
EMERGENCE, EVOLUTION, AND OUTCOMES OF COMMUNITY-BASED 

CONSERVATION BEHAVIORS IN COASTAL SYSTEMS 

by 

Matthew C. Clark 

A dissertation 

submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Ecology, Evolution, and Behavior 

Boise State University 

August 2023 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 

Matthew C. Clark 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 

of the dissertation submitted by 

Matthew C. Clark 

Dissertation Title: Emergence, Evolution, and Outcomes of Community-Based 
Conservation Behaviors in Coastal Systems 

Date of Final Oral Examination: 20 June 2023 

The following individuals read and discussed the dissertation submitted by student 
Matthew C. Clark, and they evaluated the student’s presentation and response to questions 
during the final oral examination. They found that the student passed the final oral 
examination. 

Vicken Hillis, Ph.D. Chair, Supervisory Committee 

Matthew A. Williamson, Ph.D. Member, Supervisory Committee 

Kelly Hopping, Ph.D. Member, Supervisory Committee 

Kathryn E. Demps, Ph.D. Member, Supervisory Committee 

The final reading approval of the dissertation was granted by Vicken Hillis, Ph.D., Chair 
of the Supervisory Committee. The dissertation was approved by the Graduate College.  
 



iv 

DEDICATION 

To my ridiculously, ridiculously supportive partner Isabel and our ridiculously, 

ridiculously supportive friends and family. 



 

v 

ACKNOWLEDGMENTS 

This work would not have been possible without overwhelming support from the 

Zanzibar Department of Forests, especially Haji Massoud Hamad, Massoud Bakar 

Massoud, & Assaa Sharif Ngwali, and many other community members in Pemba, 

especially Khatib Sharif Khatib and Mbarouk Mussa Omar of Community Forests 

Pemba. This work also received considerable financial and research support from the 

Max Planck Institute for Evolutionary Anthropology, department of Human Behavior, 

Ecology and Culture and the Boise State Hazards and Climate Resilience Institute. The 

fieldwork conducted for this research, as well as much of the scientific thinking, was 

made possible by ongoing support of many forms from Prof. Monique Borgerhoff 

Mulder and Prof. Tim Caro. Lastly, the development and implementation of each of the 

following chapters was overseen by an academic committee including Dr. Jeffrey 

Andrews, Prof. Katie Demps, Prof. Matt Williamson, Prof. Kelly Hopping, and the 

committee chair, Prof. Vicken Hillis.   



 

vi 

ABSTRACT 

This body of work leverages a variety of quantitative and theoretical approaches 

to advance our understanding of why individuals adopt community-based conservation 

behaviors, the impacts those decisions have on natural resources and human wellbeing, 

and how these insights can be used for practical conservation planning. The first chapter 

makes a theoretical contribution by fitting data produced from a stylized, agent-based 

simulation of conservation adoption over time with a set of probabilistic differential 

equations derived from the theory of diffusion of innovations and cultural evolutionary 

theory broadly. We use these methods to demonstrate that such a statistical approach can 

provide accurate inference and prediction around the rates and degree of behavioral 

adoption within a population even when behavioral uptake is contingent on dynamic 

feedback processes between human behavior, social learning, and environmental change. 

The second chapter introduces approximate Bayesian computation as a method for 

linking hypothesized causal processes in complex land systems with observed changes in 

the mosaic of land cover. This chapter uses the small-scale agricultural production system 

in Pemba Island, Tanzania as a case study, identifying that soil degradation is likely the 

primary driver of agricultural expansion into nearby coral rag forests. The third chapter 

relies on an extensive data collection campaign in 43 communities across Pemba to 

measure individuals’ perceptions of mangrove cover change and risk of mangrove theft, 

and to assess their impact on individuals’ conservation behaviors and preferences. The 

results of this study indicate that perceptions of mangrove decline drive individual 
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adoption of conservation behaviors and preferences only if they believe that the resultant 

gains in mangrove cover will not be stolen by outsiders. Conversely, individuals who 

believe their community mangrove forests are at high risk of theft actually decrease their 

support for forest conservation in response to perceived forest decline. Lastly, the fourth 

chapter explores the alignment and misalignment between individual perceptions of 

mangrove cover change in Pemba and remotely sensed observations of cover change over 

the same time period. We qualitatively examine the reasons for mismatches in the two 

data sources and propose a numerical optimization method for considering both sources 

of information in systematic conservation planning. Together, these studies contribute to 

the advancement of both theory and methods in studying human behavior within complex 

social-ecological systems, primarily in small-scale fishing and agricultural communities. 

Overall, the research presented underscores the importance of understanding human 

behavior for effectively implementing conservation strategies, and provides valuable 

insights for informing future conservation planning and interventions. 
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CHAPTER ONE: INTRODUCTION 

Worldwide, area-based conservation has historically focused disproportionately 

on preserving lands with unique geologic features and little development value (Joppa & 

Pfaff 2009). While many of these areas do play critical roles in bolstering ecological 

connectivity, protecting rare species, and safeguarding natural resources on which human 

livelihoods depend, such conservation goals have not been systematically planned for on 

the whole (Naughton-Treves et al. 2005). In recent years, rapid and widely publicized 

declines in the abundance and diversity of plant and animal species have mobilized a 

unified global conservation strategy, much of which hinges on the expansion of protected 

areas in order to explicitly safeguard biodiversity (Seibold et al. 2019, Almond et al. 

2022). Specifically, under the 2022 Kunming-Montreal Global Biodiversity Framework 

set by the United Nations Convention on Biological Diversity, nearly 200 countries have 

committed to providing hundreds of billions of dollars each year, with a goal of formally 

protecting 30% of global lands by 2030 (CBD 2022).  

If successful, this unified conservation effort will nearly double the amount of 

Earth’s land surface formally designed for conservation (UNEP-WCMC & IUCN 2023). 

As the goal of this expansion is expressly to protect biodiversity, this new set of protected 

areas will ostensibly encapsulate highly biodiverse lands. Protecting these lands, and the 

species that depend on them, however, poses a fundamentally different challenge than 

safeguarding areas with unique geologic features and little development value. More than 

80% of terrestrial biodiversity exists in human-populated landscapes (Sobrevila 2008). 
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Further, biodiversity hotspots, the 36 areas most highly prioritized for conservation, 

strongly overlap with the world’s poorest populations of people (Fisher & Christopher 

2007). Therefore, it is clear that area-based measures to protect biodiversity must exist 

alongside, and ideally bolster, human livelihoods and community development.  

The success or failure of ambitious global conservation goals will depend, at least 

in part, on the land use decisions made by people who rely on directly harvesting natural 

resources in order to meet their daily needs (Friess et al. 2022, Londres et al. 2023). In 

recognition of this, the general strategy of many modern conservation initiatives is to 

incentivize individuals to protect, and even restore, natural areas themselves through the 

close integration of community development and conservation projects (e.g. Skinner et al. 

2019). Some institutions, such as the well-known Reducing Emissions from 

Deforestation and forest Degradation (REDD+) initiative, achieve this by directly paying 

communities to establish community-based conservation areas and otherwise reduce 

harvests of natural resources.  

However, the social and ecological outcomes of community-based conservation 

interventions are difficult to predict beforehand and difficult to interpret looking back 

(Pressey et al. 2021, Borgerhoff Mulder & Coppolillo 2005). Both outcomes are products 

of multiscalar feedbacks, thresholds, time-lags, and other hallmarks of complexity 

operating on the coupled social and ecological systems (Mahajan et al. 2019, Liu et al. 

2007). For example, interventions to spare forests by increasing the per-hectare 

productivity of agricultural plots can have profoundly different impacts on farmers’ 

decisions to expand or constrict the geographic extent of their operations depending on 

the market value of crops and system of land tenure (Meyfroidt et al. 2018). Conservation 
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interventions may also create perverse incentives, such as increasing the demand for land 

and resources, displacing existing users, or reducing the intrinsic value of nature (Ferraro 

& Kiss 2002).  

It is then a perennial challenge of community-based conservation to understand 

how and why conservation behaviors emerge and persist within populations and how 

these meaningfully alter the landscape (Mahajan et al. 2020, Mills et al. 2019, Mascia & 

Mills 2018, Romero-de-Diego et al. 2021). Moreover, as these decisions alter both the 

social and ecological contexts of future decisions, it is critical to understand how histories 

of past behavioral and environmental change precipitate future responses to such 

conditions (Larrosa et al. 2016). By doing so, we can identify the exact mechanisms by 

which interventions can simultaneously support sustainable development of local 

communities while contributing to long-term global conservation targets.  

This dissertation contributes to answering these questions in four interrelated 

chapters. The first makes a theoretical contribution to understanding the patterns by 

which we expect a conservation behavior, specifically refraining from harvesting from a 

protected area, to spread between individuals within a population (Clark et al. 2022). This 

chapter demonstrates that even when behavioral adoption is a product of both social 

learning and dynamic environmental processes, probabilistic differential equations 

derived from the theory of diffusion of innovations can accurately predict long-term rates 

of adoption. Chapter two introduces approximate Bayesian computation as a method for 

interrogating complex, hypothesized simulations of land system processes with observed 

changes in the mosaic of land cover derived from remotely sensed data products (Clark et 

al. 2023A). This chapter uses this emerging method to identify that soil degradation is 
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likely the primary driver of agricultural expansion into coral rag forested areas in Pemba, 

Tanzania. This chapter shows that we can use this information to project future land 

cover change scenarios under various conservation interventions to alter the standard 

scheduling of farm/fallow cycles in agricultural plots in this area.  

The third and fourth chapters of this dissertation both rely on an extensive 

participatory mapping campaign across 43 mangrove-dependent communities in Pemba, 

Tanzania. This campaign collected individuals’ spatially explicit perceptions of 

mangrove cover change over time, as well as their perceived risk of mangrove theft from 

outsiders, their preferences for community-based conservation, and their past realized 

conservation behaviors. The third chapter links this information to show that perceptions 

of mangrove decline can drive individual support for community-based conservation, 

only when the benefits of that support are expected to be collected by individuals in that 

community (Clark et al. 2023B). When individuals expect that outsiders will reap the 

benefits of their conservation efforts, perceived decline of mangrove forest cover can 

conversely incentivize individuals to increase their personal harvest and forgo 

conservation behaviors. Finally, chapter four explores if and how these community 

perceptions of mangrove change systematically differ from changes observed via the 

satellite record (Clark et al. 2023C).  This chapter demonstrates that the perceptions of 

mangrove change loss referenced in the previous chapter need not be large-scale clear 

cuts, but instead may be relatively small changes in the extent of selective cutting of 

individual trees or branches. Thus, community perceptions of mangrove cover change 

may significantly differ from what is observable via remote sensing, while still capturing 

meaningful change, both in an ecological and social sense. This chapter presents a 
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practical workflow to achieve a multi-objective optimization highlighting priority areas 

for mangrove restoration as identified across both local ecological knowledge and remote 

sensing. 
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CHAPTER TWO: A QUANTITATIVE APPLICATION OF DIFFUSION OF 

INNOVATIONS FOR MODELING THE SPREAD OF CONSERVATION 

BEHAVIORS 

The study of community-based conservation is challenged by a large number of 

important variables and nonlinear dynamics. This complexity has made quantitative and 

comparative analyses notoriously difficult. Here, we argue that analyzing the emergence 

and persistence of community-based conservation institutions as an emergent 

phenomenon of individual decision-making can yield important quantitative insights. We 

first review diffusion of innovations theory (DOI) and the broader field of cultural 

evolution. We then simulate data on community adoption of a conservation institution, 

contingent on feedbacks between individual behavior and environmental processes. We 

demonstrate that fitting these data to differential models of disease transmission, on 

which DOI is founded, can produce reliable estimates of the rates of adoption, dropout, 

and long-term uptake of an institution. Overall, we explore a new quantitative approach 

for modeling the spread of conservation behaviors using probabilistic differential 

equations and argue for further incorporation of cultural evolutionary theory into the 

field. 

1 - Introduction 

“Diffusion study…is something like the use of radioactive tracers in studying the 

process of plant growth: it helps illuminate the process.” 

— Everett M. Rogers, Diffusion of Innovations, 2010 
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1.1 - Motivation 

It is becoming increasingly apparent that humanity will not reach global 

conservation targets through top-down policies alone (Dudley et al. 2018; Mair et al. 

2021; Tittensor et al. 2014; Brockington 2002). Conservationists are thus turning to local 

communities to self-impose and maintain sustainable resource extraction limits and 

restore degraded natural areas (Amel et al. 2017; Catalano et al. 2019). Community-

based conservation projects aim to incentivize these behaviors in rural, and often very 

poor, communities with little to no external oversight (Western and Wright 1994). While 

the details of each intervention vary considerably, the general strategy is to closely link 

community development and conservation goals to promote robust behavioral changes in 

resource-dependent communities (Brooks, Waylen, and Borgerhoff Mulder 2013; 

Horwich and Lyon 2007). While some debate still exists, it is largely accepted that 

empowering communities to self-run conservation institutions is a viable method for 

seeding self-sustaining and ethical protections on natural resources (Turner et al. 2007; 

Berkes 2007; Adams et al. 2004; Agrawal and Gibson 1999; Yates, Clarke, and Thurstan 

2019). 

Broadly defined, institutions, like those introduced by community-based 

conservation interventions, are socially constructed and transmitted prescriptions on 

behavior that often aim to incentivize collective action (Lott 1992; Currie et al. 2016; 

Richerson and Henrich 2009). In natural resource management, the desired outcome of 

any particular institution varies on a case-by-case basis but may include goals like 

increasing the livelihood benefits produced from a resource or improving the biodiversity 

of a particular area (Agrawal 2014). Regardless of the exact social or ecological outcome 
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of interest, “success” of a conservation institution has become synonymous with the 

degree to which a population adopts the particular behavioral prescription and whether or 

not that behavior is sustained over time (Agrawal 2001; Yates, Clarke, and Thurstan 

2019). 

Decades of research have identified key contextual factors that support the 

durability of resource safeguarding behaviors in populations, particularly with regard to 

common-pool resources (Agrawal 2001; Baland and Platteau 1996; Ostrom 1990). These 

factors are largely narrative descriptions of the qualities of, and interactions between, 

resource types, governance structures, and resource users that are most likely to lead to 

stable and sustainable resource management institutions (Ostrom 2009). Scholars have 

identified at least 40 unique factors as contributing to the success of community-based 

conservation institutions and some overarching patterns have begun to emerge (Ostrom 

1990, 2009; Agrawal 2001). Continual monitoring, graduated sanctions for offenses, and 

well-defined social boundaries particularly stand out as important themes (Cox, Arnold, 

and Tomás 2010; Baggio et al. 2016). Research on common property additionally 

recommends that institutions be matched in scale to the underlying ecological processes 

of the resources they aim to manage (McKean 2000). 

Many of the factors that support the long-term viability of conservation 

institutions are intertwined such that the applicability of one may depend on the level of 

another and some factors may be inextricably correlated (Agrawal and Goyal 2001; 

Agrawal 2003). Predictors and outcomes of interest commonly exhibit threshold effects, 

time lags, feedbacks, and a variety of other nonlinear dynamics, making causal inference 

through standard regression practices difficult (Folke 2007; Levin et al. 2013). And 
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further, which individual factors are most important is highly specific to a given 

community or location, suggesting that there is not possibly one unifying panacea for 

common-pool resource management issues (Brooks, Waylen, and Borgerhoff Mulder 

2012; Geist and Lambin 2002; Agrawal and Gibson 2001). This complexity of 

community-based resource management systems and logistical constraints in measuring 

the sheer number of important variables has made multi-site comparative analyses elusive 

(SESMAD 2014; Biggs et al. 2021). Thus, even with decades of productive research on 

sustainable resource management, all major syntheses remain descriptive in nature, 

lacking a robust methodology to quantify causal insights (Cumming et al. 2020; Frey 

2017; McGinnis and Ostrom 2014; Gutiérrez, Hilborn, and Defeo 2011). 

We argue here that considering the stability of institutions within a population 

from the perspective of individuals rather than entire communities may provide valuable 

insight for implementing community-based conservation projects, both qualitatively and 

quantitatively. Sustainable resource management institutions are observed at the 

community level, but in reality, they are an emergent property of individual-level 

decision making — communities do not adopt behaviors, individuals do (Currie et al. 

2021). The normative conditions imposed on individuals by their ecological and social 

environments (i.e. the factors referenced above) affect the likelihood that they will 

endogenously engage in cooperative resource management practices or adopt them when 

exogenously introduced by an intervention (Wilson, Ostrom, and Cox 2013; Andrews and 

Borgerhoff Mulder 2018). 

A major question in implementing these projects is if members of a population 

will indeed adopt a specific intervention and if so, how quickly (Radeloff et al. 2013)? 
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Predicting the final proportion of a population that will adopt an intervention is critical, 

as many interventions require buy-in from nearly all community members to be effective 

(Mangubhai et al. 2011; Visconti et al. 2019). By examining sustainable resource 

management institutions as the emergent outcome of individual behavioral changes, we 

can leverage insights from other areas of social science to further guide theory on why 

some institutions emerge and persist, and others fail to be adopted long-term (Berkes 

2004). 

