Effect of Age on the Mechanical Behavior and Molecular Structure of Human Meniscus:

An Experimental and Computational Analysis.

by

Derek Q. Nesbitt

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Biomedical
Engineering Boise State University

August 2023
BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Derek Quentin Nesbitt

Dissertation Title: Effect of Age on the Mechanical Behavior and Molecular Structure of Human Meniscus: An Experimental and Computational Analysis.

Date of Final Oral Examination: 01 May 2023

The following individuals read and discussed the dissertation submitted by student Derek Quentin Nesbitt, and they evaluated the student’s presentation and response to questions during the final oral examination. They found that the student passed the final oral examination.

Trevor J. Lujan, Ph.D. Chair, Supervisory Committee
Clare Fitzpatrick, Ph.D. Member, Supervisory Committee
Gunes Uzer, Ph.D. Member, Supervisory Committee
Julia Oxford, Ph.D. Member, Supervisory Committee
Tracye Lawyer, M.D, Ph.D. Member, Supervisory Committee

The final reading approval of the dissertation was granted by Trevor J. Lujan, Ph.D., Chair of the Supervisory Committee. The dissertation was approved by the Graduate College.
DEDICATION

I would like to dedicate this dissertation to my parents: Nancy, Bob, Kevin, and Sarah for their everlasting support. I also dedicate this work to my close friends and siblings: Cody, Josh, Alex, and Patrick for only occasionally deriding me for spending 15 years in school. I dedicate this dissertation to my lovely girlfriend Mytch, who helped me to focus and accelerate publication time lines to the end. Finally, I dedicate this work to Bill Nye the science guy, whose TV show taught me the scientific method while inspiring a young and inquisitive mind.
ACKNOWLEDGMENTS

I would like to acknowledge the other students who assisted with this research: Danielle Siegel, Zach Pinkley, Sean Nelson, Miranda Nelson, Dylan Burruell, Bradley Henderson, and Matthew Turner. I also acknowledge the Pirates of the Caribbean musical score for providing the soundtrack to most of the writing work contained herein, just as it did for my Masters thesis. Additionally, I would like to acknowledge my fellow graduate students who were not directly involved with this work, but provided a good sounding board and opportunities to commiserate the struggles of life as a graduate student: Maddie Wale, John Everingham, Kate Benfield, Amevi Semodji, and Scott Birks. I would also like to acknowledge several Boise State staff members who supported this work, including: Kyle Shannon, Shin Pu, Laura Bond, Julia Oxford, and Annamaria Zavala. Lastly, I would like to acknowledge my advisor, Trevor Lujan, who gave me the opportunity and support to do this work.
ABSTRACT

The knee meniscus is a soft fibrous tissue with a high incidence of injury in older populations. Surgical treatments do not fully restore the functionality of the meniscus, and the meniscus lacks native healing capacity, leading to a 40% increase in the probability of developing osteoarthritis once torn. Meniscus injury prevention is thus paramount to reducing the onset of osteoarthritis. Despite the importance of the meniscus in joint health, its mechanical properties, and how these change with age, are poorly understood. In order to quantify these properties, and how they change with age, we performed uniaxial tensile tests on two age groups of human menisci: under 40 and over 65 years old. We found that tissue from the older donor groups had significantly reduced strength and toughness. We refined the data analysis techniques used in this work to build a free web application to provide to the scientific community to standardize the calculation of mechanical properties found in soft tissue tensile testing, and to provide a convenient tool to reduce the time to analyze data. We then used the mechanical testing data to build and validate a finite element model of tissue failures with continuum damage mechanics. This work showed that using von Mises stress to evolve damage produced excellent fits to the experimental data, and was able to mimic the failure behavior from the previous experiments. Finally, we performed biochemical analysis on the tissue in order to evaluate the changing structure-function relationship with age. This showed changes to the meniscus proteome with age, and that changes to collagen crosslinks correlated to changes to the strength of the tissue. Collectively, this work has
detailed potential reasons as to how and why the meniscus becomes more susceptible to tears with age, detailed computational methods to analyze these tears, and provided a tool to further analyze tears of the meniscus and other soft tissues in a lab setting.
TABLE OF CONTENTS

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

ABSTRACT ... vi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

CHAPTER ONE: INTRODUCTION ... 1

 1.1 Motivation .. 1

 1.2 Research Goals .. 3

 1.3 Summary of Chapters .. 3

CHAPTER TWO: BACKGROUND .. 6

 2.1 Meniscus Structure and Tear Etiology ... 6

 2.2 Mechanical Characterization ... 8

 2.3 Computational Modeling of Soft Tissues .. 9

 2.4 Structure-Function Analysis ... 10

 2.5 Data Analysis of Tensile Mechanical Properties 11

CHAPTER THREE: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears ... 13

 3.1 Introduction ... 13

 3.2 Methods ... 14

 3.2.1 Overview .. 14

 3.2.2 Specimen Preparation .. 15

 3.2.3 Tensile Mechanical Testing ... 17
3.2.4 Two-Dimensional Strain Measurement with Digital Image Correlation .. 20

3.2.5 Statistical Analysis ... 22

3.3 Results .. 22

3.3.1 Tear Propagation ... 22

3.3.2 Stress and Grip-to-Grip Strain ... 25

3.3.3 Local Strains in the Tear Region using DIC .. 26

3.4 Discussion ... 28

3.5 Acknowledgements ... 33

CHAPTER 4: DOTS-ON- PLOTS: A WEB APPLICATION TO ANALYZE STRESS-STRAIN CURVES FROM TENSILE TESTS OF SOFT TISSUE .. 34

4.1 Introduction .. 34

4.2 Materials and Methods .. 37

4.2.1 Overview .. 37

4.2.2 Automated Calculation of Mechanical Properties .. 37

4.2.3 Web Application Development .. 39

4.2.4 Determining an Optimal Threshold to Calculate Transition Strain .. 40

4.2.5 Parameter Optimization .. 42

4.2.6 Sensitivity of Transition Strain to Shape of Stress-Strain Curves .. 44

4.2.7 Statistics .. 45

4.3 Results .. 46

4.3.1 Web Application ... 46

4.3.2 Optimal Threshold to Calculate Transition Strain ... 47

4.3.3 Sensitivity of Transition Strain to Shape of Stress-Strain Curves .. 48
4.3.4 Automated Calculation of Mechanical Properties

4.4 Discussion

4.5 Acknowledgements

CHAPTER 5: FINITE ELEMENT MODELING OF MENISCAL TEARS USING CONTINUUM DAMAGE MECHANICS AND DIGITAL IMAGE CORRELATION

5.1 Introduction

5.2 Methods

5.2.1 Overview

5.2.2 Tensile Tests using DIC

5.2.3 Damage Model

5.2.4 Finite Element Mesh and Coupon Geometry

5.2.5 Parameter Optimization

5.2.6 Model Evaluation and Validation

5.2.7 Statistics

5.3 Results

5.3.1 Model Fit to Stress-Strain Curves

5.3.2 Tear Region Strain

5.4 Discussion

5.5 Acknowledgements

CHAPTER 6: Age-Dependent Changes in Collagen Crosslinks Weaken the Mechanical Toughness of Human Meniscus

6.1 Introduction

6.2 Methods

6.2.1 Overview
6.2.2 Specimen Preparation ..87
6.2.3 Mechanical Testing...88
6.2.4 Quantitative Proteomics (ECM Structural Proteins).................88
6.2.5 Liquid Chromatography Mass Spectrometry (Collagen Crosslinking)
...90
6.2.6 Colorimetric Assay (Elastin)...91
6.2.7 Statistical analysis ...91
6.3. Results...92
 6.3.1 Age-Dependent Changes in ECM Structural Proteins............92
 6.3.2 Age-Dependent Changes in Collagen Crosslinks94
 6.3.3 Relationship between ECM Proteins, Toughness, and Aging95
 6.3.4 Relationship between Collagen Crosslinks, Toughness, and Aging.96
6.4. Discussion..98
6.5 Acknowledgements..101

CHAPTER 7: DISCUSSION...103
 7.1 Summary ..103
 7.2 Clinical Relevance ..106
 7.3 Publications ..108
 7.3.1 Peer Reviewed Journal Articles108
 7.3.2 Abstracts ..108
 7.4 Limitations ..109
 7.5 Future work ...110
REFERENCES ...113
APPENDIX A ..139
Chapter 3 Supplemental Material ...140

Automated Analysis of Mechanical Properties.................................140

High-Speed Video and DIC ...140

Comparison of Mechanical Properties to Previous Studies on Human
Meniscus ..141

APPENDIX B ..142

Chapter 6 Supplemental Material ...143
LIST OF TABLES

Table 1: Physical characteristics of meniscus tensile test specimens 17

Table 2: Comparison of tensile mechanical properties between different ages of human lateral meniscus when loaded longitudinal or transverse to the circumferential fiber direction. Effect sizes and their confidence intervals (CI) give a 95% confidence that potential differences in mechanical properties between all non-significant comparisons have an absolute effect size ≤ 1.8. Sample size for each cell = 10. ... 24

Table 3: Tensile transition strains for meniscus tissue from different research groups. All strain values are in engineering strain... 36

Table 4: Dots-on-Plots design criteria and corresponding design features...................... 39

Table 5: Average model coefficients that were curve fit to experimental stress-strain curves (average ± standard deviation). The quality of fit was measured by the percent error (NRMSE) of the simulated stress curve relative to experimental data... 44

Table 6: Tensile mechanical properties of twenty human meniscus specimens that were automatically calculated using Dots-on-Plots (mean ± standard deviation). ... 50

Table 7: Damage parameters for models loaded longitudinal or transverse to the fiber direction. .. 68

Table 8 : Comparison of mechanical behavior between damage models and experiments (sample size for each cell = 20). All strain values are reported as Lagrange strain... 73

Table 9: Effect of Aging on ECM Proteins and Collagen Crosslinks in Meniscus........... 94

Table 10: Relationship between ECM protein Quantity and toughness during uniaxial pull-to-failure tests either parallel (longitudinal, sample size = 20) or perpendicular (transverse, sample size= 20) the circumferential fiber orientation. .. 96

Table 11: Relationship between collagen crosslink quantity and toughness during uniaxial pull-to-failure tests either parallel (longitudinal, samples size =17) or
perpendicular (transverse, sample size = 17) to the circumferential fiber orientation.

Table 11. Effect of Aging on Meniscus ECM Proteins and Collagen Crosslink Molecules.

Table 12: All proteins with significant differences between age groups.
LIST OF FIGURES

Figure 1: The required inputs and desired outputs from each of the projects covered in this dissertation. .. 5

Figure 2: Location of the medial and lateral meniscus within the human knee joint. 7

Figure 3: Meniscus tear types, including A) vertical tears between the fibers which can progress to B) bucket handle tears, as well as C) radial tears which can progress to complex D) Parrot beak tears. .. 8

Figure 4: Longitudinal and transverse tensile specimens from human meniscus. A) Dimensions of dumbbell coupons in mm (gray = region being gripped, * = gauge section). B) Light microscopy of tissue coupons captured the visible fiber orientation prior to mechanical testing. The mean fiber orientation was quantified using FiberFit software. C) Specimens with a sprayed speckle pattern for DIC analysis.. 16

Figure 5: Top view of the tensile test setup for high-speed measurement of full-field strain. In order to minimize glare on the specimen surface, two polarized lenses were positioned between the LED and camera with polarization angles in 90° opposition to each other. .. 18

Figure 6: Different failure modes classified in this study, with arrows indicating the location of tear initiation. Midsubstance failures (n = 6 longitudinal, n = 18 transverse) had tears inside the gauge section, while fillet failures (n = 9 longitudinal, n = 2 transverse) had tears at the radius of the width tapered region. Multimode failures had tears that initiated in either the midsubstance or fillet and propagated to the grip (n = 5 longitudinal, n = 0 transverse). Grip failures (n = 29 longitudinal, n = 11 transverse) had tears along the grip line and slip failures (n = 7 longitudinal, n = 0 transverse) occurred when the specimen slipped at the grip interface prior to tissue rupture. The white arrow for the slip failure shows the black residue from the emery cloth that detached from the grip interface. Grip and slip failures were discarded and excluded from further analysis...................... 19

Figure 7: Representative stress–strain curve for a A) longitudinal and B) transverse specimen with marked points of interest (transition, yield, ultimate, rupture). Grip-to-grip tensile strain was measured as the grip displacement divided by the grip-to-grip reference length... 20
Figure 8: E_{yy} strain maps at UTS for posterior specimens. A) Tears propagated oblique to the loading axis (y-axis), near the plane of maximum shear stress, when loaded longitudinal to the fiber direction in younger and B) older specimens. C) Tears propagated perpendicular to the loading axis, near the plane of maximum tensile stress, when loaded transverse to the fiber direction in younger and D) older specimens. Solid white lines denote tear lines, dashed white boxes denote the analyzed tear region. Each specimen color map is scaled from 0 to the average E_{yy} strain in the tear region at UTS (ε_f).

Figure 9: Comparison of grip-to-grip strain and stress for different age groups. On average, young specimens withstood greater stresses than older specimens during A) longitudinal and B) transverse loading, and were stretched to greater strains than older specimens during C) longitudinal and D) transverse loading, but most differences were not significant. Error bars represent one standard deviation. *p < 0.05.

Figure 10: Comparison of engineering strains in young and older specimens within the failure region (E_{yy}, E_1, E_{xx}, E_{xy}, and γ_{max}) and between grips. Strains were analyzed during longitudinal loading at A) ultimate, B) yield, and C) transition points; and during transverse loading at D) ultimate and E) yield points. In this study, both E_{xy} and γ_{max} were calculated as tensorial shear strains. Error bars represent one standard deviation. Significance set to p < 0.05 for all comparisons.

Figure 11: Mohr’s circles of the average planar strain tensor within the failure region for longitudinal specimens from A) young, and B) older populations with C) average tensile and shear strains on the tear surface for the longitudinal group. Similarly, Mohr’s circles for the transverse specimens in D) young and E) older populations with F) average tensile and shear strains on the tear surface for the transverse group. Error bars represent one standard deviation, and *p < 0.05. These Mohr’s circles give a mathematical visualization of how tensile and shear strain on the tear surfaces (dashed lines within Mohr’s circles) were calculated. Note that angles on Mohr’s circle are double the physical angles.

Figure 12: Representative tensile stress-strain curve of soft tissue with marked points of interest (transition, yield, ultimate, and rupture), as well as different measures of strain energy density.

Figure 13: Graphical depiction of the method used to determine the transition point. The transition point is determined from the deviation between the stress-strain curve and the linear fit to the linear region below the maximum slope. In this study, the fit interval was 1% strain.

Figure 14: The hyperelastic-damage model gave excellent fits to the experimental data.
Figure 15: Model generated stress-strain curves using three different settings for transition strain, linear modulus, and damage onset, resulting in 27 unique curves with known transition strains.

Figure 16: Dots-on-Plots web application. A) From a web browser, the user can upload multiple .txt, .csv, or .xlsx files, each with two equal columns of strain and stress data. The program automatically computes the mechanical properties and gives a graphical display of the results. B) The user can download a report and spreadsheet that detail and summarize all results.

Figure 18: The lowest error for calculating transition strain with Dots-on-Plots occurred when using a % stress deviation threshold of 2%. *Significantly greater absolute error than other threshold values.

Figure 19: Sensitivity of the transition strain calculated by Dots-on-Plots to factors that alter the shape of the stress-strain curve. The program was most sensitive to curves with a late damage onset. The dashed line is the mean of the known transition strain ($\varepsilon_{\text{actual}}$). *Significant difference in absolute error of calculated transition strain ($p < 0.05$).

Figure 20: Coupon dimensions and mesh for all a) longitudinal and b) transverse models.

Figure 21: Mesh convergence study. a) Increasing mesh size resulted in longer run times and greater tensile strain (E_{yy}) inside the tear region that gradually plateaued. b) Strain maps (E_{yy}) of different mesh sizes. This study used 16,144 elements.

Figure 22: Maximum damage in the tear region of two representative specimens.

Figure 23: Normal strains (E_{yy}) from experiments and FE models for longitudinal and transverse specimens. A) The experimental tear pattern and strains in the tear region (ROI) measured with DIC were compared to model predictions using b) von Mises stress damage criteria, and c) maximum normal strain damage criteria. ROI are shown above by the dashed black box.

Figure 24: Representative model fits to experimental grip-to-grip force–displacement curves (we converted grip displacement to tensile stretch). (a) When modeling the fiber response (longitudinal), von Mises stress damage criterion had better fits compared to the (b) maximum normal strain damage criterion. (c) However, von Mises stress damage criterion had slightly poorer quality of fits compared to (d) maximum normal strain damage criterion when modeling the ground substance (transverse).

Figure 25: Comparison of strains in the tear region (ROI) between experiments measured using DIC and FE models generated with von Mises stress or maximum
normal strain damage criterion. (a) Both damage criteria gave close predictions to the normal axial strains for the longitudinal loading condition, but (b) the maximum normal strain damage criterion significantly underpredicted the shear strains. (c) When loading transverse to the fiber direction, both models significantly underpredicted normal axial strains and (d) shear strains. *Significantly less than experimentally measured strains (p < 0.001). The ‘x’ in the box plot = average strain. 74

Figure 26: Comparison of principal strains in the tear region (ROI) between experiments measured using DIC and FE models generated with von Mises stress or maximum normal strain damage criterion. (a) Both damage criteria significantly under predicted the first principal strains for the longitudinal loading condition, but (b) only the maximum normal strain damage criterion significantly underpredicted the max shear strains. (c) When loading transverse to the fiber direction, both models significantly underpredicted first principal strains and (d) max shear strains. *Significantly less than experimentally measured strains (p < 0.05). The ‘x’ in the box plot = average strain. 76

Figure 27: Graphic representation of the human meniscus gaining spurious collagen crosslinks with age. 85

Figure 28. Specimen Preparation. Meniscus layers (n=40) were punched into three parts. The dumbbell-shaped part was used for mechanical testing and elastin analysis, while the adjacent parts were used to analyze proteomics and collagen crosslinks. 87

Figure 29: Volcano plot comparing proteins in young and older human meniscus. Aging resulted in either significant increases or decreases in most of the structural proteins analyzed in this study. 89

Figure 30: Log2 fold change of structural ECM molecules due to age (p < 0.05). Error bars show the 95% confidence interval of the log2 fold change. 93

Figure 31: Correlations of collagen crosslink quantity and toughness using simple regression. (A-C) Under longitudinal loading, significant correlations existed between the quantity of enzymatic crosslinks DPD and DHLNL, but not the AGE crosslink CML. (D-F) Under transverse loading, all crosslinks had significant correlations with toughness. Multiple regression analysis found that DPD and CML had a synergistic effect, as transverse toughness was greatest with high quantities of DPD and low quantities of CML. 97
CHAPTER ONE: INTRODUCTION

1.1 Motivation

The knee meniscus is one of the most frequently torn soft tissues in the body, with more than a half-million surgeries performed in the U.S. annually. Once torn, the capability of the meniscus to attenuate loads and stabilize the knee can become permanently compromised. This leads to a 40% increase in risk of developing osteoarthritis, a painful swelling of the knee joint that can cause a loss of mobility, which effects approximately 10% of all U.S. adults by age 60. The meniscus has little ability to heal once torn, and surgical interventions are unable to restore the native function due to limited vasculature. The lack of treatment options for meniscus tear injuries makes prevention of the utmost importance in combatting osteoarthritis.

One important step in tear prevention is the understanding of the structural cause, and mechanical effect, of age-related changes to tear incidence. While studies of the mechanical properties of human meniscus exist, no study has evaluated the changes to human meniscus mechanical properties due to age. This information is needed to understand the potential mechanisms behind the increase of tear injury with age. By showing how the different mechanical properties change as we age, we begin to understand the mechanisms behind an increased tear incidence, and clinicians may be better informed to design strategies to help patients reduce tear risk.

Tissue mechanical properties are directly related to the underlying structural composition, and therefore a key aspect to understanding the cause of age-related
changes in meniscal tear probability is the quantification of how the structural composition changes with age. Previous research has shown a reduction of vasculature of the meniscus with age5, but no other study has evaluated how the structure changes on the molecular level. Once we have identified structural changes with age, therapeutic strategies may be designed to combat or prevent these changes.

The use of computational tools like finite element analysis (FEA) can be utilized to help inform the development of meniscus tear prevention therapies, similar to what has been done to inform patient specific aortic aneurysm9 or ACL tear risks10. However, the calibration and validation of an appropriate constitutive framework requires model comparisons to experimental data11, and experimental data highlighting failure behavior is lacking. By developing and validating these computational models, more refined models can be built to evaluate the meniscus within the joint, and study the different loading configurations that lead to an increased risk of sustaining an injury. This may help clinicians and athletes understand high risk movements, and design ways to avoid or mitigate the risk posed by these movements.

There also exists no standardized method to evaluate certain mechanical properties in soft fibrous tissues. Methods to calculate properties of interest differ across research groups12–14, creating the potential of increasing variability in reported mechanical properties. Providing an automated tool to assist the standardization of these calculation methods could aid in reducing variability of mechanical properties reported group-to-group, as well as decrease the time and computational burden that can be required to analyze complex tensile data of soft tissues without linear stress-strain curves.
1.2 Research Goals

The overall objective of this research was to quantify the effect of age on the human meniscus. Once completed, this body of work is expected to further our understanding of the mechanisms behind the increase of meniscus tear injuries with age. This understanding is pivotal to the design of interventions and therapies to reduce the prevalence of this debilitating injury within the population. This work will also further the general understanding of the mechanical environment of the knee by better defining the mechanics of the meniscus. These research objectives were met by utilizing experimental and computational techniques: by assessing the biomechanical properties and biochemical makeup of human lateral meniscus tissue, as well as mathematically modelling the failure behavior of both young and older tissue relative to the reinforcing fiber network. Additionally, we provide an automated tool to the scientific community to aid in standardizing the evaluation of biomechanical properties of soft fibrous tissues.

1.3 Summary of Chapters

The mechanics of tissue tears are investigated and described before evaluating the biochemical structure of the tissue. The purpose of Chapter 2 was to provide sufficient background information pertinent to the remaining chapters. This background information includes an overview of the structure of the meniscus and its role in the knee joint, along with injury demographics and pathology. This structural description includes macroscale detail of the tissues normal function, as well as the microscale composition.

In order to describe the changes of meniscus biomechanics with age, as well as characterize the mechanics of tissue tears, a novel experimental technique was developed.
and described in Chapter 3. This technique measures the full-field strains on a sample surface while undergoing tensile pull to failure testing, giving the orientation and magnitude of tear region strains. The anisotropic tear mechanics and tensile mechanical properties were evaluated relative to donor age group. Half of the experiments described in this chapter were conducted when I was pursuing my MS, so the work in this chapter is not entirely from my PhD.

Chapter 4 describes the development of a free, web-based application for analyzing soft tissue tensile curves. The computational algorithms developed to analyze the mechanical data in Chapter 3 were quite robust, and can help to establish the standards for evaluating soft tissue tensile curves which are lacking. The publication of this web application stands to reduce the variability of analysis between research cohorts, and reduce the time investment required to analyze data thoroughly.

The mechanics of tissue tears from Chapter 3 were also used to inform the development of a finite element model in Chapter 5. This model was calibrated to the tensile stress-strain character of the tissue, and validated against the tear region strains measured from Chapter 3. This was the first model to describe failures of meniscus tissue, and provides needed detail towards improving knee analysis models.

Chapter 6 then evaluates the structural composition of the tissue that was mechanically tested in Chapter 3. This includes characterization of the extracellular matrix proteins, as well as measuring crosslinks between the collagen fibers, which have been theorized to increase with age and adversely affect tissue mechanics. These age-related changes to the biochemical makeup of the tissue are then compared to the
changing mechanics with age. This narrows down the potential molecular level changes that could result in changes to the mechanics of the tissue.

The final chapter reviews the contributions this research has made to the field of soft tissue mechanics, as well as comments on the future work that is needed to expand on this research. The desired outputs from each study objective and how each project is connected is outlined in Figure 1.

