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ABSTRACT

Sparse computations are important in scientific computing. Many scientific

applications compute on sparse data. Data is said to be sparse if it has a relatively

small number of non-zeros. Sparse formats use auxiliary arrays to store non-zeros,

as a result, the contents of auxiliary arrays are not known until run-time. The

Inspector/Executor (I/E) paradigm uses run-time information for compiler optimiza-

tions. An inspector computes information at run-time to drive transformations.

The executor—a compile-time transformation of the original code— uses information

computed by the inspector. The sparse polyhedral framework (SPF) encompasses a

series of tools to support I/E run-time transformations. This work introduces a unified

framework that wraps SPF tools while providing a holistic view of computation as an

intermediate representation (IR). This work also introduces a method to automati-

cally synthesize inspectors to transform between sparse formats and improvements to

SPF to explore the performance of irregular applications.
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CHAPTER 1

INTRODUCTION

Computationally intensive applications such as molecular thermodynamics, cli-

mate modeling, and machine learning require significant computational resources.

Energy consumed by large data centers running these applications can easily power

up small cities. Improving the performance and efficiency of these applications is

important. Improved performance means less time spent using computing resources,

consequently resulting in better energy consumption. The biggest opportunity for im-

proving performance in scientific applications is reducing memory movement. Arith-

metic computations are typically fast and bandwidth to memory is the bottleneck.

The processor must wait to get data from memory, this degrades performance. The

further away memory is from the CPU, the more computational cycles are required

to move data during a computation. This work aims to reduce memory movement in

applications, specifically focused on applications operating on sparse data. We achieve

this through temporary storage reduction, memory expansion, and remapping, and

graph simplification algorithms/heuristics to automatically transform computations

to better use memory.

Optimizing computations that run on sparse data is complicated due to indirect

memory accesses. These types of applications are referred to as irregular applications.

A data set is said to be sparse if it has a relatively small percentage of data values
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that are not zero. To save memory, sparse formats store only non-zero values and use

auxiliary arrays to identify the original coordinates of the non-zeros. The auxiliary

arrays and the fact that the sparsity pattern is not known until run-time limit

static transformation. The Inspector/Executor paradigm is a common technique for

optimizing irregular applications. This entails writing compiled code that will make

decisions at run-time, Inspector, and transforming the original computation to use

the inspector, Executor. However, manually writing this code by hand is tedious and

error-prone.

Automatic optimization of regular applications uses tools that are not applica-

ble to irregular applications. These tools do not support the Inspector/Executor

paradigm and other relevant run-time reorder transformations. Various tools such as

Omega/Codegen, and IEGenLib do provide a framework for transforming irregular

applications, however, there is the need to provide a uniform entry point for this

toolchain. This work introduces a unified framework that wraps relevant sparse tool

chains while providing a holistic view of computation. This framework supports

composable transformations, data flow representation and analysis, and a front end

to automatically translate legacy applications to a representation suitable for trans-

formation.

There are several formats used to store sparse data. The optimal choice of sparse

format for computation depends on the data and the computation. Deciding the

best sparse format for computation is not the focus of this work, rather it focuses on

enabling transformations post-decision. A recent work [29] shows how the choice of

matrix format affects Graph Neural Network (GNN) performance. They developed a

predictive model that can dynamically choose the optimum sparse format to be used

by a GNN layer depending on the input matrices. This shows that there is no one-size-
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fits-all for the choice of sparse formats, hence the need to transform from one format

to another (Synthesis). Synthesizing format conversion code that is performant is

preferable to handwriting and optimizing all possible combinations.

The best choice of sparse tensor format changes with computational patterns and

the sparsity pattern of data. Once a choice of format has been made, optimized

routines that transform the sparse code from one format to another are required.

Sparse format conversion can be from any sparse format to any other sparse format,

creating a vast space of transformations. Furthermore, that choice may change over

the lifetime of application execution. As a simple example, consider a sparse tensor

that is used in multiple phases of computation and will sometimes be read in the first

mode and later in the last. Changing formats between phases may be advantageous

depending on the number of times the operations are executed. We demonstrate the

expressiveness of the specification with a collection of common sparse tensor formats

and we evaluate the correctness of the synthesis algorithm. This work presents an

approach that describes sparse tensor formats and synthesizes translation code among

them.

1.1 Contributions

Several research questions remain to be answered before achieving effective op-

timization of scientific applications that use sparse data. The first question reasons

about what constitutes a complete internal representation for sparse computations

and how that internal representation can be transformed using known methods. Given

the lack of required information at compile-time, a second research question is on

how data transformations can be automated without breaking the abstractions in the
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internal representation. This work introduces two research contributions to answer

these questions.

1. Expose composable sparse polyhedral transformations through an object-oriented

API. The result is a well-specified intermediate representation for describing and

transforming sparse computations.

2. Synthesize inspectors for sparse format conversion and co-iteration optimiza-

tions. This introduces an automation technique for transforming the data layout

of a sparse computation.

1.2 Dissertation Structure

This dissertation is structured as follows. Chapter 2 introduces the necessary

background required to understand this material, the compilation pipeline, polyhedral

model, sparse polyhedral model, sparse formats, and inspector/executor paradigm.

Chapter 3 introduces the SPF intermediate representation and its supported trans-

formations. Chapter 4 introduces code synthesis, a major contribution of this work

where we describe sparse data layouts and use constraint relationships in transforming

from one layout to another. The related work to this material is provided in Chapter

5 and Chapter 6 contains the conclusion and future work.
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CHAPTER 2

BACKGROUND

In this section, we discuss concepts that form the basis of our work. The compiler

pipeline, polyhedral model, sparse polyhedral model, and sparse formats are key

concepts used in our research.

2.1 Compiler Pipeline

A typical compiler pipeline consists of four stages: Preprocessor, Compiler, As-

sembler and Linker as shown in Figure 2.1

Figure 2.1: Compiler Pipeline

The preprocessor reads a high-level language containing possible directives,

processes the directives, and produces source code. The compiler produces low-level

assembly code from a high-level programming code. The assembler generates an

object file from a low-level assembly code. Finally, the linker combines the object



6

file with other object files and the run-time libraries to produce a binary executable.

We focus on transformations that are applied during the compilation stage

Figure 2.2: Compiler Stages

The compilation is divided into various stages, the first stage tokenizes the source

text into lexicons, this stage is important as it extracts important parts of the source

code sent to the parser. The parser is the second stage of the compiler pipeline, in

this stage, the Abstract Syntax Tree (AST) of the program is built from the stream

of tokens using a context-free grammar. Grammars define the syntax of a high-level
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programming language. The abstract syntax tree shows the syntatic structure of the

programming language text.

The next stage involves building the symbol table, which is a data structure that

keeps information on identifiers, and functions (formal parameter signature, return

type, and other information on the function). Type checking involves the compiler

checking if the program written by the user adheres to typing rules provided by the

high-level language, the symbol table plays an important role in type checking as the

compiler could access important information during this process.

Optimizing compilers usually have an intermediate representation that is gen-

erated from the AST of the program. Intermediate Representations or IR could

expose various optimization opportunities. Clang /LLVM use the LLVM-IR as an

intermediate representation and GCC uses Gimple. LLVM-IR [33] uses the RISC-like

instruction format (also known as three address code) of the language to enable generic

low-level optimizations and the typing information allows for high-level optimizations.

The LLVM-IR [33] and Gimple [1] use single static assignment (SSA), which means

a variable is only written to once and could be read multiple times in the program.

The AST and other lower-level IRs earlier discussed provide different optimization

opportunities.

Assembly Code generation for target machines indicates the end of the compilation

pipeline.

2.2 Polyhedral Model

The polyhedral model is an effective optimization tool for applications with affine

loop bounds. This model represents computations as sets and relations. Iteration
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spaces are represented with sets and data dependences are represented using relations.

This combination of iteration spaces and data dependences provides a partial ordering

for the target computation. Within the partial ordering, the order of execution can

be altered by enforcing relations to the iteration space. These relations are referred

to as transformations.

1 for(int i=0; i<M; i++){
2 for(int j=0; j<N ;j++){
3 printf("i: %d, j:%d\n",i,j)
4 }
5 }

Figure 2.3: A simple nested loop

2.2.1 Affine Sets and Iteration Domain

The iteration domain represents the instances of a statement in a computation. A

presburger set denotes the iteration domain. A presburger set is a set with a notation

that includes a structured integer tuple template and a set builder notation constraint

(presburger formula). Variables constrained in the presburger formula could consist

of variables in the template and symbolic constants.

{[i, j] ∈ Z2 : 0 ≤ i < n ∧ 0 ≤ j < n : n ∈ Z} (2.1)

In Equation 2.3, [i, j] is the structured integer tuple template formalised as shown

in Equation 2.2 and n is a symbolic constant introduced in the constraints.

[i0, i1, ..., id−1], d ≥ 0 : d, i ∈ Z (2.2)
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The presburger formula in Equation 2.3 example is given as 0 ≤ i < n∧0 ≤ j < n.

