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ABSTRACT

The rapid growth of data generation from electronic devices has created a critical de-

mand for efficient and sustainable data storage solutions. Traditional storage systems

face challenges regarding reliability, energy consumption, and scalability, necessitating

the exploration of alternative technologies. This dissertation explores the potential

of Deoxyribonucleic Acid (DNA) as an alternative storage medium, along with the

associated challenges and potential solutions.

This dissertation focuses on Digital Nucleic Acid Memory (dNAM), which utilizes

Single Molecule Localization Microscopy (SMLM) to encode and store data within

DNA structures called DNA origami. SMLM surpasses the limitations of light’s

diffraction limit, enabling the imaging of biological samples at a molecular scale. The

robustness and data density of the dNAM algorithm rely heavily on the accuracy and

performance of SMLM. Within dNAM, emitter localization and error correction are

crucial steps, and this dissertation primarily focuses on these aspects.

To improve emitter localization in dNAM, Deep Learning (DL) techniques are

employed. This dissertation investigates the impact of multi-emitter situations, where

multiple emitters are attached during data acquisition. A neural network based image

up-sampling algorithm is developed to progressively increase the resolution of the

image. The developed algorithm preserves the emitter centroid position while up-

sampling it to a higher-resolution image, effectively isolating attached emitters. By
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extracting the emitter centroid positions from multiple resolutions, the dissertation

analyzes the impact of attached emitters on localization accuracy.

Additionally, the dissertation addresses the development of an advanced error cor-

rection algorithm for dNAM. A preliminary algorithm is initially used to successfully

store 20 bytes of digital information in DNA. However, to improve performance and

accuracy, the algorithm was enhanced by incorporating the intensity information of

each data point. The impact of this addition is thoroughly studied. Furthermore,

the error correction algorithm is extended to support arbitrary-shaped 3D/2D DNA

origami structures, enabling scalability and versatility.

The findings of this research highlight the potential of DNA as a viable storage

medium and shed light on the challenges and solutions specific to dNAM. The incor-

poration of DL techniques for emitter localization demonstrates improved accuracy

and efficiency. Moreover, the advanced error correction algorithm enhances the reli-

ability and capacity of dNAM. These outcomes contribute to the overall robustness

and efficiency of dNAM as a data storage method.
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4.5 The multi-page figure illustrates the twelve steps involved in encoding

a text message using dNAM. The encoding process depicts the proof-

of-principle experiment described in the main text, showing the design

process for one of the 15 origami, as an example. . . . . . . . . . . . . 108

4.6 The main steps involved in decoding a message from Digital Nucleic

Acid Memory (dNAM) are depicted. First, each individual origami

captured in a DNA-PAINT recording is converted into a binary string

(Image Processing). Next, errors in each binary string are detected

and corrected if possible (Error Correction) using the algorithm de-

scribed in figure 4.7 and index and droplet data extracted. Finally,

segment information is retrieved from the droplets (segment informa-

tion extracted) pooled with data from other origami and passed to the

fountain code decoding algorithm shown in Figure 4.8, which reassem-

bles the original file (Fountain Code Decoding). . . . . . . . . . . . . 110

xxi



4.7 A flowchart depicting the operations performed by the error correction

algorithm for an individual origami is shown. A priority queue is ini-

tialized with an individual origami m (the working matrix ). Based on

the parity and checksum bits mismatch, the algorithm deduces a set

of probable errors and a matrix weight for the working matrix. The

matrix weight is proportional to the number of errors, and the main

goal of the algorithm is to reduce the matrix weight in a greedy fash-

ion. To that end, each of the probable errors in the working matrix

is sequentially flipped, and a matrix weight calculated for every re-

sulting matrix. The two resulting matrices with the lowest weights

are enqueued. The algorithm then replaces the working matrix with

the recalculated matrix possessing the lowest matrix weight from the

queue. If the current working matrix already has 9 bits flipped it is dis-

carded and the next matrix in the queue used. The algorithm repeats

these steps until the matrix weight equals zero, at this point the data

in the origami is considered to have been error-corrected and is passed

to the next stage of the decoding (Accept). If the priority queue is

emptied before the matrix weight reaches zero, the origami data is

considered unrecoverable and is removed from the analysis (Reject). 113

xxii



4.8 The flowchart depicts the operations performed by the fountain de-

coding algorithm to recover file segment data from droplet data. The

recovered origami are stored in the Droplet Table. The data in sin-

gle degree droplets(i.e. D8, D9) are used directly to reconstruct the

file (Recovered File). To extract additional individual segment data

from multi-segment droplets, the decoding algorithm performs a se-

ries of XOR operations. The index information allows the algorithm

to determine both the degree of the droplet and which segments of

the file that the droplet encodes. Taking the case of D2, a series of

XOR operations must be performed in order to retrieve additional seg-

ment data from it. The decoding algorithm may XOR a multi-degree

droplet with another droplet if the other droplet’s segment(s) are a

proper subset of the multi-degree droplet. For example, the segments

contained in D6 are a proper subset of those in D2. After XORing

D2 and D6, a new droplet is generated containing segments S5 and

S6, which ultimately leads to the algorithm extracting the data for

S6. This process is repeated in a greedy fashion until the algorithm

retrieves all of the file’s segment data (Recovered File), or it runs out

of options for XORing droplets (in which case the entire file cannot

be successfully recovered). For simplicity, only six of the 15 possible

droplets are shown, with the resulting recovered segments depicted in

colored boxes (Recovered Segments). . . . . . . . . . . . . . . . . . . 115

xxiii



4.9 Simulations were performed to determine the theoretical success rates

for correctly decoding individual dNAM origami and recovering en-
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message (diamonds) are plotted against the mean number of errors per

origami (errors were randomly generated for simulated data). Simu-

lation recovery rates are averages of all message sizes tested (160 to

12,800 bits). For comparison, the mean success rate for experimental
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CHAPTER 1:

INTRODUCTION

1.1 DNA As A Storage Medium

The proliferation of electronic devices and the widespread adoption of technologies like

the Internet of Things (IoT) and Artificial Intelligence (AI) have led to an exponential

surge in data generation [5]. Based on this escalating trend, it is projected that the

global volume of digital data will reach 175 Zettabytes (ZBs) by 2025 [15]. This

presents a significant challenge as traditional storage systems struggle to keep pace

with such vast quantities of information. Adding to the urgency of the situation is

the expected depletion of silicon supply by 2040 [14], a crucial component in current

storage technologies.

Certain types of data, such as financial records, historical archives, and Closed-

Circuit Television (CCTV) footage, necessitate long-term storage despite infrequent

access. However, existing data storage systems are unreliable for extended durations,

requiring continuous replication of archival data to ensure its integrity. Consequently,

the construction and maintenance of a data center capable of storing 1 Exabyte (EB)

of data demand hundreds of megawatts of power and a cost exceeding 1 billion USD

over a 10-year period [16]. Extrapolating these expenses to accommodate 175 ZBs

would require millions of megawatts solely for information storage, which is clearly
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unsustainable. These circumstances have prompted an active pursuit for an infor-

mation storage medium capable of preserving data without replication for hundreds

of years while consuming minimal energy. Deoxyribonucleic Acid (DNA) can be a

promising alternative for this purpose for the following reasons:

1) Under proper conditions, DNA is known to retain data for hundreds of thou-

sands of years [14]. 2) An individual molecule of single-stranded DNA is theoretically

capable of storing information at a density of 455 EBs per gram [1], implying that

0.5 kg of DNA could be sufficient to store all global digital data expected in 2025.

3) DNA’s operation energy is many orders of magnitude less than current electronic

memories [14].

Table 1.1 provides a comprehensive comparison between established conventional

memory technologies and the emerging cellular DNA-based storage medium, high-

lighting the potential of DNA for future data storage applications. The first column,

labeled “Memory (type)” identifies the different memory technologies being com-

pared. The second column, “Retention (years)” represents the duration for which

information can be stored in each medium without corruption. Longer retention times

indicate greater stability and longevity of stored data. The third column, “ON Power

(W/Gigabyte(GB))” quantifies the power consumption required to store informa-

tion per GB for each memory technology. Lower values signify more energy-efficient

storage mechanisms. The fourth and fifth columns, “Areal Density (bit/cm2)” and

“Volumetric Density (bit/cm3)” respectively, highlight the data storage capacity in

terms of the number of bits that can be stored in a given area and volume. Higher

areal and volumetric densities reflect the ability to store more information in a smaller

physical space, indicating the potential for increased storage capacities. The sixth col-
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umn, “Latency (s/bit),” measures the time required to store each bit of information.

Lower latency values indicate faster data storage and retrieval processes. Lastly, the

seventh column, “Error Rate (errors/bit)” denotes the expected number of errors per

bit of stored information. Lower error rates indicate greater reliability and accuracy

in data storage. Currently, DNA-based storage exhibits higher error rates compared

to conventional methods. However, it is anticipated that advancements in synthesis

and sequencing technologies will reduce DNA’s error rates over time. The table’s

findings highlight the advantages of DNA-based storage, such as its exceptional re-

tention capabilities, ultra-low power requirements, extraordinarily high information

density, and relatively low latency.

Table 1.1: Comparison between established memory technologies and cel-
lular DNA. This table was adapted from the work of Zhirnov et al. [14].

Memory

(type)

Retention

(years)

ON

Power

(W/GB)

Areal

Density

(bit/cm2)

Volumetric

Density

(bit/cm3)

Latency

(µs/bit)

Error Rate

(errors/bit)

Flash

Memory
10

0.01 –

0.04
1010 1016 100 10−15 [1]

Hard

Drive
> 10 0.04 1011 1013

3 ∗ 103–

5 ∗ 103
10−15 [2]

Magnetic

Tape
30 [2] 0.004 [3]

109– 1010

[5]
N/A

60 - 200

[5]

10−18 –

10−21 [2]

Cellular

DNA
> 100 < 10−10 1022 1022 [17] < 100

10−9 –

10−8 [6]
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1.1.1 Sequence-based DNA Data Storage

Sequence-based DNA data storage has been a primary focus for the last decade [1,

2, 6, 7]. A Nucleotide (nt) is the basic building block of DNA, which can be one of

four types of nitrogen bases: Adenine (A), Thymine (T), Guanine (G), and Cytosine

(C). The digital data is first divided into equal-length segments. Later encoding part

of the error correction algorithm adds some additional data to the segments. These

additional data are used to verify integrity or fix errors from each segment. Then

each segment is converted into DNA sequences using a mapping scheme. The most

straightforward mapping scheme can be 00 representing A, 01 representing T, 10

representing G, 11 representing C; here, 0 or 1 represents each data bit. Later, using

DNA synthesis technology, the sequences are converted into physical strands of DNA,

which can be optimally stored in the appropriate environment and temperature. For

data retrieval, DNA sequencing technology is utilized to read the nts from physical

DNA strands. Later the same mapping scheme that was used during encoding is

employed to convert nts into binary data. It is important to note that errors are

likely to occur throughout the process, including synthesis, storage, and sequencing.

Therefore, the decoding phase of the error correction algorithm examines the binary

data and identifies/corrects any errors encountered. Refer to Figure 1.1 for a more

comprehensive understanding of the entire process. Detailed information on recent

methodologies published in this field can be found in Section 2.2.



5

Figure 1.1: The figure illustrates the sequence-based DNA storage pro-
cess overview. The initial step involves adding redundant information to
the original data for error correction purposes. Subsequently, the digital
information is converted into DNA nucleotides using a mapping scheme.
The synthesized DNA is then stored in a DNA pool. During the read-
ing process, the DNA pool is read using DNA sequencing technologies.
The reverse mapping scheme is applied to convert the nucleotides back
into binary data. Following this, the error correction decoding algorithm
utilizes the redundant information added during the encoding procedure
to identify and correct any errors, if present. Finally, the original file is
recovered after the error correction process.

1.1.2 Space-based DNA Data Storage

Recently, researchers have explored alternate methods of storing data in DNA that

avoids sequencing and synthesizing [18, 19, 20, 21]. These methodologies decouple

the DNA storage technology from sequencing/synthesizing advancement. In 2021, we

developed a prototype system called dNAM that enabled us to store digital informa-

tion in DNA using the imaging technique of Single Molecule Localization Microscopy

(SMLM), thereby avoiding the need for synthesis and sequencing steps [21]. dNAM is

a multi-step process, including emitter localization, drift correction, data extraction,

and error correction. Among them, improving the emitter localization, data extrac-

tion, and error correction is the primary focus of this dissertation. DNA origami is

the building block of dNAM. The following section describes the working principle of
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DNA origami.

DNA Origami

Discovered by Paul W. K. Rothemund in 2006 [22], DNA origami is a revolutionary

technique that harnesses the unique properties of DNA molecules to create intricate

and precisely folded nanostructures. Inspired by the ancient art of paper folding,

origami, this method allows scientists to engineer and manipulate DNA strands into

complex three-dimensional shapes at the nanoscale level. It provides a programmable

building material as a foundation to make nanosctuctures using DNA. Its precision,

versatility, and scalability make it a promising tool for advancing various scientific and

technological fields, including medicine, electronics, materials science, bioengineering,

and data storage [21, 23, 24, 25, 26, 27].

At the heart of DNA origami is the fundamental building block, the DNA double

helix. This helical structure, composed of two complementary DNA strands inter-

twined in a spiral, forms the backbone of DNA origami designs. By carefully design-

ing shorter DNA strands, known as staple strands, scientists can introduce specific

sequences that bind to the DNA scaffold and direct its folding into desired shapes.

The process of creating DNA origami begins with a long single-stranded DNA

scaffold, typically derived from a viral genome or synthetic sources. This scaffold

serves as the foundation upon which the structure will be built. Researchers then

strategically design hundreds of staple strands that hybridize with the scaffold at

precise locations, facilitating the folding process.

Through a controlled annealing process, the scaffold and staple strands are mixed

together under specific temperature and salt conditions, allowing the DNA to self-
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assemble into the desired shape. The binding interactions between the staple strands

and scaffold dictate the final structure, enabling the construction of a wide range of

geometric shapes, such as triangles, squares, stars, and even more complex structures

like nano-boxes and nano-robots.

DNA origami offers numerous advantages over conventional nano-fabrication tech-

niques. Its ability to produce custom-designed nano-structures with sub-nanometer

precision allows for the precise positioning of molecules, nano-particles, and other

functional elements on the nano-scale. Additionally, DNA origami exhibits remark-

able stability and compatibility with biological systems and can be easily modified by

incorporating various chemical or biological moieties, further expanding its potential

applications.

Digital Nucleic Acid Memory

In the dNAM approach, digital information is encoded into specific locations within

DNA origami structures. During the origami formation, the staple strands are ar-

ranged at addressable locations (see Figure 1.2) that define an indexed matrix of

digital information. This site-specific localization of digital information is enabled by

designing staple strands with nucleotides that extend from the origami. Extended

staple strands have two domains: the first domain forms a sequence-specific double

helix with the scaffold and determines the address of the data within the origami;

the second domain extends above the origami and, if present, provides a docking

site for fluorescently labeled single-stranded DNA imager strands. Binary states are

defined by the presence (1) or absence (0) of the data domain, which is read with a

super-resolution microscopy technique called DNA Points Accumulation for Imaging
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in Nanoscale Topography (DNA-PAINT) [11]. Unique patterns of binary data are

encoded by selecting which staple strands have, or do not have, data domains. As an

integrated memory platform, data is entered into dNAM when the staple strands en-

coding 1 or 0 are selected for each addressable site. The staple strands are then stored

directly or self-assembled into DNA origami and stored. Editing data is achieved by

replacing specific strands or the entire content of a stored structure. To read the data,

the origami is optically imaged below the diffraction limit of light using DNA-PAINT.

Figure 1.2 depicts a single origami structure. We introduced a custom error cor-

rection algorithm that enabled us to store and recover 20 bytes of data without any

manual intervention. We used a fountain code at the top level of our error correction

algorithm. While our error correction algorithm fixed errors at the individual origami

, and the fountain code is responsible for recovering data if one or multiple origami

are entirely missing. More details on this can be found in Section 4.

Figure 1.2: Overview of a single origami nanostructure. The black circle
and white circle represent binary data ’0’ and ’1’, respectively. There is
an extending staple strand on data domain ’1’, providing a docking site
for the imager strands.
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Our original origami design was in the form of a 6x8 matrix, capable of storing 48

bits of information in a single structure. We used this structure to store 20 bytes (160

bits) of data encoded into 15 different origami (720 bits). 78% of the total capacity

is dedicated to error correction, index bits, and rotation bits. While these bits do

not contain any information, they ensure error-free recovery of stored information.

As the error rate of dNAM is high, it is required to dedicate a significant portion

of the total capacity for error correction to ensure error-free data recovery. More

precise localization of emitters and better error correction algorithms can significantly

reduce the errors from dNAM, which would reduce the number of bits that need to

be dedicated to error correction and make dNAM more robust and denser. This will

also reduce the computational time for data recovery.

1.2 Machine Learning

Machine Learning (ML) and Deep Learning (DL) enable machines to learn from

data and make intelligent decisions without explicit programming. ML involves the

development of algorithms that learn patterns and relationships iteratively from a

given dataset. It encompasses a wide range of techniques, such as supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, algorithms

are trained on labeled data, where input features are associated with corresponding

output labels. Through this process, the algorithm learns to make predictions or

classifications on new, unseen data. On the other hand, unsupervised learning deals

with unlabeled data, where the algorithm discovers inherent patterns and structures

within the data. It can be used for tasks such as clustering, dimensionality reduction,

and anomaly detection. Reinforcement learning involves an agent learning to interact

with an environment and make decisions based on rewards and punishments, aiming
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to maximize its cumulative reward over time.

DL is a subset of ML that focuses on the development and training of neural net-

works, which are composed of interconnected layers of artificial neurons. Deep neural

networks are capable of learning hierarchical representations of data, extracting in-

tricate and abstract features. The depth of these networks allows them to process

increasingly complex patterns, making them particularly effective in domains such as

image and speech recognition, natural language processing, and computer vision. DL

has been further empowered by the availability of large-scale datasets and advance-

ments in computational resources, enabling the training of deep neural networks with

millions of parameters.

The applications of ML and DL are vast and diverse. Over the last couple of years,

DL achieved State of the Art (SOTA) performance in various fields of computer vi-

sion [28, 29, 30, 31], speech recognition [32], machine translations [33], genomics [34],

biomedical imagery [35], and many other domains [36]. In healthcare, these tech-

nologies have been used for disease diagnosis and prediction, personalized treatment

recommendations, and drug discovery. In finance, ML and DL are employed for fraud

detection, algorithmic trading, and credit scoring. Robotics benefits from ML and DL

for tasks such as object recognition, motion planning, and autonomous navigation.

Image and video analysis, including facial recognition and object detection, have been

greatly enhanced by these techniques. Natural language processing allows machines

to understand and generate human language, enabling applications such as voice as-

sistants, language translation, and sentiment analysis. Because of recent progress in

hardware, software, algorithm parallelization, DL training, and inference time have

been reduced to an order of magnitude.
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The continuous advancements in ML and DL, coupled with the availability of

big data and increased computing power, hold immense potential for further break-

throughs. Researchers and practitioners are constantly exploring new techniques,

architectures, and applications in various domains. Emitter localization in the field

of SMLM is one of the recent application of DL [37, 38, 39, 40] (more details in Sec-

tion 2.4.4). As ML and DL continue to evolve, they are expected to drive innovation,

transform industries, and shape the future of artificial intelligence.

1.3 Dissertation Contribution and Organization

1.3.1 Dissertation Contribution

The key contributions presented in this dissertation are summarized as follows:

• A comprehensive overview of existing sequence-based storage methodologies

(see Section 2.2).

• An emitter localization algorithm was developed to enhance the resolution of an

individual frame through DL techniques. This process facilitated the isolation

of overlapped emitters, and subsequently, a separate Neural Network (NN) or

Maximum Likelihood Estimation (MLE) algorithms were employed to identify

and localize the centroid positions of the emitters in the higher resolution space.

Additionally, a comprehensive analysis of the effects of isolating overlapped

emitters was conducted. (see Chapter 3)

• A bi-level parity, rotation invariant error correction algorithm that enabled us

to store and retrieve information into dNAM without any manual intervention

(see Section 4.1).
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• Improvement of the error correction algorithm by adding photon intensity of

each data point that was captured using SMLM. We have also studied the im-

pact of this integration in multiple metrics such as false positive, false negative,

and computational time. (see Section 4.2)

• Extension of the error correction algorithm so that it can support arbitrary

shaped origami even in 3-dimension. We verified this error correction algorithm

by in-silico simulation. (see Section 4.3)

• Our solution on a sequence-based storage method (see Appendix A).

