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ABSTRACT 

The western US is facing both the rapid urbanization of agricultural lands and a 

changing climate, producing subsequent changes to irrigation water demand and 

availability. Adaptive water management requires knowledge regarding how and why 

water usage and availability is changing; however, managers often do not possess the 

tools or resources for the necessary analysis. These environmental changes are also place-

based, meaning that water managers cannot directly use studies from other basins to 

actively manage theirs. Co-produced, actionable research can help fill this knowledge gap 

and provide the necessary information for adaptive management. The Lower Boise River 

Basin (LBRB) in southwestern Idaho is one location that is facing both the pressures of 

urbanization and climate change and where water managers need the long-term analysis 

to contextualize how or if these mechanisms are affecting the irrigation system. This 

research studied both irrigation water diversions and irrigation drain return flow. The 

goals of this research were to 1) understand how diversions and drains in the LBRB have 

changed from 1987 to 2020 and 2) to quantify the effects of urbanization, annual weather, 

and reservoir availability on diversion and drain flows. We used a Mann Kendall test to 

quantify changes in discharge through time and used variations of a Bayesian 

Generalized Linear Mixed Effects Model to quantify the effects of predictor variables on 

annual discharge for both diversions and drains. Generalized linear models were also 

used for the diversions to understand the effects of predictor variables at the individual 

diversion scale. Diversions had variable results across the basin with a mix of increasing 
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(18%), decreasing (35%), and no trend in discharge through time (47%). Forty percent of 

drains that return irrigation water back to the Boise River had decreasing trends through 

time while 60% had no significant change. Diversions had variable responses to 

urbanization, which could be the result of both human decision-making and complex 

changes in surface water-groundwater interactions associated with urbanization. Drain 

flows decreased with urbanization more uniformly, which is an indication that drain 

flows are supplied by discharge from the shallow aquifer system while diversions are 

more controlled by human decision-making. Increased evapotranspiration increased both 

diversion and drain discharge while increased temperatures decreased discharge for both, 

and precipitation played less of a role in the system. Storage water use from the reservoir 

system had the most consistent positive effect on diversions across models, 

demonstrating how the reservoir system supplies water during the irrigation season and 

helps offset the lack of precipitation in this semi-arid region. Increased diversion flows 

also increased drain flows, demonstrating that seepage loss from canals feeds the 

groundwater and drain system. This analysis showed complexities across the basin for 

both drains and diversions and supports the need for localized research to help water 

managers with adaptive management.  
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CHAPTER 1: INFLUENCE OF URBANIZATION AND CLIMATE ON SURFACE 

WATER DIVERSIONS IN A SEMI-ARID BASIN 

Introduction 

Arid and semi-arid regions in the United States are rapidly urbanizing, with 

eleven out of the fifteen fastest growing cities in the US located in the South-Central and 

Western US (from 2010 to 2020; Friedrich, 2020). These are water-scarce regions where 

rising populations and associated land use and land cover change (LULCC) are leading to 

water manager’s growing concern about their ability to meet future water demands. 

Irrigation water is the largest form of consumptive water use in arid regions, making it a 

particularly important facet of water management to study and understand (St. Hilaire et 

al., 2008).  For example, in Denver, Colorado, outdoor irrigation can comprise up to 50% 

of a household’s water use (Denver Water, 2022) and up to 74% in the Phoenix 

Metropolitan Area (Balling and Gober, 2007). Because irrigation consumes a large 

component of water usage in arid and semi-arid regions, understanding how shifts in 

LULCC changes irrigation water demand is imperative for water managers that are trying 

to anticipate future demand. 

The extent to which irrigation water demand changes with urbanization of 

agricultural areas is highly variable across studies and is dependent on location-specific 

variables (Baker et al., 2014; Kliskey et al., 2019). Some irrigation estimates of total 

water applied remain constant following urbanization (Baker et al., 2014; Crandall, 2019) 

while other studies show that irrigation demand decreases as a region transitions to an 
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urban environment (Kliskey et al., 2019; Wang and Vivoni, 2022). The variability across 

the literature makes it challenging for water managers to know what to anticipate in their 

management area without place-based research.   

One reason that LULCC has variable effects on irrigation demand is that 

urbanization alters multiple parts of the hydrologic system, namely evapotranspiration 

and infiltration. Urbanization can occur through both urban densification and expansion 

(Dahal et al., 2017), which have opposing effects the hydrologic system. Urban 

densification refers to the infill of already urbanized areas, which results in the reduction 

of outdoor water usage (Polebitski et al., 2011). Expansion or sprawl is defined by low-

density housing and large yards on the edges of a city (Dahal and Lindquist, 2018), and 

how outdoor water usage changes with expansion is less clear. For example, if a 10-acre 

plot of land in the Boise River Basin was converted from agricultural to urban, about 3.8-

acres (38%) of the land would be irrigated in high density urban areas, and 7.6-acres 

(76%) of the land would be irrigated in low-density areas of urban sprawl (Baker et al., 

2014). Turf grass can transpire up to 10% more than some crops (e.g., wheat, barley), 

meaning that reduction in irrigated acreage due to urbanization may not always result in a 

net decrease in irrigation water usage (Baker et al., 2014). Urbanization also reduces the 

amount of permeable surfaces, which can decrease infiltration and impact groundwater 

table levels (Bhaskar et al., 2016). Decreased infiltration due to a reduction in green 

spaces and permeable surfaces and increased groundwater pumping to support potable 

water supplies may lower the groundwater table and result in more seepage from 

irrigation canal systems (Barlow and Leake, 2012). The variation in how irrigation 

volumes shift pre- and post-urbanization is, in part, due to spatial non-uniformity of 
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irrigation practices associated with different types of development and highlights the 

need for place-based research that can take these processes into account. 

Annual weather and local climate will also have variable impacts on irrigation 

water usage, making it challenging or infeasible, to transfer results from one location to 

another (Abatzoglou et al., 2014). Temperature, precipitation, and evapotranspiration are 

often used to understand changes in irrigation water demand, but the impacts of these 

parameters on irrigation demand are highly variable (Balling and Gober, 2007; Breyer et 

al., 2012; Gage and Cooper, 2015; House-Peters et al., 2010). While it is generally 

assumed that increases in temperature will require increased outdoor water usage, this 

response is not always present (Ouyang et al., 2014). For example, how irrigation water 

usage responded to increases in temperature varied even within Phoenix, Arizona, with 

some areas increasing water usage, some decreasing, and some remaining constant 

(Breyer et al., 2012). The lack of, or relatively small, response of irrigation water use to 

temperature changes in this region has, in part, been explained by human behavior. For 

example, in urban areas, sprinkler systems are set to irrigate lawns at regular intervals 

with little change in response to weather conditions (Balling and Gober, 2007). Increased 

precipitation is generally associated with declining irrigation water usage (Balling and 

Gober, 2007; House-Peters et al., 2010; Polebitski et al., 2011), but this is not always a 

significant predictor. The lack of importance of precipitation is due to these urban 

irrigation studies taking place in semi-arid and arid regions (Balling and Gober, 2007; 

House-Peters et al., 2010; Polebitski et al., 2011), which receive the bulk of precipitation 

during the non-irrigation season (Han et al., 2019). Finally, evapotranspiration has been 

used as a proxy for irrigation water use, as it is the consumptive part of irrigation (Allen 
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et al., 2013). This would indicate that increases in evapotranspiration are correlated with 

higher irrigation water use (Johnson and Belitz, 2012). The variability of irrigation water 

usage in response to weather across regions highlights the need for local, actionable 

research, as managers need location-specific information to adequately adapt to changes 

in the system.  

A changing climate will induce further spatial heterogeneity, making climate 

impacts on irrigation water demand even less transferrable from one region to another. 

While climate change will broadly increase temperatures, the extent of increase is non-

uniform (Glabau et al., 2020; Mote et al., 2014), and the direction of changes in annual 

precipitation may increase or decrease depending on the location (Jin and Sridhar, 2012). 

One commonality in anticipated effects of climate change on precipitation across the 

West is that higher temperatures during winter months will result in more precipitation 

falling as rain, and elevated temperatures in the early spring can cause earlier runoff and 

peak discharge in streams, yielding an overall decrease in water availability for irrigation 

later in the season (Glabau et al., 2020; Jin and Sridhar, 2012; Steimke et al., 2018; Sterle 

et al., 2020). Climate change will also increase extreme weather events, such as 

prolonged droughts or extreme heat events, exacerbating water scarcity (Strzepek et al., 

2010). Studying how a specific region’s irrigation water usage is currently responding to 

annual weather variation can help water managers understand how usage might change in 

the future.  

Finally, the source of irrigation water will influence irrigation water demand, and 

its state-to-state variability in the western US is largely missing from the literature. The 

majority of studies on irrigation water demand use billing records from public water 
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supply to estimate outdoor water usage (Breyer et al., 2012; House-Peters et al., 2010; 

Kenney et al., 2008; Sampson et al., 2022). This assumes that outdoor irrigation water in 

urban spaces is solely sourced from public water supply, but public water is not the only 

source of irrigation water in all basins. For example, the drinking water supply is used for 

lawn irrigation in Denver, Colorado (Fillo et al., 2021) while both domestic water and 

surface water from irrigation canals is used to irrigate lawns in some places in Idaho and 

Utah (Bjorneberg et al., 2020; Hoekema and Sridhar, 2011; Kliskey et al., 2019). Urban 

areas that use surface water from irrigation canals for lawn irrigation have less of an 

incentive to conserve water because of the “use it or lose it” section of water law, and 

because it is much cheaper than using domestic water (Nampa Meridian Irrigation 

District; SPF Water Engineering, 2016). Historically, how surface water is used to 

irrigate urban areas has been minimally studied (Bjorneberg et al., 2020; Goodrich et al., 

2020), potentially because it is less common, but this information is necessary for water 

managers in basins where canal systems are being modernized to deliver pressurized 

irrigation water to urban areas.  

The Lower Boise River Basin (LBRB) is a region that has undergone substantial 

LULCC over the past few decades and uses an extensive canal system to deliver 

irrigation water to urbanizing areas that have historical agricultural water rights tied to 

the land. However, water managers in this region do not currently have tools to explore 

how urbanization has impacted irrigation water demand from these canals. The goals of 

this research were to: 

1. Quantify the change in irrigation water diversions for 63 diversions in the LBRB 

from 1987 to 2020, and 
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2. Determine the effects of urbanization and climate on irrigation water diversions in 

the LBRB.  

We evaluated the effects of predictor variables at the basin-wide scale as well as 

within individual irrigation districts. We explored the effects of urban area and climate on 

total irrigation water diversions using repeated observations from 1987 to 2020 with a 

Bayesian generalized linear mixed effects model (GLMM). We investigated interannual 

variability of urbanization and climate on irrigation water diversions using a GLMM with 

an autoregressive-moving average component. We examined the effects of variables at a 

more local, irrigation district scale to understand basin-heterogeneity using individual 

generalized linear models (GLMs) for each diversion.  

Study area 

The LBRB, also known as the Treasure Valley, is in southwest Idaho and has a 

total area of 3,323 km2 (Figure 1). This region is home to 40% of the state’s total 

population (Community Planning Association of Southwest Idaho, 2021). The two main 

counties in the LBRB, Ada and Canyon Counties, had a combined population of 737,790 

in 2020 compared to a population of 581,288 in 2010, a growth of 21% in 10 years 

(Community Planning Association of Southwest Idaho, 2021). By 2100, the area is 

predicted to double, with a population of approximately 1.5 million (+/- 250,000 people, 

Narducci et al., 2017). The LBRB has undergone both urban densification and urban 

expansion into previously agricultural areas (Dahal et al., 2017).  

The LBRB has a semi-arid Mediterranean climate, meaning the area receives 

most of its precipitation during the late fall, winter, and early spring, and the summers are 

hot and dry. Precipitation is spatially variable across the basin with about 700 mm of 
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precipitation in the Boise foothills and only 200 mm occurring in western cities like 

Caldwell (Han et al., 2017). The summer irrigation season relies on the snowpack in the 

Upper Boise River Basin (~800 mm of annual precipitation, Steimke et al., 2018)), which 

is stored in Anderson Ranch, Arrowrock, and Lucky Peak reservoirs. Stored water in the 

three reservoirs (949,700 AF) is used to irrigate approximately 1,602 km2 of land in the 

LBRB as of 2008 (Reclamation, 2008). The geology in the basin is primarily composed 

of granodiorite and granite, basalts, and sedimentary rocks (Lewis et al., 2012), all of 

which have different seepage rates for the canal system (Abdelmoneim, 2021). 

 
Figure 1.1.  Inset and map of the irrigation network in the Lower Boise River 

Basin. 
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Data and methods 

Data Collection and Preparation 

Diversion discharge data.  

We obtained daily diversion flow measurements from 1987 to 2020 for 67 points 

of diversion (POD) from the Boise River from the Idaho Department of Water 

Resources’ (IDWR) Water District Daily Diversion Time Series database (Idaho 

Department of Water Resources, 2020). The daily flows were summed for each year to 

calculate a total annual flow for each diversion in acre-feet/year (AF/yr). We calculated 

the start day of year of the irrigation season, the end day of year of irrigation season, and 

the length of the irrigation season for each diversion. The start day was the first day of the 

year with a flow greater than 0 AF, and the end day of year was the date when the 

diversion reached its cumulative total for the season. Some diversions had earlier start 

dates or later end dates than the normal irrigation season due to using the canals for 

transporting storage water. If the start day of year was earlier than March 1, we 

reassigned the start day for that diversion to the earliest start day of year during March 

from the other canals. Similarly, if the end day of year was after Nov. 15, we reassigned 

the end day of year to be the latest end day of the other canals from that irrigation season. 

