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ABSTRACT

Globally, there has been an increase in demand for System on Chip (SoC) applications,

active medical implants, and Internet of Things (IoT) devices. However, due to

challenges in the global supply chain, the design, fabrication, and testing of Integrated

Circuits are often outsourced to untrusted third-party entities around the world rather

than a single trusted entity. This situation presents an opportunity for adversaries

to compromise the device’s integrity, performance, and functionality by inserting

malicious modifications known as Hardware Trojans (HTs) into the original design.

HTs can also create a backdoor in the system for malicious alterations.

The problem of hardware trojans is tackled in this thesis through the applica-

tion of two types of machine learning models. The proposed methodology involves

utilizing netlist features of the digital hardware design generated from synthesis and

inputting them into the machine learning model. Additionally, measures are taken

to prevent interdependence among features, which could lead to overfitting on the

training dataset.
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CHAPTER 1:

INTRODUCTION

Internet of Things (IoT) is a huge network that encompasses and connects various

information-sensing devices, such as: radio frequency identification devices (RFID),

infrared sensors, and global positioning systems. The IoT is emerging as the third

wave of the world information industry after computers and the internet. The preva-

lence of Integrated circuits (ICs) increases in various fields in IoT, and the potential

risk of hardware Trojans in ICs are becoming a significant concerns, as they are used

daily and must store and process huge amounts of user-sensitive data. If an attacker

exploits such information, it may seriously damage or endanger user privacy, which

can lead to threatening users’ safety.

The core component of an IoT device is a system-on-a-chip (SoC). However, due

to the current trend of decreasing size and increasing complexity, modern SoC designs

have become significantly challenging and expensive for chip manufacturers to handle.

To address this, manufacturers are turning to Third Party IPs (3PIP) which provides

cost-effective solutions due to the reusability of IP cores. This allows manufacturers

to allocate their resources to meet market demands and pressure to meet deadlines.

However, the security and reliability of 3PIP cannot be guaranteed, and relying on

untrusted IPs can greatly increase the risk of hardware trojan insertion.

A Hardware Trojan (HT) is a harmful modification made to an Integrated Circuit
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that can result in the leakage of sensitive information, system functionality changes,

performance degradation, denial-of-service (DoS), or even create a backdoor to the

entire system. Given the widespread use of IC chips in critical infrastructure, military

devices, and biomedical devices, an undetected Hardware Trojan could be fatal.

Figure 1.1: IC development phase.

The standard IC physical design and layout process, depicted in Figure 1.1,

spans from system-level specification to fabrication and testing. At each stage of this

process, there exists the possibility of incorporating a Hardware Trojan into the IC.

The objective of this study is to identify any HT that may have been inserted during

the design phase.

Suppose a company has sent its physical digital hardware design known as ”Graphic

Design System II (GDSII)” to a fabrication company that may not be trustworthy.

A recent study by Rajarathnam et al [1] introduces a reverse engineering framework

named ReGDS. ReGDS employs a technology library to extract transistor-level con-

nectivity information from the GDSII layout, and utilizes relationship-based matching

to identify logic gates and subsequently retrieve the original gate-level netlist. The

outcome of the research revealed that ReGDS succeeded in recovering the original

digital design from the layout with a 100% success rate.

To prevent this, I propose that the design company should verify the authenticity
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of the manufactured chip by measuring specific features of the fabricated chip, such as

power consumption, power leakage, and area. This can be done using techniques such

as Scanning Electron Microscopy (SEM) or Focused Ion Beam (FIB) to measure the

chip’s layers and area. These features are crucial in digital hardware design because

power and area have a relationship.

In the event that the fabrication company inserts a logic trojan that remains

dormant until a particular trigger is activated, it could conceal any surge in power

consumption by having a Logic Gate that does not consume power until the trigger is

activated. This would usually result in an increase in the overall area or the number

of layers of the chip. By inputting these features into a machine-learning model before

and after fabrication, linearity between features can be checked to avoid overfitting

and ensure a high probability of detecting any malicious modifications introduced by

the untrustworthy fabrication company.

1.1 Characterization of Hardware Trojans

A Hardware Trojan consists of a trigger and a payload circuit. The trigger mechanism

monitors the chip and activates the payload under rare conditions to evade possible

HT detection solutions in the post-fabrication testing, as illustrated in Figure 1.2.

HTs pose several threats to the security of electronic devices such as:

1. Data theft: HTs can be designed to leak data, such as encryption keys, user

data, or confidential information, to an attacker.

2. Denial of service: HTs can be designed to cause the device to fail, disrupt the

system’s normal functioning, or cause it to shut down, leading to a denial of

service attack.
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Figure 1.2: HT with a trigger mechanism and a payload [2]

3. Malware insertion: HTs can be designed to allow attackers to insert malware

onto the device, which can then be used to gain access to other parts of the

network.

4. Backdoors: HTs can be designed to create backdoors in the device’s security,

allowing attackers to bypass security measures and gain unauthorized access.
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1.2 Effect of Hardware Trojans

Hardware Trojans are malicious modifications made to the hardware of a chip during

its design or manufacturing process, which can cause a wide range of detrimental

effects. The exact impact of a hardware Trojan depends on its design and goals.

For instance, a suspected nuclear facility in Syria was bombed by Israeli jets in

2007, because Syrian radar was crippled by a remote kill switch thru a backdoor in

its commercial off-the-shelf microprocessor [3]. Similarly, the U.S. military in 2010

discovered a hardware Trojan embedded in over 59,000 microchips purchased for use

in various systems, ranging from missile defense to friend-or-foe identification devices.

This hardware Trojan gave adversaries a backdoor entry into their entire system [4].

In 2012, HTs were found in Actel/Microsemi ProA-SIC3 chips, which were used in

military-grade FPGAs, and they added unwanted JTAG functionality to the silicon

itself, allowing adversaries to extract secret keys, manipulate the chip’s configuration,

and take control of the system [5]. Furthermore, after observing unusual network

activity and firmware problems in 2015, Apple detected a questionable chip in their

Supermicro servers [6].

1.3 Research Motivation

The presence of these Trojans on a chip can lead to data theft, device malfunction,

and other dangerous consequences. As the complexity and diversity of ICs continue

to grow, traditional techniques for detecting Hardware Trojans such as manual in-

spection, side-channel analysis, and fault injection become less effective and efficient.

To address this challenge, researchers have turned to Machine Learning techniques

to detect Hardware Trojans on chips. Machine Learning models can learn from a large
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dataset of ICs with and without Trojans and identify patterns and anomalies in the

circuit behavior. These models can then be used to automatically detect the presence

of Hardware Trojans in new ICs.

Machine learning (ML) has emerged as a significant tool in detecting hardware

trojans, which can enhance the security and reliability of integrated circuits. In several

critical applications, such as automotive, aerospace, and defense systems, the integrity

of these circuits is crucial. By utilizing ML algorithms, it is possible to improve the

detection of hardware trojans and ensure the trustworthiness of integrated circuits.

1.4 Thesis Statement

The objective of this research is to answer the following question: In the pre-silicon

phase, is there a reliable and efficient method to detect the presence of a

trojan that may have been embedded in the digital hardware design?

1.5 Contributions and outline

The key contribution of this research is on two aspects:

1. The feature extraction from digital hardware design after synthesis.

2. The reduction of linearity between features that are caused by scaling the netlist

features in ML.

The reason for reducing linearity between features is that machine learning algo-

rithms cannot comprehend measurement units such as power (mW) or area (um2),

and can only process numerical values. Therefore, each feature is scaled between

(0,1), resulting in linearity between features. Reducing these linearities can help the

machine learning algorithm avoid overfitting the training data, leading to improved
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performance for hardware trojan detection across different trust benchmarks [7].

The rest of the thesis is organized as follows: Chapter 2 of the thesis provides a

comprehensive background on Hardware Trojan, Machine Learning, and Literature

work. In Chapter 3, the extracted features and algorithm selection for detecting

hardware trojans are presented. Chapter 4 presents the efficiency and accuracy of

each machine learning model using the Confusion matrix. Lastly, chapter 5 presents

the conclusions derived from the research and future work.
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CHAPTER 2:

BACKGROUND

2.1 Introduction to Machine Learning

Machine learning is a sub-field of artificial intelligence that focuses on developing

algorithms and models that enable computers to learn from data and make predictions

or decisions based on that learning. The goal of machine learning is to develop

computational methods that can improve automatically through experience, without

being explicitly programmed.

In machine learning, the algorithms are trained on a dataset, which contains input

data and corresponding output data, known as labels. The algorithms use this data

to learn patterns, relationships, and correlations in the data, and to build models

that can predict the output for new, unseen data. The models are then tested on

a separate dataset, called the test set, to evaluate their accuracy and generalization

performance.