Several findings and components of this dissertation have been previously pub-

lished or are currently undergoing the publication process in the following scholarly

paper:

• An alternative approach to nucleic acid memory [21]

• In-vitro validated methods for encoding digital data in DNA [41]

• A method for storing information in DNA with improved dropout tolerance [In

review in Plos one] [42]

• Multi-emitter localization using deep learning [In preparation]

1.3.2 Dissertation Organization

This dissertation presents a comprehensive investigation conducted in five chapters

aimed at enhancing the robustness and density of dNAM. Chapter 1 provides the

motivation and methodology underlying the utilization of DNA as a storage medium.

Additionally, it offers a concise overview of the principles and mechanisms of DNA
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origami, which serves as a key technique in this research. Furthermore, this chapter

provides a succinct summary and application of ML.

Chapter 2 offers essential background information pertaining to error correction,

sequence-based DNA data storage, SMLM, and DL. Firstly, it explores previous re-

search on error prevention throughout the processes of DNA synthesis, sequencing,

and storage, providing a comprehensive overview of the existing methodologies. Sub-

sequently, it delves into well-established error correction algorithms that have been

widely adopted across various industries and subsequently applied to DNA-based

storage systems. It also discusses how researchers have integrated these error cor-

rection methods and translated binary data into DNA oligomers. Some of this in-

formation has been previously published in our recent publication titled “In-vitro

validated methods for encoding digital data in deoxyribonucleic acid (DNA)” [41].

Additionally, it provides an in-depth discussion on the principles and commonly used

approaches for emitter localization in SMLM. Finally, a concise explanation of DL is

provided, along with a literature review on the utilization of DL for natural image

super resolution and emitter localization in the context of SMLM.

Chapter 3 presents a thorough examination of our DL based emitter localiza-

tion algorithm, encompassing a comprehensive overview and detailed methodology.

Firstly, the chapter outlines the process of data generation employed for training

the DL model. Subsequently, it elucidates the key performance metrics that were

prioritized for optimization using the model. Furthermore, the chapter provides an

in-depth discussion of the actual algorithms employed for emitter localization. Lastly,

the chapter presents and discusses the results obtained from the trained models, of-

fering insights into their performance and efficacy.
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Chapter 4 delves into the encoding and decoding processes of our error correc-

tion algorithms. In the results section, it provides a detailed account of how the

simulations were performed for the error correction algorithm, ensuring alignment

with the wet lab experiments. Moreover, it describes the methodology employed for

incorporating intensity information and its subsequent impact on performance im-

provement. Additionally, the chapter outlines the extension of the algorithms for

3dNAM and arbitrary shaped origami, elucidating the methodology and presenting

simulation results.

Chapter 5 serves as the concluding chapter of the dissertation, encapsulating the

key findings, contributions, and implications of the research. It offers a comprehensive

summary of the study’s outcomes and addresses the research objectives outlined in

the earlier chapters. Furthermore, the chapter identifies potential areas for future

research, highlighting avenues that can be explored to further advance the field and

build upon the present study.
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CHAPTER 2:

BACKGROUND INFORMATION

2.1 Error Correction On Nucleic Acid Memory

DNA is a biochemically active material that undergoes molecular reactions. That

makes it more susceptible to errors compared to conventional storage media. Suc-

cessfully recovering information from DNA is complicated by numerous errors which

can arise prior to sequence decoding. Mechanisms leading to such errors include

imperfect synthesis, degradation, imperfect amplification via Polymerase Chain Re-

action (PCR), or imperfect sequencing. At the start of the decoding algorithm, these

errors typically manifest as sequence dropout (an entirely missing sequence), point

mutations (substitution of a single nucleotide), indels (insertion or deletion of a sin-

gle nucleotide), or truncations (removal of several nucleotides from one end of a

sequence). Consequently, error rates depend on factors such as the specific synthesis,

storage, and sequencing methods employed. For instance, Bornholt et al. [5] reported

an error rate of approximately 1% using Illumina sequencing, while Organick et al.

[6] reported error rates of up to 10% using nanopore sequencing. Overall, DNA as a

storage medium exhibits much higher error rates than conventional storage medium.

For example, Church et al. [1] reported error rates of 1 bit per 0.7 Megabytes (MBs),

which is much higher than error rates of 1 bit per 10-1000 Terabytes (TBs) exhibited
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by electronic memories. There are two general mechanisms for handling these errors:

1) by generating DNA sequences that are less likely to exhibit errors (i.e. error miti-

gation, Section 2.1.1) and 2) by incorporating Error Correction (EC) codes that are

robust to the expected errors (described in Section 2.1.2). Most of the researchers

simultaneously utilize both mitigation and correction.

2.1.1 Error Mitigation

Oligonucleotides (oligos) displaying specific structural patterns are known to be as-

sociated with higher synthesis and sequencing errors. For example, Schwartz et al.

[43] noted that oligos with more than 60% GC content exhibit higher dropout rates

which lead to PCR errors. Tabatabaei Yazdi et al. [44] reported that oligos that have

approximately 50% GC content exhibit greater stability, and maintaining 50% GC

content ratio reduces synthesis/sequencing errors. Several studies have highlighted

the errors related to homopolymer runs, such as repetitive sequences like AAAAA or

TTTTTT. In particular, Ross et al. [45] noted that homopolymer runs exceeding four

nts are associated with a higher occurrence of indel errors. Additionally, Ananda et al.

[46] identified PCR slippage errors that rapidly escalate when homopolymers exceed

four nts. Both Poon and Macgregor [47] and Xu et al. [48] noted that homopolymers

of six or more nts exhibit high enough thermal stability to make sequencing difficult

[47, 48]. Lastly, Church et al. [1] reported that their errors primarily manifested

within homopolymer runs near the ends of sequences.

Numerous methods have been documented for mitigating errors in DNA sequenc-

ing. Church et al. [1] employed a mapping scheme to circumvent issues associated

with extreme GC content and repeated sequences. Additionally, they assert that

their method addresses certain secondary structures, although the precise mechanism



17

behind this accomplishment is not explicitly elucidated.

The method reported by Goldman et al. [2] pads indexes with leading zeros to

ensure they are a constant length. This has the potential to generate problematic

long repeating sequences. This is exacerbated as the amount of data increases since

larger files require longer indexing regions (i.e. the index size grows as a log factor of

the data size). To mitigate this concern, they employed a rotating mapping scheme

to resolve the issue. Later, Bornholt et al. [5] and Organick et al. [6] also adopted

this mapping scheme in their respective studies.

In the research conducted by Organick et al. [6], they introduced an algorithm for

generating random 20-mer primers. This algorithm aimed to avoid higher GC content

ratios, circumvent certain secondary structure issues, and maintain a minimum Ham-

ming distance of six between sequences. The Hamming distance refers to the measure

of the difference between two sequences of equal length, counting the number of po-

sitions at which the corresponding elements are different. To achieve these goals, the

algorithm employed a technique of randomizing the input data through XORing with

a pseudo-random sequence. This approach effectively mitigated problems associated

with secondary structures and longer homopolymer runs.

2.1.2 Error Correction

Despite taking precautions and avoiding error-prone sequences, errors still persist in

DNA-based storage mediums. To address these errors and ensure the viability of DNA

as a storage medium, EC algorithms are incorporated into the encoding and decoding

processes. These algorithms add redundant data to each oligo, ensuring the integrity

of the stored information. By employing more robust EC algorithms, the resilience

of DNA storage can be enhanced. Fortunately, there are already several established
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and practical EC algorithms available, widely used in noisy channel communication

and conventional data storage systems. Researchers have utilized some of these well-

known Error Correcting Codes (ECCs) in DNA-based storage systems. Table 2.1

provides a comparison of popular EC algorithms commonly applied in the field of

Nucleic Acid Memory (NAM).

Table 2.1: Comparison of different error correction algorithms. Here,
“soft bit decoding” indicates that the algorithm provides a probability of
a bit being 0 or 1, while “hard bit decoding” provides a definitive value
of 0 or 1. The term “burst errors” refers to consecutive errors that occur
within a short span of data, whereas “scatter errors” are errors that occur
randomly throughout the data without any specific pattern or clustering.

Repetition

code

Hamming

code

Reed-

Solomon

Bose-

Chaudhuri-

Hocquenghem

Low

Density

Parity

Check

Error

correction

Multiple

bits
Single bit

Multiple

bits
Multiple bits

Multiple

bits

Error

detection

Multiple

bits
Two bits

Multiple

bits
Multiple bits

Multiple

bits

Error

types

Scatter +

burst
Scatter Burst Scatter Scatter

Soft bit

decoding
Yes No No No Yes
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Repetition Code

Repetition codes are the most basic EC scheme. Sometimes referred to as Multiple

Sequence Alignment (MSA), a single data block repeats a predetermined number of

times to mitigate the loss of data. If a minority of the data blocks differ from the

majority, then that particular data block is considered as corrupted, and majority

voting is used to select the correct data block. Although this scheme is simple, it

suffers from inefficiency as only a fraction of the data blocks contain unique data.

Furthermore, if the same error affects all the data blocks, it becomes impossible to

detect that error.

Hamming Code

A Hamming code is a member of the linear block code family, which was developed

in 1950 by Richard W. Hamming [49]. Hamming codes can detect at most two bits of

error in the data block and can fix one bit of error in the data block. However, due to

these limitations, Hamming codes have seldom been employed in DNA-based storage

systems. Takahashi et al. [50] used a (31, 26) Hamming code for DNA data storage.

However, their data size was relatively small (5 bytes). Errors like deletion and read

truncation made data retrieval difficult. Out of 25,592 reads, 16 were perfect reads,

and eight were corrupted but correctable, and out of these eight reads, only three

were corrected perfectly.

Reed-Solomon Code

Reed-Solomon (RS) codes are a special class of Bose-Chaudhuri-Hocquenghem (BCH)

codes, which were first introduced in 1960 [51, 52]. These are widely used in EC
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algorithms and are capable of correcting both burst errors and erasures. RS codes

have found extensive application in data storage and digital communication systems,

including CD, DVD, QR codes, and mobile/satellite communications [53]. RS codes

are more effective for insertion/deletion (indel) errors rather than point mutation

errors.

In RS coding, if the message size is n bytes, RS code adds redundant data of size k

bytes at the end of the message. RS code can detect up to k bytes of errors at arbitrary

locations and can correct up to ⌊k
2
⌋ bytes of errors at arbitrary locations. One of the

advantages of RS code over the other EC scheme is the length of redundant code

block k can be adjusted depending on the usage or by analyzing prior error patterns.

Several researchers have used the RS code to detect/correct errors in DNA based

storage systems [6, 3, 4, 7, 54, 55]. These studies highlight the applicability and

effectiveness of RS codes in enhancing the reliability of DNA storage systems.

Low Density Parity Check

Low Density Parity Check (LDPC) [56] codes are a class of linear ECC which was

developed by Robert G. Gallagher in 1962. In recent years, LDPC codes have gained

popularity due to their ability to decode both hard bits and soft bits. Soft bit decoding

provides probabilities for a bit being 0 or 1, while hard bit decoding determines

whether a bit is 0 or 1. The coding scheme reported by Yim et al. [57] utilized

an LDPC ECC to store a picture of size 438 bytes. Fei and Wang [58] proposed

a different version of LDPC codes specifically focused on correcting errors in DNA

storage systems. Chandak et al. [59] used a combination of three error correction

algorithms. LDPC was used for outer level EC. In order to handle indel errors, they
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inserted a synchronization marker (sequence “AGT” was used for this purpose) in

the middle of the data block sequence. BCH was used for EC in indexes. MSA was

used to reduce errors in any individual sequence.

Fountain Codes

A fountain code, introduced by MacKay [60] in 2005, belongs to the class of erasure

codes, also known as rateless erasure codes. These codes are designed to enhance

robustness to dropouts or erasures in data transmission. Fountain codes generate a

large number of smaller data chunks called droplets by XORing segments of the origi-

nal data. These droplets are typically used for transmitting data over noisy channels.

The concept behind fountain codes is that the original data can be reassembled from

any subset of the received droplets as long as a sufficient number of them are correctly

received. The name “fountain” reflects the analogy of catching water droplets from

a fountain to fill a glass with water. Similarly, encoded data can be recovered by

collecting enough droplets, regardless of which droplets are received or the order in

which they were received.

Although a fountain code is not inherently an EC algorithm, it enables the recovery

of the entire file even if a portion of the transmitted data is lost. Fountain codes are

often used in combination with other EC algorithms. In such cases, the EC algorithm

is responsible for verifying the integrity of the droplets. If the EC algorithm cannot

verify a droplet, the fountain code discards that droplet and does not use it in the

decoding process.

In the context of DNA-based storage, researchers such as Erlich and Zielinski [7]

and Anavy et al. [54] have utilized fountain codes along with RS codes for NAM
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applications. This combination of fountain codes and RS codes demonstrates the

effectiveness of using fountain codes to enhance the robustness and reliability of DNA

storage systems.

2.2 Overview of Sequence-based DNA Storage

Methodologies

In his 1959 lecture titled “Plenty of Room at the Bottom”, Richard Feynman rec-

ognized the potential of using DNA to store information [61]. To the best of our

knowledge, information was first stored using synthetic DNA around 1988 [62]. In the

following decades, advances in DNA sequencing and synthesis technologies –primarily

driven by the Human Genome Project– led to an increased interest in storing infor-

mation in DNA. Numerous methods for writing and reading information from DNA

have been reported since. In the following paragraphs, several recently reported rep-

resentative methods with explicit in-vitro validation are introduced. The methods

are presented in chronological order, showing how the field has progressed in terms

of volume and complexity of data and sophistication of storage methods. Table 2.2

summarizes the progression of DNA as a storage medium.

The earliest of the methods was reported by Church et al. [1]. This method was

used to store 659 Kilobytes (KBs) of data containing a book. The encoding process

for this method can be described as the following procedure shown in Figure 2.1.

First, the data was split into sequentially addressed data blocks, each containing 96

bits. Each block was then prepended with a 19 bits indexing address. This 115-bit

sequence was coverted to a 115-base sequence by mapping 0 to A or C and 1 to G or

T. The 115-base sequence was then flanked with a pair of 22 base primer sequences for
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amplification and sequencing purposes. This resulted in a set of 159-base sequences

which collectively encoded the data.

Figure 2.1: Diagram of the encoding algorithm reported by Church et al.
[1]. Data is split into data blocks and attached to index bits. The resulting
binary sequence is then directly mapped to a base sequence.

The next method was reported by Goldman et al. [2]. This method was used

to store five files which totaled 757,051 bytes and included two text files, a pdf, a

photograph, and an mp3. The encoding process for this method can be described

by the following procedure shown in Figure 2.2. The data was provided as a list of

files. An index was assigned to each file and each file was represented as a sequence

of bits (base-2 values). The bit-sequence for each file was converted to a sequence of
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trits (base-3 values) using a Huffman-code. This trit sequence was then converted to

a base sequence according to a rotating mapping code (“Mapping Scheme” in Figure

2.2). This yielded a single base sequence encoding the entire file, which was then split

into indexed segments containing 100 bases and overlapping by 75 bases. The base

sequence of every other segment was replaced with its reverse-complement (i.e. A/T

swapped, G/C swapped, and then reversed). The following additional bases were then

added to each 100-base sequence: 1) Two bases to indicate the file index, 2) twelve

bases containing the index of the segment, 3) two bases indicating if the sequence has

been reverse-complemented, 4) one parity base for detecting errors. This resulted in

a set of 153,335 117-base sequences collectively encoding the data.

Figure 2.2: Diagram of the encoding algorithm reported by Goldman et al.
[2]. A rotating mapping algorithm is used to avoid homopolymers. A par-
ity code ensures the integrity of each segment. Every alternating segment
is reverse-complemented for data security (shown in violet color).
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The third method was reported by Grass et al. [3]. This method was used to

store two text files totaling 83 kilobytes. The encoding process for this method

can be described by the following procedure shown in Figure 2.3. First, the digital

data was converted into a number within the Galois Field (GF) of size 47 (GF(47)),

which is a mathematical structure comprising a finite set of elements and defined

operations of addition, subtraction, multiplication, and division that adhere to specific

mathematical properties. These numbers were then put into a block of 594×30 values

(this can be seen in the encoding block of Figure 2.3). The first RS parity information

was added to each row in the form of 119 values from the GF(47). This section was

referred to as the outer block (Redundancy A in the diagram). Next, an index section

containing three values was added. Next, a second level of RS parity was added. This

section containing six values was referred to as the inner block (Redundancy B in the

diagram). Each column consisted of 39 base-47 values which were converted to a base

sequence according to a word-based mapping code depicted by the wheel in Figure

2.3. Two constant base-sequences used as primers were then attached to each 117-

base sequence, yielding a set of 4,991 158-base sequences which collectively encode

the data.
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Figure 2.3: Diagram of the encoding algorithm reported by Grass et al. [3].
Binary data is converted to base 47 and packaged into 713 × 39 character
matrices. Each column is then encoded as a DNA sequence with each
character encoded as a codon according to the mapping scheme.

The fourth method was reported by Blawat et al. [4]. This method was used to

store a 22 megabyte video file. First, the digital file was split into segments of non-

overlapping bit sequences. A 39 bits sequence used for segment addresses was encoded

using a (63,39) BCH code and prepended to the segment’s bit sequence. A 16 bit

cyclic redundancy check code was then calculated and appended to the bit sequence.

The bit sequence was then represented as a byte-sequence and converted to a base-

sequence using the following mapping algorithm. The pre-determined mapping code

associates each byte value with at least two and at most three 5-base sequences. The
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first six bits of the byte determine the bases in positions 1, 2, and 4 depending on the

table labeled “mapping scheme a” in Figure 2.4. The last two bits of each byte encode

bases three and five using the table labeled “mapping scheme b” in Figure 2.4. Valid

5-base sequences satisfied two rules: 1) The first three bases cannot be the same, and

2) the last two bases cannot be the same. This mapping algorithm yielded 190-base

sequences, to which a pair of 20 base primer sequences were attached. This resulted in

225,000 230-base sequences, which collectively stored the data. The authors mention

the presence of a RS code to protect blocks of consecutive sequences. However, we

were unable to determine the exact nature and location of this code from the text of

the manuscript.
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Figure 2.4: Diagram of the encoding algorithm reported by Blawat et al.
[4]. The binary sequence is split into bytes, which are encoded to 5-base
sequences using a combination of the two mapping schemes (a,b).

The fifth method was reported by Bornholt et al. [5]. This method was used to

store four image files totaling 151 KBs of data. The encoding process of this method

can be described by the following procedure shown in Figure 2.5. First, a pair of

base-sequences for use as primers and a base-sequence for use as a file address were

chosen from an existing library. The bit sequence of the file was converted to a trit

sequence using a Huffman code. The trit sequence was then converted to a base-

sequence according to a rotating mapping code. This base-sequence was then split



29

into non-overlapping segments. The following were then added to each segment: 1)

the two 9-base primer sequences, 2) the file address sequence, 3) two bases to indicate

if the sequence has been reverse complimented. These sequences were then added

to the list of sequences to synthesize. For redundancy, additional sequences were

calculated by using an Exclusive-OR (XOR) operation to combine two segments into

a single sequence. These additional sequences were included such that all segments

were present in one direct sequence and one XOR sequence.

Figure 2.5: Diagram of the encoding algorithm reported by Bornholt et al.
[5]. A key component of this method is the inclusion of the XOR operation.
A rotating mapping algorithm was used to avoid homopolymers.

The sixth method was reported by Organick et al. [6]. This method was used to

store 35 files totaling 200 megabytes of data. The encoding process for this method

can be described by the following procedure shown in Figure 2.6. First, the digital

data was partitioned into files and each file was assigned a pair of 20-base sequences

for use as primers. The bit-sequence of each file was then randomized by performing

an XOR operation with bits generated from a pseudo-random number generator. The
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randomized bit-sequence for each file was then partitioned into indexed rectangular

matrices containing 16-bit cells. Each matrix contained 10 rows and up to 55,000

columns. For error correction, a RS code was applied to each row, and these bits

were included as additional columns. Next, each column was treated as a sequence of

bits and the address information (the matrix index and column index) were appended

to this bit-sequence. This bit-sequence was converted to a trit-sequence, which was

subsequently converted to a base-sequence using a rotating mapping code. Two 20-

base primer sequences indicating the file index were then attached to each sequence.

Figure 2.6: Diagram of the encoding algorithm reported by Organick et al.
[6]. A key component of this method is the RS code used for generating
redundant sequences.

