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ABSTRACT

Accuracy of static analysis over predicate abstract domains depends on the

partitions of predicates. More precise predicates approximate concrete values of

program variables resulting in more accurate analysis. Manual reasoning about these

partitions must be done on a case-by-case basis and is time consuming and difficult.

This work explores learning geometric concepts to automate discovery of predicate

domain candidates.

The proposed framework uses run-time data from program executions to gather

training data for a PAC-learner to generate separating hyperplanes that can be

projected onto predicate domains.

The thesis implements the framework and performs evaluations of it effectiveness

on a set of benchmark programs using various test-case generation tools.

This exploratory work discusses several deficiencies in the current state of the

art in test case generation, intermediate program representation, and availability of

suitable program benchmarks.
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CHAPTER 1

INTRODUCTION

The objective of this thesis is to contribute to the development of predicate domains in

static analysis (SA), a method of examining code without executing it. SA employing

disjoint predicate domains has the advantage of speed but necessitates a predefined

domain to carry out the analysis. A randomly generated domain is an option that can

be effortlessly implemented, though it often results in an imprecise analysis due to

its broad and non-specific nature. Conversely, the employment of a manually created

domain can yield a higher degree of precision in the analysis, as it can be tailored to

the specific requirements of the program. However, this approach demands a thorough

understanding of the program by the domain creator, thus adding complexity to the

process. The manual creation of the domain, while beneficial for accuracy, is a time-

consuming and subjective step that could potentially delay the analysis process. This

work explores an approach that automatically generates predicate abstract domains

using data from program executions.

1.1 Problem Background

Static analysis allows for a software engineer to reason about all possible executions

of a program without executing it on every possible input. SA reasons about the

semantics of the program by analyzing the structure of the code. In comparison
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1 :func(int n){ //n = {−, 0,+}
2 :if(n < 2){ //n = {−, 0,+}
3 :n = 1/(n-2); //Warns of potential Divide-by-Zero

4 :print(n);
5 :} else { //n = {+}
6 :print(n);}

Figure 1.1: Code example annotated with Sign domain.

to traditional testing, SA guarantees the soundness of its results. Whereas runtime

testing confirms the existence of faulty behavior after detecting it, SA guarantees the

absence of undesired behavior for all program executions when it detects no faults.

This power arises from the ability of SA to reason over elements of abstract

domains as opposed to concrete values. An element of an abstract domain represents

a finite or infinite set of concrete values. By replacing the potentially infinite possible

states of program execution with a finite number of states over an abstract domain

a problem is simplified. SA uses these abstract values in place of concrete values,

performing analysis on all possible execution paths by examining the abstract values

that represent them. SA can then determine whether certain properties exist or

assertions hold for the abstract elements. These properties can then exist within the

possible concrete values represented by the abstract elements.

Although many different abstract domains exist, this work specifically makes use

of predicate domains due to their efficiency [13]. To create elements of a predicate

domain, concrete values are partitioned into subsets defined by constraints on concrete

values. For example, partitioning the set of all integers into the subsets of integers

less than, equal to, and greater than zero creates the Sign abstract domain: {−, 0,+}.

Although the predicate domain provides much greater efficiency by limiting the

number of elements that must be analyzed, the accuracy of the analysis is limited by

the precision of the partitions used.
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1 :func(int n){ //n = {< 2, 2, > 2}
2 :if(n < 2){ //n = {< 2}
3 :n = 1/(n-2); //No over-approximated warning

4 :print(n);
5 :} else { //n = {2, > 2}
6 :print(n);}

Figure 1.2: Code example annotated with Predicate domain with hand-picked parti-
tion at 2.

To demonstrate the effects on SA accuracy that differing partitions provide, let us

examine two identical code snippets with a naive partition and a manual partition. In

Figure 1.1 we see simple code with comments stating the possible abstract values of n.

At the start of func SA knows nothing about the incoming value of n and annotates

it with negative, positive, and zero abstract values. On line 2 SA analyzes the true

branch and determines that n must be less than 2. However since the partition cannot

express it exactly, SA soundly approximates it with positive, negative, and zero values

again. At line 3 SA issues a potential warning that the code has a division-by-zero

failure. This is because SA includes n = 2 as a possible value since the concrete value

2 at which the failure occurs is represented by the positive abstract value {+}.

This over-approximation causing inaccuracy in SA can be mitigated by using a

more precise partition for this code. For example, in Figure 1.2 abstract values are

predicated on their relation to 2. By changing the partitions used in the analysis,

the abstract value of the true branch on line 2 now accurately represents all possible

values of n as less than 2. Since values less than two avoid the division-by-zero failure,

SA removes the false-positive warning.

In this code example, it is trivial to determine that the second partition choice

is better than the first, especially when one of the relational operands is a constant.

However for more complex programs identifying best partitions manually is chal-
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lenging, especially when both operands are variables. This work seeks a reliable and

efficient method to produce precise partitions automatically without requiring a priori

knowledge of a program or manual code inspections.

Although there are many ways to naively determine predicate elements such as

searching for code constants, they are often limited in their accuracy when handling

relationships between multiple variables. This work attempts to infer such partitions

by analyzing concrete values that are assigned to variables during program execution.

Using them as geometric coordinates in a space where each dimension corresponds

to a variable, the proposed technique attempts to generate partitions by learning

geometric concepts: abstract shapes or regions that encompass points.

1.2 Geometric Concepts

Geometric concepts can represent an abstract state, e.g., n 7→ {+} by mapping its set

of concrete (e.g., positive) values to a region on the n axis for that variable. For exam-

ple, analysis of two variables results in regions in a two-dimensional space. Increasing

the number of variables being analyzed likewise increases the dimensionality of the

space holding the regions. Previous work [3] developed algorithms that learn the

shape of data points. Following the same route, we can determine suitable partitions

that SA can use to compute abstract values.

To demonstrate this concept, consider Figure 1.3 that shows a two dimensional

space where concrete values of variables u and w are plotted on cartesian coordinates.

These data points are labeled as either “true” or “false” depending on the correspond-

ing branch taken at a conditional statement like u < w. Therefore all data points in

the shaded region that are labeled as true result in the program executing the true
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Figure 1.3: Example of a Geometric Concept Used to Partition Concrete Values in
Two Dimensional Space.

branch of the conditional statement. The shape of the shaded region represents the

geometric concept that is learned by the algorithm. The lines forming the shapes and

their intersections correspond to the inferred relational abstract partitions. To find

predicates, the shaded region is projected onto u and w axis as show in the figure in

red and blue lines, respectively. Then a predicate domain consists of three predicates,

“before” the start of the line, the line itself and “after” the end of the line.

This approach gathers concrete variable values as data points through instru-

mented program executions and passes them into an algorithm that learns a geometric

concept representative of that data. The algorithm uses a Probably-Approximately-

Correct (PAC) learner [15], which requires a sufficiently large sample of data to

accurately compute the representative geometry. Once generated, the resulting region

is then projected onto the axis to create a predicate domain with the partitions that

precisely separate values in conditional statements.
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1.3 Proposed Solution

In order to improve the efficiency of creating domains for use within SA, we examine a

novel technique for using PAC learning algorithms and dual space projections to learn

geometric concepts that can be interpretted to generate a predicate domain using

input data sampled from program executions. Through developing and evaluating

this approach, we seek to validate the following thesis statement:

1.3.1 Thesis Statement

How suitably can an algorithm using PAC learning techniques provide precise predicate

abstract domains for static analysis by projecting 2D geometric concepts onto 1D

abstract domains.

As a means to support the thesis statement, the following research questions will

be investigated and answered:

1.3.2 Research Questions

RQ1 How can data be efficiently gathered from programs to provide samples for the

PAC learner?

RQ2 How does sample size affect the output of the PAC learning algorithm?

RQ3 Can the PAC learning algorithm produce predicate abstract domains on a set

of benchmark programs?

The thesis is organized as follows: Chapter 2 includes a relevant background on

the techniques being used in this work and how they are used in existing research,

including current SA techniques and PAC learning algorithms. Chapter 3 provides a
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high-level overview of the domain generating framework from the initial user provided

program to the resulting generated domain. Chapter 4 examines this framework

in greater detail, covering how program instrumentation and data gathering occur,

as well as the novel dual-space PAC learning algorithm and the resulting domain

synthesis. Finally Chapter 5 examines the completed framework and its results when

used to generate domains for our input set of test programs. The thesis’ findings are

compiled in Chapter 6 where the answers to our research questions are provided and

potential extensions of this work are proposed as future research topics.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The subsequent chapter reviews the necessary background that supports our thesis

in topics covering static analysis, PAC learning, and program verification. Prior work

in these areas provides methodologies for affirming program behaviors through data

flow analysis, employs statistically supported machine learning techniques to learn the

boundaries of regions separating sets of data, and extending PAC learning concepts

to facilitate direct reasoning about program verification.

2.1 Static Analysis with Predicate Abstract Domains

The goal of a data-flow program analysis A is to compute program invariants that are

expressed as elements of its abstract domain D = po⟨D;⊑,⊔⟩, where ⊔ is the least

upper bound operator. An instance of an analysis A is defined by the following [7] :

� A complete lattice D (satisfying ascending chain condition), that describes the

abstract domain of A.

� A flow F of program P ’s statements, for example P ’s control flow graph.

� A set of monotone transfer functions F for each statement l ∈ F that maps an

element of D to itself, i.e., fl ∈ F : D 7→ D.
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� A set of external statements E in P , which can be either the entry node

entry(Program) or exit nodes exit(Program).