For diversions with reassigned start and end date values, we summed the annual diversion 

total using the new start and end days. Analysis of the timing metrics showed little 

variability from year to year and did not warrant further modeling (Supplemental Figure 

1).  
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Reservoir Storage data  

Many diversions in the upper half of the LBRB (above Middleton, Idaho) have 

both natural flow and storage water rights. Storage water is often used after the day of 

allocation, the day of year when curtailments start due to lack of natural flow to support 

all of the water rights. This is critical information about the actual water availability for 

an irrigation season. We used IDWR’s annual Water Rights Accounting Reports to obtain 

the storage water used by each diversion (Idaho Department of Water Resources, 2022a).  

Many diversions in the lower part of the basin do not have storage water rights and 

instead rely on return flows from drains to the Boise River to offset the water needed 

after the day of allocation (Figure 1). Because these drains have historically provided 

surplus water in the river, irrigation users in the lower part of the basin have treated this 

drain water like their storage water. We assumed the total annual water diverted that 

surpassed a natural flow right and was not from storage was return flow water. We 

recorded the value for the associated diversion as the ‘storage water’ used because return 

flows in locations with no storage water rights have treated return flow water like storage 

water.   
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Table 1.1. Datasets used to understand the relationship of diversions with 
climate and urbanization and the computed predictor and response variables.  

Data Type Name Source Data Output 
Hydrologic 
Flows 

Water District 
Diversion Daily 
Time Series 

 
Water Rights 
Accounting 

Idaho Department 
of Water 
Resources (IDWR) 

 
IDWR 

Total Discharge (AF/yr) 
 
 
 

Storage water use (AF/year) 

Geospatial 
Hydrology 

National Hydrologic 
Database (NHD) 
+2.1 
 
Water Rights Point 
of Diversion (POD) 
 
Water Rights Place 
of Use (POU) 
 
Irrigation 
Organizations 

US Geological 
Survey (USGS) 

 
 
IDWR 
 
 
IDWR 
 
 
IDWR 

 
 
 

 
 
Linked POD with POU 

Geospatial 
Land Use  

Land Change 
Monitoring, 
Assessment and 
Projection (LCMAP) 

USGS Urban Proportion 
 

Geospatial 
Climate 

Daily Surface 
Weather and 
Climatological 
Summaries 
(Daymet) 

 
 
Operational 
Simplified Surface 
Energy Balance 
(SSEBop) 
Evapotranspiration  

Oak Ridge 
National 
Laboratory 

 
 
 

 
David Ketchum, 
University of 
Montana 

Avgerage Maximum 
Irrigation Season 
Precipitation (mm) 
Avgerage Maximum 
Irrigation Season 
Temperature (°C) 

 
Avgerage Total Irrigation 
Season Evapotranspiration 
(m) 
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Diversion spatial data 

We connected the Water Rights Place of Use (POU), or the designated area where 

water can be applied for a given water right, with the water rights POD (Table 1) to 

create a single POU for each of the monitored 67 diversions from the Boise River. One 

POU for each diversion was needed to calculate associated annual values of land use 

coverage and climatic variables. We used a spatial join to with the National Hydrologic 

Database (NHD) +2.1 dataset (U.S. Geological Survey, 2017)to connect the Water Rights 

PODs to the actual diversions where flow is measured, as discussed in the previous 

section (Table 1). We verified the spatial join using the measuring site diversion name on 

the water rights POD file. Many sites’ metadata did not include a measuring site name, 

nor did the spatial join link a POD with a measuring site. As a result, we manually linked 

the remaining PODs to measuring sites based on the associated POU location. We used 

the IDWR Irrigation Organization map (Idaho Department of Water Resources) to verify 

the correct merged POU for each measuring site diversion and met with a IDWR water 

rights specialist to confirm any remaining PODs and POUs with no associated measuring 

site. After POUs were established for each POD, we visually analyzed the POUs to check 

to for complete overlap of the POU. If two POUs were identical, we merged the POUs 

into one POU, and we summed the two flow values into one flow value. After merging 

POUs and flow values, we had 63 diversions with an associated POU. 

Geospatial land use and climate data 

We calculated various annual climate and landscape metrics for each POU. We 

used Daymet data (1 km resolution, Thornton et al., 2020) to calculate the average 

maximum daily temperature for the irrigation season (°C) and the average total irrigation 
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season precipitation (mm) for each POU (Table 1). Daymet was chosen for precipitation 

and temperature because this dataset had the highest spatial resolution for the period of 

record needed. The earliest start day and latest end day of the irrigation season were used 

to calculate the temperature and precipitation variables. We derived average total 

evapotranspiration (m) from monthly Simplified Surface Energy Balance (SSEBop) data 

(30 m resolution, Senay et al., 2022). The entire month of evapotranspiration was 

included if any water was diverted during that month. For example, we included March 

evapotranspiration in the total sum even though the start date of the irrigation season was 

March 15. We analyzed Land Change Monitoring, Assessment, and Projection (LCMAP, 

US Geological Survey, 2021) to compute the proportion of agricultural land and the 

proportion of urban land as an annual value for each POU.  

Trend Analysis 

A Mann-Kendall test was used to test for a significant trend (p < 0.05) in the 

annual volume of water (AF /yr) through time for each diversion. Mann-Kendall trend 

analysis is a non-parametric test for monotonic trends in a dataset through time (Sang et 

al., 2014). The period of record needed to be greater than 5 years and have no data gaps 

for the Mann Kendall test because the test is assuming a continuous period of record. If 

the diversion had a significant trend, a linear regression was calculated with 95% 

confidence intervals, and average change through time was calculated. We calculated 

model fit for the regression using R2.  
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Basin Scale Statistical Analysis 

Mixed effects model  

We constructed a Bayesian Generalized Linear Mixed Effects Model (GLMM) 

with a lognormal distribution to understand the effect size of urban area and climate on 

total diversion flow (AF/yr). GLMMs account for data in groups with repeated 

observations that are not independent of one another and allow for unbalanced datasets 

(Schreiber et al., 2022). We have 63 diversions, or groups, with most having a full period 

of record for 34 years but some having less (total observations = 1907).  

We constructed a single “full” model containing covariates selected to isolate the 

effects of urbanization and climate on diversion volumes (Yates et al., 2022; 

Supplemental Figure 2). A varying intercept was used for the name of each diversion (j = 

63) to account for the wide range in baseline diversion volumes (0.83 – 854,000 AF/yr). 

We allowed for the effect of urban proportion to vary by diversion because irrigation 

water usage has been shown to vary through space, even within an individual city 

(Barnett et al., 2020; Wang and Vivoni, 2022). Finally, we included all climate 

variables—average total irrigation season precipitation, average maximum irrigation 

season temperature, average total irrigation season evapotranspiration—and storage water 

use as fixed effects. The general form of the model is as follows: 

𝑄𝑄𝑖𝑖,𝑡𝑡 =  𝑎𝑎𝑗𝑗 +  𝐵𝐵𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑎𝑎𝑈𝑈𝑖𝑖,𝑡𝑡 +  𝐵𝐵1𝑃𝑃𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 +  𝐵𝐵2𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖,𝑡𝑡 +  𝐵𝐵3𝐸𝐸𝑇𝑇𝑖𝑖,𝑡𝑡 +

 𝐵𝐵4𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑎𝑎𝑆𝑆𝑃𝑃𝑖𝑖,𝑡𝑡,  

for n = 1, … , N 

𝑎𝑎𝑗𝑗  ~ 𝑁𝑁𝑆𝑆𝑈𝑈𝑇𝑇𝑎𝑎𝑁𝑁(𝛾𝛾0,𝜎𝜎), for j = 1, … , J, for t = 1, … ,34 
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where Q is the annual diversion discharge (AF/yr); aj is the diversion 

group level intercept with standard deviation, σ; Bj is the parameter coefficient for 

urban proportion, which is the only diversion level predictor variable; B1, …, 4 is 

the parameter estimate for the given basin level predictors—average total 

irrigation season precipitation (Precip,), average maximum irrigation season 

temperature (Temp), average total irrigation season evapotranspiration (ET), and 

reservoir storage water used (Storage, AF).   

We fit the model using the brms package in R (Bürkner, 2017), which uses 

a gradient-based Markov chain Monte Carlo sampler. Precipitation, temperature, 

and storage water use were standardized by subtracting the mean and dividing by 

two standard deviations while urban area and evapotranspiration were not. Urban 

proportion only ranged from 0 to 1, and evapotranspiration ranged from 0.29 to 

1.56 m. The standard deviation of urban proportion and evapotranspiration was 

still smaller than that from the other three variables. Precipitation, temperature, 

and storage water use were scaled to get variables close to the same scale for 

comparison of effect size.  We ran the model with 4,000 iterations (2,000 warm-

up iterations and 2,000 sampling events) and used weakly informative priors 

(Supplemental Table 1). The model was assessed for effective sample size and 

convergence using visual inspection of chains and confirmation that R-hat values 

was less than or equal to 1.01. We used visual posterior predictive checks to 

assess model fit (Supplemental Figure 3). We also calculated model fit using in-

sample Median Absolute Error (MAE) and Bayes R2 (Gelman et al., 2019). The 
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median absolute error was used as opposed to mean absolute error because the 

median more accurately represents the heavy-tailed distribution of the data.  

Mixed effects model with autocorrelated residuals  

We used a GLMM with an autoregressive-moving average (ARMA) 

correlation structure (p = 1, q = 1) to examine how urbanization and climate have 

impacted diversions through time. We used the same previous model structure in 

the ‘Mixed effects model’ section but included an ARMA correlation structure (p 

= 1, q = 1).  

ARMA models assume both response and predictor variable stationarity. 

We tested for stationarity within each variable for our longitudinal dataset using 

the Levin-Lin-Chu test (Levin et al., 2002) in the plm R package (Tappe, 2022). 

This test is a variation of the Augmented Dickey Fuller test, adapted for 

longitudinal datasets (Tappe, 2022). The Levin-Lin-Chu test only allows for 

balanced datasets; therefore, we used only diversions with consecutive years of 

data from 1987 to 2020 (t = 34) in this analysis (j = 47, total observations = 

1,551). We included all variables previously used in the GLMM with no time 

component (urban proportion, evapotranspiration, precipitation, temperature, and 

storage water use). All variables were stationary except for average total irrigation 

season evapotranspiration, urban proportion, and storage water use. 

Evapotranspiration, urban proportion, and storage water use were differenced to 

make the variables stationary using ∆𝑥𝑥 = 𝑥𝑥(𝑆𝑆) − 𝑥𝑥(𝑆𝑆 − 1), where x is the variable 

of interest, t is the current time step, and t-1 is the previous time step. The Levin-

Lin-Chu test was used again to confirm that the variables were stationary.  
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After the data was differenced, we used brms to run the GLMM with 

ARMA correlation. The temperature, precipitation, and storage water use were 

scaled the same way as the previous model while urban proportion and 

evapotranspiration were not.  The annual diversion volumes were log-transformed 

because the ARMA structure in brms can only account for distributions with a 

gaussian structure. The log-transformed values were modeled with a student-t 

distribution to reflect the heavy tails of our response variable’s distribution. The 

general format of the model is as follows: 

log (𝑄𝑄𝑖𝑖,𝑡𝑡) =  𝑎𝑎𝑗𝑗 + 𝐵𝐵𝑗𝑗𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷.𝑈𝑈𝑈𝑈𝑈𝑈𝑎𝑎𝑈𝑈𝑖𝑖,𝑡𝑡 + 𝐵𝐵1𝑃𝑃𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 +  𝐵𝐵2𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖,𝑡𝑡 +

 𝐵𝐵3𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷.𝐸𝐸𝑇𝑇𝑖𝑖,𝑡𝑡 +  𝐵𝐵4𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷. 𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑎𝑎𝑆𝑆𝑃𝑃𝑖𝑖,𝑡𝑡 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1)𝑗𝑗,  

for n = 1, … , N 

𝑎𝑎𝑗𝑗  ~ 𝑁𝑁𝑆𝑆𝑈𝑈𝑇𝑇𝑎𝑎𝑁𝑁(𝛾𝛾0,𝜎𝜎), for j = 1, … , J, for t  = 1,…,34 

where log(Q) is the log of annual diversion discharge (AF/yr); ARMA(1,1)j 

is the autoregressive-moving average correlation structure in the residuals of the 

response variable for each diversion, j; and all other variables are the same as 

previously explained. The model used weakly informative priors (Supplemental 

Table 2). The model was assessed for model convergence and model fit as 

described in the previous section, including using visual posterior predictive 

checks (Supplemental Figure 4). 

