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ABSTRACT

A common metric for evaluating Automatic Speech Recognition (ASR) is Word

Error Rate (WER) which solely takes into account discrepancies at the word-level.

Although WER is useful, it is not guaranteed to correlate well with intelligibility

or performance on downstream tasks that make use of ASR. Meaningful assess-

ment of ASR mistakes becomes even more important in high-stake scenarios such

as health-care. I propose 2 general measures to evaluate the quality or severity of

mistakes made by ASR systems, one based on sentiment analysis and another based

on text embeddings. Both have the potential to overcome the limitations of WER.

I evaluate these measures on simulated patient-doctor conversations. Measures of

severity based on sentiment ratings and text embeddings correlate with human ratings

of severity. Measures based on text embeddings have the capability to predict human

severity ratings better than WER. These measures are used in metrics in the overall

evaluation of 5 ASR engines alongside WER. Results show that these metrics capture

characteristics of ASR errors that WER does not. Furthermore, I train an ASR system

using severity as a penalty in the loss function and demonstrate the potential for using

severity not only in the evaluation, but in the development of ASR. Advantages and

limitations of this methodology are analyzed and discussed.
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CHAPTER 1

INTRODUCTION

Automatic Speech Recognition (ASR) is the task of processing human speech into

text. ASR has drastically improved over the past decade and has revolutionized the

way many people interact with computers using applications such as voice search,

dictation, and virtual assistants (e.g. Apple’s Siri, Samsung’s Bixby, Google Now)

[56, 2]. It is common practice to evaluate ASR systems by calculating the word error

rate (WER). The WER can be calculated by counting the number of words that

need to be substituted (S), deleted (D), and inserted (I) to go from a ground-truth

human transcription to the output of an ASR. This count is then divided the total

number of words in the ground-truth transcription (N) [32]. WER is often written as

(S + I + D)/N . Essentially, WER treats each discrepancy between the ground-truth

transcription and the output from the ASR equally.

However, one issue is that not all ASR errors are equal. As an example, take the

sentence “I love you,” and suppose an ASR system produces “I loathe you.” This

would result in a WER of 0.33. Now let us suppose another ASR system predicts

“I luv you.” This too would result in a WER of 0.33 (see Figure 1.1). Although the

WERs are equal, compared to the ground-truth “I love you,” the mistake “luv” is

arguably less severe than the mistake “loathe,” which gives off the opposite meaning

from the ground-truth sentence. This example, with two different errors and the same
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WER, shows the way a human might perceive the severity of an error in transcription

will not always be inline with WER.

Figure 1.1: WER calculations for the “I love you” example. S, D, I represent 
the number of substitutions, deletions, and insertions to go from the ground-truth 
transcription to the output of an ASR. N represents the total number of words in the 

ground-truth transcription.

Researchers have studied the way humans perceive and rank ASR errors. They 

found that there was more consensus among raters in the extrema (i.e. the most and 

least severe errors) [37]. This consensus at the extrema suggests that there potentially 

exists loose patterns or some methodology that humans use to rate the seriousness 

of an error in transcription. Furthermore, when comparing edit distances, or the

minimum number of operations required to transform one string into another, to 

the severity of the errors in transcription, they found that there were many serious

errors that had a relatively low edit distance. This is in agreement with other studies, 

which similarly show that WER is not always well correlated with intelligibility or 

performance in a given downstream task, such as in natural language understanding

(NLU) or named entity recognition (NER) [18, 54, 48].
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Being able to understand the seriousness, or severity, of ASR errors becomes

even more critical in high-stake scenarios such as healthcare. ASR has been used in

healthcare since the 1970’s and has proven to be beneficial, reducing the costs and

time need in reporting [26]. In healthcare research, transcriptions are used in a wide

variety of tasks such as in the automated detection of dementia [14], in estimating

scores of standardized cognitive health screening tests [15], and in in the prediction

and explanation of diagnosis [41]. All of these works operate on the basis of having

an intelligible and accurate transcript. The purpose of this research is to develop a

method for systematically measuring and understanding the quality of ASR systems,

especially in high-stake settings like healthcare, that goes beyond WER by looking

at the difference in meaning between the ground-truth and ASR output.

Needless to say, in high-stake environments like healthcare, without a useful mea-

surement to understand the severity and potential impact of errors in transcriptions,

it becomes hard to evaluate the quality of an ASR engine, and consequently, find

key areas of improvement. In this research, I propose two methods for the automatic

rating of the severity of errors in ASR transcriptions by using 1) the difference in

sentiment ratings and 2) cosine distances between text embeddings of the output

of the ASR and the ground-truth human transcription of a given audio. Sentiment

ratings will capture the polarity of a given text and will act as a simplistic measure

for capturing the meaning of that text. Text embedding have the potential to better

capture the meaning of a given text and the cosine-similarity of text embeddings is a

common method to compare the semantics of text [47]. By using the cosine distance,

1 − cos-similarity, we get a value where, like WER, the higher the value the farther

apart the ground-truth is from the ASR output. I test the viability and usefulness of

these methods on simulated medical data. I do this by 1) comparing the results of
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these measures to human severity labels (Section 5.1), and by 2) incorporating these

measures in to metrics for the overall evaluation of ASR engines (Section 5.2). The

results of these metrics on 5 different ASR architectures are compared.