In this article, we examine one social science theory specifically focused on 

individual behavior adoption, diffusion of innovations (DOI), and its previous and 

potential applications to community-based conservation institutions (Rogers 2010; 

Mascia and Mills 2018). Our primary aim is to give a practical demonstration of how 

insights from DOI can be applied to expand our inference about the spread and 

persistence of conservation interventions beyond narrative descriptions. We do this by 

first simulating data on conservation adoption in a resource-dependent population and 

then statistically fitting a model of diffusion to these data. Adopting resource 

safeguarding behaviors fundamentally differs from adopting more standard behaviors 

such as clothing choice. By design, conservation behaviors alter the natural environment 

and adjust the arena in which individuals make future choices, such as to maintain the 

behavior. Our simulation highlights this feedback of interest to answer the key question 

of whether DOI is specifically applicable to community-based conservation, given this 

unique adoption dynamic. Throughout this article, we situate DOI theory in the broader 

literature on cultural evolution and argue that this body of work may provide more 
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actionable insight than DOI in isolation, particularly by considering underlying 

mechanisms of behavioral transmission. 

1.2 - Diffusion of innovations 

Promoting the widespread adoption of some novel (to the individual) behavior is 

not an issue unique to community-based conservation; producers of cigarettes and snack 

foods, as well as public health professionals, have been grappling with these questions for 

decades. DOI recognizes that this process is primarily governed by the level of 

uncertainty an individual has about the utility of the novel behavior and their personal 

threshold for the amount of certainty required to make a decision (Rogers 2010). When 

an individual is introduced to a new behavior, they often have a high degree of 

uncertainty about the risks and benefits of adopting and will wait to adopt until that 

uncertainty is reduced to a tolerable level. The primary way individuals reduce 

uncertainty about the outcome of adopting a particular behavior is through second-hand 

observation of early adopters. Therefore, at the core of DOI is the observation that 

individuals imitate those around them when making decisions about adopting a novel 

behavior, rather than weighing the pros and cons independently (Rogers 2010; Henrich et 

al. 2001). 

When modifying their beliefs or behaviors, people do not imitate other individuals 

at random (Bandura and Walters 1977). Instead, they preferentially adopt traits by 

employing a variety of learning biases, such as success-biased learning, where 

individuals who are perceived as more successful are disproportionately likely to be 

copied (Boyd and Richerson 1988a; Laland 2004). As a result, the cumulative culture of 

a population evolves over time as various beliefs and behaviors are preferentially copied 
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and their frequency within a population changes. While a full review of cultural evolution 

is beyond the scope of this paper, the general intuition is that populations carry a variable 

pool of information that is shaped by events in the lives of individuals such as social 

observation or natural selection (Mesoudi 2016). This information affects individuals’ 

behaviors, that in turn may affect their environments, and feedback to further alter which 

traits are adopted in the future (Durham 1991; Henrich and McElreath 2003). Observed 

variation among groups, such as differences in resource management institutions, are 

produced by such social and environmental histories, then reinforced through conformist-

biased learning where the dominant behavioral trait is disproportionately copied (Henrich 

and Boyd 1998). Thus, cultural evolution provides an intuitive way to integrate individual 

decision-making, population level patterns, and even population level behavior-

environment feedbacks. 

Diffusion of novel beliefs and behaviors is a specific instance of cultural 

evolution, where the trait being transmitted is new to the population and outcompetes 

some previous cultural variant, such as in the classic example of hybrid corn seed 

adoption in Iowa farmers (Mesoudi 2016; Ryan and Gross 1950). We observe these 

patterns using diffusion curves that show the proportion of a population that has adopted 

a belief or behavior on the Y-axis, as a function of time on the X-axis (Hoppitt et al. 

2010; Rogers 2010; Ryan and Gross 1950). The exact shape of these diffusion curves can 

be highly dependent on the learning mechanism employed by individuals in the 

population, as well as contextual factors like the population density or ease of trialing the 

cultural variant (Smaldino et al. 2017; Henrich 2001; Rogers 2010). 
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In the vast majority of empirical studies, the diffusion of a novel trait produces a 

sigmoidal “S” shape, where it initially spreads slowly, followed by a period of rapid 

adoption, then again spreads slowly until it reaches an equilibrium (Rogers 2010). This 

“S” shaped curve is indicative of biased social learning, in contrast to the relatively rare 

“R” shaped curves observed when individuals learn through independent trial and error 

(fig 1) (Henrich 2001). The curvilinear “R” shape produced by individual, or 

environmental learning is a result of the fact that late adopters represent the tail of the 

distribution, having not discovered (and thus adopted) the novel behavior even after 

many trials (Henrich 2001). These two curve shapes however are not completely distinct. 

As the proportion of learning strategies employed by individuals in a population shifts 

more toward individual or social learning, we expect to see a shift toward an “R” shape 

or “S” shape respectively (Henrich 2001). 

 
Figure 1 Canonical “S” and “R” diffusion curves. “R” curves are generally 

indicative of a higher proportion of individuals employing individual learning. “S” 
curves are generally indicative of a higher proportion of individuals employing 

social learning. 
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1.3 - Diffusion of innovations in community-based conservation 

Just as the sigmoidal pattern indicative of social learning is seen in the majority of 

cases on behavioral adoption broadly, scholars have also noticed this pattern in over 80% 

of case studies on the uptake of community-based conservation interventions worldwide 

(Mascia and Mills 2018; Mills et al. 2019). Fittingly, high-level studies have begun 

identifying DOI as potentially useful for diagnosing why some community-based 

conservation interventions spread and persist, while others fizzle out. For example, in a 

review of 22 conservation interventions referenced above, the majority of initiatives were 

adopted by less than 30% of potential adopters at the sigmoidal equilibrium. The authors 

use insights from DOI to suggest that practitioners may actively spread information on 

interventions (as in Abernethy et al. 2014), or facilitate communication to increase 

adoption rates (Mills et al. 2019; Greenhalgh et al. 2004). Further, a recent framework 

for understanding the establishment, persistence, and spread of community‐based 

conservation practices identifies qualitative insights, such as intervention observability, 

from DOI as useful in guiding the development of conservation interventions (Mahajan 

et al. 2020). 

As these high-level studies suggest, qualitative insights from DOI have been 

productively applied to understand the rate and success of spread of conservation 

behaviors in single case studies around the world. In Kenya for example, Mbaru and 

Barnes (2017) showed that identifying socially well-connected individuals can facilitate 

the rapid diffusion of information on conservation objectives. Similarly, in Fort Collins, 

CO, researchers demonstrated that both the speed and extent of diffusion of information 

on native plant gardening likely increase when community members are offered 
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incentives to increase communication (Niemiec et al. 2021). Romero-de-Diego et al. 

(2021) used expert interviews to identify that observability of benefits was a key driver of 

the rapid adoption of a voluntary wildlife management program among landholders in 

Mexico. Conversely, in contexts where observability and thus imitation are limited, such 

as across neighboring islands, the rate and degree of spread of community-based 

conservation interventions is considerably attenuated (Pietri et al. 2009). This finding 

mirrors those of studies which look at more general cultural adoption between islands, 

further suggesting that conservation behaviors may spread similarly to technological or 

ideological innovations (Kline and Boyd 2010; Beheim and Bell 2011). 

These studies are compelling in their conclusion that DOI can be productively 

applied to the spread of community-based conservation, but have been critiqued as 

general, narrative suggestions from DOI that may miss important contextual factors 

unique to each intervention (Steenbergen, Song, and Andrew 2021; Lam et al. 2020; Lund 

and Bluwstein 2018). Below, we make a quantitative argument for using DOI to 

understand the spread of community-based conservation interventions. We envision a 

practitioner who is monitoring the weekly, monthly, or even yearly uptake rates of an 

intervention and is hoping to predict if and when it will “take off” in the population, what 

the final proportion of adopters will be, and what they can do to promote its spread. In 

this review, we therefore explicitly demonstrate how DOI can be used to generate 

predictions about the patterns of uptake of conservation behaviors given behavior-

environment feedbacks and diagnose how an intervention may be best improved.  
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1.4 - Quantitative applications 

In this section we explain how we can fit an observed pattern of diffusion 

mathematically to estimate rates of adoption and dropout, as well as to predict the speed 

and degree to which a population will adopt an intervention. The “S” shaped diffusion 

pattern of behavioral spread over time mirrors that of community disease transmission 

(Smaldino and Jones 2020). This parallel implies that the well-established mathematics 

used to describe disease transmission patterns can be applied to fitting models of 

behavioral spread (Cavalli-Sforza and Feldman 1981; Strang 1991). Specifically, the 

canonical susceptible-infectious-recovered (SIR) model and SIRS variation where 

individuals are added back to the pool of susceptibles after recovery (eq 1), have been 

demonstrated to be well suited to fitting the diffusion process (Famil-Rohani et al. 2019; 

Smaldino and Jones 2020). These compartmental differential equations assign every 

member of a population to a category (S, I, or R), depending on the proportion of 

individuals in the other categories and parameter values for the natural history 

characteristics of a given disease (Tolles and Luong 2020). In this instantiation, the 

natural history parameter 𝛽𝛽 represents the rate of infection in the population, 𝛾𝛾 represents 

the rate of recovery, and 𝜒𝜒 is the rate that recovered individuals are added back into the 

pool of susceptibles. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 + χ ⋅ R𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 − γ ⋅ I𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = γ ⋅ I𝑡𝑡 − χ ⋅ R𝑡𝑡 

( 1 ) 
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When the natural history characteristics of some pathogen are known, the SI, SIR, 

SIS, & SIRS suite of models reliably give accurate, deterministic predictions about the 

number of individuals in a population who will become infected and for how long a 

disease will persist within a population (Huppert and Katriel 2013). For a specific 

conservation intervention however, there is no way to precisely know the natural history 

features, such as the rate or duration of adoption, ahead of time. Instead, the qualitative 

insights from DOI and the study of sustainable resource management institutions 

referenced above aim to increase the rate of spread and reduce the rate of dropout so that 

the intervention persists in the population and may even spread to new communities. 

While we cannot know exactly what the rates of spread and dropout will be ahead of 

time, we can use Bayesian inference to probabilistically estimate them once the project 

has been implemented (Margossian 2019; Margossian and Gillespie 2017; Carpenter 

2018). Knowing these parameters may allow us to predict the final rate of uptake from 

early in the project, identify whether adoption or dropout are limiting the overall rate of 

uptake, and apply the qualitative insights from DOI and natural resource management 

institutions in a more targeted fashion. 

The uptake of community-based conservation is subject to behavior-environment 

feedbacks, a fundamental difference from behavioral adoption generally (Liu et al. 2007). 

In the case of marine protected areas for example, success in conserving fish populations 

may actually disincentivize individuals to continue supporting conservation programs 

(Christie 2004). A key question then is whether the diffusion models explained above 

will still reliably fit the spread of conservation behaviors when those behaviors alter the 
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environment, and changes in the environment alter the payoff structure of various 

behavioral choices. 

To answer this question, we use an agent-based simulation to generate data on the 

spread of a conservation behavior via social learning, contingent on feedbacks with the 

environment. Then, using the five run average of just the first 30% of the data, we 

probabilistically estimate the average rates of intervention spread, dropout, readoption 

using a Bayesian instantiation of the SIRS model shown in equation 1. We use these 

estimated parameters to predict the long-term average adoption pattern for the remaining 

70% of time steps and compare our predicted values to those observed in the simulations. 

While the purpose of this example is to test whether the SIRS model can capture our core 

dynamics of interest, it also explicitly demonstrates how a practitioner or other 

researchers can directly apply the quantitative process described above. We first briefly 

describe the simulation below. 

2 - Modeling 

2.1 - Agent-based simulation 

We seek to test whether the SIRS model shown in equation 1 can produce reliable 

insights about community uptake of a conservation behavior, especially given behavior-

environment feedbacks common in natural resource management institutions. To answer 

this question, we first need complete time series data in-hand that are a product of our 

dynamics of interest. To obtain these data, we develop a minimal agent-based model that 

we use to simulate data on the spread of a resource safeguarding behavior within a 

population (Müller et al. 2013; Smajgl et al. 2011). In order to assess the impact of 

feedbacks between behavior and the environment, we simulate data using two different 
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social learning strategies, only one of which involves a behavior-environment feedback 

(Le, Seidl, and Scholz 2012; Kendal et al. 2018). The first is random copying where 

agents are paired with another agent at random and have a 25% chance of adopting the 

strategy of the agent they are paired with, independent of the harvest benefit provided by 

adopting the behavior or not (McElreath et al. 2008; Barrett 2019). This strategy does not 

involve a direct feedback between behavior and the environment. We include it as a 

baseline to compare against our second strategy, which does. The second mechanism is 

success-biased learning, under which agents disproportionately copy the behaviors of 

other agents with the greatest harvesting success (Baldini 2013). This mechanism is 

formally demonstrated in equation 2, for two behaviors: 𝐴𝐴 & 𝐵𝐵, where the probability 

that an individual adopts behavior 𝐴𝐴 is a function of the mean harvest, 𝑃𝑃‾ , from each 

behavior at each time step and the strength of the bias, 𝛽𝛽 (Barrett 2019). Under biased 

social learning, the strength of the learning biases (e.g. 𝛽𝛽) control how disproportionately 

agents copy others based on a given condition (e.g. success); a 𝛽𝛽 = 1 in this formulation 

would thus mean that the probability that one agent copies another is directly 

proportional to the ratio of their harvests. Behavioral change given success-biased 

learning is therefore dependent on feedbacks with the environment as harvest success 

results from agent behaviors in previous time steps. 

Pr(𝐴𝐴|𝐴𝐴,𝐵𝐵)𝑡𝑡+1 =
expβ𝑃𝑃𝐴𝐴,𝑡𝑡�����

expβ𝑃𝑃𝐴𝐴,𝑡𝑡����� + expβ𝑃𝑃𝐵𝐵,𝑡𝑡����� 

( 2 ) 

Our simulated system is conceptualized as a fishery where agents are directly 

compensated for forgoing resource extraction from a particular area if they choose 

(Rakotonarivo et al. 2021). We establish a fishery, loosely based on a global average 
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stock integrity, at 20% of its potential carrying capacity (FAO 2020). In the first time 

step, we introduce an intervention that delineates 20% of the fishery as a conservation 

area and just 2% of agents initially change their behavior to forgo harvesting there. Fish 

reproduce proportionally to the population in each time period, and move freely between 

the conservation area and unconserved area. In each subsequent time step, agents who 

adopted the resource safeguarding behavior (enrolled) receive a reward, and continue to 

harvest just from the remaining 80% of the unconserved fishery. Agents not enrolled in 

the intervention harvest from the entire fishery and forgo the reward. After each harvest 

period, agents are randomly paired, and employ either random copying or success-biased 

learning to decide whether or not to adopt the behavior of their partner in the next time 

step (Baldini 2012). The conserved and unconserved resource pools are reduced 

according to agents’ harvesting behavior, regenerate, and move from one area to the other 

if the carrying capacity is reached in any respective area. A visual description of this 

minimal model is shown in figure 2 and the full Overview, Design concepts, and Details 

protocol can be found in the supplemental material of the peer-reviewed, published 

version of this manuscript (Grimm et al. 2006; Grimm et al. 2020). 
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Figure 2 Conceptual diagram showing process at each time step in the agnt-

based simulation. This simulation was used to produce data on the adoption of 
conservation behaviors as a function of social learning and environmental outcomes. 

We use this model to simulate data on the adoption and persistence of a 

conservation institution given two different learning mechanisms, random copying and 
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success-biased imitation. Aside from the learning mechanism employed by the 

population, all model conditions are identical for these two scenarios. Random copying is 

used as a reference as it reliably produces the standard sigmoidal “S” curve of behavioral 

adoption and does not incorporate any feedbacks between adoption and the environment. 

Under the success-biased learning scenario, agents compare their harvests to others in 

each time step and disproportionately copy more successful agents. In this instantiation 

then, adoption is dependent on harvest success and harvest success is determined largely 

by the amount of available resources in each area. As the amount of available resources 

in an area is determined by the number of agents who harvest there, this learning 

mechanism incorporates behavior-environment feedbacks typical of natural resource 

management institutions. Having independently sampled from one or both environments, 

agents then compare their harvests to those of others in each time step. In this way, the 

success-biased learning scenario actually represents a mix of individual and social 

learning, rather than a scenario where individuals make decisions purely from social 

information. The adoption pattern observed in this simulation results in a mix between an 

“R” and “S” type curve, reinforcing the interpretation of this scenario as a mix of 

individual and social learning (Henrich 2001). Figure 3 shows the full output for five 

runs of the later simulation where adoption (enrollment) spikes initially, but drops off 

dramatically as the resources in the unconserved area are reduced following increased 

harvest pressure there as a result of the conservation intervention. This exact dynamic is 

however highly flexible given the specific parameter combinations as described in 

section (2.3). 
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Figure 3 Five runs of the agent-based simulation used to produce data for 
analysis with the SIRS model of behavioral adoption under the success-biased 
learning scenario. The top figure shows the number of resources in both the 

conservation and unconserved areas over time, as a percent of the carrying capacity 
in those areas. The middle figure shows the average number of resources harvested 

(payoff) by each agent at each time step. The bottom figure shows the number of 
agents who have adopted the conservation behavior (enrolled) at every time step.  

2.2 - Fitting data with probabilistic differential equations 

With data on adoption of conservation behavior for both learning mechanisms in-

hand, we fit the SIRS model described in equation 1 to the first 30% of observations, 

averaged across five model runs. We use multiple model runs to avoid spurious results 

stemming from model stochasticity alone. Five model runs are used as opposed to 100 or 

1000, as this leaves some residual stochasticity in the adoption data that is more 

representative of what might be realistically observed. Duplicate analyses to those 

presented below, but instead run on the average of 100 simulation runs can be found in 

appendix A1. Given these data, we use probabilistic sampling to infer the parameters 𝛽𝛽, 
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𝛾𝛾, and 𝜒𝜒, for the full Bayesian equation (3) below where Y𝑡𝑡 represents the total number 

of individuals who are enrolled in the community-based intervention at any given time. 