Individual diversion statistical analysis  

A generalized linear model (GLM) model with a gamma distribution was fit for 

each diversion with greater than 5 years of observation, to analyze variable importance at 

the individual irrigation district level (j = 60). We included all predictor variables 
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(percent urban cover, average total irrigation season evapotranspiration, average total 

irrigation season precipitation, average maximum irrigation season temperature, and 

storage water use) in each individual model except for specific scenarios. Urban change 

and storage water use were excluded from models if there was no variation in their values 

across the observed time period. No variables were standardized; however, storage water 

use was now put on the scale of 10,000 AF, and precipitation was converted from 

millimeters to meters for ease of computation. We used brms to run the GLMs with 2,000 

iterations, a gamma distribution, and uninformative priors (Supplemental Table 3). Model 

convergence was assessed with visual inspection of chains and confirmation that R-hat 

values were less than or equal to 1.01. Effective sample size (> 400) was confirmed for 

each model. Model fit was calculated using Bayes R2. Variable coefficients and credible 

intervals were extracted from each model to understand the direction of effect.  

Results 

Trends in discharge through time 

Nineteen out of 55 (35%) of diversions had significant, negative trends (p < 0.05), 

with the percent of change in discharge through time ranging from 6 to 92% (Figure 1.2). 

The lowest percent of change is associated with canals that discharge large amounts of 

water and vice versa. As a result, the diversion with the 6% decrease had a reduction of 

9,600 +/- 11,000 AF while the diversion with a 92% decrease had a reduction of 45 +/- 

10 AF of water in the diversion.  Eleven of the diversions with decreasing trends had 

greater than 10% increase in the proportion of urban area in a POU over the course of the 

study. The change in diversion discharge for diversions with greater than 10% urban 

change ranged from -233 AF/yr (-79%) to -17,000 AF/yr (-13.5%) (Figure 1.2).  
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Ten diversions had significant, increasing trends in discharge through time 

(Figure 1.2). Two of the diversions had an increasing trend through time and greater than 

10% urban change. The two diversions with greater than 10% change in urbanization had 

increased diversion volumes of 326 AF (+14.3%) and 491 AF (+204%) from 1987 to 

2020. Overall, the change in diversion discharge ranged from 28 +/- 1 AF to 14,000 +/- 

5,500 AF (53% and 17.6% respectively). The percent change ranged from 14 to 563%.  

 
Figure 1.2.  Significant (p<0.05) increasing (A, C) and decreasing (B, D) trends 
through time for diversions with flows greater than 50,000 AF/yr (A,B) and less 

than 20,000 AF/yr (C,D). Trends were tested for significance by the Mann Kendall 
trend test.  
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Mixed effects model 

The GLMM with no ARMA, used to understand the effect of predictor variables 

on total diversion volumes, had nonzero effects for urban proportion, average total 

irrigation season precipitation, and storage water use (Figure 1.3). The 95% credible 

intervals for the effects of average maximum irrigation season temperature and average 

total irrigation season evapotranspiration contained 0 (Figure 1.3). The model had a 

Bayes R2 of 0.95 and an MAE of 1,237 AF (Table 1.2).  

 
Figure 1.3.  Posterior mass distributions on the log scale for a mixed effects model. 

The model input included storage water use (AF/yr), urban proportion, average 
maximum irrigation season temperature (℃), average total irrigation season 

precipitation (mm/yr), average total irrigation season evapotranspiration (m/yr). 
Decreasing non-zero effects are green while increasing non-zero effects are yellow. 

Distributions with 95% credible intervals containing 0 are in black. 
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Urban proportion had a large effect size (average = -0.85, log scale) but also high 

uncertainty around the effect (Figure 1.3; Figure 1.4).  The mean effect of urban cover 

across diversions was equivalent to a decrease of 135 AF/yr in total discharge for every 

10% increase in urban percentage in a POU with a baseline discharge of about 1,650 AF 

(Figure 1.4A). The standard deviation for the varying slopes for urban area was 1.63 

across the 63 diversions included in our analysis (Table 1.2). Four canals’ volumes 

decreased less strongly with increasing urban cover, while two of the canals showed even 

stronger decreases in discharge with urban growth.  

Table 1.2.  Model fit and mean intercept and standard deviations of varying 
components on the log scale with 95% credible intervals for a Generalized Linear 
Mixed Effects Model with and without an ARMA.  

Model Median 
Absolute 
Error 

Bayes 
R2 

Mean 
intercept 
(log) 

Standard 
deviation of 
varying 
intercept 

Standard deviation 
of varying effect 
for urban area 

GLMM + 
ARMA 

707.6 AF 0.98 7.81 (7.09, 
8.44) 

2.08 (1.66, 
2.63) 

0.85 (0.05, 1.93) 

GLMM 1,237 AF 0.95 7.25 (6.51, 
7.97) 

2.52 (2.07, 
3.13) 

1.63 (1.05, 2.43) 

 

Total diversion discharge decreased with increasing total average irrigation 

season precipitation (Figure 1.3). The response is relatively small, as increasing 

precipitation across the entire observed range of precipitation values (42 to 316 mm) 

decreased discharge from about 1,375 AF to 1,100 AF (Figure 1.4B). Increasing 

irrigation season precipitation by about 100 mm/yr would result in a net decrease in total 

diversion volume by 100 AF/yr (Figure 1.4B).  

Canal discharge increased when storage water use increased and was a strong, 

positive effect (Figure 1.3; Figure 1.4C). Not all canals have storage water available to 
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use, which explains the uncertainty in the estimate and the spread in the posterior 

distribution (Figure 1.3).  

 

Figure 1.4.  The effects of urban area (A), average total irrigation season 
precipitation (B), and storage water use (C) on diversion discharge from a 

generalized linear mixed effects model with no time component. Positive effects are 
in yellow while negative effects are in blue. Shading shows 50% credible intervals 
for predictions of canal discharge, while holding all other variables at their mean. 

Autoregressive- moving average mixed effects model 

All variables except urban proportion had nonzero effects in the GLMM with an 

ARMA term. Increased annual changes in evapotranspiration and annual changes in 

storage water use both increased diversion discharge while increases in average 

maximum temperature and average total precipitation both decreased diversion discharge 

(Figure 1.5). Changes in storage water use and evapotranspiration produced larger 

changes in annual discharge when compared to the effects of precipitation and 

temperature (Figure 1.6).  

Differences in urban proportion had no effect basin-wide, shown by a mean effect 

size of 0.01 and the distribution overlapping 0 (Figure 1.5). The distribution of the effect 

was wide and flat compared to all other effects (Figure 1.5), and the standard deviation 

on the varying effect of urban area was 0.85 (Table 1.2).  The wide, flat distribution 
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indicates high variability across the basin. Urban proportion was allowed to vary by 

diversion, but no diversion had a significantly different effect size.  

 
Figure 1.5.  Posterior distributions for parameters from a generalized linear 

mixed effects model with an autoregressive moving-average component. Nonzero 
negative effects (based on 95% credible intervals) are blue while nonzero, positive 

effects are yellow. 

The GLMM with the ARMA produces greater variability around estimates than 

the model without the time component (Figure 1.4; Figure 1.6). The underlying structure 

of the ARMA highlights incremental changes through time, which increases the 

importance of understanding initial conditions of a given canal when interpreting the 

results and increases uncertainty in individual effects basin-wide (Figure 1.6).   
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Figure 1.6. The effects of average maximum irrigation season temperature (A), 

annual change in evapotranspiration (B), average total irrigation season 
precipitation (C), and annual change in standardized storage water use (D) from a 

generalized linear mixed effects model with an autoregressive moving-average 
component. Positive effects are yellow while negative effects are blue. Shading shows 

50% credible intervals when all other variables are held at their mean.  
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Individual generalized linear models 

GLMs for each diversion (n = 60) showed variable directions and strength of 

effect across parameters (Figure 1.7). Urban area had a relatively strong effect across 

many diversions; however, the direction of effect varied across diversions. Seventeen of 

the diversions had a nonzero effect for urban area with 6 of them being a positive effect 

and 11 of them being a negative effect (Figure 1.7). Evapotranspiration also had a 

variable effect across diversions both in terms of the direction and magnitude of the 

effect, but the effect of evapotranspiration was only non-zero for 7 diversions, with 2 

having a negative direction and 5 having a positive effect (Figure 1.7). Storage water use 

had an overwhelmingly positive effect on diversion volumes, and the magnitude of the 

effect was large for many diversions, with 16 diversions have an effect size greater than 

10 on log scale (Figure 1.7). Precipitation tended to have a negative effect across 

diversions, but the effect was only nonzero for 3 diversions. Temperature had a small     

(-0.1 to 0.1) effect size across most diversions (Figure 1.7).   
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Figure 1.7.  A heatmap showing direction and size (log) of effect for each variable 
for each diversion’s generalized linear model (n = 60) Positive effects are yellow 
while decreasing effects are blue. A nonzero effect, indicated by 95% credible 

intervals not overlapping zero, are marked with slanted lines to the right. 
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Discussion 

The goals of this research were to understand how diversion volumes in the 

LBRB have changed from 1987 to 2020 and to quantify the effects of urban area and 

climate variables on annual diversion volumes. We used multiple models to understand 

these relationships across spatial and temporal scales, and the analyses revealed variable 

results across the basin. Existing water law and politics (SPF Water Engineering, 2016), 

the uncertainty with human decision-making at the scale of individual diversions (Kaiser 

et al., 2020), and undocumented irrigation efficiency improvements across the basin 

(Elkamhawy et al., 2021; Kendy and Bredehoeft, 2006) all contribute to this basin-wide 

heterogeneity and provide insight into why establishing basin-wide relationships is 

difficult. The results of this analysis demonstrate differences in response to changing 

conditions even within a basin and highlight the need for localized research in order to 

help water managers respond to their changing environment.  

Differences in model structure to quantify effects 

The GLMM with no ARMA examined correlations between urbanization and 

climate on total diversion volume in each annual timestep without considering temporal 

structure, whereas the GLMM with an ARMA (for volume in the preceding year) 

examined the association between annual change in diversion volume and patterns of 

urbanization and climate. The ARMA accounts for temporal autocorrelation between 

observations (Benson et al., 2007) while the GLMM with no ARMA does not. Weather 

impacts had nonzero effect in the GLMM with the ARMA while urbanization did not 

have a measurable effect (Figure 1.5). Urban change happens on a slower progression, 

highlighting a reason why many land use change studies look at 5-year or decadal 
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differences (Dahal et al., 2018; Mirhosseini et al., 2018). Furthermore, annual changes in 

irrigation demand may respond to urbanization on timescales greater than 1 year, which 

may provide insight as to why urbanization did not have an effect in the model with the 

ARMA. Urbanization had a negative effect on diversion discharge in the GLMM with no 

time component, meaning that diversions serving a more urbanized place of use tend to 

have smaller diversion volumes. Urban area also had a larger effect than weather 

variables in the GLMM with no time component. Because the two different GLMMs are 

inherently answering different questions and modeling different response variables, we 

would expect that these models would have different results, and each individual model 

shows insight into different aspects of irrigation deliveries.  

Effect estimates within each GLMM had high uncertainty (Figure 1.3; Figure 

1.5). Individual GLMs for each diversion help explain why there was uncertainty for each 

effect size. Individual GLMs aid in showing basin-wide heterogeneity because the GLMs 

explained the effects at the individual irrigation scale, and effects were highly variable 

across GLMs, particularly for urban area and evapotranspiration (Figure 1.7).  

Differences in volume through time 

Canals exhibited high variation in time trends (Figure 1.2). The difference in 

changes through time from canal to canal shows the variability across the basin and 

highlighted the need for a further explanation of why diversions have or have not 

changed. While the trend analysis does not provide insights as to why some diversions 

are changing while others have not, possible mechanisms for change include urbanization 

(Bigelow et al., 2017), crop rotations (Schilling et al., 2008), changing temperatures (Jin 

and Sridhar, 2012), and processes that lead to no changes in diversions despite a changing 
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landscape or climate include a lack of incentivize to conserve and water law that 

promotes full usage of a water right (SPF Water Engineering, 2016). These mechanisms 

are evaluated further in subsequent sections that examine individual predictor effects 

from GLMMs and GLMs.  

Urbanization and diversion volumes 

 While many assume that the urbanization of agricultural landscapes will result in 

a net decrease in irrigation water usage due to the loss of green space (Bigelow et al., 

2017; Wang and Vivoni, 2022), our analysis shows that this assumption may not be 

universal, and that urbanization has variable effects (Figure 1.3; Figure 1.5; Figure 1.7). 

The GLMM with no ARMA had a nonzero, negative effect for urbanization, suggesting 

that areas with more urbanization have smaller total diversions, and the magnitude of the 

effect was large compared to other predictor variables (Figure 1.4). The GLMM with the 

ARMA takes into account changes from year-to-year in terms of both diversions and 

urbanization, and urbanization had no effect, showing that change in urban proportion 

from year-to-year does not lead to a change in diversion volumes at the annual scale. 

Both GLMMs had wide credible intervals around the effect estimate, which indicates 

variability around the mean effect at the basin scale (Figure 1.3; Figure 1.5). The GLMs 

showed that individual diversions responded non-uniformly to urban area but that the 

effect of urban area was large in magnitude relative to other variables for many 

diversions (Figure 1.7). These results illustrate that urbanizing agricultural landscapes can 

but does not always result in net reduction in irrigation water usage and, in some cases, 

produces an increase in irrigation diversions. This poses the question, why are not all 
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diversions decreasing their irrigation water usage with urbanization as other studies have 

found?  

