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ABSTRACT

The COVID-19 pandemic has impacted essentially the entire globe, infecting

over 755 million people worldwide and resulting in over 6.8 million deaths to date.

Different countries have had varying levels of success in managing the spread of

the pandemic, and the success or lack thereof could be explained by the impact

of government intervention, such as lockdown policies, mask mandates, and social

distancing advisories. The United States responded particularly poorly to the early

pandemic outbreak as compared to other similar countries, due to its lack of co-

ordinated planning to implement effective policies, with large variations in action

taken by each state. Therefore, it is of interest to understand how varying levels of

policy implementation are related to early COVID-19 outcomes. In this study, we

consider whether the state’s emergency declaration was before the national level and

the number of other lockdown policies that are in effect on a given day. We also

disaggregate the effect of other lockdown policies into between-state and within-state

effects. Then we use linear mixed effects model to examine the association between

early COVID-19 growth rates and lockdown policies during the initial lockdown period

after accounting for statewide demographic variables. Due to multicollinearity issues

between demographic variables, we present two final models that account for these

variables separately.
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CHAPTER 1

INTRODUCTION

Since its first detection in December 2019 in Wuhan, China, COVID-19 quickly

spread to countries worldwide [19]. As of February 9, 2023, the WHO reported

over 755 million COVID-19 cases and over 6.8 million COVID-19-related deaths [5].

Given the severity of the situation, many public health experts examined the spread

of COVID-19 and the effectiveness of government interventions, such as lockdown

policies, mask mandates, and social distancing advisories. A comparative study by

Migone [18] found that the effectiveness of containment policies primarily depended

on their timing - countries that responded proactively, including Australia, Japan,

and South Korea, were less severely impacted by the pandemic, whereas countries

that responded reactively, like the United States, suffered more. Dey et al. [8] also

noted that U.S. states that responded slowly to the pandemic were generally hit

the hardest, likely due to this delayed response in implementing effective policies to

contain the spread of COVID-19. Another study by Lee et al. [15] directly compared

the government responses of the United States and South Korea. The first case of

COVID-19 in the United States and in South Korea was reported on the same day,

but South Korea declared a state of emergency on February 23, 2020, whereas the

United States did not declare a state of emergency until March 13, 2020. South

Korea was able to flatten the curve early on by implementing “swift, decisive” mea-
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sures, while the United States “lacked coordinated planning” to effectively implement

policies that would curb the growth of COVID-19. These studies demonstrated the

importance of coordinated planning to implement policies proactively, and motivated

this investigation of the associations between policy implementation and COVID-19

growth rates while taking into account the varied responses taken by each U.S. state.

Many studies have also highlighted health disparities in COVID-19 outcomes

related to race, age, gender, and economic status. A county-level analysis by Finch

and Finch [9] found that, in the very early stages of the pandemic, counties with

higher levels of poverty had more confirmed COVID-19 cases than counties with lower

poverty levels, but this relationship flipped after April 1, 2020. Another county-level

study by Berman et al. [6] used a generalized linear mixed effects model to analyze

socioeconomic predictors of COVID-19 incidence and case fatality rates in Georgia.

Berman et al. assumed that the underlying distribution of incidence and case fatality

rates followed a Poisson distribution, and therefore a general linear mixed model

with log link function was used to examine the relationship between health indicators

and COVID-19 outcomes. Berman et al. found that rural county status and higher

economic inequality were associated with higher COVID-19 incidence. A study by

Pan et al. [19] assessed the epidemiology of the outbreak in Wuhan, China. In this

study, Pan et al. divided the study period into 5 groups to examine the dynamics

of the epidemic. An epidemic curve was created to show the change of COVID-19

case counts over time and a modified poisson regression with robust variance was

used to determine the relationship between COVID-19 rates and age, sex, healthcare

occupation, and disease severity (mild and moderate versus severe and critical) by cal-

culating risk ratios. Pan et al. found that the case rate was slightly higher for women

than for men, and higher for healthcare workers than for the general population. A
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meta-analysis by Mude et al. [24] revealed that the COVID-19 prevalence ratio was

significantly higher in Black and Hispanic populations when compared with White

population. A study by Hamidi et al. [22] also found that the COVID-19 infection

rate was higher in counties with a higher percentage of Black population, and further

explored the relationship between county-level activity density (defined as the sum

of county population and employment divided by the land area) and COVID-19 case

rates in the United States. The study conducted by Hamidi et al. employed a

multilevel linear model, which is equivalent to the linear mixed effects model that we

used in this study, although we considered the state-level instead of the county-level.

This type of model can account for temporal correlations that arise from repeated

measurements as well as the nested structure of the data. Hamidi et al. found that,

surprisingly, after controlling for confounding variables, including race (percent of

Black population), gender (percent of male population), age (percent of population

aged 60 and over), education level (percent of adults with education beyond high

school), health indicators (percent of adults currently smoking and percent of adults

who are overweight), features of a given metropolitan area (metropolitan population

and enplanements in metropolitan area per 10,000 population), and healthcare-related

features of a given metropolitan area (number of primary care physicians per 10,000

population, state-wide number of COVID-19 testing per 10,000 population, and ICU

beds per 10,000 population), higher population density was associated with decreased

infection rate. Hamidi et al. noted that this result was at odds with the popular

opinion among urban planners that “dense places will experience faster spread of

COVID-19” due to increased person-to-person contacts and difficulty with social

distancing in these areas, and suggested that “perhaps the heightened attention to

social distancing requirements” in compact areas has led to increased compliance
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and therefore decreased infection rates. We note that the healthcare-related variables

controlled for in the study conducted by Hamidi et al. are not necessarily confounders

early in the COVID-19 outbreak, given limited public knowledge about the risks of

COVID-19. Other studies of the early outbreak have found population density to be

positively related to COVID-19 case rates.