Here, “infected” individuals are those that are enrolled in the conservation intervention. 

Y𝑡𝑡 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(N, I𝑡𝑡) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 + χ ⋅ R𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 − γ ⋅ I𝑡𝑡 

dR
dt   =  γ  ⋅  It  −  χ  ⋅  Rt 

𝛽𝛽, 𝛾𝛾, 𝜒𝜒 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,0.5) 

( 3 ) 

For both learning mechanisms the SIRS model exhibited Markon chain 

convergence (fig 4) and resulted in an 𝑅𝑅� of 1 for all estimated parameters. As the 

parameters 𝛽𝛽, 𝛾𝛾, and 𝜒𝜒 are directly interpretable as the rates of adoption, dropout, and 

willingness to retry a previously abandoned intervention, accurate estimation of these 

values, especially in the early stages of an intervention, provides practical and 

straightforward intuition to diagnose areas for improvement in community-based 

conservation interventions. For example, a practitioner might fit this model to real-world 

participation rates during the early weeks of an intervention in order to estimate the rates 

of adoption and dropout. If both rates are low, the practitioner should focus on increasing 

initial adoption. Conversely, if both rates are high, they should instead focus efforts on 

retention of enrolled participants. In addition, these insights may help practitioners better 

decide which factors from the institutional design literature may be most impactful for 

their specific system. This might take the form of increasing communication and 
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observability of benefits to boost initial adoption, or investing in conflict resolution 

mechanisms to reduce dropout. 

 
Figure 4 Markov chains for each of the three parameters of interest from the 
SIRS model fit to simulated data (average of five runs). Beta is interpretable as the 
rate of adoption of the behavior (enrollment). Gamma is an estimate of the rate of 
dropout. Chi represents the rate at which individuals who previously dropped out 
are added back into the susceptible category. The agent-based simulation used to 
produce the data employed environmentally mediated, success-biased learning. 

We can also use these parameter values, estimated from the first 30% of the time 

series, to predict the long-term patterns of adoption for a community-based conservation 

initiative. In figures 5 & 6, the translucent black lines show 1000 draws from the 

posterior predicting the proportion of the population who will be enrolled in the 

intervention at every time step, averaged across the five model runs. Gray and blue points 

show the initial 30% of the data that was used to estimate the three parameters of interest 

and the remaining 70% of data, respectively. These figures show that the SIRS model 

accurately captures and predicts the pattern of behavioral adoption for both random 

copying and environmentally mediated success-biased learning. Further, the mean 

absolute error (MAE) between the simulated “test” data (later 70%) and the median 
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model predictions for those data are 2.98% and 4.52% of the population for the random 

copying and success-biased learning scenarios respectively, indicating good model fit. 

 
Figure 5 SIRS model fit to the average of five runs of the agent-based 

simulation data under random copying shown as translucent black lines 
representing 1000 draws from the posterior. Simulated data are overlaid with gray 

points signifying training data (first 30%) and blue points signifying test (later 70%) 
data. 
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Figure 6 SIRS model fit to the average of five runs of the agent-based 

simulation data under success-biased social learning contingent on behavior-
environment feedbacks shown as translucent black lines representing 1000 draws 

from the posterior. Simulated data are overlaid with gray points signifying training 
data (first 30%) and blue points signifying test (later 70%) data. 

Figures 5 & 6 also demonstrate that different scenarios and respective learning 

mechanisms, while both producing a stable adoption rate, can result in different overall 

rates in adoption of an intervention, even under identical starting conditions. In the 

simulation of a population employing random copying, the population equilibrates at 

nearly 90% adoption of the intervention behavior. For success-biased learning on the 

other hand, resource scarcity in the unconserved area caused the population to adopt the 

intervention at approximately 60% in the long-term. Lastly, the mix of social and 

independent learning employed by agents in the success-biased learning scenario 

produces a somewhat “R” shaped curve as explained in the section above. These results 

show that the SIRS model of diffusion can reliably fit the pattern of behavioral adoption 

even when the pattern does not follow a strict sigmoidal “S” shape.  
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2.3 - Example limitations 

Parallel to the examples above, we can use our agent-based simulation to explore 

parameter combinations that expose limitations for the application of the SIRS diffusion 

model for capturing and predicting conservation adoption dynamics under behavior-

environment feedbacks. Specifically, as the parameters in the SIRS model only directly 

account for social processes, adoption dynamics resulting from abrupt environmental 

change are not well predicted. For example in figure 7, we consider a resource pool that 

is relatively intact at the start of the simulation (80% of carrying capacity), paired with an 

unsustainable harvest rate. In this simulation, all agents initially rapidly enroll in the 

conservation intervention as there is no cost to doing so (resources in the unconserved 

area are plentiful). However, when the resource pool in the unconserved area is depleted, 

agents quickly drop out of the conservation institution in favor of harvesting from the 

conservation area. Figure 8 shows the result of fitting these data with the SIRS diffusion 

model described above. The MAE of this model is 43.07%, indicating poor model fit. 



29 

 

 
Figure 7 Five runs of the agent-based simulation used to produce data for 
analysis with the SIRS model of behavioral adoption under the success-biased 
learning scenario. The top figure shows the number of resources in both the 

conservation and unconserved areas over time, as a percent of the carrying capacity 
in those areas. The middle figure shows the average number of resources harvested 

(payoff) by each agent at each time step. The bottom figure shows the number of 
agents who have adopted the conservation behavior (enrolled) at every time step.  
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Figure 8 SIRS model fit to the average of five runs of the agent-based 

simulation data under success-biased social learning contingent on behavior-
environment feedbacks shown as translucent black lines representing 1000 draws 

from the posterior. Simulated data are overlaid with gray points signifying training 
data (first 30%) and blue points signifying test (later 70%) data. Dynamics in this 

figure exemplify poor model fit (MAE = 43.07%) under primarily environmentally 
driven adoption. 

To ensure that our modeling approach is generally robust against these types of 

ecologically-driven dynamics, we again ran five iterations of the agent-based model and 

assessed SIRS model fit for a wide range of parameter combinations. As shown in figure 

9 and in appendix A (figure A2), our approach yields reliable model fit, as assessed 

through MAE, across the spectrum of realistic parameter values. It is worth noting 

however that the SIRS model fails to capture trends in conservation adoption in boundary 

cases, such as when 80-90% of resources are designated for conservation (figure 9). This 

indicates that the method presented in this paper may not be appropriate for real-world 

application where adoption dynamics are expected to be heavily driven by ecological 

change rather than social dynamics. 
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Figure 9 Sensitivity analysis for the ability of the SIRS model to capture 

adoption dynamics under a variety of parameter combinations across a range of 
values for the resource regeneration rate and the percent of the resource designated 

for conservation. 

3 - Discussion 

3.1 - Shortcomings of diffusion of innovations in community-based conservation 

As demonstrated in figures 5 & 6, the standard SIRS diffusion model can reliably 

capture the long-term patterns of behavioral adoption for community-based conservation 

interventions, even when adoption is contingent on feedbacks with ecological processes. 

Fitting this model to observed data on the uptake of a behavior can provide us with 

estimates of the rates of adoption, dropout, and willingness to retry a specific intervention 

and allow us to predict the final stable rate of adoption in the population from early in the 

project. These insights, while useful, are somewhat limited in their ability to prescribe 

improvements for an intervention. As highlighted by the quote in the beginning of this 
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article, diffusion study can explain what is happening in a system, but gives little intuition 

as to the mechanisms behind why it is happening (Rogers 2010). 

As first described by Henrich (2001) and demonstrated in figures 5 & 6, we see 

clear changes in the population patterns of adoption when individuals employ differing 

levels of social or independent learning. But when comparing many biased social 

learning mechanisms, the pattern of adoption may exhibit equifinality, where many 

different underlying mechanisms may produce similar or even identical patterns over 

time (Barrett 2019). Critically, this makes it virtually impossible to infer the specific 

biased social learning mechanism(s) used by a population from the pattern of adoption 

over time alone. This information is however important for researchers and practitioners, 

as the social transmission mechanism, or mix of mechanisms, employed by a population 

can dramatically affect the overall rates of adoption for a given behavior (Smaldino et al. 

2017; Andrews and Borgerhoff Mulder 2018; Tam et al. 2021). Plainly, DOI can tell us if 

an intervention is being robustly adopted or not, but we need to understand the actual 

transmission mechanism to effectively act on this information. Thankfully, this 

information is possible to collect. For example, Tam et al. (2021) and Kline et al. (2018) 

give practical examples of how to measure social learning strategies in the context of 

conservation, and tools (game/survey instrument, code, etc.) with which to collect and 

analyze the data. 

With information on the patterns and mechanisms of uptake of community-based 

conservation behaviors we can more selectively apply the many narrative insights from 

DOI and the study of natural resource management institutions. In populations primarily 

employing prestige-biased learning (where prestigious individuals are disproportionately 
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copied) for instance, the identification of and collaboration with community change 

agents may be particularly effective (Jiménez and Mesoudi 2019; Henrich and Gil-White 

2001; Dietz et al. 2002). Conversely, the observability of both resources and the benefits 

of conservation are likely of increased importance when the population primarily 

employs content-biased learning (where some characteristic of the trait itself makes it 

more desirable than a previous trait) (Ostrom 1990; Rogers 2010; Boyd and Richerson 

1988b). 

3.2 - Future work 

Understanding the causal mechanisms behind the patterns of behavioral 

transmission is necessary to better delineate and predict how conservation will affect both 

people and the environment (Cheng et al. 2020). Researchers increasingly recognize that 

models of human-caused environmental change must explicitly incorporate dynamic 

social processes based on realistic human cognitions that allow actors to modify their 

behaviors in response to new information (Meyfroidt 2013; B. L. Turner, Lambin, and 

Verburg 2021; Polain de Waroux et al. 2021). Behavioral adoption is not truly binary, as 

implied by DOI. Rather, individuals modify behaviors they adopt in response to their 

personal experiences and needs (Enquist, Ghirlanda, and Eriksson 2011). Research on 

cultural evolution has accordingly begun to incorporate these cognitive processes into 

formal models (Gabora and Steel 2017, 2020). Hence, modeling human behavior in the 

context of community-based conservation is in its infancy. Going forward, it will require 

a complex dynamic systems approach in which behaviors and the biophysical 

environment coevolve (Schill et al. 2019). 
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Mechanistic or process models allow for us to formally describe these complex 

interactions while testing the logical consequences of our assumptions and the relation of 

our hypothesized processes to observed data (Epstein 2008). The practice of applying 

statistical frameworks for parameter estimation to analytical process models, particularly 

ordinary differential equations, is still relatively new and has been embraced mostly in 

ecology (Hefley et al. 2017; Laubmeier et al. 2020; Morales and Morán López 2021). 

This emerging methodology allows for estimating interesting and directly interpretable 

process parameters, which is not possible with linear regression. We believe this is an 

exciting new avenue for conservation science as the direct interpretability and 

applicability of process parameters lend themselves well to tight integration with applied 

research, as is common in the field. Future research could extend the SIRS diffusion 

model to include an exposure term (i.e. SEIRS) to allow for individual variation in the 

exposure to an intervention required before adoption, possibly dependent on individual 

characteristics. 

An additional line of research aimed at better capturing the trends shown in 

figures 7 & 8 might include a term that represents change in the environment over time 

and the effect of resource levels on adoption rates to more accurately reflect the social-

ecological coupling. As exemplified in figures 7 through 9, any model that predicts 

human behavior due to past behavioral dynamics will fail to capture trends driven 

primarily by environmental conditions. An example of such an extension is presented 

below, where we include another equation for the change in a resource pool over time 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

We also must include three additional parameters: 𝜙𝜙, 𝜌𝜌, and 𝜃𝜃, which represent the effect 
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of resource level on enrollment (infection), the effect of harvest on the resource level, and 

the regeneration rate of the resource, respectively. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 + χ ⋅ R𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = β ⋅ S𝑡𝑡 ⋅ I𝑡𝑡 − γ ⋅ I𝑡𝑡 − ϕ ⋅ E𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = γ ⋅ I𝑡𝑡 − χ ⋅ R𝑡𝑡 + ϕ ⋅ E𝑡𝑡 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −ρ ⋅ (S𝑡𝑡 + R𝑡𝑡) + θ ⋅ E𝑡𝑡 

( 4 ) 

While process models may be preferable to simulation and linear regression 

approaches for predicting adoption outcomes of conservation interventions, they might 

not always be possible. In complex systems, these models can quickly require many 

parameters in order to account for all moving parts accurately and thus are prone to issues 

of identifiability in parameter estimation and may even become mathematically 

intractable (Laubmeier et al. 2020). Further, as has been demonstrated in coastal 

fisheries, these systems can exhibit mathematical chaos, where our inability to measure 

the parameters of interest at a fine enough resolution results in seemingly stochastic, 

unpredictable outcomes (Wilson et al. 1994). 

Coupled human and natural systems commonly exhibit dynamics with thresholds, 

time lags, and heterogeneity not present in social or natural systems in isolation and 

therefore are difficult to model analytically (Liu et al. 2007). In very complex cases such 

as these, we argue that agent-based simulations are the preferred approach as they allow 

for these features of complex systems that are difficult or even impossible to account for 
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with analytical process models such the SIRS or SIRS extension model presented in 

equation 4 (Reyers et al. 2018; Railsback and Grimm 2012; Wilensky and Rand 2015). 

Agent-based simulations allow modelers to impose a realism in the governance or 

institutional dynamics that are largely intractable in closed-form mathematical equations 

(Kaiser, Flores, and Hillis 2020; Bravo 2011; Joffre et al. 2015). Further, agent-based 

simulations uniquely allow researchers to hypothesize and test causal processes in 

complex social-ecological systems (Baggio and Hillis 2018; Schlüter et al. 2019). As the 

number of purely subsistence communities shrinks each year worldwide, and multiple 

levels of institutions are increasingly involved in natural resource management, 

incorporating these features into our models is paramount for reliable inference (McKean 

2000; Armitage et al. 2009). 

4 - Conclusions 

Overall, we argue that fitting process models of behavioral diffusion to data on 

the spread of conservation behaviors is a practical way for researchers and practitioners 

to apply DOI to community-based conservation. We test the utility of the SIRS diffusion 

model on simulated data that highlight the feedback between behavioral adoption and 

environmental change commonly seen in community-based conservation interventions. 

We show that this model can be a powerful tool for estimating the natural history 

characteristics of a particular intervention, such as the rate of spread, and for predicting 

the long-term patterns of adoption, even under reciprocal behavior-environment 

interactions. We also introduce the broader field of cultural evolution as a more 

comprehensive body of theory for understanding the underlying mechanisms of 

behavioral adoption than DOI alone. We hope that this review provides a model for how 



37 

 

practitioners might practically apply insights from DOI to community-based conservation 

interventions, while also clarifying the position of DOI in the current literature on the 

adoption of sustainable resource management practices. 

5 - Software and data availability 

The agent-based model used to simulate data for this paper was produced using 

the R programming language for statistical computing; R version 4.1.2 (R Core Team 

2021). These simulated data were analyzed by running the probabilistic programming 

language STAN within the Rstudio environment; STAN version 2.21.3 (Team 2021; 

RStudio Team 2020). All R and STAN code used in this project can be found at the 

Github repository here: https://github.com/matthewclark1223/A-Quantitative-

Application-of-Diffusion-of-Innovations-for-Modeling-the-Spread-of-Conservation-

Behav. 

 

https://github.com/matthewclark1223/A-Quantitative-Application-of-Diffusion-of-Innovations-for-Modeling-the-Spread-of-Conservation-Behav
https://github.com/matthewclark1223/A-Quantitative-Application-of-Diffusion-of-Innovations-for-Modeling-the-Spread-of-Conservation-Behav
https://github.com/matthewclark1223/A-Quantitative-Application-of-Diffusion-of-Innovations-for-Modeling-the-Spread-of-Conservation-Behav
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CHAPTER THREE: CAUSAL ATTRIBUTION OF AGRICULTURAL EXPANSION 

IN A SMALL ISLAND SYSTEM USING APPROXIMATE BAYESIAN 

COMPUTATION 

The extent and arrangement of land cover types on our planet directly affects 

biodiversity, carbon storage, water quality, and many other critical social and ecological 

conditions at virtually all scales. Given the fundamental importance of land cover, a key 

mandate for land system scientists is to describe the mechanisms by which pertinent 

cover types spread and shrink. Identifying causal drivers of change is challenging 

however, because land systems, such as small-scale agricultural communities, do not lend 

themselves well to controlled experimentation for logistical and ethical reasons. Even 

natural experiments in these systems can produce only limited causal inference as they 

often contain unobserved confounding drivers of land cover change and complex 

feedbacks between drivers and outcomes. Land system scientists commonly grapple with 

this complexity by using computer simulations to explicitly delineate hypothesized causal 

pathways that could have resulted in observed land cover change. Yet, land system 

science lacks a systematic method for comparing multiple hypothesized pathways and 

quantifying the probability that a given simulated causal process was in fact responsible 

for the patterns observed. Here we use a case study of agricultural expansion in Pemba, 

Tanzania to demonstrate how approximate Bayesian computation (ABC) provides a 

straightforward solution to this methodological gap. Specifically, we pair an individual-

based simulation of land cover change in Pemba with ABC to probabilistically estimate 
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the likelihood that observed deforestation from 2018 to 2021 was driven by soil 

degradation rather than external market forces. Using this approach, we can show not 

only how well a specific hypothesized mechanism fits with empirical data on land cover 

change, but we can also quantify the range of other mechanisms that could have 

reasonably produced the same outcome (i.e. equifinality). While ABC was developed for 

use in population genetics, we argue that it is particularly promising as a tool for causal 

inference for land system science given the wealth of data available in the satellite record. 