Figure 1: The required inputs and desired outputs from each of the projects covered in this dissertation.
CHAPTER TWO: BACKGROUND

2.1 Meniscus Structure and Tear Etiology

The meniscus is a soft tissue of the knee, that resides distally to the femur and proximal to the tibia, between the femoral condyles and the tibial plateau (Figure 2). There are two menisci in each knee, the lateral and medial meniscus, associated with each of the femoral condyles. The knee meniscus is one of the most frequently torn soft tissues in the body, with more than a half-million surgeries performed in the U.S. annually.¹ Once torn, the capability of the meniscus to attenuate loads and stabilize the knee can become permanently compromised. This leads to a 40% increase in risk of developing osteoarthritis,² a painful swelling of the knee joint that can cause a loss of mobility,³ which effects approximately 10% of all U.S. adults by age 60.⁴ The meniscus has little ability to heal once torn, and surgical interventions are unable to restore the native function due to limited vasculature.¹⁶ The lack of treatment options for meniscus tear injuries makes prevention of the utmost importance in combatting osteoarthritis.
Figure 2: Location of the medial and lateral meniscus within the human knee joint.

The meniscus itself is a fibrous soft tissue, comprised of a hydrated proteoglycan rich ground substance reinforced by a primarily circumferentially aligned collagen type 1 fiber matrix.17 Tears of the menisci are classified by their shape relative to this fiber matrix (Figure 3).18 Vertical tears occur between the fibers and may be caused by tensile loads occurring perpendicular or transverse to the circumferential fibers (Figure 3A). These tears can progress to bucket handle tears that obstruct joint articulation (Figure 3B). Radial tears occur across the fibers and are caused by hoop stresses that create tensile loads longitudinal to the circumferential fibers (Figure 3C). Radial tears can obstruct joint articulation once a flap forms in the shape of a parrot beak type tear (Figure 3D). Interestingly, the meniscus becomes more susceptible to tear injuries with aging,19,20 and radial tears longitudinal to the fibers become more common in patients over the age of 50.18,21 However, whether the effect of age on meniscus injury epidemiology is due to age-related changes in mechanical properties, or other physiological factors, has yet to be elucidated.
Figure 3: Meniscus tear types, including A) vertical tears between the fibers which can progress to B) bucket handle tears, as well as C) radial tears which can progress to complex D) Parrot beak tears.

2.2 Mechanical Characterization

Previous work in mechanical testing of human meniscus is limited. The work by Tissakht and Ahmed7 was one of the most comprehensive of these studies, which measured a wide variety of the anisotropic tensile mechanical properties of meniscus tissue, both along the reinforcing fibers, and perpendicular to them. Other previous research has covered a narrower scope of mechanical behavior, like a specific mechanical property,22–24 the effects of degeneration,25 effects of sample preparation,26 or comparisons to other species menisci.27 While some of these studies compared the differences of mechanical properties relative to the fiber network,7,23,24 none of these previous studies commented on the failure plane of the tissue to inform failure criteria for computational modeling.
Research on the effect of age on meniscus is lacking as well, with only a single previous study that evaluated the effect of age on the tensile behavior of the human meniscus. However, this study evaluated only the change of tensile modulus over a very limited age range of under 45. This singular previous study ultimately found no significant change in this age range, but the limited scope was insufficient for capturing the potential changes in mechanical performance due to age. The effect of age has been successfully measured in other similar tissues. Articular cartilage, for example, is a tissue in direct contact with the meniscus and has shown reduced mechanical strength due to age. A number of other soft fibrous tissues of the body have also shown reduced mechanical properties with age, including: soft tissues of the human spine, various tendons, and the anterior cruciate ligament (ACL). These studies regarding other soft fibrous tissues suggest that a wide variety of mechanical properties should be examined when trying to measure the effect of age on mechanical performance.

2.3 Computational Modeling of Soft Tissues

Previous studies have used computational models to predict failure in soft tissue, but not in the meniscus. Patient specific models of the ascending aorta have been utilized to determine patient risk of aortic aneurysm based off of physiological characteristics, like systolic pressure. A similar approach with finite element modeling was used to assess the risk for ACL tears in patients using geometry obtained from MRI and evaluating their natural gait. Studies like these that assess injury risk require validated models regarding the failure behavior of the tissue of interest, such has been done for both the aorta and ACL. No validation study yet exists for the human meniscus, and
in fact, models that exist of the human meniscus seem to primarily focus on the stresses across the structure within the knee joint, and disregard any kind of failure behavior.37–39 While these studies can help to inform motions that increase tear risk of the meniscus due to increased stress, they fail at being able to identify when, or how, a meniscus tear injury could occur.

Continuum damage mechanics (CDM) models have been used to describe the failure of a wide variety of similar fibrous soft tissues in previous research, including non-specific formulations for any soft tissue with fibers,40–42 as well as specific soft fibrous materials, like ligaments,43 tendon,44 and rectus sheath tissue.45 The selection of proper model formulations for a tissue can be informed by understanding material isotropy, the type of loading, and what stresses govern failure.46 By using DIC to identify the failure plane during mechanical testing, we identify the appropriate failure criteria to implement into a potential model. The rising popularity of digital image correlation in research has also led some groups to recognize the method’s potential for validating models.47,48 By tuning model parameters to load frame tensile data, then comparing model output of surface strain distribution to experimentally measured strain distribution by DIC, there exists the potential to calibrate and validate a computational model with the same group of experiments.

2.4 Structure-Function Analysis

Changes to soft tissue mechanics with age have been previously documented, including the reduction of mechanical properties in cartilage,49 tendons,50 and ligament.34 The structural mechanisms behind the changes in some of these tissues have also been
explained. For example, an age-related shift in the structural proteins making up the extra-cellular matrix of articular cartilage results in tissue that is less durable to mechanical stress.51 Similarly, the increased stiffness of human aortic tissue has been linked to a reduction of the structural protein elastin and an increase of collagen fibers.52 It is not just the changing of structural proteins that can cause changes to these tissues, however. Tissues rich in collagens type 1 and 2 are susceptible to non-enzymatic oxidative reactions with glucose, which form advanced glycation end-products (AGE’s).53 These bind to amino groups of the collagen, forming crosslinks that alter the mechanics of the collagen itself, as well as dramatically modifying their interaction with other molecules, such as proteoglycans and integrins.54 One such AGE is pentosidine, which has been shown to accumulate in meniscus with age55 and has also been seen to decrease the mechanical performance of similar tissues.56–58 While a natural increase of the AGE pentosidine has been observed in human meniscus tissue,55 no study has quantified the changes in collagen crosslinking and structural proteins, and related them to mechanical changes with age.

\textbf{2.5 Data Analysis of Tensile Mechanical Properties}

Different methods for calculating certain mechanical properties of fibrous soft tissues exist across different research groups. While definitions of the phenomena being described for these points exist, there is not yet a standardized method for identifying them when performing a tensile test. The transition point represents the straightening of collagen fibers preceding the approximately linear elastic response of the tissue, but is found in a number of different ways across research groups, including the utilization of
bimodal fitting algorithms14,59 or a set percentage of deviation from the linear region.12,60 Similarly, the yield point, representing the onset of tissue damage ending the approximately linear region has been determined using set deviations from the linear region,12 the point of maximum slope of the linear region,13 or by inflection points identified by the first derivative of cubic fits to the data.6 All of these different calculation schemes are done using in-house custom coding in a variety of programs, specific to individual research groups. While the methods being utilized are published, the programs themselves are not. This combination of non-standardized methods for calculating points, and lack of transparency of coding methods could be partially responsible for the wide deviation of reported mechanical properties that exists between research groups.
CHAPTER THREE: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears.¹

3.1 Introduction

The knee meniscus is a soft fibrous tissue that provides joint stability and helps protect the articular cartilage by distributing and attenuating forces across the tibiofemoral joint⁶¹,⁶². Due to large and repetitive joint loads, the meniscus is frequently torn, and as a result, a half-million meniscus surgeries are performed annually in the U.S. to alleviate pain and joint instability¹. Moreover, with aging, the meniscus becomes more susceptible to injury by tearing¹⁹,⁴⁹,⁶³. Understanding the failure mechanisms of meniscus, and how age influences this behavior, is relevant to advancing the prevention and treatment of meniscus injuries in both young and older populations.

Meniscus tear injuries are dependent on a combination of factors including loading condition, joint geometry, and the composition and organization of the extracellular matrix. The meniscus is composed of a collagen type I fiber matrix, embedded in a hydrated ground substance. This anisotropic fiber network is primarily aligned circumferentially to resist the tensile or hoop stresses that develop in the semi-circular meniscus during joint compression⁶⁴. Meniscus tears can either disrupt the circumferential fibers (e.g. radial and flap tears) or propagate alongside the fibers (e.g. horizontal and vertical tears). The distribution of these tear patterns in the medial and lateral meniscus is influenced by age¹⁸, however, it is unknown whether the effect of age

on injury epidemiology is due to age-related changes in the mechanical properties of the meniscus, or is due to other physiological factors.

To accurately measure the tensile failure properties of meniscus, tissue deformation must be quantified within the localized tear region. While previous meniscus studies have measured local tissue strains during tensile loading6,7,25,65, the instantaneous tissue strains occurring within the tear region of meniscus have not been reported, nor has the angle that tears propagate when loaded in tension. The angle of tear propagation relates to the physical mechanism of failure, and can inform mathematical models that predict failure behavior66. An experimental method to quantify local tissue strains, and identify tear propagation, is digital image correlation (DIC). This technology can measure full-field strains on the specimen surface, and evaluate failure properties of interest, including the 1st principal and maximum shear strains along the tear, which can help define failure mechanisms in ductile and brittle materials46,67. By pairing DIC with high-speed video, strains can be measured within the tear region at nearly the exact moment when tissue begins losing the capacity for load-bearing.

The objective of this study was to determine the effect of age on the anisotropic tensile failure properties in the human meniscus. We hypothesize that 1) meniscus extensibility decreases with age, and 2) meniscus tears occur near the plane of maximum shear stress.

\subsection*{3.2 Methods}

\subsubsection*{3.2.1 Overview}

The failure properties of young and older human lateral menisci were measured with the circumferential fibers oriented either parallel or perpendicular to the loading
axis. Local strain magnitudes in the tear region were quantified at points of interest along the stress-strain curve using two-dimensional DIC.

3.2.2 Specimen Preparation

Lateral menisci were obtained from 10 unpaired human fresh frozen cadaveric knee joints (femur to tibia), with five knees from young donors under the age of 40 (age = 33±5 years; 3 male and 2 female), and five knees from older donors over the age of 65 (age = 72±7 years; 4 male and 1 female). All knees had no medical history of injury and the meniscus had no degenerative fraying or other signs of damage, but many of the older specimens had yellow discoloration. Menisci were harvested, sectioned into anterior and posterior regions, packed in CelluClay, and frozen for at least 24 hours prior to being layered along the circumferential-axial plane into ~0.8 mm thick specimens using a deli slicer. After layering, specimens were cut into dumbbell-shaped coupons (Figure 4A) by aligning the long-axis of a custom punch along the circumferential fiber direction (longitudinal group) or perpendicular to the circumferential fiber direction (transverse group). To quantify the mean fiber orientation relative to the loading axis (Table 1), light microscopy images of the tensile coupons were captured after punching (Figure 4B), and were analyzed with FiberFit software. A total of 40 specimens were
tested and analyzed, with four sets of ten specimens representing unique combinations of age (young, older) and fiber orientation (longitudinal, transverse). Each testing set was equally composed of specimens from the posterior and anterior regions, where the five specimens from each region were acquired from at least four different cadavers.

Specimens were prepared for mechanical testing by gluing emery cloth tabs to the specimen grip section to reduce slipping, and by applying a random speckle pattern of
black India ink (Figure 4C) using an airbrush set to 15 psi at a spraying distance of 27.5 cm. The Shannon entropy72 of each speckle pattern was calculated to estimate speckle quality. Specimens tested in this study had an average Shannon entropy of 4.8 ± 0.3, a moderate value.

Table 1: Physical characteristics of meniscus tensile test specimens

<table>
<thead>
<tr>
<th>Fiber Orientation</th>
<th>Age Group</th>
<th>Widtha (mm)</th>
<th>Thicknessa (mm)</th>
<th>Cross-Sectional Areab (mm2)</th>
<th>Grip-to-Grip Length (mm)</th>
<th>Mean Fiber Orientationa (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>Young</td>
<td>1.08 ± 0.12</td>
<td>0.73 ± 0.09</td>
<td>0.79 ± 0.13</td>
<td>10.65 ± 0.90</td>
<td>2.6 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>Older</td>
<td>1.08 ± 0.13</td>
<td>0.70 ± 0.15</td>
<td>0.76 ± 0.22</td>
<td>11.20 ± 1.2</td>
<td>2.4 ± 2.3</td>
</tr>
<tr>
<td>Transverse</td>
<td>Young</td>
<td>1.41 ± 0.19</td>
<td>0.80 ± 0.15</td>
<td>1.15 ± 0.31</td>
<td>6.20 ± 1.34</td>
<td>89.1 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>Older</td>
<td>1.45 ± 0.14</td>
<td>0.81 ± 0.21</td>
<td>1.18 ± 0.37</td>
<td>6.95 ± 1.77</td>
<td>90.8 ± 6.3</td>
</tr>
</tbody>
</table>

a Measured in the gauge section
b Measured relative to the loading axis

3.2.3 Tensile Mechanical Testing

All mechanical tests were conducted using an electrodynamic test system (Instron, Norwood MA, USA; ElectroPuls E10000). Specimens were preloaded, mechanically preconditioned for 20-cycles (triangle wave, 8\% strain, 1 Hz), and then preloaded again to remove laxity (preload = 0.1 N for longitudinal, 0.03 N for transverse). Front and side digital images were taken to measure gauge width and thickness (Table 1)69.

Specimens were pulled to failure in tension at a rate of 1\% strain/second while filming at 500 frames per second (fps) using a high-speed camera (Photron, Tokyo, Japan; fastcam mini UX50; resolution = 50 pixels/mm), polarized lenses, and an LED floodlight (Energysaver LED, St. Louis, MO; PHSI3060-120W)(Figure 5). During
testing, specimens were kept moist by spraying with 0.9% saline solution. Each test was

![Intron Load Frame](image)

Figure 5: Top view of the tensile test setup for high-speed measurement of full-field strain. In order to minimize glare on the specimen surface, two polarized lenses were positioned between the LED and camera with polarization angles in 90° opposition to each other.

prescribed one of five failure modes (Figure 6): midsubstance, fillet, multimode, grip, or slip. Specimens with a grip or slip failure were excluded from further analysis.

The axial force and displacement at the grips were converted to engineering stress (1st Piola-Kirchoff) and engineering strain. Stress-strain curves for the longitudinal group were split into three regions with four points of interest (Figure 7A): transition,
yield, ultimate, and rupture. The transition point represents the straightening of the

Figure 6: Different failure modes classified in this study, with arrows indicating the location of tear initiation. Midsubstance failures (n = 6 longitudinal, n = 18 transverse) had tears inside the gauge section, while fillet failures (n = 9 longitudinal, n = 2 transverse) had tears at the radius of the width tapered region. Multimode failures had tears that initiated in either the midsubstance or fillet and propagated to the grip (n = 5 longitudinal, n = 0 transverse). Grip failures (n = 29 longitudinal, n = 11 transverse) had tears along the grip line and slip failures (n = 7 longitudinal, n = 0 transverse) occurred when the specimen slipped at the grip interface prior to tissue rupture. The white arrow for the slip failure shows the black residue from the emery cloth that detached from the grip interface. Grip and slip failures were discarded and excluded from further analysis.
Figure 7: Representative stress–strain curve for a) longitudinal and b) transverse specimen with marked points of interest (transition, yield, ultimate, rupture). Grip-to-grip tensile strain was measured as the grip displacement divided by the grip-to-grip reference length.

crimped collagen fibers, the yield strength may indicate where damage accumulation begins to soften the tissue, the ultimate tensile strength (UTS) signifies the loss of load-bearing capacity, and represents tissue separation. The yield, ultimate, and rupture point were similarly selected for the transverse group (Figure 7B). See Appendix A for details on the automated selection of these points. Material toughness (energy absorption for the whole specimen) was approximated using trapezoidal integration of the grip-to-grip strain relative to stress up to UTS, and from UTS to tissue rupture.

3.2.4 Two-Dimensional Strain Measurement with Digital Image Correlation

The high-speed film was synchronized to the force-displacement data to analyze the full-field strain at transition, yield, and UTS. Synchronization was achieved by filming an LED that was triggered when the Instron actuator began and stopped moving. Additional details on the high-speed film and DIC analysis are in Appendix A.
The line where a tear propagated at UTS was estimated by examining the DIC strain maps in combination with the raw high-speed film. A custom Matlab script calculated the angle of tear propagation relative to the loading axis and generated a region of interest around the tear, called the tear region, that spanned 0.1 mm above and below the tear line (0.2 mm total span), with boundaries parallel to the tear line. Some tears propagated from the specimen edge to a point of inflection, and finished tearing across the specimen surface at a different angle. For these specimens with multiple tear angles (n=10), the tear region for this initial tear propagation was used for strain analysis. The average 2D Green-Lagrange strain tensor in the x-y reference basis (Figure 4C) was determined from the DIC data within this tear region using NCORR. This strain tensor was transformed to the principal basis to compute the right stretch tensor, \mathbf{U}, and the engineering strain tensor $\mathbf{E} (\mathbf{E}=\mathbf{U}-\mathbf{I})$, along with the 1st and 2nd principal planar strains (E_1, E_2) and the maximum planar shear strain (γ_{max}). The strain tensor was transformed back to the x-y reference basis to calculate the \mathbf{E} components when the surface normal is parallel (E_{yy}) and perpendicular (E_{xx}) to the loading axis, and the shear component of the orthogonal x-y surfaces (γ_{xy}). The strain components on the tear surface, E_{tear} and γ_{tear}, were calculated by transforming the strain tensor from the reference basis to the tear surface, using the tear angle measured from the high-speed film. In this study, all reported shear strain values are tensoral. Local toughness in the tear region at UTS was estimated using trapezoidal integration of the stress-strain curve generated from tensor components of \mathbf{U} and the Biot-Lure stress tensor on the surface normal to axial loading. Tissue necking was calculated as the percentage of specimen width reduction that occurred from preload to UTS at the center of the tear region.
3.2.5 Statistical Analysis

All statistical analyses were completed with SPSS software (IBM; Armonk, NY, USA; v24). The effect of age on stress, grip-to-grip strain, local strains in the failure region, toughness, and angle of tear propagation were determined using MANOVA tests at the three points of interest (transition, yield, and ultimate) for either loading configuration. ANOVA tests were used to determine differences between distinct strain components at the same time point (e.g. E_{yy} vs. E_{t}) with Tukey post hoc testing, and a t-test was used to determine the effect of loading configuration on the angle of tear propagation. In cases where Leven’s test detected variance heterogeneity, a Welch’s ANOVA was used. Previously published data27, was used to estimate the sample size needed to detect with 80% confidence (Power 0.80) a 25% change in the ultimate strength and grip-to-grip ultimate strain due to age. A posteriori, effect size and corresponding 95% confidence intervals were calculated75. For all statistical tests, significance was set at $p < 0.05$. All means are reported with one standard deviation.

3.3 Results

3.3.1 Tear Propagation

Tear propagation coincided with localized regions of high strains (Figure 8). The average angle of tear propagation, measured perpendicular to the loading axis, was $58\pm22^\circ$ for longitudinal specimens and $12\pm9^\circ$ for transverse (Table 2). The difference in tear angle between loading configurations was significant ($p<0.01$). However, there was no significant effect of age on the angle of tear propagation in either longitudinal
(p=0.20) or transverse specimens (p=0.14).

Figure 8: E_{yy} strain maps at UTS for posterior specimens. A) Tears propagated oblique to the loading axis (y-axis), near the plane of maximum shear stress, when loaded longitudinal to the fiber direction in younger and B) older specimens. C) Tears propagated perpendicular to the loading axis, near the plane of maximum tensile stress, when loaded transverse to the fiber direction in younger and D) older specimens. Solid white lines denote tear lines, dashed white boxes denote the analyzed tear region. Each specimen color map is scaled from 0 to the average E_{yy} strain in the tear region at UTS (ε_f).
Table 2: Comparison of tensile mechanical properties between different ages of human lateral meniscus when loaded longitudinal or transverse to the circumferential fiber direction. Effect sizes and their confidence intervals (CI) give a 95% confidence that potential differences in mechanical properties between all non-significant comparisons have an absolute effect size ≤ 1.8. Sample size for each cell = 10.

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal</th>
<th>Transverse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Young</td>
<td>Older</td>
</tr>
<tr>
<td>Tangent Modulus (MPa)</td>
<td>109.9 ± 40.8</td>
<td>97.2 ± 33.8</td>
</tr>
<tr>
<td>Yield Strength (MPa)</td>
<td>5.3 ± 2.7</td>
<td>4.3 ± 2.0</td>
</tr>
<tr>
<td>Yield Strain (%)</td>
<td>7.4 ± 1.4</td>
<td>6.8 ± 1.0</td>
</tr>
<tr>
<td>Ultimate Strength (MPa)</td>
<td>13.3 ± 7.3</td>
<td>9.9 ± 6.1</td>
</tr>
<tr>
<td>Ultimate Strain (%)</td>
<td>16.8 ± 4.9</td>
<td>13.8 ± 4.7</td>
</tr>
<tr>
<td>Rupture Strain (%)</td>
<td>28.4 ± 10.0</td>
<td>20.7 ± 4.4</td>
</tr>
<tr>
<td>1<sup>st</sup> Principal Strain in Tear Region at UTS (%)</td>
<td>41.0 ± 8.6</td>
<td>28.8 ± 8.8</td>
</tr>
<tr>
<td>2<sup>nd</sup> Principal Strain in Tear Region at UTS (%)</td>
<td>-15.5 ± 12.2</td>
<td>-12.9 ± 12.1</td>
</tr>
<tr>
<td>Max Shear Strain in Tear Region at UTS (%)</td>
<td>28.3 ± 8.3</td>
<td>20.8 ± 8.4</td>
</tr>
<tr>
<td>Material Toughness up to UTS (J/ml)</td>
<td>1.2 ± 0.8</td>
<td>0.7 ± 0.6</td>
</tr>
<tr>
<td>Material Toughness from UTS to Rupture (J/ml)</td>
<td>0.46 ± 0.36</td>
<td>0.29 ± 0.22</td>
</tr>
<tr>
<td>Local Toughness in Tear Region up to UTS (J/ml)</td>
<td>2.4 ± 1.7</td>
<td>0.9 ± 0.8</td>
</tr>
<tr>
<td>Angle of Tear Propagation (deg)</td>
<td>51.5 ± 25.6</td>
<td>64.2 ± 16.3</td>
</tr>
<tr>
<td>Necking in Tear Region (%)</td>
<td>5.3 ± 8.3</td>
<td>3.4 ± 13.1</td>
</tr>
</tbody>
</table>
3.3.2 Stress and Grip-to-Grip Strain

The tensile strength of older longitudinal specimens were on average 26%, 19%, and 15% weaker than younger specimens at ultimate, yield, and transition points, respectively (Figure 9A); although these differences were not significant (Table 2; \(p > 0.26 \)). For transverse loading, the ultimate and yield strength of older specimens were 43% and 36% weaker than young specimens, respectively (Fig. 6 B), with differences in ultimate strength being significant (Table 2; \(p = 0.034 \)). Specimen age had no significant effect on tangent modulus for either longitudinal (\(p = 0.46 \)) or transverse tests (\(p = 0.11 \)) (Table 2).

The average grip-to-grip strains of older longitudinal and transverse specimens at nearly all points of interest were less than younger specimens (Figure 9C-D), but only the 27% reduction in longitudinal rupture strain was significant (Table 2; \(p = 0.039 \)).