The seventh method was reported by Erlich and Zielinski [7]. This method was

used to store a single compressed file representing 2.14 megabytes of data. The en-

coding process for this method can be described by the following procedure shown

in Figure 2.7. First, the file was represented as a bit-sequence and partitioned into

equally-sized, non-overlapping segments of 256-bits. A random 32-bit value was gen-

erated and used to initialize two Pseudo Random Number Generators (PRNGs). The

first PRNG was created over a robust soliton probability distribution and was used to
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choose the number of data segments to store in the droplet. The second PRNG was

created over a uniform distribution and was used to select which segments to include

in the droplet. The selected segments were combined into a single 256-bit sequence

using an XOR operation. The 32-bit seed was then prepended to the bit-sequence

and the resulting 288-bit sequence was encoded using a RS code which appended 16

additional bits for error-correction. This 304-bit sequence was then converted to a

152-base sequence according to a direct mapping code where {00, 01, 10, and 11} map

to {A, C, G, and T}, respectively. At this point, the base-sequence was rejected if it

had unacceptable GC content or a long stretch of consecutive identical bases. Oth-

erwise, the base-sequence was accepted and added to the list of valid base-sequences.

Base-sequences were generated by repeating this process (starting at the generation of

a new 32-bit seed) until 7% redundancy had been achieved. At this point, the 72,000

152-base-sequences encoded the 2.14 megabyte file at an information density of 1.57

bits/base. Two 24-base primer sequences were then attached to each base-sequence,

bringing the length of each sequence to 200 bases and the information density down

to 1.19 bits/base.
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Figure 2.7: Diagram of the encoding algorithm reported by Erlich and
Zielinski [7]. A combination of fountain code and RS code was used to
provide robustness against dropout.

An eighth method was reported by Anavy et al. [54]. This method was used

to store a single zip file totaling 6.4 megabytes of data. The following procedure

specifically describes encoding into the 6-letter composite base alphabet. First, the file

was represented as a bit-sequence and partitioned into equally-sized, non-overlapping

segments of 320-bits. A random 28-bit value was generated and used to initialize

two PRNG. The first PRNG was a robust soliton distribution used to choose the
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number of data segments to store in a given droplet. The second PRNG was a

uniform distribution used to select which segments to include in a given droplet.

The selected segments were combined using the XOR operation into a given droplet

as a single 320-bit sequence. This 320-bit sequence was mapped to a sequence of

composite bases according to a word-based mapping code which associated each 5-

bit sequence with a 2-composite-base sequence. Composite bases do not represent a

specific base (i.e. A, T, C, or G), but instead represent the distribution of bases at

this position following synthesis. A single base was appended to this 128-composite-

base sequence to bring the length to 129 bases. A systematic RS code over GF 73 was

used to append 6 composite-bases of error correction to this sequence, bringing its

total length to 135 bases. A RS code over GF 42 was used to append four bits of error

correction to the 28-bit random seed, bringing this bit-sequence to 32-bits. This 32-

bit sequence was then converted to a (non-composite) 16-base sequence according to

a direct mapping code where 00, 01, 10, and 11 map to A, C, G, and T, respectively.

The 16-base sequence was appended to the 135-composite-base sequence, yielding

a 151-base sequence containing both composite and non-composite bases. At this

point, any base-sequences were rejected that contained composite letters not in the

original 6-letter composite alphabet. The following base-sequences were then attached

to the 151-base sequence: 1) a pair of 20 base sequences used as primers, and 2) a

single 3-base sequence used to identify the file or experiment. Multiple droplets (with

associated random seed, error correction code, primers, and file ID) were generated

by repeating this process (starting at the generation of a new 28-bit seed) until 8%

redundancy had been achieved.
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Table 2.2: A history and comparison of DNA-based storage advances since
1988.

Authors
File
size

(MB)

Full
recov-
ery

Error
handling

Data
den-
sity

(bits/nt)

Cost
(USD/MB)

Key contribution

J. Davis
[62]

4×
10−6 No No - -

Introduced DNA as a
storage medium

Church
et al. [1]

0.65 No Repetition 0.83 -
Store data in DNA in

larger scale

Goldman
et al. [2]

0.75 No Repetition 0.33 12, 400
Introduced data

compression, Handle
error by repetition

Grass
et al. [3]

0.08 Yes RS 1.14 31, 250

Retrieve the data
without manual

intervention, implement
RS code for EC

Yazdi et.
al. [44]

0.017 Yes BRDS - 236, 647
Increased random access,

introduced rewrite
ability

Bornholt
et al. [5]

0.15 No Repetition 0.88 -
Reduced redundancy,

increased random access

Blawat
et al. [4]

22 Yes RS 0.92 -
Error free retrieval of the

data in larger scale

Erlich
and

Zielinski
[7]

2.14 Yes
Fountain
+ RS

1.57 3, 500
Incorporated fountain

code in DNA, get highest
data density

Organick
et al. [6]

200.2 Yes RS 1.1 -
Random access in larger

scale

Takahashi
et al. [50]

5×
10−6 Yes Hamming - 10, 000

Automated device for
synthesis and sequencing

Anavy
et al. [54]

21.4 Yes
Fountain
+ RS

1.93−
4.29∗ -

Introduced composite
DNA letters

Dickinson
et al. [21]

2×
10−5 Yes

Custom
+

Fountain
- -

Introduced an alternate
approach to synthesis,

sequencing based
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More recently, Ping et al. [63] reported a method, the Ying Yang Coding algo-

rithm (YYC), that eliminates long homopolymer runs (allowing for runs of at most

three nts). The algorithm achieves this through a flexible codec based on Gold-

man’s rotating code that provides a total of 1536 different transcoding schemes for

encoding binary sequences. The algorithm starts by segmenting the binary file into

equally sized segments. This is followed by an iterative loop where two segments

are randomly selected at the beginning of the loop. For each pair of selected seg-

ments, each bit of both segments are processed sequentially, with the first segment’s

ith bit used to choose one of two possible nucleotide pairings, where 0 maps to 1 of

two possiblentcombinations, and 1 maps to the remaining twontcombinations (there

are six possiblentpairings for this codec). This is followed by the application of a

rotating code that selects antpairing based on the last encodedntand the ith bit of

the second segment (giving 256 possible encodings at this step). The intersection of

these twontpairs is chosen as the nextntin the encoded output (the construction of the

codecs ensures that there is only onentin the intersection of these twontpairs), and the

process iterates. The process terminates and rejects the encoded sequence if the GC

content of the encoded sequence falls outside of a prescribed range if a homopolymer

run of 4 or greater is detected or if the free energy is greater than -30 kJ mol-1. One

drawback of their approach is that only 65% of randomly selected segment pairs are

able to pass their screening tests in general, and this percentage drops drastically for

extremely 0 or 1 biased file segments (although this can be mitigated by compressing

the file before processing).

So far in this chapter, our focus has primarily been on the sequence-based DNA

storage medium. In the upcoming section, we will shift our attention to dNAM, which
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is a space-based storage medium. The concept of dNAM has been relatively recent,

and only limited work has been conducted in this area, except for the foundational pa-

per [21]. Consequently, the following section will delve into the progression of SMLM,

which serves as the basis for dNAM. Furthermore, we will explore the fundamentals

of deep learning, as it will be utilized in the emitter localization steps of dNAM.

2.3 Single Molecule Localization Microscopy

Microscopy enables the visualization of objects or samples at a scale that is not

perceptible to the naked eye. Conventional light microscopes rely on visible light

and lenses for imaging. However, the diffraction phenomenon occurs as light passes

through lenses. The image resolution of light microscopy is significantly impacted by

this diffraction barrier. In 1873, Ernst Abbe found out a microscope could not isolate

two objects located within a distance closer than λ
NA

. Here λ is the wavelength of

light and NA is the numerical aperture of the imaging lens [64, 65]. NA represents

the light-gathering ability and resolving power of the objective lens of a microscope,

determining the maximum angle of light rays that can enter the lens and affecting

the image resolution and depth of field. This limits the study of biological samples

that are in Nanometer (nm) scale.

To overcome this diffraction barrier and achieve nanoscale resolution, SMLM has

emerged. This enables the researcher to observe the cellular structure and study their

low-level molecular interactions [66]. In fact, SMLM has revolutionized biological

imaging techniques in recent years [67]. SMLM have a wide variety of applications,

especially in the sector of biology and medical science. Data storage is a recent

application of SMLM [21]. Enhancements in SMLM imaging techniques hold great

potential for impact in these sectors.
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In SMLM, individual molecules are isolated and imaged over extended periods.

In each image, a small fraction of emitters stochastically enters a bright state. The

recorded movies capture these bright states, and subsequent analysis using special-

ized computer programs allows for precise examination of the Point Spread Function

(PSF) of each molecule at the nanometer scale. The program extracts the centroid

position, photon intensity, and uncertainty of each PSF. Ultimately, the extracted

PSF information is combined to construct a super-resolution image. The procedure

of SMLM is depicted in Figure 2.8.

Figure 2.8: Working principle of SMLM. a) Depicts the PSF fitting for
an individual emitter from one of many frames. b) All the emitters in an
individual frame have been localized. c) Emitters from all the recorded
frame have been localized and combined together to construct the SR
image.
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2.3.1 Sub-pixel Localization

Sub-pixel localization is a crucial step in SMLM. It involves extracting detailed infor-

mation from the PSF of individual emitters. To assess the performance of different

sub-pixel localization methods, the Cramér-Rao Lower Bound (CRLB) is often uti-

lized as a reference. The CRLB represents the minimum achievable localization error

that an unbiased algorithm can attain under ideal conditions. These conditions in-

clude a Gaussian distribution model for the PSF, homogeneous background models,

and non-overlapping PSFs. By comparing the localization results obtained by differ-

ent methods with the CRLB, researchers can evaluate the effectiveness and accuracy

of the sub-pixel localization algorithms [68, 69]. Multiple approaches can be utilized

for sub-pixel localization, and a few of them will be discussed in the following sections.

Weighted Mean

The weighted mean method is a basic approach to sub-pixel localization in SMLM.

This method involves selecting a local region from the entire image data based on

the cumulative photon intensity within that region. It is assumed that each region

contains one or more emitters (represented by their PSFs). The centroid position of

the emitter is then calculated by taking the mean pixel position, where each pixel’s

contribution is weighted by its photon intensity. While this method is computationally

efficient, it suffers from low accuracy and performs poorly in the presence of noise

and dense data. As a result, the weighted mean method is not commonly used in

practice. In a study by Henriques et al. [70], the weighted mean method was employed

after selecting local regions using the “CLEAN” method developed by Högbom [71]

in order to extract the 2D locations of emitters.
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Maximum Likelihood Estimation

MLE is the most widely used algorithm for emitter localization [72, 73, 74, 75]. MLE

assumes that the emitter’s PSF follows a specific probability distribution, often mod-

eled as a Gaussian distribution. MLE computes the centroid position of an emitter

through an iterative procedure named gradient descent. At each step, the algorithm

updates the previously computed coordinates by a small amount and fits the assumed

probability distribution to the data to determine the likelihood of the updated co-

ordinate (see Figure 2.9). Due to its iterative nature, the MLE algorithm can be

computationally expensive.

Figure 2.9: The figure illustrates the procedure of finding the centroid
position using the MLE algorithm, with the dotted line representing mul-
tiple iterations of fitting a Gaussian probability distribution along that
line, which may not provide an optimal fit to the data (PSF). On the
other hand, the solid line represents the best fit obtained among all the
attempted positions.

It is important to note that MLE tends to work better on simulated data where
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the probability distribution of the emitter’s PSF and the noise model are already

known. In such cases, MLE attempts to find the optimal coordinate based on the

known distribution. However, in real-world scenarios, the emitter’s PSF does not

always strictly follow a specific probability distribution due to imperfections in the

optics or diffraction effects caused by lenses.

In recent years, researchers have increasingly utilized DL techniques for emitter

localization. Nehme et al. [37] were the first to employ DL for emitter localization in

their work titled “Deep-STORM” [37]. Since then, numerous researchers have applied

DL for emitter localization [38, 40, 76, 39]. Like all other field DL also achieved SOTA

results. Because of the recent advancements in computer hardware(e.g. Graphics

Processing Unit (GPU)), DL makes the entire process much faster. The following

section provides a fundamental understanding of DL, and detailed information about

emitter localization using deep learning can be found in Section 2.4.4.

2.4 Deep Learning

ML is a subset of AI that enables computers to solve complex problems without ex-

plicit programming. This is achieved through a process known as training, where

the computer learns to solve the problem by analyzing and generalizing from a given

dataset. DL, on the other hand, is a sub-field of ML that utilizes multiple layers of

abstraction to capture the underlying structure of the training datasets. Each layer

of a DL model transforms the input data into increasingly abstract representations,

allowing for more sophisticated pattern recognition. The fundamental architecture

behind DL is the ANN, which serves as the foundation for modeling complex rela-

tionships between inputs and outputs. When an ANN contains numerous layers of

abstraction, it is referred to as a Deep Neural Network (DNN). At the core of an ANN
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is the neuron, which performs calculations on the weighted sum of inputs, followed

by the application of an activation function (see Figure 2.10).

Figure 2.10: Working principle of a single neuron in an ANN. Here Xi

represents the input variable. And Wi is the weight of each input. Wi is the
learnable parameters that the ANN learns during the training procedure.

Within a layer of an ANN, neurons are independent and do not share connections

with each other. However, each neuron is connected to all the neurons in the previous

layer. These connections are associated with individual weights, representing the

connection’s strength. During the training procedure, the ANN learns these weights,

which are also referred to as network parameters.

In a DNN model, the number of network parameters can range from a few hundred

to several billions [77, 78]. The sheer volume of parameters allows the DNN to capture

and model complex relationships in the data, leading to more accurate predictions

and higher levels of abstraction.

When the connections between neurons in the ANN do not form cycles, meaning

the information flows only in a forward direction, it is termed a feed-forward neural
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network (see Figure 2.11). In this configuration, data inputs are processed sequentially

through the network layers, with each layer transforming the input and passing it to

the next layer until the final output is obtained.

Figure 2.11: Classical example of a feed forward neural network. Here,
this network takes 16 feature vectors as input and can predict five different
classes. The neurons of one layer are connected with all the neurons in the
next layer. Each of these connections has a specific weight. The connection
is represented by the gray line. The higher the weight is, the more darker
the connection line is.

2.4.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) [79] belong to the broader family of neural

network algorithms and are commonly referred to as ConvNets. They are directly
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inspired by the functioning of the human brain [80, 36]. CNNs are specifically designed

to handle matrix-like inputs, such as images. In fact, CNNs have recently achieved

SOTA performance in various computer vision tasks [28, 31, 30]. Figure 2.12 provides

a visual representation of a classical CNN architecture. In a CNN the architecture

typically consists of several layers, each serving a specific purpose in the learning

process.

1. Convolutional layer: The convolutional layer is a vital component of a CNN. A

CNN can have one or more convolutional layers. These layers extract important

features from the input data by convolving the data with a set of filters, also

known as kernels. In deeper layers, the extracted features become more ex-

clusive and informative. For instance, in facial recognition applications, earlier

layers may detect simple patterns like horizontal or vertical lines, while deeper

layers can identify more complex features like eyes or noses in images contain-

ing humans. The values of the filters are learnable parameters that are updated

during the training process.
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Figure 2.12: Example of a CNN. Each layer have a represented with a
separate color. A CNN can have hundreds of these layers [8] .

2. Activation layer: After each convolutional layer, an activation function is ap-

plied to the data. This activation function introduces non-linearity in the net-

work. The common activation functions are Sigmoid, Tanh, Rectified Linear

Unit (ReLU) [81], Leaky Rectified Linear Unit (LReLU) [82], Parametric Rec-

tified Linear Unit (PReLU) [83], Exponential Rectified Linear Unit (EReLU)

[84]. ReLU [81] is the most widely used activation function in DL [85]. In most

cases, the activation layer is always applied after the convolutional layer or fully

connected layer.

3. Pooling layer: In pooling operations, a certain portion of the data(patch of fea-

ture map) is reduced to one single value. The primary purpose of the pooling

layers is to progressively reduce the spatial dimension of the data. This op-



45

eration helps to decrease computational complexity and achieve translational

invariance. Pooling also enhances robustness by combining similar features [36].

There are two common pooling operations. i) Max-pooling: maximum value is

selected from a patch of feature map ii) Average-pooling: average value of the

patch of feature map is used.

4. Fully connected layer: The fully connected layer is a feed-forward neural network

layer that is often placed at the end of a CNN. The feature maps obtained from

the final convolutional or pooling layers are flattened and used as inputs for

the fully connected layers. These layers enable high-level feature extraction and

decision-making based on the learned features.

Each of these layers plays a crucial role in the overall architecture of a CNN, allowing

it to effectively learn and extract relevant features from input data.

2.4.2 Important Terminologies

In this section, we will discuss several important concepts related to DL.

Training data refers to the data used by ML/DL models to learn and adjust their

parameters. It consists of input samples and their corresponding target outputs.

Validation data is a separate dataset used to fine-tune the hyper-parameters of a

model during the training process. It helps in selecting the optimal configuration

of the model.

Test data is used to evaluate the performance and generalization ability of the

trained model. It provides an unbiased assessment of the model’s accuracy and

effectiveness. The training, validation, and test datasets should be mutually

exclusive.
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Hyper-parameter are the model settings that are not learned from the data but

are set by the user before the training process begins. They include parameters

such as learning rate, batch size, and regularization strength.

Learning rate is a critical hyper-parameter that determines the step size taken

during the training process. If the learning rate is too small, the learning

process will be slow. Conversely, if it is too large, the model’s performance

may fluctuate or diverge.

Ground truth refers to the actual or correct values of the target data that the

ML/DL model aims to predict. It serves as the reference for evaluating the

accuracy of the model’s predictions.

Loss is a metric that quantifies the difference between the predicted outputs of the

model and the ground truth. It represents how well the model is performing on

the given task. The goal of training is to minimize the loss function.

Gradient descent is an optimization algorithm used to find the local minimum of

a function. It calculates the gradients of the loss function with respect to the

model’s parameters and updates them iteratively to reduce the loss.

Back propagation is an algorithm used in neural networks to calculate the gra-

dients of the loss function with respect to the model’s parameters. It enables

efficient gradient computation by propagating the errors from the output layer

to the input layer.

Optimizer is a specific algorithm that implements the gradient descent algorithm

to optimize the model’s parameters during training. Examples of optimizers
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include stochastic gradient descent (SGD), Adam, and RMSprop.

Overfitting occurs when a model becomes too closely aligned with the training

data and fails to generalize well to unseen data. It often results in high training

accuracy but poor performance on the validation or test data.

Underfitting happens when a model performs poorly on both the training and test

data. It occurs when the model is not complex enough to capture the underlying

patterns in the data or when the training dataset is insufficient.

Batch size refers to the number of training examples processed in one iteration dur-

ing the model training. It affects the trade-off between computational efficiency

and model convergence.

Batch normalization(BatchNorm) is a technique used to improve the stability

and speed of training deep neural networks. It normalizes the input and output

of the activation function in a hidden layer, leading to more stable gradients

and faster convergence [86].

Residual connection also known as skip connection, is a technique used to address

the vanishing gradient problem in deep neural networks [8]. It provides an

alternate path for the data to flow through the network

2.4.3 Super-Resolution Using Deep Learning

The process of generating High Resolution (HR) images from Low Resolution (LR)

images is known as Super Resolution (SR) (see Figure 2.13). It has gained significant

attention in the field of computer vision [87]. Over the last few years, DL has massively
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improved the SR technique [88, 89, 90, 10, 91, 92, 93, 94, 9, 95, 96]. A DNN can learn

non-linear mapping from LR to HR images, allowing for enhanced image quality.

Figure 2.13: Demonstrating single image super-resolution using a deep
neural network. The input is a lower-resolution image, and the network
generates higher-resolution images by enhancing its quality. During the
training process, the network learns a non-linear mapping between the
lower resolution image and the corresponding higher resolution image.

Up-sampling Methodologies

One crucial aspect of image super-resolution is increasing the size of the image, also

known as up-sampling. Researchers have explored various methodologies to achieve

this.
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Interpolation

Interpolation is a simple and commonly used technique for image up-sampling. It

increases the resolution of the image by filling in the missing pixels based on the

neighboring pixel values. The most common image interpolation methods are nearest-

neighbor interpolation, bilinear interpolation, bicubic interpolation. Although inter-

polation algorithms are fast and computationally efficient, they lack the ability to

capture complex patterns in the image. Interpolation is often used as a pre-processing

step before applying any ML/DL models, effectively enlarging the input image size.