There are different types of machine learning techniques, including supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning involves training the algorithms on labeled data, while unsuper-

vised learning involves training the algorithms on unlabeled data. Semi-supervised

learning uses a combination of labeled and unlabeled data, while reinforcement learn-



9

ing involves training algorithms to make decisions in an environment to maximize a

reward signal. In this work, it uses the supervised and unsupervised machine learning

to extract insights and knowledge from data.

2.1.1 Supervised Machine Learning

Supervised learning is a type of machine learning where the algorithms are trained on

labeled data, meaning that the input data has a known output or target variable. The

goal of supervised learning is to learn a mapping function from the input variables

to the output variable. This mapping function can then be used to make predictions

on new, unseen data. There are two main types of supervised learning: classification

and regression.

In Figure 2.1, on the left it shows a dataset were a classification is required to

effectively divide the dataset into classes based on different parameters; on the right, it

shows correlations between dependent and independent variables in order to predict

the continuous variables such as prediction of Market Trends, or one of the most

common example is to predict student passing or failing exams according to the

combination of number of hours he/she has slept and hours spent for studying.

Figure 2.1: Classification vs. Regression[8]
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2.1.1.1 Classification

The algorithm learns to predict the class or category of the input data based on

its features. There are several classification algorithms that are commonly used in

supervised learning. Some of the most widely used classification algorithms are:

1. Decision Tree:

An effective way to introduce the concept of decision trees is to explain that

they emulate human cognition by using a series of questions and answers to

classify or predict an outcome based on the input features. The more complex

a situation comes, the deeper and wider the tree becomes as shown in figure

2.2.

Figure 2.2: Decision Tree [9]

A decision tree algorithm that people may encounter in their daily routine is

exemplified by watching a documentary or reading an article on a particular

topic. For instance, if someone watches a documentary on a certain historical

era or reads about how neurons transmit information in the brain, YouTube or

Google may use a decision tree algorithm to suggest related articles or videos

that match their interests.
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2. Random Forest:

The random forest classifier is an ensemble learning method used for classifica-

tion tasks. It derives its name from the fact that it consists of a large number of

individual decision trees. These trees are constructed independently and their

outputs are combined to make the final prediction as shown in Figure 2.3. En-

semble learning refers to the technique of combining multiple machine learning

models to improve their performance and accuracy.

Figure 2.3: Visualization of a Random Forest Model Making a Prediction
on a coronal slice [10]
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Random Forest can be used for fraud detection in various industries such as

finance, insurance, and e-commerce. It can analyze large datasets to identify

patterns and anomalies that may indicate fraudulent activity. For example, if

a particular customer’s transaction history deviates significantly from the norm

or if certain transactions occur at unusual times or locations, it may trigger a

fraud alert.

3. Naive Bayes:

Naive Bayes is a supervised machine learning algorithm that can be trained to

classify data into multi-class orders. In the heart of the Naive Bayes algorithm

is the probabilistic model that computes the tentative chances of the input fea-

tures and assigns the probability distributions to each of the possible classes.

This algorithm has great benefits similar to being easy to apply and fast to

train [11].

Figure 2.4: Detecting spam emails using Naive Bayes classification algo-
rithm
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The Naive Bayes algorithm is utilized in various applications such as spam

filtering, where it calculates the probability of an email being spam based on

certain words or phrases, like ”easy” and ”money”, as illustrated in Figure 2.4.

Additionally, [12] demonstrates a probability-based rainfall prediction, which

takes into account factors like humidity, temperature, wind direction, and speed

to predict whether it will rain in a specific area using a Naive Bayes model.

4. Support Vector Machines (SVM):

As shown in Figure 2.5, SVM splits data with a line and it adds margins into

the equation as a tool to further improve the accuracy of the training model.

It finds the best hyperplane that separates the data into different classes by

maximizing the margin between the hyperplane and the closest data points [9].

Figure 2.5: Support Vector Machines Classification Algorithms
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One common use of SVM is in text classification, such as sentiment analysis.

SVM can be used to classify whether a given text (such as a review or tweet)

expresses a positive or negative sentiment. In this case, the SVM is trained on a

labeled dataset of text samples, where the output labels indicate the sentiment

expressed in the text.

5. K-Nearest Neighbors (KNN):

This algorithm is used for classification and regression tasks [13]. It is a non-

parametric algorithm, which means it does not make any assumptions about

the distribution of the data. KNN works by finding the k nearest data points

to a new input data point and then classifying the new data point based on the

class of those k nearest neighbors. In other words, KNN uses the majority class

among the k nearest neighbors to predict the class of the new data point. The

value of k is a hyperparameter that can be tuned to optimize the performance

of the algorithm. KNN is a simple and intuitive algorithm, but it can become

computationally expensive for large datasets, and the choice of k can have a

significant impact on the accuracy of the predictions. KNN has many appli-

cations, including image recognition, text classification, and recommendation

systems.

An example of the KNN classifier is image classification, where a dataset of

images featuring creatures resembling cats and dogs can be used to determine

whether a given creature in an image is a cat or a dog. The KNN algorithm

operates based on a similarity measure, making it suitable for this type of task

as shown in figure 2.6.
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Figure 2.6: KNN Classifier [14]

2.1.1.2 Regression

The algorithm learns to predict a numerical value or a continuous output variable

based on the input features. There are several regression algorithms that are com-

monly used in machine learning. Some of the most widely used regression algorithms

are:

1. Linear Regression:

Linear regression is used for predicting a continuous outcome variable based on

one or more input variables that are continuous or categorical [15]. It assumes

that there is a linear relationship between the input variables and the outcome

variable. In other words, linear regression aims to find the best-fitting straight

line that describes the linear relationship between the dependent variable and

the independent variable(s). As shown in Figure 2.7, the objective of linear

regression is to find the line of best fit that minimizes the sum of the squared

errors between the predicted values and the actual values.

One of the most common examples of linear regression is predicting house prices

based on various features such as the number of bedrooms, square footage,
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Figure 2.7: Linear Regression

location, etc. The idea is to fit a line (or hyperplane in higher dimensions)

through the data points that best represents the relationship between the input

features and the target variable (house price in this case). Once the line is

fitted, it can be used to predict the house price for new houses based on their

input features.

2. Logistic Regression:

Logistic regression is used to predict a binary outcome variable based on one or

more input variables that can be continuous or categorical [16]. It models the

probability of the binary outcome variable as a function of the input variables,

using a logistic function. The objective of logistic regression is to find the val-

ues of the coefficients of the logistic function that maximize the likelihood of

the observed data. It learns a linear relationship from the given dataset and

introduces a non-linearity in the form of the logistic sigmoid function to model

the probability of the binary outcome as shown in figure 2.8.

One example of logistic regression is predicting whether a customer will pur-

chase a product or not based on their demographic and behavioral data such
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Figure 2.8: Logistic sigmoid function

as age, gender, income, past purchase history, etc. Another example is predict-

ing whether a patient has a particular disease based on their medical history,

symptoms, and other factors.
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2.1.2 Unsupervised Machine Learning

Unsupervised learning is a type of machine learning in which the algorithms are

trained on unlabeled data, meaning that the input data has no known output or

target variable. The goal of unsupervised learning is to find patterns and structures

in the data and to group similar instances together.

Unsupervised learning is all about understanding how to effectively group data, if

the following took place:

1. Do not have a label to predict. An example of this is analyzing brain scans

to identify areas that may indicate potential health concerns. Since there are

no labels on the images, it can be difficult to determine which areas may be

problematic. However, an algorithm can group areas based on their similarity

or dissimilarity, which allows us to identify potential issues.

2. Are not trying to predict a label, but rather group data together. An example

of this is when you have a large number of features, and you want to condense

it down to a smaller set of features to be used.

The two main types of unsupervised learning are clustering and dimensionality

reduction:

1. Clustering:

is a process of grouping similar data points together into clusters based on their

intrinsic properties or similarities. The goal is to identify patterns and structures

in the data without prior knowledge of the class labels or output variables.

Examples of clustering algorithms include k-means, hierarchical clustering, and

density-based clustering.
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Figure 2.9: Clustering vs. Dimensionality Reduction

2. Dimensionality Reduction: is a process of reducing the number of input

features while preserving the most important information or structure of the

data. The goal is to simplify the data representation and improve the computa-

tional efficiency of subsequent analysis. Examples of dimensionality reduction

techniques include Principal Component Analysis (PCA), Random Projection,

and Independent component analysis (ICA)

2.1. Random Projection:

As shown in Figure 2.9, Random Projection is a technique used for reducing

the number of dimensions in a dataset while maintaining its structural integrity.