The material toughness (area under stress-strain curve using grip-to-grip strain) trended less in older specimens (Table 2). For transverse loading, the material toughness of older specimens was 55% less than younger specimens when measured to UTS (\(p = 0.008 \)), and 65% less when measured after UTS to rupture (\(p = 0.004 \)). For longitudinal loading, the material toughness of older specimens was 39% and 38% less (non-significant) than younger specimens when measured to UTS (\(p = 0.17 \)) and from UTS to rupture (\(p = 0.23 \)), respectively.
Figure 9: Comparison of grip-to-grip strain and stress for different age groups. On average, young specimens withstood greater stresses than older specimens during A) longitudinal and B) transverse loading, and were stretched to greater strains than older specimens during C) longitudinal and D) transverse loading, but most differences were not significant. Error bars represent one standard deviation. *p < 0.05.

3.3.3 Local Strains in the Tear Region using DIC

Older longitudinal specimens showed significantly less tensile strain (E_{yy} and E_I) in the tear region at UTS than younger specimens ($p<0.05$), but age had no other significant effect on local strain magnitudes (Figure 10A-E). Older specimens had approximately half the local toughness in the tear region relative to older specimens in both the longitudinal ($p=0.02$) and transverse groups ($p=0.10$) (Table 2).
Figure 10: Comparison of engineering strains in young and older specimens within the failure region (Eyy, E1, Exx, E2, Exy, and γmax) and between grips. Strains were analyzed during longitudinal loading at A) ultimate, B) yield, and C) transition points; and during transverse loading at D) ultimate and E) yield points. In this study, both Exy and γmax were calculated as tensorial shear strains. Error bars represent one standard deviation. Significance set to p < 0.05 for all comparisons.

First principal strains in the tear region were considerably greater than strains measured along the loading axis (grip and Eyy) for most points of interest (Figure 10A-E).

For example, first principal strain (E1) within the tear region at UTS was approximately 200% and 350% greater than grip-to-grip strains in the longitudinal (p<0.01) and transverse p<0.001 group, respectively (Figure 10A, D).

The 2D strains on the tear surface were also calculated (Fig. 8). For longitudinal specimens, the tear surface experienced tensile (E_tear) and shear strains (γ_tear) (Figure 11A-B), where younger specimens had significantly greater tensile strains than older
specimens (Figure 11C, p=0.01). For transverse specimens, the tear surface experienced predominantly tensile strain (Figure 11D-E), and there was no effect of age on the strain magnitudes (Figure 11F).

Lastly, there was no significant effect of age on necking in either the longitudinal or transverse groups (p=0.61 and p=0.62, respectively) (Table 2), and meniscus location (anterior vs posterior) had no significant effect on any measured properties.

3.4 Discussion

The primary objective of this study was to determine the effect of age on the anisotropic tensile failure behavior of human lateral meniscus. Our first hypothesis was
that extensibility of the tissue would decrease with age. Extensibility is a measure of a material’s ability to elongate, and was evaluated by measuring tensile strain between the grips and within the tear region at multiple points of interest (Figure 7). When stretching the circumferential fibers (longitudinal group), we found that older specimens were 27% less extensible at rupture than young specimens (Figure 9C), and were 30% less extensible within the tear region at UTS than young specimens (Figure 10A, E_1). This loss of extensibility contributed to older specimens having ~60% less toughness (energy absorption) within the tear region compared to young specimens (Table 2). When stretching the ground substance (transverse group), older specimens were approximately 20% less extensible at UTS and rupture (Figure 9D, Figure 10 D), but these differences were not significant. Nevertheless, the (non-significant) reductions in extensibility, combined with significant decreases in ultimate strength (Figure 9B), resulted in older transverse specimens having 55% less energy absorbed (toughness) up to UTS, and 65% less energy absorbed after UTS (Table 2). The deficient toughness of older specimens (longitudinal and transverse) indicates that aging populations would be more susceptible to tears from high-energy loading events. Overall, the strain results partially support our first hypothesis, in that age reduced the extensibility of the circumferential fiber network, but not the ground substance.

Our second hypothesis was that tears occur on the plane of maximum shear stress, which is 45° from the loading axis. Longitudinal specimens did indeed fail close to this plane, with tears propagating on average at 58° (Figure 11, Table 2). Conversely, tears in transverse specimens occurred closest to the 0° plane of maximum tensile stress, after a considerable amount of necking. Analysis of the tear surfaces showed good agreement
between the estimated stresses and the measured strains, as the tear surface of transverse specimens had high magnitudes of tensile strains (Figure 11D-E), and the tear surface of longitudinal specimens had shear strains relatively close to the maximum shear strain (Figure 11A-B). Notably, the maximum principal strains were not well-aligned with the loading axis in longitudinal tests (Figure 11A-B), leading to significant differences in E_{yy} and E_i (Figure 10A) which may possibly be explained by fiber sliding76. Collagen fiber sliding creates shear on the surface normal to the x-axis (Figure 4C), which would effectively rotate the strain tensor eigenvectors relative to the loading axis. Another notable finding was that older longitudinal specimens had nearly 50% less tensile strains on the tear surface compared to younger specimens. This is consistent with the observed reductions of extensibility in older specimens (Table 2; E_i). Overall, results from this study partially supported our second hypothesis, in that meniscus tears occurred near the plane of maximum shear stress when loaded along the circumferential fibers.

The local strains measured in this study can inform and validate the selection of failure criteria for macroscale mathematical models and provide insight into meniscus failure mechanisms. The oblique tear angle observed during longitudinal loading (Figure 8) indicates that maximum shear stress or distortion energy may be appropriate failure criteria to model tears that occur from tensile stress in the fiber direction. However, when modeling tears that occur from tensile stress transverse to the fiber direction, our results would suggest that maximum tensile stress (or strain) failure criteria are appropriate. This recommendation is consistent with matrix mode failures that occur in unidirectional fiber reinforced composites77,78. The observed dependence between failure behavior and fiber direction emphasizes the importance of using anisotropic failure criteria when modeling
damage in soft fibrous tissue. It’s interesting to note that the local \textit{yield} strains for the transverse group (ground substance response) are greater than the local \textit{ultimate} strains for the longitudinal group (fiber response) (Figure 10, Table 2), indicating that the ground substance is undamaged when fibers begin losing load-bearing capacity. This suggests a fiber-driven failure mechanism for meniscus, possibly similar to macroscale failure theories proposed for engineered composites that have high-strength uniaxial fibers embedded in a ductile matrix79.

This was the first study to measure the effect of aging on mechanical failure behavior in human meniscus, but similar biomechanics studies have been performed on ligament, tendon, and cartilage29,32,34. Consistent with our findings, these previous studies reported reductions in modulus, ultimate strength, and failure strain with age. Since it’s been shown that neither collagen content nor collagen cross-linking decrease in collagen-rich tissues as we age55,80, the loss of strength and extensibility that has been observed in older specimens likely indicates an accumulation of structural damage. This structural damage could potentially be caused by age-dependent changes in collagen fiber organization81 or the unfolding of collagen molecules due to repeated loading82.

To our knowledge, this is the first study to report the (nearly) instantaneous strain behavior within the tear region of any soft fibrous tissue. This advance was made possible by pairing DIC with high-speed video. A striking discovery was that meniscus tissue is more extensible than previously reported. On average, young meniscus tissue will stretch 41\% when loaded along the fibers and 192\% when loaded against the fibers before losing load-bearing capacity (Table 2; E_1 in tear region at UTS). These local tensile strains were more than double our grip-to-grip ultimate strains (Table 2), and to
our knowledge are greater than any previously reported ultimate tensile strains for meniscus, tendon, or ligament. The large difference between grip-to-grip and local strains can be explained by the strain maps we captured at UTS (Figure 8), which reveal that strains are concentrated in the tear region, and the majority of tissue is relatively undeformed at failure. For additional comparisons of our mechanical results with previous studies on human meniscus, please see Appendix A.

This study had limitations. Quasi-static tests were conducted on only the central region of the lateral meniscus, and meniscus failure properties may vary for different anatomical regions (e.g. medial meniscus) and loading rates. Similar to a previous ligament study83, we used a preconditioning strain of 8\% for longitudinal loading. This preconditioning strain exceeded the yield strain in six specimens by an average of 0.4 ± 0.3\%. Although the failure properties of these six specimens were not significantly different from other specimens (data not shown), it’s possible that some damage occurred during preconditioning. Based on the transition and yield strains from this study (Figure 9C), we would recommend using grip-to-grip preconditioning strains between 4-6\% for longitudinal tensile testing. In order to preserve the DIC speckle pattern, specimens were tested in air. While care was taken to frequently spray specimens with 0.9\% saline, tissue hydration during tensile testing was likely less than physiological and this may have contributed to a higher rate of grip failures (46\%) than we encountered when conducting tensile tests of bovine meniscus using a drip system (5\%)13 or human meniscus using a heated saline bath (20\%)84. Lastly, this study used planar DIC, and may have missed important phenomena in out-of-plane strains and tear patterns.
3.5 Acknowledgements

Financial support kindly provided by the National Science Foundation under grant no. 1554353 (funded materials used in the experiment and personnel costs) and the National Institute of General Medical Sciences under award number P20GM109095 (funded some equipment used in the experiment). Many thanks to Belle Vita Funeral Home (Garden City, ID) for their help in laying donors to rest, and Greenfields Custom Meats (Meridian, ID) for providing bovine specimens used in pilot experiments for this study.
4.1 Introduction

Uniaxial tensile tests are conventional experiments to characterize the mechanical behavior of engineered and biological materials. Stress-strain curves generated from tensile tests provide a graphical representation of a tissue’s normalized load response to axial stretch. Several key mechanical properties can be quantified from these curves, including ultimate tensile strength (UTS), yield strength, energy to failure, and the transition strain\(^6,7,85\) (Figure 12). International testing standards for many engineered materials (e.g. plastics, polymer matrix composites)\(^86,87\) provide guidelines for identifying and calculating relevant properties from stress-strain curves. These standards reduce the probability that the reported properties are biased by their testing environment or calculation method, thus improving reproducibility between different research groups. These standards have also led to the development of software packages\(^88,89\) to automate the calculation of mechanical properties, further reducing the subjectivity and burden of data analysis on research groups. Unfortunately, no testing standards exist for tensile testing of soft biological tissues, and existing software packages are unable to account for soft tissue’s non-linear stress-strain behavior (Figure 12).

Figure 12: Representative tensile stress-strain curve of soft tissue with marked points of interest (transition, yield, ultimate, and rupture), as well as different measures of strain energy density.

The lack of standards for tensile testing of soft fibrous tissues has resulted in biomedical research groups using different methods to calculate mechanical properties. One such mechanical property, the transition strain, physically represents the straightening of collagen fibers. At the transition point, soft fibrous tissue “transitions” from an exponential stress-strain response (toe region), to an approximately linear response (Figure 12). This point on the stress-strain curve is important, as the normal physiological functions of tendon and ligament occur mostly in the toe region, and below the transition point the tissue is highly resistant to fatigue damage. Methods to calculate the transition point vary widely across research groups, and include using inflection points of a polynomial fit, bimodal linear fitting algorithms, piecewise fitting algorithms, or deviation of either stress or strain from a linear fit to the linear region. While descriptions of these methods are published, the custom programs
written to do the analysis are not publicly available. This lack of standardization and transparency could be contributing to the wide variance of reported transition strains that exist between research groups (Table 3)⁷,¹²⁻¹⁴,⁹¹,⁹³. It’s possible to reduce cross-lab variability and accelerate the pace of discovery by giving research groups access to a standardized computational tool that automates the calculation of transition strain and other tensile properties in soft tissue. A type of computational tool that provides exceptional accessibility is a web-based software application, which permits instant access to anyone with an internet connection. The objectives of this work are to 1) develop a free, web-based software application for the calculation of soft-tissue tensile properties, and 2) identify optimal program settings to minimize transition strain error when evaluating experimental stress-strain curves.

Table 3: Tensile transition strains for meniscus tissue from different research groups. All strain values are in engineering strain.

<table>
<thead>
<tr>
<th>Study</th>
<th>Species</th>
<th>Method</th>
<th>Transition strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nesbitt et al., 2021</td>
<td>Human</td>
<td>10% stress deviation from linear fit</td>
<td>3.6 ± 0.4%</td>
</tr>
<tr>
<td>Tissakht & Ahmed, 1995</td>
<td>Human</td>
<td>Bimodal polynomial fitting</td>
<td>7.4 ± 2.6%</td>
</tr>
<tr>
<td>He et al., 2020</td>
<td>Porcine</td>
<td>Bimodal linear fitting</td>
<td>4.6 ± 0.7%</td>
</tr>
<tr>
<td>Abdelgaied et al., 2015</td>
<td>Porcine</td>
<td>Bimodal linear fitting</td>
<td>5.5 ± 0.9%</td>
</tr>
<tr>
<td>Wale et al., 2020</td>
<td>Bovine</td>
<td>5% stress deviation from linear fit</td>
<td>5.2 ± 1.2%</td>
</tr>
<tr>
<td>Danso et al., 2014</td>
<td>Bovine</td>
<td>0.6% strain deviation from linear fit</td>
<td>5.9 ± 1.9%</td>
</tr>
</tbody>
</table>
4.2 Materials and Methods

4.2.1 Overview

A web-based application called Dots-on-Plots was built to automatically calculate and output mechanical properties from tensile stress-strain curves. The optimal threshold setting for computing transition strain was determined by finding what threshold value resulted in the most accurate transition strains when analyzing stress-strain curves from twenty tensile tests of human meniscus. The “gold standard” transition strain used to measure accuracy was determined by curve fitting a hyperelastic-damage model, which included transition strain as a material parameter, to the experimental data using finite element parameter optimization. In addition, 27 variations of stress-strain curves were synthetically generated with a finite element solver to determine whether the calculation of transition strain was sensitive to curve shape.

4.2.2 Automated Calculation of Mechanical Properties

Dots-on-Plots calculates tensile mechanical properties by identifying four points (or dots) of interest: transition, yield, ultimate, and rupture. The transition point represents the straightening of the crimped collagen fibers\(^{85}\); the yield point marks the yield strength and may indicate where damage accumulation begins to soften the tissue; the ultimate point marks the ultimate tensile strength (UTS) which signifies the loss of load-bearing capacity; and rupture represents tissue separation. The yield point was selected at the maximum positive slope of the stress-strain curve\(^{6,13}\), the ultimate point at the maximum stress, and the rupture point when stress drops below a user specified percentage of the UTS. The linear modulus was calculated as the slope of a linear fit to the stress-strain data within a 1% strain interval below the maximum slope (Figure
The transition point is determined from the deviation between the stress-strain curve and the linear fit to the linear region below the maximum slope. In this study, the fit interval was 1\% strain.

The transition point was then determined as the point on the stress-strain curve, below the yield point, where the stress σ deviated from the stress predicted from the linear fit σ_{linear} by a set percentage of the stress at the point of maximum positive slope σ_{ms} (Figure 13). This can be mathematically expressed as follows, where the largest value of strain ε that satisfies this equation is marked as the transition strain.

$$\left| \frac{\sigma(\varepsilon) - \sigma_{\text{linear}}(\varepsilon)}{\sigma_{ms}} \right| \times 100 \geq \% \text{ Stress Deviation}$$

(1)
Stress and strain at each of these four points of interest are output as mechanical properties. In addition, the strain energy density at each point of interest is calculated. Strain energy density represents the potential energy absorbed by the tissue, normalized by volume, and was calculated as the area under the stress-strain curve using trapezoidal integration up to the point of interest. For example, the strain energy density that accumulates from no strain to ultimate strain would be the ultimate energy, and from no strain to the rupture strain would be the rupture energy (Figure 12). Calculations are independent of units and will display the stress and strain magnitude as provided in the input file. For example, if the stress column is calculated in MPa, the yield strength will be in MPa. Importantly, the user-input stress and strain measures must be energy conjugates to properly calculate the strain energy density (area under the stress-strain curve)94.

\textbf{4.2.3 Web Application Development}

A web application was developed to satisfy four primary design criteria: efficiency, reliability, flexibility, and convenience (Table 4). These design criteria were addressed by incorporating specific design features into a program that was initially developed in Python using the aforementioned algorithms for calculating mechanical properties. This original Python code (available on GitHub: https://github.com/ntm-bsu/dots-on-plots) was installed on a server and a web interface was written in standard

\begin{table}[h]
\centering
\caption{Dots-on-Plots design criteria and corresponding design features.}
\begin{tabular}{|c|p{10cm}|}
\hline
Design Criteria & Design Feature \\
\hline
1) Efficient & Fast, automated batch processing of multiple input files. \\
2) Reliable & Transparent calculations using graphical displays. \\
3) Flexible & Thresholds that define properties are adjustable. \\
4) Convenient & Accessible via the web. Properties and plots exported as CSV and PDF. \\
\hline
\end{tabular}
\end{table}
HTML, Javascript, and CSS. The server processes data files in parallel, writing out the output images and data to the client.

4.2.4 Determining an Optimal Threshold to Calculate Transition Strain

The calculation of transition strain in Dots-on-Plots is based on a user-specified threshold for percent stress deviation (Eq. 1). To determine the optimal threshold value to minimize the expected error when evaluating this property, stress-strain curves were analyzed that had a known answer for transition strain ($\varepsilon_{\text{trans,actual}}$). This known answer was then compared to the transition strain output by Dots-on-Plots for a given threshold ($\varepsilon_{\text{trans,dots}}$). For this analysis, stress-strain curves were acquired from 20 monotonic uniaxial tensile tests (loading rate = 1% strain/s) taken from five young human menisci (age = 33 ± 5 years) and five older human menisci (age = 72 ± 7 years)\(^91\). The two age groups have significant differences in mechanical properties\(^91\), and therefore we included both age groups to have a more diverse set of stress-strain curves. The twenty experiments were analyzed in Dots-on-Plots using five different threshold settings of percent stress deviation (1, 2, 3, 5, and 10%) to calculate transition strain ($\varepsilon_{\text{trans,dots}}$). We selected these settings to span the range of threshold values applied in previous studies to calculate transition strain (Table 3).

To calculate the known or actual transition strain ($\varepsilon_{\text{actual}}$), the experimental stress-strain curves were curve fit to a hyperelastic-damage model using the free finite element solver, FEBio\(^95\). For this simulation, a single hexahedral element was pulled in tension using a sliding elastic contact to allow displacement along the axial load direction. The
selected material was transversely isotropic hyperelastic, where the model’s strain energy density \(\Psi \) is uncoupled into a ground substance \(F_1 \) and fiber matrix \(F_2 \):

\[
\Psi = F_1(\lambda) + F_2(\lambda) + K \frac{1}{2} (\ln(J))^2
\]

(2)

Here \(\lambda \) is stretch, \(J \) is the volume change ratio, and \(K \) is bulk modulus, which was set to 1000 to enforce near-incompressibility\(^9\). We used a Veronda-Westmann ground substance and a piecewise exponential function of the fiber matrix.

\[
F_1(\lambda) = C_1 \left(e^{(C_2(\lambda-3))} - 1 \right) - \frac{C_1C_2}{2} (I_2 - 3) + U(J)
\]

(3)

\[
F_2(\lambda) = \begin{cases}
0 & \lambda \leq 1 \\
C_3 \left(e^{-C_4(E_i(\lambda)-E_i(C_4))} - \ln (\lambda) \right) & 1 < \lambda < \lambda_m \\
C_5(\lambda - 1) + C_6 \ln (\lambda) & \lambda \geq \lambda_m
\end{cases}
\]

(4)

The strain energy of the ground substance is dependent on two user specified material constants \((C_1, C_2)\), the first and second invariants of the deviatoric portion of the right Cauchy Green deformation tensor \((I_1, I_2)\), and the dilational term \((U)\). The strain energy contribution of the fibers is a piecewise function dependent on stretch. Importantly, the transition stretch \(\lambda_m \) is included as a material parameter that defines the transition between the exponential and linear regions\(^9\). When the stretch is below \(\lambda_m \), the function is dependent on two user specified fiber straightening constants \((C_3, C_4)\), and is calculated using the exponential integral function \((E_i)\). At a stretch above \(\lambda_m \), the fibers take on an approximately linear character, and are dependent on one user specified constant for fiber modulus \(C_5 \) and one calculated constant \(C_6 \) to ensure stress is
continuous at the transition stretch. The strain energy density is converted to an effective Cauchy stress σ_0. In order to model strain softening (Figure 12), a quintic polynomial cumulative distribution function was implemented to apply damage evolution to the stress-strain curves.

$$D(\varepsilon) = \begin{cases} 0 & \varepsilon \leq \mu_{\text{min}} \\ x^3(6x^2 - 15x + 10) & \mu_{\text{min}} < \varepsilon < \mu_{\text{max}} \\ D_{\text{Max}} & \mu_{\text{max}} < \varepsilon \end{cases}$$

Damage D can range from values of 0 to 1, and is a function of the first principle Lagrange strain (ε). The limits of damage evolution ($\mu_{\text{min}}, \mu_{\text{max}}$) determine the strain values where damage initiates and reaches a maximum (D_{max}). Finally, Cauchy stress σ was calculated by scaling the effective undamaged stress σ_0 with damage D.

$$\sigma = (1 - D)\sigma_0$$

4.2.5 Parameter Optimization

The material parameters were curve fit to experimental data (axial force vs. time) using the Levenberg-Marquardt parameter optimization module in FEBio. Parameter optimization was conducted in two steps. In the first step, only the hyperelastic model was run (Eq. 2-5), and the elastic material parameters ($C_1, C_2, C_3, C_4, C_5, \lambda_m$) were fit to the toe and linear region of the stress-strain curve (Figure 12). Initial guesses for $C_1, C_5,$ and λ_m were based on previously measured mechanical properties with optimization limits of more than ± two standard deviations to help ensure convergence to a global minima. Initial guesses for the remaining elastic parameters were determined by trial and error, with maximum and minimum limits of approximately double and one-half the
initial guess, respectively. In the second step, the full hyperelastic-damage model was run (Eq. 6), and the damage parameters were fit to the strain-softening region of the stress-strain curve (Figure 12) with initial guesses set as the values of Lagrange strain at yield and rupture (70% of UTS) from our previous experiments \(^9\). When optimization returned a parameter extremum, the extrema was expanded by 30% and optimization was re-performed.

The axial component of stress from the model and experiment were plotted together as a function of engineering tensile strains \((\varepsilon = \lambda - 1)\). The hyperelastic-damage model resulted in excellent fits for all experimental data (Figure 14), with an average \(R^2\) value of 0.998 ± 0.002, and an NRMSE of 2.9 ± 1.2% (normalized to mean stress). The average model coefficients used to fit these twenty experiments are given in Table 5. The transition stretch \(\lambda_m\) from the optimized model fit was converted to the known or “actual” transition strain \((\varepsilon_{\text{actual}} = \lambda_m - 1)\). This known transition strain was then used to estimate the accuracy of Dots-on-Plots by calculating the error \((\varepsilon_{\text{trans,dots}} - \varepsilon_{\text{trans,actual}})\) and absolute
error \(|\varepsilon_{\text{trans,dots}} - \varepsilon_{\text{trans,actual}}|\) of the measured transition strain. A similar approach to estimate accuracy has been used in previous studies\(^{98,99}\).

![Graph showing tensile stress vs. strain](image)

Figure 14: The hyperelastic-damage model gave excellent fits to the experimental data.

Table 5: Average model coefficients that were curve fit to experimental stress-strain curves (average ± standard deviation). The quality of fit was measured by the percent error (NRMSE) of the simulated stress curve relative to experimental data.