The results show there is reliable consensus among human raters based on Fleiss’

Kappa, Cohen’ Kappa, and Kendall’s correlation measures [17, 9, 27]. The difference

in sentiment ratings correlates with human ratings of severity, but not as well as

WER or the cosine distance of text embeddings. Text embeddings prove to be better

predictors of human labels of severity than WER. This work also shows sentiment

ratings, text embeddings, and WER capture different aspects of mistakes in tran-

scriptions and shows there are advantages and limitations of each method. In the

last experiment (Section 5.3), I demonstrate the potential for severity to be used in

the development and improvement of ASR systems. I conclude by discussing future

areas of research.
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CHAPTER 2

THESIS STATEMENT

Before developing a method for estimating the severity of ASR errors using sentiment

analysis and/or text embeddings, I first seek to answer the following question: to what

extent does the information captured by sentiment analyzers and/or text embeddings

correlate with human assessment of the severity of ASR errors in a healthcare setting?

If this first question reveals that sentiment analyzers and/or text embeddings do

correlate with human assessment to some degree, then we have evidence that we could

use sentiment analysis or text embeddings in the systematic rating of ASR errors.

This leads to the following questions: can we use a sentiment analyzer and/or text

embeddings to develop a useful automatic estimator for the rating of the severity of

ASR errors? If so, can this be used in the overall evaluation of an ASR system? How

would this evaluation compare to WER? What are the advantages and limitations of

these methods? And lastly, could these be used in the development of ASR systems?

I hypothesize that sentiment analysis and text embeddings do capture enough

information to develop an automatic method to rate the gravity of ASR errors in a

healthcare setting. I also predict that we can also use these methods in conjunction

with WER to better evaluate the overall performance of an ASR engine.
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CHAPTER 3

BACKGROUND

In this section, I give a brief overview of sentiment analysis and textual embeddings,

including the specific sentiment analyzers and models for textual embeddings used in

this work. Then, I introduce the ASR engines that I use for the experiments.

3.1 Sentiment Analysis and Embeddings

When it comes to understanding and automatically rating the seriousness of errors

in ASR, one needs to have a method for systematically analyzing the difference in

meaning between two phrases or sentences. While philosophically what a body of

text truly means is a difficult question to answer, one simple way of capturing some

essence of the meaning of an utterance is to do a sentiment analysis on the output of

an ASR engine and the ground-truth transcription.

In the field of Natural Language Processing (NLP), sentiment analysis is the task

of detecting the attitude, emotions, or polarity of a given text. It is common for

these algorithms to take in a string as input and output a prediction from -1 to 1

based on how negative or positive the text is. Because these algorithms can vary

and have their own limitations, I use 3 different sentiment analyzers from 3 different

widely-used NLP libraries NLTK, FLAIR, and TextBlob (TB) [24, 1, 36]. This is

a naive method of capturing the meaning of a given text because, clearly two texts
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can have different meanings yet both have the same sentiment. Although perhaps

overly simplistic, the purposes of using sentiment is to create somewhat a baseline

measure that captures something besides discrepancies in spelling and to test how

well sentiment ratings can perform.

Another common method for capturing the meaning of natural language is to use

text embeddings. Generating word embeddings is the process of converting individual

words into n-dimensional vectors, usually for the purposes of converting text into

something that can be processed by Machine Learning or Deep Learning algorithms.

There are a variety of methods for embedding words that range from simple rule-based

methods to more complicated methods that involve machine learning techniques [38,

43, 44]. Similarly, methods have been developed for embedding more than just single

words [31, 47]. Whether embedding individual words or entire sentences, generally,

with good embeddings, the more semantically similar words or phrases are, the closer

they should be in the n-dimensional vector-space [38, 39].

For this project I use 4 readily available pre-trained models provided by Sentence-

Transformers1 to compute sentence embeddings. Below is a brief description of each

one.

bert-base-nli-mean-tokens (BertNLI) is a modification of the pre-trained BERT

model that “use(s) siamese and triplet network structures to derive semantically

meaningful sentence embeddings” [47]. Using raw BERT for large scale semantic

searching or comparison is computationally expensive, however with this methodology

big networks can be fine tuned for semantic similarity using natural language inference

1https://www.sbert.net/docs/pretrained models.html



8

data. All of the models are based on this same process of taking a big pre-trained

language model and fine-tuning it on data for efficient semantic similarity.

all-MiniLM-L6-v2 (MiniLM) is based on Microsoft’s MiniLM model [53]. For

the base model, researchers developed a method of knowledge distillation called deep

self-attention distillation, in which the purpose is to distil, or shrink down, a massive

model, usually containing hundreds of millions of parameters, into a smaller model

that generally maintains performance of the bigger model and can be more widely

used. This base model was then fine-tuned for semantic similarity.

all-mpnet-base-v2 (MPNET) is based on Microsoft’s MPNet model [51], which

involves a combination of masked language modeling (a method of pre-training used

in models like BERT [10]) and permuted language modeling in pre-training (a pre-

training method used in XLR [55]), seeking to take advantages of both methods. This

base model was then fine-tuned for semantic similarity.

all-distilroberta-v1 (DisRob) the last model I use, is based on DisilRoBERTa

which is the follows the same process of distillation as DistilBERT [49], except with

RoBERTa [34] as the base intead of BERT. The purpose of distillation of BERTA of

RoBERTA is to shrink down the models size to increase speed and decrease memory

requirements while keeping up performance. Like all the previous models, this base

model was then fine tuned for semantic similarity.
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3.2 ASR Engines

For this project I use five ASR engines for experimentation in order to collect and

obtain results from a variety of architectures. I choose the following architectures

because of there availability, performance and because they can be run locally (which

means one would not have to deal with potential issues with sending sensitive data

over the internet to a cloud ASR systems). In this section, I give a brief description

of these five architectures.

Mozilla’s DeepSpeech2 (DS2) is an implementation of [3]. In this architecture,

Recurrent Neural Networks take in spetrograms from an audio file and are trained to

output text2.