� An initial value ι ∈ D for statements in E.

Then the set of equations for A is defined as follows on entry and exit of each

statement l ∈ F :

Ain(l) =
⊔
{Aout(l

′) | (l′, l) ∈ F} ⊔ ιlE (2.1)

where ιlE =

 ι if l ∈ E

⊥ if l ̸∈ E
(2.2)

Aout(l) = fl(Ain(l)), l ∈ F (2.3)

Where ⊔ is the least upper bound operator, ⊥ is the bottom element of D with the

following properties ∀d ∈ D : ⊥ ⊔ d = d and ∀(l) ∈ F : fl(⊥) = ⊥. The above set of

equations is solved using a fixed-point computation such as a work-list algorithm that

iteratively recomputes incoming and outgoing flows for each statement, i.e., Ain(l) and

Aout(l) until it detects no changes in flows of data.

Depending on the type of analysis, D can have different representation. For

example, in the abstract domain DLV of Live Variable analysis, which reasons about

program variables, D is the power set of P ’s variables Var with ⊔ being the set union

operation, ⊥ being ∅ and ⊤ being Var. For Sign analysis, D in DSA is a set of maps

Var → P(Sign) where as before Sign = {−, 0,+}. Usually, an element of D that A

computes for a given program location is referred to as an abstract state σ ∈ D.

Since the focus of this work is generating partitions for predicate domains, we

give detailed description of the domain DPred = po⟨D;⊑,⊔⟩. D is the power set of
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Figure 2.1: Lattice of the Sign domain.

all predicates with elements p1 through pk. ⊑, the subsumption operator, is ⊇ which

defines the ordering of the lattice. If an element p3 is a superset of the element p2

then p3 will be a higher order on the lattice. ⊔, our least upper bound operator is the

set union operation. It ensures that all predicates in differing data flows are preserved

when merged, i.e., if values in a certain range are valid during program execution,

then data flow merges keep those valid values after merges.

The initial values, ι, is the set of all available predicates at entry(Program) as this

is unconditional analysis where the incoming values are not constrained. At nodes

that are not the entry point the initial value of ⊥ will be the empty set. The set

of values in Ain(l) has the transfer function fl applied to it which results in Aout(l).

These transfer functions are defined for each type of statement and reflect the changes

of values against the predicates representing them [13].
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2.2 PAC Learning of Geometric Concepts

PAC learning algorithms work on the principal that with a sufficiently large sample

size the algorithm is able to return a result that is accurate within a statistically in-

significant margin of error [3]. PAC learners are capable of learning various geometric

concepts by categorizing data as either inside or outside of the geometric shape from

which the data is gathered. Baum [1] and Blumer et al. [2] both presented similar

methods for PAC learning unions of half-spaces. Blumer et al. [2] also provided an

algorithm for PAC learning unions of axis-aligned rectangles.

Algorithm 1 Pseudocode for PAC learning algorithm

1: function Learn− Cd
s (s, ϵ, δ)

2: Draw labeled sample S of size
3: m = O(1e lg

1
δ +

ds
ϵ (lg

ds
ϵ )

3)
4: Create U by adding edge for every +/- pair in S
5: F ← ∅
6: Create a geometric dual space containing a hyperplane
7: for each point in S
8: Calculate centroid γ of each feature in the dual space
9: F ← F ∪ g′(γ)
10: F ←greedy covering of U using F
11: h←regions formed by F
12: for each region ρ ∈ h do
13: if ρ ∩ S ̸= ∅ then
14: label ρ according to S
15: else
16: label ρ arbitrarily
17: end if
18: end for
19: Return h
20: end function

Bshouty et al. [3] expanded upon these methods by providing an algorithm for

PAC learning arbitrary boolean combinations of half-spaces. These general geomet-

ric concepts defined by arbitrary boolean combinations of half-spaces provide the
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necessary flexibility to describe relative concrete values of variables during program

execution and can therefore be applied to problems relating to program verification.

Algorithm 1 presents pseudocode from Bshouty et al. [3] for finding region infor-

mation from point data, on which our implementation is based. Lines 2 and 3 draw

sample data points from a source until m points are gathered. The value of m is

calculated so that it is of sufficient size to return results that are accurate within

a statistically insignificant margin. Line 4 creates a set of edge data, U , between

positive and negative points that later is used to determine when those points are

properly separated.

Lines 5 through 9 populate the set of separating edges. This process begins with

line 6 converting the point data from our sample S into hyperplanes in a dual space

(this process is explained in further detail in Chapter 3). On the dual plane the

intersections of hyperplanes create features from which centroids are calculated. Line

9 converts the centroids, which are points in the dual space, to a hyperplane on the

primal space and adds them to the set F of these calculated hyperplanes.

After all centroids have been calculated and converted into primal space hyper-

planes, the set U is greedily covered by F . Each hyperplane in F covering an edge

in U via intersection is added to F . On line 11, the remaining hyperplanes from the

greedy set covering are then used to divide the primal space and label the resulting

regions as positive or negative. As all edges between positive and negative points

have hyperplanes from F separating them, the remaining regions only have points

with either a positive or negative label. Then in lines 12-18 these regions are labeled

with the same label as the points contained within, and regions that are empty are

labeled arbitrarily. The algorithm returns these regions as its result.
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2.3 Related Work on PAC learning in Verification

Sharma et al. [11] pioneered using PAC learning in program verification. In their

work, researchers use Algorithm 1 to distinguish between reachable states of a pro-

gram and states that violate specific properties. This approach generates inductive

assertions that describe those “bad” states that cause property violation. However,

this technique requires additional steps to insure that generated invariants are valid.

Generation of invalid invariants restarts execution with additional data to improve the

precision of the PAC learning algorithm. The same authors extended their framework

to make qualitative comparisons of the precision of different abstract domains [12].

Another study [5, 10] applies the PAC learner algorithm alongside other algorithms

to generate assertions at specified points in a target program. These are found

by matching program features to set templates using either a PAC learner or a

SVM-based learner. While the approach uses the PAC learner to determine boolean

combinations of half-spaces, it applies the SVM-based learning technique to find

conjunctions of linear equalities. Both learners are then used to produce the desired

assertions. These assertions can be generated at specific points in a program by

annotating the code at the desired assertion location.

The most recent work [9] uses the same PAC learning algorithm to find program

invariants but in a context of different program features. Using extracted data

from the target program before and after method calls, the technique creates a

representation of a memory graph to learn pre and post conditions of those methods.

The study specifically focuses on methods in heap-manipulating programs due to their

complexity. By representing the data stored in the heap as a graph and examining

how that graph is transformed between the pre and post conditions, the PAC learning
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algorithm is able to classify method behaviors. Similarly to the previously described

work this recent paper directly learns program invariants which can then be used for

program verification as an oracle to the expected behavior. Direct invariant generation

has the same drawbacks as in the above research where soundness is not guaranteed

by dynamic data.

Our proposed work differs from previous related work in the way these approaches

learn different features of target programs or by directly learning program invari-

ants. Although still using the same PAC learning algorithm, the data collection

and resulting learned features differ. Our work focuses on obtaining invariants at

conditional statements, i.e., predicates using Algorithm 1, taking the concrete values

of variables at those conditional statements as well as labels based off of the result

of the conditional expression evaluation. This data is then used to find regions that

can be projected onto potential predicates that then can generate invariants after

the fact through static analysis techniques that use those predicates as their abstract

domains. Chapter 3 describes the methodology and implementation details.
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CHAPTER 3

APPROACH

Figure 3.1 visualizes a high-level overview of generating invariants from an input

program. The framework follows a sequential path with the output from prior

components being shown as following the arrows to the succeeding components. The

process requires two separate pieces of information to begin: the program under

analysis, shown in the boxes labeled ‘Program’, and a suite of JUnitTests, in the box

labeled ‘T’. The end result of the process is the performed static analysis using the

generated domain, shown in the box labeled ‘Analysis’. In a real-world use-case this

analysis would reflect the needs of the user performing it, however for the purposes of

this work’s evaluation, the analysis was limited to a comparison of precision between

the new domain and a pre-existing random domain.

At Step 1 in the figure, the input program is instrumented so that labeled data

is gathered during executions of branch statements. The program’s Java source

code is provided as input to an instrumentation program that uses the SOOT Java

Framework [16]. This instrumentation program iterates across all methods within

the input program and across all conditional statements within the methods. The

instrumentation alters the conditional statements so that the values stored in variables

referenced by the conditional are saved in an external reporting class. The variable

data is paired with positive and negative labels that denote whether the conditional
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Figure 3.1: High level overview of invariant creation approach.

evaluated is true or false. The instrumentation program also finds the points where

the code exits the main method and inserts an additional instruction to write the

collected labeled data to an output file where it will be available for later use.

With the input program compiled with the instrumented code it continues to

Step 2 where the provided testing suite executes the instrumented code. Although

any executions of the instrumented code provide output data, JUnit tests are used

for their convenience. A parameterized test that executes the instrumented methods

across a wide range of random input values allows a large amount of data to be

gathered quickly without requiring the user to manually execute the code. Each

successive run of the testing suite provides more sample data that is appended to the

instrumentation’s output file. This labeled sample data, ’L’, is then ready to be used

in Step 3.

The PAC learning algorithm takes the labeled sample data as an input and per-

forms a dual-space to form geometric concepts that attempt to capture the behavior

of the instrumented code. This process is covered in much more detail in Section 4.3.