The presburger set can be fully expanded as a roster notation for n = 3 as shown

below

{[0, 0], [0, 1], [0, 2], .....[2, 2]}

The polyhedral model uses this reasoning to represent iteration instances as pres-

burger sets. Take for example the loop shown in Figure 2.3 can be represented as the

presburger set below

{[i, j] : 0 ≤ i < M ∧ 0 ≤ j < N}

2.2.2 Affine Access Relations, Maps, and Schedules

Amap is a binary relation of a structured integer tuple. Maps are formally denoted

as the presburger relation- element pair description consisting of a pair of templates

and a presburger formula C in terms of the variables in the template.

{[i0, .., id] ∈ Zd → [j0, ..., jn] ∈ Zn : C} (2.3)

Access relations map the iteration domain of a statement to its array accesses.

The access relation map is important for data dependence analysis and validating

transformations. Read-after-write (RAW) and write-after-read (WAR) dependencies

have to be maintained after transformations. On the other hand, write-after-write

(WAW) and read-after-read (RAR) dependencies do not need to be preserved.

The Figure 2.4 shows S1 and S2 reading from arrays a and t respectively expressed
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for(int i=0; i<N; i++){
S1: t[i] = f(a[i])
}
for(int i=0; i<N ;i++){
S2: b[i] = g(t[N-i-1])
}

Figure 2.4: A code listing showing reads and writes on array accesses.

as an access relation shown below

{S1[i]→ a[i]}

{S2[i]→ t[N − i− 1]}

Statements S1 and S2 writes to t and b respectively as shown below

{S1[i]→ t[i]}

{S2[i]→ b[i]}

A Schedule is a strict partial order of elements on the instance set that specifies

the order in which statements should be executed. Statement S1 is executed before

statement S2. This information can be represented with the schedule.

{S1[i]→ [0, i]}

{S2[i]→ [1, i]}

Maps can be used to transform the iteration domain of a statement to explore

optimization opportunities. One can apply the following relation to the iteration
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space of the code listing in Figure 2.3 to do loop interchange.

IC = {[i, j]→ [j, i]}

I ′ = IC(I)

Performing code generation on I ′ yields the code listing in Figure 2.1.

1 for(int j=0; j<N; j++){

2 for(int i=0; i<M ;i++){

3 printf("i: %d, j:%d\n",i,j);

4 }

5 }

Listing 2.1: Transformed loop after applying Interchange (see Figure 2.3).

2.2.3 Affine Operations

The polyhedral model supports some operations that are used in this work. The

operations include cardinality, affine hull, range of a map, union, intersection, apply

map to set, equality, subset and super set to mention a few.

2.3 Sparse Polyhedral Model

The sparse polyhedral framework (SPF) extends the polyhedral model by sup-

porting non-affine iteration spaces and transformations using uninterpreted functions.

SPF provides much of the same functionality as traditional polyhedral tools: code

generation with CodeGen+ [15] built on Omega [57] and precise set and relation

operations in the presence of uninterpreted functions with IEGenLib [51].
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2.3.1 Uninterpreted Functions

In sparse computations, array accesses become part of the loop bounds in com-

putation, this cannot be modeled in the polyhedral framework. This is termed non

affine and is represented as uninterpreted functions in the sparse polyhedral model.

Uninterpreted functions (UF) are a special case of symbolic constants. Uninterpreted

functions represent data structures such as index arrays in sparse data formats.

A unique advantage of introducing uninterpreted functions is that mathematical

properties of a function can be added to the model thereby extending the applicability

of the polyhedral framework. For example every function satisfies the constraint that

if the same input is given, the same output will be produced. This is called functional

consistency, defined below

z = x =⇒ f(z) = f(x)

SPF provides mechanisms to further describe uninterpreted functions- domain,

range, and index array properties. This information is used for data dependence

optimizations [36] and in this work, for code synthesis.

2.3.2 Non-Affine Iteration Space

When defining the space for a sparse matrix-vector multiplication in the code

listing in Figure 3.2, non-affine array accesses used in loop bounds are modeled as

uninterpreted functions as shown below

I = {[i, k] : 0 ≤ i < N ∧ rowptr(i) ≤ k < rowptr(i+ 1)}
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2.3.3 Non-affine Data Accesses and Maps

In SPF, Uninterpreted functions are allowed in data access relations. The Sparse

Matrix Vector Multiplication (SPMV) as shown in Figure 3.2 show an indirect read

access to the vector x modelled as a relation shown below

{[i, k]→ [t]|t = col(k)}

2.3.4 Non-affine Transformations

Transformations done in the sparse polyhedral framework are built on the inspec-

tor executor paradigm. Uninterpreted functions can be introduced into a transfor-

mation and applied to a computational kernel (executor) with the assumption that

the uninterpreted functions will already be generated at compile time and populated

at run-time (inspector).

2.3.5 Composition Theorems

Strout et al. ’s [52] work introduced composition theorems used in this work.

Their work introduced precise application and composition operations in non-affine

sets and maps. Proofs for the listed theorems can be found in the referenced work [52].

In this work, we make use of Case 1 theorem 1

Theorem 1 (Case 1: Both Relations are functions) Let x, y, v, and z be inte-

ger tuples where |y| = |v|, F1() and F2() be either affine or uninterpreted functions,

and C1 and C2 be sets of constraints involving equalities, inequalities, linear arith-

metic, and uninterpreted function calls in
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{v→ z|z = F1(v) ∧ C1} ◦ {x→ y | y = F2(x) ∧ C2}

The result of the composition is {x → z | ∃ y, v | y = z ∧ z = F1(v) ∧ C1 ∧ y =

F2(x) ∧ C2} which is equivalent to

{x→ z | z = F1(F2(x)) ∧ C1[v/F2(x)] ∧ C2[y/F2(x)]}

where C1[v/F2(x)] indicates that v should be replaced with F2(x) in the set of con-

straints C1.

2.4 Inspector/Executor Paradigm

An inspector computes information at run-time to drive transformations. The

executor—- a compile-time transformer of the original code—- uses information com-

puted by the inspector. Inspectors can be reasoned as the population of uninterpreted

functions and executors can be reasoned to use these uninterpreted functions to guide

transformations.

2.5 Sparse Formats

Sparse formats describe how sparse coordinates and corresponding data are stored

and are often based on sparse matrix formats. Data is said to be sparse if it

has a relatively large amount of non-zeros. Figure 2.6 shows a few of the most

common sparse matrix formats including the coordinate format. The coordinate

(COO) format stores each non-zero and stores the coordinate indices in separate

arrays organized by dimension. Compressed Sparse Row (CSR) compresses the



15

rows and each non-zero is ordered and has a corresponding uncompressed column

coordinate. Blocked Compressed Sparse Row splits the dense matrix into blocks and

compresses the blocked rows. Diagonal (DIA) compresses each diagonal of a matrix.

Sparse tensor formats specifically designed for higher dimensional data include

HICOO [34] and Alto [28]. These formats are more complex and involve sorting and

other data structures. Morton Coordinate (MCOO) format preserves locality of the

data points in its multidimensional coordinates. The binary of the coordinates of

each non zeros are interleaved and the resulting value sorts the placement of data

values in the format.

The key concept for each sparse tensor format is that the auxiliary (or index)

arrays provide the dense coordinates of the corresponding data. Taken together they

provide a mapping from an iteration space to a data space.
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for(int i=0; i<N; i++){
for(int k=rowptr[i]; k < rowptr[i+1] ;k++){

y[i] += a[k] * x[col[k]];
}

}

Figure 2.5: Sparse Matrix Vector Multiply

Figure 2.6: Sparse Matrix Formats.
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CHAPTER 3

COMPUTATION INTERMEDIATE REPRESENTATION

The sparse polyhedral framework extends the polyhedral model by supporting

non-affine iteration spaces and transformations using uninterpreted functions. Unin-

terpreted functions are symbolic constants that represent data structures such as the

index arrays in sparse data formats. The SPF provides much of the same function-

ality as traditional polyhedral tools: code generation with CodeGen+ [15] built on

Omega [57] and precise set and relation operations in the presence of uninterpreted

functions with IEGenLib [51]. However, these tools are not tightly integrated and

each has their own low-level API to interact with individual components. These

components include ways to represent sets and relations internally, statements in a

computation, codegeneration, and analyses. In some cases some tools support code

generation [16,17,45,55] while some others do not [2].

This chapter discusses the SPF intermediate representation (SPF-IR) and the

Computation API. The Computation API provides a precise specification of how to

combine the individual components of the SPF to create an intermediate represen-

tation. This IR can directly produce Polyhedral Dataflow Graphs (PDFGs) [21] and

translates graph operations defined for PDFGs into relations used by IEGenLib to

perform transformations. In this work, we extend the PDFG representation to handle

non-affine loops with imperfect nesting and loop carried dependences.
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Figure 3.1 shows an overview of our optimization framework and where the com-

putation API fits in the process. Spf-i/e highlighted grey in the figure is a tool that

automates translation from source code to our IR and is publicly available [5]. In this

work we focus on manually translating original source code to the SPF IR. The SPF

IR by itself supports composable transformations by virtue of the sparse polyhedral

framework. Graph operations on a PDFG generates composable transformations and

are applied to statements in the IR.