Thus, this paper demonstrates a robust process for identifying the emergent landscape-

level signatures of complex social-ecological mechanisms. 

1 - Introduction 

The mosaic of land cover on the surface of our planet is a product of complex 

social-ecological dynamics that make up the complete land system (Turner, Lambin, and 

Reenberg 2007; Turner, Lambin, and Verburg 2021). Changes in Earth’s terrestrial 

surface have profound implications for ecosystem functioning and human wellbeing, and 

as such, are of critical importance to understand and predict (Steffen et al. 2006). A key 

challenge in understanding land cover change and designing effective policies is that 

there are often multiple plausible, and even interacting mechanisms that can cause a 

switch in land cover from one state to another (Lambin and Meyfroidt 2010). For 

example, in the case of agricultural frontier expansion, depletion of soil fertility in 

existing plots often promotes the conversion of nearby natural vegetation to new 

cropland, thus pushing the frontier outward (Casetti and Gauthier 1977). Agricultural 

frontier expansion into forested lands is also observed however, as a result of increased 

market value for crops and increased population pressure (Meyfroidt et al. 2018). 
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When designing policies to limit the conversion of natural areas into more 

intensive land use types such as rotational agriculture, it is important to determine the 

drivers of conversion, because the impact of a given policy will depend on the dominant 

driver. The introduction of new agricultural technologies, for instance, can have 

drastically different effects on the landscape depending on the primary driver of frontier 

expansion in a given system (see Kaimowitz and Angelsen 1998 for a foundational 

review). If loss of soil fertility is the primary driver, new technologies can limit forest 

conversion as they allow existing plots to be farmed for longer periods of time, 

minimizing the need for agricultural operations to change location. However, if market 

forces are the primary driver of frontier expansion, this same intervention is likely to 

incentivize further forest conversion by increasing the returns from any given agricultural 

plot (Meyfroidt et al. 2018). Despite the importance of identifying causal processes in 

land cover change, actually doing so in any particular case has often proven difficult 

given the inherent social-ecological complexity of land systems (Meyfroidt 2016; Turner 

et al. 2020). 

Land systems are complex adaptive systems characterized by feedbacks between 

the human and ecological subsystems, where a change in the state of one affects ongoing 

processes in the other and vice versa (Berkes, Folke, and Colding 2000; Le, Seidl, and 

Scholz 2012; Folke 2007). The possible distribution of land cover types in any one area is 

also highly path dependent, or constrained by past states and trajectories, sometimes 

further muddying the relationship between actual drivers and outcomes (Liu et al. 2007). 

Standard statistical tests fail to produce reliable inference in complex systems exhibiting 

feedbacks and path dependence, given that it is generally impossible to specify likelihood 
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functions for such processes (Levin et al. 2013). Thus, while critical, identifying causal 

processes in land systems and social-ecological systems generally has proven difficult. 

To begin to build causal theory in complex land systems, researchers commonly 

use computer simulations to abstract key phenomena and produce ‘what-if’ scenarios 

(Ahimbisibwe et al. 2021; An et al. 2021). Simulations allow researchers to code 

complexities such as feedbacks and path dependence directly into a model of the 

processes under examination, in order to formally define a hypothesized causal 

mechanism and check the logical implications and internal validity of their assumptions 

(Epstein 2008; Verburg 2006). While simulations like this are important for theorizing 

about social-ecological systems, it can be difficult to relate them back to empirical data 

and tell where exactly the real-world sits in the multidimensional parameter space of the 

model (Ren et al. 2019). Without this information, we are limited in our knowledge of 

how well a given simulation accurately distills the processes we are hoping to examine, 

and how we might use such a model to infer important things about the real-world. 

The biological sciences have largely led the development of methods for 

comparing simulated, theoretical causal processes to observed data. Ecological research 

in particular has made considerable use of simulation modeling to theorize about how 

complex interactions among individuals lead to observed patterns at the population level 

(i.e. individual-based modeling) (Grimm 1999; DeAngelis and Grimm 2014; Grimm and 

Railsback 2013). Relatively early on in the use of individual-based modeling in ecology, 

researchers developed the general process of pattern-oriented modeling in which a given 

hypothesis is evaluated on its ability to recreate an observed biological pattern at an 

appropriate temporal and spatial scale (Wiegand et al. 2003; Grimm et al. 2005). This 
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method allowed researchers to match observed trends in population change with plausible 

rates for various demographic parameters such as pre-breeding survival in woodpeckers, 

road mortality in lynx, and annual male survival in amphibians, among many others 

(Wiegand et al. 2003; Kramer-Schadt et al. 2004; Swanack et al. 2009). While pattern-

oriented modeling provides a general structure for interrogating causal hypotheses of 

complex phenomena with empirical data, it does not adequately account for stochasticity 

in the outcomes of hypothesized mechanisms. In particular, this method fails to quantify 

the complete range of model parameters that may reasonably reproduce observed patterns 

and the frequency in which they do so. 

Toward this aim, approximate Bayesian computation (ABC) has emerged as a 

formal method of pattern-oriented modeling in which researchers run simulation models 

across many parameter values and systematically accept or reject the outputs of each run 

as consistent with observed data. All accepted parameter values are then aggregated into 

a probability distribution of parameter values that are likely to produce the observed data 

(Hartig et al. 2011; Troost et al. 2022). ABC has proven effective for identifying the 

range of simulation model parameters consistent with observed data across a wide 

breadth of biological fields from ecology to epidemiology (Scranton, Knape, and Valpine 

2014; Kosmala et al. 2016; Vaart, Johnston, and Sibly 2016; Boult et al. 2018; Martínez 

et al. 2011; Cipriotti et al. 2012). When different simulation parameters represent specific 

hypothesized causal processes, ABC can then be used to estimate the probability that a 

given causal process produced a given set of observed data. Importantly, ABC enables 

researchers to statistically estimate model parameters even for generative models 
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containing complex processes such as the feedbacks and path dependence characteristic 

of social-ecological systems (Gallagher et al. 2021). 

In this paper we demonstrate the utility of ABC for generative inference in 

complex land systems and social-ecological systems generally. Specifically, we simulate 

hypothesized patterns of agricultural expansion in a small island system given two 

possible drivers, declining soil fertility and external market forces. We then filter the 

range of possible model parameters to just the inputs that produce land use patterns 

consistent with the observed time-series of agricultural frontier expansion. We show that 

this method allows us to determine the proportion of each of these drivers in causing the 

observed agricultural expansion in our study system, Pemba Island, Tanzania. In this 

way, we provide a straightforward demonstration for linking land system simulations 

with empirical data to draw causal inference in even very complex systems involving 

feedbacks and path dependence. 

2 - Study system 

2.1 - Pemba 

The Indian Ocean archipelago of Zanzibar is a semi-autonomous jurisdiction 

lying off the coast of Tanzania. Pemba, the northernmost island, is densely populated 

with 428 people per square kilometer. While the island has a few main population centers 

(Wete, Chake Chake, and Mkoani), the vast majority of the island’s 400,000 people live 

in small villages scattered across some 120 wards (shehia), all of which are connected by 

a dense, relatively modern road network (fig 10). Based on the 2022 census, we estimate 

the average growth rate between 2012 and 2022 to be about 2.1%, more than double the 

world average of 0.9% per year. 
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Figure 10 Inset map showing the location of Pemba Island relative to the 
Tanzanian mainland (upper left) and the dense Pemban road network (main 

figure). 

The rural economy of Pemba is primarily subsistence (farming, fishing, and 

livestock), with a single important cash crop, cloves. Cloves were introduced to the island 

in the early 19th century and have come to dominate the economy of the island’s western 

half due to the region’s highly productive soils (see below). In contrast, the island’s 

eastern side, characterized by poor, shallow soil, has lower human population density, is 

less developed, and is generally less economically productive. For example, in an 
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extensive household survey focused on economic production carried out in 2017, we find 

that the average household income from the sale of crops (excluding cloves) in the east is 

approximately $25, compared with an estimated $80 in the highly productive western 

half. 

Nevertheless, there is considerable pressure in the east for new farmland. Some 

30% of All eastern households surveyed stated that they had cleared forested land to 

expand their farming operations in the past 7 years. On average, households report 

clearing approximately 0.91 acres, primarily to plant staple crops such as cassava. And 

while cassava is almost exclusively a subsistence crop in Pemba, there has been 

considerable pressure to develop the Pemban economy in the past decade, as it has lagged 

behind the rest of Tanzania and Zanzibar. New development initiatives, particularly in 

agriculture, are a constant of government programming, and new crops such as 

watermelon and tomatoes are being experimented with on the once underutilized eastern 

soils. However, Pemba has historically struggled to develop its own internal market for 

agricultural goods, and the impact that these new cash crops are having on the eastern 

landscape is unknown. 

2.2 - Coral rag vegetation and rotational agriculture 

Pemba is a narrow island, in many places just 15 kilometers wide, yet most of the 

environmental variation exists across the narrow east/west span. This is owed to three 

distinct soil types that run the length of the island and can generally be thought of as 

going from deep and fertile in the west, to shallow and nutrient poor in the east (Stockley 

1928). The easternmost topography is characterized by jagged, fossilized coral beds 

covered with a shallow soil layer and scrubby vegetation ranging from approximately 1 
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to 5 meters in height (i.e. coral rag forest) (Burgess and Clarke 2000; Burrows et al. 

2018). This forest type has traditionally been overlooked by conservation efforts in 

Pemba, and Zanzibar generally, yet it is critical habitat for a variety of plant and animal 

species such as the endemic Pemba flying fox (Pteropus voeltzkowi) (Kingdon 1988). 

 
Figure 11 Panels A, B, C, and D show the process of coral rag forest conversion 
to agriculture in Pemba in four distinct stages. Panel A shows the cutting of coral 
rag vegetation, which is then left to dry before burning. Panel B shows a freshly 

burned plot before planting. Panel C shows a productive agricultural field. Panel D 
shows a fallow agricultural field. 

The shallow soils atop porous coral rag geology characteristic to eastern Pemba 

cannot be productively farmed for long, continuous periods. Farmers in this region thus 

typically rely on rotational swidden agriculture where primary forest is cleared and the 

land is farmed for a short period, then left to recharge for a number of years (fig 11). 
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While this process could potentially be interrupted by regenerative agricultural practices 

or the introduction of rainwater catchment systems, currently farmers in this region lack 

resources to escape the cycle of ecologically costly, short-term resource extraction (Wild 

et al. 2020; Biazin et al. 2012; Garrity et al. 2010). Thus, in this system, there are 

considerable feedbacks between the condition of the environment, decisions made by 

farmers to clear and farm a forested area, and the state of the environment in future time 

periods. Further, as any one forested area is cleared, it opens new patches to potential 

clearing through frontier expansion. Hence, specific patches available in any one time 

period are highly dependent on social-ecological events in previous time steps. Thus, this 

system displays both the feedbacks and path dependence characteristic of complex social-

ecological systems. 

3 - Methods 

3.1 - Data 

3.1.1 - Land cover classification 

We produced 20 m land cover maps using top of atmosphere Sentinel-2 time 

series imagery and ancillary datasets in a data fusion approach using Google Earth 

Engine (GEE) (Gorelick et al. 2017; Mondal et al. 2019). GEE is an open-access cloud 

computing platform that hosts petabytes of freely available earth observation data, and is 

ideal for creating land cover maps with built-in classification functions. For this study, 

we created annual median composite images for conversion into thematic land cover 

maps. We filtered the time series by date, and used the image metadata to further filter by 

estimated cloud cover, using a threshold of <20%. We then used the ‘QA60’ quality band 

to remove any remaining clouds prior to creating the composites of median values. 
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Beyond the native Sentinel-2 spectral bands, we calculated common normalized 

difference indices useful for distinguishing common land cover types such as the 

Normalized Difference Vegetation Index (and red edge adaptations) and the Normalized 

Difference Water Index (NDWI), as well as its modified version (MNDWI) (DeFries and 

Townshend 1994; Schuster, Förster, and Kleinschmit 2012; Xu 2006; Gao 1996). We 

also used synthetic aperture radar (SAR) backscatter from the corresponding Sentinel-1 

ground range detected time series available in GEE. We used SAR scenes from ascending 

paths only and incorporated both vertical-vertical and vertical-horizontal polarizations in 

our analysis. SAR data are known to be influenced by varying incidence angles, so we 

normalized these images by multiplying the backscatter by the incidence angle with the 

understanding that greater incidence angles result in less backscatter returned to the 

instrument (Banks et al. 2019; Kaplan et al. 2021). To reduce inherent speckle in the SAR 

images, we opted for a time for space substitution by using a mean composite of all 

images for the given year to maintain a 10 m spatial resolution. Lastly, we considered 

topographic covariates for classification (elevation, slope, and aspect derived from the 

NASA Shuttle Radar Topography Mission digital elevation model) that dictate locations 

of land covers of interest relative to sea level and topography (Appendix B) (Farr et al. 

2007). 
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Figure 12 Land cover estimates for the year 2018 in Pemba. The classification 

for each 20m pixel is distinguished by color, with the class of interest, coral rag 
vegetation, highlighted in pink. Black lines show each of the 19 shehia included in 

this study. 

From each composite image, we collected representative training samples for all 

classes of interest (mangrove, high forest, agriculture, urban, bare, coral rag, other woody 

vegetation, and water). We trained a random forest classifier using training samples from 

2018, 2019, & 2021 to account for potentially varying atmospheric and illumination 

conditions among images (Breiman 2001). The random forest we used for classification 

had 100 trees, and utilized four variables per split (the square root of the number of 
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covariates), consistent with other remote sensing applications (Belgiu and Drăguţ 2016). 

Due to relative class imbalances, we chose to use a stratified random sampling design to 

assess the accuracy of our outputs, and computed area adjusted accuracy metrics 

(Olofsson et al. 2013; Stehman and Foody 2019). An expert hand labeled these stratified 

points based on high resolution median composite PlanetScope images with 20 points 

from each mapped class. Results show estimated overall accuracies of 92.86% (+/-

4.21%) and 95.93% (+/- 2.95%) for 2018 and 2021, respectively (Appendix B). Much of 

the confusion and sources of error in the maps is found among upland woody vegetation 

classes (high forest, mangrove, and other woody vegetation) that share similar spectral 

and physical characteristics. Other mentionable errors occur among urban and agriculture 

in 2018, and bare and agriculture in 2021, leading to relatively high uncertainty for area 

estimates and producer’s accuracies in the rare urban and bare classes in 2018 and 2021, 

respectively (Appendix B). 

3.1.1 - Interview data 

In July 2021, we conducted informal interviews with staff of Community Forests 

Pemba, a nonprofit aimed at building conservation capacity on the island, and farmers in 

four shehia with coral rag forests in the east of the island. Researchers asked farmers 

about how they make decisions regarding when and how long to farm and fallow 

agricultural plots, as well as how they decide to clear forest vegetation to establish new 

cropland. There was broad consensus among non-profit staff and farmers that agricultural 

plots in these areas are typically farmed for two years and then left fallow for three years. 

Clearing forested land is labor intensive and thus, forested land is only cleared when 
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nearby productive plots reach their two-year limit and no other previously-cleared 

adjacent plots are available. 

3.2 - Individual-based simulation 

Our individual-based model incorporates two mechanisms of land conversion 

from coral rag vegetation to productive agricultural land. The first follows the decision 

rules described during the farmer interviews where coral rag vegetation is converted in 

response to soil degradation and space limitations following the fallowing of cropland. 

Under this mechanism, each pixel (20m area) is autonomous and follows the following 

basic set of decision rules also described visually in figure 13. Each pixel classified as 

agriculture in the study shehia is initialized randomly as either productive or fallow. Each 

productive agricultural pixel is then randomly assigned to either the first or second year 

of agricultural production. Each fallow agricultural pixel is randomly assigned as in the 

first, second, or third year of fallow time. When transitioning to the next year, agricultural 

pixels in their second year of production go fallow and the lost agricultural production is 

relocated as follows. If there is an adjacent (8 directional) fallow pixel in the final (third) 

year, the crop production moves there. If there is no adjacent third year fallow pixel 

available and there is adjacent coral rag vegetation, that coral rag pixel is converted to 

first year productive agriculture for the next year. All other land cover types (e.g. water, 

urban, mangrove, etc.) are left alone. 
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Figure 13 Visual representation of the individual-based simulation used to 
model coral rag vegetation conversion to agriculture in each of the 19 shehia 

included in this study. The top two boxes show the competing causal forces driving 
land conversion. The bottom portion of the figure shows how those forces affect the 

pixel-based land cover in each time step. 
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The second mechanism of land conversion from coral rag vegetation to 

productive agricultural land represents all other factors driving land conversion outside of 

the soil degradation process. In our system, the most prominent other factors include a 

rapidly growing population and the increasing market value for crops. Under this 

mechanism, some additional percentage of coral rag vegetation is converted to first year 

agriculture each year, representing a yearly rate of forest loss caused by factors other than 

soil degradation. Coral rag pixels allocated to conversion are those that are adjacent to the 

greatest number of agricultural pixels. When coral rag pixels are adjacent to an equal 

number of agricultural pixels, then the coral rag pixels closest to a road are selected for 

conversion to first year agricultural land. A visual representation of this simulation can be 

found in figure 13. 

