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ABSTRACT

We provide several data-driven control design frameworks for contact-rich robotic

systems. These systems exhibit continuous state flows and discrete state transitions,

which are governed by distinct equations of motion. Hence, it is difficult to design

a single policy that can control the system in all modes. Typically, hybrid systems

are controlled by multi-modal policies, each manually triggered based on observed

states. However, as the number of potential contacts increase, the number of policies

can grow exponentially and the control-switching scheme becomes too complicated

to parameterize. To address this issue, we design contact-aware data-driven con-

trollers given by deep-net mixture of experts. This architecture automatically finds

a switching-control scheme that can achieve the desired overall performance of the

system, and a gating network, which determines the region of validity of each expert,

based on the observed states.

Additionally, we address the adverse effects of model uncertainties in the control

of contact-rich robots. Lack of accurate environmental models can misrepresent the

effects of contact forces on the system. Policies designed from such models can lead

to poor performance or even instability. In particular, we demonstrate the effects of

system parameter and measurement uncertainties on the overall performance of the

system. Then, we design data-driven controllers that combine the stability properties

of passivity-based control with the robustness properties of Bayesian learning.
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1

CHAPTER 1:

INTRODUCTION

Many robotics applications consist of hybrid systems that exhibit both contin-

uous state flows and discrete state transitions. Common examples of hybrid systems

are contact-rich mechanisms such as legged robots and manipulators. These mecha-

nisms experience contact forces from their interaction with the environment, causing

them to undergo mode changes. For example, a humanoid bipedal robot consists

of two potential contacts between the legs and the ground. If we only observe the

contact forces exerted on one of the legs, we can find a total of two modes [2]. In the

first mode, called the swing mode, the leg swings forward in the air while balancing

off of the other; this phase is governed by a continuous dynamics with no contact

forces on one of the legs. The second mode is the stance mode, where the foot makes

a persisting contact with the ground and leverages the friction to balance the rest

of the mechanism. These modes are connected by the heel strike guard, where the

leg impacts the ground, causing a discrete state transition. Each one of these modes

and their guard have a distinct dynamic behavior governed by unique equations of

motion, which can be written in a compact manner as [3]

 ẋ ∈ f(x, u), x ∈ C,

x+ ∈ g(x, u), x ∈ D,
(1.1)
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where x ∈ Rm is the state vector, and u ∈ Rn is the input. The set-valued mappings

f : Rm × Rn → Rm and g : Rm × Rn → Rm denote the flow and jump maps,

respectively, where C and D are subsets of Rm consisting of the feasible states under

the flow and jump rules, respectively. The notation x+ indicates the state resulted

by the jump rule g.

Controlling such multi-modal systems presents two main complications. First,

it may be impossible to find a single policy that can achieve the desired perfor-

mance in all modes of the hybrid system. A typical approach is splitting tasks

into manipulation primitives [4, 5, 6], such as sliding, jumping, and toppling, where

each primitive has a corresponding dynamics and is assigned its own controller.

Figure 1.1: A manipulation
primitive sequence for manu-
vering a box past an obstacle

Consider the task of moving a box past an ob-

stacle using a series of primitives such as sliding,

toppling and reorienting as shown in Figure 1.1.

Each primitive has a region of applicability in

the state space, where the dynamics of that

primitive describes the flow of the system [7].

Thus, manipulation planning involves identify-

ing a successful primitive sequence, such as the

order of primitives shown in Figure 1.1, and sta-

bilizing the system under each primitive [8, 9].

This approach can be viewed as partitioning the

state space and allocating a control law in each

subdomain that results in a successful transition to the desired primitive until the

goal state is reached [10]. However, the task of ordering the primitives and identi-
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fying the distinct controllers in each state partition is done manually [8, 10], which

does not scale well to contact-rich systems with numerous modes. An example of

such a system is multiagent manipulation [11], which uses a group of robots to co-

operatively execute a task, such as maneuvering an object in space. As we change

the number of robots establishing contact with the object, we find new modes of the

hybrid system. A cooperative manipulation with k potential contacts can have up to

2k contact combinations. It is quite tedious and inefficient to manually identify and

encode a successful primitive sequence for various initial states and to find individual

controllers for each mode.

To address this issue, we propose a data-driven approach for constructing dy-

namic motion plans and stabilizing control laws for complex locomotion and manip-

ulation tasks that make and break contact. Our framework leverages the mixture

of experts architecture from supervised learning to infer multi-modal controllers for

contact-rich systems. This approach automatically learns the boundaries of the state

partitions and allocates the appropriate expert controller to each partition in order to

drive the system to the desired mode, and overall to the goal state. We demonstrate

the efficacy of this technique on the swing-up task of the cartpole enclosed by wall

barriers, both in simulation and real-world experiments.

The second complication in the control of hybrid systems is that they operate in

an environment that is not known completely or modeled accurately. For instance, a

legged robot needs to be robust enough to be able to perform satisfactorily on uneven

terrain. Similarly, manipulators need to hold a firm grip on objects of all textures.

There are techniques that combine tools from optimization, probability theory, and

machine learning to learn control strategies from inaccurate system models or even
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unknown dynamics. Model-free reinforcement learning is an example of a technique

that relies on repeated interactions with the unknown environment [12, 13, 14]. While

this technique offers more flexibility on how the control policies are inferred from un-

known dynamics, they do not provide the physical structure required to infer stability

properties. On the other hand, data-driven techniques trained in simulation, such as

neural passivity-based control (NeuralPbc [15] and Neural-Idapbc [16]) offer

more insight on the stability of the system but strongly rely on the dynamical model.

The use of inaccurate models may lead to poor performance or even instability.

Bayesian learning (BL) [17, 18] offers an alternative method to simultaneously

combat model uncertainties while preserving the useful stability properties in the

NeuralPbc and Neural-Idapbc frameworks. BL is typically used to characterize

uncertainties of a dynamical system with a stochastic model. For instance, the frame-

work presented in [19] models uncertainties caused by disturbances, such as the effect

of wind gusts on quadcopters, via Bayesian inference. A similar approach is shown

in [20, 21], where a stochastic dynamical model is constructed via BL techniques, and

utilized in data-driven control synthesis executed in simulation. Adaptive control

framework is provided in [22], where the search for the control is given by a quadratic

program that imposes Lyapunov stability constraint for safety critical systems. This

technique uses BL to infer a controller through interactions with unknown dynam-

ics, while maintaining the algebraic structure of a stable system. Inspired by this

technique, we merge the structure and stability properties of passivity-based control

(PBC) with the robustness properties of BL.

We present a unified framework that simultaneously combines data-driven tech-

niques and rigorously addresses model uncertainties using Bayesian learning. In con-
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trast to deterministic optimization, this approach provides a probability distribution

over the parameters of the controller instead of point estimates, providing a way to

reason about model uncertainties and measurement noise during the learning pro-

cess. We first demonstrate the efficacy of this technique on smooth systems, such as

the simple pendulum and the inertia wheel pendulum, in simulation and real-world

experiment. Then we extend the framework to contact-rich systems and evaluate its

performance on the rimless wheel, a simplified walking machine that still represents

the difficulties in controlling hybrid systems in uncertain environments.



CHAPTER 2:

SWITCHING CONTROL WITH DEEP-NET

MIXTURE OF EXPERTS

2.1 Background
In this chapter, we provide an automatic approach to finding multi-modal con-

trollers for multi-modal dynamical systems. This technique poses the mixture of

experts framework from vanilla-supervised learning as a data-driven optimal control

search problem with the goal of stabilizing the system across contact modes. We use

a high-fidelity contact model to generate the state-observation datasets on which this

automated approach trains. In this section, we provide a summary to contact mod-

eling with the linear complementarity formulation presented in [23]. We also provide

a brief introduction to the mixture of experts architecture and its uses in machine

learning.

2.1.1 Contact Modeling with Linear Complementarity Prob-

lem
Suppose a hybrid dynamical system consists of k potential contacts, each in-

troducing normal contact forces λN ∈ Rk and Coulomb friction forces λT ∈ Rk to

the overall system. The contact forces in this hybrid system enforce the geomet-
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ric and kinematic constraints of surfaces in contact. For instance, the contact force

between two objects in collision characterizes the no-penetration conditions and the

post-impact velocities of the objects. An accurate contact model identifies the contact

forces necessary to obey these kinematic constraints, however resolving the contact

forces accurately can be difficult and computationally expensive. Most collision sim-

ulators work on the kinematic level as opposed to the dynamic level. For instance,

there are event detection methods [24] that simply change the velocity of the moving

objects at the time of impact. One of the drawbacks of these techniques is finding the

exact time the contact occurs in high speed collision. There is the additional difficulty

of identifying the Coulomb friction. The linear complementarity formulation in [23]

provides a rigorous technique to resolve contact forces, Coulomb friction and impact

forces in a hybrid system. This formulation presents an optimization problem that

searches for contact force and post-impact velocity pairs that obey the geometric and

kinematic constraints during contacts or impacts.

The linear complementarity formulation is constructed from kinematic and dy-

namic constraints of contact, which we discuss as follows. We begin by introducing

the variables necessary to define the kinematic constraints of a contact-rich system.

Suppose we have a contact-rich mechanism whose states x ∈ X ⊂ R2m consists of

generalized positions q ∈ Rm and velocities q̇. Let gN(q) ∈ Rk denote a vector of

gap functions that measure the normal distance between the contact surfaces. The

normal and tangential relative velocities between the contact surfaces are given by

γN(q, q̇) = ġN(q) and γT (q, q̇), respectively.

We can express the relative velocities γN and γT in terms of the generalized
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velocities as

γN(q, q̇) = W>
N (q)q̇, γT (q, q̇) = W>

T (q)q̇, (2.1)

where WN and WT are the linear mappings from the generalized coordinates to the

local contact coordinates. The kinematic constraints of contact provide a connec-

tion between pre- and post-impact velocities throughout this formulation, thus we

introduce the following notations. The pre- and post-impact generalized velocities

are denoted by q̇− and q̇+, respectively, and their corresponding relative velocities are

given as follows. For convenience, we omit the notation for dependence on q and q̇.

γ+N = W>
N q̇

+, γ+T = W>
T q̇

−,

γ−N = W>
N q̇

−, γ−T = W>
T q̇

−.

The kinematic constraint of contact states that two rigid bodies undergoing contact

must always maintain a normal distance such that gN ≥ 0. Moreover, in the presence

of contacts, the post-impact velocities can be found from the pre-impact velocities as:

γ+N = −εNγ−N ,

γ+T = −εTγ−T ,
(2.2)

where εN ∈ Rk and εT ∈ Rk are diagonal matrices consisting of the normal and

tangential coefficients of restitution, respectively.

The dynamic constraints of contact-rich system are given by the model [23]

M(q) dq̇ + h(q, q̇) dt− dR = 0,

h(q, q̇) = C(q, q̇)q̇ +G(q)−Bu(q, q̇),
(2.3)
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where M ∈ Rm×m denotes the positive-definite mass matrix, C ∈ Rm×m holds the

Coriolis and centripetal terms, and G ∈ Rm is the gravitational term. The matrix

B ∈ Rm×n maps the input u ∈ U ⊂ Rn to the generalized coordinates. The force

measure dR contains the contact forces as

dR = WN dλN +WT dλT ,

where WN and WT are the projection matrices that map the effect of the normal and

tangential contact forces, respectively, to the generalized coordinates. The vectors

dλN and dλT consist of the normal and tangential contact impulse measures, respec-

tively. In the presence of impacts, we integrate the contact measures over a singleton

time t as
∫
{t}(dλN , dλT ) = (λN(t), λT (t)) in order to obtain the impulsive contact

forces. In the case of persisting contact forces, the contact impulse measures evaluate

to (dλN , dλT ) = (λ̇N , λ̇T ), where λ̇N and λ̇T hold the normal and the tangential con-

tact forces, respectively. The dynamic constraint in (2.3) characterizes how the local

contact forces affect the dynamics of the overall system.

Remark 1. Unlike the classical second order equations of motion M(q)q̈ + h(q, q̇) =

0, the measure differential inclusion in (2.3) can characterize the behavior of the

system under impact forces. Notice that in the presence of impacts, the velocity q̇ is

not continuous for all time, thus the acceleration q̈ does not exist everywhere. For

further understanding of how the measure equality can accurately represent the impact

dynamics, we refer the reader to [25].

We first motivate the linear complementarity formulation for normal contact

forces, where the system has no Coulomb friction. The linear complementarity for-
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mulation imposes a unilateral constraint between contact forces and relative velocities

given by:
0 ≤ ξN(q, q̇) ⊥ λN ≥ 0,

ξN(q, q̇) := γ+N + εNγ
−
N .

(2.4)

where 0 ≤ a ⊥ b ≥ 0 denotes a ≥ 0, b ≥ 0 and a>b = 0. The physical interpretation

of (2.4) can be given as follows. In the presence of contacts and impacts, the post-

impact velocities can be found from pre-impact velocities by (2.2). In this scenario,

the quantity ξN evaluates to zero, because

ξN = γ+N + εNγ
−
N = −εNγ−N + εNγ

−
N = 0.

The complementarity constraint in (2.4) states that when two surfaces come into

contact, the resultant between pre- and post-impact velocities, given by ξN must be

zero, and in the meantime, the contact forces can take positive values. Conversely, if

there are no potential contacts, the relative velocities are continuous, i.e. γ+N = γ−N =

γN . In this case, the complementarity constraint states that ξN can be non-zero,

which is analogues to contact surfaces approaching each other or moving away from

each other, but the normal contact forces λN must be zero. There exists no scenario

when both the contact force λN and ξN are both positive, hence ξ>NλN = 0 must

always hold. This concept is summarized in Table 2.1.

Table 2.1: Linear Complementarity Formulation: Possible contact scenar-
ios

Scenario gN γ−N γ+N ξN λN

No contact gN ≤ 0 γN > 0 γN γN + εNγN 0
Contact or impact gN ≤ 0 γN ≤ 0 −εNγN 0 λN ≥ 0
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From the dynamics in (2.3), we can express ξN as an affine function of the

normal contact forces. This allows us to express the complementarity constraint as a

quadratic function of the contact forces. From (2.1) and (2.3), we can express ξN as

ξN = W>
N q̇

+ + εNW
>
N q̇

−,

= W>
NM

−1[−h∆t+WNλN ] + (1 + εN)W
>
N q̇

−,

= W>
NM

−1WN︸ ︷︷ ︸
AN

λN −W>
NM

−1h∆t+ (1 + εN)W
>
N q̇

−︸ ︷︷ ︸
bN

,

= ANλN + bN ,

(2.5)

where ∆t is the integration time-step for the discretization of (2.3). Notice that ξN

is an affine function of the contact forces λN , which allows us to pose the search for

λN as the following quadratic optimization problem:

minimize
λN

(ANλN + bN)
>λN ,

subject to ANλN + bN ≥ 0, λN ≥ 0.

(2.6)

If the linear complementarity problem (LCP) in (2.6) has a feasible solution, the

objective function evaluates to zero.

Example 1. In this example, we use the linear complementarity problem in (2.6) to

evaluate the normal contact force exerted on the bouncing ball shown in Figure 2.1,

where there are k = 1 potential contacts. With the assumption that the ball is bouncing

on a static and flat surface, we can compute the gap between the ball and the surface

as gN(q) = y, where q = (x, y) consists the Cartesian coordinates of the ball. The
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(a) Stages of a bouncing ball (b) Illustration of the complementarity con-
dition for the bouncing ball

Figure 2.1: The bouncing ball

normal relative velocity is given by

γN = ġN = [0 1]︸ ︷︷ ︸
W>

N

ẋ
ẏ

 ,
From the Euler-Lagrange equations, the dynamics of the system is given by

M dq + h dt−WN dλN = 0,

The mass matrix and the gravity terms are given by

M =

m 0

0 m

 , h =

 0

mg

 ,
where m is the mass of the ball and g is the acceleration due to gravity. With these

definitions, and using equation (2.5), we find AN = 1/m, bN = g∆t + (1 + εN)ẏ.
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λN

ξN

λT

ξT

µλN

−µλN

(a) Complementarity condition (b) Coulomb friction as a function of ξT

Figure 2.2: Relationship between normal and tangential contact forces
with ξN and ξT , respectively

Hence, the complementarity condition for the bouncing ball is

(λN
m

+ g∆t+ (1 + εN)ẏ
)
λN = 0.