In this study, we focused on the impacts of two different groups of statewide

lockdown policies. One type of policy we considered was the state of emergency

declaration. To determine if states that acknowledged and responded proactively to

the pandemic fared better than states that delayed action, we investigated if whether a

state (or the District of Columbia) issued an emergency declaration before or on/after

the national emergency declaration date. Other types of policies we considered were

policies that required the closure of public spaces, including schools, restaurants and

bars, and other non-essential business, as well as stay-at-home orders. Assessing the

effect of these lockdown policies presented a challenge in that the number of lockdown

policies in place on a given day varied over time. When we considered the number

of lockdown policies in place within a given state on a given day, we had information

about both between-state differences and within-state differences, and the effects of

these differences were confounded. For example, at one level, the number of lockdown

policies within a given state changed over time, but at another level, the overall

number of lockdown policies varied between states. If the combined “other lockdown

policy” variable were treated as a single effect, we could not differentiate between

the within-state and between-state effects. As presented by Curran and Bauer [7],

the current best practice for disaggregating between-state and within-state effects is

person-mean centering, in which the time varying covariate is decomposed into the

sum of two parts: the person-level mean, and the time-dependent deviation from
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the person-level mean. In the context of our study, the number of other lockdown

policies was decomposed into two parts: (1) the mean number of other lockdown

policies implemented by a given state during the study period and (2) the amount

by which the number of lockdown policies in that state deviated from the mean on

a given day. More details about the process of disaggregating between-state and

within-state effects are discussed in Section 2.1.1. Another challenge presented by

the time-varying covariate (other lockdown policies) was in isolating the effects of the

lockdown policies from the effects of the reopening policies that were implemented

soon after. Figure 1.1 shows the number of states that implemented new policies on a

given day from February 29, 2020 to December 23, 2020. To avoid confounding effects

associated with reopening policies, we considered only the period of time between the

first confirmed case was reported in the last state the pandemic reached (West Virginia

on March 18, 2020, where the growth rate based on the 7-day moving average was

defined beginning March 16, 2020) and the date of the first reopening policy (April

20, 2020 in South Carolina, where the study period ended on the previous day, April

19, 2020).
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December 23, 2020
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CHAPTER 2

METHODS

2.1 Data Description

For the COVID-19 case data, we used the Historic US Values data from The

Atlantic COVID Tracking Project [3]. We selected the positive variable from the data,

defined as the “total number of confirmed plus probable cases of COVID-19 reported

by the state or territory”. It is important to note that the extent to which the data

reflects the actual COVID-19 outbreak is limited in that in early case rates are likely

underestimates of the true case rates due to many possible cases going undetected, and

that different states use different definitions when reporting confirmed plus probable

cases.

The policy data was downloaded from the COVID-19 U.S. State Policy (CUSP)

database [20]. The CUSP documents the dates that all 50 states and the District of

Columbia implemented policies in response to the COVID-19 pandemic [20]. Specif-

ically, we used the data files titled State of Emergency Declaration, Stay-at-Home

Order, and Closures & Reopening. From these datasets, we extracted date data

for each of the following policies implemented for each state (and the District of

Columbia): emergency declaration, stay-at-home order, school closure, restaurant

and bar closure, and other non-essential business closure. For the sake of simplicity,

we refer to the 51 regions as states.
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We also included state-level demographic variables as covariates in the model.

The gender, race/ethnicity, age, poverty, and citizenship status data were reported

as proportions of the state population and were obtained from the Kaiser Family

Foundation (KFF) [1]. Typically, the KFF data is sourced from the Census Bureau’s

American Community Survey (ACS), but since the release of the 2020 ACS was

delayed due to the COVID-19 pandemic, most of the data reported in 2020 was based

on the analysis of the Census Bureau’s March Supplement to the Current Population

Survey (CPS) [1]. We also considered the population density for each state, which

we accessed on the Census Bureau’s website. The population density data was based

on resident population counts from the 2020 census [2].

2.1.1 Variables

Case Growth Rate The growth rate of confirmed COVID-19 cases was the depen-

dent variable in this study. Considering the raw daily counts of positive COVID-19

cases on a given day j for a given state i, zij, we calculated the 7-day moving average,

mij, of daily new confirmed cases,

mij =
zij−3 + zij−2 + zij−1 + zij + zij+1 + zij+2 + zij+3

7

and defined the COVID-19 case growth rate by

yij =
mij −mij−1

mij−1

for i = 1, . . . , 51 and j = 1, . . . , 35.
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Time The number of consecutive days since the beginning of the study period,

where the value of the time variable is 1 on the first day of the study period, March

16, 2020, and 35 on the last day of the study period, April 19, 2020.

Emergency Declaration The dataset titled “Emergency Declaration” contained

data about the dates on which each state declared a state of emergency. From this

data, we defined a binary emergency declaration variable so that the variable had a

value of 1 if a given state declared a state of emergency before the national emergency

declaration date (March 13, 2020) [4], or 0 if the given state declared a state of

emergency on or after the national emergency declaration date.

Other Lockdown Policies The dataset titled “Stay-at-Home Order” contained

data about the dates on which each state implemented a stay-at-home order, and

the dataset titled “Closures & Reopening” contained data about the dates on which

each state implemented various policies. We combined data from both datasets,

specifically the dates on which the stay-at-home order, school closure, restaurant and

bar closure, and other non-essential business closure, were implemented, into a single

“other lockdown policy” variable, which we call OLD. This variable is defined as the

total number of these lockdown policies in place on a given day in a given state. For

example, Idaho issued its first lockdown policy, namely K-12 public school closure, on

March 24, and implemented the remaining “other lockdown policies” - stay-at-home

order, restaurant and bar closure, and other non-essential business closure - on March

25. Therefore the value of the OLD variable for Idaho is 0 from March 16 through

March 23, 1 on March 24, and 4 from March 25 through the end of the study period,

April 19.
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Since the measurement of the OLD variable is repeated, it contains information

about both the within-state effect and the between-state effect [14]. To disaggregate

within- and between-state effects, one can use state-mean centering as follows:

COLDij = OLDij −MOLDi.

where COLDij is the number of additional lockdowns in effect on a given jth day,

based on the average for the ith state over the study period andMOLDi is the average

number of other lockdown policies for the ith state. We consider

Level 1: yij = β0i + β1COLDij + β2MOLDi + εij

Level 2: β0i = γ00 + u0i

β1 = γ01

β2 = γ11.

Then

yij = γ00 + γ01COLDij + γ11MOLDi + u0i + εij

where u0i
i.i.d∼ N(0, σ2

u), εij
i.i.d∼ N(0, σ2

e), and γ00, γ01 and γ11 are fixed. γ01 is the

within-state effect, and γ11 is the between-state effect. In this case, we can test

whether the effects within and/or between states are statistically significant and

whether the two effects conflict based on the signs of the coefficients.

Demographic Variables We considered gender, race/ethnicity, age, and poverty

and citizenship status as covariates in the model. This data was downloaded from the
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Kaiser Family Foundation Population and People in Poverty (2020 Current Popula-

tion Survey), and is reported at the state level [1]. In particular, we used the tables

“Population Distribution by Sex (CPS)” for the Female variable (Female proportion

of state population), “Population Distribution by Race/Ethnicity (CPS)” for the

Black variable (Black proportion of state population), “Population Distribution by

Age (CPS)” for the Over65 variable (the proportion of state population over the age of

65), “Distribution of Total Population by Federal Poverty Level (CPS)” for the P399

variable (the proportion of households in the state which have a total income from

200-399% of the poverty line) , and “Population Distribution by Citizenship Status

(CPS)” for the Noncitizen variable (Non-citizen proportion of state population).