For each run of this simulation, the observed land cover on Pemba Island in 2018 

(fig 12) is used as the starting year and the model is run for three time steps to yield a 

predicted land cover for 2021, given a set rate of externally driven agricultural expansion. 

By then comparing this predicted land cover in 2021 to the observed land cover in 2018, 

we can produce a predicted number of coral rag pixels to be converted to agriculture 

under different rates of externally driven land conversion. 

3.3 - Approximate Bayesian computation (ABC) 

As described in the introduction, simulation modeling allows researchers to 

formally express complex, hypothesized causal mechanisms in land system science. The 

primary limitation for the use of simulation modeling to enhance our understanding of 

real-world causality, however, is the absence of a straightforward statistical process for 

relating simulations to empirical data. Approximate Bayesian computation is one way to 
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produce such generative inference (Kandler and Powell 2018). In this framework, 

researchers run a simulation model under a wide range of parameter combinations, 

representing alternative hypotheses, to produce many simulated datasets for which all 

parameters and outcomes of interest are known. All simulated datasets are then 

systematically accepted or rejected as consistent with the observed data, and the 

combination of model parameters that provides the best fit is estimated probabilistically 

(Vaart et al. 2015; Beaumont, Zhang, and Balding 2002). Hence, ABC allows researchers 

to quantitatively compare the likelihoods of competing hypothesized causal mechanisms 

in complex land systems. 

In this study we vary just one model parameter, the externally driven rate of coral 

rag vegetation conversion to rotational agriculture. We first specify a prior distribution 

that we believe will capture all possible values of this parameter of interest (fig 14). This 

prior is based on a combination of calibration with earlier models, and a priori 

understanding of the system from working with local conservation organizations and 

farmers.  
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Figure 14 Two thousand draws from the prior distribution of the rate of 

externally driven coral rag vegetation conversion to agriculture. These draws were 
used to produce the prior distribution of the expected number of coral rag 

vegetation pixels to be converted to agriculture from 2018 - 2021 for each shehia. 

We then run our simulation model 2,000 times using draws from this prior 

distribution as the parameter of interest — the externally driven rate of coral rag forest 

conversion. For each run, the model then produces a synthetic dataset including the 

number of expected agricultural conversions for each shehia in our study. Each of these 

synthetic datasets is then accepted or rejected as consistent with the observed changes in 

land cover as measured through our 20m land cover classification map for 2021. We use 

an acceptance criteria of predicted agricultural conversions within 10% of the observed 

conversions. Finally, the parameter value for the extrinsic growth rate in each synthetic 

dataset that is accepted as consistent with the observed data is saved as one “draw” from 

the posterior for the estimated real-world parameter value.  
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4 - Results 

4.1 - Parameter estimation 

As described in the methods, for each shehia we ran 2,000 simulations, using each 

draw from the prior distribution of externally driven coral rag forest conversion for each 

simulation (fig 14). Each of these simulations converted some number of coral rag 

vegetation pixels to agriculture in each of the 19 shehia from 2018 to 2021 (fig 15). An 

average of 231 of these estimates per shehia were within 10% of the observed number of 

converted coral rag vegetation pixels (Sunnåker et al. 2013). Keeping only these synthetic 

datasets consistent within the 10% error bound, we observe the distribution of externally 

driven growth parameter values that, based on our model, are likely to have produced the 

observed 2021 land cover (fig 16). The median parameter values consistent with the 

observed data (parameter estimates) for each shehia range from 0.0% to 3.9% for yearly 

coral rag forest cover loss due to external forces (fig 16). For four of the study shehia, the 

observed number of coral rag forest pixels converted to agriculture was fewer than 

predicted by the cycles of soil degradation built into our model alone. These four shehia 

all generally exhibited overall low rates of observed coral rag forest conversion to 

agriculture observed through the satellite imagery. We discuss contextual factors that 

may be influencing these trends in the discussion. 
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Figure 15 Black histograms represent the expected number of coral rag 

vegetation pixels to be converted to agriculture for each draw from the prior for 
each shehia from 2018 to 2021. Red lines show the observed number of conversions 

for each shehia from 2018 to 2021. 

The width of the posterior parameter estimates shown in figure 16 are indicative 

of how much information about causal processes we can infer from the observed land 

cover change from 2018 to 2021. Wider estimates indicate a greater degree of 

equifinality, where a wide range of externally driven deforestation rates could have 

produced the observed data. Conversely, narrow parameter estimates indicate that only a 

small range of externally driven deforestation rates could have produced the observed 

number of coral rag vegetation pixels converted to agriculture from 2018 to 2021. Thus, 

when parameter estimates are more narrow, the data carry a stronger underlying causal 

signature. The width of the posterior parameter estimates can then be thought of as the 

range of processes that could have reasonably produced the observed data (Kandler and 

Powell 2018). Across shehia, we observe relatively narrow parameter estimates, with an 

average range of 1.47%; the most narrow being 0.46% and the widest being 2.24% 

(fig 16). We can conclude then that based on our model, on average, less than a 1% 
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increase or decrease in the externally driven deforestation rate from the median model 

estimate is likely is result in the observed land cover change in each shehia. 

 
Figure 16 Black histograms show the prior distribution of externally driven 

deforestation rates for coral rag vegetation in Pemba. The prior values are identical 
for each shehia. Purple density plots show the density of draws from the prior in 
which the prior value resulted in a deforestation rate within 10% of the observed 
rate for that shehia. Shading in the density plots shows the tail probability that a 

particular value from the prior will result in the observed land cover based on our 
model. 

4.2 - Estimating the contribution of each process 

With the observed rates of coral rag vegetation conversion from 2018 to 2021 and 

estimates for the externally driven agricultural expansion (deforestation) rate for each 

shehia in hand, we can assess the proportion of total loss driven by soil degradation 

versus external influences such as market integration and population growth. We subtract 

the median estimate of the contribution of external forces from the total satellite-observed 

rates of conversion to yield the point estimates shown in figure 17. 

On average, we observe a 5.1% yearly rate of total coral rag forest conversion to 

agriculture from 2018 to 2021. Between study shehia this rate of total conversion ranges 
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from 1.1% to 9.8%. We estimate that the percent of coral rag vegetation converted to 

agriculture in each shehia driven by soil degradation was between 1.0% and 7.6% per 

year, with an average rate of 4.0%. By comparison, a relatively small proportion of coral 

rag vegetation in each shehia is converted to agriculture each year as a result of external 

forces. We estimate that the average rate of externally driven conversion is 1.1% of total 

coral rag forest cover, ranging from 0.0% to 3.9% between shehia. 

While there is considerable variability in both the total rate of coral rag vegetation 

loss and in the contribution from external drivers between shehia, a general and intuitive 

trend is that shehia with a greater proportion of loss caused by external drivers show 

greater coral rag vegetation loss overall. The four shehia that showed a total number of 

observed coral rag pixels lost below that which is expected from soil degradation alone in 

figure 15, also show relatively little vegetation loss as a percentage of total coral rag 

cover from 2018 to 2021.  
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Figure 17 Barbell plot showing the median estimates of the influence of soil 

degradation on the observed coral rag vegetation loss in each shehia. Blue points 
show the total loss of coral rag vegetation as measured using satellite imagery. Black 
points show the median model estimates for the contribution of soil fertility loss to 

the observed deforestation. 

5 - Discussion 

5.1 - Pemba specific implications 

Across the shehia in our study, we observe a 5.1% yearly rate of coral rag 

vegetation conversion to agriculture. We show here that reported farmer behavior in 

response to soil degradation, paired with the topography of the study shehia, should 

account for an estimated 4.0% yearly rate of conversion on average. Thus, while variable, 

we can conclude that on average a relatively small proportion of the observed coral rag 

vegetation conversion to agriculture in the study shehia is driven by external forces such 

as increasing demand driven by increasing subsistence needs or market forces. This 

finding matches our theoretical expectations given that farmers in this region generally 

clear land in order to plant low value staple crops such as cassava (Meyfroidt et al. 2018). 

This suggests that regenerative agriculture programs, along with rainwater catchment 

systems may considerably reduce the long-term loss of coral rag forest in Pemba, 
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Tanzania. These programs will also ease the strain that clearing forested land puts on 

farmers, and may potentially help farmers break free of the cycle of environmentally 

damaging agricultural practices in pursuit of short-term gains. 

While the 1.1% average estimated yearly conversion rate of coral rag vegetation 

to agriculture in the study shehia driven by external forces is relatively small compared to 

the rate of loss driven by soil degradation, it is not negligible. Further, this value could 

reasonably increase as a result of continued market integration and population growth in 

Pemba. As the impact of external forces on land conversion increases, theory tells us that 

the effect of improved agricultural technologies on mitigating forest loss may be reduced 

or even reversed (Kaimowitz and Angelsen 1998). Top-down interventions such as 

designating one or more coral rag forest reserves on the island may help to slow the 

conversion of primary forest in some areas, but may also be subject to leakage, 

attenuating their overall efficacy (P. Meyfroidt et al. 2020; Bastos Lima, Persson, and 

Meyfroidt 2019). Instead, interventions focused on the introduction and establishment of 

value chains for alternative income sources, aside from rotational agriculture, may have 

greater success (Akyoo and Lazaro 2007). 

5.2 - Implications for land system science and social-ecological systems 

Social-ecological systems, and therefore land systems, are inherently very 

complex. They commonly exhibit feedbacks between system components and past and 

future states. Because of this complexity, researchers generally describe phenomena of 

interest qualitatively, or they break the components of a given causal pathway down into 

many sub components (Meyfroidt 2016; Turner et al. 2020). Nevertheless, inference from 

limited time series data is difficult due to issues of equifinality, simultaneous causation, 
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and unobserved complexity(Barrett 2021; Cumming et al. 2020). We echo the argument 

of Schlüter and others (2019) that agent/individual-based modeling can allow inference 

about causality in social-ecological systems and emphasize that this approach is 

especially powerful when combined with empirical data, as presented here, in order to 

increase validity and interpretability. 

We argue here that individual-based models will be of the greatest utility for land 

system science when they are combined with a standard, systematic framework for 

comparing synthetic data to real-world observations. Approximate Bayesian computation 

may fill this niche as it is relatively straightforward and allows for parameter estimation 

given even very complex generative models. A key advantage of this method is that it 

allows modelers to explicitly confront equifinality in a given simulation and to some 

extent a given empirical system. By explicitly quantifying the range of causal processes 

that are likely to produce an outcome of interest, researchers will greatly increase the 

applicability of simulation models to real-world policy decisions (Williams et al. 2020). 

5.3 - Limitations and future work 

A limitation of any process model is that they assume that researchers know and 

can accurately represent causal processes in silico. In the case of models like the 

individual-based simulation presented here, researchers must abstract down to only key 

phenomena of interest, eliminating much contextual nuance and again, assuming that we 

know what matters and what does not. This is a big assumption in social-ecological 

systems considering that emergent and often unexpected phenomena are a defining 

feature of the field. This limitation is exemplified by the four shehia (Fundo, Muambe, 

Jombwe, and Shamiani) that showed fewer coral rag forest pixels converted to agriculture 
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than expected by the model even under no externally driven forest conversion pressure. 

We know through our in-person observations and interviews with Community Forests 

Pemba staff that these four shehia have been the focus of considerable tree planting, 

particularly of Casuarina spp. in woodlots. We are likely observing both some confusion 

between native coral rag vegetation and woodlot vegetation in our satellite observations, 

as well as a reduction in coral rag deforestation for fuelwood. Approximately 95% of 

Pemban households rely on cutting fuelwood for daily cooking activities. Hence, the 

introduction of woodlots, which we do not account for in our simulation, likely reduces 

the overall rates of coral rag deforestation and conversion to rotational agriculture. 

Further, Fundo and Shamiani are both islets of Pemba and are both home to luxury 

resorts. The limited connection between these islets and the main population centers of 

Pemba likely limits the effect of market forces driving agricultural expansion in these two 

areas. Also, our anecdotal experience is that the resort operators intentionally limit local 

development nearby the properties, possibly reducing the rate of agricultural 

development below what we expect as a result of soil degradation. 

Another contextual limitation of our specific model for drawing inference about 

agricultural expansion in Pemba Island is that we do not account for the long-term 

processes of soil degradation that lead to complete land abandonment and eventually the 

recovery of coral rag vegetation. While the two year farm and three year fallow cycle is 

standard in the coral rag geological areas of Pemba, some agricultural areas are 

completely abandoned when crop yields are consistently low even after a fallow period. 

Additionally, the agricultural units themselves are independent 20m pixels which is 

considerably smaller than many agricultural operations. Clumping these pixels to better 
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match realistic farm sizes may produce different and more accurate inference than 

presented here. 

Lastly, our model does not allow for heterogeneity or evolution in human 

behavior. All agricultural pixels follow the same scheduling process. While this 

scheduling process is standard in the study shehia, an interesting exercise would be to 

allow for the diffusion of regenerative agricultural practices across farm units to examine 

direct feedbacks between environmental and cultural change. 

6 - Conclusion 

Computer simulations are critical to theoretical development in land system 

science as they allow us to formally define and scrutinize hypothesized mechanisms 

driving phenomena of interest. When we develop competing plausible mechanisms 

however, it can be difficult to identify the contribution of each hypothesized mechanism 

in the real world. Recent advances in ABC, primarily in population genetics, but also 

cultural evolution, have provided a structured process to begin to overcome this challenge 

in other fields (Hartig et al. 2011; Kandler and Powell 2018). Until now however, ABC 

has yet to be applied to land system science. In this paper we show how ABC can be used 

to better leverage the wealth of available satellite data in combination with individual-

based models of land system change in order to assess the importance of competing 

mechanisms. 

In particular, we develop an individual-based simulation of agricultural expansion 

in Pemba, Tanzania under two different mechanisms: soil degradation and external forces 

such as population growth and increasing market integration. We use ABC to 

systematically compare runs from this model with observed land cover change in 19 
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shehia in Pemba from 2018 to 2021. This process allows us to estimate the likelihood that 

various rates of externally driven agricultural expansion are responsible for the observed 

land cover change in each shehia. Importantly, this process also allows us to directly 

estimate the range of externally driven expansion rates that could have also reasonably 

resulted in the observed data, or the degree to which the system is equifinal. 
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CHAPTER FOUR: QUANTIFYING LOCAL PERCEPTIONS OF ENVIRONMENTAL 

CHANGE AND LINKS TO COMMUNITY-BASED CONSERVATION PRACTICES 

Approximately two billion people — a quarter of the earth’s population — 

directly harvest forest products to meet their daily needs. These individuals 

disproportionately experience the impacts of increasing climatic variability and global 

biodiversity loss, and must disproportionately alter their behaviors in response to these 

impacts. Much of the increasingly ambitious global conservation agenda relies on 

voluntary uptake of conservation behaviors in such populations. Thus, it is critical to 

understand how individuals in these communities perceive environmental change and use 

conservation practices as a tool to protect their well-being. To date however, there have 

been no quantitative studies of how individual perceptions of forest change and its causes 

shape real-world conservation behaviors in forest dependent populations. Here we use a 

novel participatory mapping activity to elicit spatially explicit perceptions of forest 

change and its drivers across 43 mangrove-dependent communities in Pemba, Tanzania. 

We show that perceptions of mangrove decline drive individuals to propose stricter limits 

on fuelwood harvests from community forests only if they believe that the resultant gains 

in mangrove cover will not be stolen by outsiders. Conversely, individuals who believe 

their community mangrove forests are at high risk of theft actually decrease their support 

for forest conservation in response to perceived forest decline. High rates of inter-group 

competition and mangrove loss are thus driving a ‘race to the bottom’ phenomenon in 

community forests in this system. This finding demonstrates a mechanism by which 
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increasing environmental decline may cause communities to forgo conservation practices, 

rather than adopt them, as is often assumed in much community-based conservation 

planning. However, we also show that when effective boundaries are present, individuals 

are willing to limit their own harvests to stem such perceived decline. 

1 - Introduction 

1.1 - Problem statement 

Diverse and healthy ecosystems are unequivocally our best insurance against the 

worsening impacts of climate change (Isbell et al. 2015; Loreau et al. 2001; Oliver et al. 

2015; Lloret et al. 2012). Yet, increasingly intensive resource extraction from ecosystems 

over the last 150 years has greatly attenuated their ability to buffer human communities 

against impacts such as fires and flooding (Parks et al. 2016; Alongi 2008). 

Simultaneously, this switch from low to high intensity resource use has diminished global 

biodiversity on a magnitude only seen five other times in our planet’s history, further 

accelerating climate change (Caro et al. 2022). 

Recent land use intensification strongly reflects the displacement of local 

communities and traditional practices by large-scale producers and outside economies 

(Stephens et al. 2019; Ellis et al. 2021; Bird et al. 2019). It is then largely recognized that 

effective and equitable conservation efforts must to empower local communities to set 

resource management priorities and design strategies to achieve them (Fernández-

Llamazares et al. 2020; Garnett et al. 2018). Thus, achieving global conservation goals 

hinges, at least in part, on local community engagement and the decisions that individuals 

in those communities make in the environment (Gatiso et al. 2018). 
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Numerous studies have shown that resource users can reliably detect long-term 

changes in their local environments (Lauer and Aswani 2010; Early-Capistrán et al. 2022; 

Tengö and Belfrage 2004). However, it is still unclear how individuals perceptions’ of 

environmental change affect their choices to limit resource use, restore ecosystems, or 

otherwise change their behaviors (Paloniemi et al. 2018). In particular, as pointed out by 

Meyfroidt (2013), few studies have linked individual perceptions of threats and change in 

natural resources with observed conservation behaviors and preferences (although see 

Nyangoko et al. 2022). Further, a recent systematic review of 128 studies of voluntary 

adoption of conservation behaviors showed a dearth of research on the subject in non-

Western populations (Thomas-Walters et al. 2022). 

