work on the improvement of fairness in ranking in information

access systems and the provider-side group fairness is the scope of my work in fairness.

My research work broadly focuses on the problem of measuring fairness in ranking and

optimizing ranked results for fairness. Prior to this dissertation, there were several

metrics for assessing fairness in ranking, but (1) there was little guidance to select

or apply them to real-world IAS setup; and (2) they were limited to linear layout,

while ignoring widely-used ranking in grid layouts. My work addresses both of these

gaps making it significantly easier to select and implement fair ranking metrics to

measure provider-side fairness in ranking in real-world IAS and identifying important

work needed in the future to ensure IAS are fair to item providers. Furthermore,

my work seeks to bridge a research gap in the area of provider-side group fairness

in ranking in IAS by modifying widely used fairness-aware re-ranking technique to

make it grid-aware to optimize provider-side group fairness in grid layout. This work

provides insights on designing grid-aware re-ranking techniques.
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8.1 Contributions

My research work contributes to the area of provider-side group fairness in ranking

in following ways:

• We provide a comprehensive and comparative analysis of existing fair ranking

metrics that are proposed to measure provider-side group fairness in ranking.

By describing the metrics using unified notations and framework we show con-

ceptual similarities and differences among these metrics which help researchers

and practitioners to develop deeper insights on the fairness goal, assumptions,

and applicability of these metrics.

• By implementing the metrics using real-world IAS dataset considering both

search and recommendation scenarios we identify the required components and

challenges in implementations of these metric in the real-world IAS data. More-

over, implementing these metrics under same experimental setup using same

dataset helps to directly compare their applicability.

• By conducting sensitivity analysis considering external factors such as param-

eter settings and position weight, we show the impact of design choices on

metric results. This comparative analysis on the sensitivity of the metrics helps

to identify the vulnerability and reliability of the existing metrics.

• The empirical analysis on metric design, applicability, and reliability provides

informed guidelines on fairness-task specific metric selection process. Our rec-

ommendations help researchers and practitioners in their decision making pro-

cess while selecting a metric that matches with their requirements.
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• From the comprehensive analysis of fair ranking metrics, we identify several

potential research directions in this area that can help to improve the usability

and reliability of the fair ranking metrics.

• We expand the applicability of fair ranking metrics by implementing them in

widely-used but seldom-studied ranking structure which is grid layout. We

provide modified versions of the fair ranking metrics to measure provider-side

group fairness when items are displayed in grid layout.

• Considering various grid-layout suitable user browsing models into fair ranking

metrics provides insights on the applicability of these metrics in grid layouts.

Moreover, showing how the fairness score changes across browsing models, we

provide an idea on the consistency and reliability of the fair ranking metrics

while applying to grid layouts.

• Showing the impact of column sizes and column reduction approaches on the

fair ranking metric scores in grid layouts help researcher and practitioners to

better understand the important factors to implement fair ranking metrics in

grid layout.

• Modifying the linear layout suitable fair ranking metrics to measure fairness

in grid layout highlights several potential research gaps. Findings from this

work emphasize the need of investigating and identifying suitable user browsing

behavior in grid layout to develop trustworthy and valid fair ranking metrics

for various layouts.

• We recognize the existing user browsing models that are suitable for linear and

grid layouts and identify the conceptual similarities among the browsing models.
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We provide a generalized framework that can be configured to account for both

linear and grid layouts. This unified framework of browsing models can further

be extended to more advanced browsing models.

• Our analysis on the existing user browsing models provide insights on their re-

quired components and parameter settings. Depending on the task and ranking

layout, researchers and practitioners can use the generalized framework of user

browsing models by re-configuring the proposed unified structure.

• Our research contributes towards the improvement of provider-side group fair-

ness in ranking by developing a primary and general provider-side group fairness-

aware re-ranking technique for grid layout in IAS. This work is a starting point

of provider-side fairness improvement in ranking in grid layout which is a com-

monly used layout in many IAS.

• We modify a widely-used re-ranking technique which is suitable for ranking in

linear layout by incorporating grid layout suitable user browsing models. By

making the existing re-ranking technique grid-aware, we provide a simple way

to optimize ranking in grid layout for provider-side fairness.

• By implementing grid-aware re-ranking technique in real-world IAS dataset,

we identify crucial factors to consider while designing fairness-aware re-ranking

algorithms for ranking in grid layout.

• Our analysis on the impact of device sizes and user browsing models on the grid-

aware re-ranking technique provides insights on the viability and reliability of

a ranking in grid layout that is optimized for fairness.
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8.2 Future Work

Our comparative analysis on measuring provider-side group fairness in ranking elicits

several future research directions towards the advancement of fair ranking metrics.