Some missing values in the Non-Citizen variable were imputed by subtracting Citizen

proportion of state population from 1.

We also considered the population density data, which was extracted from the

Historical Apportionment File on the Census Bureau’s website. The population

density is defined as the average population per square mile of land for each state [2].

Since there is extreme variability among state population density values, the smallest

being 1.3 in Alaska and the largest being 11, 280 in the District of Columbia, we

used the natural logarithm of the population density in our model. We refer to this

variable as Density.

2.2 Linear Mixed Model

Our data exhibits dependency as repeated measured COVID-19 growth rates and

policies over time are clustered at the state level. Since the existence of dependence

violates the assumptions of simple linear regression, it is ideal to use a model that takes
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into account both the hierarchical nature of the data and the temporal correlation

that arises from repeated measures, such as a linear mixed effects model (also known

as a multilevel model). The linear mixed model is given by the equation

y = Xβ +Zu+ e (2.1)

where y is a N × 1 response vector of repeated measurements for each cluster i (i =

1, . . . , n), N =
∑n

i=1mi, where mi is the size of the ith cluster, X and Z are,

respectively, N × p and N × q fixed and known matrices called design matrices, β is

a p×1 vector of p unknown fixed effects parameters, u is a q×1 vector of q unknown

random effects parameters, and e is a N × 1 random error vector. We assume that u

and e are normally distributed with mean of a zero vector and

Var

[
u

e

]
=

[
G 0

0 R

]

whereG is the variance-covariance matrix of the random effects andR is the variance-

covariance matrix of the residuals [16]. In contrast with the simple linear model, which

includes only fixed effects, the mixed model allows for both fixed and random effects

by including terms Xβ for fixed effects and Zu for random effects.

Henderson [13] developed a set of equations that allow us to simultaneously

estimate parameters β and u. Henderson originally derived these equations by

maximizing the joint density of y and u with respect to β and u, assuming that

u and e are normally distributed. These are known as Henderson’s Mixed Model

Equations (MME), and are commonly presented in the matrix form shown below

[21].
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[
X ′R−1X X ′R−1Z

Z′R−1X Z′R−1Z + G−1

][
β̂

û

]
=

[
X ′R−1y

Z′R−1y

]
(2.2)

Solving for β̂ and û, we can write the solutions to Henderson’s MME as follows:

[16]

β̂ =
(
X ′V −1X

)−1
X ′V

−1
y (2.3)

û = GZ′V
−1

(
y − Xβ̂

)
(2.4)

where V = ZGZ ′ + R. The solutions to Henderson’s Model Equations are known

as the the BLUE (best linear unbiased estimator) of β and the BLUP (best linear

unbiased predictor) of u [16]. These estimators are “best” in that they minimize mean

squared error (compared with other linear unbiased estimators), “linear” in that they

are linear functions of y, and “unbiased” in that E(β̂) = β and E(û) = u. Now, we

call β̂ an “estimator” because it estimates fixed effects, and we call û a “predictor”

because it is an estimator for a random effect [21].

In deriving the BLUE and BLUP, G and R were considered to be known. How-

ever, in practice, G and R are often unknown and must be estimated. Estimates Ĝ

and R̂ are obtained and plugged in to the mixed-model equations to yield estimates

of β̂ and û, at which point we call the estimates the EBLUE and EBLUP, for “emper-

ical” or “estimated” BLUE and BLUP [16]. There are four approaches to estimating

covariance parameters: Analysis of Variance (ANOVA), Maximum Likelihood (ML),

and Restricted Maximum Likelihood (REML) and Bayesian approach. In this study,

we only consider ML and REML approaches. The ML approach for estimating

covariance parameters involves maximizing the marginal log-likelihood function of

y with respect to β and θ, where θ is a vector of covariance parameters from which
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G andR can be constructed [16]. A shortcoming of the ML estimator, however, is the

fact that the ML estimates of the variance components are biased downwards as they

fail to take into account the degrees of freedom lost in the estimates of the fixed effects

[11]. The REML method aims to resolve this issue by maximizing the log-likelihood

of Ky, where K is a matrix of error contrasts, so that the likelihood function can

be expressed without reference to fixed effects β. REML is the default method for

estimating covariance parameters in many statistical packages. However, as noted in

[12], comparing models with different fixed effects is not valid for models fitted by

REML, so the ML method is used when testing fixed effects between models, and

once the fixed effects are determined, the model is re-fitted with the REML method

for unbiased variance estimation.

2.2.1 SAS PROC MIXED

Linear Mixed Model in SAS The MIXED procedure in SAS has made accessible

the use of the linear mixed model in research. Using only a few statements, we

can specify all that is needed to fit a linear mixed model. The models created for

this study are implemented as follows: First, a CLASS statement is used to specify

classification or categorical variables used in the model. The classification variables

used in our study include the states, the binary emergency declaration variable, and

the time variable (indicating 35 consecutive days). Next, a MODEL statement is

used to indicate the fixed effects that will be included in the model. Within the

MODEL statement, we can also choose a method for computing degrees of freedom

for calculating F-statistics for fixed effects, which we must include in this study since

the default method fails to take into account complexities introduced by complex

covariance structures [16], as discussed further below. Next, a RANDOM statement
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is used to indicate the random effects that should be included in the model. We

also indicate the subjects (states) and the G (between-state) covariance structure

in the RANDOM statement. In this study, we consider random intercept models.

Thus, G is a scalar with represents the variance for the random intercept. Finally,

a REPEATED statement is used to specify the variable on which we have repeated

measures, in our case, time. Like in the RANDOM statement, we also include the

subject in this statement, along with the R (within-state) covariance structure. For

35 consecutive measurements for a given state, R is a 35 × 35 matrix. The MIXED

procedure allows for estimating many different possible covariance structures, a few

of which are described in the following paragraph. The SAS code used to produce

each model used in this study is presented in Appendix A.

Covariance Structure By default, the MIXED procedure uses the variance com-

ponents (VC) covariance structure to estimate covariance parameters for G and R,

but this structure is too simple to accurately represent the data, as it assumes

no correlation between random effects (G) and between repeated measures (R),

respectively. As repeatedly measured COVID-19 growth rates are expected to be

correlated, it is more plausible to specify a covariance structure that allows for cor-

relations, such as compound symmetry (CS) and first-order autoregressive (AR(1)).