This chapter answers the first research question that reasons about what consti-

tutes a complete internal representation for sparse computations and how that internal

representation be transformed using known methods. To answer this question, we

introduce a formal intermediate representation using low level SPF API such as

CodeGen+, Omega and IEGenlib to provide a unique entry point to describe sparse

computations in a manner suitable for transformations. We also provide standard well

known operations such as fusion, dead variable elimination, inlining, reschedule and

unaffined transformation operations on statements in the representation. CHiLL [27],

an SPF tool, provides a script based interface for the SPF and supports non-affine

transformations by using Omega. Omega has limitations on the precision of opera-

tions involving uninterpreted functions, as well as restrictions on how they must be

expressed. This work overcomes limitations of previous approaches by making use of

precise set and relation manipulation tool using IEGenlib.

Visualizing a computation as a graph is a well known method in guiding optimiz-

ing experts. We further answer this research questions by enabling the automatic

generation of a Polyhedral Data Flow Graph (PDFG) to provide research experts to

better reason about optimizations.
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Figure 3.1: Optimization Pipeline Overview

3.1 Computation: A C++ Class

The interface to the SPF is implemented as a C++ class in IEGenLib. The

computation class contains all of the information required to express a computation or

a series of computations. This includes: data spaces, statements, data dependences,

and execution schedules. This section describes the design and interface for each of

these elements. Matrix vector multiplication is used as a running example throughout

the rest of this paper. Figures 3.1 and 3.2 show the dense and sparse versions.

1 for (i = 0; i < N; i++) {

2 for (j=0; j<M; j++) {

3 y[i] += A[i][j] * x[j];

4 }

5 }

Listing 3.1: Dense Matrix Vector Multiply

1 for (i = 0; i < N; i++) {

2 for (k=rowptr[i]; k<rowptr[i+1]; k++) {

3 j = col[k];

4 y[i] += A[k] * x[j];

5 }

6 }

Listing 3.2: Sparse Matrix Vector Multiply
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3.2 Data Spaces

A data space represents a collection of conceptually unique memory addresses.

A data space of 0 dimensions is equivalent to a scalar. Each combination of data

space name and input tuple is guaranteed to map to a unique space in memory for

the lifetime of the data space. For example, D(s⃗), guarantees that for each unique

tuple s⃗ there will be a unique memory location, and that during the lifetime of D its

memory locations will not overlap with any other live data space’s memory locations.

By default all data spaces are generic. They are defined with the syntax D(s⃗).

For example, for a 3 parameter input tuple i, j, k the data space can be represented

as D(i, j, k). This data space can be written to only once but read from any number

of times. The exception to this rule is for accumulation operations when a single

data location within a data space can be written to multiple times (+ =,− =, ∗ =

,max,min...).

The data spaces represented in the matrix vector multiply example include: y,

A, and x. In the sparse version the index arrays rowptr and col are also considered

data spaces. However, since they are used within the loop bounds and to access

into another data space they must be constant for the duration of this computation.

Therefore, they are not required as part of the Computation’s definition.

1 // dense

2 Computation* dsComp = new Computation();

3 dsComp->addDataSpace("y");

4 dsComp->addDataSpace("A");

5 dsComp->addDataSpace("x");

6

7 // sparse

8 Computation* spsComp = new Computation();
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9 spsComp->addDataSpace("y");

10 spsComp->addDataSpace("A");

11 spsComp->addDataSpace("x");

3.3 Statements

Statements perform read and write operations on data spaces. We restrict the

definition of statements to be basic blocks. There is a single entry and a single exit

from each block of code represented.

All statements have an iteration domain associated with them. This iteration

domain is a set containing every instance of the statement and has no particular order.

It is typically expressed as the set of iterators that the statement runs over, subject

to the constraints of their iteration (loop bounds). The following code block shows

how to create a statement using the Computation API. A statement is written as a

string as seen on lines 2 and 5 below for the dense and sparse cases respectively. The

iteration domain is specified as a set using the IEGenLib syntax, with the exception

of delimiting all data spaces with $, this can be seen on lines 3 and 6 below.

1 Stmt* ds0 = new Stmt(

2 "y(i) += A(i,j) * x(j);",

3 "{[i,j]: 0 <= i < N && 0 <= j < M}", ...

4

5 Stmt* sps0 = new Stmt(

6 "y(i) += A(k) * x(j)",

7 "{[i,k,j]: 0 <= i < N && rowptr(i) <= k < rowptr(i+1) && j = col(k

)}", ...
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3.4 Data Dependence Relationships

Data dependences exist between statements. They are encoded using relations

between iteration vectors and data space vectors. Calculating a closure provides the

dependence relationships between statements and a partial ordering constraint on the

calculation. In our running examples the data reads and writes can be specified as

written below.

8 /* 4th and 5th parameters to Stmt constructor */

9 // dense

10 ...

11 { // reads

12 {"y", "{[i,j]->[i]}"},

13 {"A", "{[i,j]->[i,j]}"},

14 {"x", "{[i,j]->[j]}"}

15 },

16 { // writes

17 {"y", "{[i,j]->[i]}"}

18 }

19

20 // sparse

21 ...

22 { // reads

23 {"y", "{[i,k,j]->[i]}"},

24 {"A", "{[i,k,j]->[k]}"},

25 {"x", "{[i,k,j]->[j]}"}

26 },

27 { // writes

28 {"y", "{[i,k,j]->[i]}"}

29 }
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3.5 Execution Schedules

Execution schedules are determined using scattering functions that are required to

respect the data dependence relations. Scheduling functions take as input the iterators

that apply to the current statement, if any, and output the schedule as an integer

tuple that may be lexicographically ordered with others to determine correct execution

order of a group of statements. Iterators are commonly used as part of the output

tuple, representing that the value of iterators affects the ordering of the statement.

For example, in the scheduling function {[i, j]− > [0, i, 0, j, 0]}, the position of i before

j signifies that the corresponding statement is within a loop over j, which in turn is

within a loop over i. Additionally, in a lexicographical ordering, all instances of the

statement with i = 1 will precede all instances with i = 2, regardless of the value of

j.

31 /* 3rd parameter to the Stmt constructor */

32 // dense

33 "{[i,j] ->[0,i,0,j,0]}"

34

35 // sparse

36 "{[i,k,j]->[0,i,0,k,0,j,0]}"

Figure 3.2 shows the complete specification of two computation, first dense matrix

vector multiply followed by sparse matrix vector multiply.

3.6 Code Generation

The Computation class interfaces with CodeGen+ [15] for code generation. Code-

Gen+ uses Omega sets and relations for polyhedra scanning. Omega sets and relations
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have limitations in the presence of uninterpreted functions. Uninterpreted functions

are limited by the prefix rule. This rule states that an uninterpreted function must be

a prefix of the tuple declaration. Uninterpreted functions cannot have expressions as

parameters. Code generation overcomes this limitation by modifying uninterpreted

functions in IEGenLib to be Omega compliant, while storing a mapping of the original

uninterpreted function to its modified uninterpreted function. The separation of rep-

resentations for transformations and code generation allows precise operations during

transformations while still leveraging the functionality of CodeGen+ for polyhedra

scanning.

Figure 3.3 shows the results of code generation for the sparse matrix vector

multiplication computation defined in Figure 3.2. Line 2 of Figure 3.3 defines a

macro for the statement s0, lines 9 - 13 remap the Omega compliant uninterpreted

function back to its original. Lines 15 - 20 are a direct result of polyhedra scanning

from CodeGen+. The Computation implementation provides all of the supporting

definitions for fully functional code.

3.7 Visualizing a Computation on a Graph

Visualizing computations as a data flow graph gives performance experts a suitable

view to reason about transformations for optimization opportunities. To this end,

PDFGs express regular computations using a combination of the polyhedral model

and dataflow graphs [21]. The original graphs have certain limitations: loop carried

dependences were not expressed, and imperfect loop nests were not supported. This

section describes how these limitations were overcome. Additionally, the creation of

PDFGs by traversing the SPF IR is integrated with the Computation API. After a
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Computation is created such as the one in Figure 3.2 a function can be called that

outputs the PDFG as a dot file.

In the original PDFG, shaded rectangular boxes represent data spaces and inverted

triangles represent statements. In the extended PDFG, shaded rectangular boxes

represent domains, transparent rectangular boxes represent data spaces and rounded

rectangular boxes represent statements. Edges represent reads and writes in both the

original and extended PDFG. The extended PDFG does not currently express the

type and size of data spaces in a computation.