We can use the Karush-Kuhn-Tucker (KKT) conditions [26] to ensure that the solution

λN to the LCP obeys the non-negativity constraints ANλN + bN ≥ 0, λN ≥ 0.

With this understanding in mind, we extend the complementarity condition

in (2.4) to a system with normal and tangential contact forces. Unfortunately, the

complementarity relationship between λN and ξN given in Table 2.1 does not directly

translate to the tangential components λT and ξT . To best explain the reason, consider

the contact forces applied on a box sliding on a flat surface with Coulomb friction. The

properties of the contact forces exerted on the sliding box are depicted in Figure 2.2.

On the left, we provide a visual representation of the complementarity constraint

between λN and ξN . On the right, we have the relationship between Coulomb forces

λT and ξT . The right figure shows that if the box is sliding to the right (ξT > 0), the

tangential force acts to the left, resisting the motion of the box. If the box moves to the
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λT

ξT

λT

ξL ξR

λL = µλN − λT λR = µλN + λT

ξL ξR

Figure 2.3: Construction of complementarity condition for Coulomb fric-
tion

left, the tangential forces apply resistive force to the right. The maximum λT applied

on the system is µλN , where µ is the coefficient of friction. Notice, the relationship

between λT and ξT is not complementary. However, the plot of λT can be split into

two components λR and λL as shown in Figure 2.3, which individually resemble the

complementarity properties of λN and ξN in Figure 2.2. The new quantities λR and

λL are defined as [23]

λR := µλN + λT ,

λL := µλN − λT ,

and the corresponding complementarity condition becomes

0 ≤

ξR(q, q̇)
ξL(q, q̇)

 ⊥
λR
λL

 ≥ 0, (2.7)

where ξT = ξR − ξL.

From the dynamics in (2.3), ξN , ξR and ξL can be expressed as an affine function
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of the contact forces λN , λR and λL. This allows us to express the complementarity

constraints in (2.4) and (2.7) as a quadratic function of the contact forces. The affine

function that relates ξN , ξR, ξL with λN , λR, λL is given by [23]:


ξN

ξR

λL

 = A


λN

λR

ξL

+ b,

where the values of A and b are extracted from the dynamics. We refer the reader

to [23] for detailed derivation of the forms of A and b, and present the results as

A =


W>
NM

−1(WN −WTµ) W>
NM

−1WT 0

W>
T M

−1(WN −WTµ) W>
T M

−1WT Ik

2µ −Ik 0

 , b =

W>
NM

−1h∆t+ (Ik + εN)γN

W>
T M

−1h∆t+ (Ik + εT )γT

0

 ,

where Ik is the k × k identity matrix, and ∆t is the integration time step. The

linear complementarity problem (LCP) (2.4) can be posed as the following feasibility

problem:

0 ≤

A

λN

λR

ξL

+ b

 ⊥

λN

λR

ξL

 ≥ 0, (2.8)

which we can solve for λN , λR, ξL with various optimization techniques.

We follow Moreau’s time stepping algorithm [23] outlined in Algorithm (1) to nu-

merically integrate the dynamics (2.3). In this procedure, we first use the kinematics
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Algorithm 1 Moreau’s Time Stepping Algorithm
Input: x(0) = (q(0), q̇(0))

1: φ← [x(0)] . Initial States
2: for t = 0 : ∆t : T do . Time stepping
3: tM = t+ ∆t/2

4: q(tM ) = q(t) + (∆t/2)q̇(t) . Half-time step integration
5: λN , λT ← Lemke(q(tM ), q̇(t)) . Lemke [27]
6: q̇(t+∆t) =M−1(WTλT +WNλN + h∆t) + q̇(t) . Apply contact forces
7: q(t+∆t) = q(tM ) + (∆t/2)q̇(t+∆t)

8: φ← φ ∪ [x(t+∆t)] . Save trajectory

9: return φ

of the system to evaluate the position vector q after a half-time step as

q(t+ ∆t/2) = q(t) + (∆t/2)q̇(t),

This allows us to check the gap functions for possible penetration between contact

surfaces at time t+∆t/2. If all the gap functions are positive, we determine that there

are no contact forces applied. On the other hand, if any of the gap functions are non-

positive, we compose a complementarity constraint for the active contacts as given

in (2.8). While the complementarity constraint can be posed as a feasibility problem,

the presence of Coulomb friction makes it a non-convex optimization problem. We

use a pivoting (basis-exchange) technique called Lemke’s algorithm [27] to find the

solution to the linear complementarity problem (2.8). The fact that Lemke’s algo-

rithm may be automatically differentiated to provide the gradients of the pertinent

variables allows us to seamlessly integrate the solution to the differential equations

into machine learning algorithms. We substitute the contact forces λN , λT provided

by Lemke’s algorithm into the equations of motion (2.3) to compute the post-impact
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velocities as follows:

q̇(t+∆t) =M−1(WTλT +WNλN + h∆t) + q̇(t),

This procedure is repeated for time horizon T .

2.1.2 Mixture of Expert Models
The mixture of experts (MoE) framework is a technique primarily used to learn

an ensemble of regression models (experts) that best fit high variance or multi-modal

datasets, such as the one shown in Figure 2.4a [1]. This technique provides a way

to train several specialized expert models simultaneously, where each expert is well

curated for a cluster of datasets as seen in Figure 2.4b. The MoE architecture uses a

routing function called a gating network to allocate the appropriate local expert for

each input data [28]. The objective is to learn the parameters of each local experts

and the gating network to best fit the dataset.

Let F (x; θ) denote a collection of NF expert models F (x; θ) = {F1(x; θ1), . . . ,

FNF
(x; θNF

)}, whose parameters are given by the set θ = {θ1, . . . , θNF
}. The gating

network is responsible for dividing the input space X ⊂ R2m into state partitions, and

assigning local expert models capable of providing specialized predictions for each

partition. We represent the gating network with the discrete probability distribution

P(x|ψ) := (P1(x|ψ), . . . , PNF
(x|ψ)), where Pi(x|ψ) denotes the probability of state

x belonging to the state partition X i ⊂ X with the index i ∈ {1, . . . , NF}. In the

standard MoE framework [29], the prediction u(x) of the MoE is given by

u(x) =

NF∑
i=1

Fi(x; θi)Pi(x|ψ), (2.9)
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(a) Multi-modal dataset fit with one model (b) Multi-modal dataset fit with MoE

Figure 2.4: Comparison of multi-modal dataset fit with one regression
model and MoE

which requires evaluating all the experts for each input x. We can reduce the com-

putation cost of (2.9) by utilizing the output of the single best expert as determined

by the gating network [30]

u(x) = {Fa(x; θa) | a = argmax
i
{Pi(x|ψ)}}. (2.10)

Model Structure: The expert models and the gating network can take several

forms. Gaussian process (GP) models are commonly used in the MoE framework to

infer a multi-modal probabilistic model from a small amount of data [28]. Despite

the expressive power and tractability of GP experts, the inference procedure requires

repeated matrix inversions that scale cubically with the size of the dataset [31]. In

order to circumvent the large computational and memory overhead while also pre-

serving the expressive power of GP experts, we leverage the universal approximation

capabilities of neural networks for both the experts and the gating network. For

regression problems that require the flexibility of nonlinear models, the experts can



19

be given by deep neural-nets with point-estimate parameters, which can be extended

to probabilistic models with the use of Bayesian neural networks, whose weights and

biases are given by probability distributions [32]. Similarly, the gating network can

be given by a neural network P(x|ψ) : X → RNF with parameters ψ, and the output

corresponds to the vector [P1(x|ψ), . . . , PNF
(x|ψ)]. In order to ensure that the proba-

bilities Pi(x|ψ) over all state partitions i sum to one, we use the Softmax activation

function [33] on the last layer of the gating network.

Training: Given the training dataset D = {(x1, y1), . . . , (xN , yN)} with N input

state-label pairs, we can use gradient-based techniques to find the optimal parameters

(ψ, θ) that best fit the dataset [30]. In such techniques, we construct the cost function

we wish to minimize as

L(D) =
N∑
j=1

NF∑
i=1

‖Fi(xj; θi)− yj‖ Pi(xj, ψ), (2.11)

where ‖Fi(xj; θi)− yj‖ is the error in the prediction made by the expert i. Notice that

the cost function (2.11) is minimum when the parameter θi has the lowest prediction

error and the highest probability of getting selected by the gating network. So long as

the complexity of the experts and the cost function allow for the pertinent gradients

∂L/∂ψ, ∂L/∂θ to be evaluated, we can invoke stochastic gradient descent (SGD) to update

the decision parameters as follows:

ψ ← ψ − ∂L
∂ψ

,

θ ← θ − ∂L
∂θ
.
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2.2 Motivating Application: Switching Linear

System
In the following discussion, we present an example to motivate and lay the

foundation for the use of MoE in the control design problem. In particular, we propose

a data-driven technique to automatically seek switching controllers for multi-modal

systems. Suppose we have two linear systems of the form

ẋ = A1x =

0 −1
2 0

x,
ẋ = A2x =

0 −2
1 0

x,
(2.12)

where each system is marginally stable as shown in Figure 2.5a. Although the indi-

vidual systems are not asymptotically stable, it is possible to find a state-dependent

switching rule that makes the resulting switched system asymptotically stable, as

shown in Figure 2.5b [34]. We aim to learn a gating network P(x|ψ) to automatically

divide the state space into partitions and identify which of the two systems to execute

in each state partition, with the goal of asymptotically stabilizing the origin.

Akin to the regression problem in Section 2.1.2, the training dataset consists

of input state-label pairs, where the labels are the performances of the trajectories

generated under the current control law. In the case of the switching-control problem,

we generate a trajectory and the corresponding performance metric (labels) as follows.

Starting from some initial state x(t = 0), we sample a state partition index i from
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(a) Two marginally stable closed-loop sys-
tems

(b) Asymptotically stable switching

Figure 2.5: Stable switching between two marginally stable systems

the categorical distribution, whose probabilities are provided by the gating network:

i ∼ Categorical(P(x(t)|ψ)). (2.13)

Given the partition index i, the expert (control law) is given by a sample from the

Bernoulli probability distribution

Fi(θi) =


0, θi >

1
2
,

1, θi ≤ 1
2
,

(2.14)

where Fi = 0 corresponds to the first dynamics ẋ = A1x and Fi = 1 corresponds to

ẋ = A2x. The parameter θi of the expert is to be learned, and it determines which of

the two experts to execute in each partition. In order to ensure that the parameter

θi of the expert serves as the probability of the Bernoulli distribution, we use the

Sigmoid function [33] to limit θi between 0 and 1. The next state x(t + ∆t) in the
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trajectory is obtained from the following integration scheme:

x(t+∆t) = (1− Fi)A1x(t) + FiA2x(t).

We repeat this process to generate a trajectory for the time-horizon T . The per-

formance of the trajectory generated under the current parameters (ψ, θ) can be

quantified by the metric ` as

`(x(t+∆t)) :=
1

2
‖x(t+∆t)‖2.

In Section 2.3.1, we generalize the performance metrics to be applicable to various

dynamical systems and discuss how we can encode desired characteristics of the con-

troller. From the performance metric `, we can construct the cost function L similar

to the standard MoE framework in (2.11) as

L
(
{x(0), . . . , x(T )}

)
=

T∑
t=0

NF∑
i=1

`i

(
xi(t+∆t)

)
Pi

(
x(t), ψ

)
.

In the upcoming sections, we generalize the MoE control-search problem and provide

techniques to efficiently learn the optimal decision parameters from appropriate cost

functions.

2.3 Mixture of Experts Controller
Based on the motivating example provided in Section 2.2, we present a gener-

alized data-driven control design framework for hybrid dynamical systems. In this

framework, the controller is given by deep-net mixture of experts F (x; θ), and the

control switching scheme is governed by the gating network P(x|ψ). This technique
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allows us to observe the effects of mode changes from the closed-loop trajectories and

learn a switching mechanism to best control the hybrid system across modes. The

objective is to learn the parameters θi of each expert and the gating network ψ that

can achieve the desired performance.

Let φ(x0, u, T ) denote a closed-loop trajectory generated from a hybrid dynam-

ical model starting from initial state x0. For every state x in a trajectory, the control

law first samples a state partition index i from a categorical distribution and evaluates

the corresponding expert as

u(x;ψ, θ) = {Fi(x; θi) | i ∼ Categorical(P(x|ψ))}. (2.15)

We use the metric ` : X × U → R to measure the performance of the sampled

experts, which we discuss in depth in Section 2.3.1. The goal is to learn the decision

parameters (ψ, θ) that minimize the metric ` for all initial states in the state space.

We pose the search over the parameters of the experts and the gating network as the

following optimization problem.

minimize
ψ,θ

∫ T

0

`(x(t), u) dt,

subject to M(q) dq̇ + h(q, q̇) dt− dR = 0,

u = {Fi(x; θi) | i ∼ Categorical(P(x|ψ))}.

(2.16)

In Section 2.3.3, we provide a procedure to solve the optimization problem (2.16) via

stochastic gradient descent.

Remark 2. Without prior knowledge injected to the gating network, the samples from

the categorical distribution in (2.15) initially explore the performance of most, if not
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all, of the expert controllers. As the parameters converge to their optimal values, the

samples from the categorical distribution correspond to the indices of the single best

experts and the control law in (2.15) is equivalent to (2.10).

2.3.1 Performance Metrics
We present two viable choices for the performance metric `.

1. Accumulated cost: is the total quadratic loss between the desired state x∗ and

the states generated under the current control law. We can also enforce control

saturations for underactuated systems by incurring a cost on the control input as

follows:

`(x, u) =
1

2
(x− x∗)>Q(x− x∗) + 1

2
u>Ru, (2.17)

where Q � 0 denotes a positive definite matrix and R � 0 represents a positive

semi-definite matrix. This construction encourages trajectories to reach the desired

equilibrium with minimum effort and the shortest time. We modify the cost function

L presented in (2.11) to incorporate the quadratic loss `(x, u) as follows:

L(φ) =
T∑
t=0

NF∑
i=1

`i

(
xi(t+∆t), Fi

)
Pi

(
x(t)|ψ

)
. (2.18)

Similar to the regression problem provided in Section 2.1.2, the accumulated cost (2.18)

is minimum when the metric `i achieved by expert i is low and the responsibility

Pi(x(t)|ψ) of the expert is high.

Algorithm (2) outlines how we construct the cost function from a trajectory. In

this procedure we check the performance of each expert at every integration step. To

do so, starting at initial state x0, we integrate the dynamics in (2.3) for one time step
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Algorithm 2 Accumulated Cost
Input: x0, θ, ψ

1: L← 0

2: for t = 0 : ∆t : T do
3: for j = 1 : NF do . Evaluate performance of each expert
4: xj(t+∆t)← Moreau's one time step(x(t), Fj(x(t), θj)) . Algorithm (1)
5: L← L+ `(xj(t+∆t), Fj) Pj(x(t)|ψ)

6: i ∼ Categorical
(
P(x(t)|ψ)

)
. Sample a bin number

7: x(t+∆t)← Moreau's one time step(x(t), Fi(x(t), θi))

8: return L

∆t using all the experts in F (x0; θ). We retrieve all the states {xi(∆t), i ∈ {1, . . . NF}}

obtained from the integration and evaluate the running cost `(xi(∆t), Fi) incurred

by each expert. Each performance metric `(xi(∆t), Fi) is weighed by its responsi-

bility Pi(x0|ψ) and summed across experts to get the cost function. By checking

the performance of each expert for every state, the computation of the cost func-

tion is prone to the curse of dimensionality. We minimize the amount of computa-

tion needed to compose the cost function by selecting one state from the collection

{xi(∆t), i ∈ {1, . . . NF}} to continue the integration. We select the expert responsi-

ble for generating the next state x(∆t) from the categorical distribution (2.15). This

process is repeated for every time step in the trajectory.