Compound symmetry allows for correlated errors, but requires that these correlations

be the same for all time lags. The first-order autoregressive structure also allows for

correlated errors, but requires that these correlations decline exponentially over time,

so that correlations are larger between observations taken at closer points in time

than correlations between observations taken at distant points in time. While these

covariance structures are less restrictive than the variance components structure, they
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are still somewhat restrictive in the sense that they are homogeneous structures,

meaning that they require the variances along the main diagonal to be constant

[26]. To allow for more flexibility in the covariance structure, we also considered

some heterogeneous structures in order to estimate G and R. Two such structures

are the heterogeneous compound symmetry (CSH) and the heterogeneous first-order

autoregressive structure (ARH(1)), which are analogous to the homogeneous CS and

AR(1) structures, respectively, but are more general in that they allow the variances

along the main diagonal to vary [26]. There exist even more general covariance

structures, like first-order ante-dependence (ANTE(1)), which is a generalization of

ARH(1), and unstructured (UN), which is the most general as it allows for unique

values for all correlations [26].

Denominator Degrees of Freedom In PROC MIXED, the default method for

calculating degrees of freedom when a RANDOM statement is specified is the “con-

tainment” method. However, this method only provides exact denominator degrees

of freedom when there is no R covariance structure, or in the case that we assume

independent and identically distributed errors [23]. Guerin and Stroop [10] showed

that using the default method for calculating denominator degrees of freedom leads to

inflated type I error rates, especially for models with complex covariance structures.

Two common alternative methods for approximating denominator degrees of freedom

are the Kenward-Rogers method (df=KR) and Satterthwaite method (df=Sat). The

Satterthwaite method can be applied to both models fitted using ML and REML,

while the Kenward-Rogers method is only applied to REML models [17]. For models

with complex covariance structures, like the one we present, it is recommended that

the Kenward-Rogers is used for models fitted using REML [23]. In this study, we



17

used the Satterthwaite method with models fitted using ML, and the Kenward-Rogers

method with models fitted using REML.
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CHAPTER 3

RESULTS

Using the COVID-19 case growth rate as described in 2.1.1, we created growth

curves for each US state over the study period, which are shown in Figure 3.1. We

see that the COVID-19 growth rates generally decreased over time at varying rates

across states. The baseline growth rate on the first day of the study period (March

16, 2020) varies between states. The differences between baseline growth rates is

partially a result of how the study period was defined. We began the study period on

the first day that the COVID-19 growth rate was defined for all states, so since West

Virginia reported its first COVID-19 case on March 18, 2020 [3], we began the study

period on March 16, 2020. So the baseline growth rate does not represent the initial

growth rate for all states. For example, Washington reported its first COVID-19 case

on January 19, 2020 [3], so its baseline growth rate represents the COVID-19 growth

rate nearly two months after its initial exposure. The mixed-effects model allows

us to account for these between-state baseline differences by allowing each state to

have its own intercept, normally distributed around 0 with some unknown variance.

Each model we created includes a random intercept term to allow for this. We also

considered a random slope model that allowed the slope of the COVID-19 growth

rate over time to vary for each state, but the G matrix was not positive definite for

this model, indicating that there was not much variation in the slope between states.
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First, the full model includes all variables that we considered. These variables are:

ED, Time, COLD, MOLD, Female, Black, P399, Density, Over65 and Noncitizen.

Figure 3.2 shows the variable values by state for the time-invariant covariates (all

variables except for Time and COLD). In addition to these variables alone, the full

model will include interaction effects between ED and Time, ED and COLD, and

ED and MOLD. We fixed the covariance structures G as unstructured (UN), and

R as heterogeneous autoregressive (ARH(1)). The specification of the covariance

structure G is important when more than one random effect is involved, but since we

only consider the random intercept model, G is simply the variance of the random

intercept. We chose ARH(1) for R since it assumes that the correlations between

within-state residuals decrease exponentially over time and allows for heterogeneous

variances.
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Figure 3.1: Growth Curves
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Figure 3.1: Growth Curves (cont.)
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(a) ED

(b) MOLD

(c) Female

Figure 3.2: Variables by State
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(d) Black

(e) Poverty399

(f) Density

Figure 3.2: Variables by State (cont.)
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(g) Over65

(h) Noncitizen

Figure 3.2: Variables by State (cont.)

3.1 Model Selection

As shown in Table 3.1, some of the variables included in the model are highly

correlated, in particular, the correlation between the Female and Black variable

is 0.7226, and the correlation between the Female and Density variable is 0.6631.

When ignoring the correlation between the deomgraphic variables, Table 3.2 shows

the estimates of fixed effects for the full model fitted by three different methods: a
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multiple linear regression with ordinary least squares estimation (OLS) and linear

mixed effects models with ML and REML, respectively.

Table 3.1: Covariates: Pearson Correlation Matrix

Female Black P399 Density Over65 Noncitizen

Female 1.0000 0.7226 -0.3413 0.6631 0.0990 0.2129

Black 0.7226 1.0000 -0.3195 0.5405 -0.2523 0.0898

P399 -0.3413 -0.3195 1.0000 -0.6310 0.0762 -0.3514

Density 0.6631 0.5405 -0.6310 1.0000 -0.0063 0.4790

Over65 0.0990 -0.2523 0.0762 -0.0063 1.0000 -0.2919

Noncitizen 0.2129 0.0898 -0.3514 0.4790 -0.2919 1.0000

Table 3.2: Estimates of Fixed Effects in the Full Model

OLS ML REML

Effect Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

Intercept -0.1490 0.4131 0.7184 0.2513 0.3953 0.5278 0.2524 0.4508 0.5787

ED -0.0199 0.0540 0.7124 0.0101 0.0507 0.8431 0.0098 0.0573 0.8654

Time -0.0080 0.0006 <.0001 -0.0071 0.0007 <.0001 -0.0071 0.0007 <.0001

ED*Time -0.0001 0.0011 0.8975 0.0005 0.0009 0.5533 0.0005 0.0009 0.5455

COLD -0.0538 0.0080 <.0001 -0.0260 0.0071 0.0003 -0.0255 0.0075 0.0007

ED*COLD 0.0149 0.0118 0.2080 -0.0229 0.0104 0.0276 -0.0236 0.0109 0.0302

MOLD -0.0269 0.0129 0.0368 -0.0315 0.0092 0.0013 -0.0316 0.0105 0.0046

ED*MOLD 0.0087 0.0157 0.5775 -0.0048 0.0150 0.7509 -0.0048 0.0171 0.7806

Female 0.7726 0.8655 0.3721 0.1348 0.8285 0.8714 0.1355 0.9451 0.8867

Black -0.0104 0.0648 0.8722 -0.0002 0.0620 0.9973 -0.0002 0.0707 0.9983

P399 0.1987 0.1635 0.2243 -0.0876 0.1566 0.5783 -0.0898 0.1786 0.6178

Density 0.0094 0.0047 0.0454 0.0069 0.0045 0.1302 0.0068 0.0051 0.1879

Over65 -0.0581 0.1989 0.7702 -0.0840 0.1904 0.6610 -0.0833 0.2172 0.7035

Noncitizen 0.1163 0.1730 0.5015 0.0448 0.1655 0.7879 0.0453 0.1888 0.8117

The estimates using ML (with df=Sat) and REML (with df=KR) are similar, but

the estimates using OLS are not. For example, the OLS estimates differ in sign from
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both the ML and REML estimates for the Intercept, ED, ED*Time, ED*COLD,