Loop carried dependences and imperfect loop nests are important patterns to

consider when deciding which optimizations to apply. Loop carried dependences refer

to coding patterns where one iteration of a loop reads or writes data produced by

another iteration of the same loop. An imperfect loop nest is one that has statements

at multiple levels as shown in Figure 3.4.

3.8 Loop Carried Dependences

The existing representation is not capable of visualizing the presence of a loop

carried dependence. Figure 3.6 shows the PDFG for the forward solve example in

Figure 3.4. In the example, the code contains a loop carried dependence for the data

space u in statements S1 and S2. However, the original PDFG graph in Figure 3.6

does not visualize the loop carried dependence.

Figure 3.5 shows the extended PDFG. The outgoing edge from the data node u to

the statement node S1 at index j shows the read access in the j-loop. The incoming

edge from the statement node S2 to the data node u at index i shows the write access

in the i-loop. This shows a loop carried dependence over i.
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3.9 Imperfect loop nests

The forward solve example also exhibits an imperfect loop nest pattern: state-

ments S0 and S2 are in the outer i-loop while statement S1 is in the inner j loop.

The original PDFG in Figure 3.6 does not exhibit this pattern. The updated design

in the extended PDFG show in Figure 3.5 visualizes the imperfect loop pattern.

3.10 Operations on Computations

Computations are composed of IEGenLib Sets and Relations. IEGenLib’s func-

tionality is used directly to manipulate the Computations’ components. The core

operations implemented in IEGenLib include inversion, compose, apply, and related

supporting functions. Using these operations we are able to perform function inlining

and loop transformations within the Computation class.

3.11 Inlining

Computation inlining handles the complexity of creating the SPF representation

of functions that call other functions. Instances of Computations need to be reusable

in the same way that functions are reusable.

Each function in the original source code is represented as a Computation. When

a function call is first encountered in the source, a Computation must be created for

it. Then, the contents of that Computation are inserted (inlined) into the caller’s

Computation that is being constructed. If the same function is called multiple times,

the Computation that has been generated for it will be reused. The inlining process

can continue to any nesting depth, if a function being called also calls other functions.
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The inlining function is responsible for:

• avoiding naming conflicts between variables in the caller and callee,

• generating assignment statements for function parameters,

• providing callee return values to the caller and

• updating iteration domains, execution schedules and data dependences in the

inlined statements.

Before inlining, the names of data spaces and iterators in the callee are prefixed

with a unique string to avoid collisions with the caller’s data spaces, or with other

instances of the same inlined Computation within the same scope. This change is

reflected in the stored source code string of the statement, as well as other parts of

its representation that involve these names.

To keep things simple, the return values and arguments to an inlined function

are restricted to either names of data spaces or literals. To pass a more complicated

expression into a function, like A[0] or x+y, it must first be assigned to a temporary

variable which can then be passed in. To preserve the original calling semantics of

the program, when arguments are passed to a function, statements are generated to

declare each of its parameters equal to the passed in values. No equivalent process

occurs with return values, because they could potentially be used in a larger variety

of contexts (assigned to variables, used immediately in an expression, or ignored

entirely). Therefore, the inlining process returns the values that are returned by the

inlined function, as strings, to be used however the caller sees fit.

Iteration domains, execution schedules, and data access relations are updated to

reflect the surrounding context the statements have been inserted into. For example,
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if a function is called within a loop, and the callee itself also contains a loop, the

representation of the innermost statements are adjusted to reflect that they are now

nested under both loops.

3.12 Loop Transformations as Graph Operations

In this work, we provide fusion and reschedule operations on the graph. The

operations on the graph translates to transformations performed by our interface

API to manipulate the SPF components.

3.12.1 Fusion

This is a transformation that joins two statements from separate loops into a single

loop. There are various categories of loop fusion, including read reduction fusion and

producer-consumer fusion. Read reduction involves fusing loops that read from the

same memory location while producer-consumer fusion involves merging loops where

one loop writes a variable that is then read by the second loop.

Graph operation for fusing two statements together at a particular level of the

execution schedule is denoted as fuse(S1, S2, level) in our IR. S1 and S2 are the

statements to be fused and level indicates what depth to fuse at. Specifying the

depth to fuse allows for more flexibility in a fusion operation. After fusion, S2 will

be ordered immediately after S1.

3.12.2 Reschedule

The reschedule operation involves moving a statement to a new location in the

graph and consequently changing its execution schedule. Rescheduling by itself is
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not an optimization, however, it exposes optimization opportunities. The reschedule

graph operation is denoted as reschedule(S1, S2) in our IR. This will cause statement

S1 to be rescheduled to appear before S2.

3.12.3 Dead Variable Elimination

Eliminating redundant computations is an optimization technique that improves

the performance of an application. In a graph, a statement node is dead if it writes

to a data node that is never read from. In our work, we provide this transformation

as an option to the Computation intermediate representation. It should be noted

that this operation removes dead assignments from the Computation intermediate

representation. We implement this functionality by performing a breadth-first search

from dead data nodes in the graph, we keep removing statement nodes recursively

until we reach data nodes that are read from by other statements. A breadth-first

approach allows our algorithm to remove dead assignments per each level when

traversing the graph backward. This operation results in a significantly smaller

dataflow graph. Code that appears dead but have side effects are not eliminated.

This includes code that write to data locations marked as function parameters and

memory locations that are aliased.
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1 // dense mvm
2 Computation* dsComp = new Computation();
3

4 // add data spaces
5 dsComp->addDataSpace("y");
6 dsComp->addDataSpace("A");
7 dsComp->addDataSpace("x");
8

9 Stmt* ds0 = new Stmt(
10 // source code
11 "y(i) += A(i,j) * x(j);",
12 // iter domain
13 "{[i,j]: 0 <= i < N && 0 <= j < M}",
14 // scheduling function
15 "{[i,j] ->[0,i,0,j,0]}",
16 { // data reads
17 {"y", "{[i,j]->[i]}"},
18 {"A", "{[i,j]->[i,j]}"},
19 {"x", "{[i,j]->[j]}"}
20 },
21 { // data writes
22 {"y", "{[i,j]->[i]}"}
23 }
24 );
25 dsComp->addStmt(ds0);
26

27 // sparse mvm
28 Computation* spsComp = new Computation();
29

30 // add data spaces
31 spsComp->addDataSpace("y");
32 spsComp->addDataSpace("A");
33 spsComp->addDataSpace("x");
34

35 Stmt* sps0 = new Stmt(
36 "y(i) += A(k) * x(j)",
37 "{[i,k,j]: 0 <= i < N && rowptr(i) <= k < rowptr(i+1) && j = col(k

)}",
38 "{[i,k,j]->[0,i,0,k,0,j,0]}",
39 {
40 {"y", "{[i,k,j]->[i]}"},
41 {"A", "{[i,k,j]->[k]}"},
42 {"x", "{[i,k,j]->[j]}"}
43 },
44 {
45 {"y", "{[i,k,j]->[i]}"}
46 }
47 );
48 spsComp->addStmt(sps0);
49

Figure 3.2: Computation API specification for dense and sparse matrix vector
multiply
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1 #undef s0
2 #define s0(__x0, i, __x2, k, __x4, j, __x6) y(i) += A(k) * x(j)
3

4 #undef col(t0)
5 #undef col_0(__tv0, __tv1, __tv2, __tv3)
6 #undef rowptr(t0)
7 #undef rowptr_1(__tv0, __tv1)
8 #undef rowptr_2(__tv0, __tv1)
9 #define col(t0) col[t0]

10 #define col_0(__tv0, __tv1, __tv2, __tv3) col(__tv3)
11 #define rowptr(t0) rowptr[t0]
12 #define rowptr_1(__tv0, __tv1) rowptr(__tv1)
13 #define rowptr_2(__tv0, __tv1) rowptr(__tv1 + 1)
14

15 for(t2 = 0; t2 <= N-1; t2++) {
16 for(t4 = rowptr_1(t1,t2); t4 <= rowptr_2(t1,t2)-1; t4++) {
17 t6=col_0(t1,t2,t3,t4);
18 s0(0,t2,0,t4,0,t6,0);
19 }
20 }
21

22 #undef s0
23 #undef col(t0)
24 #undef col_0(__tv0, __tv1, __tv2, __tv3)
25 #undef rowptr(t0)
26 #undef rowptr_1(__tv0, __tv1)
27 #undef rowptr_2(__tv0, __tv1)
28

29

Figure 3.3: SPMV codegen

1 for (i=0; i<N; i++){
2 S0: tmp(i) = f(i);
3 for(j=0; j<i; j++){
4 S1: tmp(i) -= A(i, j)*u(j);
5 }
6 S2: u(i) = tmp(i)/A(i, i);
7 }
8

Figure 3.4: Forward Solve
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Figure 3.5: Extended PDFG. This graph is automatically generated from the Com-
putation class and includes loop carried dependences and irregular loop nests. The
lexicographical ordering of the tuples in the set attached to each statement informs
its execution order.