Remark 3. Notice that the accumulated cost checks the performance of each expert

at every state. When training for few experts, this cost function provides ample

exploration, resulting in fast convergence to an optimal control strategy. However, for

numerous experts, the accumulated cost incurs large computational overhead.

2. Minimum trajectory loss (MTL): is designed to minimize the computational

complexities of the accumulated cost. Compared to (2.18), MTL may also better rep-
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resent the desired behavior of some dynamical systems. Consider the classical control

problem of swinging-up the simple pendulum to the upright equilibrium. For an

underactuated pendulum, a successful controller needs to swing the pendulum clock-

wise and counterclockwise, passing through the downward equilibrium point multiple

times until enough kinetic energy is built up to reach the upward equilibrium. Accu-

mulated loss incurs high cost in such scenarios and the control search would get stuck

in a local minimum. In such cases, a successful cost function encourages trajectories

that eventually lead to the goal state. This is achieved by MTL, which is composed

of the lowest cost incurred across the entire trajectory and the responsibilities of the

experts that led to the minimum cost. The resulting cost function L is given by

tmin = inf
t
{`(x(t), u) : x(t) ∈ φ(x0, u, T )},

L(φ) =
`(x(tmin), u)

C

tmin∑
t=0

Pi(x(t)|ψ),
(2.19)

where C > 0 is a normalization factor. The detailed procedure for the construction

of MTL is shown in Algorithm (3). Unlike the accumulated cost, MTL does not

Algorithm 3 Minimum Trajectory Loss
Input: x0, θ, ψ

1: φ← {x0}
2: for t = 0 : ∆t : T do
3: i ∼ Categorical

(
P(x(t)|ψ)

)
. Sample a bin number

4: x(t+∆t)← Moreau's one time step(x(t), Fi(x(t), θi)) . Algorithm (1)
5: φ← φ ∪ x(t+∆t)

6: tmin = inf
t
{`(x(t), u) : x(t) ∈ φ}

7: L = −`(x(tmin), u)
∑tmin

t=0 Pi(x(t)|ψ)
8: return L
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particularly reward low effort or short time trajectories, but it equally rewards two

trajectories as long as they both reach the goal state within the time horizon T .

2.3.2 State Sampling
We intend to find a solution to the optimization problem in (2.16) for all initial

states x0 in the state space. To do so, we generate the performance metric ` from

a batch of initial states and update the parameters (ψ, θ) iteratively via stochastic

gradient descent (SGD). To efficiently sample the initial states, we use a combination

of greedy and explorative state sampling techniques. An example of greedy state

sampling technique, commonly known as Dataset Aggregation (DAgger), is a tech-

nique adapted from imitation learning [35]. This method collects states most visited

under the current parameters (ψ, θ) and concentrates on refining the performance of

the controller on these states. For instance, suppose we are solving the optimization

in (2.16) to obtain a controller that swings up an underactuated simple pendulum

to the upright. Initially, the parameters (ψ, θ) may result in a controller that swings

the pendulum to the downward equilibrium irrespective of where it started. Thus,

it is most efficient to first expose the training to the cost incurred by visiting the

downward equilibrium. In this technique, we first discretize the state space and uni-

formly sample several initial states. Starting from those initial states, we generate

trajectories using the current parameters. In order to improve the controller at the

states favored by the current policy, we draw Nd initial state samples from the states

visited in the trajectories. At first, the Nd samples mostly consist of states near the

downward equilibrium. As the parameter update continues, DAgger starts sam-

pling states that are closer to the upright equilibrium. This efficient state exposition

is pivotal for the convergence to the optimal parameters.
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The explorative state sampling technique exposes the training to the rewards of

approaching and remaining close to x∗. It also uses random sampling to explore new

control strategies and recover from locally optimal solutions. This method collects Nr

initial states around the neighborhood of the desired equilibrium by drawing samples

from the normal distribution x0 ∼ N (x∗, δ), whose mean is x∗ and the standard

deviation is a small constant δ. For each parameter update in SGD, we compute the

performance metric as an expectation over ND = Nd +Nr samples as follows:

J(φ, u) = Ex0∈DN
[L(φ(x0, u, T ))], (2.20)

where DN is a replay buffer consisting of ND initial state samples.

2.3.3 Training Mixture of Experts Controller
We solve the optimization problem in (2.16) following the procedure outlined in

Algorithm (4). At the beginning of the training, we collect ND initial states samples

using the greedy and explorative state sampling techniques discussed in Section 2.3.2

and save them in the replay buffer DN . For every initial state in the replay buffer, we

generate a trajectory using the current decision parameters (ψ, θ) and assign the cost

function L. The average cost incurred by the current policy is given by J in (2.20),

from which we compute the pertinent gradients ∂J/∂ψ, ∂J/∂θ via auto-differentiation

techniques. In particular, we use forward-mode auto-differentiation [36] to take the

gradient through the trajectory generated from Moreau’s integration scheme. Al-

though not explored in this work, it is possible to design adjoint methods for hybrid

systems to efficiently back-propagate on the cost function through reverse-mode auto-

differentiation techniques. We invoke a variant of stochastic gradient descent known
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Algorithm 4 Solution to the MoE Optimization Problem (2.16)
1: DN ← {x0}(ND) . ND initial state samples
2: while i < maximum iteration do
3: J ← 0 . Batch loss
4: for x0 ∈ DN do
5: L = cost(x0, ψ, θ) . Algorithm (2) or (3)
6: J ← J + L/ND

7: θ ← θ − α∂J/∂θ . SGD step
8: ψ ← ψ − α∂J/∂ψ
9: DN ← {x0}(ND) . New initial state samples

10: i ← i+ 1

11: return θ

as Adam [37] to efficiently update the parameters with adaptive learning rates α.

2.3.4 Back-propagation through Hybrid Dynamics
The training framework outlined (2.16) allows us to observe the effects of con-

tacts in the closed-loop trajectories and infer a controller that either uses the contact

to its advantage or minimizes its adverse effects. In this section, we look at the rel-

evant parts of the back-propagation to give insight on how this is achieved. We also

show that despite the state jumps in the hybrid dynamics, the derivatives involved in

the back-propagation are well-defined.

Suppose we generate a short trajectory φ with the sampled expert control param-

eter θi. Forward-mode auto-differentiation evaluates the gradient of the accumulated

cost with respect to θi as

∂`

∂θi
=

T∑
t=0

∂`

∂xt

∂xt
∂θi

,

where R = 0 for simplicity. Without loss of generality, we take one integration step
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for the reminder of this discussion. In that step, a contact event is triggered causing

the velocities to jump between the initial state x0 and the following state x1. Hence,

we focus on

∂`

∂θi
=

∂`

∂x1

∂x1
∂θi

,

We can expand the gradient further as

∂`

∂θi
=

∂`

∂x1

(∂x1
∂u

∂u

∂θi
+
∂x1
∂λ

∂λ

∂θi

)
,

where λ = [λN , λT ] holds the contact forces. We can compute the first term from

Moreau’s integration step as

∂x1
∂u

∂u

∂θi
=

M−1B∆t2/2

M−1B∆t

 ∂u

∂θi
,

At first glance, it may seem the derivative ∂x1
∂λ

∂λ
∂θi

does not exist due to the dis-

continuity in the states. A closer observation reveals that ∂x1
∂λ

determines how the

post-impact velocity is affected by the contact forces. In fact, the derivative can be

found from Moreau’s integration as

∂x1
∂λ

=

[
WN WT

]
,

demonstrating that the gradient exists even if a state jump has occurred. This term

is crucial in adjusting the decision parameters in response to how the contact force

assists or inhibits the system. If the contact forces affect the post-impact velocity such
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that the resulting generalized coordinates are closer to the desired state x∗, then the

gradient ∂`
∂x1

∂x1
∂λ

∂λ
∂θi

adjusts the parameter θi to favor states undergoing contact events.

Indeed, we demonstrate this behavior in simulation and real-world experiments in

Section 2.4.2. Conversely, if the contact forces move the states further away from x∗,

the gradient leads to control parameters that attempt to recover from the outcomes

of the contact events. We also demonstrate this behavior on a walking robot example

in Section 4.1.3.

2.4 Experimental Results
We demonstrate the efficacy of the MoE controller in simulation and real-world

experiments. In the first case study, we learn a gating network that switches between

two marginally stable closed-loop systems to result in a piecewise-asymptotically-

stable system. Then, we find switching MoE controller to swing up the classical

cartpole mechanism enclosed with wall barriers.

2.4.1 Switching Linear System
We find the stable switching scheme through the MoE framework discussed in

Section 2.2. We aim to learn the parameters ψ of the gating network P(x|ψ) and

the expert parameters θi such that the switching system converges to the desired

equilibrium x∗ = (0, 0). The gating network is a fully-connected neural net with one

hidden layer (2 input states→ 6 hidden neurons→ 4 outputs) and an Elu activation

function [38]. We constrain the maximum number of state partitions to NF = 4. Each

state partition has a corresponding controller parameter θi ∈ R.

The response of the learned switching system is shown in Figure 2.6. Figure 2.6a

shows the single best expert Fa given by (2.10) in each state partition, where purple
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Figure 2.6: Final stable switching system: (a) The single best expert Fa
in each state partition, where purple corresponds to Fa = 0 or ẋ = A1x and
yellow corresponds to Fa = 1 or ẋ = A2x, (b) State partition index of the
single best expert

corresponds to Fa = 0 or ẋ = A1x and yellow corresponds to Fa = 1 or ẋ = A2x.

The sample trajectory starts at x0 = [−5,−5] and successfully converges to the

origin shown by the red star. The state partition index of the single best expert

is shown in Figure 2.6b, and it depicts that the training uses only 3 out of the 4 state

partitions available. The partitions in Figure 2.6b matches the analytical solution to

the successful stable switching system given by [34]

ẋ =


A1x, x1x2 ≤ 0,

A2x, x1x2 > 0,

where x = [x1, x2].

The training progress is shown in Figure 2.7. The three rows in the figure depict
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Figure 2.7: Training progress. The final solution is shown in Figure 2.6

the performance of the training after 0, 200 and 1400 parameter updates, respectively.

The sample trajectory in Figure 2.7a shows that the initial parameters result in

unstable switching between the two systems. After only 200 parameter updates, the

training finds a stable switching mechanism, but it does not yet converge to the desired

equilibrium x∗. In order to create an asymptotically stable system, the corners of each

state partition must intersect at the origin, which the training finds successfully after

2000 parameter updates (Figure 2.6). This is thanks to the explorative state sampling

technique, which samples states close to the desired equilibrium, assisting the training
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in finding the distinct boundaries of each partition at the origin.

2.4.2 Cartpole with Wall Contacts
In this section, we take the classical cartpole swing-up problem and introduce

potential contacts from two barriers as shown Figure 2.8. The potential contacts

serve as a way to convert the standard cartpole system into a multi-modal dynamics.

The objective is to swing-up the pendulum on the cart in the presence of contacts

and impacts. We apply the MoE framework to train switching expert controllers and

a gating network that governs the switching scheme. We demonstrate the perfor-

mance of the mixture of expert controller in simulation and real-world experiments.

Lastly, we compare the performance of the MoE controller against a single swing-up

controller.

System Model

The cartpole system consists of a freely rotating pendulum link hinged on an

actuated cart. The setup is enclosed by two rigid walls hanging 0.2m from the bottom

of the cart. The objective is to use the control authority on the cart in order to swing-

up the passive pendulum to the upright. The pendulum spans length of l = 0.2m and

its mass mp = 0.75kg is concentrated at the distance lcm = l/2 from the hinge. The

cart alone has a mass of mc = 0.165 kg. The viscous friction in the cart wheels is

characterized by the coefficient b = 1.2 N · sec/m. The dynamics of the system is given

by (2.3) where

M(q) =

 mc +mp −mplcm cos(θp)

−mplcm cos(θp) mpl
2
cm + Ip

 ,
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θp

|d| = 0.45m

xc

Figure 2.8: Cartpole with wall contacts

C(q, q̇) =

b mplcmθ̇p sin(θp)

0 0

 ,
G(q) =

[
0 −mpglcm sin(θp)

]>
,

B = [1 0]>,

(2.21)

where q = (xc, θp), xc is the location of the cart, θp is the angle of the pendulum

from the vertical. The moment of inertia of the pendulum is given by Ip and g is the

acceleration due to gravity. There are a total of k = 10 potential contacts between

the pendulum and the sides of the walls. We integrate closed-loop trajectories with

Moreau time stepping algorithm outlined in Algorithm (1) with an integration time

step ∆t = 0.001.

Table 2.2: Structure of the deep-net experts and the gating network.

Neural Network Inputs Number of neurons
in hidden layers Outputs

Expert Fi(x; θi) [xc, cos(θp), sin(θp), ẋc, θ̇p] (10, 4) u ∈ R
Gating network P(x|ψ) [xc, cos(θp), sin(θp), ẋc, θ̇p] (4, 3) [P1, P2, P3]



36

Training

We aim to learn the parameters (ψ, θ) of the MoE controller in order to stabilize

the cartpole system to the desired state x∗ = (q∗, q̇)∗ = ((0, 0), (0, 0)) under contacts,

impacts and Coulomb friction. Once the system reaches within a small neighborhood

of x∗, we employ Linear Quadratic Regulator (LQR) to maintain the system at the

desired equilibrium. The structures of the deep-net experts and gating network are

provided in Table 2.2. We constrain the maximum number of state partitions to 3,

where each partition has a local expert Fi. The output of the experts correspond to

the force applied on the cart. We use minimum trajectory loss (MTL) discussed in

Section 2.3.1 with time horizon T = 1.5s, where the performance metric ` is given

by (2.17). In each parameter update, we sample ND = 4 initial states through greedy

and explorative techniques.

Hardware

We demonstrate the performance of the MoE controller in simulation and hard-

ware. The hardware (Figure 2.9), designed and built by Quanser [39], uses a DC-

motor to translate the cart on a track. The cart uses a rack-and-pinion mechanism to

translate on the track with zero-slip. One of the wheels of the cart is attached to an

optical encoder, from which we estimate the position and velocity of the cart. There

is also an optical encoder rigidly attached to the pendulum link, reporting its orien-

tation. We evaluate the experts and the gating network in MATLAB/Simulink and

pass the corresponding voltage commands to the DC-motor via Quarc, Quanser’s

real-time control software. The force commands output by the MoE controller are
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Figure 2.9: Experimental setup of cartpole with wall contacts

converted into voltage commands V (t) as follows.

V (t) =
u(x(t)) + Amẋc(t)

Bm

,

where Am and Bm consist of system parameters of the motor.