Meta’s Wav2Vec2 (W2V2) is a model proposed by [4]. Unlike DeepSpeech, this

architecture operates directly on the raw audio data instead of spretrograms. The

model is trained first in a semi-supervised method on many hours of unlabeled speech

data and then is fine tuned on labeled data. This model is made easily accessible by

HuggingFace 3.

CMU’S PocketSphinx (PS) is one of the lighter ASRs I use [23]. PS is a light-

weight ASR that is a part of the open source speech recognition tool kit called the

CMUSphinx Project. This model was trained on 1,600 utterances from the RM-

1 speaker-independent training corpus. Unlike the previously mentioned models,

PS does not use neural networks and is instead based on traditional methods of

2https://deepspeech.readthedocs.io/en/latest/index.html
3https://huggingface.co/docs/transformers/model doc/wav2vec2
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speech recognition by using Hidden Markov Models, language models, and phonetic

dictionaries.4

Alpha Cephei’s Vosk (with the vosk-model-en-us-0.22 model) is built using Kaldi

[45], and like PS, uses an acoustic model, language model, and phonetic dictionary.

However unlike PS, Vosk uses a neural network for the acoustic model part of the

engine.5

OpenAI’s Whisper unlike Wave2Vec2, uses a purely supervised method of train-

ing gathering 680K hours of transcribed content from the internet in 99 different

languages [46]. Following other architectures such as DeepSpeech2, this model takes

spectrograms of audio as input, but instead of Recurrent Neural Networks, this models

uses an encoder-decoder Transformer architecture based on [52] with a variety of

special tokens used to indicate which task is being performed (ex. transcription or

translation). For my experiments, I use the base model6 (consisting of 74 million

parameters).

4https://github.com/cmusphinx/pocketsphinx-python
5https://alphacephei.com/vosk/
6https://huggingface.co/openai/whisper-base

https://github.com/cmusphinx/pocketsphinx-python
https://alphacephei.com/vosk/


11

CHAPTER 4

DATA

4.1 Data Collection

For the purposes of experimenting in a healthcare scenario, a dataset published in 2022

of simulated patient-physician medical interviews is used [13]. This dataset contains

272 audio files with transcripts. These files range from about 7 to 20 minutes or from

800 to 2200 words.

The files are split into non-silent intervals using librosa1 setting the threshold of

silence to 60 decibels. With a threshold of 60 decibels, the files split into over 39,600

non-silent intervals, which I will call utterances as each file contains a small utterance

of speech. Of these, I take a sample of 110 utterences and run them through the

ASR engines as well as manually obtain the transcription of the utterences from the

corresponding transcription files that came with the dataset. Because these were run

through five ASR engines, the result is a list of 550 pairs of transcripts where one

comes from an ASR engine and the other is the ground-truth transcript. One of these

utterances actually contained no speaking and was removed for a final total of 545

pairs.

150 of these pairs of transcripts were given to 3 medical school students who were

asked to rate each pair with either 0, 1, or 2 (2 being a severe error, 1 being a not

1https://librosa.org/doc/main/generated/librosa.effects.split.html
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so severe error, and 0 being a very minor error or perfect transcription). The exact

instruction given and a few examples of the data are provided in Figure 4.1.

The pairs were normalized by removing speaker identification notes “P:” and “D:”

for patients and doctors, making all letters lowercase, and by removing any special

characters and punctuation except for apostrophes (as these could be important in

distinguishing words like “its” and “it’s” or “they’re” and “their”).

Figure 4.1: Image showing the instructions given to raters and a few example pairs 
of sentences with the correct transcription on the left, the output of an ASR engine 

in the middle and the human rating of severity on the right.

4.2 Rater Credentials

All three raters are currently enrolled in a doctoral program at the Idaho College of

Osteopathic Medicine (ICOM). Experience of the members includes medical research
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at locations such as the Mayo Clinic and the University of Utah, work as Spanish-

English interrupter in medical clinics, work as anesthesia technician, and holding

positions such as student representative on ICOM’s research committee.

4.3 Data Validation: Do Raters Agree?

Previous work suggests that the severity of errors in transcription is a difficult task

where there is not very good consensus among raters [37]. Prior to developing a

measure that rates errors in the same way a human would, it first needs to be shown

that humans do have some methodology or consistency amongst each other when it

comes to rating the severity of errors.

Following the evaluation metrics used in [37], I use Cohen’s Kappa [9] and Fleiss’

Kappa [17], to measure at inner-annotator agreement. However, these metrics do not

take in to account that the data is ordinal (i.e. a discrepancy in ratings of values 0

and 1 is treated the exact same as a discrepancy in values of 0 and 2 even though

the latter discrepancy is greater than the former [12]). Therefore, since the nature of

these ratings is ordinal, I also look at the Kendall’s rank correlation coefficient [27]

to measure the quality of the ordinal association between two given raters.

I calculate a Fleiss’ Kappa values of 0.452 and Cohen’s Kappa scores that range

from 0.420 to 0.567, which shows moderate agreement between raters (see Table 4.1).

The Kendall’s correlation coefficient between raters indicated a strong correlation be-

tween rater ranging from 0.662 to 0.727 (see Table 4.2). Considering the subjectivity

of the task, the moderate Kappa values and high correlation values suggests that

there is reliable consistency among raters.
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Rater 1 Rater 2 Rater 3
Rater 1 - 0.416 0.567
Rater 2 0.416 - 0.440
Rater 3 0.567 0.440 -

Table 4.1: Inner-annotator agreement 
confusion matrix.