In her foundational work, Elinor Ostrom described a set of conditions that, when 

met, promote cooperative behaviors in natural resource management settings (Ostrom 

1990). Among these conditions, Ostrom identifies the need to clearly demarcate and 

enforce proprietary access to group resources through physical and/or social boundaries 

(Ostrom 1990). Three decades of scrutiny via case studies and meta analyses from across 

the globe further cement this conclusion (Cox, Arnold, and Tomás 2010; Cox 2014; 

Cumming et al. 2020). In a recent set of theoretical models, Andrews and others (2022, 

2023) delineate the social-ecological evolutionary mechanisms by which excluding 

outsiders promotes sustainable resource management behavior and cooperation in the 

face of threats to the local environment. However, the reverse is also true. These models 

show that in the absence of strong social or physical boundaries, perceived degradation of 

local resources may cause a ‘race to the bottom’ phenomenon where individuals are 

incentivized to extract all they can before the resource is gone (Andrews et al. 2023). 
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This theory explicitly predicts that environmental degradation should promote 

preferences for limiting resource extraction when theft from outsiders is low. And 

degradation should conversely promote preferences for increasing resource extraction 

when theft from outsiders is high, because the gains made by sustainable management 

may be eroded by outsiders and never realized by the local community (Andrews et al. 

2023). This process has however not yet been examined empirically. An empirical test of 

these mechanisms is critical for building further theory in conservation science and for 

applying scientific insights to real-world resource management. For example, individuals 

make resource management decisions under the backdrop of past exposure to external 

conservation interventions and within a range of acceptable community norms (Hayes et 

al. 2022; Gómez-Baggethun and Ruiz-Pérez 2011). Thus, we must observe how theorized 

processes of behavioral change in response to environmental degradation operate in the 

real-world in order to have confidence in their general importance and applicability. 

In this study, we perform an empirical test of how perceived environmental 

degradation and threat of resource theft from outsiders affect individuals’ conservation 

behaviors and preferences. We achieve this by implementing a novel participatory 

mapping activity to collect quantitative, spatially explicit perceptions of mangrove cover 

change in Pemba, Tanzania. We then link these perceptions of mangrove change with a 

questionnaire of individual perceptions of mangrove theft and self-reports of conservation 

behaviors and preferences. We specifically look at individuals’ self-reported frequency of 

patrolling behavior to protect community mangrove forests from outsiders and 

preferences for limits on the amount of fuelwood that community members can harvest 

from those forests. We assess these dynamics while simultaneously considering the 
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impact that a major conservation initiative on the island (see section below) may have 

had on individuals’ conservation behaviors and preferences in the communities involved. 

We interpret the results of this analysis in light of their relation to theoretical work on the 

subject of perceived environmental change and resource boundary efficacy on 

conservation behaviors, thus increasing their generalizability and decreasing the 

probability of spurious findings (Smaldino and McElreath 2016). 

1.2 - Field site 

This study examines community-based mangrove conservation in Pemba Island, 

Tanzania, the smaller of the two Zanzibari islands, identified as part of the Coastal 

Forests of Eastern Africa biodiversity hotspot. Like much of the developing world, 

Pemba has been subject to a series of conservation initiatives that stretch back to the 

colonial period, with novel initiatives increasing in frequency since the late 1990s. These 

begin with British colonial afforestation programs and the gazetting of forest reserves by 

both the British and post-revolutionary governments in the 1960s (Chachage 2000). 

Following 50 more years of initiatives driven by a number of Scandinavian countries, in 

2010 the Reduced Emissions from Deforestation and Land Degradation program 

(REDD+) identified 18 wards (shehia) in Pemba as appropriate for piloting their 

payments for ecosystem services conservation framework (Burgess et al. 2010; RGZ 

1996; Nations 1992). The REDD+ project intended to pay communities to forego 

harvesting fuelwood and timber and cease farm expansion inside of designated areas in 

each of the 18 selected shehia. The objective of this intervention was to slow 

deforestation, reduce greenhouse gas emissions, and reduce poverty. While hope for this 

project waxed and waned over several years among Pemban communities, these 
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payments were never delivered and the 18 selected shehia ultimately showed no 

measurable benefit in forest cover (Andrews et al. 2021; Collins et al. 2022). 

Alongside the proliferation and succession of these conservation projects, the 

population on the island has grown by approximately 2.9% each year (estimate from 

2012 - 2022; more than triple the global average), increasing the need for the production 

of timber, fuelwood, and other forest products (URT 2023). Prior research shows that 

approximately 90% of rural Pemban households rely exclusively on forest products 

(fuelwood and charcoal) to meet their daily cooking needs (RGZ 2014; Ely et al. 2000). 

Further, these forest products account for 27% of total household income (Andrews and 

Borgerhoff Mulder 2022). This local need for forest products is driving a median 

deforestation rate of 3.4% per year in the forests of the island (Collins et al. 2022). 

Many individuals across Pemba recognize that forests provide valuable ecosystem 

services such as erosion control, among many others. Thus, there is a conflict between 

the desire to safeguard local community forests, while still meeting daily needs. We find 

extensive evidence that individuals adapt to this challenge by stealing forest products 

from the community forests of other shehia; 70% of residents blamed their neighboring 

shehia for deforestation of their own local forests, and 31% of residents report having 

whole trees cut and stolen by outsiders (Borgerhoff Mulder, Caro, and Ngwali 2021 and 

unpublished data 2017). 

Widespread cutting of mangroves in particular has caused considerable decline of 

mangrove cover and resultant flooding and saltwater intrusion in many mangrove 

adjacent communities (Andrews and Borgerhoff Mulder 2022). In response, many 

communities and community members therein have taken it upon themselves to prohibit 
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outsiders from harvesting (or “stealing”) from their community mangroves and to reduce 

the harvests of their own community members. This generally takes the form of the 

establishment of village and shehia conservation committees, mangrove patrols to 

exclude outsiders from harvesting from community forests, mangrove planting, and 

setting specific fuelwood harvest limits. There is nevertheless considerable variability in 

preferences and practices of these actions on the island, both between and within shehia 

(Borgerhoff Mulder, Caro, and Ngwali 2021). We use this variability in individual 

preferences for limiting harvests and patrolling behavior as the outcomes of interest in 

this analysis. 

2 - Methods 

2.1 - Data collection 

2.1.1 - Participatory mapping activity 

We collected data on individual perceptions of environmental change using a 

participatory mapping methodology in order to elicit fine-scale, spatially explicit 

perceptions of change. This methodology builds on that of Herrmann et al. (2014) to 

tangibly link participant responses with specific locations and provide a more accurate 

measure than would be possible with a simple questionnaire (Emmel 2008; Cadag and 

Gaillard 2012). Over an eight-month field season in 2022, we were able to implement this 

methodology in 43 of the 49 shehia on the island which contain mangrove forest (fig 18). 

The six shehia not included in the study were excluded due to time and funding 

constraints, rather than for any systematic purpose. In each of these 43 shehia, we 

randomly selected five men and five women to participate in this activity, which resulted 
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in a final sample size of 423 after dropping seven responses due to incomplete survey 

information. 

 
Figure 18 Wards (shehia) surveyed in this study. Large map shows the island of 
Pemba, Tanzania with each of the shehia where data were collected for this study 

shaded in blue. Inset map shows the location of Pemba in relation to the Tanzanian 
mainland. 

The participatory mapping activity began with a workshop format where we 

established a shared understanding of our goals and did a simple mapping orientation, as 

most of the local population does not regularly use maps to navigate their environment. 

Each participant was then provided with a gridded basemap of their community, with 

towns, roads, bodies of water, cultural landmarks (e.g. mosques), and any protected areas 

labeled to help with orientation. Each grid cell corresponded to 0.5 km2 area. After a 

further orientation we asked participants to identify their own place of residence and 

other important locations to verify their basic understanding of the map. The final group 

task was to mark (initially with buttons until consensus was reached, then with a pen) 

each grid cell where mangrove forest is present. Thus, the workshop-style component of 
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the participatory mapping activity ended once each participant was adequately oriented to 

a gridded map of their community, and each grid containing mangrove forest was marked 

identically across all participant maps (picture 1). 

For the remainder of the participatory mapping activity and the questionnaire 

following, all participants responded individually. With the consensus map of mangrove 

locations in-hand, each participant was asked to indicate, for each grid cell containing 

mangrove, whether they felt the tree cover in that area had increased, stayed the same, or 

decreased in the last year. Participants could also indicate that they were not sure about 

how mangrove cover had changed. An example of a completed map can be found in 

figure C1. The total number of grid cells in which a participant indicated that the 

mangrove cover had declined in the last year was tallied to produce an estimate of the 

perceived percent decline in community mangrove forest cover for each respondent. 
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Picture 1 Example of the participatory mapping activity used in this study. 

Grid squares containing mangrove cover are first identified as a group, then 
respondents individually record their perceived change in each square. Photo shows 

H. M. Hamad explaining the individual response portion of the activity. 

2.1.2 - Questionnaire 

Following the participatory mapping activity all participants completed an 

individual questionnaire with the help of research staff. The purpose of this questionnaire 

was to elicit responses regarding conservation behavior and preferences, perceived 

pressure of theft from outsiders, and general demographic information. Specifically, 

participants used a binary response to indicate whether or not they ever engage in patrols 

to protect community mangrove forests from theft from outsiders. If yes, participants 

listed the number of mangrove patrols that they estimated they had performed in the past 

month. Participants also indicated their preferences’ for harvest limits on themselves and 
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other community members who rely on community mangroves to collect fuelwood. This 

outcome variable was collected as an integer value corresponding to the number of 

fuelwood bundles that they would like to limit themselves and their fellow community 

members to harvesting each month. 

To quantify individuals’ perceptions of theft from outsiders in their community 

mangroves, we asked respondents to estimate the number of outsiders they believe come 

to their shehia to harvest fuelwood each week. We asked participants to provide their best 

guess of where these individuals generally come from in order to ensure they were 

describing individuals from outside their shehia, rather than a smaller village-level group. 

Finally, we recorded the gender and occupation of each participant through multiple 

choice questions and asked whether they were a member of a village or shehia 

conservation committee using a binary choice question. The full questionnaire instrument 

can be found in the supplemental material of the peer-reviewed, published version of this 

research. 

2.2 - Analysis 

We performed two separate analyses in this research. The first (model 1; eq 1) 

was designed to estimate the effects of perceived decline of community mangroves and 

perceived mangrove theft on preferences for in-group harvest limits on fuelwood. In 

accordance with current best practices for causal inference, we constructed a directed 

acyclic graph to determine what parameters needed to be controlled for in order to 

estimate the direct effects of interest (Table 1) (McElreath 2020; Westreich and 

Greenland 2013; Pearl 2009). In this process, we explicitly describe the complete 

hypothesized causal pathway between our predictors and outcome of interest and identify 
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other variables, and associations between them, that may be affecting the outcome 

through separate causal paths (Pearl 2009). We then control for these alternative causal 

paths in order to capture accurate effect sizes for our direct effects of interest. 

 

Table 1: List of variables and associated models 

Variable Collected from  Estimand or 
control 

Model used in  

PREDICTORS 

Occupation  Questionnaire  Control Model 1 (equation 1) 

Perception of community 
mangrove change in the 
past year  

Participatory 
mapping activity 

Estimand  Both 

Perceived number of 
outsiders stealing from 
community mangroves 
per week  

Questionnaire  Estimand  Both 

Interaction between 
perceived mangrove 
change and perceived 
mangrove theft  

Questionnaire & 
participatory 
mapping activity 

Estimand  Model 1 (equation 1) 

Size of community 
mangrove area  

Participatory 
mapping activity 

Control Both 

Community included in 
REDD+ initiative   

Previous 
research  

Estimand  Both 

Member of shehia or 
village conservation 
committee  

Questionnaire  Estimand  Both 

Gender 

 

Questionnaire  Estimand Model 2 (equation 3) 

OUTCOMES 

Preferred community 
fuelwood harvest limit   

Questionnaire  Outcome Model 1 (equation 1) 
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Number of mangrove 
patrols conducted in the 
past month  

Questionnaire  Outcome Model 2 (equations 2 & 3) 

 

 

 

We used a Poisson distributed generalized linear mixed-model operationalized in 

a Bayesian framework to estimate the direct effects of interest (estimands) (Table 1). We 

estimated the effect of the interaction between perceived mangrove loss and the theft 

pressure from outsiders on community mangrove forests. As identified using the directed 

acyclic graph, we controlled for participant occupation, the size of the community 

mangrove area, whether or not the participant was a member of a village or shehia 

conservation committee, and whether the shehia was one of the 18 exposed to the failed 

REDD+ intervention on the island. Finally, as we used a mixed model, we estimated a 

varying intercept (𝛃𝛃𝛃𝛃𝑗𝑗) for each of the 43 study shehia. This model is formalized in 

equation 1. 

 

The secondary analysis for this research (model 2; eq 2 & 3) estimated the effects 

of perceived mangrove theft from outsiders and forest cover loss on reported respondent 

engagement in community mangrove patrols. To adequately model the data generating 

process for participation in community mangrove patrols, we operationalized this 

research question as a hurdle process (Zuur et al. 2009). In this framework, we model the 
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joint outcome of whether or not a respondent is likely to report engaging in mangrove 

patrols at all (Bernouli distributed with probability 𝜃𝜃) and if so, the number of patrols that 

they report engaging in each month (zero-truncated negative binomial distribution with 

mean 𝜇𝜇 and dispersion 𝜙𝜙). Thus, the probability mass function is shown in equation 2. 

 

Again, for this analysis, we selected the parameter set necessary to estimate the 

direct effects of interest using a directed acyclic graph. Through this procedure, we 

concluded that to estimate the effect of perceived theft and forest loss on patrolling 

behavior, we must account for the size of the community mangrove area, the gender of 

the participant, whether or not the participant was a member of a village or shehia 

conservation committee, and whether the shehia was one of the 18 subjected to the failed 

REDD+ intervention on the island. In this model we substitute gender for participant 

occupation because gender affects both occupation and patrolling behavior, thus 

including both gender and occupation would result in estimating the effect of gender 

along two separate causal paths. In model 1 we do not assume that participant gender 

should affect their preferences for in-group harvest limits. We again used a Bayesian 

mixed-model, where we estimate a varying intercept for each of the 43 shehia in our 

study (𝛃𝛃𝛃𝛃𝑗𝑗
𝜂𝜂 & 𝛃𝛃𝛃𝛃𝑗𝑗

𝜇𝜇). This model is formalized in equation 3. 
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For both models, we used regularizing priors as recommended by Gelman et al. 

(2008) for producing conservative coefficient estimates. Both models exhibited adequate 

convergence of Markov chains, adequate posterior predictive capacity, and 𝑅𝑅� values 

equal to 1 for all coefficients (Appendix C2). All data for this project and the R and 

STAN code used in these models is available in the Open Science section. 

3 - Results 

As this is a Bayesian analysis, we consider any parameter estimate in which the 

inner 0.9 quantile of the posterior mass does not overlap zero to be statistically 

significant. This threshold is standard in the literature as it indicates that 95% or greater 

of the entire probability mass of sample estimates sit on one side of zero and therefore a 

0.95 probability of a true effect given the data (Goodrich et al. 2020).  
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3.1 - Preferences for fuelwood harvest limits 

We find strong evidence that the interaction between individual perceptions of 

mangrove degradation and perceptions of mangrove theft from outsiders significantly 

affects preferences for fuelwood harvest limits from community mangroves. Two 

thousand draws from the posterior distribution indicated a 0.98 probability that the 

interaction term has a positive effect on the outcome (fig 19). In respondents who 

reported no perceived theft in their community mangrove forests, an increase in 

perceived mangrove decline from 0% to 50% of the community mangrove area resulted 

in an expected decrease in preferred harvest limits from 2.73 to 2.36 bundles of 

fuelwood. Respondents who reported that 100% of their community mangroves were 

declining in cover in turn reduced their fuelwood harvest limits to 2.04 bundles. 

 
Figure 19 Standardized posterior estimates from the model shown in equation 1 
used to estimate the drivers of preferences for limiting fuelwood use. The thick bars 
show the inner 50% of the posterior distribution and the thin bars show the inner 

90% of the posterior distribution (credibility interval). 

The interaction term indicates that this trend is reversed in individuals who 

perceive high levels of mangrove theft from outsiders. In these respondents, an increase 
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in perceived mangrove decline from 0% to 50% of the community mangrove area 

resulted in a loosening of preferred harvest limits from 1.24 bundles of fuelwood to 2.73. 

Interestingly, the strength of this trend increased as more of the mangrove area was 

perceived as being in decline. Respondents who perceive the highest levels of theft and 

report that 100% of the community mangrove area is declining are expected to report a 

preference for a harvest limit of 6.07 bundles, a nearly fivefold increase from those who 

perceive that 0% of the community mangrove area is in decline. The marginal effect of 

this interaction term, given a mean value of all other predictors, can be seen in figure 20. 