The geometric concepts are sets of hyperplanes that form labeled regions separating
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the input data. As these hyperplanes are much more information-dense than the

partitions used in predicate domains they must be projected into predicates.

Step 4 takes the set of hyperplanes, ‘H’, and computes corresponding predicate

partitions with which the final output of the domain, D, can be constructed. As

a hyperplane represents a two dimensional line and partitions act as corresponding

one dimensional points, they must be sufficiently simplified to be used as output.

Hyperplanes with high-magnitude slopes, lines that are nearly vertical, are used

to find partitions in the variable corresponding to the geometric concept’s Y axis.

Inversely, hyperplanes with near-zero slopes, lines that are nearly horizontal, are then

used to determine partitions on the X axis’ corresponding variable. Hyperplanes

that are very near to a slope of 1 or -1, those that represent diagonal lines, are not

used as partitions as there is no feasible way to adequately capture the information

they represent. These diagonal lines are instead used identify the usefulness of the

predicate domain for performing analysis on the input program. Diagonal hyperplanes

that successfully separate a majority of the labeled sample data suggest that the

relationship between the two variables is purely relational, which is beyond the

abilities of analysis using predicate domains. For these programs a different approach

is necessary to achieve a more precise analysis.

If Step 4 is completed with a successfully generated predicate domain then the

user is able to utilize that domain for their analysis in Step 5. For the purposes of

this thesis, the generated domains are used to find program invariants which are then

compared against the invariants found by a randomly selected pre-existing domain.

If the generated domain results in more precise invariants for the program under

analysis than the randomly selected domain then the process is considered a success.

Conversely if the invariants are less precise it is a failure. The invariants can also
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be equally precise or incomparable, and for both of these situations the result is

ambiguous, with the presented framework offering no clear benefit.
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CHAPTER 4

IMPLEMENTATION

In order to realize the above framework each individual component is implemented

separately as a standalone Java program. Program instrumentation is handled using

the SOOT Java framework, jUnit tests are generated and ran to gather the sample

data for the PAC learner, and the PAC learning algorithm itself is a Java program

that takes that sample data as input and outputs the learned geometric concepts. As

no additional outside input is necessary for projecting the geometric concepts into

predicate domains that step occurs simultaneously, using the data available to the

PAC learning algorithm to assist with the projection. With all steps implemented

and executed the final result is either a message explaining that the learned space is

likely relational and cannot have a predicate domain generated for it, or the generated

predicate domain itself. The following sections provide implementation details of each

component.

4.1 Program Instrumentation

Prior to generating a domain using our PAC learning algorithm, it is necessary to

gather sample data to learn from. The data is gathered through instrumentation,

which inserts additional statements to the compiled code. By modifying the program

under analysis in this way, we create a compiled program that behaves as originally
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intended while also collecting data by executing the instrumented instructions. This

ensures that the outcome of the execution is not modified and therefore the data

gathered accurately reflects the information that is required to train the PAC learning

algorithm.

For running the PAC learning algorithm we require sampled data of the values

of variables in the expression of a conditional statement, as well as whether the

expression evaluation has resulted in a “branch-out” or a “fall-through”. Branches

jump to a label in the following block when the conditional statement of the branching

operation evaluates to true, and fall through into the block when the conditional

statement evaluates to false. For example if during a program execution a conditional

statement compares a variable x to a variable y, both of which are integers with the

values of 3 and 5 respectively, and the code branches out, it is necessary to for the

instrumented code to store the values of 3 and 5 as well as a label to denote that the

conditional statement resulted in a branch-out.

Sampling the variable values is a fairly straightforward task with Soot, as the

three-address code for an If Statement in Jimple refers to both of the operands,

from which their values can be easily attained. Determining the fall-through status

of the condition is more complicated as that is not information that is easily accessible

through Soot. In Figures 4.1, 4.2, and 4.3 a code snippet is examined in its original

Java, the intermediate Jimple representation, and the Jimple after the instrumenta-

tion occurs. Figure 4.1 is straightforward with a branch beginning on line 3. We will

want to instrument this code so that when executed the values of x and y are saved,

along with whether the branch was taken or not. The Jimple code in Figure 4.2

is similarly simple, however there are some important differences to note. Line 3

of Figure 4.2 is still the conditional statement, however now the condition has been
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1 : int x = arg0;

2 : int y = arg1;

3 : if(x < y){

4 : System.out.println(x + y);

5 : }

6 : return;

Figure 4.1: Code snippet prior to instrumentation

1 : i0 := @parameter0: int;

2 : i1 := @parameter1: int;

3 : if i0 >= i1 goto label1;

4 : virtualinvoke r1.<java.io.PrintStream: void println

5 : goto label2;

6 : label1:

7 : label2:

8 : return;

Figure 4.2: Intermediate representation of code snippet

flipped so that instead of x < y it is x(i0) >= y(i1). This is so that when the original

Java code in Figure 4.1 would fall-through on a true evaluation, Jimple instead will

branch out of the block on a false evaluation. Lines 6 and 7 of Figure 4.2 also hold

an important detail in that a label is created for both stepping over the conditional

block, and for completion of the conditional block. This is equivalent to giving all if

statements in Java an empty else block when one is not already specified.

Figure 4.3 shows the completed Jimple code with the additional instructions added

by the instrumentation. Line 3 now has a static invocation of setData, line 5 the

setFlag invocation, and 10 the storeArgs method. The setData method is always

called before the if statement so that the data is unaffected by the result of the

statement. setData takes i0 and i1, our x and y values, and stores them in an

external object’s variables. The setFlag method is called inside of the conditional

block and tells the instrumented code to report the stored variable values as having

resulted in a ‘true’ evaluation. After this both branches converge at label2 on line
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1 : i0 := @parameter0: int;

2 : i1 := @parameter1: int;

3 : staticinvoke <void setData(int,int)>(i0, i1);

4 : if i0 >= i1 goto label1;

5 : staticinvoke <void setFlag()>();

6 : virtualinvoke r1.<java.io.PrintStream: void println

7 : goto label2;

8 : label1:

9 : label2:

10 : staticinvoke <void storeArgs()>();

11 : return;

Figure 4.3: Jimple representation after instrumentation

9, with only ‘true’ evaluations having called setFlag. The values in the conditional

statement as well as the value of the flag are then both added to the final set of values

on line 10.

Algorithm 2 Pseudocode for Branch Instrumentation algorithm
1: class BranchInstrumenter extends BodyTransformer
2: Initialize reporterClass, setData, setFlag, storeArgs, report
3: function internalTransform(body, phase, options)
4: for stmt in body.units() do
5: if stmt is an instance of IfStmt then
6: condition ← stmt.getCondition()
7: insertBefore(setData, condition.LHS, condition.RHS, stmt)
8: insertAfter(setFlag, stmt)
9: insertAfter(storeArgs, stmt.getTarget())
10: end if
11: end for
12: if body.isMain() then
13: for each stmt in body’s units do
14: if stmt is an instance of ReturnStmt then
15: insertBefore(report, stmt)
16: end if
17: end for
18: end if
19: end function

In order to perform the instrumentation and achieve the desired results an al-

gorithm is used that iterates over the Jimple representation of the code, inserting
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additional statements where necessary. Psuedocode for the algorithm created for this

purpose is shown in Algorithm 2. The code itself extends Soot’s BodyTransformer

class, which is the Soot framework’s tool for making changes to a Body, Soot’s internal

representation of a method’s attributes, including the statements that the method is

comprised of. Line 2 initializes a reporterClass object as well as four methods

that the reporterClass has: setData, setFlag, storeArgs, and report. The

reporterClass is a helper class that contains a data structure for keeping track

of the data that is being gathered while the instrumented code is executed. It also

contains the aforementioned methods that Soot treats as objects to pass as parameters

to its insertBefore and insertAfter methods.

As we are using a BodyTransformer, we already know on Line 3 that we have

access to the Body being transformed, and on Line 4 can begin iterating over all of the

statements within the method. Line 5 checks each statement in the method’s body

to see if it is an IfStmt, which is Soot’s internal representation for all conditional

statements. Once we know the current statement is a conditional statement, we can

use the getCondition function to get all of the relevant data to the condition itself

on Line 6. Lines 7 through 9 then call Soot’s aforementioned insertBefore and

insertAfter methods. As we know that the instrumentation is currently on the

conditional statement, usage of insertBefore results in the inserted method being

called immediately before the condition occurs. This is used on Line 7 to collect the

two values being compared in the conditional statement’s condition. This takes care

of gathering the variable values involved in the conditional statement, but it is still

necessary to determine whether the result is a “branch-out” or a “fall-through”.

By using insertAfter on Line 8, we add the setFlag method to the program’s

execution at the code point immediately following the conditional statement. As
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a conditional statement jumps to a different code point when execution branches

out this results in the setFlag method only ever being called when a conditional

statement results in a fall-through. The method itself then simply sets a flag in the

reporterClass.

The final method being inserted into the program execution at this point is the

storeArgs method on Line 9. Although it also uses Soot’s insertAfter method,

it does not take the current statement as a parameter, but the statement’s target

stmt.getTarget(). An added benefit of knowing that the current statement is an

IfStmt is that it has a target, which is the code point that execution jumps to when

the conditional statement results in a “branch-out”. In the case where the target is

earlier in the code execution than the current statement (such as during loops), it is

worth noting that a “fall-through” also reaches the target’s code point, albeit after

the “fall-through” has been executed. Since both a “branch-out” and a “fall-through”

result in execution reaching the conditional’s target, this is a safe place to call the

storeArgs method which saves the stored variable values along with whether the flag

was set or not.