Rater 1 Rater 2 Rater 3
Rater 1 - 0.727 0.718
Rater 2 0.727 - 0.662
Rater 3 0.718 0.662 -

Table 4.2: Kendall’s correlation coeffi-
cient
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CHAPTER 5

METHODS

This chapter describes the experiments and methodology used to test the hypotheses

described in Chapter 2.

5.1 Experiment 1: Testing Severity Scores

In this experiment, the goal is to test if sentiment analyzers and/or text embeddings

can rate errors similarly to the way a human would in a healthcare setting. I use the

150 utterances that have human labels for severity described in Section 4.1 and since

there is decent agreement, I use the mode of the ratings as a target.

I calculate the WER and various severity scores (defined below in Section 5.1.1)

using the sentiment analyzers and the language models for text embeddings described

in Section 3.1. I compare the severity scores with each other by measuring the corre-

lations between the severity scores and the mode human rating. A high correlation

between these severity scores and the human ratings supports the hypothesis that

sentiment analysis and/or text embeddings capture enough information to be used to

evaluate the severity of ASR errors in a healthcare setting.

To further evaluate the usefulness of these severity scores, I create multiple Ordinal

Logistic Regression models with a single severity score as a independent variable in

each model and the mode human rating as the target variable and compare the
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performance of the models. To compare, I perform 10-fold cross validation for each

model and look at the mean accuracy on the test data and compare them with each

other and with a majority classifier.

5.1.1 From Sentiment Analysis and Embeddings to Severity Scores

In this section I explain how I calculate the various severity scores using sentiment

analyzers and text embeddings.

When rating the severity of errors as a human, we could try to objectively look

at the difference in meaning between the ground-truth and the output of an ASR

engine. One could imagine this process potentially involving using some model in the

brain where love is closer to luv than loathe in meaning, and thus luv would be rated

as a less severe error. I seek to mimic this process using sentiment analyzers and text

embeddings.

Given a sentiment analyzer s(x) that outputs a value between -1 and 1 (such as

NLTK’s SentimentIntensityAnalyzer [6]), we can try to mimic this process by taking

the absolute value of the difference in sentiment and use this as model to represent

the difference in meaning or severity. This can be expressed by the following:

Severity(x, y) = |s(x) − s(y)|

where x and y are a pair of ground-truth and ASR output. This would result in

a rating on the range [0, 2], where 0 would be two phrases that have the exact same

sentiment rating, in other words a non-severe error, if any, and a rating of 2 would

represent the most severe error possible due to having sentiments and polar extremes.

Following the same logic with text embeddings, knowing that closer embeddings
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should be semantically closer, we can represent the difference in meaning as the

dissimilarity between them, in other, words one minus the cosine of their embeddings.

Severity(x, y) = 1 − cosine(x, y)

This would result in a rating on the range [-1, 1]. However, it is common practice to

bound the vectors in the positive space which would result in range of [0, 1]. Because

we are looking at the dissimilarity, and value of 0 would represent two strings that are

the same and a value close to 1 would represent a two strings that are very different

semantically.

5.1.2 Results

The correlations shown in Table 5.1 show WER has a correlation with human ratings

of severity of 0.43. All the severity scores based on text embeddings correlated with

human ratings better than WER, with an increase in correlation ranging from 28%

to 36% above WER. In contrast, all of the severity scores based on sentiment were

less correlated than WER. The sentiment analyzer from FLAIR correlates the most

with human ratings with a value of 0.34 (see Table 5.1). The results show that text

embeddings can be better suited for the automatic evaluation of severity in ASR

errors than WER.

WER NLTK FLAIR TB MiniLM BertNLI MPNET DisRob
0.43 0.29 0.34 0.29 0.55 0.53 0.56 0.59

Table 5.1: Correlation between human rating of severity to WER and various severity 
measures. The three italicized are severity scores based on sentiment analysis, the 
four bold are severity scores based on sentence embeddings. The sentence embedding 
scores have the highest correlation with human ratings of severity.
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Plots comparing WER, FLAIR, and all-distilroberta-v1 (DisRob) to human rat-

ings are in Figure 5.1. Subplot 5.1c, which compares human ratings to DisRob, shows

that embeddings do the best job of clustering ASR errors with the same human rating

together. In other words generally, the most severe errors (with a human rating of 2)

are pushed towards 1 (the max for this measure), the medium-severe errors (with a

human rating of 1) are clustered around 0.5, and the lest severe errors (with a human

rating of 0) are between 0 and 0.5.

In contrast, the WERs shown in subplot 5.1a are more spread out, having some

severe errors with relatively low WER and some non-severe errors with a relatively

high WER.

The middle plot, subplot 5.1b, shows severe errors tend to be pushed to have

a higher scores according to FLAIR sentiment analyzer, but, like WER, FLAIR

rates some severe errors with a low score. Looking deeper, severity scores based on

sentiment tended to do well on detecting opposites or negations such as “love” and

“loathe” or “not laying down” vs. “laying down” which is in line with their purpose

(i.e. to detect polarity). Due do this, I believe there is still some potential in using

sentiment to rate severity, especially for detecting opposites or misses in negation as

in the “love” and “not laying down” examples, but based on these results, it will most

likely not be as versatile as text embeddings.

Ground-Truth
ASR output

FLAIR ASR

um not laying down helps
laying down help

1.943 DeepSpeech2

i love you
i loathe you

1.989 Toy example

Table 5.2: Examples of the sentiment analyzer, FLAIR, giving a high rating (close to 
2) for opposites and negation. More examples are shown in 5.5
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(a) WER (b) Sentiment (Flair) (c) Embeddings (DisRob)

Figure 5.1: Graphs comparing human ratings of severity (x-axis) to WER and 
two severity ratings one base on sentiment scores and the other based on sentence 
embeddings (y-axis). Note that a fair number of errors with a high human severity 

rating have a relatively low WER.