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(\lambda_m)</th>
<th>(\mu_{\text{min}})</th>
<th>(\mu_{\text{max}})</th>
<th>(D_{\text{min}})</th>
<th>NRMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>0.75 ± 0.53</td>
<td>1.39 ± 0.53</td>
<td>0.42 ± 0.10</td>
<td>37.9 ± 6.8</td>
<td>115.0 ± 38.7</td>
<td>1.05 ± 0.006</td>
<td>0.14 ± 0.08</td>
<td>0.29 ± 0.10</td>
<td>1.24 ± 0.99</td>
</tr>
<tr>
<td>Older</td>
<td>0.71 ± 0.78</td>
<td>1.24 ± 1.18</td>
<td>0.47 ± 0.17</td>
<td>37.0 ± 8.1</td>
<td>100.2 ± 36.0</td>
<td>1.04 ± 0.007</td>
<td>0.11 ± 0.05</td>
<td>0.26 ± 0.13</td>
<td>1.39 ± 1.23</td>
</tr>
<tr>
<td>Total</td>
<td>0.73 ± 0.65</td>
<td>1.32 ± 1.07</td>
<td>0.45 ± 0.14</td>
<td>37.5 ± 7.3</td>
<td>107.6 ± 37.2</td>
<td>1.05 ± 0.006</td>
<td>0.12 ± 0.07</td>
<td>0.28 ± 0.11</td>
<td>1.28 ± 1.18</td>
</tr>
</tbody>
</table>

4.2.6 Sensitivity of Transition Strain to Shape of Stress-Strain Curves

A sensitivity analysis was conducted to determine if factors that affect the shape of the stress-strain curve will significantly influence the calculation of transition strain.

We used the aforementioned hyperelastic-damage model (Eq. 2-6) to artificially generate
a set of 27 unique stress-strain curves by adjusting the toe region, linear modulus, and damage onset (Figure 15). The toe region was adjusted by inputting λ_m values into the model that corresponded to transition strains of 3, 4, and 5% (small, moderate, and large, respectively); linear modulus was adjusted by inputting modulus values into the model (C_5) of 30, 110, and 190 MPa (low, medium, and high, respectively); and damage onset was adjusted by inputting different μ_{\min} values to have yield strain occur at $5 \pm 1\%$, $12 \pm 2\%$, and $19 \pm 1\%$ (early, average, and late, respectively). The three values for each tested group were based on the average ± two standard deviations from our previous mechanical study on human meniscus91. Since the transition stretch λ_m was a model input (Eq. 4), the actual transition strain was known ($\varepsilon_{\text{trans,actual}}$) for all generated stress-strain data.

4.2.7 Statistics

All statistical analysis was performed using SPSS software (IBM; Armonk, NY, USA, v25). For analyzed data that was not normally distributed (determined using a
Kolmogorov-Smirnov normality test), non-parametric tests were used. For experimental stress-strain curves, the effect of stress deviation threshold (within-subject) and age group (between-subject) on the absolute error of the transition strain calculated by Dots-on-Plots was measured using a repeated measures ANOVA, with Tukey HSD post hoc testing. For synthetically generated stress-strain curves, the effect of input parameters (toe region, linear modulus, damage onset) on the absolute error of the transition strain calculated by Dots-on-Plots was measured using a non-parametric Kruskal-Wallis test. For all statistical tests, significance was set at $p < 0.05$. All means are reported with one standard deviation.

4.3 Results

4.3.1 Web Application

A free web application called Dots-on-Plots was developed (Error! Reference source not found. A), tested, and is now available online (https://ntm.boisestate.edu/dots-on-plots/). This application automatically calculates and exports mechanical properties for soft tissue tensile tests, and allows for multiple files to be input and run simultaneously. Users can upload .xlsx, .csv, or .txt files containing two columns of equal length data, with strain in the first column and stress in the second column. The program generates a stress-strain curve and a table of calculated mechanical properties for each uploaded file (Error! Reference source not found. A). The threshold settings can be adjusted by the user, including the stress deviation threshold used to calculate the
transition point. Results from all analyzed files can be downloaded as one .pdf report and one .csv summary spreadsheet (Error! Reference source not found.B). The report has graphical displays of the results, including derivative plots used to determine the maximum slope of the stress-strain curve. The summary spreadsheet allows for convenient plotting or statistical analysis of mechanical properties (Figure 16 B). The described features of this web application satisfy the design criteria (Table 4).

4.3.2 Optimal Threshold to Calculate Transition Strain

The error of the transition strain calculated by Dots-on-Plots was influenced by the threshold setting (Figure 17; \(p < 0.001 \)), where a stress deviation threshold of 2% was most accurate. For all twenty experiments, the mean transition strain calculated using a 2\% threshold in Dots-on-Plots (0.049 ± 0.007) was within 0.0007 (Figure 17) of the known mean transition strain (0.050 ± 0.006), corresponding to a mean percent error of 1.4\%. For each individual experiment, the mean absolute error when using a 2% threshold in Dots-on-Plots was 0.0007 ± 0.0007.
threshold in Dots-on-Plots was 0.004 ± 0.004, corresponding to a mean absolute percent error of 8.2 ± 8.0%. This absolute error was significantly less than the 10% deviation setting \((p < 0.001)\), but not significantly different than the 1%, 3%, or 5% threshold settings \((p = 0.23; p = 0.98; p = 0.18, \text{ respectively})\) (Figure 17). There were no significant differences in the absolute error of the calculated transition strain due to age group \((p = 0.88)\).

![Graph showing transition strain error (vertical axis) vs. % stress deviation threshold (horizontal axis). The graph includes two lines, one for young and one for older, showing that the lowest error occurs at a 2% threshold.](image)

Figure 17: The lowest error for calculating transition strain with Dots-on-Plots occurred when using a % stress deviation threshold of 2%. *Significantly greater absolute error than other threshold values.*

4.3.3 Sensitivity of Transition Strain to Shape of Stress-Strain Curves

The calculation of transition strain was most sensitive to damage onset (Figure 18; \(p < 0.001\)). Stress-strain curves with a late damage onset (Figure 15, orange curves) had significantly greater mean transition strains that were 2.5 times greater than the known mean (Figure 18, dashed line). The calculation of transition strain was insensitive to
changes in linear modulus ($p = 0.95$), and to changes in the size of the toe region ($p = 0.99$) (Figure 18).

Figure 18: Sensitivity of the transition strain calculated by Dots-on-Plots to factors that alter the shape of the stress-strain curve. The program was most sensitive to curves with a late damage onset. The dashed line is the mean of the known transition strain ($\varepsilon_{\text{actual}}$). *Significant difference in absolute error of calculated transition strain ($p < 0.05$).

4.3.4 Automated Calculation of Mechanical Properties

The tensile mechanical properties of the twenty meniscus specimens (Table 6) were computed in Dots-on-Plots using the optimized threshold setting for the transition point (2% stress deviation from the linear fit), and a rupture point setting at 15% of the ultimate stress (based on our previous experimental work) \(^9^1\). The linear fit used to calculate linear modulus (Figure 13) had an average NRMSE of $0.30 \pm 0.12\%$ ($R^2 = 0.998 \pm 0.001$). The mean and standard deviation values in Table 4 were calculated from the .csv output file generated by Dots-on-Plots (Error! Reference source not found.B). T
The total runtime for Dots-on-Plots to analyze all twenty stress-strain curves was approximately 15 seconds.

Table 6: Tensile mechanical properties of twenty human meniscus specimens that were automatically calculated using Dots-on-Plots (mean ± standard deviation).

<table>
<thead>
<tr>
<th></th>
<th>Transition</th>
<th>Yield</th>
<th>Ultimate</th>
<th>Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain (%)</td>
<td>4.94 ± 0.68</td>
<td>7.08 ± 1.18</td>
<td>15.49 ± 5.23</td>
<td>24.37 ± 8.46</td>
</tr>
<tr>
<td>Stress (MPa)</td>
<td>2.45 ± 1.08</td>
<td>4.66 ± 2.21</td>
<td>11.57 ± 6.63</td>
<td>4.02 ± 5.40</td>
</tr>
<tr>
<td>Energy (J/ml)</td>
<td>0.04 ± 0.02</td>
<td>0.13 ± 0.08</td>
<td>0.97 ± 0.75</td>
<td>1.32 ± 0.87</td>
</tr>
<tr>
<td>Modulus (MPa)</td>
<td></td>
<td></td>
<td>103.9 ± 37.2</td>
<td></td>
</tr>
</tbody>
</table>

4.4 Discussion

The objectives of this work were to provide a free, web based computational tool to calculate the tensile mechanical properties of soft-tissue, and to identify the optimal settings to minimize error when calculating the transition strain, a mechanical property with important implications for soft collagenous tissues. We met our first objective by developing a web application called Dots-on-Plots that is now freely available on the internet at https://ntm.boisestate.edu/dots-on-plots/ (Error! Reference source not found.). We met our second objective by determining that a 2% stress deviation was an optimal threshold for calculating transition strain from a set of uniaxial tensile experiments of human meniscus (Figure 17). We further identified characteristics of stress-strain curves that affect the calculation of the transition strain (Figure 18).

The development of Dots-on-Plots represents an important advance for the standardization of material characterization in biomedical engineering and beyond. To
our knowledge, Dots-on-Plots will be the first web-based application that allows users to upload tensile test data to calculate mechanical properties. Existing software for analyzing stress-strain curves includes downloadable software packages that are tailored towards more common engineering materials, like metals or semiconductors100,101. While these programs are capable of calculating a wide variety of mechanical and thermodynamic properties, they would not be appropriate for handling the analysis of tissues that exhibit non-linear behavior. A recently released downloadable software, MechAnalyze102, has sought to help fill this gap by automating the analysis of compressive force-displacement curves. MechAnalyze calculates the ultimate stresses and strains, as well as compressive moduli for hydrogels or tissues, but is not currently capable of calculating transition, yield, strain energy, or analyzing tensile data. Dots-on-Plots is unique in automating the analysis of tensile data for soft tissue, and importantly, is unique in being a web application. A striking advantage of web applications is they provide on-demand access to a scalable software platform. By eliminating barriers related to downloading and installing a software package on a particular operating system, web-based software becomes easily accessible to a worldwide research community. In the future, Dots-on-Plots can be expanded to analyze other types of stress-strain curves and other types of materials.

The automated calculation of mechanical properties with Dots-on-Plots can help researchers conduct an objective and comprehensive analysis of mechanical behavior. For example, our automated calculation of linear modulus can eliminate the subjectivity inherent in previous methods that defined modulus as the slope between two user-defined points26,103. Our program also automatically calculates strain energy density, which is a
single scalar measure of material resilience and toughness that can be calculated at yield, ultimate, and rupture points. While strain energy density is often reported in biomechanical studies using computational models, it is not a commonly reported property in experimental studies of soft tissue. Automating this calculation could encourage research groups to consistently report this property, thus improving our understanding of tissue material behavior. Our study determined yield strength by finding the point on the stress-strain curve with a maximum positive slope, as this point indicates the beginning of strain-softening (Figure 12). For collagenous tissues, strain softening correlates with the onset of tissue damage in the form of unfolding collagens, though the precise location of this point along the stress-strain curve is debatable. To account for this uncertainty and support program flexibility (Table 4), Dots-on-Plots allows users to adjust the positioning of the yield point from the point of maximum slope. The downloadable files from Dots-on-Plots (PDF and CSV) provide an archivable record of all results and settings that can be readily included as supplementary data for journal articles.

An innovation of this project was the use of a constitutive model to determine the known (actual) transition strain from sets of stress-strain data. This allowed us to quantify the accuracy of Dots-on-Plots relative to a known answer. We selected a hyperelastic-damage model that 1) gave excellent fits to experimental stress-strain curves (Figure 14), and 2) included a material coefficient (λ_m) equivalent to the transition stretch, defined as the intersection of the toe and linear region (Figure 12). This model curve fitting served as a “gold standard” to quantify the error of our algorithm for calculating transition strains. We found that a 2% stress deviation threshold gave the best results, with a mean
absolute error of 0.004 engineering strain for each individual experiment, corresponding
to a mean absolute percent error of 8%. This level of accuracy was independent of stress-
strain curves from young and older groups that exhibited different mechanical properties
Moreover, if we examine the average transition strain for all twenty experiments using
a 2% threshold in Dots-on-Plots (0.049) and compare to the average known transition
strain using finite element parameter optimization (0.050), we see little overall difference
between the methods (1.4% mean percent error). This gives us confidence that our
algorithm for calculating transition strain can provide a fast and reliable alternative to
time-intensive parameter optimization.

To determine whether the calculation of transition strain by Dots-on-Plots was
sensitive to the shape of the input stress-strain curve, we analyzed a manufactured set of
curves with unique shapes (Figure 15). We found that our algorithm was generally robust
when analyzing data with different lengths of toe region and magnitudes of linear
modulus, but was quite sensitive to damage onset (Figure 18). The late damage onset
group gave the largest magnitude of transition strain error due the linear region of the
stress-strain curve having a steady curvature that prematurely triggered the stress
deviation threshold and resulted in large overpredictions of the transition strain. For this
reason, we recommend increasing the threshold to calculate the transition strain when
analyzing stress-strain curves with high yield strains.

The mechanical properties calculated in this study using Dots-on-Plots can be
compared to previous biomechanical meniscus studies. Our calculated transition strain of
4.9% (Table 6; using the optimized 2% stress deviation setting) is close to the overall
mean transition strain of approximately 5.4% that was computed in six previous meniscus
studies using various methods to compute transition strain (Table 3). Our linear modulus value of 104 MPa is similar to the modulus values of 108 MPa and 96 MPa reported for human meniscus by Lechner et al., and Tissakht & Ahmed, respectively \(^7,26\). Importantly, our method for calculating the linear modulus, where we applied a linear fit to stress-strain data near the maximum slope of the stress-strain curve (Figure 13), gave excellent fits to our experimental data in this region, with an average NRMSE of 0.30 ± 0.12%. The goodness of fit persisted across the entirety of the linear region between the transition and yield point, maintaining an average NRMSE of 0.99 ± 0.53%. The close comparison of our calculated linear modulus to prior studies, and the quality and consistency of our linear fits, gives us confidence that our algorithm is accurately determining the linear modulus. It’s also worth noting that the tensile properties computed by Dots-on-Plots are nearly identical to our prior analysis of this same set of tensile stress-strain curves \(^91\). This was expected, since the custom Matlab script used in our prior analysis was eventually converted into the Dots-on-Plots web application. The one exception is that the mean transition strain in the current study (4.9%) is larger than we previously reported (3.6%). The reason for this difference is that we used a 10% stress deviation threshold in our prior study, which we now know is too large a threshold to accurately estimate the transition strain (Figure 17).

This study has several notable limitations. First, Dots-on-Plots was designed to evaluate tensile pull-to-failure data of soft tissue, and may not be appropriate for analyzing other materials and test configurations (e.g. compression, shear). However, in practice, any stress-strain curve with a toe and linear region could be analyzed with Dots-on-Plots. For example, compression tests of intervertebral disc exhibit stress-strain
profiles with a toe and linear region110, and therefore could be analyzed using our software. Second, the optimal threshold value to calculate transition strain was determined from a single material (human lateral meniscus), which may not represent all variations in stress-strain behavior the program may encounter. To account for this, we 1) conducted sensitivity tests to better understand stress-strain shapes that could pose problems to our algorithm, and 2) designed the software to allow users to adjust threshold settings. Third, this study focused on a single set of algorithms to automate the calculation of transition and yield points, and the accuracy of other techniques to detect these points of interest were not quantified 7,12,14,93,111. Nevertheless, the algorithms used in this study were shown to be accurate (Figure 17), and they have proven to be robust in previous work 6,13,91. Finally, the program performs unitless calculations. While this provides program simplicity and user flexibility, it does mean that the accurate calculation of strain energy density is dependent on the user inputting stress and strain measures that are energy conjugates (e.g. engineering stress vs engineering strain, Cauchy stress vs true strain)94.

In conclusion, this study has developed and evaluated a free, web-based program for the calculation of tensile mechanical properties. This program can provide researchers a fast, convenient, and reliable tool to analyze mechanical data, and along with other recent work from our group 13,70, can support the broad adoption of standard test methods for tensile testing of biological tissue.
4.5 Acknowledgements

Financial support kindly provided by the National Science Foundation under grant number 1554353 and the National Institute of Arthritis and Musculoskeletal and Skin Diseases under grant 1R15AR075314-01.
CHAPTER 5: FINITE ELEMENT MODELING OF MENISCAL TEARS USING CONTINUUM DAMAGE MECHANICS AND DIGITAL IMAGE CORRELATION

5.1 Introduction

Meniscal tears are one of the most common musculoskeletal injuries, with more than a half-million occurring in the U.S. each year\(^1\). Once torn, the load attenuating capability of the semi-circular meniscus can become permanently compromised, leading to chronic knee joint pain and instability\(^{112}\). The meniscus also has a diminishing capacity to heal with age\(^{16}\) and surgical interventions that remove damaged meniscal tissue increase the likelihood of osteoarthritis\(^{113,114}\). With the lack of effective treatment options to fully restore meniscus function, the prevention of meniscal tear injuries is of utmost importance. Meniscal tears are classified by their shape relative to the anisotropic collagen type I fiber matrix\(^{18}\), which is primarily aligned circumferentially to resist the large tensile or hoop stresses that develop during joint compression\(^{64}\). Tears can occur alongside the fibers through the ground substance (e.g. horizontal and vertical tears), or can disrupt or break the circumferential fibers (e.g. radial and flap tears). Despite the prevalence and impact of this injury, the physical mechanism of meniscal tears is poorly understood.

Computational tools like finite element (FE) analysis can be utilized to help understand injury mechanisms in soft tissue, as well as inform the development of injury prevention strategies\(^{9,115}\). While many three-dimensional FE models of soft tissue structures in the knee and other joints have been created to analyze stresses and strains

\(^3\) Reprinted from *Scientific Reports* Nesbitt DQ, Burrue, DE, Henderson, BS, Lujan TJ. “Finite Element Modeling of Meniscal Tears Using Continuum Damage Mechanics and Digital Image Correlation.” 2023 March 10; 13(1).\(^{196}\)
during normal and pathological activities, FE models have not been developed to investigate meniscal injury mechanisms. One way that FE can be effectively used to simulate meniscal tears is by using Continuum Damage Mechanics (CDM) to model material weakening and eventual loss of load bearing capacity due to the onset and propagation of damage. Material damage is theorized to occur due to the breaking of chemical bonds leading to the formation of microscopic voids. This damage will irreversibly reduce the material’s ability to resist deformation until material separation occurs (tissue tearing). Several studies have used CDM to successfully simulate the stress-softening behavior observed in stress-strain curves of soft tissue under tension, but no previous soft tissue study has used FE models to analyze the localized failure behavior in the tear region predicted by CDM.

A critical step in computational research is to perform a validation study to determine whether the model is able to simulate independent experimental data not used to calibrate (fit) the model parameters. A validation technique useful for modeling mechanical failure is to compare FE predicted surface strains in the tear region to full field strain maps experimentally measured using digital image correlation (DIC). This approach is advantageous as it allows for the calibration and validation of a computational model using the same experimental data set; first by tuning model parameters to the grip-to-grip stress-strain behavior, then validating the model by comparing the localized surface strains predicted by the model and measured experimentally. This validation method has been used in FE models of bone fracture, but has not previously been applied to soft tissue. However, a study by Von Forell and Bowden did make a qualitative comparison between FE and DIC shear strains in
tendon, demonstrating that CDM has potential to predict observed deformations in the tear region when using appropriate formulations to trigger and evolve damage128.

Similarly, findings from our previous experimental work that used DIC with high-speed video to characterize tensile failures in human meniscus91 can inform a constitutive framework for a physiological damage model. We found that when loaded along the fiber network (longitudinal), failures followed the plane of maximum shear strain. This suggests that macroscale fiber failures are driven by distortion energy, and therefore von Mises stress may be an appropriate damage criteria46,91. When loaded normal to the fibers (transverse), failures occurred along the plane of maximum normal strain. This suggests that macroscale ground substance failures are driven by first principal strain91, and maximum normal strain may be an appropriate damage criterion. Further, our previous DIC measurements of localized strains in the tear region at precise points on the stress-strain curve can be used to validate whether CDM is capable of recreating the physiological strains occurring during meniscal tears.

The objective of this work was to determine if CDM can predict the anisotropic, macroscale failure behavior of human meniscal tissue under tensile loading. We hypothesize that a transversely isotropic hyperelastic damage model using von Mises stress damage criteria for fiber failures, and maximum normal strain damage criteria for ground substance failures, will be able to reproduce the stress-strain profile of quasi-static tensile tests and planar strain in the tear region.
5.2 Methods

5.2.1 Overview

Finite element analysis was used with CDM to simulate uniaxial tensile experiments of human meniscus. We analyzed two loading configurations (longitudinal, transverse) and two CDM damage criterion (von Mises stress, maximum normal strain). Model parameters were tuned to experimental stress-strain curves and quality-of-fit was measured. The tissue strains within the tear region of interest (ROI) were then compared to those measured experimentally by DIC in our previous work91 to determine the accuracy of the model in predicting meniscal tears.

5.2.2 Tensile Tests using DIC

An in-depth description of the experimental methods for the uniaxial tensile tests can be found in our previous experimental paper91. In this prior study, human menisci were harvested from cadaveric knees that were obtained through an accredited tissue bank (Science Care Inc., Phoenix, AZ), and all experimental protocols were approved by the Institutional Biosafety Committee at Boise State University. In brief, 40 monotonic uniaxial tensile tests (loading rate = 1\% strain/s) were conducting using specimens from five young human cadaveric menisci (age = 33 ± 5 years; BMI = 21 ± 1) and five older human cadaveric menisci (age = 72 ± 7 years; BMI = 26 ± 5). All knees had no medical history of injury or visible signs of damage or degeneration. Thin layers of meniscus were cut from both the anterior and posterior region13, and punched into dumbbell shaped coupons70 either along the preferred fiber direction (longitudinal) or normal to the preferred fiber direction (transverse). Specimens were speckled for DIC analysis, preloaded, mechanically preconditioned, and then preloaded again prior to being pulled...
to failure in tension. A high-speed camera and DIC software were used to measure planar strains from the start of testing to tissue separation (failure). Planar tissue strains were calculated in an ROI that was centered along the tear line of action and spanned the width and thickness of the coupon with a vertical height of 2 mm. These ROI strains were calculated at ultimate tensile stress, where the tissue begins losing load bearing capacity. Axial force and grip displacements were used to calculate the overall stress-strain curve for each specimen.

5.2.3 Damage Model

The selected constitutive model was a transversely isotropic hyperelastic129 damage model available in FEBio95, where the material’s strain energy density Ψ is uncoupled into hydrostatic and deviatoric components of the ground substance F_1 and fiber matrix F_2:

$$\Psi = F_1(\tilde{I}_1, \tilde{I}_2) + F_2(\tilde{\lambda}) + \frac{K}{2}(\ln(J))^2$$

(7)

Here \tilde{I}_1 and \tilde{I}_2 are the first and second invariants of the deviatoric portion of the right Cauchy Green deformation tensor, $\tilde{\lambda}$ is the deviatoric part of stretch along the fiber direction, J is the volume change ratio, and K is bulk modulus, which was set to 1000 to enforce near-incompressibility96. Following previous research in ligament modeling130,131, we used a Veronda-Westmann formulation for the ground substance (Eq. 8),39,40 where strain energy is dependent on two material coefficients (C_1, C_2). A piecewise exponential function was used for the fiber network (Eq. 9), where the transition fiber stretch λ_m defines the transition between the toe and linear region.

$$F_1 = C_1(e^{C_2(\tilde{I}_1 - 3)} - 1) - \frac{C_1C_2}{2}(\tilde{I}_2 - 3)$$

(8)
When the fiber stretch is below λ_m, the function is dependent on two material coefficients that effectively control fiber straightening (C_3, C_4). At a fiber stretch above λ_m, the fibers take on an approximately linear character, and are dependent on fiber modulus C_5, where C_6 ensures that stress is continuous at the transition stretch. The calculated strain energy density from the hyperelastic model is converted to an effective undamaged Cauchy stress σ_o^{95}.