ED*MOLD, and P399. Now, to avoid multicollinearity issues, we considered these

highly correlated variables separately in two different models: Model A, which in-

cludes ED, Time, COLD, MOLD, Female, P399, Over65, and Noncitizen, and Model

B, which includes ED, Time, COLD, MOLD, Black, P399, Density, Over65, and

Noncitizen. We also included three interaction effects: one between ED and Time

to investigate if the trajectories of COVID-19 growth rates over time were different

depending on whether the state declared a state of emergency before or on/after the

national emergency, one between ED and COLD to investigate if the within-state

impact of other lockdown policies on COVID-19 growth rates depended on whether

the state declared a state of emergency before or on/after the national emergency,

and one between ED and MOLD to investigate if the between-state impact of other

lockdown policies on COVID-19 growth rates depended on whether the state declared

a state of emergency before or on/after the national emergency.

3.1.1 Fixed Effects

We began with the full Model A, as described above. Again, we considered

covariance structures G as UN and R as ARH(1). We then removed insignificant

fixed effects one by one in a method like backward elimination. Unlike traditional

backward elimination that removes the effect with the least significant F statistic, we

first eliminated insignificant interaction effects. As a result, ED*MOLD and ED*Time

were removed in both models A and B. Since ED*COLD was statistically significant,

we kept the corresponding main effects ED and COLD regardless of their significance

due to the interpretation of the interaction effect in the presence of main effects in

the model. Next, we removed the demographic variable with the highest p-value one
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at a time while keeping policy variables in the model. We then selected the best final

model using a likelihood-ratio test. As noted in [12], comparing models with different

fixed effects is not valid for models fitted by REML. For all likelihood ratio tests,

the likelihoods were based on ML rather than REML, the default method used by

PROC MIXED. At α = 0.1, the model including Female and P399 as covariates was

preferred over the model including only Female as a covariate (p = 0.069). The final

Model A includes variables ED, Time, COLD, MOLD, Female, and P399, and the

interaction effect between ED and COLD.While neither Female nor P399 is significant

at α = 0.05 in the final model, it is important to note that the the p-value does not

measure the size of an effect or the importance of a result, so scientific conclusions

and business policy decisions should not be based only on whether a p-value passes

a specific threshold [25]. For Model B, the likelihood ratio test indicated that adding

the Black and P399 covariates to the model that included only Density as a covariate

did not significantly improve the model, so we chose the final Model B to include

the variables ED, Time, COLD, MOLD, Density, and the interaction effect between

ED and COLD. Both Over65 and Noncitizen effects were insignificant even when

considered as the only demographic variable in the model. Table 3.3 shows the

effect estimates through the backward elimination process. The models fix ARH(1)

covariance structure for R, and are fitted using ML.
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Table 3.3: Fixed Effects Estimates ARH(1) (ML)

(a) Model A

Full Reduced 1 Reduced 2 Reduced 3 Reduced 4

Intercept -0.0121
(0.2677)

-0.0103
(0.2693)

-0.0220
(0.2681)

-0.0174
(0.2679)

-0.0330
(0.2697)

ED 0.0336
(0.0491)

-0.0032
(0.0191)

0.0070
(0.0099)

0.0074
(0.0098)

0.0107
(0.0092)

Time -0.0071***
(0.0007)

-0.0072***
(0.0007)

-0.0068***
(0.0004)

-0.0068***
(0.0004)

-0.0068***
(0.0004)

ED*Time 0.0005
(0.0009)

0.0005
(0.0009)

COLD -0.0257***
(0.0071)

-0.0254***
(0.0071)

-0.0277***
(0.0062)

-0.0276***
(0.0062)

-0.0275***
(0.0062)

ED*COLD -0.0236*
(0.0104)

-0.0235*
(0.0104)

-0.0199*
(0.0086)

-0.0200*
(0.0086)

-0.0202*
(0.0086)

MOLD -0.0299**
(0.0094)

-0.0343***
(0.0077)

-0.0342***
(0.0077)

-0.0348***
(0.0075)

-0.0356***
(0.0075)

ED*MOLD -0.0119
(0.0146)

Female 0.7666
(0.5099)

0.7793
(0.5124)

0.7869
(0.5113)

0.7643
(0.5067)

0.8277
(0.5067)

P399 -0.2246
(0.1349)

-0.2120
(0.1346)

-0.2098
(0.1343)

-0.2142
(0.1338)

-0.2467
(0.1306)

Over65 -0.0590
(0.1615)

-0.0515
(0.1623)

-0.0528
(0.1619)

Noncitizen 0.1330
(0.1477)

0.1214
(0.1479)

0.1222
(0.1477)

0.1345
(0.1428)

Significance codes: * <0.05, ** <0.01, *** <0.001

(b) Model B

Full Reduced 1 Reduced 2 Reduced 3 Reduced 4 Reduced 5

Intercept 0.3147***
(0.0648)

0.3157***
(0.0648)

0.3079***
(0.0634)

0.3008***
(0.0612)

0.3031***
(0.0611)

0.2697***
(0.0221)

ED 0.0096
(0.0506)

-0.0050
(0.0189)

0.0047
(0.0097)

0.0056
(0.0096)

0.0068
(0.0092)

0.0062
(0.0091)

Time -0.0071***
(0.0007)

-0.0071***
(0.0007)

-0.0068***
(0.0004)

-0.0068***
(0.0004)

-0.0068***
(0.0004)

-0.0068***
(0.0004)

ED*Time 0.0005
(0.0009)

0.0005
(0.0009)

COLD -0.0259***
(0.0071)

-0.0259***
(0.0071)

-0.0280***
(0.0062)

-0.0279***
(0.0062)

-0.0279***
(0.0061)

-0.0280***
(0.0061)

ED*COLD -0.0230*
(0.0104)

-0.0229*
(0.0104)

-0.0194*
(0.0086)

-0.0195*
(0.0086)

-0.0196*
(0.0086)

-0.0195*
(0.0086)

MOLD -0.0315**
(0.0092)

-0.0332***
(0.0075)

-0.0330***
(0.0075)

-0.0340***
(0.0072)

-0.0343***
(0.0072)

-0.0331***
(0.0070)

ED*MOLD -0.0047
(0.0150)

Black 0.0062
(0.0476)

0.0033
(0.0469)

0.0031
(0.0468)

0.0121
(0.0423)

0.0088
(0.0417)

P399 -0.0842
(0.1553)

-0.0722
(0.1499)

-0.0692
(0.1496)