Figure 3.6: The Original PDFG for the Forward Solve example.
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CHAPTER 4

CODE SYNTHESIS

Many scientific applications process sparse data. Data is sparse if it has a relatively

large percentage of zeros. These applications use sparse tensor formats to reduce

memory requirements. Given the increasing number of sparse tensor formats and the

need for highly optimized routines that translate among them, automated methods

are required to synthesize the translation code. This chapter presents an approach

that describes sparse tensor formats and synthesizes translation code among them.

Synthesizing format conversion code that is performant is preferable to handwrit-

ting all possible combinations. Further optimizing hand written codes for format

conversion is tedious and hard to maintain. The best choice of sparse tensor format

changes with computational patterns and the sparsity pattern of data. Once a choice

of format has been made, optimized routines that transform the sparse code from

one format to another are required. Sparse format conversion can be from any

sparse format to any other sparse format, creating a vast space of transformations.

Furthermore, that choice may change over the lifetime of application execution.

As a simple example, consider a sparse tensor that is used in multiple phases of

computation and will sometimes be read in the first mode and later in the last.

Changing formats between phases may be advantageous depending on the number of

times the operations are executed.
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Current automated techniques are limited by the types of sparse formats that can

be expressed and transformed between. Our solution supports formats that require

ordering such as ALTO [28] and HICOO [34]. These formats (ALTO and HICOO),

utilize Morton ordering on the data indices to improve locality when performing mode-

agnostic computations. Other approaches to synthesizing sparse format conversion

do not support these formats [3, 54].

An expressive and precise mechanism to describe existing and develop new sparse

tensor formats is a key component in the code synthesis algorithm. We propose to

describe sparse tensor formats as functions from the sparse iteration space to the dense

coordinates. The functions are expressed as relations and each uninterpreted function

is further described by providing the domain, range, and universal constraints for each.

Sparse format descriptors are expressed using the sparse polyhedral framework.

The sparse polyhedral framework (SPF) provides the syntax and operations needed

to specify sparse formats and synthesize code from those specifications. SPF supports

many loop transformations including fusion, skewing, unrolling, tiling, and others.

By directly synthesizing the sparse format code to SPF and expressing the original

computation in SPF, both can be optimized in tandem.

The SPF Internal Representation (SPF-IR) provides an object-oriented interface

to access SPF operations and requirements for a fully specified computation [41]. It

can express a wide class of computations including those with imperfect loop nests and

loop-carried dependences. This work proposes a sparse format conversion synthesis

technique that emits code expressed in the SPF using the SPF-IR.

This chapter answers the second question in this dissertation a second research

on how data transformations can be automated without breaking the abstractions in

the internal representation. The contributions of this chapter include:
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• A specification of sparse tensor formats using the sparse polyhedral framework,

and

• A method to synthesize sparse format conversion routines.

We demonstrate the expressiveness of the specification with a collection of common

sparse tensor formats and we evaluate the correctness of the synthesis algorithm. A

performance comparison between our work and TACO’s implementation as shown in

Section 4.3 shows that our approach is competitive or outperforms TACO in cases

where a comparison was possible.

4.1 Sparse Tensor Format Conversion

This work introduces an approach to inspector program synthesis using deductive

reasoning for sparse tensor format conversion. Sparse formats are described using

format descriptors. The descriptors are designed to support a variety of sparse tensor

formats, specifically those that depend on user-defined sorting. User-defined sorting

allows users to specify re-ordering constraints in a sparse tensor description. Format

descriptors are combined to create a mapping from one sparse space to another. The

map serves as a source of constrained relationships between the source and destination

data structures and is the basis of inspector synthesis.

The inspector synthesis algorithm generates an SPF intermediate representation

that ensures uninterpreted functions in the destination format are created and satisfy

all constraints. The resulting intermediate representation is a sparse loop chain that

populates destination uninterpreted functions. The last operation in the sparse loop

chain is the copy operation. The initial, complete sparse loop chain, while correct,
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1 for(i = 0; i < NR; i++){
2 for(j= 0; j< NC; j++){
3 print("%d,%d,%d",i,j,A(i,j))
4 }
5 }

Listing 4.1: Kernel to print contents of a dense matrix

will often perform poorly. It can be transformed using standard SPF operations to

improve performance.

This section covers each of the required components in detail: sparse format

descriptions, the synthesis algorithm, and common transformations.

4.1.1 Sparse Format Descriptor

The sparse format descriptor contains sufficient information to create and use a

specific sparse format. Each part of the format descriptor is expressed using SPF

notation. The components include a map from the sparse to dense iteration space (a

relation), a map from the sparse iteration space to the data (a relation), the domain

and range of each uninterpreted function, and a list of universal quantifiers that

further describe the uninterpreted functions used in the first map.

Sparse to dense map. A relation expresses a function from the sparse iteration

space to the dense iteration space. The input tuple of the relation is the sparse

iteration space. Intuitively, the sparse-to-dense map can be derived from a computa-

tion that iterates through the non-zeros in a sparse format. The computation below

iterates through a dense matrix of dimensions NR×NC.

The iteration space of a dense matrix computation as shown in Listing 4.1 is given

by the set:
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1 for(n = 0; n < NNZ; i++){
2 i = row(n)
3 j = col(n)
4 print("%d,%d,%d",i,j,A(n))
5 }

Listing 4.2: Kernel to print coordinate and values of all non zeros in a COO format

{[i, j] : 0 ≤ i < NR ∧ 0 ≤ j < NC}

The computation 4.2 iterates through a COO matrix and its iteration space is

given by the set:

{[n, i, j] : 0 ≤ n < NNZ ∧ i = row(n) ∧ j = col(n)}

Similarly, the computation 4.3 iterates through a CSR matrix and its iteration

space is given by the set:

{[i, k, j] : 0 ≤ i < NR ∧ rowptr(i) ≤ k < rowptr(i+ 1) ∧ j = col(k)}

A sparse to dense map of COO and CSR is shown in Table 4.2 based on how the

sparse iteration space maps to the dense coordinate. The sparse-to-dense map must

be a function. This is required by inspector synthesis and executor transformations.

Data access relation. The data access relation, also expressed as an SPF

relation, maps from the sparse iteration space to the data space. In our example

using COO, the relation is {[n, i, j] → [n]}. The iteration space of CSR is {[i, k, j]},

and its data access relation is {[i, k, j]→ [k]}. The data access relation decouples the
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1 for(i = 0; i < NR; i++){
2 for (k = rowptr(i) ; k < rowptr(i+1); k++){
3 j = col(k)
4 print("%d,%d,%d",i,j,A(k))
5 }
6 }

Listing 4.3: Kernel to print contents of a CSR matrix

iteration space and the data space allowing them to be transformed separately.

Domain and range. The domain and range of each uninterpreted function are

required. In the COO example, the domain of each is the same. Notice that the

domain and range definitions, in this case, introduce additional symbolic constants.

Universal quantifiers. Universal quantifiers further refine the specification of

the sparse format. COO in Table 4.2 has no universal quantifiers while MCOO

introduces a universal quantifier to ensure that this COO format is sorted using

a Morton order. This is achieved with a user-defined comparison function. It is

important to note that functions that appear only within universal quantifiers are

user-defined and full definitions must be provided.

4.1.2 Synthesis Algorithm

Code synthesis refers to automatically writing the code that transforms data from

one sparse format, the source, to another, the destination. Throughout this section,

we refer to examples using COO as the source. This process works using any format

as the source. However, most sparse tensors are stored in COO and it is the easiest

format to explain.

The input to the synthesis algorithm is two sparse format descriptors and the

output is an SPF representation of the inspector. The process begins by composing
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the inverse of the destination sparse to dense map with the source sparse to dense

map (see compose definition in [51]).

RAsrc→Adest
=

(RAdest→Adense
)−1 ◦RAsrc→Adense

Using the relation and the universal constraints, we solve for each unknown

uninterpreted function and generate an SPF representation of code that generates

those uninterpreted functions. The relation that results from the composition is used

to generate the data copy code. Below is a summary of the synthesis process followed

by a detailed description of each step.

1. Invert destination format and insert permutation function.

2. Compose sparse to dense maps.

3. For each unknown UF, create the SPF representation to populate.

4. For each quantifier q in Universal Quantifiers, UQ create the SPF representation

to enforce.

5. Generate the SPF representation for the copy operation.

Invert destination format relation and insert Permutation. The format

description specifies a map from the sparse iteration space to the dense iteration space.

Inverting the relation switches the input and output tuples. Next, we introduce a

temporary uninterpreted function, referred to as the permutation, to ensure inverse

maps are functions: P ([input tuple]) = [output tuple]. The input and output tuples
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are tuples of the inverse destination format. The following demonstrates this step

when transforming to MCOO.

RAMCOO→Adense

−1 = {[i, j]→ [n2, ii, jj]|colm(n2) = jj∧

rowm(n2) = ii ∧ P (i, j) = [n2, ii, jj]∧

i = ii ∧ j = jj}

Compose. The relations are composed to realize a single mapping from the source

to the destination iteration spaces. Composition in the presence of uninterpreted

functions is supported by IEGenLib [51]. The code synthesis process centers around

this mapping.