In order to model stress softening behavior, a quintic polynomial cumulative distribution function was implemented to apply damage evolution.

$$D(\Xi) = \begin{cases} 0 & \Xi \leq \mu_{\text{min}} \\ x^3(6x^2 - 15x + 10) & \mu_{\text{min}} < \Xi < \mu_{\text{max}} , x = \frac{\Xi - \mu_{\text{min}}}{\mu_{\text{max}} - \mu_{\text{min}}} \\ D_{\text{max}} & \Xi \geq \mu_{\text{max}} \end{cases}$$ \hspace{1cm} (10)

Here D ranges from zero to a maximum damage (D_{max}), controlled by the limits μ_{min} and μ_{max}. Damage D is a function of the selected damage criteria (Ξ): von Mises stress (Eq. 11) or maximum normal Lagrange strain (Eq. 12).

$$\Xi = \sqrt{\frac{3}{2} \bar{\sigma}_o \cdot \bar{\sigma}_o}$$ \hspace{1cm} (11)

$$\Xi = \text{Max} (E_1, E_2, E_3)$$ \hspace{1cm} (12)

where $\bar{\sigma}_o$ is the deviatoric part of undamaged stress σ_o, and E_1, E_2, and E_3 are the principal values of Lagrange strain E. This damage was applied to both the fiber and
ground substance terms (Eq. 8-9). Finally, Cauchy stress σ was calculated by scaling the effective undamaged stress tensor σ_0 with scalar damage D.

$$\sigma = (1 - D)\sigma_0$$ \hspace{1cm} (13)

5.2.4 Finite Element Mesh and Coupon Geometry

Computational effort was reduced by modeling $1/8$th of dumbbell shaped coupons along three planes of symmetry (Figure 19). Model dimensions reflected the average coupon dimensions measured experimentally for longitudinal (Figure 19a) and transverse (Figure 19b) specimens91. For boundary conditions, the grip was modeled as a rigid body with an irrotational sliding elastic tension contact at the top of the coupon, while the axis
normal to each plane of symmetry was fixed.

Figure 19: Coupon dimensions and mesh for all a) longitudinal and b) transverse models.

The three-dimensional models were meshed with 10 x 8 x 2 linear tetrahedral elements, then refined by four-fold in an approximately 2.5 mm tall region spanning the width and thickness of the coupon where the highest strain concentrations occurred prior to failure. This localized refinement was done to help reduce the premature model termination we observed in coarse meshes due to damage localization. A mesh convergence study was conducted to determine the effect of mesh refinement on tensile strain along the loading axis (E_{yy}) when a grip-to-grip stretch of 1.20 was applied. Tensile strain was selected as the criteria for mesh convergence since strain is the outcome measure we’re comparing to our prior experimental results. The mesh convergence
study found that refinement increased the tensile strain (E_{yy}; averaged in the ROI), although this increase exhibited a plateauing trend (Figure 20a). For this study, we selected a mesh size (16,144 elements; Figure 20b) that was computationally efficient (~1 min runtime) and gave strain results near the projected curve plateau (Figure 20a). Linear tetrahedral elements were selected for ease of mesh generation compared to more complex elements132.
Figure 20: Mesh convergence study. a) Increasing mesh size resulted in longer run times and greater tensile strain (E_{yy}) inside the tear region that gradually plateaued. b) Strain maps (E_{yy}) of different mesh sizes. This study used 16,144 elements.

5.2.5 Parameter Optimization

Tensile tests were simulated by displacing the rigid body plate by the specimen specific grip-to-grip stretch, and comparing the axial force measured at the rigid body to
the experimental axial force measured at the grip. In total, there were nine parameters to fit in the hyperelastic damage model: two ground substance parameters, four fiber parameters, and three damage parameters. The two parameters of the elastic ground substance (Eq. 9) were first fit to stress-strain curves of transverse specimens up to the yield point (point of maximum slope determined with Dots-on-Plots133) using the Levenberg-Marquardt parameter optimization module in FEBio95,96. The four parameters of the elastic fiber network were then fit to the stress-strain curves of longitudinal specimens up to the yield point, also using FEBio’s parameter optimization module. For these optimizations, initial guesses for C_1, C_5, and λ_m were based on our previously measured mechanical properties91, with optimization limits of more than ± two standard deviations. The initial guess for C_2 was set to one to enforce near incompressibility130, and the initial guesses for the remaining elastic parameters were similar to a prior study130 with limits of approximately double and one-half the initial guess, respectively. When optimization returned a parameter extremum, that extremum was expanded by 30% and optimization was reperformed. This process was repeated until the optimization returned parameters that were not extrema. The average values for the fitted elastic parameters were $C_1 = 0.78 \pm 0.66$ MPa, $C_2 = 1.20 \pm 1.8$, $C_3 = 0.43 \pm 0.23$ MPa, $C_4 = 40.83 \pm 9.95$, $C_5 = 119.63 \pm 50.07$ MPa, and $\lambda_m = 1.048 \pm 0.007$.

Once the elastic parameters were optimized, the three damage parameters were selected to best fit the stress-strain curve between the yield point and ultimate tensile strength (UTS). Automated optimization of damage parameters was not feasible, as the optimization module would often select a combination of parameters that resulted in early model termination and thereby caused the optimization routine to halt. Instead, model
damage parameters were manually fit with specific success criteria, starting with initial guesses for μ_{min} and μ_{max} at yield strain and ultimate strain, respectfully. Models were considered successfully fit once model predicted ultimate stress and strain were within 0.2 MPa and 3% strain of the experimental ultimate stress and strain for longitudinal models, respectively; and 0.03 MPa and 3% strain for transverse models, respectively. A successful fit also required a post-UTS reduction in stress of at least 1% and 0.5% from the ultimate stress for the longitudinal and transverse models, respectively. The value of D_{max} was kept below 1 (no load carrying capacity when $D = 1$) to avoid model convergence issues that have been previously described128,134. Different damage parameters were used for the longitudinal and transverse specimens (Table 7), as damage onset of the ground substance occurs at much greater strains then fiber damage (Figure 21).

Table 7: Damage parameters for models loaded longitudinal or transverse to the fiber direction.

<table>
<thead>
<tr>
<th></th>
<th>Von Mises Stress Criteria</th>
<th>Max Normal Strain Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ_{min}</td>
<td>μ_{max}</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>8.83 ± 9.26</td>
<td>43.66 ± 30.17</td>
</tr>
<tr>
<td>Transverse</td>
<td>0.19 ± 0.26</td>
<td>2.20 ± 1.98</td>
</tr>
</tbody>
</table>
5.2.6 Model Evaluation and Validation

The failure ROI for the model spanned the vertical coupon edges and was determined as one element above and below the line-of-action of greatest damage concentration. This resulted in ROI height spans of 0.2 mm for all transverse models, 0.24 mm for longitudinal models with the von Mises criteria, and 0.3 mm for longitudinal models with the maximum normal strain criteria. These ROI heights are comparable to the 0.2 mm ROI heights from the DIC experiment\(^1\) (Figure 22). The location and shape of this ROI was the same for all models within each group. Average normal and shear Lagrange strains \((E_{yy}, E_{xx}, E_{xy})\), principal strains \((E_1, E_2)\), and maximum shear strain \((\gamma_{max})\), of the element surfaces in the ROI were output to a logfile, averaged, and compared to the planar Lagrange strains measured by DIC during the uniaxial tensile experiment (Figure 22a)\(^1\).
Figure 22: Normal strains (E_{yy}) from experiments and FE models for longitudinal and transverse specimens. A) The experimental tear pattern and strains in the tear region (ROI) measured with DIC were compared to model predictions using b) von Mises stress damage criteria, and c) maximum normal strain damage criteria. ROI are shown above by the dashed black box.

5.2.7 Statistics

Quality of fit between the experimental and model stress-strain curves was determined by calculating the NRMSE (normalized to mean stress) and coefficient of determination (R^2). The effect of damage criteria on quality of fit was determined using a one-way ANOVA. Differences in ultimate stress, ultimate strain, and average Lagrange strains within the tear region at UTS between the models and experiment were
determined with a repeated measures ANOVA. All significance in this study was set at $p < 0.05$.

5.3 Results

5.3.1 Model Fit to Stress-Strain Curves

Finite element models were successfully fit to experimental stress-strain curves (Figure 23). Longitudinal models utilizing the von Mises stress damage criteria had significantly better quality of fits to experimental stress-strain curves relative to the maximum normal strain damage criteria ($p = 0.04$), with average NRMSEs of $2.10 \pm 1.25\%$ ($R^2 = 0.999 \pm 0.002$) and $2.92 \pm 1.23\%$ ($R^2 = 0.998 \pm 0.002$), respectively (Figure 23a, b). Transverse models using the maximum normal strain damage criteria gave better fits overall (Figure 23d), but were not significantly different than the von Mises stress damage criteria (Figure 23c) ($p = 0.07$), with average NRMSEs of $9.89 \pm 5.83\%$ ($R^2 = 0.96 \pm 0.05$) and $13.40 \pm 6.09\%$ ($R^2 = 0.93 \pm 0.06$), respectively. No significant differences existed in ultimate stress or ultimate strain between the models and experiments, for either loading orientation ($p > 0.99$) (Table 8).
Figure 23: Representative model fits to experimental grip-to-grip force–displacement curves (we converted grip displacement to tensile stretch). (a) When modeling the fiber response (longitudinal), von Mises stress damage criterion had better fits compared to the (b) maximum normal strain damage criterion. (c) However, von Mises stress damage criterion had slightly poorer quality of fits compared to (d) maximum normal strain damage criterion when modeling the ground substance (transverse).
Table 8: Comparison of mechanical behavior between damage models and experiments (sample size for each cell = 20). All strain values are reported as Lagrange strain.

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal</th>
<th>Transverse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experiment</td>
<td>Model (von Mises stress)</td>
</tr>
<tr>
<td>Ultimate Tensile Strength (MPa)</td>
<td>2.25 ± 1.42</td>
<td>2.25 ± 1.41</td>
</tr>
<tr>
<td>Ultimate Tensile Stretch (grip-to-grip)</td>
<td>1.155 ± 0.052</td>
<td>1.153 ± 0.053</td>
</tr>
<tr>
<td>Normal Strain E_{yy} (tear region at UTS)</td>
<td>0.29 ± 0.14</td>
<td>0.26 ± 0.11</td>
</tr>
<tr>
<td>Normal Strain E_{xx} (tear region at UTS)</td>
<td>0.01 ± 0.16</td>
<td>-0.09 ± 0.07*</td>
</tr>
<tr>
<td>Shear Strain E_{xy} (tear region at UTS)</td>
<td>0.20 ± 0.10</td>
<td>0.14 ± 0.12</td>
</tr>
<tr>
<td>1st Principle Strain (tear region at UTS)</td>
<td>0.42 ± 0.14</td>
<td>0.31 ± 0.16*</td>
</tr>
<tr>
<td>2nd Principle Strain (tear region at UTS)</td>
<td>-0.13 ± 0.10</td>
<td>-0.14 ± 0.12</td>
</tr>
<tr>
<td>Max Shear Strain (tear region at UTS)</td>
<td>0.28 ± 0.10</td>
<td>0.23 ± 0.13</td>
</tr>
</tbody>
</table>

* Significantly lower than experimental data within either Longitudinal or Transverse group ($p < 0.001$).

5.3.2 Tear Region Strain

For the longitudinal group, normal axial strains (E_{yy}) in the tear region were not significantly different than experimentally measured strains for either the von Mises stress or maximum normal strain damage criteria ($p = 0.72$, $p = 0.87$, respectively) (Figure 24a, Table 8). The shear strains (E_{xy}) predicted by the longitudinal models using the von Mises stress damage criteria were approximately 30% lower than experiments ($p = 0.16$), and were approximately 50% lower than experiments when using the maximum normal strain damage criteria ($p = 0.003$) (Figure 24b, Table 8). For the transverse group, models using both damage criteria significantly underpredicted the experimental normal axial strains and shear strains ($p < 0.001$) (Figure 24c, d; Table 8). The contraction of the specimens within the tear region (E_{xx}) for all models was significantly less than experiments for the longitudinal group ($p < 0.05$), but not for the transverse group ($p >$
0.50).

Figure 24: Comparison of strains in the tear region (ROI) between experiments measured using DIC and FE models generated with von Mises stress or maximum normal strain damage criterion. (a) Both damage criteria gave close predictions to the normal axial strains for the longitudinal loading condition, but (b) the maximum normal strain damage criterion significantly underpredicted the shear strains. (c) When loading transverse to the fiber direction, both models significantly underpredicted normal axial strains and (d) shear strains. *Significantly less than experimentally measured strains (p < 0.001). The ‘x’ in the box plot = average strain.

For longitudinal tests, first principal strains predicted by both the von Mises stress damage criteria and the maximum normal strain damage criteria were significantly lower than the experimental strains ($p = 0.042$, $p = 0.013$, respectively) (Figure 25a). The maximum shear strains predicted by both damage criteria were also less than
experimental strains, but only maximum normal strain damage criteria were significantly less ($p = 0.046$) (Figure 25b). The second principal strains predicted by both damage criteria were similar to experimental strains ($p > 0.5$; Table 8). For transverse tests, first and second principal strains, as well as max shear strains predicted by both failure criterion were significantly lower than experimental strains ($p < 0.001$) (Figure 25c, d; Table 8).
Figure 25: Comparison of principal strains in the tear region (ROI) between experiments measured using DIC and FE models generated with von Mises stress or maximum normal strain damage criterion. (a) Both damage criteria significantly underpredicted the first principal strains for the longitudinal loading condition, but (b) only the maximum normal strain damage criterion significantly underpredicted the max shear strains. (c) When loading transverse to the fiber direction, both models significantly underpredicted first principal strains and (d) max shear strains. *Significantly less than experimentally measured strains (p < 0.05). The ‘x’ in the box plot = average strain.

For transverse models, both damage criterion predicted tears to propagate straight across the coupon at a 0 degree angle (i.e. perpendicular to the loading axis). For longitudinal models, the maximum normal strain damage criteria similarly predicted a 0 degree tear angle, however, longitudinal models using the von Mises stress damage criteria had tears initiate near the fillet an propagate at approximately 70 degrees,
measured perpendicular to the loading axis (an angle of 90 degrees would be parallel to
the loading axis), before changing angle at the midline of the coupon, where it continued
propagating to the opposite boundary at 0 degrees. The average damage in these regions
at UTS for longitudinal models was 0.26 ± 0.10 and 0.28 ± 0.16 for the von Mises and
maximum normal strain damage criteria, respectively. For transverse models, the average
damage was 0.59 ± 0.17 for both damage criteria.

5.4 Discussion

The objective of this study was to determine if finite element models using
hyperelastic damage constitutive equations could simulate tears in the fibers and ground
substance of human meniscus. We found that von Mises stress and maximum normal
strain damage criteria were able to simulate the experimental anisotropic stress-strain
curves (Figure 23), but in general, both damage criteria underpredicted the strains in the
tear region. The one exception was that both damage criteria were able to reasonably
predict normal strains along the loading axis for longitudinal tests. Also, the von Mises
stress damage criteria was uniquely able to approximate the distinct tear angles for both
fiber and ground substance failures. Overall, our findings partially supported our
hypothesis and demonstrate limitations in using continuum level damage mechanics to
simulate failure in soft fibrous tissue.

The excellent fits of our models to experimental stress-strain curves verified that
the selected constitutive formulations were appropriate for modeling the grip-to-grip
mechanical failure behavior of human meniscus. When loading the fibers (longitudinal
tests), the piecewise strain energy function (Eq. 9) was able to fit the non-linear toe
region and linear region of the experimental data, and the damage formulation was able
to fit the experimental stress-softening region where collagen damage accumulates. As a result, our longitudinal models had an average R^2 value (> 0.99) better than other CDM modeling papers we surveyed for soft tissue. When loading the ground substance (transverse tests), our model fits to experiments had average R^2 values (> 0.93) that were consistent with prior soft tissue studies. Interestingly, many of the transverse experiments displayed localized stress peaks prior to UTS (Figure 23c, d), possibly indicating the sporadic failure of tie fiber groups, which run normal to the circumferential direction, and are stiffer and less extensible than the ground substance. We were able to recreate these localized peaks in our FE model by setting an upper limit to ground substance damage via D_{max} (Eq. 10). By limiting the maximum amount of damage, elements subjected to high strain concentrations that experience rapid damage would stabilize once maximum damage was reached, and would eventually support greater loads as the tissue continued to stretch. The ability of our model to match this experimental behavior supports the use of CDM for modeling ground substance failure, rather than fracture mechanics. This conclusion supports work by Peloquin et al., who conducted experiments with cracked meniscus tissue and concluded that fracture mechanics was not an appropriate failure analysis method for meniscal tissue.

The experimental validation of local strains in the longitudinal models exposed strengths and weaknesses of using CDM to model fiber failures. We were initially encouraged that both damage criteria could fairly accurately predict normal strains along the loading axis for longitudinal tests (Figure 24a), but when we examined the principal strains (Figure 25a), both damage criteria underpredicted the 1st principal strain in the tear region by approximately 30%. For comparison, previous studies that used DIC to validate...
an FE model of relatively hard materials (e.g. bone, steel) reported errors ranging from 7-24%122–125,127,139, therefore our error is larger than desired. Our error is partially explained by the FE model underpredicting the E_{xy} shear strains that occur on the surface normal to the y-axis (Figure 24b). The larger E_{xy} shear strains in the experiments likely develop from collagen fiber sliding76 that could potentially be simulated with a micromechanics model140. Since our model underpredicted 1st principal strain, we would have expected the 2nd principal strain to similarly be underpredicted, but on the contrary, the model predicted 2nd principal strains were a good match to experiments (Table 8). This disparity between principal strains indicates that our longitudinal models overpredicted the amount of lateral contraction during axial elongation, and that incompressibility is a poor physiological assumption when modeling the necking behavior that occurs in the tear region of fiber failures.

The experimental validation of strains in the transverse models demonstrated that a hyperelastic damage formulation is unable to capture the considerable extensibility of the ground substance in the tear region. In experiments, the ground substance elongated by more than 2.5 times its original length at UTS, while in the models, the ground substance extended to only approximately 1.75 times its original length at UTS (Table 8). This difference can be explained by discrepancies in the strain concentrations between the transverse experiments and models. The region of high strain concentration in the transverse experiments was a tight band of approximately 0.2 mm that propagated across the specimen surface, while the region of high concentration in the transverse models was a broad band of approximately 1.4 mm (Figure 22b, c). Our mesh convergence study shows that further mesh refinement in the tear region would result in only a nominal
improvement in predicted strains and would not resolve this limitation (Figure 20a).

Importantly, regularization methods commonly used to help FE damage models converge
would likely only exacerbate this strain discrepancy, as these methods spread out
localized deformation to prevent premature model termination. A potential solution
to simulate a tighter band of stress concentrations with CDM is to use region-dependent
material parameters that effectively model localized defects within the tissue.

A potential solution to simulate a tighter band of stress concentrations with CDM is to use region-dependent
material parameters that effectively model localized defects within the tissue.

We evaluated two damage criteria in this study and found that von Mises stress
offers two distinct advantages for modeling failure in soft tissue. First, longitudinal
models that used von Mises stress damage criteria had slightly better overall predictions
of first principal strain and maximum shear strain compared to models using maximum
normal strain (Figure 25a, b, Table 8), although these differences were not significant.
Second, models using von Mises stress damage criteria were better able to recreate the
experimental tear angles. Longitudinal models with von Mises damage criteria had tears
that initiated at the narrow section of the coupon fillet and propagated at a steep oblique
angle until changing directions to propagate perpendicular to the loading axis (Figure
22b). This tear pattern is indicative of a classic cup-and-cone failure pattern seen in
ductile materials, and was consistent with a subset of specimens in our previous
experimental work that exhibited bimodal tear angles, characterized by steep initial tear
angles that similarly “flattened” or changed direction near the coupon center axis. The
von Mises stress damage criteria was also able to model the “flat” tear angle of the
transverse specimens near the coupon midsubstance where necking minimizes the cross-
sectional area, thus maximizing first principal stress. Mathematically, since the second and third
principal stresses are negligible near the midsubstance (simple tension), the von Mises
equation simplifies to a maximum normal stress damage criteria and the tear would propagate perpendicular to the loading axis. It is therefore possible to use von Mises stress damage criteria to model the anisotropic tear patterns of meniscus, and other transversely isotropic soft fibrous tissues (e.g. ligament, tendon), however, different damage parameters would need to be used for the fibers and ground substance (Table 7). Not surprisingly, the maximum normal strain damage criteria simulated tears perpendicular to the loading axis near the midsubstance in both longitudinal and transverse groups (Figure 22c), as this region experiences the most necking and axial strain. Maximum normal strain damage criteria would thereby be an appropriate model to predict tear patterns in the ground substance, but not the fibers.

This project was innovative by being the first to quantify whether a damage model can accurately predict the deformation in the tear region of soft tissue. Other soft tissue damage models have simulated the physiological deformation of the overall structure109,145, but not the localized deformation within the tear region. By comparing the model predicted surface strains and tear angles to the experimentally measured ones, we were able to determine whether the mathematical mechanisms driving model predicted failure are physiologically relevant. To our knowledge, this is also the first FE study of human meniscus to successfully simulate stress-strain curves to UTS (Figure 23), as previous FE models of the meniscus disregarded any failure or softening behavior37–39. These novel contributions help advance scientific efforts to develop and validate computational tools that can reliably simulate mechanical failure in connective tissue, and thereby allow clinicians and researchers to visualize model outcomes with direct clinical
significance (i.e. tissue tears) with a goal of designing new treatment and prevention strategies for meniscal injuries and other musculoskeletal disorders.

This work had notable limitations. First, we were unable to utilize FEBio’s parameter optimization plug-in to calibrate the damage parameters to the experimental stress-strain curves, as any combination of parameters that resulted in early model termination would halt the optimization routine. We instead manually fit these damage parameters to achieve a set of objective success criteria, and this resulted in stress-strain curves with excellent fits (Figure 23, Table 8). Second, this study used a large number of linear tetrahedral elements and the use of other element types (e.g. quadratic tetrahedral, linear or quadratic hexahedral) may result in different strain calculations146. Next, our finite element models only investigated tears that develop under tensile loading, and did not consider the effects of compression on meniscus failure. The models also did not consider variable loading rates, which would require the implementation of a viscoelastic constitutive framework. Lastly, our model validation study used two-dimensional surface strains and may have missed important phenomena in out-of-plane strains and tear patterns. However, we did account for this limitation by only comparing the two-dimensional surface strains and tear patterns of our finite element model to the experimental results.

In conclusion, this study has quantified the ability of continuum damage FE models to predict tearing in meniscal tissue subjected to tensile loads. This work provides a benchmark for the ongoing development and validation of computational models that accurately simulate tears in soft fibrous tissues.
5.5 Acknowledgements

Financial support kindly provided by the National Science Foundation under award number 1554353 and the National Institute of General Medical Sciences under award number P20GM109095.
CHAPTER 6: Age-Dependent Changes in Collagen Crosslinks Weaken the Mechanical Toughness of Human Meniscus

6.1 Introduction

Injuries to the human meniscus are common, and have been shown to lead to the early onset of knee osteoarthritis (OA)1. Over a half-million meniscal surgeries are performed annually in the U.S. to address joint pain and instability1, and as we age, the menisci become more susceptible to injury19,63 and less amenable to repair techniques147. This increase in injury incidence is likely due to changes in the mechanical integrity of the meniscus as we age, such as reduced elasticity148, or a loss of capacity to absorb energy (toughness) during joint compression91. The age-related changes to tissue composition and organization that cause these functional deficits need to be determined to better understand knee pathophysiology and ultimately help design interventions to prevent or delay these prevalent injuries.

The mechanical integrity of the meniscus is provided by groups of structural proteins that may increase or decrease as we age. In meniscus, the proteins chiefly responsible for providing strength are collagens, with collagen I (Col1) being the most abundant. Coll1 forms a durable fiber network that is primarily aligned circumferentially along the semi-circular shape of the meniscus (Figure 26) to resist the large tensile or hoop stresses that develop during joint compression64. The second most abundant protein is collagen II (Col2), which forms smaller, more randomly aligned fibrils that interact with proteoglycans149 to resist compressive loading via osmotic pressure23. Other collagens that perform minor roles in the structure of the extracellular matrix (ECM) are also present in lesser quantities150–152. Non-collagenous proteins also play important roles
in the structural integrity of the meniscus, including decorin and biglycan which help to form and bind other ECM proteins to the collagen network150–152. In addition, prolargin assists in binding proteoglycans to the ECM153, and elastin, which is around 1000 times more flexible than collagens, assists in resilience and elasticity of the tissue154.