-0.0806
(0.1479)

-0.0851
(0.1479)

Density 0.0071
(0.0043)

0.0075
(0.0040)

0.0076
(0.0040)

0.0069
(0.0037)

0.0075*
(0.0035)

0.0089***
(0.0025)

Over65 -0.0723
(0.1755)

-0.0759
(0.1752)

-0.0776
(0.1749)

Noncitizen 0.0487
(0.1637)

0.0372
(0.1595)

0.0372
(0.1591)

0.0634
(0.1478)

3.1.2 Covariance Structure

So far, all models have assumed unstructured covariance structure for G and

heterogeneous autoregressive covariance structure for R. As previously mentioned,

unstructured is the most general and requires fitting the most parameters of all

the covariance structures. But since we consider only the intercept as a random

effect, G is a scalar and represents the variance of the random intercept. So we

fix G as unstructured throughout the analysis. However, we considered different

covariance structures for R, specifically Variance Components (VC), which assumes

uncorrelated errors, Autoregressive (AR(1)), which allows correlated errors and as-

sumes correlations decrease exponentially with increasing time lags, Heterogeneous

Autoregressive (ARH(1)), which in analogous to AR(1) except it allows variances on

the main diagonal to vary, and finally Antedependence (ANTE(1)), which generalizes
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ARH(1) by allowing unique autoregressive parameters for each time lag. The fixed

effects parameter estimates for Models A and B for each of these covariance structures

are shown in Table 3.4.

Table 3.4: Fixed Effects Estimates for Some Covariance Structures
(REML)

(a) Model A

VC AR(1) ARH(1) ANTE(1)

Intercept -0.5123
(0.4133)

-0.5153
(0.4165)

-0.0323
(0.2900)

-0.0005
(0.2968)

ED 0.0035
(0.0133)

0.0035
(0.0134)

0.0108
(0.0099)

0.0108
(0.0102)

Time -0.0080***
(0.0005)

-0.0081***
(0.0005)

-0.0068***
(0.0004)

-0.0081***
(0.0005)

COLD -0.0396***
(0.0067)

-0.0402***
(0.0070)

-0.0274***
(0.0064)

-0.0237***
(0.0065)

ED*COLD -0.0138
(0.0080)

-0.0130*
(0.0082)

-0.0203*
(0.0090)

-0.0189*
(0.0091)

MOLD -0.0238*
(0.0116)

-0.0232
(0.0116)

-0.0356***
(0.0081)

-0.0420***
(0.0083)

Female 1.6607*
(0.7762)

1.6620*
(0.7822)

0.8263
(0.5447)

0.8905
(0.5573)

P399 -0.0117
(0.2000)

-0.0027
(0.2016)

-0.2469
(0.1404)

-0.3356*
(0.1437)

AIC -1526.7 -1533.5 -2515.8 -2530.0

BIC -1522.9 -1527.7 -2444.3 -2394.8

-2RLL -1530.7 -1539.5 -2589.8 -2670.0

Parameters 1 2 34 65

(b) Model B

VC AR(1) ARH(1) ANTE(1)

Intercept 0.2864***
(0.0332)

0.2875***
(0.0336)

0.2698***
(0.0235)

0.2980***
(0.0248)

ED -0.0032
(0.0130)

0.0032
(0.0131)

0.0064
(0.0096)

0.0066
(0.0101)

Time -0.0080***
(0.0005)

-0.0081***
(0.0005)

-0.0068***
(0.0004)

-0.0079***
(0.0005)

COLD -0.0396***
(0.0067)

-0.0402***
(0.0070)

-0.0279***
(0.0064)

-0.0244***
(0.0065)

ED*COLD -0.0138
(0.0080)

-0.0130
(0.0082)

-0.0197*
(0.0090)

-0.0187*
(0.0091)

MOLD -0.0244*
(0.0107)

-0.0239*
(0.0108)

-0.0331***
(0.0074)

-0.0366***
(0.0078)

Density 0.0104**
(0.0039)

0.0102*
(0.0039)

0.0089**
(0.0027)

0.0090**
(0.0028)

AIC -3495.4 -3498.5 -5157.5 -5230.3

BIC -3491.5 -3492.7 -5089.9 -5102.8

-2RLL -3499.4 -3504.5 -5227.5 -5362.3

Parameters 1 2 34 65

We saw that, for Model A, the AIC was minimized for ANTE(1) and the BIC

was minimized for AR(1), and for Model B, the AIC and BIC were both minimized

for the ANTE(1) covariance structure. However, ANTE(1) requires estimating 33

more parameters than the ARH(1) structure, and many of these parameters are not

significant. Further, Yanosky has noted that the “literature suggests that information

criteria are not very accurate in selecting the correct covariance model among a set

of possible candidate models” [28]. Yanosky found that the AIC and BIC selected

the correct model only about half of the time, and that information criteria became

“less and less accurate as the true model became more complex.” For these reasons,

we selected the simpler heterogeneous covariance structure, ARH(1), as the structure
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for R in the final model. The parameter estimates, standard errors, and p-values for

the final Model A and Model B are shown in Table 3.5.

Table 3.5: Final Model (REML)

Model A Model B

Variable Est. S.E. p-value Est. S.E. p-value

Intercept -0.0323 0.2900 0.9119 0.2698 0.0235 <.0001

ED 0.0108 0.0099 0.2809 0.0064 0.0096 0.5117

Time -0.0068 0.0004 <.0001 -0.0068 0.0004 <.0001

COLD -0.0274 0.0064 <.0001 -0.0279 0.0064 <.0001

ED*COLD -0.0203 0.0090 0.0245 -0.0197 0.0090 0.0291

MOLD -0.0356 0.0081 <.0001 -0.0331 0.0074 <.0001

Female 0.8263 0.5447 0.1363

P399 -0.2469 0.1404 0.0853

Density 0.0089 0.0027 0.0018

Now, the variance of the random intercept (G) in the final model fitted using

REML is 0.000424 for Model A and 0.000361 for Model B. The ARH(1) R matrix is

of the following form:



σ̂1
2 σ̂1σ̂2ρ̂ σ̂1σ̂3ρ̂

2 . . . σ̂1σ̂tρ̂
t−1

σ̂2
2 σ̂2σ̂3ρ̂ . . . σ̂2σ̂tρ̂

t−2

σ̂3
2 . . . σ̂3σ̂tρ̂

t−3

. . .
...