The approach involves projecting the original data onto a lower-dimensional

space that is selected randomly. This projection can be viewed as a linear

transformation that seeks to preserve the distance between the data points

to the greatest extent possible. Compared to PCA, Random Projection is a

more computationally efficient method for reducing the number of dimensions

in large datasets. The dimension of the transformed data is determined by an

error term, epsilon, which governs the amount of distance or information from

the original dataset that is preserved.
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2.2 Introduction of Hardware Trojan

A hardware Trojan refers to the malicious modification of a chip or integrated circuit

during the manufacturing process, which can compromise the security and function-

ality of the hardware. Hardware Trojans can be introduced by insiders, such as

employees or contractors, or by attackers who gain access to the manufacturing facil-

ities. Hardware Trojans can take many forms, including modifications to the logic or

functionality of the chip, insertion of additional circuitry, or changes to the power or

timing characteristics of the device. Once a Trojan is implanted, it can be activated

remotely to perform a variety of malicious activities, such as stealing data, altering

system behavior, or even rendering the device inoperable.

Hardware Trojans are a significant concern for the security of critical systems such

as military and aerospace applications, financial systems, and other systems where

the integrity of the hardware is crucial. The detection and prevention of hardware

Trojans is an active area of research in the fields of hardware security and trusted

manufacturing.

2.2.1 Characterization of Hardware Trojans

In Figure 2.10 illustrate multiple methods to classify Hardware Trojans (HT), which

are based on their characteristics and behavior, including their Physical Characteris-

tics, Activation Mechanism, and Action Phase (Effect).

1. Physical Characteristics

Trojans can be classified based on their physical characteristics, which can

either be functional or parametric in nature.
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Figure 2.10: Comprehensive HT taxonomy [7]

(a) A functional Trojan is a type of hardware Trojan that involves the addi-

tion or deletion of gates or flip-flops from the original design, allowing an

attacker to gain unauthorized access to the device or modify its behavior in

some way. An example of a functional Trojan is the insertion of malicious

code into a microprocessor.

(b) Parametric Trojan - modify the original circuitry. For example: diluting

flip-flops, or subjecting the chip to radiation to reduce the reliability of the

chip.

2. Activation Mechanism

Hardware Trojans (HT) are initiated by an event or condition called an ”acti-

vation mechanism”, which can be classified based on factors like a specific

input sequence, operating condition, or time. There are various methods

to trigger HTs, including:
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(a) Internally activated where the malicious circuitry in the chip awakes the

Trojan after a specific period of time, as illustrated in Figure 1.2.

(b) Externally activated where the malicious logic placed inside the chip uses

an antenna or other sensors to allow the adversary to access the design

externally. One example of this type of Hardware Trojan is when it’s

hidden in the control system of a cruising missile, enabling the attacker to

remotely access and manipulate the system [4].

3. Action Phase (Effect)

Hardware Trojans can be categorized based on their effects, which refers to the

behavior displayed by the Trojan once it has been activated. This behavior

may involve data theft or modification, disruption of the system’s normal

operation, denial of service, or unauthorized hardware access.

2.3 Survey of datasets and features used in

Hardware Trojan detection

Hardware Trojan detection using machine learning requires the availability of datasets

containing good circuits, which serve as a reference model, and circuits with Trojans,

which serve as the target for detection. In addition, the selection of appropriate

features that capture the circuit’s behavior is crucial for the success of the machine

learning algorithm. In this section, I will provide a survey of some of the commonly

used datasets and features in hardware Trojan detection.

My dataset was built on the Hardware Trojan Benchmarks. The benchmarks used

in this thesis are from trust benchmark [7], which is a benchmark circuit (composed of
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generic circuits at the RTL, gate, or layout level) that intentionally incorporates Tro-

jans at difficult-to-detect, significant, and/or opportunistic locations (e.g., uncommon

nodes, layout white-space, etc.). The Trojans are inserted at different stages of the

design process and vary in their types and functionalities, including stealthy Trojans,

combinational Trojans, and sequential Trojans. The dataset also provides several

sets of features, such as Number of cells, number of buf/inv, Total cell area, leakage

power, power consumption measurements. It contains 907 digital circuits with 21

Trojan-free circuits and 886 Trojan-infected circuits.

2.4 Literature Review

HT detection has been and still is a back-and-forth tug of war. Whenever a new

Hardware Trojan detection method capable of detecting current HTs is proposed, a

new trojan emerges to bypass the current detection method.

One of the earliest shield mechanisms against Hardware Trojan approaches is

proposed by Hicks etal [17] called Unused Circuit Identification (UCI) mechanism

that can identify the suspicious circuitry during design verification. A year later, a

new design emerged by Sturton etal [18] called Stealthy and Malicious Circuit (SMC)

to bypass the UCI method by hiding HT in nearly-unused logic. Rajendran et al [19]

proposed a detection method that detects information leaking Trojans and produces

the trigger condition for the Trojan. His technique was able to detect a leak in the

cryptographic key for AES-600 but failed in detecting a leak in the cryptographic key

for AES-T1200.

Even though numerous methods for detecting Hardware Trojans have been pro-

posed in the literature, a reliable and efficient approach to identifying emerging Hard-

ware Trojans is still needed. In [20], the discussion centered around the importance
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of supervised and unsupervised learning in IoT, as well as the limitations of vari-

ous machine learning techniques due to overfitting of the machine learning models in

ensuring IoT security.

In [21], a machine learning technique was suggested for identifying Hardware Tro-

jans by examining power consumption. Furthermore, a specialized many-core plat-

form was constructed, which utilized a supervised machine learning algorithm pow-

ered by SVM to recognize communication attacks activated by HTs. This approach

attained an accuracy rate of 94% [22]. Nonetheless, these approaches concentrated

solely on detecting HTs during run-time and didn’t involve extracting Trojan features

from the design netlist, which would be more effective since the gate-level netlist in-

cludes a comprehensive list of gate and IP connections with functional and timing

behaviors of the design.

In [23], information entropy-based clustering was employed, with the feature

threshold set for Trojan detection. The DBSCAN model was used in [24] without

setting the feature threshold value to detect Hardware Trojans. Another clustering

method is proposed in [25] based on fuzzy logic for cryptographic applications. Au-

thors of [23],[24], and[25] applied their techniques on a few types of HT circuits, also

they encountered low accuracy due to the linearity between features caused by scaling

the dataset in machine learning.

In[26], a total of fifty-one trojan features were extracted for HT detection. The

best 11 trojan features were manually selected to be used as inputs for the Ran-

dom forest classifier algorithm, resulting in an accuracy of 74.6% on only 12 bench-

marks. Hasegawa et al. [27] focused on detecting hardware Trojans in pre-silicon

using a machine-learning-based model. They extracted net features from the design
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post-synthesis and utilized a supervised machine learning algorithm based on Sup-

port Vector Machine (SVM) to distinguish between Trojan-free and infected designs.

However, due to the linearity between features caused by scaling the dataset in ma-

chine learning, the effectiveness of this approach was limited resulting in an 85.28%

for TPR.

A Neural Network model was employed in [28] utilizing eleven Trojan netlist fea-

tures to detect hardware Trojans. However, the approach failed to be effective because

of the linearity between the features caused by machine learning, resulting in a TNR

accuracy of 59.5%. On the other hand, the RG-Secure framework, introduced in [29],

implemented a lightweight gradient lifting algorithm to detect hardware Trojans con-

currently at the register-transfer level and gate-level netlist. Although the accuracy

of this approach was found to be high, it was only effective on a limited number of

hardware designs, with one instance of hardware Trojan exhibiting a detection rate

below 60%.

Multi-layer back propagation neural networks and one-class SVM were proposed

in [30] to detect hardware Trojans (HTs) utilized for information leakage and identify

their precise location in the design. This approach achieved a True Positive Rate

(TPR) of 85.05% and a True Negative Rate (TNR) of 73.91%. Additionally, an

unsupervised machine learning algorithm combining Principal Component Analysis

(PCA) and Local Outlier Factor (LOF) algorithm for Trojan Detection at the gate-

level-netlist, named PL-HTD, was introduced in [31]. Due to overfitting the training

dataset, this approach showed an average true positive rate of 42.42%.
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CHAPTER 3:

FEATURE EXTRACTION AND ML

ALGORITHM SELECTION

3.1 preliminaries

This chapter covers the technique used to extract features from the hardware design

of a chip, as well as the selection of a machine learning algorithm for detecting HT

embedded in the design.