Multiple mechanisms exist that could lead to a constant irrigation diversion rate 

despite losing green space. These processes include increased seepage to the shallow 

aquifer due to a declining shallow aquifer (Elkamhawy et al., 2021), a lack of incentive to 

conserve water due to existing water law (Nampa Meridian Irrigation District; SPF Water 

Engineering, 2016), different evapotranspiration rates between crops and turf lawns 

(Baker et al., 2014), and longer growing seasons (Hoekema and Sridhar, 2011). The 

Treasure Valley has a shallow aquifer system that has historically been elevated due to 

canal and irrigation seepage (Urban, 2000). However, the water table in the shallow 

aquifer has been declining over the past decade (Idaho Department of Water Resources, 

2023), which has resulted in some wells going dry (Kerndl, 2022). In conjunction, 

irrigation diversions may not be declining uniformly because of existing water law that 

disincentivizes water conservation. Under Idaho statute 42-222, water rights will be 

forfeited if they are not used to their full beneficial use for 5 consecutive years, creating 

an incentive for water users to use their full water right even if it is not necessary for their 

land cover (Idaho Legislature, 2022) Furthermore, in Idaho, the volume of water that a 

parcel of land can use for irrigation does not decrease when the land is converted from an 

agricultural to urban land use (Fereday, 2016); therefore, urban water users are 

incentivized to use the water right past down from the agricultural lands (SPF Water 

Engineering, 2016). Along with disincentive to conserve due to law, surface irrigation 

water is much cheaper than domestic, potable water (Nampa Meridian Irrigation District), 

again, creating a lack of incentive to conserve.  Urban water users may also be using the 
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same amount of water despite a loss in green space because turf grass transpires 10% 

more water per unit area than crops like wheat or barley (Baker et al., 2014; Crandall, 

2019).  Urban water users are often ignorant of irrigation requirements based on 

evapotranspirative demand, which leads to over-watering of lawns in semi-arid and arid 

regions (Litvak and Pataki, 2016).  Finally, the growing season could be extending (Jin 

and Sridhar, 2012); however, there has been little change in the number of days a canal is 

delivering water based on preliminary analysis of the data (Supplemental Figure 1). Lack 

of changes in water demand is likely due to a combination of these mechanisms. 

Identifying which factors are the main drivers for a lack of changes to diversions with 

urbanization can support policy development towards water conservation.  

Our findings also show a significant, negative relationship between diversion 

discharge and urbanization in the GLMM with no ARMA (Figure 1.3) and in 48% of the 

canals based on individual GLMs (Figure 1.7). These relationships can be caused by a 

decreased green footprint (Bigelow et al., 2017; Wang and Vivoni, 2022), improved 

delivery efficiency (Elkamhawy et al., 2021), and more efficient irrigation systems 

(Blount et al., 2021). Urban areas converted from historically agricultural land cover in 

the LBRB can maintain anywhere from 38 to 78% of their original irrigated acreage, with 

this green footprint decreasing as urban areas become more dense (Baker et al., 2014). 

This decrease in irrigated acres is typically associated with a reduction in irrigation usage 

(Bohn et al., 2018). As regions urbanize, historically open ditches and laterals are now 

being piped, resulting in a reduction in seepage (Jadhav et al., 2019). This increase in 

water delivery efficiency can result in a net reduction in the volume of water diverted. 

The land use transition from agricultural to urban also can result in more efficient 
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irrigation practices, with the conversion from flood irrigation to pressurized sprinkler 

systems (Bjorneberg et al., 2020; Nampa Meridian Irrigation District). Combined, these 

systems could result in net diversion reductions in urbanizing regions.  

Our analysis provides a unique contribution to the existing literature because few 

studies have analyzed how irrigation water use changes with urban expansion into 

agricultural lands, and all of these studies have shown that irrigation water use decreases 

with this conversion (Bigelow et al., 2017; Bohn et al., 2018; Wang and Vivoni, 2022). 

Much of the other literature focuses on water use in areas of urban expansion that were 

previously undeveloped and shows that water usage will increase with this type of 

development (Heidari et al., 2021; Hepinstall-Cymerman et al., 2013). Our study 

incorporates urban expansion at the loss of agricultural land and shows that urbanization 

has non-uniform impacts on irrigation diversions (Figure 1.3; Figure 1.7). Agricultural 

land has been established to have a higher irrigation demand than urban areas because 

urban areas have impervious surfaces and less green space than agricultural lands 

(Bigelow et al., 2017; Wang and Vivoni, 2022). However, our study provides unique 

insight that irrigation requirements are not the only factor influencing irrigation demand 

in urban areas, and universal assumptions that irrigation use will decrease after LULCC 

may not be appropriate.  

Reservoir Storage for Irrigation 

Reservoir systems in the Western US were designed to hold surface runoff for 

irrigation during the dry, growing months (Stevens, 2015). We expected that irrigation 

water diversions would increase with increased storage water usage for this reason, and 

this relationship is present in both GLMMs (Figure 1.3; Figure 1.5). The positive effect 
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from the GLMM with no time component means that diversions that use larger volumes 

of storage water also have larger diversion volumes while the positive effect in the 

GLMM with the ARMA shows that when more storage water is used, this leads to greater 

annual changes in diversion volume. Furthermore, storage water use had consistently 

positive effects across diversions (Figure 1.7). Some diversions do not use storage water 

because they do not have storage water rights. Despite not all diversions having storage 

water available, this was still a basin-wide effect, highlighting the importance of the 

reservoir system and the influence of water management on the basin as a whole. 

However, a changing climate may begin to alter reservoir water availability. Changes in 

precipitation during the winter and early spring months due to climate change may have 

large impacts on the water availability during the irrigation season by altering storage 

water availability (Steimke et al., 2018); however this was beyond the scope of this 

study.  

Climate effects on diversion volume 

Temperature, precipitation, and evapotranspiration are all commonly used to 

understand variation in irrigation water usage; however, effects of these variables on 

actual irrigation water usage differed from place to place (Balling and Gober, 2007; 

Blount et al., 2021; Breyer et al., 2012; Haque et al., 2015). In this study, temperature 

had a small, nonzero, negative effect in the model with the ARMA and tended to have a 

negligible effect for individual GLMs, after accounting for evapotranspiration (Figure 

1.5; Figure 1.7). The effect was not meaningful in the GLMM with no ARMA (Figure 

1.3). The GLMM model with the ARMA is explaining that on a year-to-year basis 

increased temperatures result in a small reduction in irrigation diversions after accounting 
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for evapotranspiration. The temperature effect in these models is the effect after 

accounting for evapotranspiration (Supplemental Figure 2), which could possibly explain 

why temperature had an unexpected, negative effect. While variability exists across 

studies, increasing temperatures are often linked to increases in irrigation water usage, 

rather than declining or unchanging usage (Blount et al., 2021; Haque et al., 2015; Wang 

and Vivoni, 2022). The presence of a small decreasing effect or no effect across models 

shows that the Lower Boise River Basin may be less sensitive to increasing temperatures 

than originally thought because water usage is already high, so temperature changes 

produce small variation in water usage (Stoker and Rothfeder, 2014). Part of the reason 

that irrigation water diversions may already be high is that the volume in the canal is pre-

determined by water rights, and water rights users are incentivized to use their full water 

right (Idaho Legislature, 2022). Another reason that temperature might have a negative 

effect at the basin-wide scale or no effect is that hotter temperatures can be associated 

with the day of allocation, or the day that junior water rights holders are cut back, 

occurring sooner in the season (Garst, 2017). An earlier day of allocation results in less 

natural flow being available for water users and a reduction in annual volumes (Steimke 

et al., 2018). While the negative temperature effect at the basin scale was unexpected, 

water policy and management of the LBRB could contribute to direction of effect.  

Increases in precipitation led to decreases in irrigation water diversions in both the 

GLMM with and without the ARMA; however, the effect size was small, relative to other 

variables in both models (Figure 1.3; Figure 1.5). Precipitation generally had negative 

effect sizes in individual GLMs as well. While precipitation was a nonzero effect for the 

basin-scale models, the small effect size is consistent with urban irrigation water use 
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studies in semi-arid and arid regions that receive the bulk of their precipitation during the 

non-irrigation season (Balling and Gober, 2007; Han et al., 2019; Stoker and Rothfeder, 

2014). The region relies on the reservoir and canal system created to offset the lack of 

runoff during the growing season (Han et al., 2017). The annual time step in this study 

may also be lacking in the ability to understand the effect of precipitation. For example, 

spring precipitation during March and April may heavily drive irrigation demand during 

the early irrigation season (Bigelow et al., 2017), but diversions during this time are 

already low compared to summertime irrigation diversions, meaning that changes in 

discharge during the spring would not greatly affect the total annual diversions. The 

effect of precipitation across the valley appeared to be less important than other variables 

in the models.  

Evapotranspiration is often used as a proxy for irrigation water usage, as it is the 

consumptive use component of irrigation water usage (Crandall, 2019; Johnson and 

Belitz, 2012). Therefore, we would have expected irrigation water diversions to increase 

with increasing evapotranspiration, as evapotranspiration represents the total 

consumptive use of the total applied irrigation water. A positive relationship with 

evapotranspiration and discharge was illustrated in the model with the ARMA in our 

study (Figure 1.5), which we used to show interannual variability, but we did not see this 

effect in the GLMM with no ARMA (Figure 1.3), which is not surprising based on 

differences in model structure discussed earlier. Individual GLMs with 

evapotranspiration as a predictor variable were split on the direction and magnitude of 

effect (Figure 1.7). We assumed in this model that surface water irrigation would be a 

good proxy for irrigation demand because surface water diversions are primarily used for 
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irrigation in the LBRB (SPF Water Engineering, 2016); however, hydrologic processes 

within the canals and data limitations may result in the evapotranspiration and irrigation 

diversions not being tightly coupled. Hydrologic processes that may lead 

evapotranspiration to not be as correlated with irrigation diversions as originally thought 

could include seepage and evaporation from canal systems and other sources of irrigation 

water (Shakir et al., 2010, J. Barnes, personal communication, 2023). In the LBRB, 

approximately 30 to 40% of irrigation water is lost to seepage (Urban, 2000), and water 

evaporated from the canal system itself (Reclamation, 2008), which could lead to 

irrigation diversions not being completely representative of the on-farm irrigation. 

Evapotranspiration may also not be as correlated with irrigation water diversions as 

originally thought because irrigation diversions may not be the only source of irrigation 

water, both for agricultural and urban areas. This is particularly relevant during low water 

years when irrigators may rely on groundwater because surface water rights are cut back 

early in the irrigation season (Hoekema and Sridhar, 2011). While many studies use 

evapotranspiration to infer irrigation water usage (Allen and Robinson, 2006; Nisa et al., 

2021; Poudel et al., 2021), evapotranspiration is not the only component of the water 

balance for irrigation. Irrigation water is comprised of seepage and overland runoff as 

well (US Bureau of Reclamation, 2008). Depending on the magnitude of these two other 

components and the annual fluctuations, evapotranspiration may not be as correlated with 

total irrigation water applied. Data limitations are another reason that evapotranspiration 

may not be strongly correlated with irrigation diversions. The SSEBop evapotranspiration 

estimates were derived from Landsat imagery (30 m resolution); however, 30-meter 

resolution imagery may not adequately capture irrigation practices in urban regions 
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(Crandall, 2019). While evapotranspiration was positively correlated with irrigation 

diversions in one model, the others show greater variations or no coupling. Our results 

contribute to the greater understanding about the relationship of climate and irrigation 

water usage, as results again were non-uniform across the basin.  

Study Limitations 

While this analysis helps reveal how and why diversions may be changing in the 

LBRB, data resolution adds unquantifiable uncertainty to the model, and limited data 

availability restricted the variables that we could include in the model. The data used for 

this project was diversion discharge measurements from IDWR, which have historically 

been measured by the water district watermasters weekly. Weekly measurements are then 

interpolated to daily data by IDWR (Idaho Department of Water Resources, 2020), which 

may be either over- or underestimating the daily measurements and adds unquantifiable 

uncertainty in our analysis. Furthermore, we assumed that diversions were an adequate 

proxy for irrigation water demand, knowing that some of the water in the canals would be 

lost to seepage and evaporation (SPF Water Engineering, 2016; Urban, 2000). Diversions 

do not represent total on-farm delivery or total water usage, which would provide better 

understanding of the actual irrigation used. On-farm deliveries would also provide insight 

into the water lost through seepage and evaporation as it moves through the canal system 

and could aid in better understanding the connection between the groundwater and 

surface water systems in the LBRB. Groundwater was not incorporated into this model 

due to both data and time limitations but would be useful to understand if greater seepage 

is occurring due to declining groundwater tables in urban areas (Urban, 2000). Another 

component that could impact irrigation diversions but did not have data available for the 
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whole period of record was crop rotations (Reclamation, 2019). Crops have variable 

irrigation demands, based on evapotranspirative demand (Allen and Robinson, 2006). 

Therefore, in both urbanizing and predominantly agricultural irrigation districts, crop 

rotations could impact the total diversion volumes. Incorporating groundwater and crop 

rotations into a subsequent study would be useful for better understanding the various 

mechanisms in the system.  