This reduces the workload for the subsequent models, as their primary task becomes

fine-tuning the image quality. It is important to note that as the input size gets larger,

the training and inference times also increase. The computational cost of processing

larger images can be a limiting factor, especially for real-time or resource-constrained

applications. Therefore, finding a balance between image size and computational ef-

ficiency is crucial in practice.

Deconvolution

The idea of deconvolution was first proposed by Zeiler et al. [97] in 2010. Since then,

it has been widely used for image up-sampling purposes. This layer is also known as

the tranposed convolutional layer [98, 99], inverse/up/backward convolutional layer

[100, 101] or fractional convolutional layer [102]. In contrast to interpolation, de-

convolution involves learnable parameters that are used to up-sample the image. In

regular convolution operation, a convolution kernel/filter is convolved with the image

to extract the feature. But in transposed convolution, the kernel/filter is convolved

with an extracted feature to get the image. The kernel/filter learning procedure in-

creases the computational time and overall complexity of this algorithm. Because of
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the sliding nature of the deconvolution operation, the output image contains some

uneven overlap patterns. This pattern on spatial dimension creates a problem of

checkerboard artifact. This significantly reduces the quality of up-sampled images.

More details about these issues can be found in [103].

Sub-pixel layer

Similar to deconvolution, sub-pixel convolution is another learnable method for image

up-sampling, initially proposed by Shi et al. [104]. It leverages channel information

to upscale the image. For example, we want to upscale an image of shape H ∗W ∗C

by a factor of r. Here, C is the channel information. Usually, for grayscale images,

C = 1, and for color image C = 3. By using some convolution operation and multiple

filters, first, the channel information is increased to H ∗W ∗ r2C. Later by reshuffling

the channel, information is moved in the spatial dimension. And the size of the final

output will be rH ∗ rW ∗ C. The operation is depicted in Figure 2.14. Compared

to the deconvolution approach, sub-pixel convolution offers notable advantages. It

is log2r
2 times faster, significantly reducing the computational burden. Additionally,

this methodology encompasses a larger receptive field, enabling the capture of more

contextual information during the up-sampling process.
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Figure 2.14: Example of the sub-pixel convolution operation. Here we
have an input size of 5∗5∗22 px. The scaling factor r is 2. After reshuffling
the desired output shape is 10 ∗ 10 ∗ 1 px.

Loss Functions

An effective choice of the loss function has been observed to facilitate faster conver-

gence of the model. In the context of SR, the selection of an appropriate loss function

greatly influences the accuracy of image reconstruction. In recent years, researchers

have explored various loss functions for SR tasks. This section provides an overview

of some prominent loss functions employed in the SR domain. Throughout this sec-

tion, h, w, and c represent the height, width, and number of channels of the images,

respectively. ŷ denotes the ground truth image, while y corresponds to the output

generated by the model.

Pixel loss

Pixel loss is a simple yet widely utilized loss function in the field of SR. It involves

calculating the pixel-wise difference between the labeled image (ground truth) and the

reconstructed image. The choice of measuring this difference can vary, but the two

most commonly employed approaches are Mean Absolute Error (MAE) (also known

as L1 loss) and Mean Square Error (MSE) (also known as L2 loss).
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LL1 =
1

hwc

i=h,j=w,k=c∑
i=1,j=1,k=1

∣∣∣yi,j,k − ŷi,j,k

∣∣∣ (2.1)

LL2 =
1

hwc

i=h,j=w,k=c∑
i=1,j=1,k=1

(
yi,j,k − ŷi,j,k

)2

(2.2)

The pixel difference of LL2 is penalized by a square term, so this loss is more sensitive

to outliers. In SR domain, LL1 loss works better than LL2 loss [105, 10, 106, 87].

Perceptual loss

To address the limitations of pixel loss in capturing contextual information, a per-

ceptual loss function was introduced by Johnson et al. [107] in 2016. Instead of solely

considering individual pixels, this loss function incorporates high-level features ex-

tracted from both the up-sampled image and the ground truth image. To extract

these features, a pre-trained model such as VGG [108] or ResNet [8], which has been

trained on the large-scale ImageNet dataset [109], is utilized. The pre-trained model

extracts high-level features that capture more complex patterns and structures in

the images. The perceptual loss is then computed by measuring the Euclidean dis-

tance between these high-level features, providing a measure of perceptual similarity

between the up-sampled and ground truth images.

Lperceptual =
1

hwc

i=h,j=w,k=c∑
i=1,j=1,k=1

√(
ϕ(yi,j,k)− ϕ(ŷi,j,k)

)2

(2.3)

Here, ϕ is the output of the pre-trained model. In the case of converting a LR hu-

man facial image to HR, it is beneficial to compare specific regions of interest, such

as the eyes, nose, and hair, at different resolutions. This targeted approach allows

the perceptual loss to focus on capturing the fine details and textures specific to
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those regions. However, it is important to note that utilizing pre-trained models for

extracting high-level features can increase computational time due to the size and

complexity of these models.

Performance Metrics

Measuring the quality of an image is a challenging task, as there is no universally

agreed-upon metric that can accurately assess image quality. Human perception

remains one of the most reliable methods for evaluating image quality, as it takes

into account the complexities and nuances that are difficult to quantify. However,

human perception-based assessments can be subjective and inconsistent, as individual

preferences and biases can influence the perceived quality.

In addition to subjective evaluations, several objective metrics have been developed

to quantify the similarity between two images. These metrics aim to capture various

aspects of image quality, such as fidelity, distortion, and structural similarity. Some

commonly used image quality metrics include:

Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) is a widely used performance metric for

evaluating image similarity. It is defined as the ratio of the maximum pixel value

(Pmax) to the pixel MSE with respect to a reference image. PSNR is often expressed

in a logarithmic decibel (dB) scale to accommodate the wide range of pixel values

in different images. A higher PSNR value indicates a smaller difference between the

images and is generally interpreted as a closer match to the reference.

However, it is important to note that PSNR only considers pixel-level differences
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and does not necessarily reflect human perception or preference. For example, in the

case of a human facial image, if the hair pixels are slightly shifted, PSNR may show

a low value even if the overall quality of the hair image is visually acceptable. PSNR

primarily focuses on minimizing pixel-level errors rather than capturing higher-level

perceptual qualities.

Therefore, while PSNR is a useful metric for certain applications and scenarios,

it should be complemented with other metrics and subjective evaluations to obtain a

comprehensive understanding of image quality and its alignment with human prefer-

ence.

PSNR = 20log10

( Pmax√
MSE

)
(2.4)

Structural Similarity Index

Published in 2004 by Wang et al. [110], Structural Similarity Index (SSIM) is another

widely used metric to measure the similarity between two given images. Unlike PSNR,

SSIM takes into account human visual perception when comparing images. SSIM

assesses the similarity of two images based on three key aspects: luminance, contrast,

and structure. Luminance, represented by µ, is calculated by averaging the pixel

values across the entire image. It captures the overall brightness or intensity of

the image. Contrast, denoted by σ, measures the standard deviation of the pixel

values and represents the variability or differences in intensity within the image. The

structure is evaluated based on the covariance between the pixel values of the two

images, accounting for spatial relationships and patterns.

µx =
1

N

N∑
i=1

xi (2.5)
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σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)2 (2.6)

SSIM combines these three components to generate a similarity index that ranges

between -1 and 1, with 1 indicating perfect similarity. Higher SSIM values indi-

cate greater similarity between the images. Luminance(Lc) and contrast(Cc) and

structure(Sc) is compared using the following equation. Where C1, C2, and C3 are

the constant.

Cl(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(2.7)

Cc(x, y) =
2σxσy + C1

σ2
x + σ2

y + C1

(2.8)

Sc(x, y) =
σxy + C3

σxσy + C3

(2.9)

Finally, SSIM is measured using equation 2.10. Here α > 0, β > 0, γ > 0 indicate

the relative importance/weight for each of these terms.

SSIM(x, y) = [Lc(x, y)]
α ∗ [Cc(x, y)]

β ∗ [Sc(x, y)]
γ (2.10)

By considering luminance, contrast, and structure, SSIM provides a more compre-

hensive assessment of image similarity that incorporates important visual factors.

However, it is important to note that SSIM may not capture all aspects of human

perception and can still exhibit variations based on different test conditions and sub-

jective preferences.
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Network architecture

Figure 2.15: Figure shows one of many residual blocks from a CNN ar-
chitecture. Xl and Xl+1 is the input and output of layer l, respectively.
a) Original ResNet work proposed by He et al. [8]. b) In SRResNet [9]
author used a modified version of ResNet. Where they removed ReLU
activation after residual connection. c) Lim et al. [10] were able to achieve
a better result by removing batch normalization from SRResNet.

In 2015, Dong et al. [91] pioneered the use of DL for SR. They introduced a network

architecture consisting of three layers; the purposes of those layers are: i) feature

extraction, ii) non-linear mapping, and iii) image reconstruction. The input of this

network is the LR image which is up-scaled using bicubic interpolations and the

output is the SR image of the input image. However, this approach is computationally

intensive due to the use of upscaled inputs, and it may suffer from artifacts such as
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the checkerboard effect [103].

To address these challenges, Shi et al. [95] proposed the idea of sub-pixel convolu-

tion [104] in order to increase resolution while maintaining computational efficiency.

They introduced the concept of rearranging the channel information in the spatial

dimension, allowing for faster training and avoiding checkerboard artifacts. Kim et al.

[88] used similar architecture as proposed by Dong et al. [91]. The author made the

network deeper and introduced residual connections [8], which further improved the

performance.
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Table 2.3: Comparison of super resolution methodology

Methods

Year

pub-

lished

Up-sampling
Loss

function
Primary contribution

SRCNN [91] 2015
Bi-cubic in-

terpolation
L2 First use of DL in SR domain

ESPCN [95] 2016 Sub-pixel L2
proposed sub-pixel layer for

first time

DRCN [111] 2016
Bi-cubic in-

terpolation
L2 used recursive block

LAPSRN

[90]
2017

Bi-cubic in-

terpolation
L1

increase resolution

progressively

SRGAN [9] 2017 Sub-pixel

Adversarial,

percep-

tual, L1

Used GAN for first time

EDSR [10] 2017 Sub-pixel L1
Remove batch norm from

ResNet

RDN [112] 2018 Sub-pixel L1 Global residual connection

DBPN [89] 2018 Deconvolution L2

Multiple up- and

down-sampling for self

correction

ESRGAN

[113]
2018 Sub-pixel L1 Improve SRGAN

SR3 [93] 2021
Bi-cubic in-

terpolation
L1 Repetitive refinement
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Deeply-Recursive Convolutional Network (DRCN) [111] uses recursive blocks. The

parameters of the recursive block are updated multiple times in a recursive fashion in

a single training run. As the same parameter is updated multiple times, the number

of parameters does not increase. That makes the network smaller in size for faster

training and inference.

In the case of the Laplacian Pyramid Super Resolution Network (LapSRN) [90],

two separate neural networks are trained simultaneously. One network extracts fea-

tures for different scales (e.g. 2x, 4x, 8x), while the other network reconstructs the

image for each scale. The extracted features from the first neural network are con-

catenated with the corresponding scaled layers of the second neural network, enabling

progressive resolution enhancement.

Super Resolution Generative Adversarial Networks (SRGAN) [9] introduced the

use of Generative Adversarial Networks (GAN) [114] for SR. The SRGAN architecture

consists of a generator based on a residual network (SRResNet) and a binary classifier

as the discriminator. This approach aims to generate photo-realistic high-resolution

images.

Enhanced Deep Super Resolution Network (EDSR) and Multi-Scale Deep Super

Resolution (MDSR) are two different networks proposed by [10]. EDSR is a single-

scale model that can increase the image’s resolution at a specific scale, while MDSR

is a multi-scale model capable of generating images at multiple scales (e.g. , 2x, 4x,

8x). The authors removed the batch normalization layer from SRResNet. The batch

normalization layer normalizes the feature during the training process, introducing

range flexibility in the network. Normalization in each layer consumes more memory

and increases computational time. Removing batch normalization enabled them for
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faster convergence. High-scale models are trained from pre-trained low-scale models.

Residual Dense Network (RDN) by Zhang et al. [112] adopts a similar network

architecture to MDSR. Along with the local residual connection, they also used a

global residual connection within the residual block. Deep Back-Projection Networks

(DBPN) [89] introduce a projection layer for SR. HR and LR images alternate in the

projection layer, which helps them to learn the self-correction mechanism.

Saharia et al. [93] use denoising diffusion probabilistic models [115] to conditional

image generation for creating super-resolution images. Here the output image starts

with pure Gaussian noise, and a U-Net [35] model is trained to remove Gaussian noise

from the output image iteratively. Table 2.3 shows the comparison between recently

proposed DL based SR methodologies.

2.4.4 Emitter Localization Using Deep Learning

In 2018, Nehme et al. [37] used deep learning for emitter localization for the first time.

The authors employed an encoder-decoder based CNN architecture. The network’s

input is the entire field of view of the image that may contain overlapping emitters.

The network up-sampled the input image by a factor of eight, where emitter positions

were projected on a high-resolution grid. To train the model, the author first gen-

erated diffraction-limited image and their corresponding super-resolved image. The

super-resolved images are used as the target image. They test their data on both

simulated data and experimental microtubule datasets Sage et al. [116]. However, it

is important to note that this approach does not provide the list of emitter centroid

positions, which limits its ability to achieve nanoscale resolution.

In their work, Mannam et al. [76] proposed a U-Net [35] like architecture where

the primary goal is to avoid frame-by-frame localization to save computational time.
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Here the input is the diffraction-limited images, and the output is the super-resolved

images. The input image is created by combining all the frames into one single image.

They used SRRF [117] an ImageJ [118] plugin, to generate their target super-resolved

image. As their target image is generated from another plugin, they can never surpass

the accuracy of that plugin. Their training sample is very small (750 images), which

makes the training very fast compared to other methods.

In comparison, DeepLoco [39] model can achieve similar accuracy compared to the

conventional MLE algorithm [12, 119] with much faster speed. The input image is

generated using a computer simulation. The model is validated using both simulated

data and experimental data. The network contains a convolutional layer followed by

fully connected layers with skip-connection. The final output have two head. The

first head predicts the probability of having an emitter in a position. And the second

head outputs a 3D vector that represents the 3D position of the emitters. The author

claimed they were able to process 20,000 frames within ∼1 second.
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Table 2.4: Comparison of deep learning based emitter localization method-
ology

Methods
Year
pub-
lished

Architecture
Loss

function
Comments

DeepSTORM
[37]

2018
Encoder-
decoder

based CNN
L2

Used DL for SMLM for first
time

smNET [120] 2018
Similar to
ResNet

L2

Take individual images of
PSF and output 3-D

coordinate of PSFs, PReLU,
Batch norm

DeepLOCO
[121]

2018
CNN with
residual

connection
L2

Introduced a novel loss
function, predict 3-D
coordinate of PSFs

ANNA-PALM
[122]

2018 GAN, U-Net
L1, SSIM,
Adversar-

ial

Take widefield image as input
and return corresponding
super-resolved 2-D image

BGnet [123] 2020 U-Net L2
Take individual PSF as input
and return background and
intensity of that input.

Deep-
STORM3D [38]

2020
CNN with

skip
connection

L2, dice
loss

[124, 125]

Take 2-D low-resolution
images and return 3-D high

resolution volume

DECODE [40] 2021
Two stacked

U-Net

Count
loss, back-
ground

loss & lo-
calization

loss

Take individual images as
input and return emitters
position along with their
intensity and uncertainty.

DenseED [76] 2021
U-Net like
architecture

L2

Work on small data set, take
diffraction limited image as
input and return SR images

as output
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Deep context dependent (DECODE) by Speiser et al. [40] used two stacked U-

Net [35] architectures to predict the emitter position along with their uncertainty

directly. As the emitter’s activation persists over several frames, DECODE uses

adjacent frames to improve emitter detection and localization. So, in the first step,

three separate U-Net model takes three adjacent frames as input. These U-Net extract

the feature from the image. All the extracted features are concatenated together.

These concatenated features work as an input of another U-Net model. This last U-

Net model makes the final predictions. For each pixel k, the network predicts: i) pk

that maps the probability that an emitter is detected near that pixel, ii) the coordinate

of the detected emitter, relative to the center of the pixel iii) a non-negative value

measuring emitter brightness (photons count), iv) uncertainty associated with each of

these predictions. Their loss function have three terms: i) Count loss ii) localization

loss and iii) background loss. The counting loss is responsible for predicting the total

number of emitters present in the image. And the localization loss is responsible for

predicting their exact position. Both losses work together where they fit a spatial

point process probability distribution Baddeley et al. [126]. The background loss is

the MSE between the predicted background and ground truth background.

DeepSTORM3D [38] is an extended version of the previously reported model

DeepSTORM [37]. The author trained a neural network that takes 2D image of

overlapped Terapod PSFs and outputs a 3D grid with a voxel size 27.5∗27.5∗33 nm3.

This fixed voxel size limit their localization accuracy. The model uses a CNN with

residual connections [8]. Their architecture has three main modules: i) multi-scale

context, which extracts features from the 2D image, ii) an up-sampling module that

increases the resolution of the image by four-fold. iii) the last module refines the
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depth and lateral position of the predicted emitter.
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CHAPTER 3:

LOCALIZATION

3.1 Data Generation

DL is an algorithm that heavily relies on a large volume of training data. However,

in the context of origami, it is not practical to physically produce the vast quantities

of origami required for training a deep neural network. Furthermore, due to the

unpredictable nature of how origami can land in various positions and orientations,

obtaining precise ground truth labels for the exact position of each origami becomes

unattainable. Consequently, both the synthesis of a sufficient number of origami

samples and the acquisition of reliable ground truth labels for them are infeasible

tasks.

Fortunately, simulations offer a viable alternative by providing the flexibility to

generate dense or sparse origami configurations within a single movie. This enables

us to create as much data as necessary, accompanied by their corresponding ground

truth information. Through simulation, we can overcome the limitations of physical

origami production and obtain the required dataset for training deep learning models.

The simulated origami data generation process involves the following steps. Firstly,

the position of each origami is determined, either based on a grid position or ran-

domly selected. Subsequently, each origami is assigned to its respective position with
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a random orientation. The arrangement of the origami in the scene establishes the

total number of points for the entire movie. These points are stochastically activated

in each frame, and a specific number of photons is assigned to each point for every

frame.

The blinking behavior of the emitters is governed by user-defined parameters, such

as the mean dark time and mean bright time. The frequency of the blinking events

for individual binding events depends on these parameters. To determine the on-time

(ONT ) and off-time (OFFT ) for each emitter, an exponential distribution is utilized.

Equation 3.1 represents the relationship, where x denotes the random variable and λ

represents the mean dark time or mean bright time.

ONT/OFFT = f(x;λ) = λe−λx (3.1)

Subsequently, the number of photons for each “on” event (P ) is assigned using a

normal distribution, as represented by equation 3.2. This distribution is parameter-

ized by the user-defined values of the photon rate (µ) and photon standard deviation

(σ). The assigned photon count is then prorated by the total integration time (t).

This allows for realistic variations in the photon count, reflecting the inherent uncer-

tainty and fluctuations in the experimental data.

total photon (P ) = f(x;µ;σ) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (3.2)

An “on” event can persist for multiple consecutive frames. For each frame within

an “on” event, an exact number of photons (p) is assigned using a Poisson distribu-

tion, as described by equation 3.3. This distribution is parameterized by the total
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number of photons (P ), which was previously assigned using equation 3.2. The Pois-

son distribution captures the randomness in the photon emission process, where the

number of photons emitted in each frame is independent of the others. It reflects the

probabilistic nature of photon emission and accounts for the variability observed in

experimental data.

frame photon (p) = f(x;P ) =
P x

x!
e−P (3.3)

For each individual frame, the position of the binding event is determined by

sampling from a multivariate normal distribution. This distribution is parameterized

by the exact position of the binding event, which represents its spatial coordinates.

To assign photons within a frame, a 2-dimensional normal distribution is em-

ployed. The mean of this distribution corresponds to the photons assigned for that

specific binding event in that particular frame. The standard deviation of the dis-

tribution is a user-defined parameter known as the (PSF). By sampling from this

distribution, the photons are distributed around the center of the binding event, sim-

ulating the spread of emitted photons.

By repeating this process for all binding events and frames, a collection of photons

is generated, and a 2D histogram is constructed based on their spatial distribution.

This histogram represents an image or frame that mimics the observed data in the

experiment.

To evaluate the fidelity of the simulated images, a visual comparison is presented in

Figure 3.1, showcasing the similarities and differences between the simulated images

and experimental images. This visual assessment allows for a qualitative analysis

of the simulation’s accuracy in capturing relevant features and characteristics of the
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experimental data.