3.2 Introduction

Hardware description languages (HDLs) are specialized programming languages used

in digital circuit design to describe the behavior and structure of digital circuits at var-

ious levels of abstraction, from high-level system design to low-level gate-level netlists.

Verilog and VHDL are the most commonly used HDLs by industry, and they are used

to model digital systems, simulate, and synthesize them into real hardware. These

languages allow designers to describe complex digital circuits with ease, providing a

way to verify their functionality before manufacturing. HDLs are an essential part of

the digital design process and are used extensively in the semiconductor industry to

design and verify the functionality of digital circuits.
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3.3 Hardware Trojan Detection Flow Diagram

Figure 3.1 shows the proposed HT detection scheme which consists of the following

steps:

Start

HDLs –> Gate-level netlist

Extracting features from the netlist

Decision

Unsupervised model

Hybrid Ensemble modelSupervised model

Output

Stop

Step1 Synthesis

Step2 Reports

Step3 Choose a model

Step 3B

Step 3CStep 3A

Step4 Performance Evaluation

Figure 3.1: Hardware Trojan detection scheme
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1. Step 1: Synthesis

The process is initiated by writing a Tcl script that tests the behavioral Verilog

to ensure that the digital hardware design meets the specified constraints for

timing, power, and area. Violations of these constraints may occur if the design

does not meet the maximum time delay, power consumption, or area limits.

The Tcl script used to accomplish this task sets the clock period to 20000 ps

to achieve an operating frequency of 50 MHz and defines the use of a 45nm

technology package.

2. Step 2: Feature Extraction

The Cadence genus tool was employed to produce several reports that detail the

design’s timing, power, and area, as depicted in Figures D.1 , D.2, D.4 and D.3

included in Apendix D. Each feature includes subsets of components utilized

to compute the constituent parts of the feature, as illustrated in Table 3.1. A

total of Thirty-One netlist features are extracted to construct a database that

is then used to train machine learning models for discerning whether the design

is contaminated with a trojan or not.

3. Step 3: Decision (Choosing a Machine Learning Model)

The focus of this stage is to establish the methodology for training on netlist fea-

tures, which comprises three distinct procedures. The best-performing method

is retained for future testing. The initial procedure entails applying a super-

vised machine learning approach, the second entails utilizing an unsupervised

machine learning approach, and the third involves implementing a hybrid en-

semble model.
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Table 3.1: Extracted Features for Trojan Detection

Features extracted for detection
Area Power consumption

Number of ports Cell Internal Power
Number of nets, Net Switching Power
Number of cells, Total Dynamic Power

Number of combinational cells Cell Leakage Power
Number of sequential cells Register Internal Power

Number of buf/inv Register Switching Power
Number of references Register Total Power
Combinational area Total Switching Power

Buf/Inv area Sequential Internal Power
sequential area Total Power
Total cell area Sequential Leakage Power

Combinational Internal Power
Combinational Switching Power
Combinational Leakage Power
Combinational Total Power
Register Leakage Power
Total Internal Power
Total Leakage Power

Sequential Switching Power
Sequential Total Power

Step 3A: Supervised machine learning model

(a) Step 3A.1: Dropping step

In this stage, the correlation coefficient is utilized to evaluate the degree

of linear relationship between features. Features that exhibit high cor-

relations are considered to be linearly dependent, with a perfect positive

correlation represented by a value of 1 and a perfect negative correlation

represented by a value of -1. Features that do not display a linear rela-
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tionship are regarded as independent, with a value of 0 denoting no lin-

ear correlation. To prevent overfitting of the machine learning algorithm

on the training dataset, one of the two features with high correlation is

removed. Heat maps are employed to demonstrate the interdependence

between features, as depicted in figures D.5 and D.6.

(b) Step 3A.2: Data Shuffling

Shuffling the datasets is crucial prior to training in order to prevent the

model from learning a specific pattern. This helps to decrease variance

and enables the model to perform well on unfamiliar data.

(c) Step 3A.3: MinMaxScaler

The MinMaxScaler class is utilized to scale the datasets, where each feature

is scaled and shifted independently to ensure that it falls within the range

of (0,1) in the training set. The use of MinMaxScaler is advisable if a

normal distribution is desired, and the effect of outliers is minimized.

(d) Step 3A.4: Random Forest Classifier

The random forest classifier is a meta-estimator that involves fitting mul-

tiple decision tree classifiers on different sub-samples of the dataset. This

technique employs averaging to enhance the predictive accuracy and mit-

igate overfitting, making it suitable for classifying whether a feature is

infected with a Trojan or not.
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Step 3B Unsupervised machine learning model

(a) Step 3B.1: Removing Labels

Removing labels is crucial in the approach of using an unsupervised ma-

chine learning model, as it aims to reduce bias in the model. The model is

designed to identify patterns or clusters in the data with minimal human

involvement.

(b) Step 3B.2: Shuffling Data

Similar to the supervised learning model, the datasets must be randomized

in order to ensure that the model can effectively generalize to unfamiliar

data.

(c) Step 3B.3: Random Projection

At this stage, utilizing the Sparse Random Projection method reduces the

dimensionality of the datasets in Euclidean space, which not only ensures

consistent embedding quality but also enhances the speed of computation

for the projected data. The quality of the dimensionality reduction is

controlled by epsilon in the Sparse Random Projection. Epsilon determines

the level of distortion allowed in the projection process, meaning it specifies

the acceptable error when approximating the high-dimensional data in the

lower-dimensional space.

(d) Step 3B.4: Random Forest Classifier

By using Random Forest Classifier after applying Sparse Random Projec-

tion in the Hardware Trojan detection process, the impact of irrelevant or

redundant features in the data can be minimized, which reduces the risk of
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overfitting and improves the generalization performance of the algorithm.

• Step 3C: Hybrid Ensemble Model

The Hybrid Ensemble model is a type of machine learning model that inte-

grates multiple models from diverse families to generate predictions. In the

present study, the following models were employed: Logistic Regression,

Decision Tree, Support Vector Machine, K-Nearest Neighbor, and Naive

Bayes, as illustrated in Figure D.7.

Each model in the hybrid ensemble is configured with distinct param-

eters. For instance, the Decision Tree Classifier has varying maximum

depth settings of 2, 3, 4, and 5. The Logistic Regression model applies L2

regularization to penalize the sum of squares of the weights. In the case

of the Support Vector Classifier (SVC), kernel parameters include linear,

poly, and Radial Basis Function (RBF). Likewise, K-Nearest Neighbor and

Naive Bayes models also have specific parameter settings.

Then the voting classifier employs a hard voting ensemble approach where

it aggregates the votes for discrete class labels from other models and

makes predictions based on the class with the highest number of votes.

4. Step 4: Results

The last stage of the hardware trojan detection process involves evaluating the

performance of each model to ensure accuracy, which is achieved using the

confusion matrix. This metric is commonly used in Machine Learning classi-

fication problems that have multiple output classes. However, since this is a

binary classification problem where the output is either “Free Trojan” (0) or
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“Trojan-infected” (1), the confusion matrix comprises four possible combina-

tions of predicted and actual values, as shown in Figure 3.2.
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Figure 3.2: Confusion Matrix

Specifically, TP indicates that the model correctly predicts a Trojan-infected

chip, TN indicates that the model correctly predicts a Trojan-free chip, FP indi-

cates that the model wrongly predicts a Trojan-infected chip, and FN indicates

that the model wrongly predicts a Trojan-free chip.

For further explanation on how the confusion matrix is used to evaluate the

model’s accuracy, precision, recall, and F1 score (F-measure), which are all

important performance metrics for evaluating classification models. Here is the

formula of each metric and explanation:

(a) Accuracy

is simply a measurement of how often the model makes a correct prediction.

It is calculated by dividing the number of correct predictions by the total

number of predictions made. Accuracy = (TP + TN) / (TP + TN + FP

+ FN)
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(b) Precision

is simply a measure of how many times the model achieved correct predic-

tion out of all the total positive predicted.

Precision = TP / (TP + FP)

(c) Recall

measures the proportion of actual positive instances that are correctly

classified as positive by the model. A high recall indicates that the model

is able to identify most of the positive instances correctly. A low recall

indicates that the model is missing a significant number of actual positive

instances. Recall is an important metric, especially in situations where

identifying positive instances is critical, such as hardware trojan detection.