Finally the algorithm checks on Lines 12 and 14 if the current statement is the

return of the Main method, and if so it inserts the reporterClass’s report method

that outputs all of the gathered data to a text file for later use.

4.2 Data Gathering

Once the program under analysis is properly instrumented, it is run on test inputs to

create our sample data L. The quality and quantity of test input is important to the

final process as it must cover a sufficiently wide range of inputs. Without sufficient
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data the PAC learning algorithm is unable to accurately and precisely determine

where to place separations, both due to lack of dual-projected lines with which to

separate, and due to the sparseness of the data being separated. To acquire the

desired data, test cases must execute the instrumented code segments and gather

varied sample data. Although traditional static analysis does not require execution

of the code during the analysis, the machine learning aspect of this thesis makes it

essential to gather training data at runtime.

As mentioned this thesis uses test cases as a means of executing the instrumented

programs and gather the necessary sample data, however as traditional Java testing

is focused on validating or invalidating assertions, our needs differ from those of

traditional testing. As we generate tests to execute Java code the majority of our

test generation methods also generate assertions, however this is a byproduct of the

process. Ideally, tests should run as much of the code as possible while using the same

test inputs to increase the likelihood of executing internal methods with valid inputs.

While more specific tests that execute a single method are still useful, they may

contribute data that is less likely to be encountered during full program executions.

Due to the complexity of the task and the need to find effective techniques for

various programs, multiple test generation approaches are employed. Two automatic

test generators, Evosuite [4] and Randoop [8], are used for this purpose. Both tools

analyze provided compiled Java classes and output suites of JUnit [14] test cases that

execute the methods in those classes. To gather more varied data, additional test cases

can be generated, or existing test cases can be modified with different input values.

In many cases, it is more efficient to reuse existing test cases and provide new input

values for testing. JUnit-QuickCheck [6], a library that implements property-based

testing for JUnit, is used to supply these new input values to our previously created
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tests.

4.2.1 Evosuite

Evosuite is an automated test case generation tool for Java programs, primarily aimed

at discovering faults through satisfying coverage requirements [4]. It employs a genetic

algorithm to generate test cases, mutating test suites to maximize coverage of the

target code. Evosuite has a number of varying fitness functions that guide the search

process toward covering as many execution branches as possible. As it is necessary

for the PAC learner to have data gathered from executions of both branches of a

conditional statement, this maximization strategy directly supports our use-case for

the generated tests.

Despite its powerful test case generation capabilities, Evosuite also provides chal-

lenges in its use and incorporation into our pipeline. One of the difficulties is the

generation of invalid test cases. Since Evosuite’s primary focus is on achieving

high code coverage, it may sometimes produce test cases that do not adhere to the

constraints or requirements of the system under test. One such test that is common

for Evosuite to generate provides varied input data but does not execute the method

Method 
Under 

Analysis

Evosuite Randoop
Manual /

AI Assisted
JUnit Quickcheck

Generated JUnit Tests for Method

Sample Data

n=100 Parameterized
Test Executions

Test Verification 
and Clean-Up

Figure 4.4: High level overview of sample data gathering process.
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using it, instead asserting that the supplied value remains unchanged. Although a

valid test to uncover and report methods that have unintended side effects, the result

of running it provides duplicate sample data for executions across all inputs.

This necessitates manual inspection and pruning of the generated test cases to

ensure their validity, with a high number of programs not receiving any worthwhile

test cases after the generation process completes. This is partially offset by perform-

ing manual code cleaning before providing it to Evosuite, as it may struggle when

analyzing code with complex data structures or code that relies heavily on external

libraries. It is occasionally necessary to strip out some of these aspects before Evosuite

would run successfully. Doing so, however, runs the risk of altering the behavior of

the method being analyzed and may lessen the reliability of the gathered data.

Ultimately Evosuite is a research tool and does not have the same reliability as

an industry tool, and as such suffered from numerous crashes or other failures to

generate tests depending on the complexity of the input code. This limitation made

the effective use of Evosuite difficult as a general solution for test input generation

across a wide range of programs.

Despite these challenges, Evosuite remains valuable for automated test case gener-

ation. Its ability to generate a diverse set of test cases that cover a wide range of code

branches makes it an essential component of the test generation process. However,

due to these aforementioned issues, additional tools are also employed for cases when

Evosuite was insufficient.

4.2.2 Randoop

Due to the high number of programs where Evosuite is either unable to generate any

tests or the generated tests are unusable for gathering training data, Randoop [8] is
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considered as an alternative.

Programs where Evosuite fails are then provided to Randoop [8] to generate

tests. Randoop is another automated test case generation tool for Java programs,

which focuses on generating unit tests by employing a feedback-directed random test

generation approach. Randoop’s methodology consists of iteratively building test

cases, executing them, and using the results to guide the generation of further test

cases. It employs heuristics to increase the likelihood of generating test cases that

reveal faults, aiming to improve software quality.

Similarly to Evosuite, Randoop introduces its own challenges. One of the main

issues faced while using Randoop is the generation of trivial test cases. When used

across our collection of sample programs, Randoop frequently produces test cases that

do not meaningfully execute the conditional statements being analyzed, similarly

to Evosuites generation of side-effect tracking tests. This results in the majority

of runtime data collected from execution of Randoop-generated test cases either

being duplicate, such as sampled data consisting of hundreds of entries of the exact

same value pair and label, or being entirely random, where the method itself has no

influence over the gathered data and further evaluation shows more about Randoop’s

number generation than the program being analysed.

Unfortunately despite promising results with initial experimentation, the chal-

lenges and failed attempts at test generation outweighed the sporadic successes. As

such Randoop is not used for any test generation that resulted in training data

that was passed to the PAC learning algorithm. With automatic solutions proving

infeasible for large-scale test generation of random programs, it was necessary to rely

on test generation methods more tailored to the source code.
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4.2.3 Manual and Semi-Automated Test Generation

In situations where prior methods fall short in generating adequate test cases, man-

ual test case generation becomes necessary to allow the collection of meaningful

runtime data for the PAC learning algorithm. Writing test cases manually, while

time-consuming, ensures the creation of test cases that are better suited to gathering

training data for the PAC learning algorithm. In this thesis, this process is acceler-

ated by leveraging the capabilities of Chat-GPT, an AI language model trained to

understand and assist with a wide range of tasks, including code analysis and test case

generation. Chat-GPT can offer suggestions for test cases or specific input values that

are more likely to exercise different execution paths and uncover potential faults, thus

improving the quality and diversity of the generated test cases. Although the results

when using a Large Language Model such as Chat-GPT are unpredictable, it is often

possible to achieve valuable results through prompt engineering, an interative process

of tailoring requests to better address the short-comings of previous responses.

The following example is a generic prompt that can be given to Chat-GPT along-

side the source code of the method in question:

Write a JUnit test for the following method:

The jUnit tests that resulted from the above prompt included all necessary boil-

erplate code and would compile and run without issue. Chat-GPT also provides

seemingly random input values for the methods being tested, satisfying the need of

test generation process by providing varied inputs for the instrumented programs so

that they generate training data.

It is worth noting that all methods of test case generation, including those pro-

duced by Evosuite, Randoop, and Chat-GPT, require some level of manual cleaning
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and inspection to ensure the validity and relevance of the generated test cases. This

manual effort is crucial for maintaining the overall quality of the test suite and

ensuring that the collected runtime data is reliable and useful for the PAC learning

algorithm.

4.2.4 JUnit-QuickCheck

In addition to manually cleaning generated and written test-cases, it is necessary to

run those test cases across a wide variety of valid values so that the generated data

is not directly limited to the number of available test cases. JUnit-QuickCheck is a

library that integrates with JUnit and implements property-based testing, allowing

tests to be executed on a range of parameterized inputs [6]. Running the generated

jUnit tests across these parameterized inputs allows a handful of tests to provide

hundreds of inputs for the methods being analyzed.

By specifying properties that input values should satisfy, such as constraints on

the range or type of values, JUnit-QuickCheck quickly generates a variety of inputs

that meet these conditions. Once the test cases are executed they are run repeatedly

with different values for the parameterized inputs until the set conditions are satisfied.

As the data gathered by this process depends on the structure of the software itself,

the parameterized tests can then be run again until a sufficient amount of data for all

branch executions is generated with each iteration providing new randomized inputs

within the parameters. This process of gathering a wide range of parameterized data

makes it possible to observe the behavior of conditional statements using the PAC

learning algorithm, and facilitates the generation of a wide array of test inputs upon

which to run our previously generated testing suite.
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The parameterization process is fairly trivial to do manually, however as Chat-

GPT is already being utilized to generate the tests themselves, a simple change to

the above prompt results in the generated test cases already having the necessary

boilerplate code and changes to provide parameterized inputs:

Write a JUnit test for the following method that uses jUnitQuickcheck

to constrain the methods parameters between -1000 and 1000:

This reliably results in a jUnit test that can immediately be run that uses jU-

nitQuickcheck to select random input variables for the methods being tested. One

execution of the jUnit test results in 100 executions of the parameterized test, which

then results in a varied amount of training data from the instrumented program

depending upon how often the instrumented instructions are run during a single

method call.

4.3 PAC Learning Algorithm

With the sampled data L from our test executions, we can provide the PAC learning

algorithm with the input for generating regions. The PAC learning algorithm ac-

complishes its task by utilizing dual space projection to create encapsulating regions

out of sampled data. There are two spaces, the original (x, y) plane is referred as a

primal V ′ , and the new space (u, v) is the dual space V ∗. When a point on a two

dimensional plane is projected onto a dual space it becomes a line on that dual plane.