(a) Simulated image

(b) Experimental image

Figure 3.1: Visual comparison between simulated and experimental images

3.2 Performance Metrics

Performance metrics play a crucial role in evaluating the effectiveness of algorithms,

providing insights into their performance. In the context of localization, we employ

two types of performance metrics: those based on image similarity and those based

on localized points.
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3.2.1 Cross Correlation

Cross-correlation (CC) is one of the image similarity metrics we utilize to measure

the similarity or dissimilarity between two images. The CC metric, as defined in

Equation 3.4, compares two separate images, denoted as X and Y . At each level of

up-sampling, we compare the output of our algorithm with the corresponding ground

truth data. The CC equation returns a value ranging from 0 to 1, where a higher

value indicates a higher degree of similarity between the images.

NCC(X, Y ) =

∑i=h,j=w
i=1,j=1

(
Xi,j − X̄

)(
Yi,j − Ȳ

)√∑i=h,j=w
i=1,j=1

(
Xi,j − X̄

)2√∑i=h,j=w
i=1,j=1

(
Yi,j − Ȳ

)2 (3.4)

3.2.2 Jaccard Index

Accurately identifying the total number of emitters is crucial for constructing high-

quality images from SMLM data [127, 13]. False identification of emitters can degrade

the image quality. Therefore, it is important to maximize True Positive (TP) detec-

tions and minimize False Positive (FP) and False Negative (FN) detections. TP is

defined as the correct identification of an emitter within a certain threshold radius

(r), while FN represents undetected emitters. On the other hand, FP occurs when

the algorithm detects an emitter at a position where none exists (Figure 3.2).
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Figure 3.2: A is the ground truth position of an emitter. If the prediction
is within the r nanometer radius, then the prediction is considered as TP,
otherwise prediction is FP.

To evaluate the accuracy of emitter detection, we need a metric that takes into

account these three terms and provides a single value. The Jaccard Index (JI), also

known as the Jaccard similarity coefficient, is a similarity measurement metric be-

tween two sets. In our case, one set consists of the predicted emitter points, and

the other set consists of the ground truth emitter points. The JI is calculated using

Equation 3.5, and a higher value indicates a higher similarity between the prediction

and the ground truth.

JI = 100 ∗ TP

TP + FP + FN
(3.5)

3.2.3 Root Mean Square Error

Root Mean Square Error (RMSE) measures how close the predicted emitter centroid

position is with respect to ground truth. It is calculated using equation 3.6 where here

xi
p represents the prediction of x coordinate of ith emitter. xi

GT is the corresponding

ground truth. The lower value indicates better predictions.
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RMSE(nm) =

√
1

TP

∑
i∈p

(
xp
i − xGT

i

)2
+
(
ypi − yGT

i

)2
(3.6)

3.2.4 Efficiency

To compare different algorithms and obtain a single metric, Sage et al. [13] proposed

the efficiency metric, which combines both the JI and the RMSE. The efficiency is

calculated using Equation 3.7, where α serves as a trade-off parameter between JI

and RMSE. In our subsequent results, we adopt the value α = 1 nm−1 as proposed

by the authors.

efficiency = 100−
√

(100− JI)2 + α2RMSE2 (3.7)

3.3 Image Up-sampling

Our DL model takes a different approach to localize the emitter position. Instead

of directly predicting the position, the model rescales the centroid of the emitter

in a higher-resolution image while preserving its PSFs. This allows for the separa-

tion of overlapped PSFs in the higher-resolution image (i.e. 16x), enabling accurate

localization. These higher-resolution images are then stacked together to form a

super-resolved image, where most of the emitters are isolated and noise is reduced by

the neural network. As a result, the task of emitter detection becomes easier, and

a simpler algorithm, like connected component analysis, can be used to isolate the

individual emitters. The connected component algorithm identifies and labels indi-

vidual connected regions or objects within a binary image. To calculate the centroid

positions along the x and y axes, we can employ another neural network (Section
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3.4.1) or a simpler method like the weighted mean (Section 3.4.1). This multi-step

approach allows us to achieve accurate emitter localization while leveraging the ben-

efits of super-resolution imaging and neural network processing.

When using conventional interpolation methods like bi-linear or bi-cubic interpo-

lation to increase the resolution of a frame, the centroid position of the emitter does

not scale up accordingly. Instead, the centroid position remains unchanged while the

PSF of the emitter becomes larger. This does not benefit us for emitter isolation.

Figure 3.3b demonstrates the effect of bi-linear interpolation at a 2x scale, which

makes the separation of emitters more difficult. This difficulty is exacerbated as the

resolution increases, as shown in Figure 3.3d. To overcome this challenge, we require

a non-linear mapping that not only increases the resolution but also separates the

emitters from each other. This mapping should move the centroid position of the

emitters as the scale increases while keeping the PSF unchanged. DL has achieved

remarkable success in image super-resolution and emitter localization tasks, making

it a suitable approach to learn this non-linear mapping. By increasing the image

resolution by a factor of 16, we empirically observed that most of the emitters can

be successfully isolated. However, it is important to note that higher-resolution im-

ages consume more memory and increase training time. Therefore, a trade-off must

be considered. In our case, increasing the resolution by 16 times allows for effective

emitter isolation, and we subsequently extract the centroid positions of the emitters

to evaluate the accuracy of our architecture.
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(a) 1x – input image (b) 2x – Bi-linear (c) 2x – target

(d) 8x – Bi-linear (e) 8x – target

Figure 3.3: The figure illustrates the issues with bi-linear interpolation
methods for image up-sampling. In (a), the original image is displayed,
containing several emitters. The objective is to isolate the emitter’s cen-
troid positions while preserving their PSFs during the up-sampling pro-
cess, as shown in (c) and (e). However, the bi-linear interpolation method
merely increases the image size without isolating the emitters. It retains
the emitter’s centroid position from the lower resolution image and dis-
torts the emitter’s PSFs, as depicted in (b) and (d).

3.3.1 Model

The core architecture of our model is based on the U-Net [35](shown in Figure 3.4),

which was proposed in 2015 and has demonstrated state-of-the-art performance in

biomedical image segmentation tasks. The U-Net architecture consists of two main

sections: a contracting section and a symmetric expanding section. The contracting

section helps the model understand the contextual information in the image, while
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the expanding section enables precise localization based on that contextual under-

standing. These two sections are connected through residual connections [8].

Figure 3.4: The figure depicts a schematic diagram of a U-Net architec-
ture. It comprises a contracting path on the left side, which captures
context through convolutional and pooling layers, followed by a symmet-
ric expansive path on the right side that enables precise localization using
transposed convolutions. The incorporation of skip connections between
corresponding levels on both paths facilitates the flow of information. At
the final layer, an additional up-sample layer is utilized to increase the
resolution of the image, employing sub-pixel convolution for this purpose.

We utilize the U-Net architecture to progressively increase the resolution of the

image. To achieve this, we employ two separate U-Net models, as shown in Figure 3.5.

The input image undergoes two forward passes in the first model, resulting in a four-

fold increase in resolution. The final output of the first model is then fed into the

second model, which performs two additional forward passes to further increase the

resolution by a factor of 16. Both models have the same shape and size but have

distinct sets of learned parameters.

Our model consists of approximately 63 million trainable parameters. However, we

observed that during the early iterations of training, the output from each model is not

sufficiently close to the corresponding ground truth. If we directly use these outputs
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from earlier epochs as inputs to the second model, the model becomes confused as

these outputs contain significant noise. To address this issue, we apply bi-linear

interpolation to increase the resolution of the input image and concatenate it with the

respective output from the neural network. This provides the necessary information

to train the neural network effectively during the early epochs.

Figure 3.5: The figure illustrates the overview of our deep learning archi-
tecture designed for image up-sampling. Our architecture progressively
increases the image resolution by factors of 2x, 4x, 8x, and 16x. To achieve
this, we utilize two stacked U-Net architectures. Each time the images pass
through the U-Net architecture, the resolution is increased by two times,
and the weights of the neural network are updated during this process.
The first U-Net is responsible for up-sampling from 1x to 4x, while the
second U-Net further increases the resolution from 4x to 16x. This multi-
step approach allows us to obtain high-resolution images by effectively
leveraging the capabilities of the U-Net architecture at different stages of
the up-sampling process.

Optimization Objective

Mean absolute errors (LL1) (equation 2.1) and mean squared errors (LL2) (Equation

2.2) are the two most widely used loss functions for image super-resolution. As shown
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by [128], LL1 loss works better for the image super-resolution domain. We tested both

LL1, LL2, and perpetual loss (Equation 2.3) functions and found out LL1 also works

better for our applications (shown in Figure 3.6).

The intuition behind the choice of loss functions is as follows: perceptual loss

works best for natural images, as it compares images based on their features in the

latent space. However, our images contain PSFs that do not possess rich features like

natural images. On the other hand, the LL2 loss is more sensitive to outliers. Given

these considerations, we opted for the LL1 loss as it provides better performance for

our purposes.

(a) Efficiency comparison (b) Loss comparison

Figure 3.6: L1 loss provides better efficiency compared to L2 loss. The
black line indicates L1 loss and the gray line indicates L2 loss. L2 loss
have a square term which is the reason of having a higher value in each
epoch compared to L1 loss.

It is worth noting that each of our models has its own loss function. For example,

the loss function for model one only updates the parameters of model one, while

the loss function for model two updates the parameters for both models one and two.

This separation allows for individual optimization of each model while jointly training

them to achieve the desired outcome.
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Optimizer

During the training process, we employed the Adam optimizer [129] with default

parameter values. Specifically, we set β1 = 0.9, β2 = 0.98, and ϵ = 109. These values

are commonly used and have been shown to work well in various DL tasks.

To control the learning rate during training, we utilized a variable learning rate

strategy. Initially, we set the learning rate to 10−4. If the validation error did not

decrease for ten consecutive epochs, we reduced the learning rate by a factor of

0.1. The minimum learning rate allowed during training was set to 10−7. This

approach allowed the model to adapt its learning rate based on the progress of the

training process, helping to improve convergence and potentially avoid getting stuck

in suboptimal solutions.

Training data and Pre-processing

Our training data consist of 180,000 images. Furthermore, validation data have 20,000

images. Both training and validation are from entirely different simulations to isolate

image emitter distributions.

During the pre-processing stage of our training data, we performed specific steps to

prepare the images for training. The details of the pre-processing steps vary depending

on the specific model and scaling factor.

Although DL models generally perform well when the output values are between 0

and 1, in our case, we introduced the penalty mechanism to handle the sparsity in the

higher-resolution images and ensure the retention of important emitter information.

For the first model, which handles 2x and 4x scaling, we scaled the pixel values of the

images to be in the range of 0 to 1. This scaling operation helps to ensure that the
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input data falls within a reasonable range for better convergence during training.

However, for the 8x and 16x models, simply scaling the pixel values between 0 and

1 was not sufficient. As the resolution increases, the images become sparser, with a

significant portion of the pixel values being zero. This can pose a challenge because

the neural network could achieve high accuracy and low loss by predicting all zero

values, effectively removing all the emitters in the higher-resolution.

To address this issue, we introduced a penalty for predicting non-zero pixel values

as zero. Each non-zero pixel value was multiplied by a higher number (specifically,

255) during the training process. This multiplication effectively increased the loss

when the network predicted a non-zero pixel as zero. By penalizing these predictions,

we encouraged the network to retain the non-zero values and preserve the emitters’

information in the higher-resolution images.

It is worth noting that while this approach helps to prevent the network from

discarding the emitters, choosing an appropriate multiplier is important. If the mul-

tiplier is too large, it can slow down the training process or lead to other issues.

Empirically, we determined that a multiplier of 255 worked well for our purposes.

3.4 Point Extraction

In order to obtain the super-resolved image, the up-sampled frames can be merged

into a single frame, effectively increasing the image resolution. However, for the

purpose of measuring the JI of our predictions, the coordinates of the emitters are

required. While MLE algorithms can be utilized for extracting these points, they are

computationally intensive. Given that most of the emitters are well separated at a

16x resolution, a simpler algorithm such as a connected component-based approach

can be employed to achieve higher accuracy while reducing computational complexity.
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To implement this approach, the emitters are initially isolated using a connected

component algorithm [130]. Subsequently, a weighted mean is performed within these

isolated regions (Section 3.4.1). Additionally, a CNN has been employed for this

purpose, yielding improved results in comparison to the weighted mean and MLE

approaches (see Figure 3.10).

3.4.1 Weighted Mean

As the emitters are isolated in the up-sampled image, it is much easier to extract

them. We used a connected component algorithm to extract patches from the whole

image. Each patch contains one or multiple emitters. In most cases, each patch

encompasses only one emitter. However, there are instances where emitters remain

connected even in the 16x up-sampled version. In such cases, the weighted mean

approach fails to accurately locate these emitters. For instance, if two emitters are

attached together at the 16x resolution, the weighted mean would select a point at the

center of the two emitters, resulting in an incorrect prediction. Consequently, both

emitters are not detected (false negative), and an additional false emitter prediction

occurs (false positive), resulting in a total of three errors. By disregarding this specific

scenario, we can reduce the errors to two false negatives. To identify such cases, we

examine the non-zero elements within the extracted patch sizes. Typically, when

multiple emitters are connected, the patch sizes increase and contain more non-zero

elements. The threshold size for considering a patch containing two emitters depends

on the properties of the emitter PSF. In our case, we determined that a threshold of

65 provides the optimal efficiency. Figure 3.7 illustrates the efficiency in relation to

different threshold sizes.
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Figure 3.7: The figure shows the efficiency vs. threshold for weighted mean
based centroid position extraction of an emitter. Here, threshold means
the number of non-zero elements in an extracted patch. If the number of
non-zero elements exceeds the threshold value, the corresponding patch is
completely disregarded. As this threshold depends on the spread of the
PSFs, we tested that multiple PSF having separate standard deviation(σ).
The triangle on each line represents the threshold value for which the
highest efficiency was achieved. If the threshold is low, then lots of single
emitters are also ignored. So, at a lower threshold, we are seeing a very bad
efficiency. But after a certain threshold, the efficiency dropped a little bit
and remained constant with a higher threshold. Having an attached multi-
emitter at 16x resolution is not a common phenomenon. So, even if we
ignore this rare event, it does not increase our efficiency a lot. For example,
for σ = 1, we get the highest efficiency 86.6% at threshold 65. And at
threshold 99, the accuracy becomes 85.7%. So, by using the threshold, we
were able to improve the accuracy by 1%. Here, each test was done on
5000 16x up-sampled images. And the threshold radius(r)(section 3.2.2)
for JI was 10 nm.

3.4.2 Neural Network

The weighted mean approach achieved pretty good efficiency at 16x up-sampled reso-

lution. Nevertheless, the presence of attached emitters at this level reduces the overall
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efficiency of the algorithm. To address this issue, we incorporated a neural network for

extracting emitter centroid positions. The utilization of neural networks serves two

main purposes: (1) achieving more precise localization and (2) potentially enhancing

efficiency by successfully separating two connected emitters that were undetectable

by the connected component algorithm.

Data Generation

The training data for our neural network were generated using 16x up-sampled la-

bel images. Since we have access to the ground truth information, we performed a

breadth-first search from the ground truth to isolate all the connected emitters. Sub-

sequently, we applied random padding to the extracted patches, which resulted in the

emitter being placed at a random position within the patch. The size of the padding

was set to 30× 30 pixels. However, when we experimented with symmetric padding,

where the emitter remains at the center position, the neural network exhibited over-

fitting behavior. In such cases, the model struggled to compute the centroid position

if the emitter was not located at the center.

After padding, the extracted region was fed into a neural network for predicting

at most two points. For a single emitter, our neural network predicts six properties:

p – Probability of having an emitter in that patch

x – Coordinate of the emitter along the horizontal direction

y – Coordinate of the emitter along the vertical direction

σx – Standard deviation of the emitter along the horizontal direction

σy – Standard deviation of the emitter along the vertical direction
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i – Intensity of the emitter

Since our model predicts two points for each extracted region, the final output of

the neural network is a tensor of shape 12. We utilized ResNet [8], specifically the

18-layer variant, as our base model. ResNet, introduced by He et al., is a renowned

architecture primarily designed for image classification tasks. We modified the first

and last layers of the architecture to enable our model to process grayscale images

instead of RGB images and to adapt the number of final outputs to 12 for our specific

requirements. The resulting model had approximately 10 million trainable parame-

ters.

Loss Function

We employed a combination of two loss functions for our model. For the probability

(p) prediction, we utilized the binary cross entropy loss (Equation 3.8):

LBCE = − 1

m

m∑
i=1

(
pilogp̂i + (1− pi)log(1− p̂i)

)
(3.8)

Here, m represents the total number of training examples, pi denotes the model’s

predicted probability of an emitter’s presence in the ith training example, and p̂i

represents the corresponding ground truth.

For the emitter location and the associated standard deviation, we experimented

with three different loss functions. Among them, the LL1 loss (Equation 2.1) yielded

the most stable results. A comparison between LL1, LL2, and Lhuber losses is depicted

in Figure 3.8. The Huber loss (Equation 3.9) combines both the LL1 and LL2 losses.
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If the absolute element-wise difference falls below a certain threshold (δ), the Huber

loss employs the LL2 loss; otherwise, it utilizes the LL1 loss. This choice is based on

the observation that when the difference is small, the likelihood of the value being an

outlier is low. Conversely, when the difference is large, the probability of the value

being an outlier increases. Consequently, in such cases, the LL1 loss is more suitable,

as the LL2 loss is more sensitive to outliers.

Lhuber =


1
2
(y − ŷ), if |y − ŷ| ≤ δ

δ|y − ŷ| − 1
2
δ2, otherwise

(3.9)

One of the primary motivations for utilizing a neural network for point extraction

is to identify connected emitters. Therefore, patches containing two emitters are

considered more important than those containing only a single emitter. To emphasize

this distinction, we multiplied the loss for scenarios with connected emitters by a

factor of 10. This adjustment allows the neural network to prioritize learning from

these examples more effectively.

final loss = single emitter loss + 10 * multi emitters loss
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Figure 3.8: Efficiency comparison between different loss functions for point
extractor model. Here LL1 returns the best and more stable result. LL2 is
more sensitive to outliers, so we are noticing some ups and downs during
the training process. Huber loss is less sensitive to data compared to LL2,
so it is showing better stability than LL2.

Results

Emitters typically emit signals across multiple subsequent frames, with their intensity

potentially varying from frame to frame. A study by Speiser et al. [40] demonstrated

that the detection accuracy of emitters can be improved by using three consecutive

frames as input. However, in our case, we observed that our accuracy remained nearly

the same even when we used adjacent frames as inputs (see Figure 3.9).

Since we extracted patches from a single frame, we also extracted corresponding

positional patches from the adjacent frames to maintain spatial consistency across

the inputs. Despite not seeing a significant improvement in accuracy, this approach

allowed us to maintain the same level of performance as when using three consecutive

frames as input.
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(a) Efficiency comparison (b) Loss comparison

Figure 3.9: To extract emitter’s centroid position from frame t, we used
only that frame in a single frame label. And we used frame t−1, t, and t+1
in three frame labels. Here single frame analysis provides better results
compared to multi-frame analysis.

Our neural network-based approach demonstrated superior efficiency and JI com-

pared to the weighted mean and MLE approaches. For a radius (r) of 10 (as described

in Section 3.2.2), our approach achieved an efficiency of approximately 98%, whereas

the weighted mean and MLE approaches had efficiencies of approximately 86% and

89%, respectively (see Figure 3.10).

When we increase the radius, more points are considered true positives, which

leads to an increase in the RMSE because a greater distance between the ground

truth and predictions is also counted as true positives. This is why we attained the

highest efficiency at an earlier radius compared to the JI.

Furthermore, our neural network-based approach is approximately 36 times faster

than the MLE-based approach. We implemented the MLE approach using the Python

package SciPy [131].
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(a) Jaccard index comparison (b) Efficiency comparison

Figure 3.10: The figure shows a comparison between three different point
extraction methods. Here we use the 16x up-sampled label image to ex-
tract the emitter points. The test was done with 1000 frames. The trian-
gular shape indicates the position with minimum radius with the highest
efficiency/jaccard index. After that point, there is no effect on increasing
the threshold radius(r).

3.5 Results and Discussions

We conducted extensive testing and validation of our method using various metrics

and datasets. As previously mentioned, our neural network progressively enhances the

image resolution while preserving the PSF of the emitters. Throughout the training,

validation, testing, and inference stages, we obtained images at multiple resolutions,

such as 2x, 3x, 4x, and 8x. We computed the centroid positions of the emitters from

these images to analyze their impact on the target metrics and gain insights into

emitter separability.