The effect of aging on the structural proteins in meniscus is poorly understood. Two prior studies noted an increase of decorin with aging155,156, and others measured age-related changes to the organization of the fiber matrix157,158, as well as surface fraying and the development of calcified regions68. Another group of studies primarily focused on degeneration and OA, and found that meniscal strength was significantly reduced in joints with advanced degeneration and OA25,157,159. However, no study to our knowledge has comprehensively analyzed age-related changes in the molecular composition of healthy meniscus. Moreover, the structural origins for the age-related loss in mechanical toughness observed in healthy meniscal tissue91 is unknown.

A likely molecular contributor to age-related changes in mechanical behavior are collagen crosslinks. Crosslinks can form normally as the collagen matures160, providing strength or assisting with normal mechanical function. Abnormal crosslinks can also accumulate over time as advanced glycation end-products (AGE’s), in which glucose spontaneously condenses with the lysyl and hydroxylysyl side chains of collagen, forming crosslinks between the collagen triple helices (Figure 26)161. Senescent
collagen crosslinking by AGE’s have been observed in human meniscus55, and have shown a particularly pronounced effect in other tissues, as the induction of AGE’s increase tissue stiffness56,57,162–165. The increase of AGE’s has also altered mechanical properties in other fibrous soft tissues, such as reduced viscoelasticity in tendon76, accelerated osteoarthritic degeneration in cartilage58, and reduced elasticity in intervertebral disks165. This suggests that these AGE molecules can have a negative functional consequence to the tissues in which they accumulate. The objective of this work was to quantify changes in the structural proteins and collagen crosslinks of meniscus due to aging, as well as to determine the relationship between these molecules and tissue toughness. We hypothesize that a strong negative correlation would exist between the quantity of AGE collagen crosslinks and tissue toughness.

6.2 Methods

6.2.1 Overview

We determined proteomic profiles and collagen crosslinks within young and older populations of human lateral menisci via two mass spectrometry methods, and total elastin was measured by a colorimetric assay. Age-related changes in protein quantity were measured, and changes in collagen crosslinking were correlated to changes in tensile mechanical properties measured within the same set of tissue.
6.2.2 Specimen Preparation

A total of 40 meniscus specimens were prepared from the lateral menisci of 10 unpaired fresh frozen human cadaveric knee joints (femur to tibia), with five knees from donors under the age of 40 (age = 33 ± 5 years; 3 male and 2 female), and five knees from donors over the age of 65 (age = 72 ± 7 years; 4 male and 1 female). No medical history of injury and no visual signs of meniscus damage or degeneration was associated with donor knees. All experimental protocols were approved by the Institutional Biosafety Committee at Boise State University. Meniscus specimens were layered from the anterior and posterior regions of the meniscus and then punched into dumbbell-shaped coupons for mechanical testing either parallel (longitudinal) or perpendicular (transverse) to the circumferential fiber direction. The tissue adjacent to the dumbbell-shaped coupons was collected for proteomic and crosslink analysis (Figure 27). Dry tissue was carefully weighed using a high-precision benchtop scale (accuracy ± 0.01 mg; AT201, Mettler Toledo, Columbus, OH, USA) before being macerated, separated, and labeled for biochemical analysis.

Figure 27. Specimen Preparation. Meniscus layers (n=40) were punched into three parts. The dumbbell-shaped part was used for mechanical testing and elastin analysis, while the adjacent parts were used to analyze proteomics and collagen crosslinks.
6.2.3 Mechanical Testing

An in-depth description of the mechanical testing method can be found in our previous study\(^{91}\). In brief, monotonic uniaxial tensile tests to failure were performed on all 40 dumbbell-shaped coupons (Figure 27). The longitudinal and transverse groups allowed us to capture the anisotropic nature of the human meniscus by measuring the circumferential fiber response and the ground substance response, respectively. Specimens were preloaded, mechanically preconditioned, and then preloaded again prior to being pulled to failure in tension at 1% strain/second. Specimens were kept hydrated using a 0.9% saline solution spray, and filmed during the pull to failure using a high-speed camera to enable digital image correlation (DIC). The DIC was used to measure the localized engineering strains in a 0.2 mm ROI along the tear line. Axial force and grip displacements were also used to calculate the stress-strain curve for each specimen. This curve was analyzed to calculate the tensile toughness (area under stress-strain curve up to the ultimate tensile stress) using a custom program called “Dots-on-Plots”\(^{133}\).

6.2.4 Quantitative Proteomics (ECM Structural Proteins)

Quantitative proteomics were performed in collaboration with the University of Arkansas for Medical Sciences under the IDeA National Resource for Quantitative Proteomics program\(^{166}\). Meniscal tissue (10.3 ± 0.5 mg, n=40) was minced and homogenized with a bead mill in 300 μL of RIPA buffer along with HALT protease and phosphatase inhibitor. Samples were placed on ice in between bead mill pulses to prevent excessive heat production. Samples were then agitated on a shaker at 4 °C for 30 minutes before a 24-hour incubation at 4 °C. This process was repeated two more times, skipping
the incubation on the third cycle to be centrifuged at 12,000 x G for 10 minutes at 4 °C. The supernatant was removed and the sample was centrifuged again to separate more of the supernatant. This supernatant was vortexed to ensure protein solution homogeneity before quantifying the protein concentration and quality with a BCA assay kit and SDS-PAGE electrophoresis. Fifty μg of protein for each sample was then shipped on dry ice from Boise, Idaho to Little Rock, Arkansas, where a 20-sample data independent acquisition quantitative proteomic platform (Orbitrap Fusion Lumos, Thermo Fisher Scientific, Waltham, MA, USA) was used to characterize ECM protein makeup of each sample166. From this proteomics analysis, log₂ fold changes of protein quantity were compared between age groups, and we narrowed down to nine extracellular proteins that have been associated with mechanical function (Col1, Col2, Col4, Col6, Col8, decorin, prolargin, biglycan, fibromodulin)23,150,153,167–172 (Figure 28). The mass spectrometry proteomics dataset used in this study has been deposited to the MassIVE repository173.

Figure 28: Volcano plot comparing proteins in young and older human meniscus. Aging resulted in either significant increases or decreases in most of the structural proteins analyzed in this study.
6.2.5 Liquid Chromatography Mass Spectrometry (Collagen Crosslinking)

Collagen crosslinking was quantified using liquid chromatography mass spectrometry. To prepare the tissue for this analysis, the tissue (15.3 ± 4.1 mg, n=40) was finely diced and reduced with sodium borohydride. Sodium borohydride was dissolved in 1 mM NaOH, and added to give a 1:30 ratio of sodium borohydride to tissue, and reduction was allowed to proceed for 2 h at 37 °C. The reaction was quenched by adjustment to pH 3 with glacial acetic acid, centrifuged, and the supernatant discarded. Reduced samples were hydrolyzed in 0.5 mL of 6 M HCl at 105 °C for 24 h. The acid was evaporated and the hydrolyzed sample resuspended in 250 μL of a 5% cellulose slurry in 4:1:1 butanol: glacial acetic acid: water. This was added to a syringe column containing 0.2 g of cellulose, spun, and was washed 3 times with 0.5 mL of the butanol: glacial acetic acid: water mixture. Crosslinks were eluted with 5 washes of 250 μL water, dried and resuspended in 100 μL of 50% methanol.

Liquid chromatography separation was then achieved using a Cogent Diamond Hydride column (MicroSolv Technology Corporation, Leland, NC, USA), a silica hydride column, using an aqueous normal phase chromatographic approach based on a previously described methods174,175. The gradient started at 90% acetonitrile: 10% water for 3 min, followed by a 15 min gradient to 25% acetonitrile: 75% water, held for 2 min, and returned to 90% acetonitrile and equilibrated for 5 min. Total run time was 25 min and flow rate was 0.2 mL/min. Mass spectrometry detection was achieved using an ultra-high-resolution Quadrupole Time of Flight (QTOF) instrument (Bruker maXis, Billerica, MA, USA). The electrospray ionization source was operated under the following
conditions: positive ion mode, 1.2 bar nebulizer pressure, 8 L/min flow of N₂ drying gas heated to a temperature of 200 °C, 3000 V to −500 V voltage between HV capillary and HV end-plate offset, mass range set from 80 to 800 m/⁰, and the quadrupole ion energy at 4.0 eV. Sodium formate was used to calibrate the system in the mass range of 80 to 800 m/⁰. The injection volume for all samples was 10 µL. The Compass Data Analysis software package (Bruker Corporation) was used to identify two crosslinks specific to collagen 1: deoxypyridinoline (DPD) and dihydroxylysinonorleucine (DHLNL); as well as two AGE’s: carboxymethyl-lysine (CML) and pentosidine (PEN).

6.2.6 Colorimetric Assay (Elastin)

The quantitative proteomic analysis was unable to detect elastin, and therefore elastin was quantified from meniscus samples using the Fastin Elastin colorimetric assay kit (Biocolor Life Science Assays, Newtonabbey, UK). Briefly, dry samples were weighed and minced (11.8 ± 1.6 mg, n=40) before incubating in 0.25M oxalic acid at 100°C for 1 hour. Solubilized elastin was precipitated before binding to dye according to the kit directions. Dissociated dye was read at 513 nm and total elastin mass in each sample was determined using a standard curve generated from known concentrations of elastin. Elastin content was normalized to dry weight.

6.2.7 Statistical analysis

Proteomics comparisons (young vs. older) were made by fitting a repeated-measures one way ANOVA to the log2-fold protein amounts of each sample. We used the limma library (Richie, 2015) with version 4.3.0 (R Core Team, 2023) in the Rstudio
environment (Rstudio Team, 2020) to apply a moderated t-test following an established workflow176. Raw \textit{p}-values were adjusted using a false discovery rate177. The effect of age (young vs. older) on elastin amount was determined using an ANOVA, and the effect of age on collagen crosslink amount was determined using a MANOVA, with a Tukey HSD post-hoc when significance was detected. A Fisher’s exact test was used to determine the effect of age on the detection of pentosidine. Multiple regression analyses were performed to correlate amounts of structural proteins and collagen crosslinks with mechanical toughness. These two groups of molecules were analyzed relative to the loading orientation (four unique multiple regression tests). A backwards stepwise methods was used to identify predictive variables. These regression analyses were completed with SPSS software (IBM; Armonk, NY, USA; v24) and an R based web application178.

6.3. Results

6.3.1 Age-Dependent Changes in ECM Structural Proteins

The quantity of ECM structural proteins was significantly different between age groups (Figure 29, Table 9). Col2 and Col8 had the greatest age-associated increases of more than 2 log\textsubscript{2}-fold ($p < 0.01$). Conversely, the quantity of Col4, Col6, and fibromodulin decreased by over 1 log\textsubscript{2}-fold ($p < 0.01$), and biglycan and prolargin also significantly decreased with aging ($p < 0.01$). There were no significant changes in the quantity of decorin or Col1 associated with age ($p = 0.053$ and $p = 0.47$, respectively). Elastin increased from 18.5 ± 6.5 \textmu g/mg in the young donor group to 20.6 ± 8.9 \textmu g/mg in
the older donor group, but this log₂-fold change of 0.16 was not a significant increase ($p = 0.39$).

Figure 29: Log₂ fold change of structural ECM molecules due to age ($p < 0.05$). Error bars show the 95% confidence interval of the log₂-fold change.
Table 9: Effect of Aging on ECM Proteins and Collagen Crosslinks in Meniscus

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Structural Role</th>
<th>Log₂-Fold Change with Age</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen IV</td>
<td>Main structural component of the basement membrane</td>
<td>-1.24*</td>
<td>-2.04, -0.44</td>
</tr>
<tr>
<td>Collagen VI</td>
<td>Transmits mechanical load between the extravascular and pericellular matrix</td>
<td>-1.19*</td>
<td>-1.71, -0.66</td>
</tr>
<tr>
<td>Fibromodulin</td>
<td>Binds to collagen regulating fibrillogenesis and influences crosslinking</td>
<td>-1.14*</td>
<td>-1.67, -0.61</td>
</tr>
<tr>
<td>Biglycan</td>
<td>Assists in mineralization of connective tissues and regulates ECM turnover</td>
<td>-0.85*</td>
<td>-1.25, -0.44</td>
</tr>
<tr>
<td>Prolargin</td>
<td>Binds Col1 and Col2 to basement membrane</td>
<td>-0.82*</td>
<td>-1.16, -0.49</td>
</tr>
<tr>
<td>Decorin</td>
<td>Assists in ECM assembly and promotes adhesion between aggrecan and collagen II</td>
<td>-0.47*</td>
<td>-0.82, -0.12</td>
</tr>
<tr>
<td>Elastin</td>
<td>Provides elasticity, and improves resilience and extensibility</td>
<td>0.16</td>
<td>-0.33, 0.92</td>
</tr>
<tr>
<td>Collagen I</td>
<td>Key structural component resisting tensile loads in connective tissue</td>
<td>0.39</td>
<td>-0.32, 1.11</td>
</tr>
<tr>
<td>Collagen VIII</td>
<td>Assists in forming a porous structure to withstand compressive forces</td>
<td>2.56*</td>
<td>1.82, 3.29</td>
</tr>
<tr>
<td>Collagen II</td>
<td>Interacts with proteoglycans to improve compressive strength via osmotic pressure</td>
<td>3.00*</td>
<td>1.67, 4.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collagen Crosslinks</th>
<th>Description</th>
<th>Log₂-Fold Change with Age</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPD</td>
<td>Mature collagen crosslink that supports tensile stiffness and strength</td>
<td>-0.74*</td>
<td>-1.43, -0.05</td>
</tr>
<tr>
<td>CML</td>
<td>An AGE associated with loss of toughness in bone that increases skeletal fragility</td>
<td>0.74*</td>
<td>0.08, 1.40</td>
</tr>
<tr>
<td>PEN</td>
<td>An AGE associated with loss of toughness in hard and soft tissues</td>
<td>1.43*</td>
<td>0.17, 2.70</td>
</tr>
<tr>
<td>DHLNL</td>
<td>Immature collagen crosslink present during tissue remodeling</td>
<td>1.43*</td>
<td>0.66, 2.24</td>
</tr>
</tbody>
</table>

6.3.2 Age-Dependent Changes in Collagen Crosslinks

The quantity of collagen crosslinks was significantly associated with aging (Table 9, Figure 29). The AGE crosslinks CML and PEN both increased with aging, with CML increasing by 0.74 log₂-fold ($p=0.001$) and PEN being detected in four times more older specimens than young specimens ($p=0.004$). In the enzymatic crosslinks, the quantity of DHLNL increased with aging by 1.45 log₂-fold ($p<0.001$), whereas DPD decreased on average by 0.74 log₂-fold ($p=0.032$).
6.3.3 Relationship between ECM Proteins, Toughness, and Aging

Weak to moderate significant correlations existed between ECM protein quantity and toughness when using simple regression analysis (Table 10). These included Col4, Col8, and prolargin, with Col8 having a moderate negative correlation of -0.51 under longitudinal loading. Multiple linear regression indicated a moderate collective significant effect between ECM proteins and toughness for longitudinal loading ($p = 0.023$, $R^2_{adj} = 0.22$), and a weak collective non-significant effect for transverse loading ($p = 0.091$, $R^2_{adj} = 0.10$). Multiple regression did not detect any individual significant correlations (Table 10), but a backward stepwise method did determine that Col8 was a significant predictor for tissue toughness under longitudinal loading. Aging had significant interactions with the slope between ECM protein quantity and toughness, where older specimens had a more positive slope than young specimens for Col1, Col4, and Col6.
6.3.4 Relationship between Collagen Crosslinks, Toughness, and Aging

Collagen crosslinks had significant correlations with toughness when using simple regression analysis, except for CML during longitudinal loading (Table 11, Figure 30). Multiple linear regression found strong collective significant effects between DPD, DHLNL, CML, and toughness for longitudinal loading \((p = 0.007, R^2_{adj} = 0.35) \), and a very strong collective significant effect for transverse loading \((p < 0.001, R^2_{adj} = 0.62) \).

Notably, during transverse loading, DPD had a strong positive correlation with toughness (partial \(r = 0.79 \)), and CML had a moderate negative correlation (partial \(r = -0.68 \)). The backward stepwise method identified DPD and CML to be predictors of transverse toughness, and DPD to also be a predictor of longitudinal toughness (Figure 30). Aging had a significant interaction with the slope between DHLNL quantity and toughness, where older specimens had a more positive slope than young specimens.
Table 11: Relationship between collagen crosslink quantity and toughness during uniaxial pull-to-failure tests either parallel (longitudinal, samples size = 17) or perpendicular (transverse, sample size = 17) to the circumferential fiber orientation.

<table>
<thead>
<tr>
<th>Loading Orientation</th>
<th>Crosslink</th>
<th>Simple Regression</th>
<th>Multiple Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(r)</td>
<td>(p)</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>DPD</td>
<td>0.63</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>DHLNL</td>
<td>-0.60</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>CML</td>
<td>0.02</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>DPD</td>
<td>0.55</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>DHLNL</td>
<td>-0.39</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>CML</td>
<td>-0.41</td>
<td>0.036</td>
</tr>
</tbody>
</table>

\(^* \ p < 0.05 \) (bold)
\(^\dagger \) Identified as a significant predictor of tissue toughness from a backward stepwise method (bold)

Figure 30: Correlations of collagen crosslink quantity and toughness using simple regression. (A-C) Under longitudinal loading, significant correlations existed between the quantity of enzymatic crosslinks DPD and DHLNL, but not the AGE crosslink CML. (D-F) Under transverse loading, all crosslinks had significant correlations with toughness. Multiple regression analysis found that DPD and CML had a synergistic effect, as transverse toughness was greatest with high quantities of DPD and low quantities of CML.
6.4. Discussion

In this study we investigated how aging alters the structural ECM molecules in healthy human meniscus, and whether these compositional changes are associated with reductions in tear resistance (toughness). We hypothesized that increases in AGE crosslinks (CML) would be strongly associated with a loss of toughness, and our findings supported this hypothesis when examining the toughness of the ground substance (transverse group), but our findings did not support this hypothesis when examining the toughness along the circumferential fibers (longitudinal group). The strongest predictors of overall tissue toughness, were the enzymatic collagen crosslinks (i.e., DPD), not the non-enzymatic AGE crosslinks.

We identified several interesting age-dependent changes in the quantity of structural ECM proteins (Table 9). The relative quantity of Col1 did not significantly change across age groups, which is consistent with prior findings that the amount of Col1 in meniscus is unaltered during healthy aging. In contrast, degenerative meniscus exhibits a decrease in the quantity of Col1. Degenerative meniscus also exhibits a decrease in Col2, but Col2 in our healthy older meniscus had a nearly 6-fold increase compared to the young group, and this structural shift of the meniscus towards the biochemical makeup of cartilage could help increase or maintain swelling pressure of the tissue to withstand compressional forces. Prolargin, biglycan, and decorin all decreased with aging, although decorin’s decrease was not significant (Figure 29). These decreases were weakly associated with loss of toughness in the ground substance ($r = 0.39$), but they had no effect on the fiber strength, which supported previous work investigating the mechanical role of decorin and the glycosaminoglycan crosslinks. The
loss of Col4 and Col6 indicate reduced interactions between matrix proteins and chondrocytes, as well as a reduced capacity for cell signaling. Similar to Col1, the quantity of elastin did not significantly change with aging, which is different than prior ligament and tendon studies that found elastin quantity to decrease with aging.

A surprising finding was that the observed changes in structural protein abundance only had weak to moderate correlations with tissue toughness under both longitudinal and transverse loading. In fact, the only protein that was predictive of tissue toughness using a multiple linear regression model was Col8 (Table 10). Col8 is a non-fibrillar short-chain collagen that may provide a porous, open matrix structure that can better withstand compressive forces. Aging resulted in a significant 5-fold increase in Col8 (Figure 29), and this increase was associated with a loss of longitudinal tensile toughness (Table 10). It’s logical that Col8’s ability to enhance resistance to compressive loads by increasing pore size would have an adverse effect on the tissue’s capacity to withstand tensile forces. Overall, the lack of strong correlations between protein amount and toughness suggests that age-dependent weakening of the meniscus is not governed by changes in the quantity of structural ECM proteins, but rather changes in the quality of the structural proteins, such as structural damage or fibrillar disorganization.

The most significant predictor of tissue toughness that we identified was the quantity of collagen crosslinks in the tissue. We expected AGE crosslinks to negatively correlate with toughness, but this was only observed under transverse loading that tested the meniscal ground substance. AGE crosslinks may have a more pronounced effect on the ground substance by interfering with the interaction between collagen and other ECM proteins, as previously speculated, which may help explain the 70% reduction in
transverse toughness that occurs with aging91. The endogenous AGE crosslinks may not have been abundant enough to cause the same increases in mechanical resilience under longitudinal loading observed in studies that artificially induced AGE crosslinks in rat tail tendon54. The correlations between AGE crosslinks and toughness are based on CML, and not PEN, since PEN had a low concentration in the meniscal tissue that was inconsistently detected in the proteomic profile. The higher concentration of CML relative to PEN follows a similar trend to previous research184, and supports measuring CML in preference to PEN to study aging and oxidative stress in meniscus tissue55,185.

The enzymatic crosslink DPD had the strongest positive correlation with toughness (Table 10). DPD helps provide tensile strength and stability in the collagen matrix160,192, and assists with collagen folding in to a triple-helix along with hydroxylysine193. A reduction of DPD crosslinks, which we observed in older specimens (Table 9), corresponded to a loss of toughness in both the ground substance (transverse) and circumferential fibers (longitudinal, Figure 30). The increase of the immature crosslink DHLNL with age, which is a precursor to the mature DPD crosslink during tissue remodeling160, could indicate a disruption of the hydroxyallysine pathway through which DPD crosslinks mature194 and an impaired ability to repair molecular damage82.

This study had several limitations. First, this study did not examine all possible collagen crosslinks, but rather examined four crosslinks that are abundant in soft tissue and have been speculated to have an effect on mechanical properties15,55. We weren’t able to detect the AGE crosslink PEN in most samples, and therefore PEN was not included in the multiple regression analysis. Second, we evaluated tissue adjacent to the mechanically tested tissue to most accurately compare biochemical and biomechanical
changes (Figure 27), but we did not examine structural differences between different meniscal regions. Third, we only examined one mechanical property and a small group of collagenous and non-collagenous proteins. We were selective with the number of analyzed variables to avoid statistical problems with multiple comparisons, and therefore we selected well-recognized structural proteins and a mechanical property (toughness) that best captured resilience to meniscal tears. After testing the collinearity of the selected molecules we removed decorin and biglycan from the regression analysis because they showed a high positive correlation with prolargin for longitudinal and transverse tests. This helped reduce our variance inflation factors (VIF; Table 10), and the high positive correlation implied that regression results for prolargin were predictive of decorin and biglycan.

This is the first study to our knowledge to directly compare changes in human meniscal composition with changes in mechanical integrity. We found meniscal tissue loses toughness in tissue with less enzymatic collagen crosslink DPD and more non-fibrillar short-chain collagen Col8. We also found that the age-dependent increase in AGE crosslinks is associated with reductions in ground substance toughness. This knowledge helps advance our understanding of how age-dependent changes in tissue composition lead to a higher incidence of knee disorders in older populations.