Irrigation diversion volumes are, almost fully, controlled by human decision-

making (Khatri, 2018; Stevens, 2015). While changes in climate and land use are 

projected to alter irrigation water usage in a uniform way, humans may not be responding 

to these natural phenomena consistently (Balling and Gober, 2007; Kaiser et al., 2020). 

One example of decision-making that would cause non-uniform response is a lack of 

knowledge in urban water users regarding irrigation requirements for different plants, 

which can result in over-watering (Litvak and Pataki, 2016). Farmers introduce additional 

variability through their choices on the types of crops they plant or the volume and 

frequency they irrigate (Sarku et al., 2020). Because the water that flows down irrigation 

canals is ordered by irrigation districts or individual water users, variability exists in the 

data that cannot be described by the variables in this model. Human decision-making 

contributes to the complex surface water – groundwater interactions that are highly 

variable across this urban gradient.  

Conclusion 

 We used both basin-scale and individual diversion analyses to understand how 

and why diversions in the LBRB have changed through time and in response to LULCC 

and climate. The different model structures and approaches in the analysis allow us to 
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understand the complexities of the system and provide more insight than any of the 

individual models. The GLMM with no time component allowed us to see that areas with 

more urbanization had decreased diversion volumes; however, urbanization was less 

important in the GLMM with the ARMA, as this signified changes from year to year. 

Instead, climate variables have stronger effects on inter-annual variability of diversion 

volumes as seen in the model with the ARMA. Increased precipitation and temperature 

led to decreased irrigation diversions, but the effects were small, and increased 

evapotranspiration led to increased diversion volumes in the GLMM with the ARMA. 

Both models highlighted that increased storage water use results in higher diversion 

volumes, indicating the importance of the reservoir management system in this basin. The 

direction and magnitude of urban and climate effects varied from other urban water usage 

studies, which could stem from systematic or model structure differences, suggesting the 

need for further review across urban irrigation water usage studies. While the direction of 

effect from the GLMMs was clear, the effect sizes across predictor variables, particularly 

for urbanization, had high uncertainty. The individual diversion analysis using GLMs 

highlights why the basin-scale analysis had high variability across the effects because the 

factors affecting diversion discharge differed from place to place. Diversions in the 

LBRB are managed by individuals or an irrigation district, and while seeking to 

understand how canals are responding at a basin-scale may be informative, it does not 

account for individual management and decisions at a more local scale. 
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CHAPTER 2: HOW IS THE AMOUNT OF IRRIGATION WATER DRAINING TO 

THE BOISE RIVER CHANGING WITH URBANIZATION AND CLIMATE 

CHANGE? 

Executive Summary 

The Treasure Valley of Idaho also known as the Lower Boise River Basin has been 

rapidly urbanizing over the past few decades, not only resulting in substantial land use and 

land cover change, but also creating shifts in irrigation water usage and irrigation return 

flows to the river. Simultaneously, the area is also facing increasing pressure from a 

changing climate, which will likely lead to earlier runoff in the region, hotter summer 

months and greater water demand for crops, and more frequent and prolonged drought. 

Combined, these changes in the system will alter water availability in the region.  

The watermasters of the Lower Boise River Basin are tasked with allocating 

irrigation water to water users throughout Water District 63. Historically, users in the 

downstream half of the basin have relied on irrigation return flows from drains to support 

their irrigation demand; however, both the watermasters and irrigation district managers 

have noticed changes to multiple of the main drains through time. The goals of this study 

were to 1) analyze changes in the irrigation season drainage flows from 1987 to 2020, and 

2) to quantify the effect of urbanization and climate on irrigation season discharge in 15 

major drains in the Lower Boise River Basin using a statistical model. 

 

 



 

 

40 

Key results 

• Trend analysis showed that 6 of the 15 (40%) drains have decreased significantly 

(p < 0.05) from 1987 to 2020, with decreases in annual flow ranging from 26 to 

66%.  

• Urbanization had the greatest impact on drainage flows compared to all climate 

variables and canal flows.  

• Increased urbanization decreased drain flows. The magnitude of decrease was 

larger in watersheds that were still in the early stages of urbanization (10-30% 

urban area) as opposed to watersheds with urban areas already comprising 75% of 

the land.  

• Increased average maximum irrigation season temperature led to decreased drain 

flows.  

• Increased evapotranspiration and canal inflows in a watershed had a significant, 

positive impacts on drain flows.  

Future Considerations and Suggestions 

• Trend analysis results quantitatively show that less water exists in the river for 

downstream water users who have historically relied on the specific drains with 

decreasing flows. The extent of decrease should be shared with individual irrigation 

districts who have relied on this water, so irrigation districts can relay this 

information to farmers.  

• Future drain measurements can and should be incorporated into the trend analysis 

because the drains will likely continue to change with increased urbanization. 
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• Increasing communication between land use planners and water managers (e.g. 

irrigation districts) could help bring awareness to land use planners of how 

urbanization impacts the hydrology of the drains. Potential planning efforts could 

go into creating urban areas that help reduce impacts on drains.  

• Convening a meeting with various scales of water management (IDWR, 

watermasters, irrigation district managers) to discuss how farmers will continue to 

have access to sufficient water for crops may be necessary as the basin continues 

to urbanize.  

Introduction 

The Treasure Valley has been urbanizing over the past few decades, growing by 

45% from 1990 to 2010 and by 21% from 2010 to 2020. Currently, about 738,000 people 

live in the valley, but by 2100, the population is predicted to be around 1.5 million 

individuals (+/- 250,000; Narducci et al. 2017). This has, and will continue to, create 

unique pressures for irrigation water managers as they begin to serve less agricultural 

landscapes and more urban areas. Systematic differences between delivering irrigation 

water to agricultural and urban irrigation systems include pressurized irrigation, piping or 

lining canal systems, and increased impervious surfaces on the landscape. Population 

growth will alter demand for surface water irrigation, groundwater levels, and the amount 

of water returning to the Boise River.  

The watermasters for the Boise River Basin (Water District 63), located in the 

Treasure Valley, allocate irrigation water to water users throughout the basin (Figure 

2.1). Idaho allocates water based on the Doctrine of Prior Appropriation, which states that 

those who established their water right first and continue to use the water for a beneficial 
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use will receive their water before those who established their right later, colloquially 

known as “first in time, first in right” (IDWR, 2021). Irrigation districts are sub-level 

management systems that oversee the maintenance, upkeep, and water allocation from a 

given set of canals or ditches to a specified place of use. The irrigation district managers 

place their order for the daily volume of water needed with the watermasters, who request 

the total amount of water needed for the Lower Boise River Basin (LBRB) to be released 

from Lucky Peak reservoir. All water users will receive their full water requests until the 

day of allocation (Steimke et al., 2018), at which point water rights start to be curtailed, 

or cut back, based on priority date, by the Stewart and Bryan Decrees (Fereday and 

Creamer, 2010). The day of allocation occurs after the maximum reservoir fill date and 

once the water demand of irrigators is greater than the “natural” flow in the Boise River 

(Cresto, 2013), which is an estimate of the natural inflow to Lucky Peak by the US 

Bureau of Reclamation .  
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 Figure 2.1.  Inset and map of the irrigation system and drain gauges in the Lower 

Boise River Basin.  

Irrigation water returns to the Boise River via drains throughout the canal 

network. The drains are fed by discharge from groundwater due to an elevated water 

table into the drains, direct irrigation runoff from fields, and remaining canal water at the 

end of the canal line (Reclamation, 2008).  The Water District 63 Watermasters 

redistribute water that returns to the Boise River from the irrigation network to 

downstream surface water users in the basin. These water users typically do not have 

storage water rights and rely upon “natural” flow, making them vulnerable to declining 

drainage flows.  

Urbanization changes irrigation practices, delivery, and the ability for water to 

infiltrate the ground surface. Historically, farmers used flood irrigation which created 
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elevated groundwater levels, and the groundwater discharged into the drainage system 

(Baker et al., 2014). Urban areas have less irrigated acres and generally use sprinkler 

systems, which could decrease the total volume used to irrigate and increase evaporative 

losses when compared to historical flood irrigation (Kliskey et al., 2019; Ward et al., 

2007). In conjunction, this will decrease groundwater discharge to the drains. 

Transitioning from agricultural to urban land uses increases the total amount of 

impervious surface, which decreases the area of land over which water can infiltrate 

(Bhaskar et al., 2016). For example, ~38% of a plot of land remains available for 

irrigation in dense urban areas closer to Boise while more rural subdivisions converted 

from croplands have up to 76% of the area remain irrigated after conversion (Kliskey et 

al., 2019). Finally, urbanization is leading to extensive lining and piping of the existing 

canal system, cutting off recharge to the groundwater from this surface water system 

(Johnson and Tracy, 2014). Given the complexities of urban growth, water usage, and 

return flows, water managers to understand how drains may continue to change with 

projected growth in the area, and one step to achieve this is to examine how drain flows 

have responded to urbanization in the Treasure Valley thus far.  

In addition to rapid urbanization, the Treasure Valley experiences variation in 

precipitation and temperature from year-to-year and is also facing long-term climate 

change. While there is consensus that the region will experience increasing temperatures 

with climate change, the outlook for precipitation is less clear (Mote et al., 2014). Some 

reports state that precipitation will slightly increase during the winter months for the 

region, but there is uncertainty around these estimates (Glabau et al., 2020; Han et al., 

2019; Jin and Sridhar, 2012). Even though precipitation during the winter months may 
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increase, the increased temperatures are projected to result in more winter precipitation 

falling as rain, leading to earlier runoff and earlier peak natural streamflow (Garst, 2017; 

Steimke et al., 2018). Increasing temperatures are likely to lead to increased water 

demand during the irrigation months (Han et al., 2019; Wang and Vivoni, 2022). Finally, 

the region will likely experience more frequent and prolonged drought (Strzepek et al., 

2010). Combined, the effects of climate change are likely to alter both water availability 

and demand.  

The following analysis was completed to inform the Water District 63 

watermasters on how drain flows have changed in the Lower Boise River Basin (LBRB) 

from 1987 to 2020 and to help the watermasters to identify particularly vulnerable 

downstream water users. The goals of this analysis were to 1) identify how the drain 

flows in the LBRB have changed through time, and 2) quantify the impacts of 

urbanization and climate on changes in drainage flows. 

Methodology and Model Fit 

Overview 

We gathered return flow data for 15 drains in the LBRB, computed annual total 

return flow values (AF/yr) from 1987 to 2020, and analyzed changes in flows through 

time. We created drainage areas for each drain to then calculate annual zonal statistics for 

precipitation (in), temperature (°F), evapotranspiration (in), percent of urban area in the 

catchment, and the total canal flow contribution (AF). Zonal statistics were used as 

predictor variables in a Generalized Linear Mixed Model (GLMM), which is a type of 

regression that helps account for individual differences across drains (Harrison et al., 
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2018). We used the GLMM to describe annual drainage discharge changes over the time 

period.  

Data collection, preparation, and analysis 

We gathered daily flow measurements from 1987 to 2020 for 15 drains across the 

LBRB from the Idaho Department of Water Resources’ Water Rights Accounting page 

(Idaho Department of Water Resources, 2022b) and the USGS National Water 

Information System (USGS, 2023). Multiple drains were historically monitored by the 

Idaho Water District 63 watermasters from 1987 to 2016, and the USGS installed 

continuous monitoring stations in late 2016. We summed the daily flow values during the 

irrigation season to obtain an annual total flow (AF/yr). The length of irrigation season 

was defined by when the first canal in the LBRB started diverting water to the last day 

that a canal in the LBRB diverted water. Therefore, the length of the irrigation season 

varies from year to year. 

We used the Hydrologic Unit Map watershed boundaries, StreamStats watershed 

delineation (USGS, 2019a) and a Digital Elevation Model of the Boise River Basin (10 m 

resolution) (USGS, 2019b) to create drainage areas for each of the 15 drains in the Boise 

River Basin. Given the lack of relief across the Treasure Valley and the manmade canal 

structures, which move water across the valley in ways that don’t always align with 

topographic gradients, we verified the drainage area for each drainage basin with the 

watermasters (Figure 2). 
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Figure 2.2.  Map of drainage delineations for each measured drain in the Lower 
Boise River Basin. The color of the drain is associated with the percent of urban 

change in the watershed from 1987 to 2020. 

Using the drainage area boundaries, we calculated annual average zonal statistics 

across the irrigation season for each drain. The start and end days of the irrigation season 

were defined by the earliest date any canal in the valley started diverting water to the last 

day any of the canals in the valley stopped diverting water, making the irrigation season 

length annually variable. We calculated average total irrigation season precipitation (in) 

and average maximum irrigation season temperature (°F) from Daymet (1-km resolution) 

(Thornton et al., 2020) using the start and end dates for each year. The annual urban 

proportion was derived from the Land Change Monitoring, Assessment, and Projection 

dataset (LCMAP; 30-m resolution, US Geological Survey, 2021).  We calculated the 
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average total evapotranspiration (in) across a drainage area using outputs from the 

Simplified Surface Energy Balance model (30-m resolution, Senay et al., 2022).  

We determined canal inputs into each drain by linking the drainage area with the 

associated canals’ places of use. If a canal passed through multiple drainage areas, it was 

considered to contribute to each of the associated drains. We gathered diversion flows 

from the IDWR Water Rights Accounting database (Idaho Department of Water 

Resources, 2022b), and we summed the total canal diversions for each drain and used this 

as a predictor variable in the model.  