Results

Figure 2.10 shows a successful swing-up trajectory generated by the MoE con-

troller in simulation and hardware. The blue contours correspond to the level sets of

the control input u during impact (xc = 0.36m, ẋc = 0m/s), and the solid red lines de-

pict the boundaries of the state partitions. Although the gating network can provide

up to three state partitions, the training converges to utilizing only two. Figure 2.10

shows that the system successfully avoids contacts during the swing-up phase, which

otherwise would have prevented the pendulum from pumping energy from the down-
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Figure 2.10: A sample trajectory starting from downward equilibrium at
rest. The blue contours represent the level sets of the control input at the
pre-impact and post-impact states

ward equilibrium. By the time the pendulum approaches the upright equilibrium,

it is moving at such high speed (∼-6rad/s) that LQR cannot stabilize the pendulum

to the upright. However, we have observed from several trajectories that the system

leverages the impact from the wall to lower the speed of the pendulum. During im-

pact, the control law switches experts, where the new expert applies rapid braking

allowing the LQR to catch the pendulum post-impact. The MoE controller achieves

successful swing-up in simulation and real-world, proving the accuracy in the contact

model and the robustness of the controllers.

Comparison between MoE and single controller: We compare the perfor-

mance of the MoE controller against a single controller, which can be thought of as

the MoE controller with NF = 1. This controller is parameterized by a neural net,

with a similar structure to the experts provided in Table 2.2. We train the controller

with the same minimum trajectory loss (MTL) and training parameters as the MoE.
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(a) Performance of a single controller (b) Performance of the MoE controller

Figure 2.11: Comparison between MoE and a single controller

Once the controller swings the pendulum to the neighborhood of x∗, we use LQR to

stabilize it to the upright.

As shown in Figure 2.11a, the single controller successfully swings up the pendu-

lum close to the upright. However, due to the length of the pendulum and the tight

distance between the walls, the pendulum inevitably impacts one of the barriers. Un-

fortunately, the LQR is not able to catch the pendulum post-impact, due to the high

velocity of the pendulum. On the other hand, Figure 2.11b shows the performance of

the MoE controller in the same scenario. The MoE solution leverages the switching

controllers to apply rapid braking post-impact, which significantly lowers the velocity

of the pendulum. This assists the LQR in catching the pendulum at the appropriate

speed. This demonstrates the advantages of switching controllers in the presence of

multi-modal contact-rich systems.
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2.5 Conclusion
In this chapter, we provide a data-driven control design that reasons about the

effects of contact forces on the hybrid system. We incorporate accurate system model

in the training via linear complementarity formulation, and infer mixture of expert

controllers. The learning framework also provides a gating network, which selects

an expert for every observed state. From simulation and real-world experiments, we

demonstrate that the MoE framework successfully provides a switching controller for

multi-modal systems and the learned policy leverages the advantages of contact in

some states and minimizes its adverse effects in others.
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CHAPTER 3:

UNCERTAINTY HANDLING VIA NEURAL

BAYESIAN INFERENCE

3.1 Background
In this chapter, we present a robust data-driven control design approach for

contact-rich systems operating under system parameter and/or measurement uncer-

tainties. This technique leverages the stability properties inherent to passivity-based

control and injects the robustness properties innate to Bayesian learning. The result-

ing approach provides a healthy balance between the structure and thoroughness of

classical control techniques and the flexibility and robustness of data-driven frame-

works. In this section, we provide a brief summary to passivity-based control and

the recent data-driven variant we introduced in [15, 16, 40]. We also motivate the

advantages of the Bayesian learning framework in uncertainty modeling and robust

control.

3.1.1 Passivity-Based Control (PBC)
Suppose we have a robotic system whose Hamiltonian H : X → R can be

expressed as

H(q, p) =
1

2
p>M−1(q)p+ V (q), (3.1)
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where p ∈ Rm is the generalized momenta, and V (q) represents the potential energy.

Hamilton’s equations of motion are given by

f(x, u) =

 0 Im

−Im 0


∇qH

∇pH

+

 0

Ω(q)

u,
y = Ω(q)>q̇,

(3.2)

where x = (q, p), Ω(q) ∈ Rm×n is the input matrix, and u ∈ Rn is the control input.

A mechanical system is considered passive if it is dissipative with respect to a storage

function H, i.e.

H(x(t1)) ≤ H(x(t0)) +

∫ t1

t0

s(u(t), y(t))dt, (3.3)

for all initial states x(t0) and all input u under the supply rate s = u>y [41]. There

exists a strong connection between the passivity and stability properties of a dynam-

ical system. The system (3.2) has an asymptotically stable equilibrium at the origin

if it is strictly passive, i.e.,

Ḣ =
∂H

∂x
f(x, u) < u>y,

H ≥ 0.

We refer the reader to [42] for a detailed proof on the connection between passivity

and stability.

The objective of passivity-based control (PBC) is to design a control law u

that imposes the desired storage function Hd on the closed-loop system, rendering it

passive and therefore stable [41]. The dynamics of the closed-loop system with the
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desired storage function Hd and a new desired stable equilibrium at x∗ can be given

as q̇
ṗ

 =

 0 Im

−Im 0


∇qHd

∇pHd

+

 0

Ω(q)

udi, (3.4)

where udi is the damping control. From (3.2) and (3.4), we can find the energy shaping

control that results in a passive closed-loop system as

ues(x) = −Ω† (∇qHd −∇qH) , (3.5)

where Ω† =
(
Ω>Ω

)−1
Ω>. To obtain an asymptotically stable system, we can add a

damping term udi to the control as follows.

u = ues(x) + udi(x),

udi(x) = −Kv y,

(3.6)

where Kv � 0 is the damping gain matrix. The goal is to characterize the storage

function Hd of the closed-loop system, whose desired equilibrium is at x∗, and to

extract the energy-shaping control that morphs the open-loop system (3.2) to (3.4).

To do so, we expose an inherent constraint on the form of Hd from (3.5) as

Ω⊥ (∇qHd −∇qH) = 0, (3.7)

where Ω⊥Ω = 0. Hence, we can obtain Hd from the solution to the partial differential

equations (PDEs) in (3.7). In many cases, it is tedious and computationally expensive
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to extract Hd from the PDEs. Moreover, the closed-form solution to the PDEs may be

intractable, especially in high-dimensional systems. A novel data-driven framework is

presented in [15, 16, 40], where we find a solution to the PDEs in an iterative manner

via stochastic gradient descent. We present a brief summary of this technique as

follows.

Neural PBC

The deterministic NeuralPbc framework presented in [15] solves the PDEs (3.7)

by rewriting the PBC problem as the following optimization scheme:

minimize
θ

`
(
φ, uθ

)
,

subject to f(x, u) =

 0 Im

−Im 0


∇qH

∇pH

+

 0

Ω(q)

uθ,
uθ = −Ω†(∇qH

θ
d −∇qH

θ),

(3.8)

where T > 0 is the time horizon, φ(x0, uθ, T ) is a closed-loop trajectory generated

from the initial state x0 under the current control law uθ and ` is a running cost

function that parameterizes the performance of the current control. The NeuralPbc

technique adds three important features to the classical PBC framework.

1. The optimization problem finds an approximate solution to the PDEs in (3.7)

using stochastic gradient descent.

2. Desired system behavior is explicitly introduced into the optimization via the

performance objective `, which allows us to find a preferred solution to the

PDEs.



45

3. The framework leverages the universal approximation capabilities of neural net-

works to parameterize the desired Hamiltonian Hθ
d .

Neural Interconnection and Damping Assignment PBC

IdaPbc, a variant of Pbc, selects a particular structure for Hd

Hd(q, p) =
1

2
p>M−1

d (q)p+ Vd(q), (3.9)

where the minimum of the closed-loop potential energy Vd(q) is at the desired equi-

librium position q∗. The resulting passive closed loop system is given by [43]

q̇
ṗ

 =

 0 M−1Md

−MdM
−1 J2(q, p)− ΩKvΩ

>


∇qHd

∇pHd

 , (3.10)

where J2 = −J>
2 and Md � 0 is a positive-definite matrix. We set the closed loop

systems in (3.2) and (3.10) equal to each other to find the energy-shaping and the

damping control terms as

ues = Ω† (∇qH −MdM
−1∇qHd + J2M

−1
d p
)
,

udi = −KvΩ
>∇pHd.

(3.11)

The goal is to select Vd and the matrices Md, J2 that result in a passive closed-loop

system. There are a set of PDEs constructed from (3.11) that constrain the forms of

Vd,Md, J2, and they are given by

Ω⊥ {∇qH −MdM
−1∇qHd + J2M

−1
d p
}
= 0. (3.12)
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Similar to NeuralPbc, the closed-form solution to the PDEs in (3.12) may be in-

tractable. The framework presented in [16] addresses this issue through the Neural-

IdaPbc architecture, which we summarize as follows.

The deterministic Neural-IdaPbc framework introduced in [16] finds an ap-

proximate solution to the PDEs from the following optimization problem.

minimize
θ

‖lIDA(x)‖2 =
∥∥Ω⊥ {∇qH −MdM

−1∇qHd + J2M
−1
d p
}∥∥2 ,

subject to M θ
d = (M θ

d )
> � 0,

Jθ2 = −(Jθ2 )
>,

q? = argmin
q

V θ
d ,

(3.13)

where V θ
d and the entries of the M θ

d and Jθ2 matrices are parameterized by neural

networks. To enforce the constraints shown in (3.13), we redefine M θ
d , J

θ
2 and V θ

d as

follows. We rewrite the desired mass matrix M θ
d using the Cholesky decomposition

as

M θ
d = Lθ(q)L

>
θ (q) + δMIn, (3.14)

where δM > 0 is a small constant and In is the n × n identity matrix. The matrix

Lθ ∈ Rn×n is a lower-triangular matrix whose n(n+1)/2 entries are outputs of a neural

network. The form of M θ
d in (3.14) preserves the positive-definiteness of the mass

matrix. The skew-symmetric matrix J2 is constructed as

Jθ2 (q, p) = Aθ(q, p)− A>
θ (q, p),
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where the entries of Aθ(q, p) are given by neural nets. Lastly, we design a fully-

connected neural network for V θ
d such that it has a minimum at q∗ = 0 as follows.

Let V θ
d be a deep neural net with j layers and all bias terms set to zero. We denote

this with

V θ
d (x) = Φ

(
Wjσ(Wj−1σ(. . .W2σ(W1x)))

)
, (3.15)

where Wi holds the weights of layer i and σ is the activation function. The activation

function is chosen such that σ(0) = 0, ensuring that Φ(0) = 0 and Φ(x) > 0, x 6= 0.

Several choices of activation functions that satisfy these properties include Elu, Tanh

and Relu [33].

3.1.2 Bayesian Learning
Suppose we are given a finite dataset with inherent noise, for which we are trying

to fit a regression model. Consider an example of recognizing handwritten digits

from images. The task is to build a model that takes in input images and identifies

the digits written on those images. We train the model on finite labelled dataset,

which consists of inherent noise due to the differences in individual handwriting. In

practical applications such as this one, the training data comprises only a fraction of

all possible ways to write digits. However, we can still use machine learning techniques

to recognize patterns in the strokes and make generalized predictions on a new dataset.

It is also most beneficial to report the uncertainty associated with each prediction

in order to inform the user of outlier images present in the testing dataset. This

can all be achieved by probabilistic learning, which uses the expressive power of

stochastic models to generate generalized predictions from finite dataset and report

the uncertainty in these predictions [1].

In the probabilistic learning framework, the stochastic models are constructed
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as follows. Let F (x; θ) denote the stochastic model whose parameters θ are multi-

variate random variables. A common approach is to pre-select the posterior prob-

ability distribution P (θ; z) over the parameters θ and learn the distribution param-

eters z that minimize the prediction error
∑

(xj ,yj)∈D‖F (xj; θ)− yj‖ , where D =

{(x1, y1), . . . , (xN , yN)} is the training dataset with inputs xj and observations yj. Ex-

pectation maximization (EM) is a gradient-based technique commonly used to learn

z that maximizes the likelihood function, and consequently minimizes the prediction

error [1]. To do so, we define the likelihood in terms of the prediction error as

P (D|θ) =
N∏
j=1

N (‖F (xj; θ)− yj‖ | 0, s),

where N is a Gaussian distribution with mean zero and standard deviation s. De-

pending on the complexity of the stochastic model, we can take analytical gradients

of P (θ; z) with respect to z or leverage auto-differentiation techniques [36]. Once we

find the optimal z values that maximize the likelihood, we can make predictions for

new data inputs by drawing samples from the distribution P (θ; z) and marginalizing

over the model as follows:

F̂ (x) =
1

Nθ

∑
θ∼P (θ;z)

F (x; θ),

where Nθ is the number of samples drawn from P (θ; z). The uncertainty associated

with each prediction is given by [32]

ΣF |x,D =
1

Nθ − 1

∑
θ∼P (θ;z)

∣∣∣∣∣∣F (x; θ)− F̂ (x)∣∣∣∣∣∣2 . (3.16)
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Bias-variance trade-off

Even though the EM approach finds optimal parameters that minimize the pre-

diction error, this technique is prone to overfitting. Given a finite number of obser-

vations, EM finds low variance distribution P (θ; z) biased to the training data [1].

There are two side effects to such biased trainings. First, in an attempt to absolutely

minimize the prediction error ‖F (xj; θ)− yj‖ , the stochastic model can take a com-

plex form and overfit to the training dataset. However, overfitting to the training

data reduces the accuracy of the predictions made by the model. This is best shown

in Figure 3.1, where the blue circles correspond to the training data and the red line

depicts the average prediction made by the regression model F (x; θ). The right fig-

ure represents a complex model F (x; θ) that gives minimum prediction error on the

training data but does not accurately represent the data source, which is given by

the green curve. On the other hand, the left figure shows a regression model that has

not overfit to the training dataset. By maintaining some minimal prediction error,

the model manages to make better predictions on new datasets. Secondly, stochastic

models are most useful to quantify the uncertainty in each prediction. When the

model overfits to the training data, it collapses the posterior to a near-zero-variance

distribution. In such cases, the prediction uncertainty in (3.16) collapses to zero.

Hence, the model makes predictions with absolute certainty, overlooking to report

that the overfit model makes inaccurate predictions. We call such overfit models with

near-zero prediction uncertainty as overconfident models.

The solution to the overfitting problem involves finding a bias-variance trade-off,

where the training adjusts the parameters based on the likelihood, but also enforces

the posterior to hold some variance in order to prevent overfitting. Bias-variance



50

trade-off is achieved with the introduction of a prior distribution, which adds a reg-

ularization term to the likelihood [1]. In supervised learning, regularization terms

restrict the training from learning a complex model, minimizing the risk of over-

fitting [44]. Similarly, the prior distribution prevents the learned parameters from

becoming overconfident in their predictions. In this construction, the posterior dis-

tribution P (θ|D) is defined in terms of the likelihood and prior with Bayes’ theorem

as

P (θ|D) = P (D|θ)P (θ)
P (D)

=
P (D|θ)P (θ)∫

θ
P (D|θ′)P (θ′)dθ′

, (3.17)

where P (θ) is the prior and P (D) is the evidence or the normalization constant of

the posterior. The relative weighting between the likelihood and the prior is pa-

rameterized by the standard deviation s of the likelihood. The higher the standard

deviation, the more weight we give to the regularization enforced by the prior. The

rate at which we update the prior distribution also determines the regularization

weight. The posterior in (3.17) shows that the likelihood and the prior are in a tug

of war. The likelihood pulls the parameters towards minimizing the prediction error,

but the prior distribution gives priority to the initial distribution of the decision pa-

rameters. This tug of war prevents the posterior from finding a near zero-variance

solution, and consequently achieving the bias-variance trade-off.

Posterior Distribution

While the likelihood and prior distributions in (3.17) can be expressed explicitly,

the evidence P (D) is typically intractable. We leverage Bayesian inference techniques

to approximate or find the exact posterior distribution without the use of the evidence.
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Figure 3.1: Comparison between model biased to the training data (right)
and model that achieves bias-variance trade-off (left) [1]. Blue circles
represent training data, the green curve is the original data source for
which we are learning a regression model, the red line is the learned model
F (x; θ)

.