Using Severity Scores as a Predictor

For results of the Ordinal Logist Regression models, I create models using all the same 

severity measures previously mentioned, as well as a majority classify as a baseline. 

The worst performing model is the model using the scores based on FLAIR with a 

mean accuracy of 50% which is equivalent to the baseline. The model based on WER 

was the next best with a mean accuracy of 62%. All of the models based on text 

embedding scores perform better than the WER model with the best model having 

a mean accuracy of 70.67%. The results are summarized in Table 5.3.

Maj. Class. WER FLAIR MiniLM BertNLI MPNET DisRob
50.00 62.00 50.00 66.00 63.33 66.67 70.67

The results from the Ordinal Logistic Regression task further give evidence that

text embeddings are better suited for the automatic evaluation of severity in ASR

errors than WER.

Table 5.3: Mean accuracy of Ordinal Logistic Regression Models with 10-fold cross 
validation. All the models based on text embeddings have a higher mean accuracy than 
WER.
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In this experiment, I only study the correlation between the proposed severity

scores and its corresponding human rating. However, it is common for WER to be

averaged across all the utterances in a test dataset. The average WER becomes a

single value that is used as a metric to gauge the overall performance of an ASR

engine. Since the severity scores are well correlated with human labels, it is worth

experimenting to see if these scores can be used to calculate a metric, in a similar

manner to average WER, that could be used in gauging the performance of an ASR

engine.

5.2 Experiment 2: Using Metrics To Evaluate ASR

This experiment demonstrates the potential usefulness of using the severity scores

(from Experiment 1) in metrics for the overall evaluation and comparison of ASR

systems. To test this, I propose three metrics (listed below, Section 5.2.1) and use

each metric to evaluate and compare the performance of the five ASR engines from

Section 3.2.

In order to do this evaluation, I take the 110 utterances that have been manually

transcribed and run them through all five ASR engines. As mentioned in Section 4,

one of the audio files did not have any speech in it and was removed. This results

in a total of 109 ∗ 5 = 545 transcriptions. As before, I compute the various severity

scores for each ASR output, ground-truth pair. These severity scores are then used

as input into the metrics described in the following section.

These metrics are compared with WER and with each other across the five ASR

engines to evaluate how these metrics behave.
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5.2.1 Metric 1: MAE of Difference in Sentiment

The first metric I propose is the mean absolute error of the differences in sentiment

(MAE-DS). Formally, given a sentiment analyzer s(x) that outputs a value between

-1 and 1 (such as NLTK’s SentimentIntensityAnalyzer [6, 24]), we can express the

MAE-DS in the formula below:

1

n

∑
x,y∈C

|s(x) − s(y)|

where C is a corpus of pairs of ground-truth transcriptions and ASR predictions and

n is the number pairs. x and y are a set of ground-truth and predicted utterances

from C.

The output of this metric will range from 0 to 2, and will be easy to interpret. For

example, an MAE-DS 0.5, indicates that, in terms of sentiment, the ASR’s output is,

on average, 0.5 off of the ground-truth.

5.2.2 Metric 2: MSE of Difference in Sentiment

The second metric I propose is the mean squared error of the differences in sentiment

(MSE-DS). Similar to the first metric, given a sentiment analyzer s(x) we can write

this in the formula below:

1

n

∑
x,y∈C

(s(x) − s(y))2

where, C is a corpus of pairs of ground-truth transcriptions and ASR predictions

and n is the number pairs. x and y are a set of ground-truth and predicted utterances

from C.
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The range of this metric is from 0 to 4. The potential usefulness of this metric

lies in the fact the MSE is more sensitive to outliers than MAE. As a result, this will

penalize more heavily the ASR errors that have a greater distance in sentiment from

the ground-truth.

5.2.3 Metric 3: Sentence Similarity using Language Models

The third metric I propose is based on text embeddings genrerated by language

models. In this case, I calculate the cosine similarity between the embeddings of the

ground-truth and ASR output as a representation of how different the sentences are

in meaning. In the model that I will use, the cosine similarity of embeddings will

generally range from 0 to 1 where one is the exact same sentence and values closer to

0 being semantically distant from the target sentence [47].

With this, I propose using the mean of the cosine distance, or one minus the cosine

similarity. This can be written with the following formula:

1

n

∑
x,y∈C

1 − cosine(x, y)

where C is a corpus of pairs of ground-truth transcriptions and ASR predictions

and n is the number pairs. x and y are a set of embeddings of a given ground-truth

and predicted utterances from C.

The potential usefulness of this metric is that text embeddings can capture more

information than sentiment ratings and that the language models that generate the

embeddings can also be fine tuned to a given dataset (i.e. in the medical field, one

could make it so that names of medicines and diagnoses are farther from each other).

However, no fine tuning is done in this work. Another potential advantage of this
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method it that this is very similar to the Cosine Loss function, and could potentially

be easily incorporated into the loss function as a penalty for neural network training.

5.2.4 Results

The results are summarized in Table 5.4. For all the metrics, the lower the value the

better. Generally results are consistent, no matter which metric we use, the majority

show that Whisper has the best performance followed by Vosk. Following these in

performance are DeepSpeech2 (DS2) and Wav2Vec2 (W2V2). The ASR with the

lowest performance is PocketShpinx (PS). Despite the metrics agreeing for the most

part, going into more depth and studying to what extent these metrics agree and

where the metrics disagree, one can gain useful insights about what information the

proposed metrics are capturing.