σ̂t
2


The covariance parameter estimates for Models A and B are shown in Table 3.6.
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Table 3.6: Covariance Parameter Estimates

(a) Model A

σ̂2
1 = 0.1016 σ̂2

2 = 0.008836 σ̂2
3 = 0.01262 σ̂2

4 = 0.009199 σ̂2
5 = 0.009291

σ̂2
6 = 0.004799 σ̂2

7 = 0.01086 σ̂2
8 = 0.006226 σ̂2

9 = 0.007712 σ̂2
10 = 0.004305

σ̂2
11 = 0.005025 σ̂2

12 = 0.2008 σ̂2
13 = 0.007265 σ̂2

14 = 0.01595 σ̂2
15 = 0.01064

σ̂2
16 = 0.007521 σ̂2

17 = 0.005193 σ̂2
18 = 0.003498 σ̂2

19 = 0.005104 σ̂2
20 = 0.005032

σ̂2
21 = 0.01005 σ̂2

22 = 0.006586 σ̂2
23 = 0.05684 σ̂2

24 = 0.009682 σ̂2
25 = 0.009612

σ̂2
26 = 0.01025 σ̂2

27 = 0.009766 σ̂2
28 = 0.01168 σ̂2

29 = 0.01096 σ̂2
30 = 0.07219

σ̂2
31 = 0.05344 σ̂2

32 = 0.08435 σ̂2
33 = 0.03944 σ̂2

34 = 0.02903 σ̂2
35 = 0.02885

ρ̂ = 0.1414

(b) Model B

σ̂2
1 = 0.1014 σ̂2

2 = 0.009090 σ̂2
3 = 0.01242 σ̂2

4 = 0.009001 σ̂2
5 = 0.009200

σ̂2
6 = 0.004738 σ̂2

7 = 0.01084 σ̂2
8 = 0.006119 σ̂2

9 = 0.007650 σ̂2
10 = 0.004335

σ̂2
11 = 0.005205 σ̂2

12 = 0.2003 σ̂2
13 = 0.007297 σ̂2

14 = 0.01619 σ̂2
15 = 0.01065

σ̂2
16 = 0.007605 σ̂2

17 = 0.007605 σ̂2
18 = 0.003618 σ̂2

19 = 0.005087 σ̂2
20 = 0.005071

σ̂2
21 = 0.009930 σ̂2

22 = 0.006576 σ̂2
23 = 0.05647 σ̂2

24 = 0.009654 σ̂2
25 = 0.009485

σ̂2
26 = 0.009953 σ̂2

27 = 0.009655 σ̂2
28 = 0.01164 σ̂2

29 = 0.01073 σ̂2
30 = 0.07254

σ̂2
31 = 0.05342 σ̂2

32 = 0.08419 σ̂2
33 = 0.03949 σ̂2

34 = 0.02907 σ̂2
35 = 0.02909

ρ̂ = 0.1395
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3.2 Observations

After accounting for the multicollinearity introduced by correlations between the

Female and Density as well as the Female and Black variables, we found that popu-

lation density was significantly related to COVID-19 growth rate, where an increase

in population density was associated with an increase in the average COVID-19

growth rate, given other variables were held constant (p=0.0018). Proportion of

Black population and percent of Female population were each positively related to

COVID-19 growth rate when considered alone each model (p=0.0568 and p=0.0343,

respectively), but strong evidence for significance of these relationships decreased

when considering other covariates in the models. Similarly, the percentage of the

population between 200 and 399% of the poverty line was negatively related to the

COVID-19 growth rate when considered alone in the model (p=0.0210), suggesting

that states with higher proportion of middle-income population is associated with

lower COVID-19 case growth rate. We also saw that COVID-19 growth rates were

decreasing over time during the study period. After considering heterogeneous covari-

ance structures, we found strong evidence that an increase in the average number of

lockdown policies (between-state lockdown effect) was associated with a decrease in

average COVID-19 growth rate, given other variables are held constant (p<0.0001).

After taking into account correlations between daily observations, we found that

the within-state lockdown policy effect was also significantly negatively related to

COVID-19 (p<0.0001), along with its interaction with the ED variable (p=0.0245 for

Model A, p=0.0291 for Model B), meaning that the within-state other lockdown policy

effect depended on whether a state declared a state of emergency before or after the

national emergency declaration date. For example, as shown in the interaction plots
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in Figure 3.3, the estimated average case growth rate for model A when Time=18,

MOLD=3.154, Female=0.508, and P399=0.287 is given by

ŷij = 0.0819− 0.0274COLDij + û0i when EDi = 0

ŷij = 0.0927− 0.0477COLDij + û0i when EDi = 1

where û0i is the estimated random intercept for the ith state. Similarly, for model

B, the estimated average case growth rate when Time=18, MOLD=3.154, and Den-

sity=4.653 is given by

ŷij = 0.0844− 0.0279COLDij + û0i when EDi = 0

ŷij = 0.0908− 0.0476COLDij + û0i when EDi = 1.

In other words, the estimated mean of COVID-19 case growth rate at the baseline

was higher in states that issued statewide emergency declarations earlier than at

the national level, and the within-state effectiveness of other lockdown policies was

found to have a greater impact on reducing the COVID-19 case growth rate in these

proactive states than states that delayed declarations of emergency.
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Saturday, March 25, 2023 10:20:46 PM 1

The PLM Procedure

Class Level Information

Class Levels Values

state_name 51 Alabama Alaska Arizona Arkansas Californi Colorado Connectic Delaware District Florida Georgia Hawaii Idaho Illinois Indiana Iowa
Kansas Kentucky Louisiana Maine Maryland Massachus Michigan Minnesota Mississip Missouri Montana Nebraska Nevada New Hamps
New Jerse New Mexic New York North Car North Dak Ohio Oklahoma Oregon Pennsylva Rhode Isl South Car South Dak Tennessee
Texas Utah Vermont Virginia Washingto West Virg Wisconsin Wyoming
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0.05

0.10

0.15

0.20

0.25

Li
ne

ar
 P

re
di

ct
or

-3 -2 -1 0 1
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(a) Model A
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New Jerse New Mexic New York North Car North Dak Ohio Oklahoma Oregon Pennsylva Rhode Isl South Car South Dak Tennessee
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timec 35 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 4 5 6 7 8 9

ed_binary 2 1 0
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0.10
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(b) Model B

Figure 3.3: Interaction Effect Between ED and COLD
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CHAPTER 4

CONCLUSION

4.1 Discussion

Some important contributions of this study include highlighting the difference

in COVID-19 outcomes between states that responded proactively and states that

responded reactively to the pandemic, disaggregating other lockdown policies into

within and between state effects, and adjusting for demographic variables. Comparing

proactive and reactive states revealed a significant difference between the two groups

in terms of the baseline growth rate and the within-state lockdown policy effectiveness.

Disaggregating lockdown policies into between-state and within-state effects revealed

that the COVID-19 case growth rate was lower for states that implemented a larger

number of lockdown policies on average and the case growth rate was lower when a

given state implemented more lockdown policies, relative to its own mean number

of lockdown policies. Adjusting for demographic variables allowed us to control for

variables that the literature has suggested could be confounding effects in COVID-19

outcomes.