Two of the most famous techniques are discussed as follows.

1. Markov Chain Monte Carlo (MCMC) methods: find the exact posterior

distribution from a collection of samples of θ. MCMC methods collect these samples

from a proposal distribution Q̃(θ(τ)|θ(τ−1)), where the sequence of samples θτ form

a Markov Chain [1]. The proposal distribution is known up to its normalization

constant and is sufficiently simple to sample from. We accept or reject each candidate

sample according to the following rule [1]:

ν ∼ U(0, 1),

A(θ(τ), θ(τ−1)) = min

(
1,

P (D|θ(τ))P (θ(τ))
P (D|θ(τ−1))P (θ(τ−1))

)
,

where U is the uniform distribution. If A(θ(τ), θ(τ−1)) ≥ ν, then we accept the sample.

Otherwise, we discard the candidate and resample from Q̃(θ(τ)|θ(τ−1)). MCMC meth-
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ods such as Metropolis-Hastings collect the next sample through random walk [45],

while other gradient-based techniques such as Hamiltonian Monte Carlo (HMC)

method, efficiently search the parameter space through the gradient of the likeli-

hood. Even though the MCMC methods learn the exact posterior distribution, they

have slow convergence properties for high-dimensional parameters. In such cases,

techniques such as variational inference compromise accuracy of the posterior distri-

bution for speed of convergence.

2. Variational Inference (VI): is a gradient-based technique that approximates

the posterior with the pre-selected distribution Q(θ; z). The approximate posterior is

selected from the conjugate families of the likelihood and prior distributions. The goal

is to learn the distribution parameters z of the approximate posterior that minimize

the Kullback-Leibler divergence or equivalently maximize the evidence lower bound

(Elbo) [46]. The Elbo, L, is given by

L(D, z) = Eθ∼Q [log(P (D | θ)P (θ))− log(Q(θ; z))] . (3.18)

Remark 4. For continuous posterior distribution, the Elbo given in equation (3.18)

is redefined using differential entropy, which expresses the prior and posterior in terms

of their probability density functions. In this case, the likelihood P (D | θ) is also a

probability density function and the Elbo is not bounded by zero.

Once we find the exact or approximate posterior, the prediction for state x can

be found in one of two ways. The first option is to marginalize the model over the
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posterior as follows [32]

F̂ (x) =
1

Nθ

∑
θ∼Q

F (x; θ), (3.19)

where Nθ is the number of samples drawn from the posterior. The second option only

takes one sample from the posterior, and it corresponds to the maximum aposteriori

(MAP), i.e.

θMAP = argmax
θ

P (θ|D). (3.20)

3.2 Theoretical Justification of Robustness
In Section 3.1.2, we discussed how a Bayesian approach to regression achieves

bias-variance trade-off and combats the risk of overfitting. We translate the same idea

to the data-driven control design problem. For instance, the NeuralPbc framework

discussed in Section 3.1.1 assumes a nominal system model given by f(x, u). The

parameters of the desired Hamiltonian are updated from a finite dataset generated

from this model. A robust controller would not overfit to a point-estimate with the

assumption that the finite trajectory observations represent the real system. System

parameter and measurement uncertainties in the real system can generate vastly

different trajectories, which the deterministic (point-estimate) controller may find

foreign. We propose a Bayesian learning framework where the controllers are given

by stochastic functions. In this framework, we achieve the performance objective

with wide range of control inputs sampled from the stochastic control, which can be

viewed as training an ensemble of controllers. This provides a conservative control

policy that is robust to uncertainties.
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The variance in the stochastic control is the most beneficial when there is an

unknown discrepancy between the nominal model and the real system. In this sec-

tion, we show the relationship between the model uncertainties and the variance of

the stochastic control. We also demonstrate the significant effects of these model

discrepancies on the performance objective and the improved robustness properties

of Bayesian learning over point-estimates of a policy. This theoretical justification

is given by a toy example, where closed-form calculation of the point-estimates and

posterior distributions for the optimal controller is provided.

3.2.1 Optimal Control under Parameter Uncertainty
Let us consider the first-order scalar control system, whose system parameter ps

is uncertain: 
ẋ = psx+ u, x(0) = x0,

u(x) = θx.

(3.21)

We assume that ps ∼ N (p̂s, σp) where p̂s designates our best prior point estimate

of the system parameter ps and σp > 0 quantifies the uncertainty in the knowledge

of the system parameter. The controller is set to be linear in the state x ∈ R with

its only parameter θ ∈ R to be determined through optimization. Without loss of

generality, we will take the initial condition x0 = 1. The performance index to be

optimized for determining the best control parameter θ is

J =

∫ T

0

(
1

2
cx2 +

1

2
ru2
)
dt, (3.22)

where T is the control horizon and c ≥ 0 and r > 0 are design parameters. We solve

the control system (3.21) to find x(t) = e(ps+θ)t and plug this into the performance
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index (3.22) along with the form selected for the controller. Performing the integration

over time and letting T →∞, assuming that ps+θ < 0 then yields the infinite-horizon

optimal cost functional

J∞ = −1

4

c+ rθ2

ps + θ
. (3.23)

The optimal control parameter θ may be found as the appropriate root of ∇θJ∞.

∇θJ∞ = −r
4

(ps + θ)2 − (p2 + c/r)

(ps + θ)2
= 0,

∴ θ? = g(ps) := −ps −
√
p2s + c/r,

g−1(θ) =
c

2rθ
− θ

2
.

(3.24)

The fact that ps ∼ N (p̂s, σ
2
p) implies that the optimal control parameter has the

probability density function

fθ?(θ
?) = fp

(
g−1(θ?)

) ∣∣∣∣ ddθg−1(θ?)

∣∣∣∣ ,
=

1

σp
√
2π

(
1

2

(
1 +

c

rθ?2

))
exp

{
− 1

2σ2
p

(
c

2rθ?
− θ?

2
− p̂s

)2
}
,

where fp is the Gaussian probability density function with mean p̂s and variance σ2
p.

We can further eliminate the control parameter from the expression for the

optimal cost function J∞ by substituting for θ from equation (3.24), yielding

J ? =h(ps) :=
r

2

(
ps +

√
p2s + c/r

)
,

h−1(J ?) =
J ?

r
− c

4J ?
.

Hence, the distribution of the optimal cost conditioned on the system parameter ps
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Figure 3.2: The optimal control parameter distribution given that the
system parameter ps is normally distributed with mean p̂s = 5 and σp =
5. The red and black arrows respectively indicate the optimal control
parameter without considering the randomness of ps, and the expected
value of the optimal control parameter distribution

is

fJ ?(J ?) = fp
(
h−1(J ?)

) ∣∣∣∣ ddθh−1(J ?)

∣∣∣∣ ,
=

1

σp
√
2π

(
1

r
+

c

4J ?2

)
exp

{
− 1

2σ2
p

(
J ?

r
− c

4J ?
− p̂s

)2
}
.

Notice that the distribution of both the optimal control parameter and the optimal

cost are elements of the exponential family that are not Gaussian.

There are several advantages of employing Bayesian learning to find the optimal

control parameter θ as the toy example in this subsection supports. In order to derive

some quantitative results, let us assign some numerical values to the parameters that

define the optimal cost function (c, r) = (100, 1), our best guess p̂s = 5 of the system

parameter ps and its standard deviation σp = 5.

The optimal control parameter and cost derived for this system whose model is

assumed to be known perfectly are given by θ̂? = −16.180 with the corresponding

estimated cost Ĵ ? = 8.090. This deterministic performance estimate turns out to be

overconfident when uncertainties in the system parameter are present. For example,
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if the prior knowledge on the distribution of the system parameter ps is utilized,

the expected value of the controller parameter is found as E[θ?] = −17.046 and the

corresponding expected cost is E[J ] = 8.523. The controller from the deterministic

training/optimization is not only overconfident about its performance; but also is less

robust against modeling errors, as the Bayesian learning yields a closed-loop stable

system for a wider range of values of ps.

Finally, Figure 3.2 shows the optimal control parameter distribution given that

the system parameter ps is normally distributed with mean p̂s = 5, standard deviation

σp = 5. This figure also shows the mean values of the optimal control distribution

with the black arrow and the optimal control parameter a deterministic approach

would yield in red. We notice that the Bayesian learning that yields the optimal

control parameter distribution is more concerned about system stability due to the

uncertainty in the parameter ps, a feat that the deterministic training may not reason

about.

3.2.2 Optimal Control under Parameter Uncertainty and Mea-

surement Noise
Consider the scenario in which the system (3.21) is also subject to measure-

ment errors; that is, our measurement model for the state x is probabilistic and is

distributed according to the Gaussian N (x, σ). Since the controller uses this mea-

surement to determine its action, the closed-loop system has to be modelled as a

stochastic differential equation (SDE), given by


dx(t) = (ps + θ)x(t) dt+ θσ dWt,

x(0) = 1,

(3.25)
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where W denotes the Wiener process [47]. The initial state is assumed deterministic

and is set to unity for simplicity. The unique solution to this SDE is given by

x(t) = e(ps+θ)t + θσ

∫ t

0

e(ps+θ)(t−s)dWs. (3.26)

Lemma 1. The conditional expectation E [J | ps] of the performance index (3.22)

given the system parameter ps is

E [J | ps] = −
1

4

c+ rθ2

ps + θ

[
θ2σ2T +

(
1− e2T (ps+θ)

)(
1 +

1

2

θ2σ2

ps + θ

)]
.

Proof. The proof may be found in the appendix.

It is easily shown that this quantity is positive for all T > 0. Furthermore,

it blows up as the horizon T is extended to infinity. This is not surprising since a

nonzero measurement noise causes the state to oscillate around the origin, rather than

asymptotically converging to it, incurring nonzero cost all the while.

We have kept the system parameter ps constant in this analysis so far. Uncer-

tainty over this variable can be incorporated by taking a further expectation

E[J ] := Eps [EW [J | ps]] ,

of EW [J | ps] over ps, which must be accomplished numerically as it does not admit

a closed-form expression.

We can then minimize E[J ] over the control parameter in order to study the

effects of both kinds of uncertainties on the optimal controller. Such a study is
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Figure 3.3: The optimal controller
parameter magnitude |θ?|
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Figure 3.4: The minimal expected
cost E[J ]

provided in Figures 3.3 and 3.4, where we have plotted the optimal control parameter

θ? and the minimal expected cost E[J ] as a function of the standard deviations of

the measurement noise σ and the system parameter σp. The constants we used to

generate the data are given by c = r = 1 and T = p̂s = 3. Our first observation is that

the magnitude of the optimal control parameter is an increasing function of system

parameter uncertainty and a decreasing function of measurement uncertainty. Our

second observation is that if the measurement noise is small, then the optimal control

parameter is insensitive to system parameter uncertainty as long as this uncertainty

is small. The optimal cost shares this insensitivity for an even wider range of values

of σp. In a similar vein, if the uncertainty in the system parameter is large, then the

optimal control parameter is insensitive to the magnitude of the measurement noise.

However, the optimal cost is still sensitive to this quantity.

3.3 Bayesian Neural PBC
In this section, we present a unified framework that simultaneously combines the

NeuralPbc technique and rigorously addresses model uncertainties using Bayesian
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learning. Motivated by [48], we incorporate uncertainties into the dynamics and cast

the passivity-based control synthesis problem as a stochastic optimization problem.

The closed-loop storage (energy-like) function, from which the control law is derived,

is not restricted to a certain form and instead represented by a neural network whose

parameters are random variables. We apply Bayesian learning and develop an al-

gorithm that finds a suitable probability distribution of the neural net parameters

automatically. In contrast to deterministic optimization, this approach provides a

probability distribution over the neural net parameters instead of a point estimate,

providing a way to reason about model uncertainties and measurement noise dur-

ing the learning process. We demonstrate the efficacy and robustness of our current

framework with a comparison against the deterministic framework [48]. The compari-

son is performed on benchmark underactuated control problems–the simple pendulum

and the inertia wheel pendulum–both in simulation and real-world experiments.

3.3.1 Control Design for Smooth Dynamical Systems
In this section, we formulate the Bayesian learning framework that minimizes

the effects of system parameter uncertainties and measurement errors for smooth

dynamical systems. In this framework, the neural net parameterization of Hθ
d given

in Section 3.1.1 is replaced by a Bayesian neural network whose weights and biases

are samples drawn from a posterior distribution. The goal is to learn this posterior

that achieves the performance objective under system parameter and measurement

uncertainties.

Let φ(x0, uθ, T ) denote a closed loop trajectory integrated from the Hamilton’s

equation of motion in (3.2). The trajectory starts from the initial state x0 and spans

for the time horizon T . We sample the initial state x0 through greedy and explorative
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state sampling techniques discussed in Section 2.3.2. The control law uθ consists of

the energy shaping and damping terms found from the desired Hamiltonian Hθ
d as

shown in equation (3.6). To generate this trajectory, we first sample the parameters

θ from the prior distribution P (θ).

We take two approaches to selecting the prior distribution. The simplest ap-

proach is to use an uninformed prior given by a uniform distribution; this choice

encourages exploration but has slow convergence properties. The second approach

uses an informed prior that warm-starts the Bayesian training around the solution

of the deterministic training. To do so, the prior distribution is a Gaussian prob-

ability distribution centered around the parameters learned from the deterministic

NeuralPbc technique discussed in Section 3.1.1.

With the trajectories generated from the prior distribution samples, we compose

a performance objective as follows.

J(φ, uθ) = Ex0∈DN
[`(φ(x0, u

θ, T ), uθ)], (3.27)

where DN is a collection of initial states sampled with explorative and greedy state

sampling techniques (Section 2.3.2), and `(φ, u) is the running cost of a trajectory. We

provide three options for the running cost in the upcoming section titled Performance

Objective. In order to update the posterior distribution based on the performance of

the generated trajectories, we compose the likelihood function as

P (J | θ) = N (J |0, s) , (3.28)

where N is a Gaussian distribution with mean zero and standard deviation s. No-
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tice that the likelihood is maximum when the expectation of the running cost J is

minimum.

Remark 5. On top of the neural net parameters θ, we can learn the posterior over the

standard deviation s of the likelihood. This automatically finds the weighting between

the likelihood and prior distributions, achieving optimal bias-variance trade-off. In

this scenario, the posterior distribution is a multivariate probability distribution over

the parameters (θ, s).

From here, we can use Hamiltonian Monte Carlo or variational inference (Sec-

tion 3.1.2) to find the posterior distribution from the likelihood and the prior. We

first pose the search over the posterior as the following optimization problem.

minimize
P (θ|J)

J(φ, uθ) = Ex0∈DN
[`(φ(x0, u

θ, T ), uθ)],

subject to

q̇
ṗ

 =

 0 Im

−Im 0


∇qH

∇pH

+

 0

Ω(q)

uθ,
uθ = −Ω†(∇qH

θ
d −∇qH),

ps ∼ N (p̂s, σp),

θ ∼ P (θ|J).

(3.29)

We expand on the use of HMC and variational inference to solve the optimization

problem.

1. Hamiltonian Monte Carlo (HMC): represents the posterior with a large col-

lection of samples denoted by Θ. We draw the first sample θ(τ=0) from the prior dis-

tribution and construct the likelihood from the performance objective as P (J |θ(τ=0)).
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The likelihood and the prior distributions are known in closed form, hence the joint

distribution P (θ(τ=0), J) is given by

P (θ(τ=0), J) = P (J |θ(τ=0))P (θ(τ=0)).