RACOO→AMCOO
= RAMCOO→Adense

−1 ◦RACOO→Adense

RACOO→AMCOO
= {[n1, ii, jj]→ [n2, ii, jj]|

jj = col1(n1) ∧ col1(n1) = colm(n2)∧

ii = row1(n1) ∧ row1(n1) = rowm(n2)∧

P (row1(n1), col1(n1)) = [n2, ii, jj]}

Unknown Uninterpreted Functions. The relation that results from composition

in the previous step (in our example

RACOO→AMCOO
) contains a list of constraints. The uninterpreted functions (UF) from

the destination format are assumed to be unknown (unknown UF). Known UFs are

UFs from the source format, or that have been resolved at some point in synthesis.

We solve for each of the unknown uninterpreted functions and synthesize code to

populate them (Unknown UFs: rowm, colm, NNZ, P ).
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An unknown UF is solved by using its relationship with known information/func-

tions (from the source format) in our composed map. Note that NR and NC do not

appear in this list. It is not possible to reliably derive the shape of a matrix from

sparse formats. This is because outermost rows or columns may be zero values and

the matrix would look smaller than it is. Therefore, we require that variables be

available that describe the shape of the tensor.

The constraints associated with each unknown UF are identified. There are

potentially more constraints in this list than first anticipated because we must use

substitution to find all of the constraints. The list of constraints associated with each

unknown uninterpreted function in this example is shown in Table 4.3.

Synthesizing the code requires that we determine a statement to execute along

with an iteration space and an execution schedule. There are two decisions to make

at this point. First, which order to generate the unknown UFs, and second, what

statements and iteration spaces to synthesize.

Consider the general form of the relation from source sparse format to destination

sparse format.

RAsrc→Adest
= {x⃗→ y⃗ | C}

x⃗ ∈ Zl, y⃗ ∈ Zr

Where x⃗ is an integer tuple of length l, y⃗ is an integer tuple of length r, and C

is a constraints list. In the cases below UF represents the unknown uninterpreted

function and, f and f ′ represent functions that comprise linear combinations of known

uninterpreted functions and symbolic constants. u⃗ and v⃗ are integer tuples that are

subsets of x⃗ and y⃗ respectively.
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Constraints from the resulting relation RAsrc→Adest
are grouped into 5 cases. Cases

1-3 below deal with constraints that use only tuple variables from the input tuple.

Cases 4 and 5 deal with constraints that involve both the input and output tuple

variables, but the order is swapped. There are additional combinations of operators

and relation characteristics that are not considered. It may be that they will need to

be added if they are found to exist in sparse tensor formats. However, at this point,

we have added cases only for the combinations that exist in current formats.

Case 1 Constraint: UF (u⃗) = f(u⃗)

Statement: UF (u⃗) = f(u⃗)

Domain: {u⃗ : C}, where C is a constraint list from

RAsrc→Adest
after projection.

Case 1 consists of an equality constraint and both the left and right-hand sides

take the same tuple (u⃗) which is a subset of the tuple variables for the input tuple

of the original relation. The corresponding statement is an assignment statement.

The iteration space for that statement is created by projecting out all tuple variables

from the original relation that are not members of u⃗. None of the constraints in the

running example are categorized as case 1.

Case 2 Constraint: UF (f ′(u⃗)) ≤ f(u⃗)

Statement: UF (u⃗) = min(UF (u⃗), f(u⃗))

Domain: {u⃗ : C}, where C is a constraint list from

RAsrc→Adest
after projection.

Case 3 Constraint: UF (u⃗) ≥ f(u⃗)

Statement: UF (u⃗) = max(UF (u⃗), f(u⃗))
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Domain: {u⃗ : C}, where C is a constraint list from

RAsrc→Adest
after projection.

Cases 2 and 3 are inequality constraints where both the left and right-hand side uses

u⃗ which is a subset of the input tuple variables of the original relation. The unknown

UF in case 2 has an upper bound of f(u⃗), which translates to an assignment to the

minimum of f(u⃗). The unknown UF in case 3 has a lower bound of f(u⃗), which

translate to an assignment to the maximum of f(u⃗). The iteration spaces of both

cases 2 and 3 are created by projecting out all tuple variables from the original relation

that are not members of u⃗. Given that f(u⃗) is a linear combination of other known

UFs, for every tuple instance u⃗, it is necessary to get the min or max to satisfy the

inequalities in cases 2 and 3. None of the constraints in this example are categorized

as case 2 or 3.

Case 4 Constraint: UF (u⃗) = f(v⃗)

Statement: UF.insert(F (u⃗))

Domain: {u⃗ : C}, where C is a constraint list from

RAsrc→Adest
after projection.

Case 4 is an equality constraint where the vector u⃗, used on the left-hand side, is a

subset of the input tuple and the vector v⃗, used on the right-hand side, is a subset of

the output tuple. The statement synthesized is an insert call that takes the function

f(v⃗) as a parameter. The vector v⃗ in UF differentiates Case 4 from Case 1. In our

example, the constraints on rowm, colm, and P are case 4.

Not all of the constraints that qualify as case 4 in the running example can be

satisfied immediately. The relations for the constraints on rowm and colm are not
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1 P = new OrderedList(2,1,MORTON(),"<");
2 for(int c0=0;c0<NNZ;c0++){
3 P.insert(row1(c0),col1(c0));
4 }

Listing 4.4: Permutation Reordering Function P

functions. Taken with the universal constraints the relations for P is a function and

should be processed first.

{[u⃗]→ v⃗]|Clist}

The resulting relation for P follows.

{[ii, jj]→ [n2, ii, jj]|}

There are no qualifying constraints. However, when we also consider the universal

quantifiers there is enough information to create an exact mapping. The code that

would be generated from the SPF-IR representing the synthesized code creates a class

that will enforce the universal quantifier.

The Listing 4.4 shows the parameters of the list constructor are the input arity,

the output arity, the function to use as a comparator, and the desired operation (less

than or greater than). It is important to note that an exact mapping is not required.

If the transformation was to an unsorted format an arbitrary order will be used (the

order of insertion). The most specific mapping that is found is the one chosen for

synthesis.

Case 5 Constraint: UF (v⃗) = f(u⃗)

Statement: UF.insert(F (u⃗))
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Domain: {u⃗ : C}, where C is a constraint list from

RAsrc→Adest
after projection.

Case 5 consists of equality constraints where the vector v⃗ used by the left-hand side

is a subset of the input tuple and the right-hand side’s vector u⃗ is a subset of the

output tuple. The only difference between cases 4 and 5 is the use of v⃗ and u⃗ on

opposite sides of the statement.

An example of this case is the constraint on off as seen in DIA (see Table 4.1).

Suppose DIA is the destination tensor and off is to be solved for: solving for off in the

constraints will result in off(d) = j − i. Tuple variables j and i are known but tuple

variable d is not a linear combination of known tuple variables and is bounded by ND

which is also not known. In the insert abstraction, whatever constraints are present as

a universal quantifier on the UF in the description are enforced. In this example, (j−i)

is inserted into the off and the constraint ∀e1, e2 : e1 < e2 ⇐⇒ off(e1) < off(e2)

is enforced.

The order that the constraints are processed is determined by the availability of

information and the RHS of the constraint and the qualities of the relation. All UFs

on the RHS must either be known from the source format or have been previously

processed. Our running example has 4 unknown UFs: rowm, colm, NNZ, and P . P

is processed first, after P , both rowm and colm have relations that are functions and

can be processed in any order. NNZ can be processed after either rowm or colm. The

naive implementation will be case 2. However, loop fusion and dead code elimination

make it a simple assignment.

Enforce Universal Quantifiers. Any universal quantifiers present in the des-

tination format are enforced. There are two types of universal quantifiers on an un-

interpreted function: a reordering quantifier and a monotonic quantifier. Reordering
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universal quantifiers results in an ordering constraint placed on the entire destination

tensor, while a monotonic quantifier is only applicable to the uninterpreted function

being described. The Morton example below is an example of a reordering quantifier.

range(rowm) = {0 <= i < NR}

domain(rowm) = {0 <= x < NNZ}

∀n1, n2 : n1 < n2 ⇐⇒ MORTON(rown(n1), coln(n1))

<MORTON(rown(n2), coln(n2))

Here the constraint on n1, n2 has a side effect on the order of the format. A monotonic

quantifier on the other hand is local to the uninterpreted function and does not have

any effect on the ordering of the tensor. An example will be rowptr in compressed

sparse row format (CSR)- see Figure 2.6.

range(rowptr) = {0 <= x <= NNZ}

domain(rowptr) = {0 <= i <= NR}

∀e1, e2 : e1 < e2 ⇐⇒ rowptr(e1) <= rowptr(e2)

In both cases, the synthesis will ensure these constraints are satisfied. In the case of

re-ordering quantifiers, the constraints will be enforced as sorting constraints. The

generality of these constraints allows for user-defined functions in format specifications

and this is our unique contribution. In almost all cases the code synthesized during

this phase is not required for correctness and can be removed during optimization.