Recall = TP / (TP + FN)

(d) F-measure (F1 Score)

is a measure of a classification model’s performance that takes both Pre-

cision and Recall into account. It is the harmonic mean of Precision and

Recall and is calculated as:

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

The F1 score provides a balance between Precision and Recall, making it

a useful metric for evaluating models in situations where both high Preci-

sion and high Recall are important. For example, in a medical diagnosis

scenario, both high Precision (correctly identifying those with the condi-

tion) and high Recall (correctly identifying all those with the condition)

are crucial for an accurate diagnosis.
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CHAPTER 4:

PERFORMANCE EVALUATION AND

RESULTS

4.1 Preliminaries

In this chapter, the results of detecting hardware Trojans using the machine learning

classification models are presented. Furthermore, the number of features integrated

into the model after eliminating linearity among them is included, along with accuracy

and precision measurements obtained through the confusion matrix.

4.2 Results

Table 4.1: RESULTS OF MACHINE-LEARNING-BASED CLASSIFICATION

Approach N-Features TN FP FN TP TPR TNR precision F-measure Recall
Supervised 9 280 2 5 622 99.2% 99.2% 99.6% 99.3% 99.2%
Unsupervised 3 282 1 3 623 99.5% 99.6% 99.8% 99.6% 99.5%
Hybrid Ensemble 9 27 14 239 629 72.47% 65.85% 97.82% 83.26% 72.47%

The performance evaluation results for the classification models are presented in

Table 4.1. When the supervised learning model was applied using only nine Trojan

features, it achieved a 99.2% true positive rate (TPR) and true negative rate (TNR)

on all netlists, successfully classifying them as either Trojan-Infected or Trojan-Free.

On the other hand, the unsupervised learning model approach identified a 99.5%
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TPR and 99.6% TNR using only three Trojan features. The hybrid ensemble model

yielded a TPR of 70.07% and a TNR of 0%.

4.3 Comparison of the proposed approach with

existing methods

Table 4.2: COMPARISON TO AN EXISTING METHODS

Approach/Paper Precision F-measure TPR TNR
Supervised [27] 2.8% 5.2% 85.28% 52.67%
Supervised [28] - - 85% 70%
Supervised [26] 92.2% 74.6% 68.32% 99.7%

Unsupervised [32] - 93.9% - -
Supervised Ours 99.1% 98.8% 99.2% 98.8%

Unsupervised Ours 99.5% 99.4% 99.5% 99.6%
Hybrid Ensemble Ours 97.82% 83.26% 72.47% 65.85%

Table 4.2 compares the proposed hardware Trojan detection models with other ex-

isting approaches in terms of precision, F-measure, TPR, and TNR. The proposed ap-

proaches outperformed the other methods, suggesting that removing linearity among

the features improved the model’s ability to achieve higher accuracy in detecting

hardware Trojans on the test dataset.
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CHAPTER 5:

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, two machine learning algorithms are used to detect Hardware Trojans

from the extracted features of hardware designs before and after embedding a HT.

These features were extracted using the Genus tool in Cadence, which provides de-

scriptions of the hardware design such as power, area, gate, and timing analysis, as

explained in chapter 3, step 2 of feature extraction.

To detect Hardware Trojans, the proposed method incorporates three machine

learning models: a supervised model, an unsupervised model, and a hybrid ensemble

model. The supervised model employs Thirty-Three Trojan features and analyzes the

linearity between these features using a correlation matrix. Conversely, the unsuper-

vised model utilizes Random Projection to randomly select fewer features, thereby

enhancing accuracy when a Random Forest Classifier is employed. Additionally, a

Hybrid Ensemble model is introduced that integrates multiple models from distinct

families, such as Logistic Regression, Decision Tree, Support Vector Machine (SVM),

K-Nearest Neighbor (KNN), and Naive Bayes.

The supervised learning model achieved a maximum TPR of 99.2% and TNR

of 98.8%, whereas the unsupervised learning model outperformed it with a TPR of



38

99.5% and TNR of 99.6% across all benchmarks. On the other hand, the Hybrid

Ensemble model obtained a lower TPR of 71.73%.

5.2 Future Work

In this section, we explore potential directions for future research in Hybrid Ensemble

models for hardware trojan detection. One area of focus is the investigation of various

models that can be combined to enhance accuracy, including traditional machine

learning models like decision trees and support vector machines, as well as deep

learning models like convolutional neural networks and recurrent neural networks.

Another research area is the development of more resilient ensemble methods that

can manage variations in hardware design. This could entail using techniques such

as adversarial training to bolster model resistance against tampering and attacks.

Lastly, there is a need for scalable ensemble methods for hardware trojan detection,

particularly as hardware designs become more intricate. This could involve the use

of distributed ensemble methods, such as federated learning, that can process vast

amounts of data in parallel while preserving privacy.

In conclusion, future research holds immense potential for developing more robust

and accurate Hybrid Ensemble methods for hardware trojan detection, which will

help safeguard the security and integrity of hardware systems.
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APPENDIX A:

HYBIRD ENSEMBLE PYTHON CODE

#Import ing the l i b r a r i e s

import numpy as np

import matp lo t l i b . pyplot as p l t

import pandas as pd

from s k l e a rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

from s k l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from s k l e a rn . svm import SVC

from s k l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r

from s k l e a rn . na ive bayes import GaussianNB

from s k l e a rn . ensemble import Vo t i n gC l a s s i f i e r

from s k l e a rn import mode l s e l e c t i on

from s k l e a rn . met r i c s import con fus i on mat r ix

from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
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# Encoding c a t e g o r i c a l data

from s k l e a rn . p r ep ro c e s s i ng import LabelEncoder , OneHotEncoder

from s k l e a rn . u t i l s import s h u f f l e

from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler

#Reading the da t a s e t

X=prepare data ( ”Benchmark Feature Extract ion . x l sx ” )

d i sp l ay . d i sp l ay (X. columns )

X, y=prep roc e s s da ta (X)

# Sp l i t t i n g the da t a s e t i n t o the Training s e t and Test s e t

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.15 , random state=0, s t r a t i f y = y)

# Feature Sca l i ng

sc = StandardSca ler ( )

X tra in = sc . f i t t r a n s f o rm ( X tra in )

X tes t = sc . trans form ( X tes t )

#Def in ing the machine l e a rn ing models

model1 = Log i s t i cReg r e s s i on ( )

model2 = De c i s i o nT r e eC l a s s i f i e r (max depth = 2)
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model3 = SVC( )

model4 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 5 , metr ic = ’minkowski ’ , p = 2)

model5 = GaussianNB ( )

#Training the machine l e a rn ing models

model1 . f i t ( X train , np . r av e l ( y t ra in , order=’C ’ ) )

model2 . f i t ( X train , np . r av e l ( y t ra in , order=’C ’ ) )

model3 . f i t ( X train , np . r av e l ( y t ra in , order=’C ’ ) )

model4 . f i t ( X train , np . r av e l ( y t ra in , order=’C ’ ) )

model5 . f i t ( X train , np . r av e l ( y t ra in , order=’C ’ ) )

#Making the p r e d i c t i on

y pred1 = model1 . p r ed i c t ( X tes t )

y pred2 = model2 . p r ed i c t ( X tes t )

y pred3 = model3 . p r ed i c t ( X tes t )

y pred4 = model4 . p r ed i c t ( X tes t )

y pred5 = model5 . p r ed i c t ( X tes t )

#Confusion matrix

cm Log i s t i cRegre s s i on = con fus i on mat r ix ( y t e s t , y pred1 )

sns . heatmap ( cm Log i s t i cRegre s s i on , square=True , annot=True , cbar=False )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )
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p l t . s a v e f i g ( ” . / outputs / cm Log i s t i cRegre s s i on . png” )

p l t . show ( )

cm Decis ionTree = con fus i on mat r ix ( y t e s t , y pred2 )

sns . heatmap ( cm DecisionTree , square=True , annot=True , cbar=False )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )

p l t . s a v e f i g ( ” . / outputs / cm Decis ionTree . png” )

p l t . show ( )

cm SupportVectorClass = con fus i on mat r ix ( y t e s t , y pred3 )

sns . heatmap ( cm SupportVectorClass , square=True , annot=True , cbar=False )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )

p l t . s a v e f i g ( ” . / outputs / cm SupportVectorClass . png” )

p l t . show ( )

cm KNN = con fus i on mat r ix ( y t e s t , y pred4 )

sns . heatmap (cm KNN, square=True , annot=True , cbar=Fal se )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )
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p l t . s a v e f i g ( ” . / outputs /cm KNN. png” )

p l t . show ( )

cm NaiveBayes = con fus i on mat r ix ( y t e s t , y pred5 )

sns . heatmap ( cm NaiveBayes , square=True , annot=True , cbar=Fal se )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )

p l t . s a v e f i g ( ” . / outputs /cm NaiveBayes . png” )

p l t . show ( )