We generate the next sample from a Markov Chain, which is given by the following

first order differential equations [1]

mτ+∆τ/2 = mτ − ∆τ

2

∂P (θτ , J)

∂θτ
,

θτ+∆τ = θτ +mτ+∆τ/2 ∆τ,

mτ+∆τ = m(τ + ∆τ/2)− ∆τ

2

∂P (θτ+∆τ , J)

∂θτ+∆τ
,

(3.30)

where τ = 0 for the first sample and ∆τ is the integration time step. This integration

is commonly known as leap frog discretization. We accept or reject the sample θτ+∆τ

based on the rule:

ν ∼ U(0, 1),

A(θ(τ+∆τ), θ(τ)) = min

(
1,
P (θ(τ+∆τ), J)

P (θ(τ), J)

)
,

If A(θ(τ+∆τ), θ(τ)) ≥ ν, then we accept the sample. Otherwise, we discard the candi-

date and resample from the prior distribution. The complete procedure is outlined

in Algorithm (5) We keep collecting these samples until the average accumulated loss

converges to the minimum achievable value.

Once we obtain the collected samples, we use them to evaluate the controller as

follows. From the collection Θ, we sample Nθ parameters in a uniform fashion.
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Algorithm 5 Bayesian NeuralPbc via Hamiltonian Monte Carlo
1: Θ← {} . Collection of samples

2: Define prior P (θ)

3: while i < maximum iteration do

4: τ = 0, θ0 ∼ P (θ), m0 = 0, accepted=true

5: while accepted do

6: DN ← {x0}(ND) . ND initial state samples

7: ps ∼ N (p̂s, σp) . Sample a system parameter

8: Jτ ← 0, Jτ+∆τ ← 0

9: for x0 ∈ DN do

10: φ← φ(x0, u
θτ , T ) . Generate trajectory

11: Jτ ← Jτ + `(φ; θτ )/ND . Batch loss of current parameter

12: mτ+∆τ , θτ+∆τ ← leap frog discretization(mτ , θτ ) . Equation (3.30)

13: for x0 ∈ DN do

14: φ← φ(x0, u
θτ+∆τ

, T ) . Generate trajectory

15: Jτ+∆τ ← Jτ+∆τ + `(φ; θτ+∆τ )/ND . Batch loss of next parameter

16: ν ∼ U(0, 1)

17: A(θ(τ+∆τ), θ(τ)) = min

(
1,
P (θ(τ+∆τ), J (τ+∆τ))

P (θ(τ), J (τ))

)
18: if A(θ(τ+∆τ), θ(τ)) ≥ ν then

19: Θ← Θ ∪ θ(τ+∆τ) . Accept sampled parameter

20: τ = τ +∆τ

21: else

22: i← i+ 1, accepted=false . Reject sampled parameter

23: Return Θ

We evaluate the neural net Hθ
d and the corresponding energy shaping control for each
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sample. Then, we marginalize over the control law as

u(x) =
1

Nθ

∑
θ∼P (θ|J)

u(x; θ).

2. Variational Inference (VI): provides the distribution parameters z of the pre-

selected (approximate) posterior Q(θ; z). Unlike HMC, we have a closed form prob-

ability distribution for the posterior. We draw several samples from the current

posterior and evaluate its performance through the joint distribution P (θ, J). Given

the likelihood and the prior distributions, variational inference constructs the Elbo

as

L(J, z) = Eθ∼Q [log(P (J |θ)P (θ))− log(Q(θ; z))] . (3.31)

We use stochastic gradient descent to iteratively update the distribution parameters

as follows:

z ← z +
∂L(J, z)
∂z

.

The full variational inference training process is shown in Algorithm (6).

The gradient ∂L/∂z holds a rather complex form for two reasons. First, the

Elbo is evaluated from trajectories integrated from the differential equations in (3.2).

We use a combination of adjoint method and auto-differentiation techniques [49] to

compute the gradient ∂L/∂z through the trajectories. Secondly, computing ∂L/∂z

requires the derivative of the sample θ with respect to the distribution parameters z,

which is intractable. We handle this complication by invoking the reparameterization
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Algorithm 6 Bayesian NeuralPbc via variational inference
1: DN ← {x0}(ND) . ND initial state samples
2: while i < maximum iteration do
3: L ← 0 . Elbo Loss
4: for i = 1 : Nθ do . Samples to compute (3.31)
5: J ← 0 . Batch loss
6: θ ∼ Q(θ; z) . Sample parameters of Hθ

d

7: for x0 ∈ DN do
8: ps ∼ N (p̂s, σp) . Sample a system parameter
9: φ← φ(x0, u

θ, T ) . Generate trajectory
10: J ← J + `(φ; θ)/ND

11: L ← L+ 1
Nθ

(log[P (J |θ)P (θ)]− log[Q(θ; z)])

12: z ← z + α∂L/∂z . SGD step
13: DN ← {x0}(ND) . New initial state samples
14: i ← i+ 1

15: return z

trick of the Automatic Differentiation Variational Inference(ADVI) [50].

Performance Objective

The cost function J helps impose various desired behaviors in the learned con-

troller. In this section, we present three performance objectives, their corresponding

likelihood functions and the desired behavior they impose.

1. Trajectory tracking: Let x? denote the desired equilibrium of a dynamical sys-

tem and φ(x0, u
θ, T ) represent a prediction from the initial condition x0 with the

current control law uθ. The objective of this task is to find a closed-loop controller

that can track an expert trajectory φ? obtained from a path planner. To impose this

behavior, the running cost is a function of the distance from the current trajectory

φ to φ?, defined in terms of the transverse coordinates φ⊥ − φ?⊥ along the preferred
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Figure 3.5: Transverse Coordinates

orbit (shown in Figure 3.5), using the ideas outlined in [51, 52]. In this setting, the

prediction converges to φ? if and only if φ⊥ − φ?⊥
t→∞−−−→ 0. In order to encourage this

behavior, we define the cost function as

Jtrack = Ex0∈DN
[`track(φ(x0, u

θ, T ), uθ)],

`track =
∑

x⊥∈φ⊥, x?⊥∈φ?⊥

||x⊥ − x?⊥|| .
(3.32)

Thus, the likelihood can be constructed to minimize the cost Jtrack as follows.

P (Jtrack|θ) =
∏

x⊥∈φ⊥, x?⊥∈φ?⊥

N (‖x⊥ − x?⊥‖ | 0, s), (3.33)

2. Set distance loss: Let S represent a small convex neighborhood containing x?.

The objective is to find a policy that pulls trajectories to the goal set S. The cost

function suitable for this task is set distance, Jset, between the current prediction φ
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and the goal set S:
Jset = Ex0∈DN

[`set(φ(x0, u
θ, T ), uθ)],

`set = inf
t
{‖a− b‖ : a ∈ φ(t), b ∈ S}.

(3.34)

For instance, the set S may be chosen as a ball of radius r around x?. Here, r becomes

a hyperparameter of the training algorithm. With a particular choice of S, if at any

point along the prediction φ, a state x is closer than r to x?, no penalty is incurred

by Jset. This construction has the same advantages as the Minimum Trajectory Loss

(MTL) discussed in Section 2.3.1. The corresponding likelihood function is given by

P (Jset|θ) = N (Jset | 0, s). (3.35)

3. Terminal loss: encourages trajectories to remain as close to the desired state as

possible at time T . Terminal loss, `T , is the distance between the final state of the

prediction φ and x?, which is given by

JT = Ex0∈DN
[`T (φ(x0, u

θ, T ), uθ)],

`T = ‖x(T )− x∗‖ .
(3.36)

The corresponding likelihood function is given by

P (JT |θ) = N (JT | 0, s). (3.37)

Uncertainty Modeling

In Section 3.2, we have shown the effects of system model uncertainties on the

performance of a controller. Moreover, in Section 3.1.2, we have discussed how the
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variance in the stochastic control can prevent the Bayesian training from overfitting on

inaccurate observations. In this section, we give more structure to the desired variance

of the Bayesian control. We rigorously model the system parameter and measurement

uncertainties of the system in order to guide the variance of the controller. Hence,

in the Bayesian framework, we inject these uncertainties directly into the training

loop in order to learn a controller that works for a wide range of system parameters

and measurement noise. We model system parameter uncertainties by sampling a

set of system parameters ps from a normal distribution N (p̂s, σp) centered around a

nominal parameter p̂s. Additionally, we model measurement error by injecting noise

into the prediction φ. This is achieved by replacing the ordinary differential equation

given in (3.2) with the following stochastic differential equation (SDE).

dx =


 ∇pH

−∇qH

+

 0

Ω(q)

uθ(x)
 dt+∇xu(x) dWt, (3.38)

where dWt is a correlated noise process, such as Wiener process, on the states due

to measurement uncertainties, and ∇xu(x) is the coefficient of the first-order Tay-

lor approximation of uθ(x) around zero noise. The resulting Bayesian NeuralPbc
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problem is given by

minimize
P (θ|J)

J(φ, uθ) = Ex0∈DN
[`(φ(x0, u

θ, T ), uθ)],

subject to dx =

( ∇pH

−∇qH

+

 0

Ω(q)

uθ(x)) dt+∇xu(x) dWt,

uθ = −Ω†(∇qH
θ
d −∇qH),

ps ∼ N (p̂s, σp),

θ ∼ P (θ|J).

(3.39)

Remark 6. Introducing uncertainties to the deterministic training finds a point esti-

mate of the optimal controller parameter, which may be interpreted as the mean of the

optimal posterior distribution that Bayesian learning provides. A point estimate of

the learned parameters is prone to be biased (for example, if the uncertainty in system

parameters is large, the optimal parameter θ for the true system parameter may be

quite far from the deterministic solution). This bias-variance trade-off problem is

alleviated by Bayesian inference which allows one to marginalize over the posterior

distribution [1].

3.3.2 Control Design for Hybrid Dynamical Systems
In Section 3.1.1, we constructed the properties of passivity on the Hamiltonian

of a smooth dynamical system. For hybrid systems, we can deconstruct the concept

of passivity into flow-passive and jump-passive [53]. Flow-passive implies that the
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continuous phase of the dynamics with Hamiltonian H is dissipative, i.e.,

H(x(t1)) ≤ H(x(t0)) +

∫ t1

t0

s(u(t), y(t))dt, (3.40)

under the supply rate s = u>y. In order for a hybrid system to be passive, the

conditions in (3.40) must hold during discrete state transitions as well, i.e., [54]

H(x+) ≤ H(x−),

where x− and x+ are connected with the jump rule.

In this section, we extend the techniques of deterministic and Bayesian Neu-

ralPbc to hybrid dynamical systems. We introduce a contact model of the hybrid

dynamics into the deterministic NeuralPbc framework and infer a controller that

leverages the advantages of potential contacts and/or minimizes its adverse effects.

Moreover, we introduce the Bayesian NeuralPbc approach to the control of hybrid

systems and leverage its robustness properties to learn probabilistic controllers that

can stabilize the contact-rich system under unpredictable contact forces, such as a

walking machine operating on uneven terrain.

Deterministic NeuralPBC

In this framework, we aim to find a passive closed loop system for the hybrid

dynamics (2.3) whose desired stable equilibrium is at x∗ = (q∗, q̇∗). We formulate

this problem as a search over the point-estimate parameters of Hd given by a neural
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network. This training framework can be posed as the following optimization problem.

minimize
θ

`
(
φ, uθ

)
,

subject to M(q) dq̇ + h(q, q̇, θ) dt− dR = 0,

uθ = −Ω†(∇qH
θ
d −∇qH),

(3.41)

The performance objective ` is evaluated from closed loop trajectories φ using the

current control law. We follow Moreau’s time stepping algorithm [23] outlined in

Algorithm (1) to resolve the complementarity constraint in (2.4) and integrate the

closed-loop dynamics. We sample ND initial states through greedy and explorative

state sampling techniques discussed in Section 2.3.2. As outlined in Algorithm 7, we

compose the cost ` from the ND closed loop trajectories. The performance objective

is chosen according to the desired system behavior as discussed in Section 3.3.1. We

update the parameters θ through stochastic gradient descent (SGD). We compute the

gradient ∂ /̀∂θ through auto-differentiation techniques.

Algorithm 7 Solution to the deterministic NeuralPbc Problem (3.41)
1: DN ← {x0}(ND) . ND initial state samples
2: while i < maximum iteration do
3: J ← 0 . Batch loss
4: for (x0) ∈ DN do
5: φ = Moreau(x0) . Algorithm (1)
6: J ← J + `(φ; θ)/ND . Batch loss

7: θ ← θ − α∂J/∂θ . SGD step
8: DN ← {x0}(ND) . New initial state samples
9: i ← i+ 1

10: return θ
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Bayesian NeuralPBC

Hybrid systems such as walking machines and manipulators perform constant

interaction with their environment. In many cases, the exact parameters of the envi-

ronment are not known. For instance, walking machines operate on uneven terrain,

where the exact elevation and friction coefficients of the runway may be unknown.

Manipulators interact with objects of different textures and friction, which we can-

not simply infer from sensors. In order to learn a controller robust against these

uncertainties, we inject domain randomization on the state of the environment dur-

ing the training process. Unfortunately, simply introducing random environmental

conditions to the training outlined in Algorithm 7 is not sufficient. In the presence

of high variance disturbances, the point-estimate parameters θ under domain ran-

domization are prone to be biased [55]. Let us take a walking robot as an example;

if the uncertainty in the terrain elevation is large, the learned parameters θ may be

far from the optimal controller corresponding to the true elevation. To combat this

issue, we propose a probabilistic framework, where we learn a posterior probability

distribution over the parameters θ via Bayesian inference. The resulting stochastic

policy is a conservative ensemble of controllers, where each parameter is optimized to

meet the performance objective on various terrain elevations.

In the probabilistic framework, we parameterize the desired HamiltonianHd with

a Bayesian neural network, whose weights and biases are samples drawn from a pos-

terior probability distribution [32]. The objective is to find the posterior distribution

P (θ|J) that achieves the performance objective for various environmental conditions.

This framework can be summarized by the following optimization problem.
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minimize
z

` (φ; θ) ,

subject to M(q) dq̇ + h(q, q̇, θ) dt− dR = 0,

uθ = −Ω†(∇qH
θ
d −∇qH),

ps ∼ U(pmin, pmax),

θ ∼ Q(θ; z).

(3.42)

The random variable ps ∈ RNs is sampled from Ns uncorrelated uniform probabil-

ity distributions U(pmin, pmax) with lower bound pmin and upper bound pmax. The

magnitude of the samples ps determine the elevation of the terrain under each spoke,

which consequently randomize the gap gN , pre-impact velocities q̇− and contact forces

between each spoke and the ground.

Algorithm 8 Solution to the Bayesian NeuralPbc Problem (3.42)
1: DN ← {x0}(ND) . ND initial state samples
2: while i < maximum iteration do
3: L ← 0 . Elbo Loss
4: for i = 1 : Nθ do . Samples to compute (3.31)
5: J ← 0 . Batch loss
6: θ ∼ Q(θ; z) . Sample parameters of Hθ

d

7: for (x0) ∼ DN do
8: ps ∼ U(pmin, pmax) . Sample a system parameter
9: φ = Moreau(x0) . Algorithm (1)

10: J ← J + `(φ; θ)/ND

11: L ← L+ 1
Nθ

(log[P (J |θ)P (θ)]− log[Q(θ; z)])

12: z ← z + α∂L/∂z . SGD step
13: DN ← {x0}(ND) . New initial state samples
14: i ← i+ 1

15: return z

We solve the optimization problem in (3.42) with the procedure outlined in
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Algorithm (8). We follow the initial state sampling techniques and the performance

objectives discussed in detail in Sections 2.3.2 and 3.3.1, respectively. In particular,

we use variational inference to learn the distribution parameters of the pre-selected

posterior Q(θ; z).