 
Figure 20 Marginal effect of the interaction of individual perception of 

mangrove decline and perceived inter-group theft on individual preference for in-
group fuel-wood harvest limits. Low theft shows the effect of perceived mangrove 

decline when perceived theft was near 0 and high theft shows the effect when 
perceived theft was at the highest recorded value. The marginal effect shows the 
effect of these predictors at a mean value of all other predictors. Black lines show 

median model estimates. Shading those the credibility interval. 

Finally, shehia who were part of the failed REDD+ initiative on the island showed 

a slight, although statistically insignificant, increase in preferred harvest limits compared 

to individuals in shehia where the REDD+ project was never introduced (fig 19). This 
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effect is not statistically significant as the proportion of samples greater than zero is 0.79, 

representing a 0.79 probability of a true effect given our data. 

3.2 - Mangrove patrolling behavior 

The coefficient estimates from the regression described in equation 3 show that 

patrolling behavior is likely driven by different processes than are preferences for 

restricting fuelwood harvests. The Bernoulli component of the model indicates that 

neither perceived mangrove theft or perceived mangrove decline significantly affected 

whether or not individuals reported engaging in mangrove patrols at all. The posterior 

distribution of the Bernoulli component of the model resulted in a statistically 

insignificant 0.87 probability that perceived theft increases the likelihood that individuals 

engage in mangrove patrols. Perceptions of mangrove decline had essentially no effect on 

likelihood of patrolling behavior (fig 21). Similarly, perceptions of mangrove decline and 

theft also had essentially no effect on the number of patrols an individual engaged in (fig 

22).  
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Figure 21 Standardized posterior estimates for the Bernoulli component of the 
model estimating the effect of these predictors on patrolling behavior (eq. 3). The 

Bernoulli component estimates the effect that the predictors have on whether or not 
individuals engage in patrolling behavior at all. The thick bars show the inner 50% 
of the posterior distribution and the thin bars show the inner 90% of the posterior 

distribution (credibility interval). 

Men were significantly more likely than women to engage in patrols and to 

engage in a greater number of patrols (fig 21 & 22). Given a mean value for all other 

predictors, the probability that women reported engaging in patrols at all was 0.17 and the 

probability that men reported engaging in patrols at all was 0.38. Of men and women 

who reported patrolling, the median number of patrols performed by each gender in the 

last month was 6 and 3 respectively. Lastly, membership in a shehia or village 

conservation committee was significantly associated with individuals reporting going on 

patrols at all (fig 21), but was not significantly associated with the number of patrols they 

reported engaging in, as only 91% of model estimates were greater than 0 (fig 22). 
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Figure 22 Standardized posterior estimates for the zero-truncated negative 
binomial component of the model estimating the effect of these predictors on 

patrolling behavior. The zero-truncated negative binomial component estimates the 
effect that the predictors have on the number of patrols that individuals engage in. 
The thick bars show the inner 50% of the posterior distribution and the thin bars 

show the inner 90% of the posterior distribution (credibility interval). 

The outputs of this model also indicate that past community exposure to REDD+ 

significantly decreased the probability of individual engagement in mangrove patrols. 

Specifically, there is a 0.96 probability that individuals from shehia selected for the failed 

REDD+ project were less likely to engage in mangrove patrols at all compared to those 

from shehia not exposed to the REDD+ project (fig 21). Given a mean value for all other 

predictors, the probability that individuals in shehia that were part of the REDD+ project 

reported engaging in patrols at all was 0.17, compared to a 0.32 probability for 

individuals from shehia not exposed to REDD+. However, this predictor was not 

significantly associated with the number of patrols that individuals engaged in (fig 22).  
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4 - Discussion 

4.1 - Relation to & deviation from theory 

In this research, we sought to test the theory that individual perception of 

environmental degradation will result in increased participation and support for 

conservation only if a lack of effective boundaries does not diminish the benefits of such 

conservation behaviors. Our data strongly support this intuition and furthermore show 

that perceived environmental degradation can actually decrease support for conservation 

if the threat of out-group freeriders is high. Thus, this finding, in combination with the 

theoretical development by Andrews et al. (2022, 2023), helps to detail the mechanisms 

underlying Ostrom’s first tenet that reliable boundaries are critical for sustainable 

common-pool resource management. 

This research begins to fill the gap identified by Meyfroidt (2013), namely that 

little is known about how individuals use conservation behaviors to respond to perceived 

environmental change. These analyses reveal that different types of conservation 

behaviors are likely affected differently by perceived environmental change. While 

preferences for limiting resource use were greatly affected by perceptions of 

environmental change and its causes, behaviors to enforce resource boundaries were not. 

One reason for this result could be that individuals are hesitant to deviate from 

community norms. For example, women were much less likely to report engaging in 

mangrove patrols than men, even if they had identical perceptions of mangrove theft and 

decline, and a similar history with conservation programming. Additionally, patrolling is 

largely conducted by members of a village or shehia conservation committee; non-
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committee members were unlikely to begin engaging in this behavior solely of their own 

accord. 

We speculate that because patrolling behavior is a visible action, pressure to 

adhere to local norms may operate more strongly on this outcome than on preferences for 

allowable community harvests which may be privately held. There is a growing body of 

literature on the adoption of conservation behaviors and scaling up of conservation 

projects to which this insight might be applicable (e.g. Mahajan et al. 2020; Mills et al. 

2019; Clark, Andrews, and Hillis 2022). For example, theoretical models and analyses of 

empirical data may assume different social and ecological drivers of different classes of 

conservation actions. This field may then benefit by defining categories of conservation 

actions such as ‘in-group regulatory behaviors’ and ‘out-group exclusionary behaviors,’ 

or predominantly ‘environmentally-driven’ versus ‘socially-driven’ actions, among many 

other possible categorizations. 

One interesting and somewhat unexpected important predictor emerged for both 

fuelwood harvest limits and mangrove patrolling. Past community exposure to the failed 

REDD+ project on the island was significantly associated with reduced probability of 

engagement in mangrove patrols, and showed a non-significant (p=0.79), yet interesting 

positive association with individual preferences for fuelwood harvest limits (these 

individuals preferred less stringent harvest limits). We hesitate to draw strong 

conclusions given these data, as this effect was not the primary question of the study 

(Tredennick et al. 2021). Yet, these trends are well aligned with theories regarding 

motivational crowding (Rode, Gómez-Baggethun, and Krause 2015; Frey and Jegen 

2001). Along these lines, we speculate that past promises of payments for conservation 
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behaviors, such as reducing fuelwood use and community forest patrols, may have 

crowded out individuals’ motivations to engage in such behaviors in the absence of 

payments (Cinner et al. 2021). Although there are other indications from a larger sample 

of individuals and broader environmental context (not limited to mangroves) collected in 

Pemba in 2017 that preferences for conservation did persist in communities exposed to 

the REDD+ intervention (Andrews and Borgerhoff Mulder 2023). This effect may then 

be nonlinear or context dependent. 

4.2 - Policy implications 

As the negative impacts of climate change continue to affect communities of 

small-scale producers around the world, nature-based solutions, such as mangrove 

protection and restoration, are increasingly posited to buffer individuals against the worst 

impacts (E. Cohen-Shacham et al. 2016; Emmanuelle Cohen-Shacham et al. 2019). We 

show here that the uptake of nature-based solutions may be greatly hindered by a lack of 

clear social or physical boundaries to protect the benefits accrued by such actions. Yet, 

actions to exclude out-group members from community resources are costly. Our results 

show that they are so costly, that in fact, even when individuals perceive them as 

necessary, they will not perform them without some degree of social license 

(e.g. membership in a shehia conservation committee). Thus, this study suggests that 

support in the form of training and funding for community-based conservation initiatives 

specifically to demarcate and protect resource boundaries may increase their ability to 

combat the negative impacts of climate change through conservation. Such a policy may 

have dual benefits, directly stopping harvests from outsiders and supporting the 

endogenous emergence of sustainable in-group norms. 
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When gains from conservation behaviors are not eroded by outsiders, we show 

that individuals respond to perceived environmental degradation by supporting stricter 

limits on resource harvests. This result is promising for the prospect of meeting global 

conservation goals through community-based initiatives. The status of many resources 

are, however, not easily observable to local communities and even observed changes may 

be forgotten as individuals’ baselines for resource condition shift (Papworth et al. 2009). 

We emphasize then that supporting communities in effectively monitoring both local 

resources and the social benefits gained from protecting them is critical for the success of 

community-based conservation (Jones et al. 2013; Salerno et al. 2021). 

4.3 - Limitations and future work 

The primary limitation in this research was non-random exclusion of the six 

shehia that we were unable to include due to time and funding constraints. However, our 

extensive ethnographic experience in Pemba does not lead us to believe that these shehia 

should fundamentally differ from those sampled in a way that would alter the results of 

this research. Specifically, these shehia do not greatly differ from those sampled in the 

importance of mangroves to the community, exposure to REDD+, or rates of 

environmental change. While we did not foresee the incomplete sampling of the 49 total 

shehia that contain mangrove forest at the onset of the data collection, the data collection 

scheme could have been improved by randomizing the order in which the shehia were 

visited for data collection. 

Another key limitation of this work is that we rely on self-reported conservation 

preferences and behaviors for our outcomes of interest. The insights provided here would 

be bolstered if the realized conservation behaviors of participants could be observed. 
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Future work might perform a similar participatory mapping activity with a random 

sample of a community after researchers host a tree planting activity or other 

conservation oriented event. Researchers may then record whether or not respondents 

attended the tree planting activity. 

Conservation science would also benefit from a comprehensive examination of 

the effect that failed or terminated conservation projects, such as the REDD+ initiative on 

Pemba Island, have on local conservation preferences and behaviors (eg. Chervier, Le 

Velly, and Ezzine-de-Blas 2019; Massarella et al. 2018). Our results shown here are 

exploratory as this phenomenon was not the intended subject of study, but they may be an 

early signal of an important trend. Further, our measure of REDD+ exposure was at the 

community level, whether or not the shehia was one of the 18 selected for the 

intervention, and our outcomes were at the individual level. This finding would be 

strengthened by measuring individual exposure to REDD+ at the individual level as well. 

5 - Conclusion 

In this paper we uncovered an important interaction between perceptions of 

environmental degradation and exposure to resource theft on two different types of 

conservation behaviors (harvest limits and community patrols). Put simply, individuals 

who are not exposed to theft while simultaneously experiencing resource decline are 

motivated to protect that dwindling resource. In contrast, individuals who are exposed to 

high levels of theft while simultaneously experiencing resource decline are motivated to 

actually weaken harvest limits, presumably in a race to grab what they can while it’s still 

available. 
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We also show that perceived mangrove degradation and theft from outsiders do 

not significantly affect individual engagement in patrols to exclude outsiders from 

stealing mangroves from community forests. Instead, this behavior is performed only by 

specific members of the community. Thus, as theft increases between communities, there 

is little mechanism to reduce it. And as theft is left largely unregulated, the ‘race to the 

bottom’ phenomenon causes in-group members to also harvest rapidly from community 

forests. 

This social-ecological mechanism highlights the importance of clearly defined 

boundaries detailed by Ostrom in her first principle (1990). This research then echoes the 

importance of clear and effective boundaries and enforcement in community-based 

conservation efforts, and the positive endogenous changes in self-regulation that can 

follow in the wake of stronger boundaries. 

6 - Open Science 

All code and data used in this project can be found at the Github link here: 

https://github.com/matthewclark1223/ParticipatoryMappingProj

https://github.com/matthewclark1223/ParticipatoryMappingProj
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CHAPTER FIVE: A PRODUCTIVE FRICTION: LEVERAGING MISALIGNMENTS 

BETWEEN LOCAL ECOLOGICAL KNOWLEDGE AND REMOTELY SENSED 

IMAGERY FOR FOREST CONSERVATION PLANNING 

Earth’s forests are continually monitored in both the satellite record and the lived 

experiences of nearly 2 billion forest-proximate peoples. Generally, the satellite record 

summarizes production estimates and proxies, such as percent tree cover, at regular, 

relatively coarse scales. Conversely, local perceptions of forest resources tend to capture 

changes at irregular and very fine scales. While the utility of both of these sources of 

information has been widely demonstrated in isolation, little work has explored how they 

might be systematically and quantitatively integrated. Here, we collect gridded 

information on community perceived and remotely sensed mangrove cover change across 

719 unique 0.5-km grid cells in Pemba Island, Tanzania. We reveal variation in the 

association between these two data sources across different wards (shehia) and explore 

the reasons for this variation using informal interviews and direct observation. We find 

that shehia with the greatest alignment between the satellite and community derived 

measures of mangrove change tended to have little planting or natural regeneration of 

mangrove propagules and large areas of complete tree cover loss. Alternatively, in shehia 

with the lowest levels of alignment, we find high levels of natural and/or human-assisted 

mangrove recolonization and selective harvesting of individual trees and branches. 

Finally, we demonstrate a practical workflow for quantitatively leveraging these 
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misalignments by optimizing across both data sources to identify restoration priority 

areas. 

1 - Introduction 

The potential for local ecological knowledge to provide rich information on the 

status and ecological function of species and ecosystems is widely recognized in 

conservation science (Reyes-García and Benyei 2019). In fact, for many areas, species, 

and time periods, local ecological knowledge is the only information available to inform 

the decisions made by conservation scientists or practitioners (Taylor, Morrison, and 

Shears 2011). Researchers studying birds, mammals, and fish, in particular, made early 

advances in methods for using local knowledge to strengthen estimates such as 

population size and breeding success (Moller et al. 2004; Poizat and Baran 1997). This 

tradition of productively incorporating local ecological knowledge has continued in 

wildlife ecology even amidst rapid changes in satellite and computational capacity, and 

clearly has an important role in increasing the inclusivity of conservation strategies 

(Early-Capistrán et al. 2022; Salomon et al. 2023). 

In the study of conservation and ecology of forests, however, less progress has 

been made in developing methods for linking local ecological knowledge with Western 

scientific information. A review of 51 studies that used local ecological knowledge in 

forest conservation found that while the potential contribution is high, little work has 

shown any practical application (Joa, Winkel, and Primmer 2018). Further, few studies 

have attempted to incorporate quantitative forms of local ecological knowledge with 

research on forest conservation (Rist et al. 2010). Instead, this stream of research has 

largely focused on describing the cultural significance and connections between plant 
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species, rather than recording location-specific abundance data. There are, however, some 

notable examples of quantitative applications of local ecological knowledge from the 

field of ethnobotany, many of which focus on the abundance of individual species (e.g. 

Fernández-Llamazares et al. 2016). 

One possible reason for the relative scarcity of methods for integrating 

quantitative forms of local ecological knowledge into research on forests compared to 

wildlife and individual plant species, is that forest cover can be readily observed via the 

satellite record. Therefore, researchers may see these two sources of information as 

redundant. Indeed, studies have shown high concordance between local knowledge of the 

presence of timber and satellite imagery in the Peruvian Amazon, for example (Takasaki 

et al. 2022; Braga-Pereira et al. 2022). 

However, congruence between local knowledge and the satellite record is not 

always the case. These measurements are generated by disparate underlying processes, 

and as discussed by Klein et al. (2014), may actually best serve scientific inquiry by 

revealing points of contradiction. For example, a study of rangelands on the Tibetan 

Plateau showed that satellite imagery alone provided a poor estimate of locally 

meaningful plant cover change and its drivers, as it was unable to identify changes in 

palatable versus unpalatable vegetation (Hopping et al. 2018). Also, a given conservation 

action may appear optimal based on satellite imagery, but be logistically impossible to 

execute or unacceptable to local decision-makers. Therefore, local knowledge can also 

provide critical information about the on-the-ground feasibility of conservation actions 

(Canessa et al. 2020; Carter et al. 2022). Further, individuals’ harvest and conservation 

decisions are driven by their perceptions of the status of their environment, rather than 
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what is strictly accurate (Fernández-Llamazares et al. 2016; Clark, Hamad, et al. 2023). 

Thus, systematically integrating local ecological knowledge with satellite imagery may 

serve to identify a truly optimal set of actions for forest conservation, especially in multi-

use social-ecological landscapes. 

Local ecological knowledge and satellite derived products both also contain error. 

This error is itself driven by disparate causal processes. Local ecological knowledge is 

subject to miscommunications between researchers and local knowledge holders, as well 

as the litany of biases that affect human cognition, such as shifting baselines or 

attributing greater importance to more recent events (Kai et al. 2014). Conversely, 

satellite-derived data products are often coarsely resolved spatially and thematically 

(e.g. land cover classes), causing misclassifications at local scales (Wyborn and Evans 

2021). Researcher misunderstandings of a system may further bias a data product during 

the training and validation process (Rinaldi and Jonsson 2020; Brandt et al. 2020). Hence, 

we argue that local ecological knowledge and satellite imagery should be considered as 

different, yet complementary data sources in forest conservation, rather than as 

calibration tools or ways of corroborating one another. 

Here, we use the mangrove forests of Pemba Island, Tanzania to present a 

practical example of how priority locations for conservation can be identified by 

optimizing across quantitative data derived from local ecological knowledge and satellite 

imagery. Mangrove forests are an archetypal example of a social-ecological system 

where the causes of cover change and the feasibility of restoration interventions cannot 

be disentangled from socioeconomic factors (Quinn et al. 2017; Ram, Caughlin, and 

Roopsind 2021). Worldwide, these ecosystems are in flux due to changing biophysical 
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conditions, such as temperature and atmospheric CO2 (although see Reich et al. 2018), as 

well as both widespread deforestation and planting (Jennerjahn et al. 2017; Ferreira, 

Ganade, and Luiz de Attayde 2015; Lacerda, Borges, and Ferreira 2019). These global 

trends are paralleled in Pemba, as the cutting of mangroves for firewood and building 

materials, as well as mangrove loss due to biophysical factors, has caused erosion and 

saltwater intrusion and resultant widespread mangrove restoration efforts (Mchenga and 

Ali 2015; Hamad, Mchenga, and Hamisi 2014, 2019; Andrews and Borgerhoff Mulder 

2022). 