We found that an increase in the average number of other lockdown policies

is related to decreasing COVID-19 growth rates, which is consistent with other

results that suggest early policy implementation is effective in reducing the spread

of COVID-19, since implementing more policies earlier increases the mean number
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of other lockdown policies during the study period. We also found that increasing

logarithm of the population density is associated with increasing COVID-19 growth

rates. This agrees with Hamidi et al.’s initial expectation that increased population

density leads to increased person-to-person contacts, which is conducive to the spread

of COVID-19, but disagrees with the surprising results of Hamidi et al.’s study [22].

The study, however, considered a longer study period, and Hamidi et al. claims that

“compact areas also have the infrastructure to more effectively put in place measures

that foster social distancing,” so perhaps the study captured the positive effects of this

infrastructure that became apparent after the initial lockdown period. Although not

quite significant at α = 0.05, we found a positive relationship between percent Black

population and COVID-19 growth rate, which agrees with other studies that have

shown significant relationships between percent of Black population and COVID-19

infection rates [22], though this relationship appears to become insignificant after

controlling for population density. We also found that states with larger female

populations were associated with increased case growth rates, which is consistent

with Pan’s finding that the COVID-19 case rate was slightly higher for women than

for men. We found that states with larger proportions of middle-income population

were associated with decreased case growth rate, but that neither the proportion of

state population over the age of 65 nor the proportion non-citizen was significantly

related to the case growth rate.

4.2 Limitations

A limitation of this study, as noted by Pan et al. [19], along with essentially

all retrospective COVID-19 policy studies, is its ability to find relationships between
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the implementation of specific policies and the number of confirmed cases, as the

government implemented many policies very close together in time, and the design

of the study makes causal inference impossible. This limitation exists for essentially

all retrospective COVID-19 policy studies, including the one discussed in this thesis.

Further, in order to to look at the effects of lockdown policies alone, we had to

restrict the study period to a short window of time, only about a month long, since

West Virginia’s first confirmed case occurred on March 18, 2020, and states started

to implement reopening policies on April 20, 2020. While this allowed us to isolate

the effects of lockdown policies from the effects of reopening policies, it reduced the

number of samples (days) we could collect from each state. Unfortunately, this choice

also restricted access to information about early growth rates and policy effects in

states which were affected by and responded to COVID-19 outbreaks earlier than

March 16, for example, Washington, which reported its first case on January 21,

2020 and declared a state of emergency on February 29, 2020. Another limitation

of this study is that the way we defined the other lockdown policy variable makes it

impossible to see the effects of individual types of policies, for example, to determine

if stay-at-home orders are more or less effective in controlling the pandemic than

school closures. Another possible limitation arises from using a mixed-effects linear

model with time-varying covariate. Howard notes that, if the “time-varying covariate

itself changes systematically over time,” ignoring this systematic change can result in

biased estimates of within-subject and between-subject effects [14]. Alternatively, we

can consider another time-varying effect model (TVEM) [27].
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APPENDIX A

SAS CODE

Full Model

1 PROC MIXED DATA=data plot=( boxplot(observed marginal conditional

subject) STUDENTPANEL(blup noblup));

2 CLASS state_name timec ed_binary (ref=’0’);

3 MODEL G_t = ed_binary time ed_binary*time cold ed_binary*cold

meanold ed_binary*meanold female poverty399 log_pop_density

over65 noncitizen / solution

4 influence(iter=5 effect=state_name) ddfm=kr;

5 RANDOM intercept / SUB=state_name TYPE = UN G GCORR;

6 REPEATED timec / SUB=state_name type=ARH(1) R RCORR;

7 RUN;

Model A

1 PROC MIXED DATA=data plot=( boxplot(observed marginal conditional

subject) STUDENTPANEL(blup noblup));

2 CLASS state_name timec ed_binary (ref=’0’);

3 MODEL G_t = ed_binary time cold ed_binary*cold meanold female

poverty399 / noint solution influence(iter=5 effect=state_name)

ddfm=kr;

4 RANDOM intercept / SUB=state_name TYPE = UN G GCORR;

5 REPEATED timec / SUB=state_name type=ARH(1) R RCORR;

6 store out=MixedModelA;
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7 RUN;

Model B

1 PROC MIXED DATA=data plot=( boxplot(observed marginal conditional

subject) STUDENTPANEL(blup noblup));

2 CLASS state_name timec ed_binary (ref=’0’);

3 MODEL G_t = ed_binary time cold ed_binary*cold meanold log_pop_

density / solution

4 influence(iter=5 effect=state_name) ddfm=kr;

5 RANDOM intercept / SUB=state_name TYPE = UN G GCORR;

6 REPEATED timec / SUB=state_name type=ARH(1) R RCORR;

7 store out=MixedModelB;

8 RUN;

Model A Interaction Plot

1 PROC PLM RESTORE=MixedModelA noinfo;

2 EFFECTPLOT SLICEFIT(x=cold sliceby=ed_binary);

3 RUN;

Model B Interaction Plot

1 PROC PLM RESTORE=MixedModelB noinfo;

2 EFFECTPLOT SLICEFIT(x=cold sliceby=ed_binary);

3 RUN;



44

APPENDIX B

RESIDUAL PLOTS

Thursday, March 23, 2023 09:39:26 PM 11

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

ed_binary 1 56.1 1.19 0.2809

time 1 589 263.23 <.0001

cold 1 798 48.68 <.0001

cold*ed_binary 1 781 5.08 0.0245

meanold 1 44.8 19.35 <.0001

female 1 44.9 2.30 0.1363

poverty399 1 44.8 3.10 0.0853

Studentized Residuals for G_t

BIC -2444
AICC -2514
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(a) Marginal Studentized Residuals
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Conditional Studentized Residuals for G_t
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Figure B.1: Model A
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Thursday, March 23, 2023 11:37:28 PM 11

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect
Num

DF
Den

DF F Value Pr > F

ed_binary 1 58.2 0.44 0.5117

time 1 591 262.54 <.0001

cold 1 802 49.53 <.0001

cold*ed_binary 1 789 4.78 0.0291

meanold 1 45.6 19.91 <.0001

log_pop_density 1 45.7 10.96 0.0018

Studentized Residuals for G_t

BIC -2439
AICC -2509
AIC -2510
Objective -2584

Fit Statistics
Std Dev 0.9967
Maximum 5.628
Mean 0.0837
Minimum -4.549
Observations 1785
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(a) Marginal Studentized Residuals
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The Mixed Procedure

Conditional Studentized Residuals for G_t
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(b) Conditional Studentized Residuals
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The Mixed Procedure

Influence Statistics for G_t
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Figure B.2: Model B