#10− f o l d cross−v a l i d a t i o n

k f o l d = mode l s e l e c t i on . KFold ( n s p l i t s =10)

r e s u l t 1 = mode l s e l e c t i on . c r o s s v a l s c o r e (model1 , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

r e s u l t 2 = mode l s e l e c t i on . c r o s s v a l s c o r e (model2 , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

r e s u l t 3 = mode l s e l e c t i on . c r o s s v a l s c o r e (model3 , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

r e s u l t 4 = mode l s e l e c t i on . c r o s s v a l s c o r e (model4 , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

r e s u l t 5 = mode l s e l e c t i on . c r o s s v a l s c o r e (model5 , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

#Prin t ing the accurac i e s ach ieved in cross−v a l i d a t i o n
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print ( ’ Accuracy o f L o g i s t i c Regres s ion Model = ’ , r e s u l t 1 .mean ( ) )

print ( ’ Accuracy o f Dec i s i on Tree Model = ’ , r e s u l t 2 .mean ( ) )

print ( ’ Accuracy o f Support Vector Machine = ’ , r e s u l t 3 .mean ( ) )

print ( ’ Accuracy o f k−NN Model = ’ , r e s u l t 4 .mean ( ) )

print ( ’ Accuracy o f Naive Bayes Model = ’ , r e s u l t 5 .mean ( ) )

#Def in ing Hybrid Ensemble Learning Model

# crea t e the sub−models

e s t imato r s = [ ]

#Def in ing 5 Lo g i s t i c Regress ion Models

model11 = Log i s t i cReg r e s s i on ( pena l ty = ’ l 2 ’ )

e s t imato r s . append ( ( ’ l o g i s t i c 1 ’ , model11 ) )

model12 = Log i s t i cReg r e s s i on ( pena l ty = ’ l 2 ’ )

e s t imato r s . append ( ( ’ l o g i s t i c 2 ’ , model12 ) )

model13 = Log i s t i cReg r e s s i on ( pena l ty = ’ l 2 ’ )

e s t imato r s . append ( ( ’ l o g i s t i c 3 ’ , model13 ) )

model14 = Log i s t i cReg r e s s i on ( pena l ty = ’ l 2 ’ )

e s t imato r s . append ( ( ’ l o g i s t i c 4 ’ , model14 ) )

model15 = Log i s t i cReg r e s s i on ( pena l ty = ’ l 2 ’ )

e s t imato r s . append ( ( ’ l o g i s t i c 5 ’ , model15 ) )

#Def in ing 5 Decis ion Tree C l a s s i f i e r s

model16 = De c i s i o nT r e eC l a s s i f i e r (max depth = 3)
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e s t imato r s . append ( ( ’ ca r t1 ’ , model16 ) )

model17 = De c i s i o nT r e eC l a s s i f i e r (max depth = 4)

e s t imato r s . append ( ( ’ ca r t2 ’ , model17 ) )

model18 = De c i s i o nT r e eC l a s s i f i e r (max depth = 5)

e s t imato r s . append ( ( ’ ca r t3 ’ , model18 ) )

model19 = De c i s i o nT r e eC l a s s i f i e r (max depth = 2)

e s t imato r s . append ( ( ’ ca r t4 ’ , model19 ) )

model20 = De c i s i o nT r e eC l a s s i f i e r (max depth = 3)

e s t imato r s . append ( ( ’ ca r t5 ’ , model20 ) )

#Def in ing 5 Support Vector C l a s s i f i e r s

model21 = SVC( ke rne l = ’ l i n e a r ’ )

e s t imato r s . append ( ( ’ svm1 ’ , model21 ) )

model22 = SVC( ke rne l = ’ poly ’ )

e s t imato r s . append ( ( ’ svm2 ’ , model22 ) )

model23 = SVC( ke rne l = ’ rb f ’ )

e s t imato r s . append ( ( ’ svm3 ’ , model23 ) )

model24 = SVC( ke rne l = ’ rb f ’ )

e s t imato r s . append ( ( ’ svm4 ’ , model24 ) )

model25 = SVC( ke rne l = ’ l i n e a r ’ )

e s t imato r s . append ( ( ’ svm5 ’ , model25 ) )

#Def in ing 5 K−NN c l a s s i f i e r s

model26 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 5 , metr ic = ’minkowski ’ , p = 2)
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e s t imato r s . append ( ( ’ knn1 ’ , model26 ) )

model27 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 5 , metr ic = ’minkowski ’ , p = 2)

e s t imato r s . append ( ( ’ knn2 ’ , model27 ) )

model28 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 6 , metr ic = ’minkowski ’ , p = 2)

e s t imato r s . append ( ( ’ knn3 ’ , model28 ) )

model29 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 4 , metr ic = ’minkowski ’ , p = 1)

e s t imato r s . append ( ( ’ knn4 ’ , model29 ) )

model30 = KNe ighbo r sC la s s i f i e r ( n ne ighbors = 5 , metr ic = ’minkowski ’ , p = 1)

e s t imato r s . append ( ( ’ knn5 ’ , model30 ) )

#Def in ing 5 Naive Bayes c l a s s i f i e r s

model31 = GaussianNB ( )

e s t imato r s . append ( ( ’ nbs1 ’ , model31 ) )

model32 = GaussianNB ( )

e s t imato r s . append ( ( ’ nbs2 ’ , model32 ) )

model33 = GaussianNB ( )

e s t imato r s . append ( ( ’ nbs3 ’ , model33 ) )

model34 = GaussianNB ( )

e s t imato r s . append ( ( ’ nbs4 ’ , model34 ) )

model35 = GaussianNB ( )

e s t imato r s . append ( ( ’ nbs5 ’ , model35 ) )

# Def in ing the ensemble model

ensemble = Vo t i n gC l a s s i f i e r ( e s t imato r s )
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ensemble . f i t ( X train , y t r a i n . r av e l ( ) )

y pred = ensemble . p r ed i c t ( X tes t )

#Conf i su in matrix

cm HybridEnsembler = con fus i on mat r ix ( y t e s t , y pred )

sns . heatmap ( cm HybridEnsembler , square=True , annot=True , cbar=Fal se )

p l t . x l ab e l ( ’ p r ed i c t ed value ’ )

p l t . y l ab e l ( ’ t rue va lue ’ )

p l t . s a v e f i g ( ” . / outputs /cm HybridEnsembler . png” )

p l t . show ( )

#Cross−Va l ida t i on

seed = 10

k f o l d = mode l s e l e c t i on . KFold ( n s p l i t s =10, random state=seed , s h u f f l e=True )

r e s u l t s = mode l s e l e c t i on . c r o s s v a l s c o r e ( ensemble , X train , np . r av e l ( y t ra in , order=’C ’ ) , cv=k fo ld )

print ( r e s u l t s .mean ( ) )
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APPENDIX B:

SUPERVISED AND UNSUPERVISED ML

PYTHON CODE

import os

import pandas as pd

import numpy as np

import matp lo t l i b . pyplot as p l t

import seaborn as sns

import s k l e a rn

from mp l t o o l k i t s . mplot3d import Axes3D

from s k l e a rn import c l u s t e r

from s k l e a rn . c l u s t e r import KMeans

from s k l e a rn . p r ep ro c e s s i ng import LabelEncoder

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from s k l e a rn . u t i l s import s h u f f l e

import matp lo t l i b . pyplot as p l t
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from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler

from s c ipy . c l u s t e r . vq import kmeans

from s c ipy . s p a t i a l . d i s t anc e import cd i s t , pd i s t

from matp lo t l i b import cm

from IPython import d i sp l ay

from s k l e a rn . met r i c s import f 1 s c o r e

from s k l e a rn . met r i c s import p r e c i s i o n s c o r e

from s k l e a rn . met r i c s import mu l t i l a b e l c on f u s i on ma t r i x

#TO preforem random pro j e c t i on to reduce the da t a s e t dimension .

from s k l e a rn . random project ion import SparseRandomProjection

from s k l e a rn . random project ion import GaussianRandomProjection

def get kmeans score ( data , c en t e r ) :

’ ’ ’

r e tu rns the kmeans score regard ing SSE fo r po in t s to c en t e r s

INPUT:

data − the da t a s e t you want to f i t kmeans to

cen te r − the number o f c en t e r s you want ( the k va lue )

OUTPUT:

score − the SSE score f o r the kmeans model f i t to the data

’ ’ ’
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#in s t a n t i a t e kmeans

kmeans = KMeans( n c l u s t e r s=cente r )

# Then f i t the model to your data us ing the f i t method

model = kmeans . f i t ( data )