Across Pemba, we collected quantitative, spatially explicit data on local 

perceptions of mangrove cover change and compared these to satellite-observed changes 

from the same time period. In this study, we explore the overall alignment of these two 

data sources and highlight communities where they strongly agree or disagree. We 

investigated the reasons for differences in agreement by interviewing knowledgeable 

individuals in these focal communities and interpret these in light of the data generating 

process for both sources of information. Lastly, we demonstrate an optimization approach 

(as in Hanson et al. 2019) for identifying restoration priority areas that equally considers 

observations made by local communities and satellite imagery. 

2 - Methods 

2.1 - Data collection 

2.1.1 - Local perceptions of mangrove cover change 

We used participatory mapping to collect fine-scale, spatially explicit perceptions 

of mangrove cover change in Pemba Island, Tanzania from 2021 to 2022. This 

methodology is loosely based on that of Herrmann et al. (2014), in which the authors use 
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participatory mapping to measure perceptions of re-greening in the Sahel. In our 

modified methodology, presented in greater detail in Clark et al. (2023A), participants 

used gridded basemaps to record their perceptions of forest change in specific areas of 

their community over the past 12 months. Specifically, for each 0.5-km grid cell where 

mangrove forest was present in their community, participants indicated whether they felt 

the tree cover had increased (+1), stayed the same (0), decreased (-1), or were unsure 

(NA) (picture 2). We implemented this methodology over eight months in 2022, 

managing to reach 43 of the 49 wards (shehia) on the island containing mangrove forests, 

and using community rosters to randomly select five men and five women to participate 

in each. Finally, we digitized each map and calculated the mean response for each of the 

719 unique 0.5-km grid cells to yield one island-wide map (Fig. 23A).  
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Picture 2 Example photo showing H. Hamad leading the participatory mapping 

exercise used to collect information on individual perceptions of environmental 
change. 

2.1.2 - Remotely sensed mangrove cover change 

We accessed the Sentinel-2 time series via Google Earth Engine to produce 

classified maps of mangrove stands in Pemba for 2021 and 2022 at a 20-m resolution. We 

did so by using median annual composites of all images in the given year with <20% 

cloud cover and masked remaining clouds using the ‘QA60’ band prior to generating 

composites. We used a random forest classifier to distinguish mangroves from other 

ecologically distinctive land cover types. Beyond optical information, we integrated 

Sentinel-1 synthetic aperture radar backscatter measurements shown to be effective for 

quantifying mangrove extents (Chen et al. 2017; Poortinga et al. 2019). We also 

incorporated pertinent topographic variables derived from the NASA Shuttle Radar 
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Topography Mission digital elevation model. We validated our data fusion approach 

using pseudo ground truthing for 2021, which produced mangrove extents with a 

producer’s accuracy of 91.61% (+/- 5.99%) (estimated 2.4 - 14.38% omission rate). 

User’s accuracy (commission rate) was 100% for 2021, indicating that our maps show 

conservative underestimates of mangrove extents. For more details on this mapping 

effort, see Clark et al. (2023B). Lastly, we calculated the net change in 20-m pixels 

within each of the 719 0.5-km grid cells to produce the data shown in figure 24. 

2.2 - Alignment and follow-up interviews 

To build an understanding of if, how, and why the community- and satellite-

derived data differ, we compared the overall relationship between the two sources and 

identified focal communities to investigate qualitatively. First, we correlated (Pearson) 

the mean perceived change with the net change in satellite-observed 20-m pixels inside 

each of the 719 grid cells (fig 25). To identify shehia with the highest and lowest 

agreement between the two data sources, we removed any shehia with fewer than 15 

mangrove grids (n=25), as these shehia showed extreme correlation values driven by a 

small number of data points. We then identified the two shehia with the highest and 

lowest (four total) correlation between the community and satellite-derived measures of 

mangrove cover change. 

After identifying the focal shehia, we arranged an informal interview with three 

members of the conservation committee in each, if one existed, and otherwise 

knowledgeable individuals if one did not. In these interviews, we asked the participants 

about mangrove planting and cutting events from 2021 to 2022, the overall trends in tree 
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cover, and how individuals get their information regarding the status of the mangrove 

forest. 

2.3 - Conservation prioritization 

We use mangrove restoration as an example conservation action that can be 

planned for by quantitatively optimizing across community- and satellite-derived 

measures of environmental change. In this demonstration, we used mixed integer linear 

programming implemented in the ‘prioritizr’ R package to identify which 0.5-km grid 

cells showed the greatest decrease in mangrove cover across both data sources and 

prioritize these for restoration (Hanson et al. 2023). Before running the optimization, we 

standardized the values from both data sources so that all values were on the scale of 

standard deviations. Our implementation of this method used these values along with a 

penalization for isolated grid cells (following the standard assumption that these are 

inefficient compared to contiguous areas) to identify approximately 10% of the mangrove 

area as an optimal target for restoration. 

3 - Results 

3.1 - Participatory mapping data 

Across the 719 grid cells, the mean participant response ranged from -1 to 1, 

indicating that all ten participants in a shehia reported that mangrove cover had decreased 

or increased, respectively. The mean response across all cells was 0.17, showing an 

average perception that mangrove cover is increasing in the communities studied. 

However, the standard deviation across the grid cells is 0.39, showing high variation in 

mean perception of mangrove change from area to area. 
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Figure 23 Mean perceived mangrove change from 2021 to 2022. Panel A shows 

the location of Pemba Island, Tanzania in relation to the mainland of Tanzania 
(inset), as well as the mean perception of mangrove change inside each of 719 unique 
0.5-km grid cells containing mangrove included in this study (main). Panel B shows 

a photo of ongoing mangrove planting taken during the time of the study in the 
northwest area perceived by community members as strongly increasing in 

mangrove cover shown in panel A. 

3.2 - Satellite imagery 

Our remote sensing analysis showed that the net change in pixels classified as 

mangrove across each 0.5-km cell from 2021 to 2022 ranged from a loss of 13 20-m 

pixels to a gain of 29 pixels. On average, the 0.5-km grid cells sampled gained 0.37 20-m 

pixels in the year studied, with a standard deviation of 4.0 pixels lost or gained. Of the 

719 total grid cells, 264 showed an increase in net mangrove pixels, 232 showed a 

decrease, and 223 showed no change. Thus, overall we do not detect dramatic changes in 

mangrove cover in our study shehia using satellite imagery alone. 
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Figure 24 Map of the net change in 20-m pixels identified as mangrove from 

2021 to 2022 inside each of the 719 0.5-km grid cells used in this analysis. The color 
ramp indicates the exact number of pixels lost or gained inside each grid cell during 

the time period of this study. 

3.3 - Alignment and follow-up interviews 

Across sampled grid cells, we see virtually no relationship (r = 0.07) between the 

remotely sensed mangrove change and the mean perception of mangrove change (fig 25). 

However, there is high variation in the correlation between these two variables among the 

different shehia. Ziwani and Tibirinzi shehia have the lowest correlation values of -0.49 

and -0.37, respectively. Conversely, the two shehia with the highest agreement between 

the community perception and satellite observed data, Kisiwani and Kengeja, have 

correlations of 0.58 and 0.39, respectively. 
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Figure 25 Scatterplot showing the association between the net satellite observed 
mangrove pixel change and the mean perceived change for each of the 719 0.5-km 

grid cells containing mangrove in Pemba, Tanzania. A mean perceived change of -1 
or 1 indicates that every respondent reported the grid cell as decreasing or 

increasing in cover, respectively. Each point shows the values for one grid cell. 
Points have been jittered to reduce overlap. Thin black lines show the association 
between the two data sources for each of the 43 communities in this study. Thick 
colored lines highlight the communities (mangrove grid cells >15) with the two 

highest and two lowest correlation values. 

During informal interviews, conservation committee members in Ziwani shehia 

emphasized that from 2021 to 2022, there were large efforts to replant mangrove 

propagules (e.g. fig 23B), as well as noticeable natural regeneration. These individuals 

also emphasized that there had been no mass cutting or death of mangroves, but instead 

that people selectively cut branches and individual trees when harvesting. These 

observations were paralleled in Tibirinzi, where community members showed us several 

areas where people selectively cut individual mangrove trees, resulting in noticeable 

degradation of the forest, but presumably no detectable change of land cover at the 20-m 

scale. 

Interviewees in the two shehia with the greatest agreement between the two data 

sources, Kisiwani and Kengeja, described and showed researchers considerably different 
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situations to those in Ziwani and Tibirinzi. In both shehia, there had been mass losses of 

mangrove cover in 2021 to 2022, no organized planting of mangroves, and little natural 

recruitment. In Kisiwani, community members showed researchers several large areas 

where many adult and juvenile trees had died due to unknown biophysical causes, and all 

subsequently planted propagules had also died. In Kengeja shehia, interviewees showed 

researchers a large area where community members clearcut all mangroves during 2021 

to 2022. This shehia had no conservation committee, and thus there were no organized 

planting efforts. The lack of fine-scale changes (selective cutting & new propagules), 

alongside mangrove losses at a scale >20-m are presumably driving the strong 

correlations between data sources in these shehia. 

3.4 - Prioritization 

In figure 26, we show restoration priority maps derived by optimizing for both 

data sources in isolation and together. We identify starkly different priority areas based 

on the two metrics independently. Namely, just one area was prioritized for restoration in 

both the independent satellite- and community-derived maps. In addition to this one area 

where the data sources align well, the integrated map also displays the areas where either 

the community- or satellite-derived measure of mangrove loss were particularly high. We 

note that the specific output is also contingent on parameter settings in the optimization 

package, such as the strength of the penalty for including isolated pixels. 
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Figure 26 From left to right: restoration priority maps for approximately 10% 
of the mangrove area in Pemba, Tanzania based on our remote sensing analysis 

alone, the community perceptions of mangrove change alone, and the optimization 
across the two data sources. On the right-hand map showing priority areas 

identified by optimizing across both data sources (combined), red coloring indicates 
the areas identified by the satellite imagery, blue coloring indicates areas identified 

by the community, and purple coloring indicates areas identified by both. 

4 - Discussion 

Our findings suggest that within our study area and within this short timescale, the 

mechanisms driving misalignments between individual perceptions and satellite 

observations of mangrove change are the observability and salience of fine-scale changes. 

Our remotely sensed data product does not accurately reflect changes at fine spatial 

scales, which may also be overemphasized in our measure of perceived change. Given 

that much of the data available for conservation science and practice exists at 20-m or 

greater scales, we argue that systematically incorporating local knowledge of 

environmental change will provide a more accurate picture of both the true changes in 
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forest cover and also the community preference for conservation actions. Thus, we echo 

the increasingly-established finding that including community perspectives will both 

practically and ethically benefit conservation science (e.g. Zinda et al. 2016). 

Furthermore, quantifying indigenous perceptions, while inevitably simplifying the 

richness of local ecological knowledge, allows for a systematic comparison between both 

frameworks. We present this finding alongside an optimization methodology for 

practically accomplishing such an integration, similar to Nielsen et al. (2023), who 

suggest this technique to incorporate molecular information into conservation planning. 

The optimization approach here serves as a base case demonstration. In this 

example, we chose to weight both data sources equally and ignore many important real-

world factors for conservation planning, such as land price. This weighting, however, 

may be adjusted to better account for the biases shown in each data source, depending on 

the goals of a specific project. For example, community members might overemphasize 

the ecological significance of recent tree planting events or illegal harvesting from 

socially important areas. Researchers may then consider weighting these data less 

strongly when estimating changes in, for example, carbon stocks. Conversely, if the goal 

of a project is to identify socially acceptable targets for conservation efforts or areas with 

recent increases in selective harvesting, community perceptions of environmental change 

may be weighted more strongly than remotely sensed data. Further, restoration 

prioritization can benefit by including community knowledge of where natural and 

human-assisted regeneration is already occurring, as to avoid redundancy. 
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4.1 - Limitations and future work 

There are important drawbacks to incorporating local ecological knowledge into 

conservation planning. For one, obtaining this knowledge requires considerable time and 

effort, and presents a risk of misrepresenting community voices (Laituri et al. 2023). 

Additionally, while this study only looks at recent changes, the reliability of the data can 

be limited by a number of cognitive biases, especially if considering longer time periods. 

As a more general matter, increasing the number of data sources being optimized across 

will introduce additional uncertainty into conservation decisions, which may not 

accurately propagate into the final quantitative results. Future work would then make a 

valuable contribution by developing methods for propagating uncertainty from all data 

sources into the end result of the mixed linear integer optimization method. 

We also see two key limitations to our data collection protocol. First, our protocol 

condenses individual perceptions of change down to one of four values: -1, 0, 1, or NA. 

This forces all values of one sign (- or +) to be the same magnitude. Future work might 

develop a modified implementation to efficiently capture a range of perceptions of 

environmental change. Second, we do not account for within-community variability in 

perceptions of environmental change and alignment with satellite imagery. For example, 

future work might ask what remotely sensed signals tend to be associated with high levels 

of consensus about how and where the environment is changing? Further, examining 

variation in perceptions of change within and between genders, ethnic groups, or 

economic classes might yield productive insights, as members of different groups often 

play different roles in resource-dependent communities (Hopping, Yangzong, and Klein 

2016; Luizza et al. 2013; Diaz-Reviriego et al. 2016; Uisso et al. 2023). 
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5 - Open science 

All data and code used in this project can be found here: 

https://github.com/matthewclark1223/CPR_ABM/tree/master/ConservationPrioritization 
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CHAPTER SIX: CONCLUSION 

This dissertation contributes to our understanding of the social and ecological 

dynamics that govern the emergence and persistence of community-based conservation 

behaviors and their outcomes. Specifically, this research shows that individual 

perceptions of environmental change, even at very fine scales, can strongly encourage or 

discourage conservation preferences and behaviors, dependent on the system of resource 

tenure. Further, this research advances theory describing the patterns with which we 

expect these preferences and behaviors to spread within groups and methods for 

interrogating such theorized processes with empirical observations, namely satellite 

imagery.  

Collectively, these four chapters reinforce our understanding of social-ecological 

systems as both complicated and complex. They are complicated in that they contain a 

large number of important variables that vary in their relevance and interactions from 

case to case. They are complex in that social, ecological, and coupled phenomena of 

interest often emerge as a result of independent smaller-scale interactions. Thus, shaping 

these systems in order to produce desirable outcomes requires clear theoretical models of 

how the individual components interact in space and over time to produce such outcomes, 

be them social, ecological, or both. And the effective application of theoretical insights to 

a given empirical case requires a detailed understanding of local dynamics.  

Through the near doubling of the world’s conservation efforts by 2030, we are 

undertaking an experiment in the modification of the global social-ecological system at 

an unprecedented scale. While this experiment will have global consequences, these 

outcomes will be driven by nested interventions and outcomes at local to regional scales 
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and ultimately by the decisions made by individuals. This dissertation provides insights 

as to how policy makers, practitioners, and researchers can better incorporate diverse 

forms of knowledge with formal theory in order to better plan those interventions 

considering both social and ecological conditions.  

Moving forward, it is crucial to continue building upon this research and expand 

our understanding of conservation as a dynamic and evolving system. Further 

investigations into the long-term consequences of area-based conservation measures at 

nested scales and the development of methods for delineating complex causal processes 

are areas of particular importance. Moreover, continued collaboration between scientists, 

policymakers, and local communities is essential for designing interventions that align 

with local conditions. 
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APPENDIX A 

Supplementary material for chapter 2 
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Figure A1 SIRS model fit to the average of 100 runs of the agent-based 

simulation data under success-biased social learning contingent on behavior-
environment feedbacks shown as translucent black lines representing 1000 draws 

from the posterior. Simulated data are overlaid with gray points signifying training 
data (first 30%) and blue points signifying test (later 70%) data. 
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Figure A2 Sensitivity analysis for the ability of the SIRS model to capture 

adoption dynamics under a variety of parameter combinations across a range of 
values for the starting resource integrity (percent of carrying capacity) and payment 

amount for agents. 
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APPENDIX B 

Supplementary material for chapter 3 
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All supplemental materials can be found in the GoogleSheet here: 

https://docs.google.com/ spreadsheets/d/18jGNxQl8uVK2m-jHzR6Pq4H-

OmEXWMJFTSswoklx1-8/edit?usp=sharing 
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APPENDIX C 

Supplementary material for chapter 4 
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Figure C1 Stylized example of a completed map used in the participatory 

mapping activity in this research. Grid cells correspond to 0.5km2 areas. Outlined 
grid cells indicate community consensus on the presence of mangrove trees in the 

area. Plus (+) signs indicate individual perception that mangrove cover has 
increased in the area in the past year. Minus (-) signs indicate individual perception 

that mangrove cover has decreased in the area in the past year. Empty squares 
indicate individual perception of no change in mangrove cover in the past year. 

Question marks (?) indicate that the respondent does not know how mangrove cover 
in that specific area has changed in the past year. 
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Figure C2 Posterior predictive check for model 2 used in this research. Dark 

blue line shows the true number of observed patrols. Light blue lines show the 2,000 
draws from the model. We show that our model reliably reproduces data that match 

our observed data, further indicating adequate model fit in addition to adequate 
mixing of chains, rhat values equal to 1 for all model parameters, and lack of 

divergent transitions after warmup.   
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