3.4 Bayesian Neural Interconnection and

Damping Assignment PBC
In this subsection, we formulate a Bayesian learning framework that tackles the

adverse effects of system parameter uncertainties in the IdaPbc architecture. We

parametrize the function V θ
d and the entries of Lθ and Aθ matrices with Bayesian

neural networks. We invoke variational inference to find the approximate posterior

over the parameters θ. The goal is to learn the distribution parameters z of the

posterior multivariate probability distribution Q(θ; z) that maximize the Elbo given

in (3.18). We pose the search over the parameters z as the following optimization

problem.

minimize
z

‖lIDA(x)‖2 =
∥∥Ω⊥ {∇qH −MdM

−1∇qHd + J2M
−1
d p
}∥∥2 ,

subject to M θ
d = Lθ(q)L

>
θ (q) + δMIn,

Jθ2 (q, p) = Aθ(q, p)− A>
θ (q, p),

q? = argmin
q

V θ
d ,

ps ∼ N (p̂s, σp),

θ ∼ Q(θ; z).

(3.43)

The computation of the Elbo requires the likelihood function and the prior
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distribution. In order to compute the likelihood, we first draw samples of θ from

the posterior Q(θ; z), and evaluate the PDEs given in (3.12). Then, the likelihood is

given by

P (‖lIDA(x)‖ | θ) = N (‖lIDA(x)‖ | 0, s) , (3.44)

where N represents the Gaussian probability distribution, and s is a hyperparameter

that represents the standard deviation of the likelihood. With the choice of the

likelihood function given in (3.44), maximizing the Elbo in (3.18) coaxes the loss

lIDA(x) to zero.

We update the distribution parameters z along the gradient ∂L/∂z until the

Elbo converges and the objective function ‖lIDA(x)‖2 reaches the threshold εtol. We

invoke the reparameterization trick of the Automatic Differentiation Variational Infer-

ence(ADVI) [50] to compute the gradient of samples θ with respect to the distribution

parameters z.

System parameter uncertainties can deteriorate the performance of controllers

employed on real systems. Hence, in the Bayesian framework, we inject these un-

certainties directly into the training loop in order to learn a controller that works

for a wide range of system parameters. To model these uncertainties, we sample a

set of system parameters ps from a normal distribution N (p̂s, σp) centered around

the nominal parameter p̂s, where σp represents the uncertainty in system parameters.

Each time we compute the PDE loss lIDA for a batch of discrete states sampled from

the configuration space, we draw a new sample of ps.
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CHAPTER 4:

EXPERIMENTAL RESULTS

In this chapter, we provide simulated and real-world experiments that demon-

strate the robustness properties of the Bayesian framework presented in Chapter 3.

We present three sets of experiments for the Bayesian NeuralPbc approach. First,

we learn a swing-up controller for the simple pendulum and evaluate its performance

under system parameter and measurement uncertainties in simulation. In the second

set of experiments, we tackle the swing-up task for the inertia wheel pendulum and

demonstrate the efficacy of the Bayesian controller in simulation and real-world ex-

periments. Lastly, we demonstrate the performance of the deterministic and Bayesian

NeuralPbc frameworks for hybrid dynamical systems on the rimless wheel, in sim-

ulation and real-world experiments. For the Bayesian Neural-IdaPbc framework,

we provide simulated and hardware experiments for the swing-up task of the IWP.

4.1 Bayesian Neural PBC

4.1.1 Simple Pendulum
In this section, we demonstrate the robustness properties of the controllers

trained via Bayesian NeuralPbc on the simple pendulum system. The system is

simulated under measurement noise via stochastic differential equations (3.38). Fur-

thermore, the system parameter is varied in order to analyze the closed-loop system
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response under model uncertainties.

The equation of motion of a simple pendulum with measurement noise is given

by

dx =

 q̇

a sin (q) + uθ(x)

 dt+∇xu
θ(x) dWt, (4.1)

where a = mgl/I, dWt is the Wiener process, x = (q, q̇) is the state of the pendulum

where q = 0 corresponds to the upright position, and the control input u is the torque

generated by the actuator. The torque uθ is limited by |u| ≤ umax. The maximum

torque umax available is such that the upward equilibrium point cannot be reached by

just rotating in one direction, as the gravitational force overcomes the motor torque

eventually. The controller has to be clever enough to overcome gravitational forcing

with a combination of built-up momentum and torque bandwidth.

The objective of this case study is to stabilize the homoclinic orbit of the pen-

dulum whose single parameter a has the nominal and yet unconfirmed value 9.81 s−2.

To this end, we learn a Bayesian control uθ that can stabilize the pendulum even with

system parameter uncertainties.

Training

The goal of this training is to track the expert trajectories generated by the

vanilla energy-shaping control (ESC) [2]. The ESC takes the general form

uθ(q, q̇; θe) = θe1q̇ + θe2 cos (q)q̇ + θe3q̇
3, (4.2)
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where θe represents the parameters of the expert. The weights {θei }3i=1 satisfy −θe1 =

θe2 = 2aθe3 < 0 in the vanilla ESC. The Bayesian control is also linear over the decision

parameters, i.e.

uθ(q, q̇; θ) = θ1q̇ + θ2 cos (q)q̇ + θ3q̇
3,

and unlike ESC, the learned parameters θ are samples drawn from the posterior.

The running cost function is chosen to be the loss Jtrack(φ⊥) from homoclinic

orbit φ? provided in (3.32); the corresponding likelihood is given by (3.33). We collect

dataset DN of initial states sampled with greedy and explorative techniques. For this

particular experiment, we use Hamiltonian Monte Carlo outlined in Algorithm 5

to infer the exact posterior distribution. We compare the Bayesian policy with the

deterministic policy, which is simply given by the point-estimates of the expert vanilla

ESC in (4.2) [40].

Simulation Tests

The homoclinic orbit of the pendulum is defined by the 2a-level set of the total

energy H = 1/2q̇2 + a(1 + cos q). Hence, an appropriate measure of the distance to

the homoclinic orbit is given by the absolute value |H̃| of the error: H̃ = H− 2a. We

evaluate the performance of a closed-loop system by recording the value ζ = min |H̃|,

where the minimum is taken over the last 2 seconds of a 10-second-long trajectory.

We demonstrate the robustness of the Bayesian policy by comparing ζ, as a

function of the system parameter a, with that of the deterministic policy. We also

investigate the effects of the prior distribution of θ on the performance of the con-

trollers. In particular, we examine a uniform prior and a Gaussian prior centered
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Figure 4.1: Performance comparisons between deterministic and Bayesian
learning methods. The training is initialized with a Gaussian prior (top),
and a uniform prior (bottom). The continuous error band is generated
by computing ζ from 20 trajectories of (4.1), starting at the downward
equilibrium with a small disturbance. The solid lines represent the mean
of ζ. Best viewed in color.

around the deterministic solution of (4.2). The comparisons between the controllers

from both cases are shown in Figure 4.1.

In addition to uncertainties in a, we test the deterministic and Bayesian policies

with measurement noise, modeled as a Wiener process with standard deviation 0.0005

rad in the q-direction and 0.05 rad/s in the q̇-direction. These numbers are chosen to

represent a typical error arising from an optical encoder with a resolution of 2048

pulses per revolution and its naive differentiation via backward difference. To capture

the influence of measurement noise, we generate 20 trajectories by integrating (4.1)

from the same initial states. These trajectories are then used to compute ζ. The

effects of noise on ζ are reflected by the error bands in Figure 4.1.
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The results, shown in Figure 4.1, demonstrate that Bayesian learning yields con-

trollers that outperform their deterministic counterpart throughout the whole range

of a. The marginalization method in (3.19) for selecting θ from the learned distribu-

tion performs best when a uniform prior is used, while the MAP method performs

best with the Gaussian prior. We emphasize that the error bands of the marginal-

ized and MAP point estimates stay well below those of the deterministic curve in

the top plot of Figure 4.1. This implies that the controllers produced by Bayesian

learning perform consistently better than the deterministic controller, demonstrating

their robustness against model uncertainty and measurement noise.

4.1.2 Inertia Wheel Pendulum
In this section, we validate the Bayesian NeuralPbc framework on the problem

of swinging-up and stabilizing the inverted position of an inertia wheel pendulum

(IWP), shown in Fig. 4.2. We provide experimental results from simulation and

real-world hardware in order to thoroughly demonstrate the efficacy and robustness

claims of Bayesian inference. We use the deterministic solution for NeuralPbc as

the baseline on which we compare the performance of the Bayesian solution.

System Model

The IWP mechanism consists of a pendulum with an actuated wheel instead of

a static mass. The wheel has mass m, which is connected to a massless rod of length

l. The position of the rod is denoted by the angle q1 measured with respect to the

downward vertical position. The position of the wheel q2 is measured with respect

to the vertical line through the center of the wheel. The Hamiltonian of the IWP is
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q

q

Figure 4.2: Schematic of the inertia wheel pendulum. Only the joint q2 is
actuated, and q1 is not.

given by Equation (3.1), where

M =

I1 0

0 I2

 , Ω =

−1
1

 , V (q) = mgl (cos q1 − 1) ,

and p = (I1q̇1, I2q̇2). We denote the state of the system as x = (q1, q2, q̇1, q̇2). The

parameters I1 and I2 denote the moment of inertia of the pendulum and the wheel,

respectively, and g is the gravitational constant. The equations of motion of the IWP

with measurement noise can be written as

dx =



q̇1

q̇2

mgl sin(q1)− uθ − b1q̇1
I1

uθ − b2q̇2
I2


dt+∇xu

θ(x) dWt, (4.3)

where the control input uθ is the torque applied to the inertia wheel and {bi}2i=1 are

friction coefficients. The desired equilibrium x? is the origin, which corresponds to
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the upward position. The nominal system parameters are estimated to be I1 = 0.0455

kg-m2, I2 = 0.00425 kg-m2, and mgl = 1.795 N-m.

Training

The energy-like function Hθ
d is a fully-connected neural network with two hid-

den layers, each with the Elu activation function [38]. A uniform distribution in

[−2π, 2π]× [−2π, 2π]× [−10, 10]× [−10, 10] is chosen as the probability distribution

from which samples of initial states x0 are drawn for the DAgger strategy. In each

gradient descent step, we sample a batch of 4 initial states {x0} from greedy and

explorative state sampling techniques; these initial states are integrated forward with

a time horizon of t ∈ [0, 3] seconds. In the Bayesian framework, the standard devia-

tions σp of system parameters ps = [I1, I2,mgl] are chosen to be 10% of the nominal

system parameters. Moreover, we train on trajectories per the SDE in (3.38) with

measurement error represented by Wiener process with standard deviation of 0.001

and 0.02 on the joint angles and velocities, respectively.

We use variational inference to estimate a Gaussian posterior distribution over

uncorrelated parameters. The trainings are terminated when the loss function J(γ) =

Table 4.1: NeuralPBC training setup for deterministic and Bayesian
frameworks

Deterministic Bayesian

Hd neural net size (6, 12, 3, 1) (6, 5, 3, 1)
Learned parameters 133 128
Optimizer ADAM DecayedAdaGrad
Initial learning rate 0.001 0.01
Replay buffer size 400 50



84

Jset(γ) + JT (γ) and the Elbo converge for the deterministic and Bayesian trainings,

respectively. The hyperparameters for the deterministic and Bayesian NeuralPbc

trainings are shown in Table 4.1. It can be seen that the Bayesian training effectively

learns with smaller neural network size than the deterministic training.

Simulation Tests

The performance of the controllers obtained from the deterministic and Bayesian

trainings are compared as follows. We evaluate the performance of both trainings with

parameter uncertainties on I1, I2 and mgl. We introduce these uncertainties by mov-

ing the average system parameters by ±10% to ±50% with increments of 10%. For

each average system parameter, we sample uniformly with a ±5% support around the

average system parameters. This helps test the performance of the controller with

various combinations of I1, I2 and mgl. On top of the system parameter uncertain-

ties, we introduce measurement noise represented by a Wiener process with standard

deviation of 0.001 and 0.02 on the joint angles and velocities, respectively. Figure 4.3

shows the performance of deterministic and Bayesian trainings using an accumulated

quadratic loss of the form

JT =
1

2

∫ T

0

(
x>Qx+ u>Ru

)
dt. (4.4)

The controller learned from the Bayesian training is marginalized over 10 parameters

sampled from the posterior. As seen in Figure 4.3, the Bayesian training effectively

collects less cost for large error in system parameters. Moreover, the error band on

the cost of the Bayesian training is smaller than that of the deterministic training;

this shows that the marginalized controller is more robust against measurement noise.
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Figure 4.3: NeuralPBC Performance metric (JT ) for various error in sys-
tem parameters. Measurement noise included as Wiener process with
standard deviation of 0.001 and 0.02 on joint angles and velocities, respec-
tively

Hardware Tests

The controllers from deterministic and Bayesian training schemes are evaluated

on the hardware shown in Figure 4.4. We deliberately modify the hardware and

test the controllers without any additional training. In particular, throughout the

experiments, the inertia wheel attached to q2 is replaced with parts (labelled A-C

on Table 4.2) whose mass and inertia are different from the nominal values. The

modified system parameters are summarized in Table 4.2.

The system starts from rest at the downward position. A small disturbance in

the q1 direction is introduced to start the swing-up. The state x is recorded and (4.4) is

the performance metric used to evaluate the controllers. The results are summarized

in Figure 4.5.
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Figure 4.4: Inertia Wheel Pendulum Hardware

In all scenarios, our controllers are able to achieve the control objective despite

the errors introduced in the system parameters. These results demonstrate that our

approach enables a unified way to tackle nonlinear control problems while simultane-

ously incorporating prior knowledge and model uncertainties.

Table 4.2: System parameters used in real-world experiments. The errors
in the last column are ‖ps − p̂s‖/‖p̂s‖

.

Parameter set ps I1 I2 mgl Error

Nominal 0.0455 0.00425 1.795 0
A 0.0417 0.00330 1.577 0.122
B 0.0378 0.00235 1.358 0.243
C 0.0340 0.00141 1.140 0.365
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Figure 4.5: Controller performance for modified system parameters. The
performance metric is given by Eq. (4.4). Lower values are better. These
results show that controllers trained via Bayesian learning are consistently
more robust to errors in system parameters.

4.1.3 Rimless Wheel
This mechanism consists of a rimless wheel in the plane with a set of N spokes

and a torso freely rotating about a pin joint located at the center of the wheel. The

mass of the wheel m1 is concentrated at the hip and spans a radius of l1. The torso

has its mass m2 concentrated at a distance of l2 from the hip. We actuate the torso

angle with the motor mounted at the hip, which in turn propels the entire wheel

forward or back. The angle of the torso is characterized by ϕ measured from the

outward normal of the runway shown as n̂ in Figure 4.6. The orientation of the wheel

β is measured from n̂ to a datum spoke.

Rimless wheel is a system that undergoes phases of continuous flows and discrete

transitions, resulting in a hybrid dynamical system with two modes. We construct a

dynamical model for such a system with the Lagrangian approach. The kinetic and
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Figure 4.6: Rimless wheel with torso; depicted with N = 10 spokes.

potential energies of the system are given by

K =
1

2
mt(ẋ+ ẏ)2 +

1

2
I1β̇

2 +
1

2
(m2l

2
2 + I2)ϕ̇

2 +m2l2(cϕẋ+ sϕẏ)ϕ̇,

P = mtg(−xsγ + ycγ)−m2gl2cϕγ,

where ca := cos (a), sa := sin (a), cab := cos (a− b), sab := sin (a− b). The total mass

of the mechanism is given by mt; I1 and I2 are moments of inertia of the wheel and

torso respectively. The position vector (x, y) represents the location of the hip with

respect to the frame Σ1 shown in Figure 4.6. The slope of the runway is given by

γ, g is the magnitude of acceleration due to gravity. The Euler-Lagrange equations

corresponding to the Lagrangian L = K − P are

M(q) dq̇ + h(q, q̇) dt− dR = 0, (4.5)
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h(q, q̇) = C(q, q̇)q̇ +G(q)−Bu(q, q̇),

M(q) =



mt 0 m2l2cϕ 0

0 mt m2l2sϕ 0

m2l2cϕ m2l2sϕ I2 +m2l
2
2 0

0 0 0 I1


,

C(q, q̇) = m2l2



0 0 −sϕϕ̇ 0

0 0 cϕϕ̇ 0

−sϕϕ̇ cϕϕ̇ 0 0

0 0 0 0


,

G(q) = g

[
−mtsγ mtcγ m2l2sφ,γ 0

]>

where q = (x, y, ϕ, β), B =

[
0 0 1 −1

]>
, u(q, q̇) is the torque applied to the torso

and dR represents the force measure of contact forces and Coulomb friction exerted on

the spokes by the ground. We use Moreau’s time stepping algorithm (Algorithm (1))

to resolve the contact forces and Coulomb friction.