# Obtain a score r e l a t e d to the model f i t

s co r e = np . abs (model . s c o r e ( data ) )

return s co r e

def f i t mods ( data , n max ) :

s c o r e s = [ ]

c en t e r s = l i s t ( range (1 , n max ) )

for c en te r in c en t e r s :

s c o r e s . append ( get kmeans score ( data , c en t e r ) )

return cente r s , s c o r e s

def c r ea t e numer i c s ( data ) :

# Get nominal columns

nomina l co l s = data . s e l e c t d t yp e s ( i n c lude=’ ob j e c t ’ ) . columns . t o l i s t ( )
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# Turn nominal to numeric

for nom in nomina l co l s :

enc = LabelEncoder ( )

enc . f i t ( data [nom ] )

data [nom] = enc . trans form ( data [nom ] )

return data

def p l o t da ta ( data , l a b e l s ) :

’ ’ ’

P lo t data wi th c o l o r s a s s o c i a t e d wi th l a b e l s

’ ’ ’

f i g = p l t . f i g u r e ( ) ;

ax = Axes3D( f i g )

ax . s c a t t e r ( data [ : , 0 ] , data [ : , 1 ] , data [ : , 2 ] , c=l ab e l s , cmap=’ tab10 ’ ) ;

def Avg score ( data , n max ) :

s c o r e s =[ ]

for c en t e r s in range (1 , n max ) :

#In i t a i n g mu i l t u i p l e models wi th d i f f e r e n t c en t e r s

kmeans=KMeans( c en t e r s )

#then f i t the model wi th the data

model=kmeans . f i t ( data )

#Fina l l y p r e d c i t the same data to show the po in t b e l ong s to



57

s c o r e s . append (abs (model . s c o r e ( data ) ) )

c en t e r s=l i s t ( range (1 , n max ) )

p l t . p l o t ( cente r s , s c o r e s )

p l t . t i t l e ( ” s c r e e p l o t ” )

p l t . x l ab e l ( ”Centers ” )

p l t . y l ab e l ( ”Average Distance from the c en t r o i d ” )

return p l t . show ( )

def prepare data ( f i l e name ) :

n=51

#rep l a c e n wi th the number o f columns you want to see comp l e t e l y

pd . s e t op t i o n ( ’ d i sp l ay . max columns ’ , n )

#rep l a c e n wi th the number o f rows you want to see comp l e t e l y

pd . s e t op t i o n ( ’ d i sp l ay . max rows ’ , n )

data = pd . r e ad ex c e l ( f i l e name )

# d i s p l a y . d i s p l a y ( data [” C i r cu i t ” ] )

’ ’ ’

prepare the and in s p e c t the data f o r unper sv i s ed ans supe r v i s ed :

1 . Unspervised Learning :

1− ”Cleanning s t a g e ” check f o r n u l l −−−<>Done

2− Remove the l a b e l so t ha t we can t r a i n the data

3− check the data type f o r o b j e c t v a r i a b l e s , i f t h e r e i s conver t to numerical

4− Sca le the data −−> K −means data prep us ing MinMaxScaler
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5− Convert back to a dataframe , and name the columns again

6−

’ ’ ’

## drop the l a b e l s

e x t r a c t e d c o l=t emp ne t l i s t da t a [ [ ’ Label ’ , ’ C i r cu i t ’ ] ]

## new data s e t wi th average column to t r a i n on .

t emp ne t l i s t d a t a s ub s e t [ ”Average”]= t emp ne t l i s t d a t a s ub s e t .mean( ax i s=1)

t emp ne t l i s t d a t a s ub s e t=t emp ne t l i s t d a t a s ub s e t . j o i n ( e x t r a c t e d c o l )

return t emp ne t l i s t d a t a s ub s e t

def prep roc e s s da ta ( data ) :

’ ’ ’ prepare the and in s p e c t the data f o r unper sv i s ed Machine Learning :

1 . Unspervised Learning :

1− ”Cleanning s t a g e ” check f o r n u l l −−−<>Done

2− Remove the l a b e l so t ha t we can t r a i n the data

3− check the data type f o r o b j e c t v a r i a b l e s , i f t h e r e i s conver t to numerical

4− ba lance the r a t i o between t ro j an f r e e and i n f e c t e d o f the same c i r c u i t ca t egory

5−

6−
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’ ’ ’

#d i s p l a y . d i s p l a y ( data . head ( ) )

data = data . dropna ( )

t r o j a n f r e e = data . l o c [ data [ ’ Label ’ ]==” ’ Trojan Free ’ ” ] . r e s e t i n d e x ( )

# balance the r a t i o between t ro j an f r e e and i n f e c t e d o f the same c i r c u i t ca t egory

for i in range ( len ( t r o j a n f r e e ) ) :

c a t e go ry sub s t r i n g = t r o j a n f r e e [ ’ C i r cu i t ’ ] [ i ] . r e p l a c e ( ” ’ ” , ’ ’ )

c i r c u i t g r o up = data [ data [ ’ C i r cu i t ’ ] . str . c onta in s ( c a t e go ry sub s t r i n g ) ]

df1 = c i r c u i t g r o up . i l o c [ 0 : 1 ]

i f len ( c i r c u i t g r o up ) > 1 :

data = data . append ( [ df1 ] ∗ ( len ( c i r c u i t g r o up )−1) , i gno r e i ndex=True )

data = crea t e numer i c s ( data )

print ( data )

data = s h u f f l e ( data , random state=42)

# Create c o r r e l a t i o n matrix

co r r mat r i x = data . co r r ( ) . abs ( )

#d i s p l a y . d i s p l a y ( cor r mat r i x )

# Se l e c t upper t r i a n g l e o f c o r r e l a t i o n matrix

upper = cor r mat r i x . where (np . t r i u (np . ones ( co r r mat r i x . shape ) ,
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k=1). astype (np . bool ) )

# Find index o f f e a t u r e columns wi th c o r r e l a t i o n g r ea t e r than 0.95

to drop = [ column for column in upper . columns i f any( upper [ column ] > 0 . 9 5 ) ]

#pr in t (” to drop ”)

# d i s p l a y . d i s p l a y ( to drop )

# Drop f e a t u r e s

data = data . drop ( data [ to drop ] , ax i s=1)

# pr in t ( l en ( data ) )

y l a b e l = pd . DataFrame ( data [ ”Label ” ] ) . va lue s

x data = data . drop ( [ ”Label ” , ” C i r cu i t ” ] , ax i s=1)

cor r matr ix update=x data . co r r ( ) . abs ( )

#d i s p l a y . d i s p l a y ( x da ta )

s c a l e r = MinMaxScaler ( f e a tu r e r ang e =(0 , 1 ) )

x data = s c a l e r . f i t t r a n s f o rm ( x data )

x t ra in , x t e s t , y t ra in , y t e s t = t r a i n t e s t s p l i t ( x data , y l abe l , t e s t s i z e =0.3 , random state=1)
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# p l o t the c o r r e l a t e d f e a t u r e s

sns . heatmap (

cor r matr ix ,

vmin=−1, vmax=1, c ent e r =0,

cmap=sns . d i v e r g i n g p a l e t t e (20 , 220 , n=200) ,

square=False

)

p l t . t i t l e ( ” Features c o r r e l a t i o n ” )

p l t . s a v e f i g ( ”Features c o r r e l a t i o n . png” , dpi=300 , bbox inches=’ t i g h t ’ )

p l t . show ( )

# p l o t the c o r r e l a t e d f e a t u r e s

sns . heatmap (

corr matr ix update ,

vmin=−1, vmax=1, c ent e r =0,

cmap=sns . d i v e r g i n g p a l e t t e (20 , 220 , n=200) ,

square=False

)

p l t . t i t l e ( ” Features c o r r e l a t i o n a f t e r drop” )

p l t . s a v e f i g ( ”Features c o r r e l a t i o n a f t e r drop . png” , dpi=300 , bbox inches=’ t i g h t ’ )

p l t . show ( )

return x data , y l a b e l



62

def v a l i d a t i o n t e s ( f i l e name2 ) :

data=prepare data ( f i l e name2 )

y l a b e l = pd . DataFrame ( data [ ”Label ” ] ) . va lue s

x data = data . drop ( [ ”Label ” , ” C i r cu i t ” ] , ax i s=1)

s c a l e r = MinMaxScaler ( f e a tu r e r ang e =(0 , 1 ) )

x data = s c a l e r . f i t t r a n s f o rm ( x data )

# p l o t the c o r r e l a t e d f e a t u r e s

sns . heatmap (

cor r matr ix ,

vmin=−1, vmax=1, c ent e r =0,

cmap=sns . d i v e r g i n g p a l e t t e (20 , 220 , n=200) ,

square=False

)

p l t . t i t l e ( ” Features c o r r e l a t i o n ” )

p l t . s a v e f i g ( ”Features c o r r e l a t i o n . png” , dpi=300 , bbox inches=’ t i g h t ’ )