Figure 3.11a presents a comparison of efficiency across different resolutions. The x-

axis represents the threshold radius for classifying an emitter as a true positive, while

the y-axis represents the efficiency (see Section 3.2.4). As depicted in the figure,

the lowest efficiency was observed at a 2x image resolution, which was expected. At
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this resolution, most emitters remained merged together, posing a challenge for the

connected component algorithm to effectively isolate individual emitters and leading

to low efficiency. For instance, in Figure 3.13a, two emitters are merged together in

the input image. At 2x resolution (Figure 3.13b), they are only partially isolated.

However, the isolation was insufficient for the connected component algorithm to

identify them as separate emitters. As a result, the emitter extraction algorithm

(e.g., weighted mean, neural network, maximum likelihood estimation) considered

these two emitters as a single emitter and assigned a centroid position in the middle

of the two emitters. This error represents a false positive, as the algorithm failed to

isolate the two real emitters, which are marked as false negatives. Consequently, at

2x resolution, we have a total of three errors. However, this issue is not observed in

higher-resolution images (e.g., 4x, 8x, 16x), where these two emitters are properly

isolated (see Figure 3.13). That ultimately led to poor efficiency.

Nevertheless, as we increased the resolution, the efficiency improved significantly.

At an 8x resolution, a greater number of emitters were successfully isolated compared

to the 2x resolution, resulting in higher accuracy. Surprisingly, the best performance

was achieved at 8x rather than 16x resolution. This observation suggests that the sep-

arability of emitters is relatively similar between 8x and 16x resolutions. Additionally,

each increase in resolution caused the neural network to lose some information, leading

to a degradation in the overall resolution quality (see Figure 3.11b). This degradation

resulted in a deviation in the centroid positions of the emitters, specifically impacting

the efficiency at the 16x resolution. For example, Figure 3.12 demonstrates how a low

signal emitter can be lost at higher levels (see Figure 3.12e). Moreover, since only a

few emitters exhibited greater separability at 16x compared to 8x, their contribution
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to the efficiency improvement was not significant. More localization example of our

localization algorithm can be found in Appendix B.

In conclusion, our findings demonstrate the influence of image resolution on emit-

ter separability and efficiency. While higher-resolutions generally enhance efficiency,

the loss of information in the neural network and limited separability at 16x resolution

resulted in a slight decrease in performance compared to 8x resolution.

(a) Efficiency comparison between dif-
ferent resolutions

(b) Cross correlation comparison be-
tween different resolution

Figure 3.11: As our neural network progressively increases the resolution
of the image, we calculate the metrics after each increment in resolution.
(a) depicts the efficiency after each increase in resolution, and (b) shows
the cross-correlation comparison between different resolution levels.



89

(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure 3.12: The presented images demonstrate the occurrence of infor-
mation loss during the up-sampling process. The red ’x’ symbols denote
the true positions (ground truth) or predicted positions (b, c, d, e) of the
emitters. Notably, the information pertaining to one of the emitters was
rendered indiscernible in the subsequent layers of the neural network (at
a 16x up-sampling factor) due to diminished signal strength.
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(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure 3.13: In the input image (a) we can see there are two emitters that
are merged together. However, those emitters are predicted as a single
emitter at 2x resolution (b). Because they were not isolated enough at 2x
resolution. However, at higher-resolution both the emitters were identified
and localized correctly.

Figure 3.14 presents a visual comparison of the final output generated by our

algorithm. In this comparison, we utilized the neural network to up-sample the

image and subsequently employed the weighted mean method (see Section 3.4.1) for

extracting emitter positions. Our visual results closely correspond to the previously

observed efficiency comparison at multiple resolutions. Notably, we observed that the

quality of the output improves as the resolution increases.

In the context of the “One-Pixel-Blur” technique, each emitter is subjected to

blurring using a Gaussian density function with a standard deviation of one. The
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“Global Localization Precision” metric bears resemblance to the “One-Pixel-Blur”

technique. Nevertheless, the Gaussian kernel’s standard deviation is calibrated to

align with the median precision of all localization coordinates. For visualizing the

results, we utilized the render module from Picasso’s work [11].

(a) Prediction from 2x – one pixel
blur

(b) Prediction from 2x – global lo-
calization precision

(c) Prediction from 4x – one pixel
blur

(d) Prediction from 4x – global lo-
calization precision
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(e) Prediction from 8x – one pixel
blur

(f) Prediction from 8x – global lo-
calization precision

(g) Prediction from 16x – one pixel
blur

(h) Prediction from 16x – global lo-
calization precision

Figure 3.14: Visual comparison of our neural network output at different
scale



93

Figures 3.15, 3.16, and 3.17 present a visual comparison of three different ap-

proaches: our neural network-based approach, the Picasso [11] MLE based approach,

and the ThunderSTORM [12] MLE based approach. From the visual results, it is

evident that our neural network-based approach outperforms both Picasso and Thun-

derSTORM.

For training our neural network, we utilized simulated origami data. To ensure

unbiased evaluation, we employed a distinct simulated dataset specifically for testing,

thus avoiding any data leakage between training and inference. This same testing

dataset was also used for extracting emitters using the Picasso and ThunderSTORM

methods.

We further conducted a comparison using the publicly available microtubules

dataset (MT0.N1.HD) [13], which was not generated by us. However, the improve-

ment observed in this dataset was not as significant as in the previous case (as shown

in Figures 3.15, 3.16, and 3.17). In our neural network training, the emphasis was on

capturing the pattern present in the origami data. As neural networks are adept at

recognizing patterns, the substantial improvement in visualizing the origami data is

understandable. The dataset of microtubules, on the other hand, possesses a distinct

shape that differs from the grid-like structure the neural network was trained on.

Consequently, the performance on this dataset was comparatively poorer. In the case

of Picasso and ThunderSTORM, the structure of the final output is not a significant

factor, which explains the consistent performance of these methods in both scenarios.
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Figure 3.15: Top figure shows all the emitters that were localized using our
neural network based method without any blurring effect. Focused regions
(bottom row) show emitters using one-pixel blur to better visualize the
origami.
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Figure 3.16: Top figure shows all the emitters that were localized using
Picasso [11] without any blurring effect. Focused regions show emitters
using one-pixel blur to better visualize the origami.
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Figure 3.17: Top figure shows all the emitters that were localized using
ThunderSTORM [12]. Focused regions (bottom row) show emitters using
one-pixel blur to better visualize the origami.
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Figure 3.18: Figure shows all emitter’s point extracted from dataset
MT0.N1.HD [13] using our neural network based method
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Figure 3.19: Figure shows all emitter point extracted from dataset
MT0.N1.HD [13] using picasso [11]
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Figure 3.20: Figure shows all emitter point extracted from dataset
MT0.N1.HD [13] using thunderSTORM [12]



100

CHAPTER 4:

ERROR CORRECTION FOR DNAM

4.1 The Initial Version of Error Correction

The key design features of dNAM, crucial for ensuring error-free data recovery, lie

in the implementation of our error-correcting algorithms. The detection of individ-

ual DNA molecules using DNA-PAINT often encounters limitations such as incom-

plete staple strand incorporation, defective imager strands, fluorophore bleaching,

and background fluorescence [132]. Although averaging multiple images of identi-

cal structures can improve the signal-to-noise ratio [132], this approach negatively

impacts read speed and information density. To address these challenges, we have de-

veloped specific information encoding and decoding algorithms for dNAM, employing

fountain codes along with a custom bi-level, parity-based, and orientation-invariant

error detection scheme.

Fountain codes, originally introduced by Luby [133], offer an effective means of

transmitting data over noisy channels. The encoding process involves dividing a

data file into smaller units known as droplets, which are then randomly sent to the

receiver. Importantly, droplets can be read in any order and still be decoded to recover

the original file [60], as long as a sufficient number of droplets are transmitted to

ensure complete reception. In our implementation, we assign each droplet to a single
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DNA origami and include additional bits of information for error correction purposes.

This ensures the successful recovery of individual droplets from their respective DNA

origami, even in the presence of high levels of noise. By integrating EC and fountain

codes, we significantly increase the probability of fully recovering the message while

minimizing the number of observed origami required.

By employing these error-correcting algorithms and fountain codes, we have suc-

cessfully addressed the challenges associated with error-free data recovery in dNAM.

This achievement not only improves the robustness of the system but also enhances

the overall efficiency by reducing the number of observed origami.

4.1.1 Encoding Algorithm

The encoding algorithm utilized a multi-layer error correction scheme to encode mes-

sage data bits, along with index, orientation, and error correction bits onto multiple

origami structures (Figure 4.5).

At the message level, the algorithm employed a fountain code to encode the

data. Let m represent a message string consisting of a sequence of n bits. The

fountain code algorithm initially divides m into k equally sized and non-overlapping

substrings known as a segment, denoted as s1, s2, . . . , sk, where the concatenation

s1s2 . . . sk = m. These substrings were then systematically combined, using the bi-

nary XOR operation, to form multiple data blocks known as droplets. The number of

segments d used to form each droplet was typically drawn from a distribution based

on the Soliton distribution:

p(1) = 1/k (4.1)

For our experiments, we divided the message “Data is in our DNA!” into ten
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segments, each consisting of 16 bits. These segments were combined in different

combinations using the fountain code algorithm to generate 15 droplets. Although

the theoretical minimum number of 16-bit droplets required to decode the message

is ten, the redundancy provided by the additional droplets ensured that the message

could be recovered even in cases involving the loss of one droplet, and in some cases,

up to five droplets (Figure 4.5).

After generating the droplets using fountain codes, the encoding algorithm pro-

ceeded to encode each droplet onto fifteen 6x8 matrices. Sequentially, index and

orientation marker bits were added, followed by the computation and addition of

checksum bits, and finally, the inclusion of parity bits (Figure 4.5). These matrices

were then used to construct 15 origami structures, establishing a one-to-one mapping

between the matrices and the origami’s data domains. The computation of parity

and checksum bits was based on a predefined mapping scheme that outlined the re-

lationship between all the bits in the origami. Initially, we employed a hand-picked

mapping scheme that maintained two essential properties. However, for the 3dNAM

error correction algorithm, this step was automated (see Section 4.3.1).

Mapping Requirements

Rotation Invariant: The mapping relationship between each parity and data bit needed

to be rotation invariant. This means that the relationship should remain the same

regardless of the direction or orientation in which the origami is read. We achieved

this property by mirroring the data points based on the center axis in each direction.

Even Parity and Data Coverage: To evenly distribute the mapping, we ensured that

each parity contained a predefined number of data bits, and each data bit was present

in a predefined number of parity bits. We used two counters to track these relation-
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ships and selected available data bits for even distribution.

Figure 4.5 illustrates how droplet information was encoded into each origami struc-

ture. Each origami consisted of 16 bits of droplet data (colored in green), four indexing

bits (colored in red), twenty parity bits (colored in blue), four checksum bits (colored

in yellow), and four orientation bits (colored in magenta). The index bit is utilized to

determine which segments are present in a specific droplet. The information from the

non-parity bits is distributed into the parity bits, and these distributed bits are later

used to recover missing information through error correction algorithms. After fixing

errors using the parity bits, the checksum bits are employed to verify the integrity of

each bit, excluding the parity bits. The orientation bits are then used to correctly

orient the origami after the verification from the checksum bits.

Notably, the arrangement of the data, orientation, and index bits relative to the

corresponding parity and checksum bits remained invariant to rotation. This property

allowed the error correction algorithm to perform error detection and recovery prior

to determining the orientation, resulting in more robust data recovery (Figure 4.5).
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Figure 4.5: The multi-page figure illustrates the twelve steps involved
in encoding a text message using dNAM. The encoding process depicts
the proof-of-principle experiment described in the main text, showing the
design process for one of the 15 origami, as an example.

4.1.2 Decoding Algorithm

The decoding algorithm (Figure 4.6) utilized a multi-layer error correction/encoding

scheme to recover the data in the presence of errors. The algorithm first works at the
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dNAM origami level (step 1, below), using the parity and checksum bits to identify

and correct errors and recover the correct matrix. After recovery, the algorithm uses

binary operations to recover the original data segments from the droplets (step 2,

below).
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Figure 4.6: The main steps involved in decoding a message from dNAM
are depicted. First, each individual origami captured in a DNA-PAINT
recording is converted into a binary string (Image Processing). Next,
errors in each binary string are detected and corrected if possible (Error
Correction) using the algorithm described in figure 4.7 and index and
droplet data extracted. Finally, segment information is retrieved from
the droplets (segment information extracted) pooled with data from other
origami and passed to the fountain code decoding algorithm shown in
Figure 4.8, which reassembles the original file (Fountain Code Decoding).
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Step 1–Error Correction

Given raw binary matrix data M for a single dNAM origami, the output from the

localization data processing step, the matrix decoding algorithm determined which, if

any, bits were associated with checksum and parity errors by calculating the bi-level

matrix parity and checksum values, as described in Figure 4.5. Any discrepancies

between the calculated parity and checksum values and the values recovered from

the origami were noted, and a weight for each of the bits associated with the errant

parity/checksum calculation was deduced. If no parity/checksum errors were detected

for a particular matrix, then the data was assumed to be accurate, and the algorithm

proceeded to extract the message data.

To determine the site(s) of likely errors, the decoding algorithm first determined

a weight for every cell in M , beginning with data cells (the cells containing droplet,

index, or orientation bits) and proceeding to parity and checksum cells. Let Pci,j be

the set of parity functions calculated over a given data cell ci,j. Then for each data

cell ci,j:

xij =
∑

fcpq∈Pi,j

∣∣∣cpq − fcpq(M)
∣∣∣ (4.2)

Where cpq is the parity cell where the expected binary value of f is stored.

The weight for each parity cell cij was then calculated based on the number of

non-zero weights greater than 1 for the data cells associated with it. More formally,

let cij be a parity cell and Dcij be the set of data cells used in the calculation of cij.

Then the weight xij for each parity cell cij is:

xij =
∑

cpq∈Dcij⊕xpq>1

sgn
(
xpq

)
(4.3)
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The higher the weight value, the higher the probability that the corresponding

cell had an error.

An overall score for the matrix was then calculated by summing over all xij and

normalizing by the sum of the correctly matched parity bits. This value was desig-

nated as the overall weight of the matrix. Higher values of this weight correspond to

matrices with more errors.

Overall matrix weight =

∑6
i=0

∑8
j=0 xij

# number of matched parity
(4.4)

The algorithm then performed a greedy search to correct the errors using a priority

queue ordered by the overall matrix weight (Figure 4.7). The algorithm began by

iteratively altering each of the probable site errors and computing the overall matrix

weight of the modified matrix for each, placing each potential bit flip into a priority

queue where the flips that produced the lowest overall weights had the highest priority.

At each step, the algorithm selected the bit flip associated with the highest priority

in the queue and then repeated this process on the resulting matrix. This process

was continued until the algorithm produced a matrix with no mismatches or until it

reached the maximum number of allowed bit flips (9 for our simulation/experiment).

If it reached the maximum number of flips, it returned to the queue to pursue the

next highest priority path. If the algorithm found a matrix with no mismatches, it

then checked the orientation bits and oriented the matrix accordingly. The droplet

and index data were then extracted and passed to the next step. If the queue was

emptied without finding a correct matrix, the algorithm terminated in failure.
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Figure 4.7: A flowchart depicting the operations performed by the error
correction algorithm for an individual origami is shown. A priority queue
is initialized with an individual origami m (the working matrix). Based
on the parity and checksum bits mismatch, the algorithm deduces a set of
probable errors and a matrix weight for the working matrix. The matrix
weight is proportional to the number of errors, and the main goal of the
algorithm is to reduce the matrix weight in a greedy fashion. To that
end, each of the probable errors in the working matrix is sequentially
flipped, and a matrix weight calculated for every resulting matrix. The two
resulting matrices with the lowest weights are enqueued. The algorithm
then replaces the working matrix with the recalculated matrix possessing
the lowest matrix weight from the queue. If the current working matrix
already has 9 bits flipped it is discarded and the next matrix in the queue
used. The algorithm repeats these steps until the matrix weight equals
zero, at this point the data in the origami is considered to have been
error-corrected and is passed to the next stage of the decoding (Accept).
If the priority queue is emptied before the matrix weight reaches zero, the
origami data is considered unrecoverable and is removed from the analysis
(Reject).
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Step 2–Fountain Code Decoding

After the extraction of droplet and index data from multiple origami, the algorithm

attempts to recover the full message (Figure 4.8). Once decoded, each droplet has one

or multiple segments XORed within it. Using the recovered indexes, the algorithm

determines the number and specific segments contained in each droplet. To decode

the message, the algorithm maintains a priority queue of droplets based on the num-

ber of segments they contain (referred to as their degree), with the droplets having

the lowest degree assigned the highest priority. The algorithm iterates through the

queue, removing the droplet with the lowest degree, attempting to employ it to re-

duce the degree of the remaining droplets through XOR operations, and subsequently

re-queuing the resulting droplets. Upon encountering a droplet with a ’degree one’, it

stores it as a segment for the final message. If all segments are successfully recovered,

the algorithm terminates its execution.
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Figure 4.8: The flowchart depicts the operations performed by the fountain
decoding algorithm to recover file segment data from droplet data. The re-
covered origami are stored in the Droplet Table. The data in single degree
droplets(i.e. D8, D9) are used directly to reconstruct the file (Recovered
File). To extract additional individual segment data from multi-segment
droplets, the decoding algorithm performs a series of XOR operations.
The index information allows the algorithm to determine both the degree
of the droplet and which segments of the file that the droplet encodes.
Taking the case of D2, a series of XOR operations must be performed
in order to retrieve additional segment data from it. The decoding algo-
rithm may XOR a multi-degree droplet with another droplet if the other
droplet’s segment(s) are a proper subset of the multi-degree droplet. For
example, the segments contained in D6 are a proper subset of those in D2.
After XORing D2 and D6, a new droplet is generated containing segments
S5 and S6, which ultimately leads to the algorithm extracting the data
for S6. This process is repeated in a greedy fashion until the algorithm
retrieves all of the file’s segment data (Recovered File), or it runs out of
options for XORing droplets (in which case the entire file cannot be suc-
cessfully recovered). For simplicity, only six of the 15 possible droplets are
shown, with the resulting recovered segments depicted in colored boxes
(Recovered Segments).
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4.1.3 Results

In-silico Simulation

To test the robustness of our encoding and decoding algorithms, as well as its ability to

recover from errors, origami data were simulated with randomly generated messages

and errors. First, random binary messages of size m were created (for m = 160 to

12,800 bits, at 320-bit intervals). These messages were then divided into m/b equally

sized segments, where b is the number of data bits to be encoded onto an individual

origami. For fixed-size origami, larger messages necessitated a smaller b, as more

bits had to be dedicated to the index. In these cases, b varied between eight (for

m = 12, 800) and twelve (form = 160). After determining message segments, droplets

were formed using the fountain code algorithm and encoded onto origami, along with

the corresponding index, orientation, and error-correcting bits. Ten in silico copies of

each unique origami were created, and 0–9 bits were flipped at random to introduce

errors. The origami was decoded as described above.

As shown in (Figure 4.9a), the number of origami required to encode a message

of length n increases roughly at a linear rate up to n = 5000 bytes of data. Larger

message sizes require more bits to be devoted to indexing, decreasing the number

of available data bits per origami—creating a practical limit of 64 kB of data for

the prototype described in this work. This limit can be increased by increasing the

number of bits per origami. To determine the ability of the decoding and error

correction algorithm to recover information in the presence of increasing error rates,

in-silico origami that encoded randomly generated data were subjected to increasing

bit error rates. The decoding algorithm robustly recovers the entire message for all
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tested message sizes when the average number of errors per origami is less than 7.4

(Figure 4.9b). At 7.4 errors per origami, the message recovery rate drops to 97.5%,

and as expected decreases rapidly with higher error rates (55% recovery at 8.2 errors

per origami, and 7.5% at 9 errors per origami). An important feature of our algorithm

is that the origami recovery rate can be low (as low as 63% in these experiments) and

still recover the entire message 100% of the time.