Generate Data Copy. The final step in the synthesis is the ”copy” code. At

this point, all uninterpreted functions in the destination format have been successfully
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synthesized as SPF specification. The copy code copies the data from the source to

the destination. The domain of the copy code is the composed relation as a set. The

statement is a copy statement and the reads and writes are the source and destination

data accesses respectively.

4.1.3 More Complex Example: COO to CSR

The COO to Morton COO example does not exercise the full strength of the syn-

thesis algorithm. This section provides an overview of synthesizing the transformation

code from COO to CSR. This more complex example demonstrates the importance

of universal quantifiers for cases beyond ordering.

Insert Permutation & Compose. The first step adds the permutation con-

straints on the inverse function of

RACSR→Adense
ensuring it is a function and then the compose operation as shown

below.

RACSR→Adense

−1 = {[i, j]→ [ii, k, jj]|ii = i ∧ col2(k) = j ∧ j = jj

∧ 0 ≤ ii < NR ∧ rowptr(ii) <= k∧

k < rowptr(ii+ 1) ∧ P (i, j) = (ii, k, jj)}

The permutation constraint P (i, j) = (ii, k, jj) can be further simplified into one

dimensional permutes P0(i, j) = ii, P2(i, j) = jj, and P1(i, j) = k.
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Figure 4.1: Constraint graph resulting from the composed relation RACOO→ACSR
.

RACSR→Adense

−1 = {[i, j]→ [ii, k, jj]|ii = i ∧ col2(k) = j

∧ 0 ≤ ii < NR ∧ rowptr(ii) <= k∧

k < rowptr(ii+ 1) ∧ P0(i, j) = i

P1(i, j) = k}

RACOO→ACSR
= RACSR→Adense

−1 ◦RACOO→ACSR

RACSR→ACSR
= {[n, ii, jj]→ [ii1, k, jj1]|ii = row1(n)∧

jj1 = col2(k) ∧ jj = col1(n) ∧ 0 ≤ ii < NR∧

rowptr(ii1) <= k ∧ k < rowptr(ii1 + 1)∧

P0(ii, jj) = ii1 ∧ P0(ii, jj) = jj1 ∧ jj = jj1

P1(ii, jj) = k ∧ ii = ii1}

The above constraint from the composition can be represented as a constraint graph as

shown in Figure 4.1. The constraint graph is internally used to represent constraints

as vertices and edges. A vertex is a term in the constraint and an edge represents a

relationship between two edges.

Applying Floyd Warshall’s shortest path algorithm on every vertex in the con-
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straint graph introduces a transitive closure behavior on the graph. A slight mod-

ification of Floyd-Warshal’s algorithm as shown in Algorithm 1 is used to perform

closure on the constraint graph.

Algorithm 1 Floyd-Warshall’s modification for Transitive Closure

Require: E : (c, v1, v2) : c ∈ {>,<,≤,≥,=} ∧ vi ∈ V
procedure Closure(G(V,E)) ▷ Constraint Graph

for k from 1 to V do
for i from 1 to V do

for k from j to V do
cost[i][j] ← GetStrongConstraint(cost[i][k],cost[k,i],cost[i][j])

end for
end for

end for

In the Algorithm 1, cost is an adjacency matrix representing the constraint graph,

GetStrongConstraint is a function that takes in an arbitrary list of constraints and

returns the strongest constraint. It assigns a number to equality(=), strong inequality

(>,<) and weak inequality (≥,≤) such that equality > strong inequality >

weak inequality. Figure 4.2 shows the new constraint graph with an explicit

constrained relationships to aid synthesis.

A key step in COO to CSR is the algorithm recognizing a similar universal

quantifier involving tuples n and k from source and destination format respectively.

A universal quantifier on an uninterpreted function will affect the overall ordering of

a tensor if and only if the tuple involves a data space tuple variable.

The data access relation for COO and CSR as shown in the table 4.2 and 4.1 is

given below:
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Figure 4.2: Constraint graph after closure operation on the composed relation
RACOO→ACSR

.

DICOO→ACOO
= {[n, ii, jj]→ [n]}

DICSR→ACSR
= {[ii, k, jj]→ [k]}

COO is sorted row first using the universal constraint below.

∀n1, n2 : n1 < n2 ⇐⇒ row(n1) <= row(n2)

CSR is also in a sorted form by default as shown:

∀k1, k2 : k1 < k2 ⇐⇒ dim0(k1) <= dim0(k2)

CSR does not have an uninterpreted function for row, but the synthesis algorithm

is aware that dim0 is dense coordinate information on the first dimension. Due to the

similarity in both array properties directly describing a data space tuple, reordering

function P1(i, j) = k can be removed in the relation and n = k directly introduced.
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Constraints involving permutation functions that are resolvable as a function of

input tuple are also removed, this goes for P0(i, j) = ii and P2(i, j) = jj. The

constraint graph 4.2 introduces an explosive number of candidates for synthesis that

could mean the same thing.

The algorithm then picks up each unknown UF and looks for constraint candidates

involving such UF. Starting with rowptr the candidates for consideration for synthesis

and its corresponding cases are shown below:

candidate 1: rowptr(ii1) <= n, Case: 2

candidate 2: rowptr(ii1) <= k, Case: 2

candidate 3: rowptr(ii1 + 1) >= 1, Case: 3

candidate 4: rowptr(ii1 + 1) >= n + 1, Case: 3

candidate 5: rowptr(ii1 + 1) >= k + 1, Case: 2

candidate 6: rowptr(ii1) < NNZ, Case: 2

candidate 7: -rowptr(ii1) + rowptr(ii1 + 1) - 1 >= 0, Case: none

The last item in the listing above does not fall into any case. The synthesis

algorithm generates code for all the statements above. In CSR descriptor as seen in

Table 4.1, rowptr has a universal quantifier as shown below:

∀ii1, ii2 : ii1 < ii2 ⇐⇒ rowptr(ii1) <= rowptr(ii2)

This quantifier does not involve a tuple used in data access so enforcing this

quantifier is local to the rowptr UF. The statement generated for this code checks if

for every ii1 < ii2 for the condition not been met, make at least equality condition

to be met this can be generated in code as:

if ( not (rowptr(ii1) <= rowptr(ii2))){
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rowptr(ii2) = rowptr(ii1);

}

The domain of the above statement that satisfies ii1 < ii2 and is also valid as the

domain of rowptr (see Table 4.1 is given in Equation 4.1.

{[ii1, ii2] : 0 <= ii1 < NR + 1 ∧ 0 <= ii2 < NR + 1 ∧ ii1 < ii2} (4.1)

Equation 4.2 also means the same thing and is computationally less expensive

compared to Equation 4.1. In the implementation, we prefer the latter to the former.

{[ii1, ii2] : 0 <= ii1 < NR + 1 ∧ ii2 = ii1 + 1} (4.2)

Finally, we pick up constraints from the graph 4.2 involving CSR’s col2 as shown

in the listing below

candidate 1: col2(n) = jj, Case: 1

candidate 2: col2(k) = jj, Case: 1

candidate 3: col2(k) = jj1, Case: 1

candidate 4: col2(n) = col1(n) , Case: 1

candidate 5: col2(k) = col1(n) , Case: 1

candidate 6: col2(n) >= 0, Case: 3

candidate 7: col2(k) >= 0, Case: 3

candidate 8: NC > col2(n), Case: 2

candidate 9: NC > col2(k), Case: 2
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All nine candidates in the listing are valid for code synthesis, however, one case

is sufficient enough to generate code. We prefer case 1 candidates over other cases as

it results in an equality constraint that fully covers the uninterpreted function. For

instance, picking candidate 1 will result to an iteration space shown in Equation 4.3

{[n, ii, jj] : 0 <= n < NNZ ∧ ii = row(n) ∧ jj = col(n)} (4.3)

A list of selected candidates for each uninterpreted function is assigned a unique

execution schedule. The synthesis algorithm also works as a fixed-point solution.

The algorithm picks an unknown UF and attempts to apply previously discussed

operations to it, if in the case where there is no valid solution or candidates that fall

into any case, the UF is placed at the back of the queue and other UFs get solved.

When the algorithm has reached a point where nothing is being solved and items still

remain in the queue, the program terminates early with an error indicating which

uninterpreted function was not able to be solved. Fully describing computations

in SPF IR also requires read and write accesses, this is computed in all selected

candidates by static analysis. Figure 4.6 shows code generated from the SPF IR

representation produced by the synthesis algorithm.

4.1.4 SPF Transformations for Optimization

The initial SPF representation may contain redundant or unnecessary code and

use loop structures that are less than ideal for performance. We employ a collection

of standard SPF transformations to improve performance.

In the synthesis process, we pick up constraints that are viable candidates for

synthesizing statements for an unknown UF. However, this can produce multiple
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statements that do the same thing. If multiple statements cover the same data space

we remove all but one of them.