Model development and fit 

A Mann-Kendall test was used to calculate if there had been a significant (p < 

0.05) change through time with the annual discharge in the drains. If the change was 

significant, we used a linear regression to calculate, on average, how much each drain has 

changed across the whole time period. All drains with the full period of time were 

summed to create a basin-wide total drainage value and a Mann Kendall test was used 

again to test for a significant trend through time.  

We then created a Generalized Linear Mixed Effects Model (GLMM) with 

autoregressive—moving-average (ARMA) errors (Harrison et al., 2018). GLMMs allow 

for repeated observations through time at each of the drain sites. We used a varying 

intercept by drain name to account for the repeated observations and the different sizes in 

drains across the basin. The ARMA uses the previous year’s information to help inform 

the next year’s estimate and helps to better account for changes through time in the data. 

We fit the GLMM model with urban area, climate (average total irrigation season 

precipitation, average maximum irrigation season temperature, and average total 
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evapotranspiration), and canal contributions as predictor variables to understand how 

drainage discharge has changed through time. The predictor variables were chosen based 

on both data availability and our understanding of the system, to identify the effect of 

urban cover on drain volumes (Supplemental Figure 5).  

We compared the full model to a subset of models with different predictor 

variables using MAE, as a metric of model fit, and Leave-one-out information criterion 

(LOOIC) to ensure that the included variables did not result in overfitting (Appendix III). 

MAE reflects the disparity between the model’s prediction and the actual data, on the 

scale of the response (AF). The LOOIC is a relative metric used to compare the estimated 

out-of-sample predictive accuracy of models. 

We used the brms package in R to fit the GLMMs (Bürkner, 2017). We 

standardized precipitation, temperature, and canal inflows by subtracting the mean and 

dividing by two standard deviations. We did not standardize evapotranspiration or urban 

proportion in the same way because urban proportion only ranged from 0 to 1, and 

evapotranspiration ranged from 0.19 to 1.02 m. Both ranges for urban proportion and 

evapotranspiration were smaller than the other scaled variables. None of the variables 

were differenced in this model. All models were run with 4 chains with 4,000 iterations 

and weakly informative priors (Supplemental Table 4). We assessed model convergence 

using effective sample size, visual analysis of chain convergence, and confirmation that 

the R-hat value was less than or equal to 1.01 (McElreath, 2018). We compared the 

observed and predicted values using posterior predictive checks (Supplemental Figure 6). 

We calculated the median absolute error (MAE) to understand the uncertainty in the 

model.  
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Modeling Results 

Overview 

The trend through time analysis showed that six of the fifteen drains had 

significant decreases in drainage flows from 1987 to 2020. The variables included in the 

full model improved estimated predictive accuracy, relative to reduced models (Table 

AIII-1). The GLMM showed that increasing urbanization and temperature leads to 

decreases in drain flows while increasing evapotranspiration and total canal flows 

increases drain flows.  

Changes in drainage flows through time  

Six of the fifteen drains had significant changes through time (p-values < 0.05). 

The six drains, which included Conway Gulch, Eagle Drain, Fifteen Mile Creek, Mason 

Drain, South Middleton, and Thurman Drain, all exhibited negative trends through time 

(Figure 2.3). The remaining nine drains exhibited annual variability but did not have a 

significant trend (Supplemental Figure 7). There was no significant, basin-wide trend 

when all fourteen drains with complete periods of record were summed and fit with a 

Mann Kendall test. 

The two drains with the largest percent decrease over time were Conway Gulch 

(64.1%) and Mason Drain (66.9%) and the remaining drains decreased by at least 26%. 

From 1987 to 2020, Conway Gulch decreased from 26,258 AF (+/- 2,971) to 9,435 AF 

(+/- 2,971) in 2020 and Mason Drain decreased from 11,231 AF to 3,713 AF (+/- 1,219). 

Combined, the six drains with decreasing trends present a net loss of 63,688 AF of 

drainage water returning to the Boise River from 1987 to 2020; however, the basin-wide 

flow does not decrease through time when adding all 15 drains together. 
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Figure 2.3.  Plots of discharge (acre-feet) as a function of year for six of the fifteen 
measured drains in the Lower Boise River Basin. These drains exhibited a 

significant trend (p < 0.05) with the Mann Kendall trend test. The black line is the 
average trend line while the grey region is the 95% confidence intervals. 

Impact of urbanization on drainage flows 

Drainage discharge decreased drastically with increased urbanization (Figure 2.4; 

Figure 2.5). The confidence in direction of effect is shown by the 95% credible intervals 

of the posterior distribution not overlapping zero (Figure 2.4). When urban area increased 

from 10 to 20% of a drainage watershed, drain discharge decreased by approximately 

4,010 AF when it started at about 24,500 AF with no urban area. However, this 

relationship was not linear (Figure 2.5). When urban area increases from 75 to 85% in a 

drainage watershed, this only decreases the drainage discharge by about 764 AF/yr. More 

drastic shifts in drain discharge are seen during the early stages of urbanization, and as 

urban area increases, the rate of change in discharge is lower.   



 

 

52 

 

Figure 2.4.  Density plots of the posterior mass distribution of the effects for canal 
flows, urban percentage, irrigation season temperature, irrigation season average 
total precipitation, and irrigation season evapotranspiration on drainage flows. 

Light blue shading represents 95% credible intervals while the dark blue center line 
represents the median value. 
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Figure 2.5.  Plot of drain discharge (Acre-feet / year) as a function of percent 

urban with 50 and 95% credible intervals (CI). This is the effect of urban area on 
drain discharge when holding all other variables in the model at their mean. 

Impact of climate on drainage discharge 

Evapotranspiration and average maximum irrigation season temperature had 

inverse effects on one another while precipitation had no measurable effect on the 

drainage discharge (Figure 2.4). The effect of evapotranspiration was marginally larger 

than temperature; however, the 95% credible intervals for the effect of evapotranspiration 

were larger than the credible intervals for temperature, indicating greater likelihood of the 

mean effect for temperature (Figure 2.4). Increasing evapotranspiration by 5 inches 

annually created an increase of about 1,031 AF/yr in return flows annually for drains with 
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average volume (Figure 2.6A). Increasing the average maximum temperature during the 

irrigation season by 1°F will decrease return flows by about 773 AF/yr (Figure 2.6B).  

 

Figure 2.6.  Plots of the effect of (A) evapotranspiration and (B) average 
maximum irrigation season temperature (°F) on drain discharge. This is the effect 

of each variable on drain discharge when holding all other variables in the model at 
their mean. ‘CI’ in the legend is a credible interval. 

Impact of canal contributions on drainage discharge 

Increased canal flows entering a drainage watershed increased drainage flows 

(Figure 2.4; Figure 2.7). On average, drain discharge increases by approximately 495 

AF/yr in a given irrigation season for every 50,000 AF increase in canal flow that 

contributes to the drains (Figure 2.7). For example, if one drain receives input from 5 

different canals, with a cumulative increase of 50,000 AF in flow in these 5 canals, we 

would expect to see about 495 AF/yr increase in the corresponding drain for a drain with 

average discharge.  
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Figure 2.7.  Plot of the effect of canal contributions (AF) on drain discharge (AF) 
on an annual time scale. This is the effect of canal flows on drain discharge when 

holding all other variables in the model at their average. ‘CI’ is a credible interval. 

Discussion and Implications 

The goals of this study were to 1) identify drains in the Lower Boise River Basin 

with significant changes in discharge from 1987 to 2020 and 2) quantify the effects of 

urbanization and climate on drainage flows. The trend analysis showed that 6 of the 15 

drains have had substantial decreases in annual flows by at least 26% from 1987 to 2020 

(Figure 2.3). The models showed that increases in urban area and average maximum 
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irrigation season temperature decrease drainage flows (Figure 2.5; Figure 2.6), and 

increased evapotranspiration and contributing canal flows result in increased annual 

drainage flows (Figure 2.6; Figure 2.7).  
When all fifteen drains were summed and analyzed for a trend, there was no 

significant trend through time, showing little basin-wide changes to drainage. 

Interestingly, no individual drains had significant increasing trends through time, but the 

annual variability in the drains with no trend through time (Supplemental Figure 7) must 

be making up for the deficit from the drains that are decreasing through time (Figure 2.3) 

when all the drains are summed together. Similarly, the year-to-year variability at the 

basin scale may mask shifts in mean volume over time. Decreasing drain discharge 

through time in 6 of the drains shows that less water is available for downstream water 

users who rely upon those specific drains, highlighting localized impacts from changes in 

drainage flows as opposed to basin-wide implications. If drain flows continue to decline 

in these 6 drains or begin to decline in any of the other 9 drains that did not currently 

have a significant trend, water users who rely upon these return flows as ‘storage water’ 

may need to find new sources of storage water, such as water banking. Implementing 

continuous monitoring stations at smaller drains in the 6 drainage watersheds that have 

already seen decreasing flows could be useful for these vulnerable water users to 

understand what sections of the watershed are contributing to lower flows. The 9 drains 

that had not seen significant changes in the flow still need to be monitored into the future, 

as flows may shift as the LBRB continues to urbanize and feel the effects of climate 

change. Therefore, continuous monitoring of the 15 drains in this study combined with 
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annual trend analysis is necessary for water users to understand how localized drainage 

flows have and will continue to change.  

Our models found that increased urban area in a drainage watershed resulted in 

decreasing drainage flows. Urbanization is a complex sociopolitical process that can 

affect multiple mechanisms driving streamflow (Bhaskar et al., 2016), including reducing 

infiltration rates (Price et al., 2010), increasing impervious surface cover (Kauffman et 

al., 2009), increasing groundwater pumping from the shallow aquifer, shifting water 

sources, and changing irrigation practices (Ward et al., 2007). The drains in the LBRB 

were created to help reduce elevated water tables from flood irrigation in the agricultural 

sector (Baker et al., 2014); therefore, reduction in drain flows is likely linked to declining 

water tables through the processes previously mentioned. Urbanization of agricultural 

lands can reduce infiltration rates through a combination of changes, one of which is 

compaction of soils and infill on construction sites using material with different 

hydrologic properties. Compaction of soil decreases soil infiltration rates, which controls 

how quickly water will enter the subsurface and recharge the shallow aquifer (Yang and 

Zhang, 2011). Infiltration is also decreased by the lining and piping of canals and laterals 

throughout the valley during the process of urbanization (Jadhav et al., 2019). While 

lining and piping canals improves conveyance efficiency, this can negatively impact 

return flows and downstream water users who relied on those return flows (Meeks, 

2021). Increasing impervious surface cover by replacing fields with roads and areas of 

pavement creates an overall reduction in total area for water to infiltrate, again decreasing 

the total recharge to the groundwater. Increased groundwater pumping from the shallow 

aquifer could also create local drawdown in these newly urban areas (Kendy and 
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Bredehoeft, 2006; Sekhar et al., 2013). While we know some water is currently pumped 

from the shallow aquifer for domestic water supplies, further analysis needs to explore if 

new subdivisions are supported by public water supply or by newly drilled wells. If all 

new subdivisions were using public supply water rather than private wells, increased 

domestic water supply would not cause the shallow aquifer to decline because domestic 

water in the Treasure Valley comes from Boise River water and deep groundwater wells 

(USGS and Idaho Department of Water Resources 2017). This issue could be mitigated 

by having land use planners consult with water managers in the valley. While this 

exchange has not historically occurred, recent Treasure Valley Water Summits are 

seeking ways to increase coordination across interest groups. If more groundwater is 

being pumped, we also need to understand if that water is being used for irrigation or 

domestic purposes, as the fate of the water could be substantially different. Using 

groundwater for irrigation could result in less water needed in canal systems, which may 

adversely impact the shallow groundwater table and drainage flows (Kendy and 

Bredehoeft, 2006). Finally, changes in drainage rates may be linked to differences in 

irrigation practices between urban and agricultural regions. Historically, the Treasure 

Valley used flood irrigation in agricultural practices (Kliskey et al., 2019). However, 

urban areas predominantly use sprinkler systems, which can diminish recharge rates  

(Grafton et al., 2018). The processes that lead to declining drain flows with urbanization 

are linked to declining recharge and shallow aquifer water levels; therefore, increased 

data accessibility regarding domestic water supply and shallow groundwater levels would 

enhance water managers abilities to grapple with the changes in their region of the 
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LBRB. Currently, no centralized hydrologic database exists for the LBRB, but this 

information would be useful for many sectors.  

Increased temperatures resulted in declining drainage flows while increased 

evapotranspiration resulted in increased drain flows (Figure 2.6). While we may expect 

these two to have the same directional effect, the Treasure Valley is a water limited 

environment, meaning that the rate of the evapotranspiration is lower than the potential 

evapotranspiration based on temperature alone (Mcvicar et al., 2012). Increasing 

evapotranspiration linked with increasing drain flows may be an indicator that water 

users are applying more water to the landscape in general. If we assume recharge rates do 

not change, the increase in irrigation application would result in both higher 

evapotranspiration and higher water table levels, resulting in higher drain flows (Bhaskar 

et al., 2016). Increasing temperatures may be related to less water making it to the 

drainage systems because of increased evaporation from canals during conveyance from 

the reservoir system all the way to a drain. During hot periods, more water is required to 

be released from Lucky Peak reservoir to offset any increased evaporation from the Boise 

River before entering a diversion (personal communications, Mike Meyers). While more 

water is being released to offset losses in the Boise River, canals may not be 

compensating for increased losses, resulting in less water making it to the drain systems.  