Training

The objective of this case study is to use the control authority on the torso to

move the robot at a constant hip speed. The performance objective is given by the

accumulated loss

`(φ, uθ) =
T∑
t=0

‖ẋ∗c − ẋc(t; θ)‖ (4.6)
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where ẋ∗c is a constant 1 m/s. The deterministic NeuralPbc framework learns the

parameters of Hd, which is given by a fully-connected neural network with a total of

113 weights and biases. We observe the cost (4.6) incurred by trajectories generated

under the current controller parameters θ and update the decision parameters itera-

tively via stochastic gradient descent. A single parameter update consists of 4 initial

states sampled through greedy or explorative techniques (Section 2.3.2). Each initial

state is integrated forward for time horizon of 5 seconds.

In the Bayesian framework, we use variational inference to learn a Gaussian

posterior distribution over the parameters of Hd. The decision parameters z are the

distribution parameters of the Gaussian posterior. For the Bayesian training, we

generate random terrain elevation parameters ps ∈ RN from a uniform probability

distribution ps ∼ U(0cm, 2cm). The components of the vector ps represent the eleva-

tion of the terrain under each spoke. We sample a new set of ps for every trajectory,

which exposes the training to the effects of various environmental conditions. The

controller learned from the Bayesian training is marginalized according to (3.19) over

Nθ = 15 samples drawn from the posterior.

Simulated Experiments

We first show the performance of the deterministic NeuralPbc controller on

a level ground. As shown in Figure 4.7a, the robot starts from rest and successfully

reaches the desired hip speed. The state of the torso shown in Figure 4.7b demon-

strates that the controller applies a large torque when the robot is at rest, allowing

it to overcome the contact forces exerted from the ground. Once the rimless wheel

gains speed, the controller attempts to maintain a constant torso angle, which is
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Figure 4.7: Performance of the deterministic NeuralPBC controller on a
level ground in simulation

sufficient to achieve a steady hip speed on a level ground. The effort to maintain a

constant torso angle is counteracted by the contact forces from the ground, which

result in a discrete transition in torso velocity (shown with dashed-red lines in Fig-

ure 4.7b). During these discrete transitions, the momentum of the torso counteracts

the forward motion of the wheel. However, the contact-aware controller applies a

large torque to quickly maintain the desired torso angle. This characteristic is best

shown in Figure 4.8, which displays the torque applied as a function of the hip speed

and torso angle. This figure also shows that a large positive torque is applied if the

wheel stumbles backwards.

We compare the performances of the two controllers in simulation as follows.

Both controllers are tested in a simulated environment with randomized terrain el-

evations under each spoke. Similar to the Bayesian training, we sample the terrain

elevation from the uniform distribution ps ∼ U(0, pmax) where pmax = [0, 0.5, 1, 1.5, 2]

centimeters. For each value of pmax, we generate 10 random initial states (q0, q̇0) and

integrate 10-second long trajectories. The cost of each trajectory is calculated as

per (4.6). The bars in Figure 4.9 show the average running cost J accumulated over
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Figure 4.9: Comparison of deter-
ministic and Bayesian frameworks
in uncertain terrain elevation

the 10 trajectories, which is given by (3.27) for each pmax. As expected, without the

knowledge of the uneven terrain, the deterministic controller accumulates more cost

as pmax increases. Conversely, the Bayesian training accumulates less cost that its

deterministic counterpart for all values of pmax.

Real-World Experiments

We test the performance of both controllers on the hardware shown in Fig-

ure 4.10. The robot consists of two sets of Ns = 10 spokes for balance. The torso

holds two ODrive v3.6 brushless DC motors, which actuate the drive shaft through

a belt-drive system. The end of the aluminum spokes land on preloaded springs to

reduce vibration, while the rubber feet ensure no-slip condition. The incremental

capacitive encoders attached to the motors report the orientation of the spokes. We

use IMU readings fused with Mahony filter [56] to estimate the pitch of the torso. A

24V battery pack is placed at the bottom edge of the torso to power the motors, a
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Raspberry Pi 3B and a Teensy microcontroller. We evaluate the neural networks on

a laptop and exchange sensor readings and torque commands with the Raspberry Pi

via ROS wireless communication protocols.

Figures 4.11a and 4.11b show the horizontal hip speed achieved by the determin-

istic and Bayesian controllers, respectively, on a level terrain. The real-world exper-

iments exhibit very similar behavior to the simulation results shown in Figure 4.7a.

Motor
Belt drive

Drive shaft

Rubber feet
Preloaded springs

Figure 4.10: Rimless Wheel Assembly

Both controllers are able to

reach and maintain the desired

hip speed of the walking ma-

chine. Akin to the simulation

results, both controllers period-

ically apply large torque to re-

act to the energy loss due to im-

pacts. Compared to the deter-

ministic controller, the Bayesian

controller exhibits spikes in hip

speed. This is due to the

marginalizing scheme, which randomly samples parameters that result in a high

torque, allowing the robot to overcome large changes in elevation. This behavior

is very beneficial in preventing the mechanism from stumbling due to impacts on

uneven terrain.

We depict the performances of the deterministic and Bayesian NeuralPbc

controllers on uneven terrain in Figures 4.12a and 4.12b, respectively. The robot

experiences impact forces from the troughs and peaks in the terrain, where the troughs
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Figure 4.11: Performance of the deterministic and Bayesian NeuralPBC
controllers on level ground

naturally tumble the robot forward causing the hip to accelerate while the peaks

instantaneously decelerate the robot. The distinction between the deterministic and

Bayesian controllers lies in how they recover from these impact forces and how well

they achieve the desired speed. Compared to the deterministic controller, which

stumbles from the impact forces of the ground, the Bayesian controller successfully

overcomes the troughs and peaks while maintaining its average speed around the

desired hip speed. In all the experimental runs, the Bayesian controller successfully

traverses the track without stumbling.

4.2 Bayesian Neural Interconnection and

Damping Assignment PBC
In this section, we validate the Bayesian Neural-IdaPbc framework on the

problem of swinging-up and stabilizing the inverted position of an inertia wheel

pendulum (IWP). We provide experimental results from simulation and real-world

hardware in order to thoroughly demonstrate the efficacy and robustness claims of

Bayesian inference.
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Figure 4.12: Performance of the deterministic and Bayesian NeuralPBC
controllers on uneven terrain

4.2.1 Inertia Wheel Pendulum
The objective of this case study is to learn the parameters of Vd,Md, J2 that

render the closed-loop passive and thus stable at the desired equilibrium x∗, which

corresponds to the upward position. We utilize the system model provided in Sec-

tion 4.1.2 to learn the decision parameter θ from trajectories. The optimization

problem (3.13) is constructed as follows.

Training

The potential energy function V θ
d is a fully-connected neural network with two

hidden layers, each of which has the activation function Elu. The closed-loop mass

matrix is constructed according to the Cholesky decomposition M θ
d = L>

θ Lθ, where

the components of Lθ are part of the parameters θ to be optimized. We choose Jθ2 = 0,

as the mass matrix is independent of q for this system. The parameters of the surro-

gates are initialized according to the Glorot (Xavier) [57] scheme. The optimization
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Table 4.3: Neural-IDAPBC training setup for deterministic and Bayesian
frameworks

Deterministic Bayesian

Neural net size (2, 8, 4, 1) (2, 8, 6, 1)
# of parameters 56 150
Optimizer Adam DecayedAdaGrad
Initial learning rate 0.001 0.01

problem is solved over a uniform discretization of q = (q1, q2) ∈ [−2π, 2π]× [−50, 50].

In the deterministic setting, the nominal system parameters reported in Table 4.2

are used for H(q, p) during training. In the Bayesian setting, the standard deviations

σp of system parameters ps = [I1, I2,mgl] are chosen to be 10% of the nominal system

parameters given in Section 4.1.2. We use variational inference to estimate a Gaussian

posterior distribution over uncorrelated parameters. After training, both settings use

the nominal values for the computation of H(q, p) in the control synthesis given by

Equation (3.11). A summary of the hyperparameters for both the deterministic and

Bayesian methods are given in Table 4.3.

Simulation Tests

The performance of the controllers obtained from the deterministic and Bayesian

trainings are compared as follows. Similar to the NeuralPbc simulation tests, we

introduce system parameter uncertainties by moving the average system parameters

by ±10% to ±50% with increments of 10%. For each average system parameter, we

sample uniformly with a ±5% support around the average system parameters. This

helps test the performance of the controller with various combinations of I1, I2 and

m3. Figure 4.13 shows the performance of the controllers. The policy learned from
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Figure 4.13: Accumulated quadratic cost (JT ) for a range of error in system
parameters. Lower values correspond to better controller performance.

the Bayesian training is marginalized over 10 parameters sampled from the posterior

per (3.19).

As seen in Figure 4.13, trajectories from the Bayesian controller incur much lower

cost than the deterministic counterpart throughout a wide range of errors in system

parameters. Moreover, we observe that the error band on the cost corresponding

to Bayesian training is narrower. These results show that controllers trained via

Bayesian learning are consistently more robust to errors in system parameters.

Hardware Tests

The hardware experiments are designed to further demonstrate the robustness of

our controllers against model uncertainties, which include errors in the parameters,

friction in the bearings, and any contribution to the dynamics from the belt-drive

system. We deliberately modify the hardware to create large errors in the model

parameters and test the controllers without any additional training. In particular,
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the inertia wheel attached to q2 is replaced with parts whose mass and inertia values

differ from the nominal values (see Table 4.2). The state x is recorded, and the per-

formance metric (4.4) is used to evaluate the controllers. The results are summarized

in Figure 4.14.

In all scenarios, we recorded a 100% success rate in the swing-up task despite the

errors introduced in the system parameters. Furthermore, we observe that the con-

troller from Bayesian training consistently outperforms the deterministic counterpart,

supporting the theoretical justification discussed in Section 3.2.
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Figure 4.14: Normalized accumulated cost JT in (4.4) (lower is better)
for modified system parameters. The categories A-C correspond to the
parameters shown in Table 4.2.

4.3 Conclusion
This work presents a data-driven passivity based control architecture that en-

codes the desired Hamiltonian of the system with a neural network. The learning

approach efficiently explores the state space using the state sampling technique and

enforces a desired behavior through a carefully designed loss function. To improve

the robustness properties of the controller, we parameterize the desired Hamiltonian
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with a Bayesian neural network, whose weights are sampled from a Gaussian poste-

rior learned from MCMC and variational inference techniques. Through the simu-

lation and real-world experiments, we demonstrate that our framework finds control

laws that stabilize a desired equilibrium point of a dynamical system. Moreover,

the Bayesian framework can handle significant system parameters uncertainties and

measurement error.



CHAPTER 5:

CONCLUSIONS AND FUTURE WORKS

We tackle two main difficulties in the control of contact-rich robotic systems.

First, we address the computational complexities in designing multi-modal controllers

for hybrid dynamical systems. In our framework, we use data-driven techniques to

infer a mixture of expert controller that switches between several policies. The learn-

ing architecture also provides a gating network, which governs the control switching

scheme based on the observed states. We use the linear complementarity formulation

to accurately model contact-rich systems and to train contact-aware MoE controller

in simulation. This data-driven technique finds controllers that react to the positive

or negative effects of contacts and impacts. We demonstrate this behavior on the

swing-up problem of the cartpole system. We modify the standard cartpole problem

to a multi-modal contact-rich mechanism by introducing wall barriers on each sides

of the system. Using the MoE architecture, we successfully swing up the cartpole

in simulation and hardware. The case study shows that the contact-aware controller

finds a way to leverage the impact from the wall barriers to catch the pendulum

post-impact.

The second complication in the control of contact-rich systems involves designing

robust controllers under uncertain environmental conditions. In particular, we raise

the issue of operating a walking machine on uneven terrain, where the exact elevation
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of the runway is unknown. We characterize and tackle the effects of model uncer-

tainties in the control of dynamical system. We leverage the robustness properties

of Bayesian learning to infer stochastic controllers that can achieve the desired per-

formance under system parameter and measurement uncertainties. This technique

is first demonstrated on smooth dynamical systems, such as the simple pendulum

and the inertia wheel pendulum, in simulation and hardware. Then, we extend the

Bayesian framework to contact-rich systems, such as the rimless wheel walking ma-

chine, and demonstrate the robustness properties of the Bayesian technique against

a deterministic framework.

The control design techniques presented in this work have laid the foundation for

numerous future research directions. The MoE architecture can be applied to address

many interesting challenges in the control of contact-rich robots. For instance, we can

utilize the MoE framework to select an optimal way to manipulate and maneuver an

object in space. This framework can be used to select one of many object manipulation

techniques, such as pushing, lifting or sliding an object, based on the obstacles present

in the environment. We also intend to combine the multi-modal nature of the MoE

framework with the robustness properties of Bayesian inference. This is most useful

when the robotic system interacts with a dynamic environment. An example of such

scenario can be found in the cartpole system with wall barriers. If these wall barriers

are not static, the controller needs to reason about the uncertainty in the walls’

positions, and learn a controller robust against the unexpected impacts from these

barriers.
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APPENDIX

Expectation of the performance index
Proof of Lemma 1. Substituting the solution (3.26) of the SDE (3.25) expression into

the performance measure (3.22) yields

J =− 1

4

c+ rθ2

ps + θ

(
1 + e2T (ps+θ)

)
+ (c+ rθ2)θσ

∫ T

0

e(ps+θ)t
∫ t

0

e(ps+θ)(t−s)dWsdt +

1

2
(c+ rθ2)θ2σ2

∫ T

0

(∫ t

0

e(ps+θ)(t−s)dWs

)2

dt

The conditional expectation of this quantity given the system parameter ps under the

distribution induced by the Wiener process may be computed in closed-form using

Itô calculus:

EW [J | ps] = −
1

4

c+ rθ2

ps + θ

(
1− e2T (ps+θ)

)
+

(c+ rθ2)θσ

∫ T

0

e(ps+θ)t

���������������:0

EW
[∫ t

0

e(ps+θ)(t−s)dWs

∣∣∣ps]dt+
1

2
(c+ rθ2)θ2σ2

∫ T

0

EW

[(∫ t

0

e(ps+θ)(t−s)dWs

)2 ∣∣∣∣ps
]
dt
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EW [J | ps] = (c+ rθ2)

[
−1

4

(
1− e2T (ps+θ)

)
ps + θ

+
1

2
θ2σ2

∫ T

0

(∫ t

0

e2(ps+θ)(t−s)ds

)
dt

]

= (c+ rθ2)

[
−1

4

(
1− e2T (ps+θ)

)
ps + θ

+
1

2
θ2σ2

∫ T

0

−
(
1− e2T (ps+θ)

)
2(ps + θ)

dt

]

= −1

4

c+ rθ2

ps + θ

[
θ2σ2T +

(
1− e2T (ps+θ)

)(
1 +

1

2

θ2σ2

ps + θ

)]
.
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