Moreover, our preliminary work on the fairness measurement and optimization issues

in a limited-studied but widely-used ranking layout paves the way for new avenues

of research to enhance fairness in ranking within the grid layout. Further research as

immediate next steps from our work can include:

• Developing fair ranking metrics to be stable towards external factors such as

browsing models and parameter settings.

• Most of the metrics are sensitive towards the data sparsity or missing data

problem such as missing relevance information and missing group label. Further

work is needed to develop fair ranking metrics that will be stable towards these

issues.

• A simulation study on the fair ranking metrics is needed to better understand

the sensitivity of the metrics towards design choices such as ranking size, group

information, relevance availability, and position weights.

• Since user browsing model is one of the most important factors in measuring

fairness in ranking, further work is needed to better understand user browsing

behavior in ranking for various layouts. User eye-tracking studies can help to

show how user browsing behavior changes with ranking layouts, tasks, and item

meta information in IAS.

• How users browse multi-list grid layout is not well-explored yet, hence, it is
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important to identify user browsing behavior in multi-list grid layout to generate

reliable and accurate fairness score for ranking in that setting.

• Future research work on designing fairness-aware re-ranking technique for grid

layout should include multi-list grid layout and investigate how the categories

or various rows play role in fairness optimization.

Towards Fair Ranking in IAS The fair ranking research has a long way to go

with several issues to focus on. The common goal of the research in this area is to

improve fairness in ranking in IAS by mitigating bias. With that goal, fair ranking

research includes the concerns regarding identification, measurement, and mitigation

of bias in ranking. Our research on measuring and optimizing fairness in ranking

especially concerning grid layout is an initial step towards the advancement of fairness

in ranking in various layouts. Moreover the comprehensive analysis of fair ranking

metrics highlights multiple limitations that need more extensive research work in

future. Some of the potential long-term research ideas include:

• Having the ground truth or item relevance information is a crucial part of mea-

suring fairness in ranked lists because several metrics incorporate relevance in-

formation to measure fairness in ranking. However, relevance information can

carry societal bias reflecting social stereotypes and prioritizing one group over

another, thus influencing the result of fair ranking metrics. Future work can ad-

dress that issue to help design fair ranking metric(s) that will take the potential

existence of underlying societal historical bias in relevance into consideration

while measuring fairness.

• There are fair ranking metrics to measure fairness concerning unfair exposure
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distribution or distributional harm. However, IAS can reflect and reinforce

representational bias such as social stereotypes through ranking. Since the

existing fair ranking metrics will not be suitable to measure representational

bias in ranking, future research work should focus on the issue of measuring

representational bias associated with items in ranking . Issues concerning how

stereotypes are propagated in ranking, the harm from this phenomenon, and

the mitigation of social stereotypes from ranked results in IAS are limitedly

explored. Working on these concerns will help improve overall fairness of ranking

limiting both distributional and representational harm.

• With the advancement of various manners of user interaction with IAS, the

dimension of fairness in ranking issue is also changing. Users nowadays use

voice search to interact with systems and the retrieved results can also carry

social biases. However, the concern regarding the existence of bias in voice

search results have not been explored yet. Identifying and measuring bias in

more advanced modalities or formats such as voice search results is important

to study to develop an comprehensive understanding of fairness in ranking in

IAS.

8.3 Concluding Remarks

Fairness is a complicated concept and fairness-aware ranking in IAS is still a devel-

oping research area with multiple open problems. We believe my dissertation work

will lay a valuable foundation for this vital and ongoing work. Our empirical analysis

on fair ranking metrics will assist researchers and practitioners in understanding the
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concepts of fair ranking metrics, the fairness assumptions while measuring provide-

side group fairness in ranking, and the challenges in their implementation; this will

provide an informed guidance in fair ranking metric selection process. Our research

on measuring and optimizing provider-side group fairness in ranking in grid layout

has opened a significant and impactful realm of exploration. By gaining insights into

the complexities and possibilities within this space, our work has opened up new av-

enues for addressing crucial challenges and discovering solutions. We look forward to

research that explore the open concerns in fair ranking research area while identifying

new challenges in order to ameliorate the fairness issues in ranking in IAS.
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CHAPTER 9:

PUBLICATION TARGETS

Table 9.1 shows my PhD dissertation status and target. I presented my research

progress and status at the Doctoral Symposium at RecSys 2022 [140].