Increasing flows in the canals contributing to a given drain led to increased annual 

drainage flows through multiple mechanisms (Figure 2.7). Increased volumes of water in 

the canals could produce more seepage to the groundwater, creating an elevated 

groundwater table and more discharge to the drain (Meredith and Blais, 2019; Urban, 

2000). Similarly, more water in the canals may also mean that water users are calling for 
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more water and are applying more water to crop fields or lawns, again leading to more 

infiltration and recharge of the groundwater table. Another mechanism is that more water 

may be moving through the canal, but not all the water gets used by water users, so extra 

water at the end of the canal empties to one of the drains.  Canal flows were an important 

predictor in this model for increasing drain flows, but increased piping and lining of 

canals and laterals to improve conveyance efficiency may mean that canals may play less 

of a role in recharging the shallow aquifer and maintaining drain flows in the future 

(Meeks, 2021). Canal flows in this model demonstrate an important groundwater – 

surface water connection, which should be taken into consideration with conveyance 

updates.  

Limitations 

While this model provides valuable insight into the mechanisms that are 

impacting drain flows, this model does have limitations, including data availability for 

both drain discharge and irrigation and conveyance efficiency improvements. First, most 

of the flow measurements used in this analysis are from IDWR’s Water Rights 

Accounting database (Idaho Department of Water Resources, 2022b). These historical 

measurements were measured weekly by the Idaho Water District 63 watermasters, and 

IDWR has interpolated the data to obtain daily flow data. Therefore, the true variability 

in flow may not be fully captured. Additionally, the 15 monitored drains are a subset of 

the total number of drains in the LBRB and, as a result, provide only a snapshot of the 

total change in drainage flows across the basin.  

The drains are not only influenced by all the mechanisms previously discussed, 

but on-field irrigation and conveyance efficiency improvements will also decrease 
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groundwater recharge and drain discharge (Grafton et al., 2018; Malek et al., 2021). We 

do not currently have data on irrigation efficiency improvements, but this could explain 

why more agricultural regions, like Conway Gulch (Figure 2.2; Figure 2.3), are seeing 

declining drainage flows. Similarly, piping and lining canals increases conveyance 

efficiency, but also cuts off seepage, leading to less recharge to the shallow groundwater 

table. However, the extent to which the canals have been lined or piped has not been 

mapped across the valley. These two efficiency improvements could also be altering 

drain flows, calling for a need to collect and digitize this data.  

Conclusions 

The goal of this research was to identify changes in drainage discharge in the 

LBRB from 1987 to 2020 and to understand how climate, urbanization, and canal flows 

affect changes in the discharge through time. This analysis showed drain discharge was 

decreasing locally, with 40% of drains decreasing through time, but there has been no 

significant change in drain discharge across the LBRB as a whole. The main driver for 

declining drainage flows was increased urban area in a drainage watershed, which is 

likely linked to decreased infiltration with urbanization and declining shallow 

groundwater tables. The connection between the surface water and groundwater system is 

further demonstrated by the model showing that increased canal flows lead to increased 

drainage flows. The shallow groundwater table will likely shift as more canals are piped 

and lined, and less seepage enters the aquifer. A centralized hydrologic data management 

system is needed for water managers to assess how groundwater and surface water 

systems in their region of the basin are changing, as the irrigation system and shallow 

aquifer are extensively connected. Furthermore, this analysis highlights the need for 
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increased partnership between water managers and land use planners, and a centralized 

data management system could help facilitate part of this necessary collaboration. 

Climate played less of a role in why the drains have changed when compared to 

canal inputs or urbanization, but evapotranspiration and temperature did impact drainage 

discharge. Increased evapotranspiration led to increased drainage flows and is likely a 

reflection of more water being applied to the landscape, and, in turn, more recharge. 

Increased temperature led to decreased drain discharge, which may need to be further 

investigated as temperatures in this region will continue to increase with climate change. 

While this analysis increases our understanding of the drain system in the LBRB, water 

managers would benefit from continued research to help management adapt to a changing 

environment.
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CHAPTER 3: CONCLUSIONS AND FUTURE WORK 

The goal of this study was to co-produce research to help water managers in the 

LBRB understand how both irrigation diversion volumes and irrigation drainage flows 

have changed through time and what the drivers of change have been. This research was 

necessary for water managers in the LBRB because the region has been urbanizing, 

similar to other major cities across the western US (Dahal et al., 2018; Friedrich, 2020). 

While existing literature explains that urbanization affects hydrologic systems and 

irrigation water demand in other major cities in the western US (Baker et al., 2014; 

Bhaskar et al., 2016; Kliskey et al., 2019), water managers in the LBRB did not have the 

information available to understand the specifics of how and why local diversion and 

drain volumes were changing. Simultaneously, annual weather impacts the irrigation 

water availability and demand, and providing information to water managers about which 

variables are most influential on the system can help them prepare for future change. Co-

producing this research with water managers in the basin was necessary for us to 

incorporate institutional knowledge into model formation and to make the results of this 

research actionable. Together, this work disentangles the influence of climate and 

urbanization impacts on the LBRB irrigation demand and return flows, which can be used 

for future studies in the region. Water budgets that have been created for the LBRB 

employ basin-wide assumptions about the behavior of drains and diversions 

(Reclamation, 2008; Urban, 2000); our work suggests that basin-wide assumptions could 

be leading to an oversimplification of the system and high uncertainty in the estimates.  
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We used both basin-wide and local statistical models to understand the 

complexity of the system and answer our questions. Two different model structures  

asking inherently different questions were used at the basin scale, and each model 

provided unique insight into how different predictor variables impacted flows, suggesting 

that only using the outputs of one model may lead to an incomplete understanding of the 

system (Sterman, 2002). Employing models and trend analysis at local scales helped 

show that individual diversions and drains are changing at variable rates through time and 

that individual diversions are influenced by decision-making and complexities that are 

not captured by basin-wide models.  

Trend analysis for drain and diversion volumes showed non-uniformity across the 

basin. While 40% of the drains were decreasing through time, only 35% of diversions 

were decreasing, and 18% of diversions were increasing through time. Future work with 

trend analysis could include integrating the diversion and drain datasets to understand if 

drains are decreasing in the same places that diversions are decreasing. The drain model 

showed a strong, positive relationship between drainage flows and canal inflows (Figure 

2.7), and combining the changes through time with the canals and drains could provide 

more insight into the connectivity. If drain and diversion discharge are changing in the 

same locations, water managers could use this information to divert more water down the 

canals that are heavily influencing groundwater levels and drainage flows as a form of 

managed aquifer recharge and increased water delivery (Hipke et al., 2022). 

The model outputs for diversion and drain flows showed a disconnect in the 

system in response to urbanization but similarities with climate impacts. Urbanization 

had a negative effect on total diversion volume at the basin scale, but the effect size was 
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variable (Figure 1.3), and individual MLRs showed that some diversions have increasing 

diversion volumes with urbanization while others are decreasing (Figure 1.7). Drain 

discharge decreased with increased urbanization more uniformly than the diversions 

(Figure 2.5). This highlights that while drains are influenced by humans, the mechanisms 

that drive flow (e.g., elevated shallow groundwater tables) are more physically based 

hydrologic processes compared to the drivers of flow in the diversions (e.g., human 

decision-making). Climate impacted annual diversion and drain volumes more uniformly 

than urbanization (Figure 1.5; Figure 2.4). Temperature and evapotranspiration had the 

same direction of effect for both diversions and drains, which was surprising as the 

diversions are an inflow into the surface water – groundwater system while drains are an 

outflow. For example, we anticipated that increased temperature would increase diversion 

volumes but decrease drain flows because irrigation demand typically increases with 

rising temperatures (Breyer et al., 2012; House-Peters et al., 2010), but less water would 

make it to the drains due to evaporative losses and less water entering the groundwater 

system. The same directionality in these effects warrants further research. The effect of 

precipitation on the diversions and drains was small or non-existent, demonstrating the 

lack of precipitation during the irrigation season and the importance of the reservoir 

system to support irrigation. Drain and canal systems throughout the valley and in the 

western US are interconnected surface water – groundwater systems (Baker et al., 2014; 

Ward et al., 2007); however, the disconnect in the system in response to urbanization 

calls for further work to understand these differences and the conceptualization of the 

mechanisms that may be leading to these differences.  
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Future Work   

While this study provides insights about the irrigation demand and return flows in 

the LBRB, this research highlights the need for further research on connections between 

diversions, drain flows, and urbanization to aid water managers in understanding how this 

system will continue to change. Groundwater pumping, canal seepage rates, and 

irrigation efficiency improvements are three large components that were missing from 

this study and could provide further insight into why diversions and drains are showing 

differences in response to urbanization. Pumping from the shallow aquifer system in the 

LBRB could cause local drawdown and, in turn, lower flows in the drains even if 

diversion discharge remains constant. Given this importance, groundwater data from 

IDWR (Idaho Department of Water Resources, 2023) should be evaluated for potential 

inclusion in future statistical modeling efforts. Groundwater levels control discharge to 

the drain system (Baker et al., 2014; Reclamation, 2008) and also alter vertical hydraulic 

gradients (Abdelmoneim, 2021), which could lead to greater seepage from the canal 

system. Seepage from canals is variable through both time and space due to differences in 

lithology and perched aquifer systems (Abdelmoneim, 2021); however, there are limited 

measurements of seepage rates, leading to large uncertainty in any seepage calculated 

through water budgets for the region (US Bureau of Reclamation, 2008; Urban, 2000). As 

urbanization increases, more canals and laterals are being piped or lined, which will 

drastically alter seepage, but no database contains this information. Finally, data that was 

missing from both the drain and diversion analysis was changes in irrigation efficiency, 

and many of the farms throughout the LBRB have transitioned from flood irrigation to 

drip or sprinkler systems, which will again impact recharge to the aquifer (Fillo et al., 
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2021; Malek et al., 2021). Together, characterizing these components with new or 

existing data would help improve our understanding of the mechanisms that are 

producing changes in surface flows in the LBRB irrigation system.  

Predicting irrigation diversion and drain flows would be another useful addition for 

basin scale water management, and future analysis could use the knowledge gained from 

this study in combination with predictions of future water availability to do so. While the 

models in this study were not built for, and are likely not appropriate for, predictive 

purposes (Yates et al., 2022), other model structures, such as random forests and artificial 

neural networks, may be better suited for prediction (Donkor et al., 2014). Future 

irrigation diversion demand and drain flows can serve as inputs for other basin-wide 

predictive models,  such as the US Bureau of Reclamation RiverWare model (Meeks, 

2021), and could be useful for understanding how water diversions and drain flows will 

shift as the LBRB continues to change.  

This research highlighted the need for a centralized data management system that 

follows FAIR (Findable, Accessible, Interpretable, Reusable) data principles (Wilkinson 

et al., 2016) for both geospatial and flow data for Idaho. Some data was available from 

IDWR (Idaho Department of Water Resources, 2020, 2021, 2022b); however, both data 

and metadata were often incomplete and required extensive engagement with IDWR staff 

to obtain. The error on flow measurements was not available, making it difficult to 

quantify measurement uncertainty for this analysis. Data also exists at the individual 

irrigation district level; however, this data is not public and not always archived. Having 

a centralized database that all water agencies have access to in the LBRB would promote 

more communication and collaboration between entities. A data system where flow and 
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geospatial data are connected and easily accessible could also help land use planners 

consider the impacts on hydrologic systems as the valley continues to urbanize. Improved 

data harmonization and management will aid water management and researchers as the 

LBRB continues to grow and change.  

This research created fundamental, baseline information on how and why irrigation 

flows have changed from 1987 to 2020 in the LBRB. Next steps in progressing both our 

essential understanding of the hydrologic response to LULCC and the actionable 

knowledge on how to adaptively manage this system in the future will require a better 

characterization of how groundwater-surface water interactions are shifting with LULCC, 

predictions for future diversion and drain volumes using information gained from this 

study, and the creation a centralized data management system for the LBRB.   
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APPENDIX I: SUPPLEMENTAL TABLES AND FIGURES 
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Supplemental Figures 

 
Supplemental Figure 1.  Histogram of the length of the irrigation season for all 
diversions (n= 63). The length of irrigation season for each diversion was calculated 
using the first day it diverted water and the day it reached its cumulative flow for 

the season. 
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Supplemental Figure 2.  The directed acyclical graph (DAG) of the variables 
that impact surface water diversions in the Lower Boise River Basin. Blue boxes 

represent available data while orange boxes show unavailable data.   
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Supplemental Figure 3.  The posterior predictive check for a Generalized Linear 
Mixed Effects Model with no time component modeling the effects of different 

predictor variables on surface water diversions in the Lower Boise River Basin. The 
observations (y) are in dark blue while the 20 samples from the posterior (yrep) are 

shown in light blue. 
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Supplemental Figure 4.  The posterior predictive check for a Generalized Linear 
Mixed Effects Model with an autoregressive-moving average term that models the 

effects of different predictor variables on surface water diversions in the Lower 
Boise River Basin. The observations (y) are in dark blue while the 20 samples from 

the posterior (yrep) are shown in light blue. 
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Supplemental Figure 5.  The directed acyclical graph (DAG) of the variables 
that impact return flow discharge in the Lower Boise River Basin. Blue boxes 

represent available data while orange boxes show unavailable data.  
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Supplemental Figure 6.  Posterior predictive check of a Generalized Linear 
Mixed Effects model with an autoregressive-moving average term with urban area, 

precipitation, temperature, evapotranspiration, and canal inflows as predictor 
variables to explain return flow discharge in the Lower Boise River Basin. The 

observations (y) are in dark blue while the 20 samples from the posterior (yrep) are 
shown in light blue. 
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Supplemental Figure 7.  The change in flow from 1987 to 2020 for drains in the 
Lower Boise River Basin with no significant trend, based on a Mann Kendall test. 
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Supplemental Tables 

Supplemental Table 1.  The priors for the Generalized Linear Mixed Model 
with no time component to understand the effect of variables on surface water 
diversions in the Lower Boise River Basin. 