That is, this projection takes a point with (2, 3) coordinates and places them in the

slope-intercept formula for a line, with the value of x coordinate becoming the slope

and the value of y coordinate being negated and used as the intercept, i.e., v = 2u−3.
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Figure 4.5: Visual example of the dual space projections used in the PAC Learning
Algorithm

Using this approach, the sampled data L is first projected from the primal space V ′

to the dual space to form a set of lines which separate the dual space V ∗ into regions

R∗. A region r ∈ R∗ is defined as a conjunction of polyhedra, which we form them by

points where lines in V ∗ intersect. In order to “separate” points in V ′ we need to find

centroids of each region in R∗. Given a region r ∈ R∗ that is defined by set of points

(ui, vi), with i = 1, . . . n, the coordinates of the centroid (ur, vr) are the arithmetic

mean all points forming the region, i.e., ur = (
∑n

i=1 ui)/n and vr = (
∑n

i=1 vi)/n. The

centroids in V ∗ are projected back to V ′ which once again results in lines, thus (ur, vr)

in V ∗ becomes y = urx− vr in V ′. These lines define the final set of regions R′ in the

primal space, which is used in the rest of the thesis to identify a set of predicates P .

To illustrate the process of dual space projections consider Figure 4.5, where the

left image contains three sample labeled points. The middle image shows the projec-

tion of these onto the dual plane where the three points become three overlapping

lines. Their intersection points form a region, which is shaded and a point inside it

is the computed centroid. This centroid is then projected back onto the primal plane

as depicted on the right image, where it becomes a line. In this example this centroid

line separates the initial three data points.

Algorithm 3 provides pseudocode for the region-finding process that we imple-
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mented. The algorithm takes the set of hyperplanes H as input and returns a set

of regions S ′, where each region is a set of intersection points. An intersection κ is

represented by coordinates and the set of hyperplanes that create this intersection.

In our implementation, h will be a line represented by the slope intercept formula,

and contains references to all other lines that intersect ordered by the x value of the

intersection’s coordinates (in an x-y coordinate system).

Algorithm 3 Pseudocode for Region Finding algorithm.
1: function Find-Regions(H)
2: S ′ ← ∅
3: for all hyperplane h ∈ H do
4: for all intersection κ ∈ h do
5: h′ ← hyperplane intersecting h at κ
6: κn ← next intersection along h′

7: S ← {κ}
8: repeat
9: S ← S ∪ {κn}
10: h′ ← hyperplane intersecting h′ at κn
11: κn ← next intersection along h′

12: until κ = κn
13: S ′ ← S ′ ∪ {S}
14: end for
15: end for
16: Return S ′
17: end function

Once all intersections are calculated, lines 4 through 14, the algorithm iterates

over these intersections with each intersection serving as a starting point for finding

a potential region. Lines 8 through 12 take the starting point κ and increments κn to

the next closest intersection along the current line h′. On line 10 h′ is updated with

the closest intersecting hyperplane.

The algorithm continues updating κn and h′, until κn is back to the initial in-

tersection for the region. Intuitively, the algorithm ‘walks’ around the perimeter of

the region’s edges visiting and storing each vertex as the algorithm progresses. Upon
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terminating the loop on line 12, the algorithm has traversed the entire region, which

it stores as the set of these intersection points, and adds these points to the return

set on line 13. Once all possible starting intersections are traversed, the algorithm

has obtained the full set of regions and returns it.

Once our final regions in the primal space are found we can examine the labels

on the data and begin labeling regions as positive and negative. The sorting method

uses a greedy set covering algorithm to find the region that contains the greatest

number of positively labeled data points and remove that region and those points

from consideration. The set covering algorithm then continues until all of the positive

data points have been removed. The final set of regions encapsulating those positive

points form a boolean combination of halfspaces H that is output into the next step

of the process.

4.4 Domain Projection

Once the algorithm has generated the final set of halfspaces H, it can then generate

partitions that form our predicate domain. Given a hyperplane h in H is defined by

a slope m and a Y intercept b, we need to develop a method that finds an associated

integer value to act as a partition in the domain. The algorithm determines what

value is appropriate to create the partition as well as which variable the partition is

defined for. As h represents a potential position for separating values of a variable we

use horizontal hyperplanes as partitions for values along the vertical axis, and vertical

hyperplanes for values along the horizontal axis.

There are a number of considerations that must be taken into account to achieve

this projection. As a hyperplane is defined by slope, the corresponding line can



35

Figure 4.6: Diagonal, horizontal, vertical, and unclear hyperplane lines.

never be vertical as m< ∞. Furthermore a hyperplane with m= 0, corresponding

to a perfectly horizontal line, is unlikely to occur. This is due to the nature of the

dual-space projection, where m in the primal-space corresponds to the u value of a

region’s centroid in the dual-space. Although it is possible for this centroid to be

at exactly u = 0 it is more likely to be slightly offset, resulting in a non-horizontal

hyperplane.

Both of these issues are resolved by introducing a threshold K◦, the number of

degrees that the corresponding line of h can diverge from each axis while still being

considered as axially aligned. In total there are four separate cases that the algorithm

considers when projecting the PAC learning algorithm’s hyperplanes onto a predicate

domain; these cases are shown in Figure 4.6 as examples. An abstract representation

of determining the cases is shown in Figure 4.7.

4.4.1 Vertical Separations

For the third case shown in Figure 4.6 when the slope of h is within K◦ of vertical

it is suggesting a potential separation of values at the X intercept of h. This value

is calculated by solving for X when Y = 0 and is then added to a list of potential

partitions. The Y intercept is used as the data being separated in this work is always
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Figure 4.7: Unit circle visualizing ranges of line angles resulting in differing hyperplane
projections.

centered around (0, 0). However, for data that is known to be offset the intercept

should be offset as well to account for the variation from the intercept caused by K◦.

4.4.2 Horizontal Separations

The second case in Figure 4.6 follows a similar process when the slope of h is within

K◦ of horizontal. This implies a potential separation at the Y intercept h, where the

Y intercept is used in place of the X intercept as the point of separation. This value

is already calculated as part of h and can likewise be added to the list of potential

partitions.
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4.4.3 Diagonal Separations

Handling nearly diagonal lines as shown in the first case in Figure 4.6, when the

slope of h is within K◦ of (horizontal ± 45◦), requires additional consideration. As

a partition derived from h would not directly relate to either variable individually it

is unfitting to use h to provide a partition. Furthermore, data that can be cleanly

separated by a purely relational line, one defined by a relationship of X = Y or

X = −Y suggest program behavior that is itself relational. For programs such as these

the predicate domain is insufficient for performing analysis. As such the algorithm

provides the user with a warning when such a hyperplane is encountered during the

partition generating process, suggesting that a more expressive abstract domain may

be necessary.

4.4.4 Unclear Orientations

For the remaining cases when h does not fit into previous categories, the hyperplane

is discarded as any partition generated from it would be unlikely to provide any value

to the analysis. Such a line is shown as the fourth case in Figure 4.6 where the

separating hyperplane is not suitable for projection.

4.5 Synthesizing Complete Domains

The partitions generated for each variable form the basis of the complete domain. The

process of merging these partitions is influenced by the order in which the hyperplanes

are selected by the PAC learning algorithm and the potentially relational nature

of the program’s behavior. Furthermore as the goal of this thesis is to specifically
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create disjoint domains, the individual partition values must be made into disjoint

predicates.

4.5.1 Partition Prioritization

As the partitions generated earlier in the PAC learning algorithm process separate

more points they are assigned a higher priority. This ensures that these early parti-

tions, which tend to carry more information, have a larger influence on the shape of

the final domain.

4.5.2 Relational Program Behavior

The possibility of the program behavior being relational is taken into account. If the

most weighted partition suggests a relational behavior, i.e., the partition is diagonal

and separates both variables equally, then it is highly unlikely that lower priority

partitions are beneficial to the analysis.

In such a case, the algorithm halts the partition process and alerts the user, as a

single variable predicate domain would be insufficient for capturing variable relations

and a more comprehensive abstract domain is required.

4.5.3 Domain Construction

Once all partitions have been prioritised and any relational behavior has been ad-

dressed, the complete predicate domain is constructed. The partitions are sorted in

decreasing order of the number of pairs separated, and each is added to the domain.

A singular integer value that was generated during the projection process is split into

three separate predicates for values less than, greater than, and exactly equal to the

generated value.
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The addition of these partitions creates a new segment of the domain. For

instance, adding a partition at value j splits the range of that variable into three

segments: (−∞, j), [j], and (j,+∞). Each added partition further subdivides the

range of its variable.

In some cases, not enough partitions are generated for a worthwhile domain. For

these cases, partitions generated for one variable can be utilized for both variables.

This strategy ensures that at least some partitioning is accomplished, though it might

not be optimal.
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CHAPTER 5

EVALUATION

To determine the effectiveness of our approach for static analysis domain generation

we perform the following evaluation: we gather sample data from test executions of

instrumented programs, provide that sample data as training material for our PAC

learning algoithm to learn potential partitions in our domain, and test the newly

generated domain against randomly selected common domains by evaluating their

comparative precision across all execution paths. These results are then examined

to determine if the generated domain is more precise than the randomly selected

domains on average, and if so how much sample data is necessary for training the

PAC learning algorithm to receive such a domain.