Base Measure Metric DS2 PS Vosk Whis. W2V2
Edit Distance WER 0.482 0.910 0.307 0.273 0.525

Sentiment
NLTK mae 0.127 0.241 0.062 0.056 0.127
FLAIR mae 0.620 0.700 0.324 0.322 0.516
TB mae 0.111 0.181 0.050 0.029 0.120

Sentiment
NLTK mse 0.057 0.141 0.022 0.020 0.048
FLAIR mse 0.981 1.132 0.459 0.473 0.788
TB mse 0.051 0.086 0.026 0.010 0.044

Cosine
Distance

MiniLM 0.361 0.649 0.171 0.153 0.403
BertNLI 0.188 0.398 0.079 0.093 0.181
MPNET 0.400 0.688 0.193 0.180 0.400
DisRob 0.388 0.676 0.189 0.172 0.406

From Vosk to Whisper there is a percent decrease in WER of about 11.07%.

The average percent decrease in the cosine distance over the 4 language models

Table 5.4: Results of Experiment 2. The top row shows each of the 5 ASR engines. The 
following section shows the WER. The labels in the first column that end in mae and 
mse are the mean absolute error and the mean squared error of the difference in 
sentiment scores respectively. The last for rows are the average cosine distance.
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is quite small at 2.13%. In another example, the percent decrease in WER from

DeepSpeech2 to Vosk is 36.31% while the average percent decrease cosine distance

over the 4 language models is greater at 53.41%. The differences in these percentages

show that the rate of improvement in the severity (cosine distance) is not necessarily

related to rate of improvement in WER (i.e. one metric can improve greatly while

the other not so much and vice versa).

To further demonstrate the differences of these metrics, I look at specific examples

where WER and measures of severity disagree. I do this by analyzing the most severe

errors given a certain measure where another measure is kept relatively low. I first

look at the most severe according to FLAIR sentiment scores while keeping WER

below 0.5 (examples from this are shown in the first 6 rows in Table 5.5). I then

look at the most severe according to cosine distance while still keeping WER below

0.5 (shown in the middle group of 6 in Table 5.5). Finally, I look at the most severe

according to WER while keeping the cosine distance below 0.5 (the last 6 examples

in Table 5.5). These edge case examples show potential advantages and limitations

of WER, sentiment scores, and scores based on text embeddings.

5.2.5 Advantages and Limitations

All of the following examples in this section come from Table 5.5.

WER has the main advantage of being simple and consistent; it is just the edit

distance normalized by the total number of words. There are not multiple models

like how there are various language models for sentiment analysis and for generating

text embeddings. The main limitation of WER is that, because it is based on edit

distance and not any understanding or model of the language, there are severe errors
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Ground-Truth
ASR output

FLAIR MiniLM WER ASR

uh i smoke about a pack a day
uh smoke about a pack of day

1.929 0.104 0.250 Whis.

and how often do you use crystal meth
and how often do you use crystal mud

1.858 0.371 0.125 Whis.

ok sounds like a a pretty stressful job
and like a pretty stressful job

1.850 0.298 0.375 DS2

uhm it started last night
and it started last night

1.707 0.138 0.200 W2V2

what they did for your heart attack
what they did for your herd attack

1.617 0.546 0.143 W2V2

any previous surgeries
any previous surgery

1.580 0.111 0.333 DS2

nothing has seemed to make it any...
dorthins seemed to make him any...

0.003 0.692 0.364 W2V2

what they did for your heart attack
what they did for your herd attack

1.617 0.546 0.143 W2V2

and how often do you use crystal meth
and how often do you use for sunlight

0.010 0.512 0.250 Vosk

that you’re experiencing some chest pain
that you’re experiencing some testing

0.049 0.469 0.333 Whis.

about the same ok and has it gotten...
the same moqe and has it gotten more...

0.028 0.461 0.200 W2V2

that you’re experiencing some chest pain
that you’re experiencing some chatting

1.889 0.456 0.333 Vosk

ok
okay

1.094 0.061 1.000 DS2

a multivitamin
a multi vitamin

0.000 0.150 1.000 DS2

my parents
our friends

0.005 0.370 1.00 PS

i’ve tried uh
i have tried add

1.733 0.451 1.000 Vosk

uh thirty eight degrees
38 degrees

0.161 0.177 0.750 Whis.

uh thirty eight degrees
the degrees

0.007 0.324 0.750 DS2

Table 5.5: Examples of severe errors. The first 6 and second groups of 6 are based on 
sentiment and text embeddings respectively while WER is kept below 0.5. The last 
6 are based on WER whie cosine distance of text embeddings is kept below 0.5.



26

that have a relatively low WER, and vice versa, there are non-severe errors that have

a high WER such as a multivitamin vs. a multi vitamin.

Sentiment has strong limitations due to the fact that the algorithms used to

generate sentiment scores are designed to only capture how positive or negative a

given text is. Sentiment scores can also be highly sensitive to misses in disfluencies

like um or uh. This is highlighted in the example, uhm it started last night vs

and it started last night, where there was a strong difference in sentiment of 1.707.

This can be an advantage or a limitation depending on the scenario. Many ASR

engines overlook disfluencies, but, for example in human robot interactions or spoken

dialogue systems, disfluencies can be vital to understanding and performance [5, 8].

Besides human computer interaction, disfluencies in transcripts can also be critical

in a healthcare setting where differences in speech fluency are used as predictors of

dementia status [14, 35, 40].

There is the also the limitation on the performance of the model, where the model

incorrectly classifies the sentiment. In the examples any previous surgeries vs. any

previous surgery or uh i smoke about a pack a day vs. uh smoke about a pack of day,

there is a high difference in sentiment yet the only difference is in missing the pronoun

i or the plural of surgery, which should not affect sentiment greatly.