Figure 4.9: Simulations were performed to determine the theoretical suc-
cess rates for correctly decoding individual dNAM origami and recovering
encoded messages. In (a), the mean number of dNAM origami needed to
successfully recover messages of increasing length with (circles) or without
(squares) redundant bits are plotted. In (b), the mean success for recover-
ing both individual origami (triangles) and the entire message (diamonds)
are plotted against the mean number of errors per origami (errors were
randomly generated for simulated data). Simulation recovery rates are
averages of all message sizes tested (160 to 12,800 bits). For comparison,
the mean success rate for experimental data is also plotted (open circles).
For experimental data, the mean success was estimated by comparing the
decode algorithm’s results with that of the template-matching algorithm.
All simulations were repeated 40 times. Experimental data were derived
from 3 independent DNA-PAINT recordings.
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In-vitro Experiment

As a proof of concept, we encoded the message ‘Data is in our DNA!’ into 15 distinct

DNA origami nanostructures (Figure 4.10). Each origami was designed with a unique

6 × 8 data matrix that was generated by our encoding algorithm with data domains

positioned 10 nm apart. For encoding purposes, the message was converted to binary

code (ASCII) and then segmented into 15 overlapping data droplets that were each 16

bits. Inspired in part by digital encoding formats like QR-codes, the 48 addressable

sites on each origami were used to encode one of the 16-bit data droplets, as well

as information used to ensure the recovery of each data droplet. Specifically, each

origami was designed to contain a 4-bit binary index (0000–1110), twenty bits for

parity checks, four bits for checksums, and four bits allocated as orientation markers

(Figure 4.10 ). To fully recover the encoded message, we then synthesized each origami

separately and deposited an approximately equal mixture of all 15 designs (∼ 20

fmoles of total origami) onto a glass coverslip. The data domains were accessible for

binding via fluorescently labeled imager probes because they faced the bulk solution

and not the coverslip. High-resolution Atomic Force Microscopy (AFM) was used in

tapping mode to confirm the structural integrity of the origami and the presence of

the data domains. 40,000 frames from a single field of view were recorded using DNA-

PAINT (∼ 4500 origami identified in 2982 µm2). The super-resolution images of the

hybridized imager strands were then reconstructed from blinking events identified

in the recording to map the positions of the data domains on each origami. Using

a custom localization processing algorithm, the signals were translated to a 6 × 8

grid and converted back to a 48-bit binary string—which was passed to the decoding

algorithm for error correction, droplet recovery, and message reconstruction. The
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process enabled successful recovery of the dNAM encoded message from a single

super-resolution recording.

Figure 4.10: dNAM origami from a DNA-PAINT recording were identified
and classified by aligning and template matching them with the 15 design
co (Design) in which all potential docking sites are shown. Filled circles
indicate sites encoded ‘0’ (dark gray) or ‘1’ (white). Colored boxes indicate
the regions of the matrixes used for the droplet (green), parity (blue),
checksum (yellow), index (red), and orientation (magenta). For clarity,
only the first design image includes the colored matrix sites. Averaged
images of 4560 randomly selected origami, grouped by index, are depicted
(DNA-PAINT). Scale bar, 10 nm.

Given the observed frequency of missing data points, we then used a random
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sampling approach to determine the number of origami needed to decode the ‘Data

is in our DNA!’ message under our experimental conditions. We started with all

the decoded binary output strings that were obtained from the single-field-of-view

recordings and took random subsamples of 50–3000 binary strings. We passed each

random subsample of strings through the decoding algorithm and determined the

number of droplets that were recovered (Figure 4.11). Based on the algorithmic

settings used in the experiment, we found that only 750 successfully decoded origami

were needed to recover the message with near 100% probability. This number is

largely driven by the presence of origami in our sample that were prone to high error

rates and thus rarely decoded correctly (i.e. origami index 2).
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Figure 4.11: The mean number of unique dNAM origami correctly decoded
for randomly selected subsamples of decoded binary strings are shown.
The analysis was broken out by the number of errors corrected for each
origami, three examples are plotted (1, 4, and 9). Black filled circles
depict the mean results for nine error corrections, which is the ‘maximum
allowable number of errors’ parameter used in the decoding algorithm
for all other analysis reported here. The horizontal lines indicate the
probability of recovering the message with different numbers of unique
droplets. With fourteen or more droplets, the message should always be
recovered (thick green line, and above indicates 100% chance of recovery)
and with nine or fewer droplets the message will never be recovered (thick
red line and below indicates 0% chance of recovery). Mean values for three
experiments are shown. Error bars indicate ±SD. Individual data points
are plotted behind as smaller gray symbols.

We have used three independent reads to recover our data. From each read, we

randomly sub-sampled 2,000 origami and were able to recover the data independently.
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Figure 4.12a shows the average number of origami detected from these reads. These

are the origami that our error correction algorithm were able to recover. There were

many more origami that were distorted too much that our error correction algorithm

were unable to recover/identify them. Out of 6,000 origami from three read, we were

able to recover 1120 origami with a recovery rate of 18.7%. Figure 4.12b shows the

average number of errors that our algorithm corrects per origami.

(a) Number of origami corrected (b) Average error fixed per origami

Figure 4.12: The results are summarized from three independent reads.
From each read we sub-sampled 2,000 random origami. (a) Shows the
number of average origami that were recovered from these reads. Read 3
exhibits better results compared to the other two reads. For that reason,
the error bars are large. (b) Shows the number of average errors that our
error correction algorithm fixed for an individual origami.

Strauss et al. [134] mentioned the center position(maximum of 95%) have higher

strand incorporation rate than the edges(minimum of 48%). So, the error should

be position specific. However, we have analyzed the error for each position in the

origami(Figure 4.13). The error positions did not follow any specific pattern. The

error happened mostly in a random position. Incorporated but inactive data domains

play a greater role in producing errors than unincorporated staple strands [135]. Also,

we only analyzed the origami that we were able to recover, which is about 18.7% of
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the total sample. As we were unable to recover/identify the rest of the origami, we

could not know the true error position of those origami.
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Origami index 0 Origami index 1 Origami index 2

Origami index 3 Origami index 4 Origami index 5

Origami index 6 Origami index 7 Origami index 8

Origami index 9 Origami index 10 Origami index 11

Origami index 12 Origami index 13 Origami index 14

Figure 4.13: The heat map of error for each individual origami. The
numerical number in each position indicates the percent of error that
particular position have during recovery.
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Figure 4.14: The figure presents a heat map depicting the summation of
errors in all origami structures. Each numerical value in the heat map
represents the percentage of errors observed at a specific position during
the recovery process. The heat map indicates that there are likely no
error-prone regions in the origami, as every data point is equally likely
to have an error. However, it is essential to note that these errors were
calculated based on the origami that were successfully recovered. Three
data points show no errors because their bit value was always set to zero
in each origami. One of these points is attributed to the fixed orientation
marker, while the other two are related to the fact that the first character
of ASCII is zero for all the letters present in the experimented sentence.

4.2 Adding Photon Intensity Information

dNAM uses a custom error correction algorithm to ensure error-free recovery of data.

The algorithm can correct a maximum of nine bits of data out of 48 bits of data. It

gets more computationally expensive as the number of errors gets high. The fountain

code of the dNAM algorithm increases the computational cost even more. Further,

since the fountain code algorithm XORs multiple data segments into each origami,

it is almost impossible to provide random access to the data and makes data mod-

ification impossible. To modify or add only one bit of data, all the droplets must

be recreated and converted into origami which is impractical. A better origami level
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error correction algorithm can remove the necessity of fountain code, reduce compu-

tational complexity and increase data density by reducing the bits dedicated to error

correction.

4.2.1 Methodology

In the pre-processing step, we read the photon intensity for each emitter (data point)

and convert that intensity value into a binary value of zero or one using an empirically

derived threshold value Ithreshold. The error correction algorithm takes the binary

value during the decoding process. So, it does not know the level of confidence of

each bit’s actual value. Initially, the algorithm assumes all the bits have the same

probability of errors. If we can provide a level of confidence for each bit, the algorithm

can correct errors more intelligently. We can get the level of confidence for each bit

from the photon intensity of those bits (Figure 4.15).

(a) kij = .08 (b) kij = .6 (c) kij = .95

Figure 4.15: Each of the figure represents the photon intensity of each
data cell. And kij shows their normalized intensity. If we get a very low
intensity at a particular point, then the probability of that cell being zero
is higher and if the intensity is very high, then the probability of that cell
being 1 is very high. So, it is less likely that these cell have any errors in
them. However, for Fig 4.15b the intensity is closer to the threshold. So,
the error chance of that cell is highly likely.
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The algorithm uses a combination of parity bits and checksum bits. Both parity

and checksum bits contain information about data, index, and rotation bits. During

the decoding process, the algorithm calculates parity and checksum mismatches and

assigns a cell weight xij (Equation 4.2 and 4.3) for each data point. This cell weight

indicates the error probability for that data point. All the cell weights are summed

together to get the overall origami weights (Equations 4.4). The algorithm performs

a greedy search to reduce the overall origami weight. In the greedy search, the bit

that will be altered next is determined by the origami weight. So we can inject the

intensity information of the bit that will be modified during calculating the origami

weight. In order to do that, we first have to calculate the error probability of each

bit just based on their intensity. If a cell has very high or very low photon intensity,

then our algorithm should be confident that cell’s bit value is more likely to be

accurate. However, if the photon intensity value of a cell is closer to the threshold

value (Ithreshold), then it’s more likely that the binary value of that cell is most likely

to have an error. So, the intensity multiplier Iij needs to be designed in a way that

it will have a higher value if the photon intensity is closer to the threshold and have

a lower value if the photon intensity value is farther apart from the threshold.

Intensity termIij =
1

Ithreshold + ϵ
(4.5)

Here Ithreshold is the threshold intensity value used for converting photon value into

binary. Kij is the photon intensity for cell ij. ϵ is a small number to prevent the

denominator from being zero. To inject intensity information we modified equation
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4.4 as following:

Overall matrix weight =

∑6
i=0

∑8
j=0 xij

# number of matched parity + Iij
(4.6)

4.2.2 Results

The inclusion of error intensity information in our error correction algorithm yields

improvements in three distinct metrics (see Fig. 4.16a). First, it leads to an increase in

the true positive rate, allowing us to correct more errors than before. By leveraging

the intensity information obtained from wet lab experiment data, we were able to

achieve a 6.76% increase in the origami recovery rate. A comparison of the number

of recovered origami with and without incorporating intensity is presented in Figure

4.16b. Our approach involves incorporating the intensity of a cell into our heuristic

for error probability, which is generally correlated but not always. As a result, not

all origami samples demonstrate an improvement in the recovery rate.

(a) Metrics improvement
(b) Number of recovered origami

Figure 4.16: The figure demonstrates the impact of incorporating photon
intensity information into our error correction algorithm. (a) depicts the
percentage improvement observed in various metrics following the inte-
gration of intensity data. (b) provides a comparison between the number
of origami samples that were successfully recovered with and without the
use of intensity information.
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Secondly, it decreases the false positive rate. We used fountain code at the top

level of our custom error correction algorithm. As a result, we did not use the raw

data. Instead, data was stored in the form of droplets (see Section 4.1.2. It is crucial to

note that, during the decoding process of fountain code, a single false positive droplet

has the potential to corrupt the entire decoded file. Consequently, it is imperative

that all droplets utilized in decoding fountain code are true positives. Our wet lab

experimental data indicate that we were able to decrease the false positive rate by

28.1%. This substantial improvement ultimately led to a higher file recovery rate.

Finally, our approach achieved a substantial reduction in computational steps by

68.7%. In the greedy search, our aim was to minimize the weight of the matrix (as

per Equation 4.6). With each path we took, it was necessary to compute the weight

of the current state of the matrix. The term “computational steps” refers to the total

number of times we computed this matrix weight until the origami was successfully

recovered. Computing the weight of the matrix was the most time-consuming aspect

of the decoding algorithm. Thus, reducing the total number of computations of this

step ultimately reduces the overall computational time required.

Based on our analysis of the experimental data, we have found that a correlation

between photon intensity and error probability can exist; however, this relationship

is not always straightforward and may be influenced by additional factors. Notwith-

standing, the incorporation of photon intensity information into our error correction

algorithm resulted in significant improvements in all metrics, thus enhancing the

overall robustness of the algorithm. Nonetheless, it is essential to note that not all

samples exhibited an improvement in the recovery rate, indicating that the correla-

tion between photon intensity and error probability may not be consistently reliable.
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Furthermore, we were unable to identify any discernible pattern in this behavior,

highlighting the complexity of this relationship.

4.3 Error Correction for 3dNAM

4.3.1 3dNAM

3dNAM, built upon the framework of dNAM [21], introduces a novel approach for data

storage by utilizing three-dimensional instead of two-dimensional structures (see figure

4.17). In 3dNAM, data is encoded based on the presence or absence of hybridization

events at n specific binding sites on a data strand. By employing four unique dyes,

each binding site can encode 2 bits of digital information, resulting in a total of 2n

bits per strand and achieving impressive information densities exceeding 10 Tbit/cm2.

Figure 4.17: The figure illustrates an overview of 3dNAM, showcasing its
three-dimensional nature. Unlike 2D structures, 3dNAM can expand in
the z-direction as well.
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4.3.2 Encoding

To store data in 3dNAM, an extension of our current error correction algorithm is

required to accommodate 3-dimensional settings. We made several modifications to

our error correction algorithm to incorporate this requirement.

Making fountain code optional

The primary purpose of using a fountain code was to recover the data even if some

origami were missing. However, in our previous experiments, we successfully recovered

all of the origami, rendering the use of the fountain code unnecessary. Furthermore,

the fountain code introduced significant data overhead and made random access im-

possible. As a result, in our updated algorithm, users have the flexibility to adjust

the number of parity cells instead of relying on fountain code. Increasing the number

of parity bits enhances the robustness of each individual origami, but at the cost of

reduced data capacity.

Data distribution

In the previous version of our error correction algorithm, we stored data and indexing

bits around the edges while placing checksum and parity bits in the middle. This

distribution was based on the anticipation that the edges would be more error-prone

than the middle portion of the origami. However, our observations in the wet lab did

not reveal such a pattern (see Figure 4.14). Consequently, in our updated version, we

randomly distribute all the parity, data, and checksum bits throughout the origami.

Nevertheless, the index and orientation bits always reside in the first layer since they

are critical for correctly orienting and localizing the origami. As the first layer con-
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tains these vital information bits, we assign more parity bits to this layer to make it

more robust.

Optimized mapping scheme

Previously, our error correction algorithm employed a hand-picked mapping scheme

that only worked for 6x8 grid-shaped origami, ensuring rotation invariance and ade-

quate coverage of data and parity. However, we have now developed an algorithm ca-

pable of generating a mapping scheme for origami of arbitrary shapes in 3-dimensional

settings. The new mapping scheme generator operates as follows:

Ranking the Mapping Scheme: The process of ranking the mapping scheme begins

by generating a random mapping scheme that fulfills two core requirements (explained

in Section 4.1.1), with the number of parity bits and checksum bits as user-defined

parameters. After generating the mapping scheme, a score is computed for it using

Algorithm 1. A higher score indicates a better mapping scheme. This score is based

on the idea that parity bits should contain the information of non-parity bits. If all

the parity bits for a particular non-parity bit are located in the same area on the

origami and that location becomes corrupted, the information would be lost as all

the parity bits would be affected. However, if the parity bits for that specific non-

parity bit are evenly distributed across the origami, this problem can be avoided.

The algorithm generates 1000 random mapping schemes and selects the one with the

highest ranking based on its score.
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Algorithm 1 Mapping Score Calculator

1: function GetMappingScore(RevereseMapping) ▷ Non-parity to parity

mapping

2: Score← 0

3: for NonParityBit in RevereseMapping.keys() do

4: distanceX← []

5: distanceY← []

6: for point1, point2 in Combination(RevereseMapping[NonParityBit], 2) do

7: distanceX.append(abs(point1[0]− point2[0]))

8: distanceY.append(abs(point1[1]− point2[1]))

9: end for

10: localScore← std(distanceX)+std(distanceY)
len(RevereseMapping[NonParityBit])

▷ Get normalized sum of

standard deviations along both axes

11: Score += localScore

12: end for

13: Score /= len(RevereseMapping.keys())

14: return Score

15: end function

The rest of our encoding process remains similar to our previous methodology.

Each layer of 3dNAM functions as an isolated 2D origami during both encoding and

decoding. Parity bits on a specific layer only contain XOR values from that layer,

while sharing common information such as indexing and orientation bits, which are

typically placed on the first layer. By placing these common bits in a single layer, we

can save data space.
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4.3.3 Decoding

Since each layer of the origami operates as isolated 2D origami, we can utilize our

previous decoding algorithm with minor modifications. During our wet lab experi-

ments, we observed that each origami contained multiple copies (approximately 2000).

Based on this information, we have incorporated majority voting into our decoding

algorithm. Majority voting considers all the decoded origami and extracts the data

for each layer, performing the majority voting on each layer individually instead of

the entire origami. This ensures that our algorithm does not need to recover the

entire origami to utilize its data. Instead, even if our algorithm can recover only one

layer, it can still use the data from that specific layer.
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4.3.4 Simulation Results

Figure 4.18: The figure illustrates the file and origami recovery rates
achieved by our error correction algorithm for 3dNAM. Notably, the im-
plementation of majority voting has proven instrumental in ensuring con-
sistent file recovery even when approximately 60% of the origami is lost.
This demonstrates the robustness and effectiveness of our error correc-
tion mechanism, which enables reliable data retrieval despite significant
origami loss.

We conducted a comprehensive simulation to assess the robustness and efficiency of

our algorithm. To begin, we generated files with variable random sizes, ranging from

30 bytes to 2000 bytes. These files were subsequently encoded using our modified

encoding algorithm, as outlined in Section 4.3.2. Drawing from insights gained in

our previous 2dNAM wet-lab experiment, where we observed the presence of multiple

copies of each origami (exceeding 200 copies), we sought to replicate this scenario in

our simulation. Thus, we created 20 copies of each origami and randomly oriented

them before introducing artificial errors. Various types of errors were introduced,

encompassing bit insertions, bit mutations, and bit deletions, with the error rates
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spanning from 3 to 24 errors per origami.

For our simulation, we utilized origami structures of three layers; each layer con-

tains eight rows and ten columns. Remarkably, our decoding algorithm achieved a

flawless file recovery rate of 100% when the average number of errors per origami was

less than or equal to 12 (refer to Figure 4.18). However, at 12 errors per origami, the

origami recovery rate diminished to approximately 40%. Nevertheless, since we had

20 copies of each origami and employed a majority voting approach, we were still able

to successfully recover the file. Consequently, no false positives were encountered in

our final results due to this majority voting mechanism. The primary reason for the

lower file recovery rate at a higher error rate is missing origami that we were never

able to recover.

While we have not yet conducted a wet-lab experiment using our new error correc-

tion algorithm for 3dNAM, our simulation results closely resemble those obtained with

our previous version of the error correction algorithm (see Figure 4.9). Moreover, we

were able to successfully store and retrieve digital information using DNA origami.

These findings strongly suggest that our error correction algorithm for 3dNAM is

likely to be successful.
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CHAPTER 5:

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

The exponential growth of data generation and the limitations of existing storage

systems have prompted the search for alternative information storage mediums. DNA

has emerged as a promising solution due to its potential for long-term data retention,

high storage density, and low energy consumption. This dissertation has explored the

application of DNA as a storage medium, focusing on dNAM.

dNAM introduces a novel approach that separates DNA storage technology from

sequencing and synthesizing advancements. It utilizes SMLM to encode digital infor-

mation into specific physical locations within DNA origami structures. Binary data

is represented by the presence or absence of fluorescently labeled imager strands at

designated docking sites on the DNA origami. As part of this research, we have de-

veloped a new error correction algorithm that served as the cornerstone of dNAM.

This algorithm enabled the storage of a prototype consisting of 20 bytes of data, with

the capability to correct up to 9 bits of error out of 48 bits. The results of this work

have been published in Nature Communications.

Emitter localization is one of the most crucial steps of dNAM. One of the primary

purposes of our emitter localization algorithm is to isolate attached emitters and see
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their impact on overall efficiency. To achieve this, our algorithm utilizes a deep learn-

ing model that effectively enhances the resolution of the input image. By projecting

the centroid position of the emitters from lower-resolution to higher-resolution images

while preserving the emitters’ PSF, we successfully increase the resolution without

distorting the essential characteristics of the emitters. To evaluate the impact of

this resolution increase, we conducted an analysis by exporting the emitters from

each level. This gave us insight about the multi-emitter’s effect on the localization

accuracy. As in the later layer multi-emitter gets separated. We were able to ob-

serve how the localization accuracy improved with multi-emitter separation. Also,

our machine learning algorithm demonstrated remarkable capability in capturing the

grid-like structure of the origami.

Building on the success of our initial error correction algorithm, we have made sig-

nificant advancements by incorporating a simple yet effective intuition. The updated

algorithm takes into account the intensity values of data points within an emitter.