The following sections present the results for each evaluiation step as well as notes

on attempted domain generation. The results are presented to assist in answering the

folowing research questions:

RQ1 How can data be efficiently gathered from programs to provide samples for the

PAC learner?

RQ2 How does sample size affect the output of the PAC learning algorithm?

RQ3 Can the PAC learning algorithm produce predicate abstract domains on a set

of benchmark programs?
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5.1 Initial Filtering of Test Programs

Evaluation is performed over a set of 33 Java program files contatining 209 meth-

ods [13]. This benchmark set is obtained from previous work related to this thesis,

including SA research using disjoint predicate domains. Despite being used in similar

work there are many programs and methods that do not have learnable features to

train the dual-space projection PAC learning algorithm.

The PAC learning algorithm is applicable to problems comparing two non-constant

variables with ≤ or ≥ relations. When one of the variables is constant it results in

a one-dimensional space within the dual-space projection, and furthermore can be

analysed using simpler methodologies such as value extraction where the constant

value is used as the partition. Equality or inequality result in labeled data where the

majority of the results share the same labels. Such unbalanced data cannot be used

to learn accurate separations.

An additional difficulty in the provided Java programs arose from transformations

applied to them to allow the programs to compile and run without additional external

code. A common transformation assigns random values to unresolvable expressions.

For SA evaluation this poses no problems as the analysis is performed without exe-

cuting the code and therefore the random values are suitable placeholders. However,

this work leverages the actual values of variables are necessary for the training data,

thus such a transformation creates many situations where the sampled training data

would be direct comparisons of two random integers. Although this data would be

technically usable within the PAC learning algorithm, it would not provide any insight

into the behavior of the program under analysis as it would be equivalent to training

the PAC learning algorithm entirely on random values.
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To eliminate such situations, the initial programs are manually filtered at the

source code to only those methods that contain if statements comparing two or more

non-constant variables. Furthermore those non-constant variables must not have been

set to random values without any calculations performed altering them prior to the

comparison. If the variables are initially set to random values but then are changed

by the program behavior the methods are kept.

Table 5.1: Class Filtering Results

Category Classes Methods
Total 33 209
Only trivial comparisons 16 158
No valid comparisons 8 16
Unable to create test suite 1 9
Valid benchmark programs 8 11

Table 5.1 shows the number of programs that are filtered out from the benchmark

set along with the reason for filtering. Programs listed as ‘Only trivial comparisons’

are those that had comparisons of two or more non-constant variables, but the values

of those variables would be entirely randomly generated independant of the program’s

execution. These programs are able to be instrumented and can have the PAC

learning algorithm attempt to generate domains for them. However, such results are

not able to accurately capture the relational behavior of the variables being analysed.

‘No valid comparisons’ are the programs that have no if statements comparing two or

more non-constant variables. These programs provide no data for the PAC learning

algorithm to train on. One program is removed because executing it requires external

map data for the program to perform calculations on, without which it behaves as

the ‘Only trivial comparisons’ programs. Since it is not feasible to obtain this map

data, it is removed from the set.
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With filtering complete the remaining eight Java programs are set to be instru-

mented and used within the domain generating framework and have jUnit tests

generated for them so that sample data can be gathered.

5.1.1 Instrumentation

The instrumentation process is straightforward with the procedure in Chapter 4

adding the value reporting statements to each of the valid programs. The majority

of the programs have a single conditional statement that is instrumented resulting in

a single set of sample data each. The GeoEngine and Sort classes are exceptions,

with GeoEngine containing three separate methods with valid comparisons that are

instrumented, of which GeoEngine.moveCheck() contains two separate valid condi-

tional statements that are instrumented. Sort contains both Sort.selectSort()

and Sort.bubbleSort() which both contain valid conditional statements that are

instrumented.

5.2 Test Generation

As the test generation step of the framework requires significant manual oversight,

the results are highly specific to the individual target programs. As such different

programs have different steps performed on them. The following results demonstrate

this aspect with various classes reporting no data for some steps, as those classes are

handled in a different manner.

Table 5.2 provides the results of Evosuite generating jUnit tests for the valid

benchmark programs. The table shows the number of tests that Evosuite generated

as well as the reported statement coverage of those tests. The column labeled ‘Useful’
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Table 5.2: Evosuite Test Generation Results

Class Name Tests Generated Coverage (%) Useful
AmyFastSimplex n/a n/a n/a
BinarySearch 8 39 6
Example1M 8 34 8
GeoEngine n/a n/a n/a
InfBlocks n/a n/a n/a
MultidementionalArray 3 44 0
QRCodeDataBlockReader 1 0 0
Sort n/a n/a n/a

denotes how many of the generated jUnit tests can be used to run the methods

containing the instrumented comparisons. As Evosuite generates tests for an entire

class file, not all of the instrumented comparisons execute during a jUnit test run.

Thus it is possible for the jUnit tests to diverge from the relevant portions of the

program.

For the programs MultidementionalArray, QRCodeDataBlockReader, and the

four for which Evosuite fails to produce tests, the tests are instead created either

manually or with assistance from ChatGPT. For BinarySearch and Example1M one

of the useful jUnit tests is selected and augmented using jUnitQuickCheck to be able

to run repeatedly with parameterized inputs. Once all of the programs have jUnit

tests that have been augmented by jUnitQuickCheck the tests are able to be run to

gather the sample data for training the PAC learning algorithm.

Table 5.3 shows the results of 5 sets of 100 parameterized executions of the method

being tested, for a total of 500 method executions across varied input values. The

table shows that binarySearchUsingDivision() has far more gathered samples than

the 500 parameterized executions, since each execution results in the instrumented

code being called multiple times due to the method recursively calling itself. The
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Table 5.3: Method Execution Results

Method Name Samples
AmyFastSimplex.noise() 0
binarySearchUsingDivision() 2611
example1M() 500
GeoEngine.moveCheck() 1 789
GeoEngine.moveCheck() 2 500
GeoEngine.nLOS 0
GeoEngine.nGetNSWE 487
InfBlocks.proc 0
MultidementionalArray.maxProduct() 0
QRCodeDataBlockReader.getNextBits() 0
Sort.selectSort() 0
Sort.bubbleSort 0

majority of the tested methods show no samples being gathered. This is caused

by the instrumented code not being executed during the test case run. Although

these methods do contain conditional statements that match the requirements of

the filtering process, the actual outcome of the instrumentation does not match

expectations due to how the instrumentation process handles three-address-code.

More information about this difference is discussed at the end of this chapter in

Section 5.4. In the cases where the instrumented code did provide usable training

data it is then passed on to the PAC Learning algorithm to generate a predicate

domain.

These results provide insight into “RQ1: How can data be efficiently gathered from

programs to provide samples for the PAC learner?”. With a strict filtering set and

multiple tools utilized to gather data, the process is fallible and inconsistent. Manual

user intervention is required for nearly all steps, most notably the filtering process

and the augmentation of jUnit tests for parameterized executions. With less than half

of the filtered benchmark programs providing usable tests it does not seem flexible
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enough to be incorporated into a program-agnostic analysis pipeline. Furthermore

with tests written for the full set of filtered benchmark programs, instrumentation

gathered training data for less than half of all valid conditionals.

5.3 PAC Learning Algorithm

5.3.1 Synthetic Data

Initial experiments with the PAC learning algorithm are performed on a trivial Java

method MinOfThree that takes three input values and compares them, returning the

minimal value. Experiments using MinOfThree are directly invoked with random

values of varying ranges. Whereas tests on the benchmark set of programs were

all performed using a standardized range of input values, the tests on MinOfThree

used synthetic data with specific variables set to values within specified ranges.

Figures 5.1, 5.2, and 5.3 show sample data gathered across handpicked ranges for

the random values of the input variables. Although MinOfThree takes three input

variables, each comparison only deals with two at a time, with the left hand side

(LHS) of the comparison on the horizontal axis and the right hand side (RHS) on the

vertical axis.

Figure 5.1 shows the results of running the PAC learning algorithm on sample

data from two separate tests of the MinOfThree program, once with a sample size of

50 in the left column and once with a sample size of 200 in the right column. As each

execution of MinOfThree has three comparisons, it results in three different sets of

output. Each row displays data sampled from one of the three comparisons, with the

first row having a sampled data point for each execution. As the second comparison

only happens when the first evaluates to ‘True’ and the third when ‘False’, each of



47

those rows has roughly half the number of samples. Samples are colored based on their

label from the instrumentation which relates to whether the conditional statement

resulted in a ‘fall-through’ or a ‘branch-out’, and lines are the hyperplanes generated

by the PAC learning algorithm.

Figure 5.2 applies a different setup from Figure 5.1 with input values clamped

between -1000 and -500 when negative or between 500 and 1000 when positive. This

provides clear values for ideal partition points within the values of the sample data,

although as shown by the lines representing selected hyperplanes, no such separations

are found.

Figure 5.3 repeats the experiment with clamped input values on an alternative

implementation of the MinOfThree program. This implementation takes the same

inputs and provides the same output, however uses a different internal configuration

of conditional statements, resulting in a different distribution of sampled data points.

This series of tests provided the results closest to the desired outcome of horizontal

and vertical lines at key input values.