However despite these limitations, sentiment is able to catch severe errors where

the WER is relatively low. In the example where crystal meth becomes crystal mud

or where chest pain becoming chatting the WER is 0.125 and 0.333 respectively but

the difference in sentiment is very high at 1.858 and 1.889 respectively.
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Text embeddings are limited by the performance of the model, like sentiment,

yet, can capture more than just polarity of a given text. Knowing that many of these

models are trained in a self-supervised manor using the context in the training text,

we can imagine how the embeddings of my parents and our friends could be similar.

Both of these phrases could occur in with similar surrounding text; they have the

same grammatical structure (a possessive adjective followed by a noun) and parents

and friends are both human relationships.

Another limitation on these models is the amount of text they can handle. Any-

thing above the model’s limit gets truncated and, consequently, loses the meaning of

truncated text. Although there are many short utterances in ASR training data. The

character limitation on these models could affect performance on longer utterances.

Despite their limitations, text embeddings were able to capture well the differences

in meaning. Text embeddings were able to give a high score to the examples where

crystal meth becomes for sunlight and where chest pain becomes testing when WER

and sentiment scores were relatively low. Text embeddings were also able to give low

ratings for different writings of the word okay and numbers (ok vs. okay, or uh thirty

eight degrees vs. 38 degrees) when WER were high.

5.3 Experiment 3: Using Severity To Improve ASR

Up to this point results show that 1) there is reliable consistency among human

raters, 2) the cosine distance of text embeddings correlates better with human labels

of severity than WER, and 3) using sentiment or text embeddings in a metric for

the overall evaluation of ASR captures different information than WER. With these

results established, the purpose of this experiment is to test if an automatic measure of
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severity can be used in more than just the evaluation of ASR, but in the development

as well.

Previous work done in the study of ASR errors involves approaches to automati-

cally detect errors using word and text embeddings (and even other features such as

acoustic/prosodic features), [19, 20, 21] and to automatically repair errors in specific

cases (such as in certain homophones in French) [11]. However, instead of ASR error

detection or repair which happens post-prediction, my approach will be to include

severity into the making of an ASR system in an attempt to reduce the number of

errors (measured by WER) and to reduce the overall severity of the errors produced

(measured by the average cosine distance proposed in Section 5.3.3). To do this,

I incorporate severity into the loss function during training of an ASR. The exact

methodology to incorporate severity into the loss function, the model used, and the

experiments I perform are described in the following sections.

5.3.1 Adding Severity into Loss Function

It is common for ASR engines that involve neural networks to be trained using the

Connectionist Temporal Classification (CTC) loss function [22]. This algorithm allows

one to work with data where both inputs and outputs can vary in length such as in

handwriting recognition and speech recognition. CTC sums over the probabilities

of all possible alignments between the input and the output. Naturally, this can be

quite expensive. To overcome this, the CTC algorithm takes advantage of dynamic

programming methods to efficiently compute the probability of each output. In

other words, given and input of audio X and a ground-truth transcript Y , CTC

can calculate efficiently p(Y |X).
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When training a neural network we ideally want to maximize the likelihood of the

ground-truth, Y , given the corresponding audio, X, to be as close to 1 as possible.

Since the likelihood can be extremely small, it is common for the models parameters to

be tuned tuned minimize the negative log-likelihood,
∑

(X,Y )∈D −log p(Y |X), where

D is a given training set.

To incorporate severity into the loss function, the cosine distance is used as a

weight in the loss function. To calculate this weight, w, the cosine distance is limited

in the range from a near-zero number, 1.0×10−7, to 1. This is shown in Equation 5.1,

where W is the weight that represents the severity between the ground-truth, Ytruth,

and the output of the ASR, Ypred. This weight is multiplied by the CTC loss value

to get the final loss (Equation 5.2).

This results in a function where the original CTC loss is scaled down, along with

the gradients of the neural network, based on the semantic similarity between the

ground-truth and ASR output.

w = 1 −max(1.0 × 10−7, cos(Ytruth, Ypred)) (5.1)

L = w ∗ CTC (5.2)

I will refer to this proposed loss function as a CTC-by-Cosine loss function due to

its use of CTC and cosine similarity. For this experiment I use the all-MiniLM-L6-v

(MiniLM) to generate the embeddings for the ground-truth and ASR predictions.



30

5.3.2 Model

With a plan on how to incorporate severity into the development of an ASR system

fixed, I now describe the model I use in this experiment.

The model is based on DeepSpeech2 [3], where the input is spectrogram from

audio files and the output is the probability distribution of over a set of characters at

each time step. The set of characters consists of all the letters of the English alphabet

along with the following characters: apostrophe, questions mark, exclamation mark,

and blank symbol.

The model starts with two 2D convolutional layers, both with 32 filters and batch

normalization and goes through a ReLU activation function after each layer. The

kernels for the convolutional layers are [11, 41] and [11, 21]. After the convolutions,

there are five bidirectional gated recurrent layers (GRU) each with 512 units with a

dropout layer with a rate of 0.5 after each recurrent layer except for the last one.

After the last recurrent layer there are two dense layers. The first one maintains

the same size as the recurrent layers and passed through a ReLU activation function

and a dropout layer with a rate of 0.5. The second dense layer is the output layer with

softmax as the activation function. Adam is used for optimization with a learning

rate of 1.0 × 10−4. Figure 5.2 depicts the core components of this model.

This results in a model of about 26M parameters. This is relatively small compared

to other ASR systems. For example, DeepSpeech2 has 38M parameters (about

1.5 times more parameters than the model used in this work), the base version of

Wav2Vec2 has 95M parameters (about 3.7 times more parameters), and the base

version of Whisper contains 74M parameters (about 1.2 times more parameters).