6.5 Acknowledgements

Financial support kindly provided by the National Science Foundation under grant no. 1554353 (funded materials used in the experiment and personnel costs), the National Institute of General Medical Sciences under award numbers P20GM109095 and P20GM103408 (funded some of the equipment used in the experiment). We also
acknowledge the University of Arkansas for Medical Sciences for providing the proteomic analysis under the IDeA National Resource for Quantitative Proteomics, and support from the Biomolecular Research Center at Boise State (RRID:SCR_019174) for the collagen crosslink analysis, with funding from the National Science Foundation under grant no. 0619793 and 0923535; the M. J. Murdock Charitable Trust, Lori and Duane Stueckle, and the Idaho State Board of Education.
CHAPTER 7: DISCUSSION

7.1 Summary

The overall objective of this research was to quantify the effect of age on the human meniscus. By mechanically testing tissue from young and older donors, we identified the differences in mechanical performance of the tissue due to age. By measuring the extracellular matrix proteins and crosslink molecules of this tissue, we help to identify some of the structural reasons for these mechanical changes due to age. By building a continuum damage mechanics model of the tissue, we provide the first step of using computational modelling to identify differences in failure loading of the tissue between young and aged populations. By creating and providing a tool to automate data analysis of soft tissue tensile tests, we reduce the burden of future research on the meniscus and similar tissues, while providing a standard for the calculation of previously poorly defined properties.

Key results of this work include:

- Tissue mechanical toughness was reduced with age, both along the primary circumferential fiber network, and perpendicular to it. This indicates a reduced energy absorption and dissipation capacity of the tissue with age.

- Rupture strain along the primary circumferential fiber network was reduced with age, reducing the total amount the tissue can elongate before being ripped apart.
• Failures of the tissue when loaded along the primary circumferential fiber network occurred at approximately 45°, following the plane of maximum shear stress.

• Failures of the tissue when loaded perpendicular to this fiber network occurred at a flat angle across the fibers, following the plane of maximum normal stress.

• Characterization of soft tissue failure strains with high speed digital image correlation matched to loading curves.

• Developed a free web application to automate the data analysis of soft tissue tensile tests.

• Implemented a robust method to identify the transition point on the stress-strain curve, and validated this method against a more computationally expensive finite element curve fit optimization schema.

• Found that continuum damage mechanics is capable of reproducing the failure behavior of meniscus tissue under tension.

• A piecewise strain energy function comprised of a transversely anisotropic fiber matrix embedded in a Veronda-Westmann hyperelastic ground substance matches the nonlinear tensile loading of meniscus tissue with high accuracy.

• Continuum damage mechanics using von Mises stress or maximum normal strain for damage criteria underpredicts strain in the failure region of meniscus tissue.
• Von Mises damage criteria is capable of reproducing the failure behavior in meniscus models loaded both along, and perpendicular to, the primary circumferential fiber axis.

• Model predicted strains in the tissue were more spread out than the highly concentrated strains measured experimentally. This resulted in models loading the tissue perpendicular to the primary circumferential fibers to be unable to run to completion in most instances.

• This strain concentration discrepancy also contraindicates the use of regularization methods when using continuum damage mechanics, as these methods further spread strain out.

• Advanced glycation end-products significantly increase in meniscus tissue with age.

• There were several significant changes to Collagen due to age. Notable changes include an increase of Collagen II and Collagen VIII, as well as a decrease in Collagen VI.

• The amounts of elastin Collagen I did not significantly change due to age. These are proteins most commonly associated with extensibility in the tissue.

• An increase of proteins associated with osteoarthritis were seen with age.

• Carboxymethyl-lysine, an advanced glycation end-product, was measured in much greater concentration than the other advanced glycation end-product measured in this study, Pentosidine. This work recommends
measuring Carboxymethyl-lysine in preference to Pentosidine as a method to quantify oxidative stress.

- An increase of the collagen crosslink molecule Dihydroxylysinonorleucine correlated significantly with a loss of tissue strength and modulus.
- An increase of the advanced glycation end-product Carboxymethyl-lysine correlated significantly with a loss of tissue strength and toughness.

We believe that these findings represent a significant contribution to the understanding of how the meniscus changes with age, and becomes more susceptible to injury.

7.2 Clinical Relevance

The findings of this work have both a direct and indirect effect on the treatment of meniscus tears. The mechanical characterization work indirectly benefits clinicians, in that it informs modeling of the tissue, as well as differences in the strength and toughness of the tissue with age. This information is critical to understanding the tear mechanics that will be used to inform more directly relevant analyses of the tissue. The automated analysis of soft tissue tensile properties also indirectly benefits clinicians in that it will assist further research of both meniscus and other soft tissues. Encouraging further characterization of a wide variety of tissues increases our understanding of soft tissues as a whole, as well as providing a larger data set to tissues previously analyzed.

The computational modeling outlined in this work can be directly used to assess the differences in the amount of load that can be sustained prior to the onset of irreversible damage between young and older patients. This can inform the limits of what may be considered healthy activities for aging populations. This model may also be implemented in to whole knee models to analyze different loadings of the whole knee
joint, which can have a wide variety of potential benefits to clinicians assessing knee stresses, designing knee braces, or evaluating the effect of surgical interventions. As this was the first model of human meniscus, more refined modeling techniques may come in the future. This model would inform these potential future models and give them something to compare to, potentially indirectly benefitting the further understanding of meniscus tears.

The structure-function work has the greatest amount of directly applicable information to clinicians. Understanding how the structural makeup of the meniscus is changing with age gives direct insight to the changing structure with age. The large changes to the collagen makeup being the most directly profound of these, telling us that the meniscus may be beginning to behave more like articular cartilage with age. Understanding this changing behavior may help clinicians understand the changes to tear incidence, and inform patient care both pre and post injury. The structure work also indirectly benefits the treatment of the meniscus by identifying proteins of interest for targeted analysis. These analyses will prove or disprove the mechanical effect of the loss or gain of certain proteins, and open the door for potential therapeutic treatments, much like hyaluronic acid injections have been used to combat cartilage degeneration. Understanding the consequences of the accumulation of advanced glycation end-products also represents a directly relevant finding, as this work suggests that preventing the accumulation of these molecules could help sustain the meniscus’ energy dissipation capacity, increasing the longevity of the tissue in older populations. Understanding the accumulation of these molecules, and how they interact with the maturation of normal
collagen crosslink molecules, gives clinicians insight to the potential causes of
disfunction in the tissue remodeling with age.

7.3 Publications

7.3.1 Peer Reviewed Journal Articles

 the Failure Properties of Human Meniscus: High-Speed Strain Mapping of
 Tissue Tears,” Journal of Biomechanics Vol 115 pp 110-126, 2021.91 **Half of
 the data of this work was done during my MS degree.**

 Application to Analyze Stress-Strain Curves from Tensile Tests of Soft
 Tissue.” Journal of Biomechanical Engineering 2023 Feb 1;145(2):024504.133

 Modeling of Meniscal Tears Using Continuum Damage Mechanics and
 Digital Image Correlation.” Scientific Reports 2023 March 10; 13(1).196

4. Nesbitt DQ, Pu X, Turner M, Zavala A, Bond L, Oxford J, Lujan TJ. “Age-
 Dependent Changes in Collagen Crosslinks Weaken the Mechanical
 Toughness of Human Mensicus.” Submitted to the Journal of Orthopaedic
 Research on July 22nd 2023.

7.3.2 Abstracts

1. Nesbitt DQ, Krentz ME, Lujan TJ, “The Effect of Fiber Orientation on
 Failure Patterns in the Bovine Meniscus During Tensile Loading.” Summer
 Biomechanics, Bioengineering and Biotransport Conference, June 21 – 24
 2017, Tucson, AZ, USA. **Poster Presentation**

7.4 Limitations

These studies had limitations. Most notably, was that all mechanical and biochemical characterization was done on a total of 10 donors. While this sample size was sufficient for many of the comparisons done, the potential for type 2 error could have been reduced for data points with lower effect size using a greater sample set. All of these
studies exclusively evaluated human meniscus tissue, so any and all conclusions would
be relevant to only human meniscus tissue. The evaluation of the changes to meniscus
structure with age also focused solely on structural proteins of the extracellular matrix. It
is possible that other highly impactful comparisons of other measured proteins could be
performed with this data. While we do not intend to investigate these possibilities
ourselves, it is our intent to make the proteomics data widely available to the scientific
community. Another limitation, is that the computational model used to validate both the
Dots-on-Plots application and to build the continuum damage mechanics model, only
compared a single constitutive model. While the evaluation of other models could be
beneficial, we feel that the high accuracy ($R > 0.97$) of this selected formulation was
sufficient for the studies performed here. Lastly, the effect of age was not considered in
the modeling work we performed. Our intent was to validate a model that could
accurately recreate tissue at any age, but the difference in average model parameters for
young and older specimens were not compared.

7.5 Future work

Future work should expand upon the modeling work of Chapter 5 by
implementing the continuum damage mechanics framework into models of the whole
meniscus. Applying physiological loading at this scale of model would then assess the
ability of the model framework to simulate tears as they would happen within the knee,
and would open the door to increasingly complex models that could determine the injury
risk posed by different motions. Models simulating tears of the whole meniscus would
need validation against experimental observations, which could be obtained by
performing loading to failure on whole tissue using machines that simulate joint movement, such as the Vivo six degree of freedom joint simulator197. While this model formulation is sufficient for quasi-static loading, impact loading introduces the time rate dependent nature of hydrated soft tissues198, and viscoelastic effects would need to be considered. Previous mathematical models of meniscus fatigue loading were also improved by the inclusion of viscoelasticity199, so model formulations designed to account for repeated loading over time would likewise benefit from including viscoelasticity.

Our structural work detailed in Chapter 6 identified several proteins and molecules that may be responsible for the changing of meniscus mechanical characteristics with aging, but the correlations done in this work are not causative. Studies will need to be designed to target these specific proteins and molecules in order to prove their effect on mechanical characteristics. This could be achieved via animal knockout or over expression models, as well as chemical applications that induce the formation of advanced glycation end-products. Once these structure-function relationships have been proven, it will increase our understanding of how the meniscus changes with age, and open the door to potential tissue diagnostics using biopsied tissue.

This work should also expand to include tears of the meniscus root, where the main body of the meniscus tissue transitions in to the ligaments that attach to the surrounding bones.200 Many tears of the meniscus are in the root region, so understanding the tear mechanisms of this complex region represents an important goal in reducing meniscus tear incidence. Other research groups have done some mechanical characterization of this region,201–203 but to our knowledge no study has yet
computationally modeled or biochemically analyzed this region. The work outlined in this dissertation could serve as a guide to characterizing the changing of tear incidence of the meniscus roots with age.

In conclusion, the continued refinement of meniscus models will aid in the understanding of the mechanisms that lead to injury, as well as lead to innovations in clinical treatment and prevention of these injuries. Additionally, targeted investigations in to the changing structure-function relationships of meniscus with aging will help with the understanding of the cause of increasing of risk with age, and open the door to potential therapies to combat these causes.
REFERENCES

Biomed Mater 8:111–122 Available from:

strain analysis of implant-supported prostheses using digital image correlation.
Dental Materials 29(7):788–796 Available from:

Digital Image Correlation and Image Decomposition.

49. Martin JA, Buckwalter JA. 2001. Roles of articular cartilage aging and
chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J

51. Loeser RF. 2004. Aging cartilage and osteoarthritis--what’s the link? Science of
aging knowledge environment 2004(29).

52. Martin C, Pham T, Sun W. 2011. Significant differences in the material properties
between aged human and porcine aortic tissues. European Journal of Cardio-

53. Avery NC, Bailey AJ. 2006. The effects of the Maillard reaction on the physical

60. Ristaniemi A, Stenroth L, Mikkonen S, Korhonen RK. 2018. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and
patellar tendon. J Biomech 79:31–38 Available from:

function, pathophysiology, current repair techniques, and prospects for

63. Nielsen AB, Yde J. 1991. Epidemiology of Acute Knee Injuries: A Prospective

65. Peloquin JM, Santare MH, Elliott DM. 2018. Short cracks in knee meniscus tissue
cause strain concentrations, but do not reduce ultimate stress, in single-cycle

228(2):433–446.

69. Creechley JJ, Krentz ME, Lujan TJ. 2017. Fatigue life of bovine meniscus under
longitudinal and transverse tensile loading. J Mech Behav Biomed Mater

APPENDIX A
Chapter 3 Supplemental Material

Automated Analysis of Mechanical Properties

A custom MATLAB script automated the identification of four points of interest on the stress-strain curve: transition, yield, ultimate, and rupture. The yield point was selected at the maximum slope of the stress-strain curve, the UTS point at the maximum stress, and the rupture point when stress dropped below 15% of UTS. Five specimens from the transverse group did not reach the threshold of 15% of the UTS stress before the test was halted. These five specimens were not included in any calculations using rupture strain. The transition point was determined as the point in the toe region (longitudinal specimens only) where the slope of the stress-strain curve deviated by 10% from the tangent modulus, where tangent modulus was calculated from the slope near the yield point 13.

High-Speed Video and DIC

During the tensile tests, a film speed of 500 fps was saved for 20 milliseconds before and after all points of interest, but otherwise the number of images were truncated down to 5 fps to reduce data density. Digital image correlation was performed in MATLAB using NCORR74. The DIC subset size was set to 0.2 mm, and the subset size to calculate strains from subset displacement was set to 0.1 mm. An incremental DIC method was used to help prevent decorrelation in the high strain cases seen in transverse specimens. For this incremental method, we analyzed 133 ± 29 frames up to UTS for longitudinal specimens, and 280 ± 92 frames up to UTS for transverse specimens. When we tried using direct DIC, where only the reference frame and frame at the current point
of interest were analyzed, one third of transverse specimens failed to produce results at UTS, and those that produced results had decorrelation in 23% of the region of interest, on average. By comparing results between incremental and direct DIC for the longitudinal specimens, we calculated the cumulative error of using incremental DIC for longitudinal specimens to be 0.04% strain and estimated the cumulative error of using incremental DIC for transverse specimens to by 0.08%.

Comparison of Mechanical Properties to Previous Studies on Human Meniscus

Mechanical properties calculated in the present study compare relatively well to prior biomechanics research on human meniscus. The ultimate tensile strength and tangent modulus we calculated for longitudinal specimens (Table 2) were within 10% of values reported in two studies\(^\text{26,27}\), and our average ultimate grip strain for transverse specimens was nearly identical to values reported by Tissakht and Ahmed\(^7\). Larger differences existed for our ultimate grip strain in longitudinal specimens, which was between 10-75% lower than previous studies\(^7,26,27\). Also, our ultimate tensile strength for transverse specimens was one-fourth of a previously reported value\(^7\). A likely reason for this difference is that we layered our transverse specimens on an orthogonal plane to the Tissakht and Ahmed study, where tie fibers are less dense\(^{204}\).
Chapter 6 Supplemental Material

Additional detail regarding the function of structural molecules from Table 9 can be seen in Table 11, to include the tissues that the relevant study of function were performed on.

Table 11. Effect of Aging on Meniscus ECM Proteins and Collagen Crosslink Molecules.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Tissue</th>
<th>Structural Role in Tissue</th>
<th>Log$_2$-Fold Change with Age</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen IV</td>
<td>Skin</td>
<td>Main structural component of the basement membrane39.</td>
<td>-1.24*</td>
<td>-2.04, -0.44</td>
</tr>
<tr>
<td>Collagen VI</td>
<td>Cartilage</td>
<td>Absence results in decreased cartilage stiffness and accelerated development of OA degeneration37,48.</td>
<td>-1.19*</td>
<td>-1.71, -0.66</td>
</tr>
<tr>
<td>Fibromodulin</td>
<td>Cardiac tissue</td>
<td>Binds to collagen regulating fibrillogenesis and influences crosslinking46.</td>
<td>-1.14*</td>
<td>-1.67, -0.61</td>
</tr>
<tr>
<td>Biglycan</td>
<td>Bone, cartilage</td>
<td>Assists in mineralization of bone and connective tissues39. Regulates ECM turnover49.</td>
<td>-0.85*</td>
<td>-1.25, -0.44</td>
</tr>
<tr>
<td>Prolargin</td>
<td>Cartilage, arterial tissue</td>
<td>Binds Col1 and Col2 to basement membranes50.</td>
<td>-0.82*</td>
<td>-1.16, -0.49</td>
</tr>
<tr>
<td>Decorin</td>
<td>Cartilage</td>
<td>Assists in ECM assembly and promotes adhesion between aggrecan and collagen II10.</td>
<td>-0.47*</td>
<td>-0.82, -0.12</td>
</tr>
<tr>
<td>Elastin</td>
<td>Ligament</td>
<td>Provides resilience and elasticity, approximately 1000 times more flexible than collagens14,51.</td>
<td>0.16</td>
<td>-0.33, 0.92</td>
</tr>
<tr>
<td>Collagen I</td>
<td>Ligaments, tendon</td>
<td>Key structural component of the tensile integrity of connective tissue6,40.</td>
<td>0.39</td>
<td>-0.32, 1.11</td>
</tr>
<tr>
<td>Collagen VIII</td>
<td>Cardiac tissue</td>
<td>Short chain network-forming collagen assisting in porous structure to withstand compressive forces12.</td>
<td>2.56*</td>
<td>1.82, 3.29</td>
</tr>
<tr>
<td>Collagen II</td>
<td>Meniscus</td>
<td>Interacts with proteoglycans8 to improve compressive strength via osmotic pressure9.</td>
<td>3.00*</td>
<td>1.67, 4.34</td>
</tr>
<tr>
<td>DPD</td>
<td>Meniscus, cervical tissue</td>
<td>Mature collagen crosslink that stabilizes molecules and helps with matrix tensile strength22,24.</td>
<td>-0.74*</td>
<td>-1.43, -0.05</td>
</tr>
<tr>
<td>CML</td>
<td>Skin, bone</td>
<td>An AGE associated with bone fracture risk and an indicator of aging and oxidative stress37,14.</td>
<td>0.74*</td>
<td>0.08, 1.40</td>
</tr>
<tr>
<td>PEN</td>
<td>Meniscus, bone</td>
<td>An AGE associated with reduced bone strength and loss of toughness in various soft tissues24,53.</td>
<td>1.43*</td>
<td>0.17, 2.70</td>
</tr>
<tr>
<td>DHLNL</td>
<td>Cervical tissue</td>
<td>Immature collagen crosslink present during tissue remodeling20.</td>
<td>1.43*</td>
<td>0.66, 2.24</td>
</tr>
</tbody>
</table>

*Significantly different between age groups (p < 0.05).
A table with a comprehensive list of all of the proteins with significant changes due to age can be seen in Table 12. A positive log fold change value indicates the older age group showed an increase in the protein, whereas a negative value indicates less of the protein.

Table 12: All proteins with significant differences between age groups.