We observed that data points with intensities closer to the threshold are more likely

to contain errors compared to those with higher or lower intensities. In contrast,

the previous version treated each data point as having an equal probability of error.

By integrating intensity information into our algorithm, we have achieved enhanced

efficiency and speed. The algorithm now considers the varying probabilities of error

based on the proximity of data points to the threshold value, resulting in improved

error correction capabilities.

The previous version of the error correction algorithm relied on a hard-coded

mapping scheme, limiting its scalability to specific origami shapes. In contrast, we

developed a new mapping scheme that is dynamic and robust, capable of accommo-
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dating arbitrary-shaped 3D origami structures. Through the utilization of heuristics

and ranking techniques to satisfy origami constraints, we have successfully developed

a flexible mapping scheme. Although wet lab experiments for this updated error

correction algorithm were not conducted, extensive simulations were performed to

validate its effectiveness. These simulations yielded promising results comparable

to those obtained during the creation of the dNAM prototype. These results instill

confidence in the future success of error correction for 3dNAM.

5.2 Future Directions

DNA, as a storage medium, shows great promise but still requires further research to

address its limitations and make it a viable solution for the information storage crisis.

The current state of DNA storage is hindered by the high costs and time-consuming

processes involved in DNA synthesis, sequencing, and dNAM origami creation. Ad-

ditionally, the need for sophisticated and expensive equipment restricts extensive re-

search in this field. Despite these challenges, there are several future research topics

that can enhance the robustness, efficiency, and viability of dNAM.

To further enhance dNAM, several areas have been identified for future research.

These include improving the origami image quality using DL. Make an end-to-end

system that will include localization, origami enhancement, origami to binary data

conversion and error correction. Cluster the similar origami together to reduce the

number of errors.

In this dissertation, we focused on using super resolution primarily for localization

purposes. Our super resolution model was designed to re-scale individual emitters

rather than the entire origami. However, this same technique can be further employed

to enhance the overall quality of the origami and reduce noise, without heavily relying
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on emitter localization. To achieve this, the super resolution technique will be applied

after emitter localization and drift correction. To implement this approach, our ex-

isting simulation algorithm to generate origami data (see Section 3.1) can be utilized.

Subsequently, the emitters need to be localized, and the corresponding origami im-

ages collected. Any available localization algorithm can be used for this purpose. As

a result of the localization process, the collected origami images may contain noise.

To address this, each origami will also have its corresponding ground truth obtained

from the data generation algorithm. These ground truth images can be exported

and used as labels in the super-resolution algorithm. The DL model can capture the

grid-like structure of the origami during the enhancing process, resulting in further

improvement of the input origami image.

Currently, each step of the dNAM process is isolated, leading to information loss

at each stage. Developing an end-to-end system that integrates all the steps, such as

emitter localization, drift correction, binary data extraction, and error correction, into

a single algorithm can mitigate this issue and yield better results. Machine learning

and deep learning techniques, such as CNNs for image processing and transformer

[136] models for error and drift correction, can be deployed in this unified framework.

In dNAM, multiple copies of each origami are available. Rather than averaging

the origami data after error correction, performing the averaging operation before

passing them to the error correction algorithm can reduce the need for extensive er-

ror correction mechanisms with large amounts of parity and checksum data. Machine

learning and deep learning approaches can be employed to identify similarities be-

tween origami images at the image level, allowing for averaging of similar origami to

filter out errors.
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In summary, the exploration of DNA as a storage medium, specifically through

sequence-based DNA storage and dNAM, along with the utilization of DNA origami

and machine learning techniques, holds significant potential for addressing the grow-

ing storage challenges in the digital age. Further research and advancements in these

areas will contribute to the development of reliable, high-density, and energy-efficient

data storage solutions for the future.
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[69] Mickaël Lelek, Melina T. Gyparaki, Gerti Beliu, Florian Schueder, Juliette
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Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[132] Joerg Schnitzbauer, Maximilian T Strauss, Thomas Schlichthaerle, Florian

Schueder, and Ralf Jungmann. Super-resolution microscopy with dna-paint.

Nature protocols, 12(6):1198–1228, 2017.



165

[133] M. Luby. LT codes. In The 43rd Annual IEEE Symposium on Founda-

tions of Computer Science, 2002. Proceedings., pages 271–280. IEEE Com-

put. Soc. ISBN 978-0-7695-1822-0. doi: 10.1109/SFCS.2002.1181950. URL

http://ieeexplore.ieee.org/document/1181950/.

[134] Maximilian T. Strauss, Florian Schueder, Daniel Haas, Philipp C. Nickels, and

Ralf Jungmann. Quantifying absolute addressability in DNA origami with

molecular resolution. Nature Communications, 9(1), apr 2018. doi: 10.1038/

s41467-018-04031-z. URL https://doi.org/10.1038/s41467-018-04031-z.

[135] Christopher Michael Green. Nanoscale optical and correlative microscopies for

quantitative characterization of DNA nanostructures. PhD thesis, 2019.

[136] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You

Need. arXiv:1706.03762 [cs], December 2017. URL http://arxiv.org/abs/

1706.03762. arXiv: 1706.03762.

[137] Kelsey Suyehira. Using DNA For Data Storage: Encoding and Decoding Algo-

rithm Development. Boise State University Theses and Dissertations, Decem-

ber 2018. doi: 10.18122/td/1500/boisestate. URL https://scholarworks.

boisestate.edu/td/1500.

[138] Alexey V. Lobanov, Anton A. Turanov, Dolph L. Hatfield, and Vadim N. Glady-

shev. Dual functions of codons in the genetic code. Critical Reviews in Bio-

chemistry and Molecular Biology, 45(4):257–265, August 2010. ISSN 1040-

9238. doi: 10.3109/10409231003786094. URL https://doi.org/10.3109/

10409231003786094.



166

APPENDIX A:

A METHOD FOR STORING INFORMATION

IN DNA WITH IMPROVED DROPOUT

TOLERANCE



167

This appendix presents an improved version of the existing “DNA Fountain”

method (see Figure A.1), reporting a sequence-based DNA storage methodology. In

this work we have developed and experimentally tested a robust algorithm to write

digital data in pools of DNA strands by applying a rateless erasure code (i.e. foun-

tain code), a RS code, and an oligomer mapping code. Our new method includes

changes to the fountain code, the oligomer mapping code, and the encoding and

decoding processes. We have tested and benchmarked our algorithm vs. similar

algorithms and found that our method increases robustness to dropout, decreases en-

coding time, and decreases decoding time. The new method was validated in-vitro by

successfully storing and recovering 105,360 bits of information. The advantages of the

new method make it more appropriate for applications where information recovery

is critical, where substantial sequence loss is expected, and/or where computational

resources are limited. Furthermore, the inclusion of a new oligomer mapping code

enabled us to mitigate errors by restricting sequences of repeated bases and enhance

security by eliminating start/stop codons, thus minimizing the risk of interaction with

living cells. A significant portion of the following methodology (Section A.1) has been

contributed by Kelsey Suyehira, as documented in their master’s thesis titled “Using

DNA For Data Storage: Encoding and Decoding Algorithm Development” [137].
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Figure A.1: The figure provides an overview of our proposed solutions for
sequence-based DNA storage methodology.

A.1 Methods and Materials

Here, the following information storage method was used. At a high level of ab-

straction (Figure 1.1), this new method encodes a digital file into DNA oligomers via

a write process and recovers the file from DNA oligomers using a read process. In

greater detail, this method generates binary sequences according to a rateless erasure

code (i.e. a fountain code) (see Algorithm 2), extends these binary sequences using a

RS error correction code, and then converts these extended binary sequences to base-

sequences using an oligomer mapping code. First, a number of oligomers equal to the

number of file segments is generated. Next, new oligomers are incrementally gener-

ated until the file can be successfully decoded. Once the file has been successfully

decoded, additional oligomers are generated until the redundancy is greater than or

equal to a requested value. The processes for generating extended binary sequences

and converting them to DNA base-sequences are detailed in the following paragraphs.

The following process was used to generate a binary sequence referred to as a
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Algorithm 2 Fountain code encoding

Input: Data to encode
Output: List of droplet

1: procedure FountainCodeEncode
2: segments ← split data into equal non-overlapping segments
3: droplets ← []
4: while droplets.len() ≤ segments.len() * redundancy do
5: seed ← random number
6: degree distributor ← PRNG(seed)
7: segment ids ← degree distributor.get droplet info()
8: droplet data ← map(XOR, segments[segment ids])
9: droplet ← seed + droplet data
10: droplet ← ReedSolomonEncode(droplet)
11: droplets.append(droplet)
12: end while
13: end procedure

binary droplet. A random integer, referred to as the seed value, was generated using

a PRNG. This seed value was used to initialize a second PRNG, which was used to

select segments of the target file to include in the binary droplet. A binary sequence,

referred to as the data value, was created by applying an exclusive-or to the file

segments specified by the second PRNG. A binary sequence, referred to as the error-

correction value, was calculated by applying a RS error correction code [51] to the

concatenated seed and data values. The final binary sequence, referred to as the

binary droplet, was created by concatenating the seed, data, and error-correction

values.

An oligomer (i.e., sequence of bases) encoding a given binary droplet was gener-

ated using the following process. First, the binary sequence is converted to a hexadec-

imal (hex) sequence. A list of three-base sequences (i.e., codons) corresponding to

each hex value is either provided by the user, or the default hex-codon map described
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Algorithm 3 Mapping encode

Input: List of droplet
Output: List of DNA sequences

1: procedure DropletToDNASequences
2: num backtrack ← 0
3: for droplet = list of droplet do
4: droplet hex ← binary to hex(droplet)
5: codon list ← []
6: while i ≤ droplet hex.len() AND

num backtrack ≤ maximum allowed backtrack do
7: codon options = hex to codon map(droplet hex[i])
8: for codon=codon options do
9: if codon list.optimum gc count() AND

codon list.no homopolymer() AND
codon list[i] != codon then

10: codon list[i] = codon
11: break
12: else
13: i -= 1
14: num backtrack += 1
15: end if
16: end for
17: end while
18: dna sequences ← codon list.toString()
19: end for
20: end procedure
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Algorithm 4 Mapping decode

Input: List of DNA sequences
Output: List of droplet

1: procedure MappingDecode
2: for Sequence=List of DNA sequences do
3: codons = seqeunces.toCodon() ▷ Split into three letter list element
4: binary data ← []
5: for codon=codons do
6: hex codon ← codon to hex map(codon)
7: binary data.append(hex codon.toBinary())
8: end for
9: binary string ← binary data.toString()
10: end for
11: end procedure

below and reported in table A.1 is used. A codon is then assigned to the first hex

value by selecting the available codon with with highest GC content. This represents

the first partial solution of the backtracking algorithm. If GC content is greater than

or equal to 50%, the partial solution is extended by assigning the available codon with

lowest GC content. If GC content is less than 50%, the partial solution is extended

by assigning the available codon with highest GC content. The partial solution is

rejected if it contains enough G’s or C’s such that the final sequence could not have

acceptable GC content. A partial solution is also rejected if it contains sequences of

repeated bases larger than a threshold provided by the user. If possible, a rejected

partial solution is backtracked by iterating backward through the assigned codons

and selecting the next available codon. If no backtrack is possible, a null result is re-

turned. Partial solutions are accepted if a codon was assigned to every hex-value, GC

content is acceptable, and no repeat-sequences larger than the threshold are present.

The mapping process during encoding is shown in Algorithm 3.
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Table A.1: The hexadecimal-codon map for the new software.

Hexadecimal Codons

0 AAC, GAC

1 AAG, GAG

2 AGG, GTC, TCT

3 TCG, CGA

4 ACT, GCT, TCC

5 ACC, GCC, CGT

6 ACG, GCG

7 AGA, GGA

8 AGT, GGT

9 AGC, GGC, CCG

a GAA, CGG

b TAA, CAA

c TAC, CCT, ATC

d TAG, CGC

e TTA, CTA, GTT

f TTC, CTC, GTA

The default codons corresponding to each hex value are listed in table A.1 and were

generated using the following considerations [137]. First, of the sixty-four possible

three-base codons, four are homopolymers consisting of a single repeated base. Elim-

ination of these four codons prevent the existence of any homopolymer runs greater

than four bases. Of the remaining sixty codons, twelve codons (AAT, ATA, ATT,
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ATG, CAC, CAT, CAG, CTT, CTG, TAT, TTG, and GTG) are “start codons” used

in cellular processes [138] and were removed. Of the remaining forty-eight codons,

nine additional codons (ACA, TCA, CCA, GCA, TGA, TGT, TGC, TGG, and GAT)

were removed to avoid the creation of “start codons” in the overlap of two adjacent

codons. The remaining thirty-nine codons were assigned to hex values based on in-

tuition.

Software implementing the new method was created from the source code provided

by Erlich and Zielinski [7]. Relative to this prior method, the following three key

updates were made. (1) Oligomers are now generated until the file can be successfully

decoded and then additional oligomers are included for redundancy. (2) The binary

sequence of each droplet is now converted to a sequence of DNA bases using the new

oligomer-mapping code detailed above. (3) Decoding is now done using a breadth-

first approach in which a recovered file segment is removed from other binary droplets

before any newly recovered segments are processed. The mapping decoding process

and fountain decoding process is shown in Algorithm 4 and Algorithm 5 respectively.

A.2 Results

A.2.1 Simulation

To evaluate the robustness and efficiency of our algorithm, we conducted simulations

using randomly generated files ranging in size from 1 MB to 49 MB, with 1 MB inter-

vals. Each file underwent ten simulations with varying levels of simulated insertion,

deletion, and mutation errors, including the complete deletion of a randomly selected

sequence. Approximately 11% of the total sequences were affected by at least one

of these errors. Nevertheless, we were able to successfully recover the file in every
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Algorithm 5 Fountain code decode

Input: List of droplet, total segments
Output: data that was encoded

1: done segments ids ← []
2: droplet queue ← queue()
3: segments ← [None] * total segments
4: procedure ProcessSingle(droplet data, single segment id)
5: segments[single segment id] ← droplet data
6: done segments ids.append(single segment id)
7: for segments ids = droplet queue do
8: if single segment id in segment ids then
9: new segment ids ← segments ids.remove(single segment id)
10: new droplet data ← map(XOR, [droplet queue[segments ids],

droplet data])
11: if new segment ids.len() = 1 then
12: ProcessSingle(new droplet data, new segment list[0])
13: else
14: droplet queue[segments ids].remove()
15: droplet queue[new segment ids] ← new droplet data
16: end if
17: end if
18: end for
19: end procedure
20: procedure FountainCodeDecode
21: for droplet=list of droplets do
22: if done segments ids.len() = total segments then
23: return segments
24: end if
25: if droplet.checkReedSolomon() then
26: seed, droplet data, rs = droplet.split()
27: degree distributor ← PRNG(seed)
28: segment ids ← degree distributor.get droplet info()
29: if segment ids.len() = 1 then
30: ProcessSingle(droplet data, segment ids[0])
31: else
32: droplet queue[segment ids] ← droplet data
33: end if
34: end if
35: end for
36: end procedure
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simulation (see Figure A.2a). Furthermore, to test the upper limit of our algorithm,

we attempted to recover a 1 GB file with randomly inserted errors, and we achieved

successful retrieval.

We also compared the results of our algorithm with Erlich’s algorithm. Our en-

coding and decoding times were significantly faster. Specifically, for a 16 Megabyte

file, our encoding time was 1.5 times faster, and our decoding time was 148 times

faster (see Figure A.2b). Moreover, our decoder demonstrated superior robustness in

file recovery (see Figure A.2a).
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(a) File recovery percentage by only using a sub-sample of reads from overall
reads. Each of the sub-sampled sizes is tested 100 times.

(b) Decoding time comparison between Erlich’s work and our work. The de-
coding time is on a logarithmic scale.

Figure A.2: Performance comparison between our work vs Erlich’s[7] work
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A.2.2 Experimental

To further evaluate the correctness of our algorithm we performed in-vitro exper-

iment. We began by storing a JPEG file with a size of 13,170 bytes (see Figure

A.3) into 604 DNA sequences, each consisting of 250 nucleotides. Our algorithm

was employed to convert the JPEG file into DNA sequences. To facilitate sequenc-

ing, a forward primer (5-ACATCCAACACTCTACGCCC-3) and a backward primer

(5-GACTACGAGTAGCGCGACGT-3) were attached to each sequence. The DNA

sequences were then ordered as an oligo pool from Integrated DNA Technologies

(IDT). Subsequently, we sent the synthesized oligo pool to Genewiz for sequencing.

Genewiz only had access to the forward and backward primers required for sequenc-

ing and was not provided with any other information regarding the oligo pool. As

a result of the sense and antisense strands, we received two distinct read files from

Genewiz. The frequency distributions of these two files were almost identical (see

Figure A.6).

Figure A.3: JPEG file that we synthesized and sequenced for our experi-
ment

This process yielded approximately 78 million sequence reads, with around 5 mil-

lion of them being unique (see Figure A.4). Out of the 604 sequences in our library,
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we observed 602 sequences in the pool. This implies a sequence dropout of approxi-

mately 0.33%, which is 4 times lower than the approximately 1.3% dropout reported

by Erlich and Zielinski [7]. This lower dropout rate highlights the efficiency of our

hex-codon mapping scheme, allowing us to avoid error-prone sequences more effec-

tively. Even with the loss of two sequences during the entire process, we were still

able to recover the entire file without requiring any manual intervention. This suc-

cessful recovery can be attributed to the robustness of the fountain code utilized in

our algorithm.

Figure A.4: Sequence frequency distribution among two reads. In total
we got 78 million reads where 5 million reads are unique. Out of all the
reads 62% of the reads are correct

To further assess the robustness of our algorithm, we conducted tests using different-

sized random samples (5,000-20,000 samples) from the 78 million reads. These sam-

ples were passed through our decoder to recover the original message. With a random

subsampled size of 7,000 reads, our decoder achieved a file recovery rate of 90%. More-
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over, for sample sizes exceeding 9,000 reads, our decoder achieved a 100% success rate

(see Fig A.5). Each of these tests was repeated 100 times to ensure statistical reliabil-

ity. We determined that a larger subsampled size was necessary due to the presence

of read repetition. For instance, when using 10,000 random sub-sampled sequences,

we observed a duplication rate of 50.82±0.42%.

Figure A.5: File recovery percentage by only using a sub-sample of reads
from overall reads. Each of the sub-sampled sizes is tested 100 times.

Additionally, individual reads exhibited repetitions of up to approximately 80,000

times (see Figure A.6). Although some sequences exhibited higher frequencies than

others, no discernible correlation was found when analyzing the secondary structures

of these sequences. This indicates that the discrepancy in read frequency and the loss
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of the two sequences cannot be explained by structural factors.

Figure A.6: Frequency of sequences from our library. X-axis shows the
604 sequences that we synthesized. And Y-axis shows how many times
that individual sequence appeared in the two different read file.

Upon examining all the sequences, we determined that 48 million reads (corre-

sponding to the repetition of 602 sequences) were error-free, while 7 million sequences

contained a single error (see Figure A.7). The number of errors was calculated using

the minimum edit distance technique.
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Figure A.7: Error distribution among two reads. 48 million of the sequence
had no error. Where 7 million sequences had 1 error. Number of errors
are the minimum edit distance (insertion, deletion, mutation) between a
single read to any of the target sequences. Where the target sequences
are our known library of sequences that we synthesized.

A.3 Discussion

Storing information using the new method was observed to increase dropout tolerance,

decrease encoding time, and decrease decoding times. Although our method exhibits a

lower information density compared to alternative encoding methods, the advantages

of our method make it more appropriate for applications where information recovery

is critical, where elevated dropout is expected, and/or where computational resources

are limited. The new method additionally contains mechanisms for limiting sequences

of repeated bases and eliminating biologically relevant sequences. The former of these



182

is expected to help mitigate synthesis and sequencing errors. The later of these is

expected to help mitigate interaction with living cells, preventing an added layer of

security against biological interaction.
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APPENDIX B:

VISUAL EXAMPLE OF LOCALIZATION

ALGORITHM
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The following figures shows the example of emitter localization at varying res-

olution(2x, 4x, 8x, 16x) using our algorithm(see Chapter 3) The presented images

demonstrate the occurrence of information loss during the upsampling process. The

red ’x’ symbols denote the true positions (a) or predicted positions (b, c, d, e) of the

emitters.

(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure B.1
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(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure B.2
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(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure B.3
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(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure B.4
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(a) 1x – input image (b) Prediction from 2x (c) Prediction from 4x

(d) Prediction from 8x (e) Prediction from 16x

Figure B.5