63

p l t . show ( )

# p l o t the c o r r e l a t e d f e a t u r e s

sns . heatmap (

corr matr ix update ,

vmin=−1, vmax=1, c ent e r =0,

cmap=sns . d i v e r g i n g p a l e t t e (20 , 220 , n=200) ,

square=False

)

p l t . t i t l e ( ” Features c o r r e l a t i o n a f t e r drop” )

p l t . s a v e f i g ( ”Features c o r r e l a t i o n a f t e r drop . png” )

p l t . show ( )

return x data , y l a b e l

def f i t r a n d om f o r e s t c l a s s i f i e r (X, y ) :

’ ’ ’

INPUT: names are p r e t t y s e l f e xp l ana tory

OUTPUT: none − p r i n t s the confus ion matrix and accuracy

’ ’ ’

## va l i d a t i o n data f o r t e s t i n g
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from s k l e a rn . ensemble import RandomdomForestClassi f ier

#Fi r s t l e t ’ s c r ea t e t r a i n i n g and t e s t i n g data

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 , random state=42)

print ( len ( X tes t ) , ”Test ?? t r a i n : ” , len ( X tra in ) )

#We cou ld g r i d search and tune , but l e t ’ s j u s t f i t a s imple model to see how i t does

#i n s t a n t i a t e

c l f = RandomForestClass i f i e r ( n e s t imato r s =100 , max depth=None , m in samp l e s sp l i t =5)

#f i t

c l f . f i t ( X train , y t r a i n )

#pred i c t

y preds = c l f . p r ed i c t ( X tes t )

#score

print ( con fus i on mat r ix ( y t e s t , y preds ) )

acc = accu racy s co r e ( y t e s t , y preds )

# pr in t (” y l a b e l : ” , type ( y ) , y )
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F measure=f 1 s c o r e ( y t e s t , y preds , average=’macro ’ )

p r e c i s i o n=p r e c i s i o n s c o r e ( y t e s t , y preds , average=’macro ’ )

print ( ”F measure” , F measure , ” p r e c i s i o n ” , p r e c i s i o n )

return acc

from s k l e a rn . decomposit ion import PCA

from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

from s k l e a rn . ensemble import RandomForestClass i f i e r

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from s k l e a rn . met r i c s import con fus ion matr ix , a c cu ra cy s co r e

from s k l e a rn . u t i l s import s h u f f l e

def f i t r a n d om f o r e s t c l a s s i f i e r (X, y ) :

’ ’ ’

INPUT: names are p r e t t y s e l f e xp l ana tory

OUTPUT: none − p r i n t s the confus ion matrix and accuracy

’ ’ ’

#F i r s t l e t ’ s c r ea t e t r a i n i n g and t e s t i n g data

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.4 , random state=42)

#We cou ld g r i d search and tune , but l e t ’ s j u s t f i t a s imple model to see how i t does

#i n s t a n t i a t e
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c l f = RandomForestClass i f i e r ( n e s t imato r s =100 , max depth=None )

#f i t

c l f . f i t ( X train , y t r a i n )

#pred i c t

y preds = c l f . p r ed i c t ( X tes t )

#score

print ( con fus i on mat r ix ( y t e s t , y preds ) )

acc = accu racy s co r e ( y t e s t , y preds )

print ( acc )

return acc

def do pca ( n components , data ) :

’ ’ ’

Transforms data us ing PCA to c rea t e n components , and prov ide s back the r e s u l t s o f the

t rans format ion .

INPUT: n components − i n t − the number o f p r i n c i p a l components to c r ea t e

data − the data you would l i k e to transform

OUTPUT: pca − the pca o b j e c t c rea t ed a f t e r f i t t i n g the data
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X pca − the transformed X matrix wi th new number o f components

’ ’ ’

X = StandardSca ler ( ) . f i t t r a n s f o rm ( data )

pca = PCA( n components )

X pca = pca . f i t t r a n s f o rm (X)

return pca , X pca

i f ” name”==” main ” :

X=prepare data ( ”Benchmark Feature Extract ion . x l sx ” )

X, y=prep roc e s s da ta (X)

f i t r a n d om f o r e s t c l a s s i f i e r (X, y )
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APPENDIX C:

FEATURE EXTRACTION TCL SCRIPT

###############################################

# GENUS RTL Compiler S c r i p t f o r Syn the s i s

###############################################

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# SETUP

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Set up v a r i a b l e s f o r t h i s des i gn

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

set DESIGN NAME {Name of the Design }

# Search path f o r l i b r a r y f i l e s ( l i b e r t y f i l e )
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echo ”LIBRARY SEARCH PATH ”

set LIBRARY SEARCH PATH

{<Path to the l i b a r y to the techno lgy used to s y s n t h e s i s , i.e.GPDK045}

echo ”LIBRARY NAMES ”

set LIBRARY NAMES { f a s t v d d 1 v 0 b a s i cC e l l s . l i b }

# Path to Ver i l og des i gn f i l e s

set HDL SEARCH PATH {<Path to the top RTL design>}

set SYN FILE DIRECTORY {<Path to the to the s yn th e s i s d i r e c t o r y >}

set HDL FILENAMES {<Name o f the top des ign>}

set UNGROUP INSTANCE FULLNAMES {}

set POWER ANALYSIS true

set FLATTEN True
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#source . /IMPORT/ s e t u p . t c l

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Set a p p l i c a t i o n v a r i a b l e s based on se tup

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

echo ”Set app l i c a t i o n v a r i a b l e s based on setup ”

se t db i n i t l i b s e a r c h p a t h $LIBRARY SEARCH PATH

set db l ibrary $LIBRARY NAMES

set db hd l s ea r ch pa th $HDL SEARCH PATH

set db hd l t r a c k f i l e n ame r ow co l $POWER ANALYSIS

#Debug v e r b o s i t y from 0 to 9

s e t db i n f o rma t i o n l e v e l 9

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# LOAD DESIGN

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

echo ”Load”
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read hd l $HDL FILENAMES

e l abo ra t e

#dc : : c u r r e n t d e s i g n $DESIGN NAME

# Check f o r unreso l ved r e f s & empty modules

#check de s i gn −unresolved

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Se t t i n g the c l o c k per iod & c l o c k Name

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

#read sdc . /${DESIGN NAME} .premapped.sdc

#c l o c k per iod in ps

set CLK PERIOD 20000

set CLKPORTNAME c lk

set CLKNAME 50MHz
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set clock [ d e f i n e c l o c k −period $CLK PERIOD −name $CLK NAME [ c l o c k po r t s ] ]

s e t i npu t d e l a y −clock $CLK NAME 0 [ a l l i n p u t s ]

s e t ou tpu t de l ay −clock $CLK NAME 0 [ a l l o u t pu t s ]

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# COMPILE

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Perform l o g i c s y n t h e s i s : t e chno logy mapping + l o g i c op t im i za t i on

s yn gene r i c

syn map

syn opt

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# GENERATE REPORTS

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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# Output some u s e f u l r e s u l t s o f s y n t h e s i s

r epo r t t im ing > . / output/ s yn th r epo r t t im i n g . t x t

r e p o r t g a t e s > . / output/ s y n t h r e p o r t g a t e s . t x t

report power > . / output/ syn th r epo r t powe r . t x t

r epo r t a r e a > . / output/ s yn t h r e p o r t a r e a . t x t

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# SAVE DESIGN

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Write g a t e− l e v e l RTL

wr i t e hd l > . / output/${DESIGN NAME} .mapped.v

# Write SDF ( standard de lay format ) f o r f un c t i o na l s imu la t i on s us ing t iming

wr i t e s d f > . / output/${DESIGN NAME} .mapped.sdf

gui show

# Write des i gn c on s t r a i n t s in SDC and another format

wr i t e sd c > . / output/${DESIGN NAME} .mapped.sdc
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w r i t e s c r i p t > . / output/${DESIGN NAME} .mapped.g
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APPENDIX D:

FIGURES

Figure D.1: Synthesis output area report for AES-T100 Trojan free
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Figure D.2: Synthesis output power report for AES-T100 Trojan Infected
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Figure D.3: Synthesis output gate report for AES-T1000 Trojan Free
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Figure D.4: Synthesis output Timing report for AES-T1000 Trojan Free
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Figure D.5: Correlation coefficients between features.
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Figure D.6: Correlation coefficient between features after dropping.
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Logistic Regression Model

Decision Tree

Support Vector Machine

K-Nearest Neighbor Model

Naive Bayes Model

Dataset Final Prediction

Figure D.7: Hybrid Ensemble Model
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