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Log2 Fold Change</th>
<th>P. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMED2_HUMAN Transmembrane emp24 domain-containing protein 2 OS=Homo sapiens</td>
<td>5.040</td>
<td>0.000</td>
</tr>
<tr>
<td>APOA4_HUMAN Apolipoprotein A-IV OS=Homo sapiens</td>
<td>3.036</td>
<td>0.000</td>
</tr>
<tr>
<td>TIMP3_HUMAN Metalloproteinase inhibitor 3 OS=Homo sapiens</td>
<td>3.097</td>
<td>0.000</td>
</tr>
<tr>
<td>CO8A1_HUMAN Collagen alpha-1(VIII) chain OS=Homo sapiens</td>
<td>2.558</td>
<td>0.000</td>
</tr>
<tr>
<td>ZG16_HUMAN Zymogen granule membrane protein 16 OS=Homo sapiens</td>
<td>2.725</td>
<td>0.000</td>
</tr>
<tr>
<td>PLMN_HUMAN Plasminogen OS=Homo sapiens</td>
<td>1.436</td>
<td>0.000</td>
</tr>
<tr>
<td>CQ058_HUMAN UPF0450 protein C17orf58 OS=Homo sapiens</td>
<td>3.355</td>
<td>0.000</td>
</tr>
<tr>
<td>NDNF_HUMAN Protein NDNF OS=Homo sapiens</td>
<td>2.602</td>
<td>0.000</td>
</tr>
<tr>
<td>SAMP_HUMAN Serum amyloid P-component OS=Homo sapiens</td>
<td>1.684</td>
<td>0.000</td>
</tr>
<tr>
<td>CRLF1_HUMAN Cytokine receptor-like factor 1 OS=Homo sapiens</td>
<td>2.449</td>
<td>0.000</td>
</tr>
<tr>
<td>IL17D_HUMAN Interleukin-17D OS=Homo sapiens</td>
<td>2.662</td>
<td>0.000</td>
</tr>
<tr>
<td>PF4V_HUMAN Platelet factor 4 variant OS=Homo sapiens</td>
<td>2.222</td>
<td>0.000</td>
</tr>
<tr>
<td>ANTR2_HUMAN Anthrax toxin receptor 2 OS=Homo sapiens</td>
<td>2.504</td>
<td>0.000</td>
</tr>
<tr>
<td>METRL_HUMAN Meteorin-like protein OS=Homo sapiens</td>
<td>2.094</td>
<td>0.000</td>
</tr>
<tr>
<td>PXYL1_HUMAN 2-phosphorylose phosphatase 1 OS=Homo sapiens</td>
<td>2.353</td>
<td>0.000</td>
</tr>
<tr>
<td>DNJC3_HUMAN DnaJ homolog subfamily C member 3 OS=Homo sapiens</td>
<td>2.332</td>
<td>0.000</td>
</tr>
<tr>
<td>ITIH6_HUMAN Inter-alpha-trypsin inhibitor heavy chain H6 OS=Homo sapiens</td>
<td>2.751</td>
<td>0.000</td>
</tr>
<tr>
<td>CHM4B_HUMAN Charged multivesicular body protein 4b OS=Homo sapiens</td>
<td>1.010</td>
<td>0.000</td>
</tr>
<tr>
<td>MGAT1_HUMAN Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase OS=Homo sapiens</td>
<td>1.826</td>
<td>0.000</td>
</tr>
<tr>
<td>DDX6_HUMAN Probable ATP-dependent RNA helicase DDX6 OS=Homo sapiens</td>
<td>1.472</td>
<td>0.000</td>
</tr>
<tr>
<td>LAG3_HUMAN Lymphocyte activation gene 3 protein OS=Homo sapiens</td>
<td>3.233</td>
<td>0.000</td>
</tr>
<tr>
<td>TNF13_HUMAN Tumor necrosis factor ligand superfamily member 13 OS=Homo sapiens</td>
<td>2.441</td>
<td>0.000</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Protein Name</td>
<td>Species</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>SEM3E_HUMAN</td>
<td>Semaphorin-3E</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CHSTE_HUMAN</td>
<td>Carbohydrate sulfotransferase 14</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SEM3B_HUMAN</td>
<td>Semaphorin-3B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CHSTC_HUMAN</td>
<td>Carbohydrate sulfotransferase 12</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CHSTE_HUMAN</td>
<td>Carbohydrate sulfotransferase 3 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CHST2_HUMAN</td>
<td>Carbohydrate sulfotransferase 6 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>LPAR1_HUMAN</td>
<td>Lysophosphatidic acid receptor 1 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CITC_HUMAN</td>
<td>C1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>POSTN_HUMAN</td>
<td>Periostin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>QSOX1_HUMAN</td>
<td>Sulhydryl oxidase 1 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>DAF_HUMAN</td>
<td>Complement decay-accelerating factor OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>FINC_HUMAN</td>
<td>Fibronectin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MIA_HUMAN</td>
<td>Melanoma-derived growth regulatory protein OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>SEM3D_HUMAN</td>
<td>Semaphorin-3D OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CHRD_HUMAN</td>
<td>Chordin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CRAC1_HUMAN</td>
<td>Cartilage acidic protein 1 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>SEM3C_HUMAN</td>
<td>Semaphorin-3C OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CO2A1_HUMAN</td>
<td>Collagen alpha-1(II) chain OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>MA1A1_HUMAN</td>
<td>Mannosyl-oligosaccharide 1,2-alpha-mannosidase 1A OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>TRPV4_HUMAN</td>
<td>Transient receptor potential cation channel subfamily V member 4 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>STEA3_HUMAN</td>
<td>Metalloreductase STEAP3 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CALM2_HUMAN</td>
<td>Calmodulin-2 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CALM3_HUMAN</td>
<td>Calmodulin-3 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>CBPP2_HUMAN</td>
<td>Carboxypeptidase B2 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>ECM2_HUMAN</td>
<td>Extracellular matrix protein 2 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>OAF_HUMAN</td>
<td>Out at first protein homolog OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>HS3S1_HUMAN</td>
<td>Heparan sulfate glucosamine 3-O-sulfotransferase 1 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>PPT1_HUMAN</td>
<td>Palmitoyl-protein thioesterase 1 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>SULF2_HUMAN</td>
<td>Extracellular sulfatase Sulf-2 OS=Homo sapiens</td>
<td>OX=9606</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Organism</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>FIBIN_HUMAN</td>
<td>Fin bud initiation factor homolog</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HIPL2_HUMAN</td>
<td>HHIPL-like protein 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CFA20_HUMAN</td>
<td>Cilia- and flagella-associated protein 20</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>DIK2A_HUMAN</td>
<td>Divergent protein kinase domain 2A</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>FBLN7_HUMAN</td>
<td>Fibulin-7</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MGP_HUMAN</td>
<td>Matrix Gla protein</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GANAB_HUMAN</td>
<td>Neutral alpha-glucosidase AB</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PONL1_HUMAN</td>
<td>Podocan-like protein 1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CO4B_HUMAN</td>
<td>Complement C4-B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TR147_HUMAN</td>
<td>E3 ubiquitin-protein ligase TRIM47</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LFTY2_HUMAN</td>
<td>Left-right determination factor 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>IPS3_HUMAN</td>
<td>Plasma serine protease inhibitor</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CNNM3_HUMAN</td>
<td>Metal transporter CNNM3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CDD80_HUMAN</td>
<td>Coiled-coil domain-containing protein 80</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PRPS2_HUMAN</td>
<td>Ribose-phosphate pyrophosphokinase 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>APOC1_HUMAN</td>
<td>Apolipoprotein C-I</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>2ABA_HUMAN</td>
<td>Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>KCC1D_HUMAN</td>
<td>Calcium/calmodulin-dependent protein kinase type 1D</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RL9_HUMAN</td>
<td>60S ribosomal protein L9</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TGM2_HUMAN</td>
<td>Protein-glutamine gamma-glutamyltransferase 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>FA49A_HUMAN</td>
<td>Protein FAM49A</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GLCM_HUMAN</td>
<td>Lysosomal acid glucosylceramidase</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RNAS4_HUMAN</td>
<td>Ribonuclease 4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>AAMDC_HUMAN</td>
<td>Mth938 domain-containing protein</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ANGL2_HUMAN</td>
<td>Angiopoietin-related protein 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PUR2_HUMAN</td>
<td>Trifunctional purine biosynthetic protein adenosine-3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TR11B_HUMAN</td>
<td>Tumor necrosis factor receptor superfamily member 11B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>STON1_HUMAN</td>
<td>Stonin-1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CHMP3_HUMAN</td>
<td>Charged multivesicular body protein 3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GALNT2_HUMAN</td>
<td>Polypeptide N-acetylgalactosaminyltransferase 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>B4GT1_HUMAN</td>
<td>Beta-1,4-galactosyltransferase 1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LAMA5_HUMAN</td>
<td>Laminin subunit alpha-5</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ALS_HUMAN</td>
<td>Insulin-like growth factor-binding protein complex acid labile subunit OS=Homo sapiens OX=9606 GN=IGFALS PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>1A11_HUMAN</td>
<td>HLA class I histocompatibility antigen, A-11 alpha chain OS=Homo sapiens OX=9606 GN=HLA-A PE=1 SV=5</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>1A01_HUMAN</td>
<td>HLA class I histocompatibility antigen, A-1 alpha chain OS=Homo sapiens OX=9606 GN=HLA-A PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>1A30_HUMAN</td>
<td>HLA class I histocompatibility antigen, A-30 alpha chain OS=Homo sapiens OX=9606 GN=HBA-A PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>BIEA_HUMAN</td>
<td>Biliverdin reductase A OS=Homo sapiens OX=9606 GN=BLVRA PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RAB13_HUMAN</td>
<td>Ras-related protein Rab-13 OS=Homo sapiens OX=9606 GN=RAB13 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GPC6_HUMAN</td>
<td>Glypican-6 OS=Homo sapiens OX=9606 GN=GPC6 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EDIL3_HUMAN</td>
<td>EGF-like repeat and discoidin I-like domain-containing protein 3 OS=Homo sapiens OX=9606 GN=EDIL3 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LOXL4_HUMAN</td>
<td>Lysyl oxidase homolog 4 OS=Homo sapiens OX=9606 GN=LOXL4 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PGRP2_HUMAN</td>
<td>N-acetylmuramoyl-L-alanine amidase OS=Homo sapiens OX=9606 GN=GPRP2 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GPM6A_HUMAN</td>
<td>Neuronal membrane glycoprotein M6-a OS=Homo sapiens OX=9606 GN=GPM6A PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GDF5_HUMAN</td>
<td>Growth/differentiation factor 5 OS=Homo sapiens OX=9606 GN=GDF5 PE=1 SV=3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>AGM1_HUMAN</td>
<td>Phosphoacetylglucosamine mutase OS=Homo sapiens OX=9606 GN=AGM1 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ANKH_HUMAN</td>
<td>Progressive ankylosis protein homolog OS=Homo sapiens OX=9606 GN=ANKH PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LRP1B_HUMAN</td>
<td>Low-density lipoprotein receptor-related protein 1B OS=Homo sapiens OX=9606 GN=LRP1B PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PMVK_HUMAN</td>
<td>Phosphomevalonate kinase OS=Homo sapiens OX=9606 GN=PMVK PE=1 SV=3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>KCMA1_HUMAN</td>
<td>Calcium-activated potassium channel subunit alpha-1 OS=Homo sapiens OX=9606 GN=KCMCA1 PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>UGGG2_HUMAN</td>
<td>UDP-glucose:glycoprotein glucosyltransferase 2 OS=Homo sapiens OX=9606 GN=UGGG2 PE=1 SV=4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GDF10_HUMAN</td>
<td>Growth/differentiation factor 10 OS=Homo sapiens OX=9606 GN=GDF10 PE=1 SV=4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GNPI2_HUMAN</td>
<td>Glucosamine-6-phosphate isomerase OS=Homo sapiens OX=9606 GN=GNPI2 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CIRBP_HUMAN</td>
<td>Cold-inducible RNA-binding protein OS=Homo sapiens OX=9606 GN=CIRBP PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>GLT16_HUMAN</td>
<td>Polypeptide N-acetylgalactosaminyltransferase 16 OS=Homo sapiens OX=9606 GN=GLT16 PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PA2GA_HUMAN</td>
<td>Phospholipase A2, membrane associated OS=Homo sapiens OX=9606 GN=PA2GA PE=1 SV=2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CTL1_HUMAN</td>
<td>Choline transporter-like protein 1 OS=Homo sapiens OX=9606 GN=SLC44A1 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PRG4_HUMAN</td>
<td>Proteoglycan 4 OS=Homo sapiens OX=9606 GN=PRG4 PE=1 SV=3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PEPL_HUMAN</td>
<td>Periplakin OS=Homo sapiens OX=9606 GN=PEPL PE=1 SV=4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>FHR2_HUMAN</td>
<td>Complement factor H-related protein 2 OS=Homo sapiens OX=9606 GN=FHR2 PE=1 SV=1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RIC8A_HUMAN</td>
<td>Synembryn-A OS=Homo sapiens OX=9606 GN=RIC8A PE=1 SV=3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Protein Name</td>
<td>OX</td>
<td>Gene Name</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>ARLY_HUMAN Argininosuccinate lyase</td>
<td>Homo sapiens</td>
<td>ASL</td>
</tr>
<tr>
<td>FHR5_HUMAN Complement factor H-related protein 5</td>
<td>Homo sapiens</td>
<td>CFHR5</td>
</tr>
<tr>
<td>UBXN6_HUMAN UBX domain-containing protein 6</td>
<td>Homo sapiens</td>
<td>UBXN6</td>
</tr>
<tr>
<td>ARF4_HUMAN ADP-ribosylation factor 4</td>
<td>Homo sapiens</td>
<td>ARF4</td>
</tr>
<tr>
<td>ITM2B_HUMAN Integral membrane protein 2B</td>
<td>Homo sapiens</td>
<td>ITM2B</td>
</tr>
<tr>
<td>MINP1_HUMAN Multiple inositol polyphosphate phosphatase 1</td>
<td>Homo sapiens</td>
<td>MINPP1</td>
</tr>
<tr>
<td>FGFP2_HUMAN Fibroblast growth factor-binding protein 2</td>
<td>Homo sapiens</td>
<td>FGFBP2</td>
</tr>
<tr>
<td>VA0D1_HUMAN V-type proton ATPase subunit d</td>
<td>Homo sapiens</td>
<td>ATP6V0D1</td>
</tr>
<tr>
<td>APOD_HUMAN Apolipoprotein D</td>
<td>Homo sapiens</td>
<td>APOD</td>
</tr>
<tr>
<td>MMFA_HUMAN Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial</td>
<td>Homo sapiens</td>
<td>ALDH6A1</td>
</tr>
<tr>
<td>AUGN_HUMAN Augurin</td>
<td>Homo sapiens</td>
<td>C2orf40</td>
</tr>
<tr>
<td>ENOG_HUMAN Gamma-enolase</td>
<td>Homo sapiens</td>
<td>ENO2</td>
</tr>
<tr>
<td>CTND1_HUMAN Catenin delta-1</td>
<td>Homo sapiens</td>
<td>CTNND1</td>
</tr>
<tr>
<td>ARF6_HUMAN ADP-ribosylation factor 6</td>
<td>Homo sapiens</td>
<td>ARF6</td>
</tr>
<tr>
<td>C1QT4_HUMAN Complement C1q tumor necrosis factor-related protein 4</td>
<td>Homo sapiens</td>
<td>C1QTNF4</td>
</tr>
<tr>
<td>GDN_HUMAN Glia-derived nexin</td>
<td>Homo sapiens</td>
<td>SERPINE2</td>
</tr>
<tr>
<td>LOXL3_HUMAN Lysyl oxidase homolog 3</td>
<td>Homo sapiens</td>
<td>LOXL3</td>
</tr>
<tr>
<td>GMPPB_HUMAN Mannose-1-phosphate guanylyltransferase beta</td>
<td>Homo sapiens</td>
<td>GMPPB</td>
</tr>
<tr>
<td>COBA2_HUMAN Collagen alpha-2(XI) chain</td>
<td>Homo sapiens</td>
<td>COL11A2</td>
</tr>
<tr>
<td>ARL3_HUMAN ADP-ribosylation factor-like protein 3</td>
<td>Homo sapiens</td>
<td>ARL3</td>
</tr>
<tr>
<td>CILP1_HUMAN Cartilage intermediate layer protein 1</td>
<td>Homo sapiens</td>
<td>CILP</td>
</tr>
<tr>
<td>DESP_HUMAN Desmplakin</td>
<td>Homo sapiens</td>
<td>DSP</td>
</tr>
<tr>
<td>RAB34_HUMAN Ras-related protein Rab-34</td>
<td>Homo sapiens</td>
<td>RAB34</td>
</tr>
<tr>
<td>HV343_HUMAN Immunoglobulin heavy variable 3-43</td>
<td>Homo sapiens</td>
<td>IGHV3-43</td>
</tr>
<tr>
<td>XYLTI1_HUMAN Xylosyltransferase 1</td>
<td>Homo sapiens</td>
<td>XYLTI1</td>
</tr>
<tr>
<td>SMOC2_HUMAN SPARC-related modular calcium-binding protein 2</td>
<td>Homo sapiens</td>
<td>SMOC2</td>
</tr>
<tr>
<td>S29A1_HUMAN Equilibrative nucleoside transporter 1</td>
<td>Homo sapiens</td>
<td>SLC29A1</td>
</tr>
<tr>
<td>CHID1_HUMAN Chitinase domain-containing protein 1</td>
<td>Homo sapiens</td>
<td>CHID1</td>
</tr>
<tr>
<td>FNDC1_HUMAN Fibronectin type III domain-containing protein 1</td>
<td>Homo sapiens</td>
<td>FNDC1</td>
</tr>
<tr>
<td>MYO1D_HUMAN Unconventional myosin-Id</td>
<td>Homo sapiens</td>
<td>MYO1D</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Description</td>
<td>OS</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>UFO_HUMAN</td>
<td>Tyrosine-protein kinase receptor</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CD97_HUMAN</td>
<td>CD97 antigen</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CO6_HUMAN</td>
<td>Complement component C6</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RL13_HUMAN</td>
<td>60S ribosomal protein L13</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MK14_HUMAN</td>
<td>Mitogen-activated protein kinase 14</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>AP2B1_HUMAN</td>
<td>AP-2 complex subunit beta</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CO6A3_HUMAN</td>
<td>Collagen alpha-3(VI) chain</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H33_HUMAN</td>
<td>Histone H3.3</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H32_HUMAN</td>
<td>Histone H3.2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H31T_HUMAN</td>
<td>Histone H3.1t</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>OS</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>1433B_HUMAN</td>
<td>14-3-3 protein beta/alpha</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>C06A2_HUMAN</td>
<td>Collagen alpha-2(VI) chain</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EHD2_HUMAN</td>
<td>EH domain-containing protein 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1O_HUMAN</td>
<td>Histone H2B type 1-O</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1B_HUMAN</td>
<td>Histone H2B type 1-B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B3B_HUMAN</td>
<td>Histone H2B type 3-B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B2E_HUMAN</td>
<td>Histone H2B type 2-E</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EIF3A_HUMAN</td>
<td>Eukaryotic translation initiation factor 3 subunit A</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PGS1_HUMAN</td>
<td>Biglycan</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TM109_HUMAN</td>
<td>Transmembrane protein 109</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HS71B_HUMAN</td>
<td>Heat shock 70 kDa protein 1B</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RSMN_HUMAN</td>
<td>Small nuclear ribonucleoprotein-associated protein N</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MPC2_HUMAN</td>
<td>Mitochondrial pyruvate carrier 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ITB1_HUMAN</td>
<td>Integrin beta-1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>1433Z_HUMAN</td>
<td>14-3-3 protein zeta/delta</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ALDH2_HUMAN</td>
<td>Aldehyde dehydrogenase, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ACTN4_HUMAN</td>
<td>Alpha-actinin-4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RSSA_HUMAN</td>
<td>40S ribosomal protein SA</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>XRCC6_HUMAN</td>
<td>X-ray repair cross-complementing protein 6</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SHPS1_HUMAN</td>
<td>Tyrosine-protein phosphatase non-receptor type substrate 1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CO4A1_HUMAN</td>
<td>Collagen alpha-1(IV) chain</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2BFS_HUMAN</td>
<td>Histone H2B type F-S</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1D_HUMAN</td>
<td>Histone H2B type 1-D</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1C_HUMAN</td>
<td>Histone H2B type 1-C/E/F/G/I</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B2F_HUMAN</td>
<td>Histone H2B type 2-F</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1H_HUMAN</td>
<td>Histone H2B type 1-H</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1N_HUMAN</td>
<td>Histone H2B type 1-N</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1M_HUMAN</td>
<td>Histone H2B type 1-M</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H2B1L_HUMAN</td>
<td>Histone H2B type 1-L</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>XRCC5_HUMAN</td>
<td>X-ray repair cross-complementing protein 5</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TENA_HUMAN</td>
<td>Tenascin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>OS</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>ECH1_HUMAN</td>
<td>Delta(3,5)-Delta(2,4)-diienoyl-CoA isomerase, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EIF3L_HUMAN</td>
<td>Eukaryotic translation initiation factor 3 subunit L</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HNRPU_HUMAN</td>
<td>Heterogeneous nuclear ribonucleoprotein U</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>S10A6_HUMAN</td>
<td>Protein S100-A6</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>DBLOH_HUMAN</td>
<td>Diablo homolog, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TPM3_HUMAN</td>
<td>Tropomyosin alpha-3 chain OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>BGH3_HUMAN</td>
<td>Transforming growth factor-beta-induced protein ig-h3 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ATPB_HUMAN</td>
<td>ATP synthase subunit beta, mitochondrial OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>IPYR2_HUMAN</td>
<td>Inorganic pyrophosphatase 2, mitochondrial OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>NPS3A_HUMAN</td>
<td>Protein NipSnap homolog 3A OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CDIPT_HUMAN</td>
<td>CDF-diacylglycerol-inositol 3-phosphatidylintransferase OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LMNA_HUMAN</td>
<td>Prelamin-A/C OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SEP11_HUMAN</td>
<td>Septin-11 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SGCD_HUMAN</td>
<td>Delta-sarcoglycan OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PCYOX_HUMAN</td>
<td>Prenylcysteine oxidase 1 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SMD3_HUMAN</td>
<td>Small nuclear ribonucleoprotein Sm D3 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>IF4A3_HUMAN</td>
<td>Eukaryotic initiation factor 4A-III OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CAVN1_HUMAN</td>
<td>Caveolae-associated protein 1 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EF1B_HUMAN</td>
<td>Elongation factor 1-beta OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CYBR1_HUMAN</td>
<td>Cytochrome b reductase 1 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LAMB2_HUMAN</td>
<td>Laminin subunit beta-2 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>EFIG_HUMAN</td>
<td>Elongation factor 1-gamma OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HSP76_HUMAN</td>
<td>Heat shock 70 kDa protein 6 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>OLFML3_HUMAN</td>
<td>Olfactomedin-like protein 3 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>VAT1_HUMAN</td>
<td>Synaptic vesicle membrane protein VAT-1 homolog OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TPM2_HUMAN</td>
<td>Tropomyosin beta chain OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>QCR9_HUMAN</td>
<td>Cytochrome b-c1 complex subunit 9 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>NEU_A_HUMAN</td>
<td>N-acyleuraminate cytidylyltransferase OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HP1B3_HUMAN</td>
<td>Heterochromatin protein 1-binding protein 3 OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TPM1_HUMAN</td>
<td>Tropomyosin alpha-1 chain OS</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>OS</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>H4_HUMAN</td>
<td>Histone H4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MYH11_HUMAN</td>
<td>Myosin-11</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>NONO_HUMAN</td>
<td>Non-POU domain-containing octamer-binding protein</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LUM_HUMAN</td>
<td>Lumican</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PLEC_HUMAN</td>
<td>Plectin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>METK2_HUMAN</td>
<td>S-adenosylmethionine synthase isoform type-2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>TMED4_HUMAN</td>
<td>Transmembrane emp24 domain-containing protein 4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>VINC_HUMAN</td>
<td>Vinculin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LAP2B_HUMAN</td>
<td>Lamina-associated polypeptide 2, isoforms beta/gamma</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ITA5_HUMAN</td>
<td>Integrin alpha-5</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PRDX3_HUMAN</td>
<td>Thioredoxin-dependent peroxide reductase, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ATSF1_HUMAN</td>
<td>ATP synthase F(0) complex subunit B1, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ACTBL_HUMAN</td>
<td>Beta-actin-like protein 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>VITRN_HUMAN</td>
<td>Vitrin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>DERM_HUMAN</td>
<td>Dermatopontin</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>RBBP4_HUMAN</td>
<td>Histone-binding protein RBBP4</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LEMD2_HUMAN</td>
<td>LEM domain-containing protein 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CO4A2_HUMAN</td>
<td>Collagen alpha-2(IV) chain</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PGRRC2_HUMAN</td>
<td>Membrane-associated progesterone receptor component 2</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>DDX17_HUMAN</td>
<td>Probable ATP-dependent RNA helicase DDX17</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>MFS10_HUMAN</td>
<td>Major facilitator superfamily domain-containing protein 10</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SODM_HUMAN</td>
<td>Superoxide dismutase [Mn], mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CH10_HUMAN</td>
<td>10 kDa heat shock protein, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>CNDP2_HUMAN</td>
<td>Cytosolic non-specific dipeptidase</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>PGRC1_HUMAN</td>
<td>Membrane-associated progesterone receptor component 1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ATPO_HUMAN</td>
<td>ATP synthase subunit O, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>SEPT7_HUMAN</td>
<td>Septin-7</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>LEG1_HUMAN</td>
<td>Galectin-1</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>ACON_HUMAN</td>
<td>Aconitate hydratase, mitochondrial</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Description</td>
<td>Symbol</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>AMBP_HUMAN</td>
<td>Protein AMBP</td>
<td>AMBP</td>
</tr>
<tr>
<td>SCMC1_HUMAN</td>
<td>Calcium-binding mitochondrial carrier protein SCaMC-1</td>
<td>SCMC1</td>
</tr>
<tr>
<td>AOFB_HUMAN</td>
<td>Amine oxidase [flavin-containing] B</td>
<td>AOFB</td>
</tr>
<tr>
<td>SF3A1_HUMAN</td>
<td>Splicing factor 3A subunit 1</td>
<td>SF3A1</td>
</tr>
<tr>
<td>ATP5L_HUMAN</td>
<td>ATP synthase subunit g, mitochondrial</td>
<td>ATP5L</td>
</tr>
<tr>
<td>TCPE_HUMAN</td>
<td>T-complex protein 1 subunit epsilon</td>
<td>TCPE</td>
</tr>
<tr>
<td>CALX_HUMAN</td>
<td>Calnexin</td>
<td>CALXL</td>
</tr>
<tr>
<td>HXK1_HUMAN</td>
<td>Hexokinase-1</td>
<td>HXK1</td>
</tr>
<tr>
<td>ACTN1_HUMAN</td>
<td>Alpha-actinin-1</td>
<td>ACTN1</td>
</tr>
<tr>
<td>ADIPQ_HUMAN</td>
<td>Adiponectin</td>
<td>ADIPQ</td>
</tr>
<tr>
<td>ILF3_HUMAN</td>
<td>Interleukin enhancer-binding factor 3</td>
<td>ILF3</td>
</tr>
<tr>
<td>TPM4_HUMAN</td>
<td>Tropomyosin alpha-4 chain</td>
<td>TPM4</td>
</tr>
<tr>
<td>DHE3_HUMAN</td>
<td>Glutamate dehydrogenase 1, mitochondrial</td>
<td>DHE3</td>
</tr>
<tr>
<td>ITA1_HUMAN</td>
<td>Integrin alpha-1</td>
<td>ITA1</td>
</tr>
<tr>
<td>PARVA_HUMAN</td>
<td>Alpha-parvin</td>
<td>PARVA</td>
</tr>
<tr>
<td>TMX4_HUMAN</td>
<td>Thioredoxin-related transmembrane protein 4</td>
<td>TMX4</td>
</tr>
<tr>
<td>KAD2_HUMAN</td>
<td>Adenylate kinase 2, mitochondrial</td>
<td>KAD2</td>
</tr>
<tr>
<td>SFPLQ_HUMAN</td>
<td>Splicing factor, proline- and glutamine-rich</td>
<td>SFPLQ</td>
</tr>
<tr>
<td>H2AV_HUMAN</td>
<td>Histone H2A.V</td>
<td>H2AV</td>
</tr>
<tr>
<td>MDH1M_HUMAN</td>
<td>Malate dehydrogenase, mitochondrial</td>
<td>MDH1M</td>
</tr>
<tr>
<td>1433T_HUMAN</td>
<td>14-3-3 protein theta</td>
<td>1433T</td>
</tr>
<tr>
<td>GRP75_HUMAN</td>
<td>Stress-70 protein, mitochondrial</td>
<td>GRP75</td>
</tr>
<tr>
<td>EF1D_HUMAN</td>
<td>Elongation factor 1-delta</td>
<td>EF1D</td>
</tr>
<tr>
<td>CAVN3_HUMAN</td>
<td>Caveolae-associated protein 3</td>
<td>CAVN3</td>
</tr>
<tr>
<td>RS3A_HUMAN</td>
<td>40S ribosomal protein S3a</td>
<td>RS3A</td>
</tr>
</tbody>
</table>