Table 9.1: Publication status and target

Chapter Status Publication/Target

Analyzing Fair Ranking Metrics Published
1. FAccTRec 2020 [143]
2. SIGIR 2022 [142] (full paper)

Beyond Linear Layout Fairness Working on the rejection reviews RecSys 2023
Generalized Framework of
User Browsing Models Working on the rejection reviews ICTIR 2023
Fairness-aware Grid-based Ranking Targeting WWW 2023
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[178] D. Valcarce, A. Belloǵın, J. Parapar, and P. Castells. Assessing ranking metrics

in top-n recommendation. Information Retrieval Journal, 23:411–448, 2020.

[179] S. Vargas and P. Castells. Rank and relevance in novelty and diversity met-

rics for recommender systems. In Proceedings of the fifth ACM conference on

Recommender systems, pages 109–116, 2011.



165

[180] K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic,

and E. Duval. Context-aware recommender systems for learning: a survey and

future challenges. IEEE transactions on learning technologies, 5(4):318–335,

2012.

[181] J. Vinagre, A. M. Jorge, and J. Gama. Evaluation of recommender systems in

streaming environments. arXiv preprint arXiv:1504.08175, 2015.

[182] E. M. Voorhees, D. M. Tice, et al. The trec-8 question answering track evalua-

tion. In TREC, volume 1999, page 82, 1999.

[183] M. Wan and J. McAuley. Item recommendation on monotonic behavior chains.

In Proceedings of the 12th ACM Conference on Recommender Systems, Rec-

Sys ’18, page 86–94, New York, NY, USA, 2018. Association for Comput-

ing Machinery. ISBN 9781450359016. doi: 10.1145/3240323.3240369. URL

https://doi.org/10.1145/3240323.3240369.

[184] L. Wang and T. Joachims. User fairness, item fairness, and diversity for rankings

in two-sided markets. In Proceedings of the 2021 ACM SIGIR International

Conference on Theory of Information Retrieval, pages 23–41, 2021.

[185] X. Wang, Y. Zhang, and R. Zhu. A brief review on algorithmic fairness. Man-

agement System Engineering, 1(1):7, 2022.

[186] Y. Wang, W. Ma, M. Zhang, Y. Liu, and S. Ma. A survey on the fairness of

recommender systems. ACM Transactions on Information Systems, 41(3):1–43,

2023.



166

[187] R. W. White, P. N. Bennett, and S. T. Dumais. Predicting short-term interests

using activity-based search context. In Proceedings of the 19th ACM interna-

tional conference on Information and knowledge management, pages 1009–1018,

2010.

[188] L. A. Wicht, J. Waldfogel, S. Waldfogel, et al. Playlisting favorites: Is spotify

gender-biased? Technical report, Joint Research Centre (Seville site), 2018.

[189] L. Wu, C.-J. Hsieh, and J. Sharpnack. Sql-rank: A listwise approach to col-

laborative ranking. In International Conference on Machine Learning, pages

5315–5324. PMLR, 2018.

[190] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learn-

ing to rank: theory and algorithm. In Proceedings of the 25th international

conference on Machine learning, pages 1192–1199, 2008.

[191] X. Xie, Y. Liu, X. Wang, M. Wang, Z. Wu, Y. Wu, M. Zhang, and S. Ma.

Investigating examination behavior of image search users. In Proceedings of

the 40th international acm sigir conference on research and development in

information retrieval, pages 275–284, 2017.

[192] X. Xie, J. Mao, Y. Liu, M. de Rijke, Y. Shao, Z. Ye, M. Zhang, and S. Ma.

Grid-based evaluation metrics for web image search. In The world wide web

conference, pages 2103–2114, 2019.

[193] J. Xu and W. B. Croft. Improving the effectiveness of information retrieval with

local context analysis. ACM Transactions on Information Systems (TOIS), 18

(1):79–112, 2000.



167

[194] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In

Proceedings of the 30th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 391–398, 2007.

[195] K. Yang and J. Stoyanovich. Measuring fairness in ranked outputs. In Proceed-

ings of the 29th International Conference on Scientific and Statistical Database

Management, pages 1–6, 2017.

[196] E. Yilmaz, M. Shokouhi, N. Craswell, and S. Robertson. Expected browsing

utility for web search evaluation. In Proceedings of the 19th ACM international

conference on Information and knowledge management, pages 1561–1564, 2010.

[197] J. Yu, D. Tao, M. Wang, and Y. Rui. Learning to rank using user clicks and

visual features for image retrieval. IEEE transactions on cybernetics, 45(4):

767–779, 2014.

[198] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: Examining result

attractiveness as a source of presentation bias in clickthrough data. In Pro-

ceedings of the 19th International Conference on World Wide Web, WWW

’10, page 1011–1018, New York, NY, USA, 2010. Association for Comput-

ing Machinery. ISBN 9781605587998. doi: 10.1145/1772690.1772793. URL

https://doi.org/10.1145/1772690.1772793.