Examination of these figures provides initial insight into “RQ2: How does sample

size affect the PAC learning algorithm?”. With smaller sample sizes there is a greater

variance in the sampled data, balanced by a lower number of pairs that must be

separated. Larger sample sizes provide data that more clearly demonstrates program

behavior, with a higher likelihood of pairs that are close together and more difficult

to separate. These hard to separate points occur more frequently when both LHS

and RHS variable are nearly equal. Data with a large number of hard-to-separate

points is more likely to require a greater number of hyperplanes to form a complete

separation.

The figures also provide examples of hyperplanes along the X = Y line. Due
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to the limitations of three-address-code any hyperplane along this line will perfectly

separate all points. Although no definitive pattern emerges, it appears likely that

with a greater number of sample data points the dual-space projection will be more

likely to produce a hyperplane along X = Y resulting in this trivial separation.

5.3.2 Input Variable Symmetry

Since the PAC learning algorithm is not symmetric in terms of the LHS and RHS

variables, this thesis examined the results from switching the effective side of the

variable when providing the sample data to the learning algorithm. Whereas by

default the algorithm takes the LHS and RHS variables and assign them to the

horizontal and vertical axii respectively, it is equally valid to instead assign the LHS

variable to the vertical axis and vice versa. Despite using the same sample data values

and performing the same technique, this provides different results as the dual-space

projection behaves different for each axis.

Figure 5.4 shows four different sets of results from applying the PAC learning

algorithm to the ExampleM1 program. The left column displays the default algorithm

results, the central column displays the flipped algorithm results, and the right

column provides an overlay of both, showing that the blue points on the left column

correspond to the yellow points in the center column. This process can be seen to

result in a different set of hyperplanes depending on whether it is the default or flipped

behavior. Most notably the third row demonstrates that even with identical input

values the ending result can be highly variable.

The results of flipping the input variable sides are gathered to attempt to address

the inconsistancy of generated hyperplanes shown in prior figures. However, as

Figure 5.4 shows in the third column, the overlayed hyperplanes show no apparent
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convergence toward a unified result. Although the existence of hyperplanes along

the X = Y is still noticeable and reinforced by flipping the input variables, no clear

vertical or horizontal separations show themselves in both the original and flipped

result.

The algorithm is run across multiple sample programs with the same results

demonstrating no clear benefit in attempting to unify results from original and flipped

input variables. However as later data shows the PAC learning algorithm does perform

differently depending on the input program being evaluated when evaluating flipped

variables. This is further examined in the following section.

5.3.3 Benchmark Results

Figure 5.5 provides the results of four separate runs of the PAC learning algorithm

across different sample data sets from the binarySearchUsingDivision method. For

each run of the algorithm a clear diagonal line was found separating the points with

differing labels, resulting in an evaluation of the program being purely relational.

Although vertical lines were found they have lower priority in the greedy set covering

and as such were not considered as significant. Furthermore these vertical lines

consistently appeared above the values of the variable corresponding to the X axis.

With external knowledge of the behavior of the binary search algorithm, such a value

would not provide a meaningful partition for program analysis. Instead a vertical line

corresponding to a partition at X = 0 would have been desirable.

Tables 5.4, 5.5, 5.6 contain excerpts of data from using the PAC learning algorithm

with data sampled from the BinarySearch program. The first four columns of each

table provide values for the number of hyperplanes evaluated as a line orientation as

described in Section 4.4. The Primary column lists which orientation is selected by
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Table 5.4: BinarySearch PAC Algorithm Results (Sample Size 50, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
0 1 1 2 Unclear 4
0 0 1 3 Diagonal 4
0 0 1 2 Diagonal 3
0 0 2 2 Diagonal 4
0 0 2 2 Unclear 4
0 0 3 2 Diagonal 5
0 0 2 0 Diagonal 2
1 1 0 3 Unclear 5
0 1 2 1 Diagonal 4
0 0 1 3 Diagonal 4

Table 5.5: BinarySearch PAC Algorithm Results (Sample Size 50, K=15, Flipped
Input Variables)

Vertical Horizontal Diagonal Unclear Primary Total
0 1 1 0 Diagonal 2
0 0 2 0 Diagonal 2
0 0 2 1 Diagonal 3
0 0 1 0 Diagonal 1
8 2 0 1 Horizontal 11
0 0 1 1 Diagonal 2
1 0 2 1 Diagonal 4
0 0 1 0 Diagonal 1
0 0 2 0 Diagonal 2
0 0 1 1 Diagonal 2

the greedy set covering algorithm first, and corresponds to the orientation of the line

that separates the greatest number of points in the dual-space projection.

When comparing Tables 5.4 and 5.5 to determine the efficacy of evaluating original

variable assignments to flipped input variables, there is a clear difference between the

two sets of data. The original set of hyperplanes in Table 5.4 has a far greater number

of ‘Unclear’ lines that are neither axially aligned nor diagonal. The corresponding

flipped data has fewer hyperplanes generated on average with a significantly reduced
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Table 5.6: BinarySearch PAC Algorithm Results (Sample Size 200, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
1 2 0 3 Unclear 6
0 0 1 2 Diagonal 3
0 0 3 0 Diagonal 3
1 0 1 0 Diagonal 2
0 0 1 0 Diagonal 1
1 0 1 0 Diagonal 2
0 0 2 0 Diagonal 2
0 0 2 0 Diagonal 2
0 0 1 1 Diagonal 2
0 2 1 2 Unclear 5

Table 5.7: Example1M PAC Algorithm Results (Sample Size 50, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
1 0 1 0 Diagonal 2
0 1 1 0 Diagonal 2
3 2 1 1 Diagonal 7
2 1 1 1 Diagonal 5
0 2 2 1 Diagonal 5
1 0 1 0 Diagonal 2
1 1 2 1 Diagonal 4
0 0 3 0 Diagonal 3
0 0 2 0 Diagonal 2
0 0 2 0 Diagonal 2

number of ‘Unclear’ lines.

This difference suggests that while considering RQ1 it is advisable to provide the

PAC learning algorithm with data in both the original configuration as well as the

flipped configuration as behavior may only be learnable in one of the two. However,

using both configurations together to determine any unifying characteristics does not

appear possible as the behavior of the two results seems unconnected.

Tables 5.7, 5.8, 5.9 contain the same data gathered from the Example1M program.

The behavior of this program is very likely to be purely relational with nearly every
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Table 5.8: Example1M PAC Algorithm Results (Sample Size 50, K=15, Flipped Input
Variables)

Vertical Horizontal Diagonal Unclear Primary Total
0 0 1 1 Diagonal 2
0 0 2 0 Diagonal 2
0 0 2 1 Diagonal 3
0 0 1 0 Diagonal 1
0 0 2 0 Diagonal 2
0 0 1 0 Diagonal 1
1 0 3 1 Diagonal 5
0 0 1 1 Diagonal 2
0 0 3 0 Diagonal 3
3 0 0 4 Unclear 7

Table 5.9: Example1M PAC Algorithm Results (Sample Size 200, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
0 0 3 0 Diagonal 3
0 0 1 0 Diagonal 1
1 0 3 1 Diagonal 5
1 0 2 2 Diagonal 5
0 0 1 0 Diagonal 1
0 0 3 0 Diagonal 3
0 0 3 0 Diagonal 3
0 0 2 0 Diagonal 2
0 3 2 0 Diagonal 5
13 4 0 2 Vertical 19

run of the PAC learning algorithm resulting in a hyperplane corresponding to a diag-

onal line. The difference between original and flipped variables seen in BinarySearch

is not present here as the sample data was uniformly distributed across both LHS

and RHS variables.

Comparison of Tables 5.7 and 5.9 provides additional confirmation of earlier

conclusions regarding RQ2. Both the number of hyperplanes selected for pair sep-

aration and the orientation of associated lines appear equally dsitributed regardless
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Table 5.10: GeoEngine PAC Algorithm Results (Sample Size 50, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
0 0 0 1 Unclear 1
1 0 0 0 Vertical 1
0 0 0 1 Unclear 1
2 0 0 0 Vertical 2
1 1 0 0 Horizontal 2
0 2 0 1 Unclear 3
1 0 0 0 Vertical 1
0 0 0 1 Unclear 1
0 1 0 1 Unclear 2
0 0 0 2 Unclear 2

Table 5.11: GeoEngine PAC Algorithm Results (Sample Size 50, K=15, Flipped Input
Variables)

Vertical Horizontal Diagonal Unclear Primary Total
0 0 0 1 Unclear 1
0 0 0 1 Unclear 1
1 0 0 1 Unclear 2
0 1 0 1 Unclear 2
0 0 1 0 Diagonal 1
0 0 0 1 Unclear 1
0 0 0 1 Unclear 1
0 0 0 1 Unclear 1
0 0 0 1 Unclear 1
1 0 0 0 Vertical 1

of sample size. Although not shown here, additional tests are performed throughout

the evaluation process using a wide range of sample sizes, displaying similar results.

Sample sizes over 500 seemingly provided no benefit, but did increase execution time

of the learning algorithm significantly due to the program’s complexity. As such

sample size does not appear to have any measurable effect on the output of the PAC

learning algorithm or its ability to produce domains.

Finally, tables 5.10, 5.11, 5.12 contain the data gathered from the GeoEngine



54

Table 5.12: GeoEngine PAC Algorithm Results (Sample Size 200, K=15)

Vertical Horizontal Diagonal Unclear Primary Total
0 0 0 1 Unclear 1
0 0 1 0 Diagonal 1
1 0 0 1 Unclear 2
0 0 0 1 Unclear 1
0 1 0 1 Unclear 2
1 0 0 0 Vertical 1
1 0 0 0 Vertical 1
0 0 0 1 Unclear 1
1 0 0 1 Vertical 2
1 0 0 1 Unclear 2

program. A notable difference in this program is a much lower number of hyperplanes

are needed to separate sample points. The tables do show a number of runs that

resulted in singular vertical lines separating the data points which appears promising,

however the reasoning behind this is more indicitve of the PAC learning algorithm’s

behavior as opposed to anything learned from the program being analysed.