Variable Prior 
Evapotranspiration Normal (0,1) 
Storage water use Normal (0,1) 
Urban Area Normal (0,1) 
Temperature Normal (0,1) 
Precipitation Normal (0,1) 
Intercept Normal (0,1) 
Intercept level by diversion name Cholesky LKJ Correlation (1) 
Standard deviation Gamma (1,1) 
Sigma Student T (3, 0, 2.5) 

 

Supplemental Table 2.  The priors for the Generalized Linear Mixed Effects 
Model with an autoregressive-moving average term to understand the effect of 
predictor variables on surface water diversions in the Lower Boise River Basin.  

Variable Prior 
Change in Evapotranspiration Normal (0,1) 
Change in Storage water use Normal (0,1) 
Change in Urban Area Normal (0,1) 
Temperature Normal (0,1) 
Precipitation Normal (0,1) 
Intercept Normal (0,1) 
Intercept level by diversion name Cholesky LKJ Correlation (2) 
Standard deviation Gamma (1,1) 
Sigma Student T (3, 0, 2.5) 
Autoregressive term Flat (-1,1) 
Moving average term Flat (-1,1) 
Degrees of freedom Gamma (2, 0.1) 
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Supplemental Table 3.  The priors for individual Generalized Linear Models 
for each diversion to understand the effect of predictor variables in individual 
diversion volumes in the Lower Boise River Basin. 

Variable Prior 
Evapotranspiration Uniform (−∞,∞) 
Storage water use Uniform (−∞,∞) 
Urban Area Uniform (−∞,∞) 
Temperature Uniform (−∞,∞) 
Precipitation Uniform (−∞,∞) 
Intercept Student T (3, 8.5, 2.5) 
Shape Gamma(0.01, 0.01) 

 
Supplemental Table 4.  The priors for the Generalized Linear Mixed Effects 
Model with an autoregressive-moving average term to understand the effect of 
predictor variables on return flow discharge in the Lower Boise River Basin. 
Predictor variables in this model include average daily maximum irrigation season 
temperature, irrigation season precipitation, irrigation season evapotranspiration, 
urban area, and canal inflows to a drainage watershed.  

Variable Prior 
Evapotranspiration Normal (0,5) 
Storage water use Normal (0,5) 
Urban Area Normal (0,5) 
Temperature Normal (0,5) 
Precipitation Normal (0,5) 
Intercept Normal (2,1) 
Autoregressive term Flat (-1,1) 
Moving average term Flat (1-,1) 
Standard deviation Normal (0,1) 
Sigma Student T (3, 0, 2.5) 
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APPENDIX II: ADDITIONAL DIVERSION ANALYSES 
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Chapter 1 of this thesis presents the conclusions from the diversion analysis; 

however, additional models and statistical analyses were explored in the process of this 

work. The additional response variables, predictive parameters, and models will be 

shared here. However, the results will not be interpreted.  

Timing Metrics 

 Response variables of both volume and timing were calculated as explained in 

Chapter 1. Timing metrics included start day of year of the irrigation season, end day of 

year of the irrigation season, and length of irrigation season. We used a GLMM with no 

ARMA to try to explain how the length of the irrigation season was changing for across 

the basin; however, the MAE of the model was about equal to the standard deviation of 

the variable, likely because not enough variability is present in the data, as shown by the 

peaked distribution in Supplemental Figure 2. Furthermore, the irrigation season cannot 

extend beyond certain dates, as the irrigation season follows the growing season. Some of 

the GLMMs showed that certain predictor variables would increase the length of the 

irrigation season past the bounds of the year, which is not possible. The constraints of the 

calendar year make modeling the changes in timing metrics difficult.  

Survival analysis was also used to model the length of the irrigation season, as 

survival analysis is a type of model used to represent time to an event (Clark et al., 2003). 

The time to event in this analysis was the time to the end of an irrigation season. Survival 

analysis did not yield better results than the GLMM analysis.  

Individual trend analysis using a Mann Kendall test for each timing metrics was 

explored for each diversion. Trend analysis for the length of irrigation season included 55 

of the diversions. The trend analysis showed that 17 diversions had a significant (p < 
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0.05), increasing length of irrigation season while 7 had a significant, decreasing trend in 

the length of irrigation season (Figure AII-1). The increasing length of the irrigation 

season stems primarily from an earlier start date, where 17 of the diversions had an 

earlier start date of the irrigation season and 5 had a later start date. Finally, 7 diversions 

were ending the irrigation season later in the year, and 7 were ending earlier in the year 

(Figure AII-1). One diversion that does not primarily serve irrigation purposes was 

diverting year-round (Figure AII-1).   

 

Figure AII-1.   Increasing and decreasing trends for the length of the 
irrigation, season start day of the irrigation season, and the end day of the irrigation 

season across 55 diversions in the Lower Boise River Basin.   
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Additional Predictor Variables 

Many additional predictor variables were calculated in the process of 

conceptualizing what variables to include in the model. Ultimately, the models included 

predictor variables that matched our understanding of the system (Supplemental Figure 2; 

Supplemental Figure 5). Additional calculated or recorded potential predictor variables 

were maximum reservoir storage, reservoir carryover from the previous water year, 

storage water available, proportion of agricultural area, precipitation prior to the 

irrigation season, average maximum June through August temperatures, and inflows to 

Lucky Peak reservoir. Annual cumulative maximum reservoir storage across Anderson 

Ranch, Arrowrock, and Lucky Peak reservoirs will influence the available storage water 

for each canal, but storage water use, which was included in the models, explained more 

individual behavior for canals. Reservoir carryover from the previous water year was not 

included because it does not represent the full amount of water available for the current 

water year. Available storage water for each canal was not incorporated in the models 

because it had a 0.98 correlation with storage water used. Similarly, the proportion of 

agricultural area had a -0.97 correlation with the proportion of urban area and was, 

therefore, not incorporated in the model. Precipitation prior to the irrigation season was 

considered but ultimately not used because precipitation during the irrigation season was 

deemed a better variable for understanding demand during the irrigation season. Average 

daily maximum June through August temperature was not incorporated in the models 

because the response variable was at the whole length of the irrigation season while this 

temperature variable only represents one fraction of the whole period. While all these 
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metrics were not included in the model, they could potentially be used in future models 

focused more on prediction rather than causal inference.  

Additional predictor parameters considered for timing models were March total 

precipitation, March total evapotranspiration, and March average daily maximum 

temperature. The March variables were calculated for the models regarding the length of 

irrigation season and start day of irrigation season because March weather are an 

indicator for when the canals will start diverting water. The March variables were not 

used in the models for total diversion volume.  

Additional Model Runs  

The two GLMMs presented on diversion volumes in the paper were carefully 

considered as two models to explain two different questions in which we were interested. 

As the predictor variables included in the model will alter the inference of each 

coefficient (Yates et al., 2022), predictor variables were chosen to best represent the 

system and were based on discussions with stakeholders and previous literature. 

Additional models were considered and run during this study, primarily because the 

models presented here were time intensive to fit. Model structures all followed the 

general GLMM structure; therefore, the differences in models considered were primarily 

due to additions to the general structure or subsets of the data. One model structure 

difference was including an offset for the diversion size, which is used to provide the 

diversion volume as a ratio to the size of the area it serves (Stijnen et al., 2010). 

Additional models that were run included subsets of the full dataset. These models 

included subsets as follows: 

1. Excluding the largest canal from the dataset 
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2. Diversions with less than 10% urban change and greater than 10% urban 

change 

3. Diversions with an average discharge less than 20,000 AF and greater than 

20,000 AF 

Excluding the largest canal from the dataset was considered because water from 

this canal also delivers water to a small reservoir and not just irrigation, and this canal’s 

discharge was, on average, 4.7 times larger than the next biggest canal.  Splitting the 

dataset into two datasets, one with diversions that have had greater than 10% urban 

change and one with less than 10% urban change, was considered because of the 

difference in the magnitude of urban growth. However, this subset did not account for the 

starting urban area (e.g., 10% versus 60% urban area in 1987), which could alter the total 

amount of water being used at the beginning of the period of study.  Finally, we explored 

dividing diversions into large (greater than 20,000 AF average discharge) and small 

discharge groups to explore if different size diversions responded differently to the 

predictor variables and for computational efficiency. While separating the data into 

different groups provided unique insights, this addressed a different question than our 

intended basin-wide response to these different predictor variables. Therefore, all 

diversions were kept in the model as long as they met the requirements for the model.  
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APPENDIX III: ADDITIONAL DRAIN MODELS 
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Model Comparison for Overfitting 

For the drains, we ran various individual GLMMs for the different predictor 

variables, adding one variable at a time to the model. The combination of predictor 

variables included in the models were as follows: 

1. Urban area  

2. Climate variables 

3. Urban area and climate variables 

4. Urban area, climate variables, and canal contributions. 

One model was run with all predictor variables but without the ARMA component that 

all other models included.  

Model comparison 

The model comparison on the basis of LOOIC revealed that including all 

predictor variables in the model with an ARMA term did not overfit the model (Table 

AIII-1). The model with the best fit (lower MAE and LOOIC) included urban area, all 

climate variables, and canal contributions, had a varying intercept by drain, and included 

an ARMA average term (Table AIII-1). Models with an ARMA term performed better 

than models without the term, illustrating that information about the previous year can 

help inform the discharge at the current time step. In the case of using all predictor 

variables, the MAE for the model with the ARMA and all predictor variables was 900 AF 

less than the model with all predictor variables and no ARMA.  
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Table AIII-1.   Comparison of model fit (MAE and LOOIC) among models 
with different predictor variables, grouping structure, and the inclusion of an 
autoregressive moving average term. 

Model Variables Grouped variables 
by drain name 

Autoregressive 
term? 

MAE (AF) LOOIC  

Urban + climate + 
canals 

Intercept Yes 4,045 213.0 

Urban + climate + 
canals 

Intercept, Urban Yes 4,051 212.9 

Urban + climate Intercept, Urban Yes 4,157 237.0 
Climate Intercept Yes 4, 247 250.6 
Urban Intercept Yes 4,413 283.7 
Urban + climate + 
canals 

Intercept, Urban No 4,952 - 

 

 

  


	INFLUENCE OF URBANIZATION AND CLIMATE ON IRRIGATION DIVERSIONS AND RETURN FLOWS IN THE LOWER BOISE RIVER BASIN
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INFLUENCE OF URBANIZATION AND CLIMATE ON SURFACE WATER DIVERSIONS IN A SEMI-ARID BASIN
	Introduction
	Study area
	Data and methods
	Data Collection and Preparation
	Diversion discharge data.
	Reservoir Storage data
	Diversion spatial data
	Geospatial land use and climate data

	Trend Analysis
	Basin Scale Statistical Analysis
	Mixed effects model
	Mixed effects model with autocorrelated residuals

	Individual diversion statistical analysis

	Results
	Trends in discharge through time
	Mixed effects model
	Autoregressive- moving average mixed effects model
	Individual generalized linear models

	Discussion
	Differences in model structure to quantify effects
	Differences in volume through time
	Urbanization and diversion volumes
	Reservoir Storage for Irrigation
	Climate effects on diversion volume
	Study Limitations

	Conclusion

	CHAPTER 2: HOW IS THE AMOUNT OF IRRIGATION WATER DRAINING TO THE BOISE RIVER CHANGING WITH URBANIZATION AND CLIMATE CHANGE?
	Executive Summary
	Key results
	Future Considerations and Suggestions

	Introduction
	Methodology and Model Fit
	Overview
	Data collection, preparation, and analysis
	Model development and fit

	Modeling Results
	Overview
	Changes in drainage flows through time
	Impact of urbanization on drainage flows
	Impact of climate on drainage discharge
	Impact of canal contributions on drainage discharge

	Discussion and Implications
	Limitations

	Conclusions

	CHAPTER 3: CONCLUSIONS AND FUTURE WORK
	Future Work

	REFERENCES
	Supplemental Figures
	Supplemental Tables

	APPENDIX II: ADDITIONAL DIVERSION ANALYSES
	Timing Metrics
	Additional Predictor Variables
	Additional Model Runs

	APPENDIX III: ADDITIONAL DRAIN MODELS
	Model Comparison for Overfitting
	Model comparison