[199] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness

beyond disparate treatment & disparate impact: Learning classification without

disparate mistreatment. In Proceedings of the 26th International Conference on

World Wide Web, WWW ’17, page 1171–1180, Republic and Canton of Geneva,



168

CHE, 2017. International World Wide Web Conferences Steering Committee.

ISBN 9781450349130. doi: 10.1145/3038912.3052660. URL https://doi.org/

10.1145/3038912.3052660.

[200] E. Zangerle and C. Bauer. Evaluating recommender systems: Survey and frame-

work. ACM Computing Surveys, 55(8):1–38, 2022.

[201] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-

Yates. Fa*ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM

on Conference on Information and Knowledge Management, CIKM ’17, page

1569–1578, New York, NY, USA, 2017. Association for Computing Machinery.

ISBN 9781450349185. doi: 10.1145/3132847.3132938. URL https://doi.org/

10.1145/3132847.3132938.

[202] M. Zehlike, K. Yang, and J. Stoyanovich. Fairness in ranking: A survey. arXiv

preprint arXiv:2103.14000, 2021.

[203] Q. Zhao, S. Chang, F. M. Harper, and J. A. Konstan. Gaze prediction for recom-

mender systems. In Proceedings of the 10th ACM Conference on Recommender

Systems, pages 131–138, 2016.

[204] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving rec-

ommendation lists through topic diversification. In Proceedings of the 14th

international conference on World Wide Web, pages 22–32, 2005.



169

APPENDIX A:

NON-THESIS PUBLICATIONS



170

Besides working on the area of measuring fairness in ranking, I have conducted

some research work on the existence of stereotypes in information access systems.

Through my research work, I explore whether and how search engines and recom-

mender systems replicate and reinforce gender stereotypes associated with children’s

products.

Published

• Raj et al. [145] is published at the 46th International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR 2023 ). During my

internship at Microsoft, I worked on understanding demographic group-based

query-reformulation and the impact of search engine result page (SERP) on such

reformulation. Users often reformulate their queries to precisely express their

information need. In this work, we looked at demographic group-based query

reformulation where user explicitly mention demographic group attributes such

gender while reformulating their queries. We identified potential reasons for

reformulating queries for particular groups and observed the connection between

group representation in SERP and user need to reformulate their queries for

that group. Our findings further shed light on the need of understanding bias

in group representation in SERP and the impact on user demand mismatch.

• Raj et al. [144] is published at the 5th International and Interdisciplinary

Perspectives on Children & Recommender and Information Retrieval Systems

(KidRec 2021 ) Co-located with ACM IDC 2021. In this work, I argued that

it is important to investigate the existence of pre-existing gender stereotypes

in search engines and recommender systems. We provide real-world examples

to strengthen our argument while specifically focusing on learning materials for



171

children. We provide potential research directions concerning this phenomena.

• Raj and Ekstrand [141] is published at SIGIR ecom: ACM SIGIR Workshop

on e-Commerce (SIGIR e-com 2022 ). I explored e-commerce search systems to

identify the tendency of reflecting and manifesting gender stereotypes associated

with children’s products. We generated an aggregated list of pre-documented

gender stereotypes children’s products to identify and measure gender stereo-

types in search results and query suggestions. We provide preliminary methods

for quantifying gender stereotypes in e-commerce search system and conducted

our experiments across multiple e-commerce sites. Our findings provide initial

evidence to the existence of gender stereotypes associated with kid’s products

in search results and query suggestions in e-commerce settings. This work is

an initial step towards identifying and measuring gender stereotypes in IAS,

particularly for children’s products.

• Spear et al. [169] is published at the 15th ACM Conference on Recommender

Systems (RecSys 2021 ). This is a collaboration with my research group mem-

bers at PIRet where we looked for pattern in online music listening behavior of

children. The purpose of this work is to improving music recommendations for

children by providing insights on their music preference.

• Pinney et al. [135] is published at the ACM SIGIR Conference on Human In-

formation Interaction and Retrieval (CHIIR 2023 ). I contributed in a research

work where we looked at how gender has been used in information retrieval and

user profiling research area. We collected paper published in renowned confer-

ences on information retrieval and user profiling and identified whether, why,
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and how gender has been used as a variable. We also analyzed how gender in-

formation has been inferred in the existing research. We categorized the papers

based on This work indicated several problematic use of gender in research.

For example, gender is often considered as binary where in real-world it is not

binary. This work further provide guidance ethical and proper use of gender

information in research work to avoid harmful outcome from misuse of gender.