Despite being run on data gathered from the same range of input values as the

other benchmark programs (-1000 to 1000), the sampled data points themselves

cover a much larger range (roughly 0 to 1,500,000,000). When given such a wide

range of potential values the dual-space projection produces hyperplanes with slopes

that vary more significantly. Correspondingly, the intercept values that the domain

projection uses for selecting partitions have a much higher variance as well. With

slopes varying across a wider range, a greater number of lines are marked as vertical,

as any value above or below a certain threshold is considered vertical. This differs

from the behavior of hyperplanes corresponding to horizontal lines which are always

constrained within the same range of slopes centered around a value of zero.
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5.4 Challenges

Once data has been processed using the dual-space projection it is necessary to

interpret the resulting lines and regions in order to derive a suitable method for

projection onto the predicate domain. This presents numerous challenges that must

be uniquely addressed, as prior work utilized techniques with additional complexity

that provide invariant generation methods that are unavailable to us. In the work

by Sharma et al. [11] the resulting regions from the PAC learner are directly used

as invariants as the domain in use for their static analyses allows complex predicates

that can accurately represent the generated region. As the goal of this work is to

generate partitions in the predicate domain, it is also necessary to find a meaningful

way to project the generated region onto this domain.

An additional challenge arises from the nature of the tools being used to gather

data from the programs under analysis. In Sharma et al.’s work each branch being

evaluated can have a wide range of possible conditional statements. Due to the use of

SOOT [16] in this work and the three-address code nature of Jimple, SOOT’s internal

representation of code, the conditional statements that are available to evaluate are far

simpler. In the original source code a conditional may include any number of variables

and constant values being compared to each other, for example in a statement If

(X ≥ 50 AND X ≤ 100) where the value is bounded between 50 and 100 for all true

executions. Once represented in Jimple, however, this would result in two separate

conditional statements being evaluated, one that checks for X to be equal or greater

than 50, and another that checks if it is equal to or under 100. By evaluating these

two conditions separately the information that they are related is not immediately

available to the PAC learning algorithm.
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When examining comparisons of two variable values, the case with the most com-

plexity available to us, the data is also limited by the number of available operations.

With greater-than and less-than comparisons both resulting datasets have regions

that are perfectly separated by the linear representation of the two values being

equal. Equality and inequality comparisons similarly have separations around that

line, separating the values on the line from those not on the line.

Having resulting data sets that are all separable along the line of equality results in

regions that are largely unbounded as well as a large number of relational separating

lines being generated. These relational lines often efficiently separate the two data

sets but are difficult to turn into useful predicate partitions, as each partition can only

provide an invariant for a single variable and not a relation between two variables.

Sharma et al. [11] address this in their work by specifically selecting lines with slopes

that were able to be used as lines along a single variable and then translating those

lines to be in an appropriate position. For example finding a horizontal line with a

slope = 0 at Y = 3 and translating that line to Y = 10 where all data points are

cleanly separated at this point. However this technique could be similarly applied by

originally generating lines at those positions prior to doing the dual-space projection,

and as such the technique is not beneficial to this work.

5.4.1 Domain Creation

Regarding RQ3: “Can the PAC learning algorithm produce predicate abstract domains

on a set of benchmark programs”, these challenges suggest that the framework using

the PAC learning algorithm is not suitable for this purpose within the limitations of

this work. The limited set of programs that both remained in the benchmark set after

filtering and produced training data after instrumentation is limited to three methods.
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Of these three methods that are viable for using the PAC learning algorithm, each

returns consistent results that state a relational analyses is necessary for improving

precision of SA. In cases where the PAC learning algorithm generated hyperplanes

that could be used for partitioning, the projected values were neither meaningful nor

beneficial.

The program Example1M was run repeatedly through the PAC learning algo-

rithm with large sample sizes until a number of hyperplanes was generated that

could be used to populate a single domain. The result of this was the domain

(∞,−110](−110, 0)01(1, 35)[35,∞) with two generated partitions, at -110 and 35,

along with partitions at 0 and 1 which are always assumed to be beneficial.

Analysis was then performed on the Example1M program using both this generated

domain and several other pre-existing domains that were randomly selected. For every

comparison between the generated domain and the randomly selected domain, the

two performed the analysis with equal accuracy. As such the problem posed by RQ3

does not seem to be answered by this thesis, and if attempted with the results that

are provided accuracy is not improved.

5.5 Threats to Validity

5.5.1 Internal

Due to the low success rate of using Evosuite for test generation it is likely that the

tool is not being operated in ideal circumstances and may have resulted in inoptimal

jUnit tests for data gathering. This is mitigated by the manual review process of the

jUnit tests along with the manual augmentation that occurs afterwards. Likewise the

parameterized input values generated by jUnitQuickCheck may not be indicative of
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real user inputs and could negatively affect the validity of the learning data sampled

from them.

5.5.2 External

The programs used in the evaluation benchmark are likely not representative of

the problems that would benefit from this form of analysis, evident due to the

large number that were manually filtered out. The filtering process mitigates this

issue although additional programs that pass the filtering process would undoubtedly

improve the reliability of the results. Finding such programs proves to be a significant

challenge and was not able to be done during this work.
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Figure 5.1: Results of PAC Learning the MinOfThree program with random input
values between -1000 and 1000
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Figure 5.2: Results of PAC Learning the MinOfThree program with random input
values between -1000 and -500 or between 500 and 1000
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Figure 5.3: Results of PAC Learning an alternate MinOfThree program with random
input values between -1000 and -500 or between 500 and 1000
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Figure 5.4: Results of PAC Learning the ExampleM1 program with the original and
flipped LHS/RHS assignments.
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Figure 5.5: Results of PAC Learning the BinarySearch program.
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CHAPTER 6

CONCLUSION

The research conducted has yielded several important findings that contribute to

better understanding of static analysis domain generation and identified new oppor-

tunities for future research.

Firstly, the issue of gathering runtime data from arbitrary programs remains an

unsolved problem. A separate investigation is required to address this defficiency fully

as it currently poses a considerable obstacle to the repeatability of the methodology

used in this study. Without a reliable approach to generate tests for an arbitrary pro-

gram and receive sample data for training the PAC learning algorithm the framework

requires significant manual effort, which makes the approach less feasible. However,

this work discovered that tools such as jUnitQuickcheck and ChatGPT can aid in

required test case generation. This could be a potential avenue for further exploration

and improvement in this area, with the potential for fully automating the framework

in the future.

Secondly, the PAC learning algorithm demonstrates a high level of flexibility in

terms of sample size. Evaluations show that the algorithm can operate effectively with

no clear dependency on the sample size, other than the decreased runtime efficiency

for large sizes. This suggests that the PAC learning algorithm itself is robust and

adaptable, capable of handling a wide range of data inputs at the abstraction level
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used in this thesis.

This work also revealed a narrow scope of programs that can benefit from the

proposed approach. Due to the constraints imposed by the three-address-code and

integer based analysis, the number of programs from the available benchmark with

required characteristics is significantly limited. This restricts the applicability of the

framework to large sets of programs. Furthermore, this limited program availability

precluded any evaluations that determine changes in generated domain precision.

In terms of the projection of hyperplanes onto predicate domains, it was found to

be feasible using the proposed categorization, that uses a degree range of hyperplane

angles. However, the evaluation of the precision of the generated predicate domains

remains to be explored. To address this, the current benchmark set should be

augmented with benchmark programs with non-relational behaviors or the PAC

learning and projection technique should be changed.

In conclusion, while the research has yielded valuable insights and advanced our

understanding of static analysis domain generation, it has also highlighted several

areas for future work. The limitations brought about by three-address-code and

disjoint predicate domains likely preclude the ability to perform two-dimensional

geometric analysis, and therefore learnability of these geometric concepts with a PAC

learning algorithm appears infeasible on the given set of programs. Nevertheless this

thesis proposes several suggestions to improve the approach in the hopes of finding

more promising results.
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6.1 Future Work

The findings from this research have opened up several avenues for future explorations

and improvements in the field of automated abstract domain generation.

One of the key areas for future work is the improvement of automation for test

case generation in order to gather a sufficient data sample more efficiently. Using

existing tools makes the current process labor-intensive. This step can benefit from

the development of more sophisticated automated tools or techniques. Alternatively,

future research could explore different methods for executing arbitrary code to gather

sample data, which could potentially overcome some of the limitations encountered

in this study.

Another promising area of exploration is the development of a methodology for

evaluating the full behavior of variables at a given program location. By capturing

richer information relating to variable relations there is potential for a machine

learning algorithm to synthesize finer results. This could result in a less restricted

selection criterion imposed by the three-address-code, which was found to limit the

number of suitable programs. In addition, there is potential to extend the PAC learn-

ing algorithm itself to handle more than two variables using higher-dimensionality

dual-space projections. This could enhance the versatility and applicability of the

PAC learning algorithm.

Finally, future research could also investigate different PAC learning methodolo-

gies. For instance, finding rectangular bounds of data samples could provide an

alternative approach to domain generation and offer new insights into the capabilities

of PAC learning in this context, while also circumventing issues that arose during

projecting hyperplanes onto predicate domains.
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