However, the purpose of this experiment is not to achieve state of the art performance
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with a novel architecture, it is to test on a relatively small scale the plausibility of

using severity in the development of an ASR system.

Figure 5.2: Main components of model implemented based on DeepSpeech2.

5.3.3 Data and Training Regime

Because the 109 transcribed utterances of the simulated patient doctor conversation 

files i s i nsufficient to tra in an ASR  eng ine fro m scr atch, for  thi s exp eriment I use 

the LJ Speech Dataset which consists of “13,100 short audio clips of a single speaker 

reading passages from 7 non-fiction books” [25].

I train 2 models on the first 9 0% p ercent o f t he d ata, w ithholding t he l ast 10%

for validation. The first m odel h as t he a rchitecture d escribed a bove a nd u ses only 

the CTC loss function. This model will serve as the baseline. The second model uses 

the exact same architecture and training regime, but uses the CTC-by-Cosine loss 

function for the last 5 epochs.
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Train WER Train Cos Val WER Val Cos
Base 0.058 0.051 0.268 0.249

CTC-by-Cos 0.008 0.006 0.219 0.201

Table 5.6: Percent Increase in performance from base model to CTC-by-Cos model 
on both training and validation datasets. Severity is measured by the average cosine 
distance proposed in Section 5.3.3.

For evaluation, I will look at the WER and the severity (measured by the average

cosine distance from Section ) on the training and validation datasets throughout 50 

epochs of training.

5.3.4 Results

Results show improvements in both severity (average cosine distance) and WER when 

incorporating severity into the loss function. The CTC-by-Cos Model, showed above 

an 85% improvement in severity and WER on the training dataset, and above an 18%

improvement in severity and WER on the validation dataset (see Table 5.6). This 

improvement in performance suggests that there is potential to use severity in the 

development of ASR to decrease both the overall severity and WER.
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CHAPTER 6

CONCLUSION

6.1 Discussion: Implications and Future Work

Because of the limitations in WER and based on the results of this work, I suggest

looking at the average cosine distance between the embeddings ground-truth tran-

scription and ASR output in conjunction with WER (Metric 3 in 5.3.3). However,

when using this methodology one must be aware that the language models that

generate text embeddings are not perfect, and can vary. Sentiment analyzers have

shown to be very limited as they only capture one aspect or quality of an utterance,

yet, these could still have their place in detecting errors in negation or certain words

(i.e. “is” vs “isn’t” or “pain” vs “paid”).

In Experiment 2, WER generally agreed with the other metrics, but based on

previous research done that shows the limitations of WER, one next area of research

would be to study whether or not the metrics proposed in this work would be a better

indicator of intelligibility or performance on an NLU task than WER [18, 54, 48].

This work also provides a theoretical basis for using text embeddings in the

training of an ASR. Recent work has emerged showing that using semantic alignment

(using text embeddings) for Spoken Language Understanding during training is very

promising [28, 30]. Combining severity with the common loss function, Connectionist

Temporal Classification, during the training regime of an ASR engine in Experiment
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3 showed there is potential to optimize WER and severity at the same time for better

results. With many machine learning methods, these results can vary greatly depend-

ing on the architecture, data, and training regime, therefore further experimentation

is needed to more fully test the potential of this methodology.

I also see potential for text embeddings to be used more widely in evaluation

beyond the field of ASR and into any field that involves the natural language gen-

eration such as in automatic text summarizing or even machine translation with the

development of more multilingual language models [16]. Natural language generation

is also important in healthcare in order to generate intelligible explanations for AI

models [7], yet, similar to WER, in the field of natural language generation, common

metrics such as ROGUE [33] and BLEU [42], have been shown to correlate poorly with

human evaluations [7, 29]. Based on this work, I believe future work could involve

incorporating these measures of severity in metrics for natural language generation

tasks and studying how these correlate with human evaluations in a similar fashion

to metrics like BERTScore or BLEURT [57, 50].

6.2 Summary

In this work I experiment with sentiment analyzers and text embeddings in the

analysis of ASR errors. More specifically, I seek to answer the following questions:

1) do sentiment analyzers and/or text embeddings correlate with human ratings of

severity, and if so, to what extent? 2) can we use sentiment analyzers and/or text

embeddings as a useful measures or estimators of severity of ASR errors, 3) can we

use these measures to evaluate the overall quality of the severity of an ASR engine?,

and 4) can severity be useful in the development of an ASR system.



35

I first create my own data set of 150 ASR errors and 3 human ratings of severity by

using an audio dataset of simulated patient-doctor conversations with transcriptions

and 3 raters in the medical field. As a preliminary step, I show that there is decent

consistency among raters.

To answer the first two questions, I use the difference in sentiment scores from

3 sentiment analyzers and the cosine distance of text embeddings from 4 language

models as measures of severity. I look at the correlation between these measures and

human ratings of severity as well as look at their ability to predict severity using a

simple ordinal logistic regression. These are compared with WER, a common metric

for evaluating ASR. While sentiment scores could not predict severity as well as

WER, for all text embeddings models, the cosine distance from text embeddings to

ASR output predicted severity better than WER.

I propose a simple method for incorporating these measures into metrics to evalu-

ate the overall quality of an ASR engine. Generally the results agree with WER, (i.e.

the ASR with the best WER performs the best on the metrics based on sentiment

scores or cosine distance of text embeddings). I show that, upon deeper inspection,

these metrics are capturing different qualities in ASR errors and can overcome some

of the limitations of WER.

Finally, I experiment with incorporating severity into the development of an ASR

system. Results show that there is potential for severity to help improve performance.
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