There are situations where the permutation, P is not required for code correctness.

This case is detected using standard dead code elimination. SPF, at its most basic,

is a dataflow graph. That graph is traversed backward, starting with the live-out

dataspaces. Any dataspace and corresponding computation that is not visited is

removed.

Fusion combines two loops into one loop. Read reduction fusion aims at combining

statements that read from the same location in memory to reduce memory footprint.

Previous work [41] shows support for fusion in SPF. Multiple reads on the same data

location occur in synthesis as a series of loop chains.

Producer-consumer fusion combines chains of loops that write and then read from

the same data. This often results in reducing the space needed for temporary data

storage. All opportunities to apply read-reduction and producer-consumer fusion are

applied.

4.2 Implementation

Our implementation uses IEGenLib [51] for sparse set and relation manipulation.

The synthesis algorithm generates the SPF IR using the SPF API [41] which supports

code generation with polyhedral scanning. In this section we describe implementation

details, algorithm complexity, and the data structures used in our work.
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4.2.1 Detailed Algorithm

In this section, we will be focusing on implementation details as regards to the

synthesis algorithm and its working mechanism. Algorithm 2 shows a more detailed

implementation of the synthesis algorithm.

The AddPermutation adds a permutation UF P ([in]) = [out] constraint to its

relation parameter. The procedure RemovePermuteEqualToResolvableTuples re-

moves all unnecessary permute functions that would generate redundant code—

functions that are equal to resolvable output tuples. An output tuple is termed

resolvable if it can be expressed as a function of input tuple variables and/or known

uninterpreted functions. The compose operation ◦ has been defined earlier in Sec-

tion 2 Theorem 1. The procedure BuildConstrGraph builds a constraint graph from

the constraints of a relation, an example of this graph is seen in Figure 4.1. The

function Closure applies Floyd-Warshall’s algorithm as described in Algorithm 1,

this explores more possible candidates for synthesis. The procedure GetConstraints

takes in a constraint graph and returns a list containing all the edges in the graph as

constraints. All symbolic constants and uninterpreted functions are computed using

the GetSymbols procedure in the algorithm. This is important for populating known

and unknown UFs/symbolic constants; crucial for the synthesis algorithm.

Solving for a UF in an equation/constraint is important for synthesis. This ensures

that the unknown UF is solved for and stays in the LHS of the equation. The

solveForUF solves for a uf in the provided constraint. The cases earlier discussed

in Section 4.1.2 are calculated by the algorithm with the function GetSynthCase.

This function makes use of all the conditions enumerated to categorize a constraint

as falling into cases 1 to 5 and a special case of undefined. Undefined cases will
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return false for an IsV alid while cases 1 to 5 will return true. The procedure

GetCaseDomain uses projectOut (see Background Section 2) set operation to remove

tuples that are not a part of the constraint c. This is an efficient way to create a

domain/space that covers the constraint c from the relation Rsrc→dest. The procedure

GetCaseStatement creates a statement based on the synthesis case discussed in

Section 4.1.2. The reads and writes are obtained using procedures GetReads and

GetWrites respectively. This is computed by inspecting the LHS for write accesses

and the RHS for read accesses in the statement generated. The execution id keeps

track of the execution schedules of each successfully generated component of the

algorithm. Uninterpreted functions in the source and destination format are described

using domain, range, and array properties. The procedure GetUFProperty abstracts

the call for retrieving information about a UF. If a UF has an array property and

its domain does not span a data space tuple, we generate code to enforce such array

property as shown in Algorithm 3.

Enforce array property procedure is detailed in Algorithm 3. The components of

the ufProperty include the domain, range, and array properties. Figure 4.3 shows

the components of an array property used in the Algorithm specification 3. The

function BuildQuantDomain builds a set that covers the domain for enforcing an

array property. The procedure uses the LHS predicate as a constraint in the set, the

quantification as the tuple declaration, and all tuple variables are restricted by the

domain of the function. The BuildQuantDomain builds a set shown in Equation 4.4

given an array property 4.3 and domain of rowptr in Table 4.1.

{[ii1, ii2] : 0 <= ii1 <= NR ∧ 0 <= ii2 <= NR ∧ ii1 < ii2} (4.4)
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Figure 4.3: Components of a UF Array Property

The GetMinimalStmt procedure returns a minimal statement required for the

RHS predicate of the array property to be true. RHS predicate as shown in Figure 4.3

synthesizes a statement rowptr(ii2) = rowptr(ii1). The statement generated by this

step in the algorithm for the rowptr example is given in the listing below.

for(ii1 = 0; ii1 <= NR; ii1++){

for(ii2 = ii1+1; ii2 <= NR; ii2++){

if (not (rowptr(ii1) <= rowptr(ii2))){

rowptr(ii2) = rowptr(ii1)

}

}

}

Generate copy code procedure creates a final copy computation from the source to

the destination after all uninterpreted functions have been successfully synthesized.

4.2.2 Ordered and Unordered Set Data Structure

The abstraction in Figure 4.7 shows the data structure used in special unin-

terpreted functions. Special uninterpreted functions fall into cases 5 and 4. The

abstraction consists of insert, comparator, sort, and get. Insert adds tuples to the

abstraction, the comparator is a compile-time generated reordering function, sort

reorders the inserted tuple based on the comparator and get returns the tuple for
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Algorithm 2 Synthesis Algorithm

procedure Synthesis(srcDesc, destDesc)
spf ir ← ∅
Rsrc→dense ← srcDesc.SparseToDenseMap
Rdest→dense ← destDesc.SparseToDenseMap
Rdense→dest ← Rdest→dense

−1

AddPermutation(Rdense→dest)
RemovePermuteEqualToResolvableTuples(Rdense→dest)
Rsrc→dest ← Rdense→dest ◦Rsrc→dense

G(V,E)← BuildConstrGraph(Rsrc→dest)
GT (V,E)← Closure(G(V,E))
C ← GetConstraints(GT (V,E))
unknownUFs← GetSymbols(Rdense→dest)
knownUFs← GetSymbols(Rsource→dense)
execution id← 0
while unknownUFs is not empty do

uf ← unknownUfs.dequeue()
solvedFor ← false
for c ∈ C do

if uf ∈ c then
eq ← SolveForUF (c, uf)
case← GetSynthCase(eq, Rsrc→dest)
if IsV alid(case) then

domain← GetCaseDomain(c, case,Rsrc→dest)
statement← GetCaseStatement(c, case,Rsrc→dest)
reads← GetReads(c, case,Rsrc→dest)
writes← GetWrites(c, case,Rsrc→dest)
execution sched← GetSchedule(execution id)
spf ir.add((statement, domain, reads, writes, execution sched))
execution id← execution id+ 1
solvedFor ← true

end if
end if

end for
if solvedFor is false then

unknownUfs.enqueue(uf) ▷ Place back in queue if not solved for
else

knownUFs.push(uf)
ufQuantifier ← GetUFQuantifier(uf)
if ufQuantifier ̸= ∅ then

EnforceArrayProperty(spf ir, ufQuantifier, uf)
end if

end if
end while
GenerateCopyCode(spf ir, srcDesc, destDesc, execution id) return spf ir

end procedure=0
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Algorithm 3 Enforce array property procedure

procedure EnforceArrayProperty(spf ir, ufQuantifier, uf, execution id)
ufdomain← ufProperty.domain
ufProperty← ufQuantifier.arrayProperty
q← ufProperty.quantification
lhsPred← GetLHSPredicate(ufProperty.predicate)
rhsPred← GetRHSPredicate(ufProperty.predicate)
domain← BuildQuantDomain(ufdomain, q, lhsPred)
statement← ” if (not (”+rhsPred+”)) {”+GetMinimalStmt(rhsPred)+”}”
reads← GetReads(statement)
writes← GetWrites(statement)
spf ir.add((statement, domain, reads, writes, execution sched))

end procedure

Algorithm 4 Generate copy code algorithm

procedure GenerateCopyCode(spf ir, srcDesc, destDesc, execution id)
DIsrc→Asrc ← sourceDesc.DataAccess
DIdest→Adest

← destDesc.DataAccess
copyStatement← GetCopyStatement(DIsrc→Asrc , DIdest→Adest

)
copyDomain← ToSet(Rsrc→dest)
execution sched← GetSchedule(execution id)
spf ir.add((statement, domain, reads, writes, execution sched))

end procedure
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1 // off(d)
2 #define off(d) off->get_inv(d)
3 Permute < forall e1,e2: e1<e2 <=> off(e1)< off(e2)> off = new

Permute();
4 // off insert (j - i) used inside of some domain
5 off->insert( {j - i});

Figure 4.4: An example of code generated for Case 4 with offset in DIA

a certain position in the abstraction. Consider the constraint off(d) = j − i, with

constraint ∀e1, e2 : e1 < e2 ⇐⇒ off(e1) < off(e2) code generated is shown in Figure

4.4 for insert statements and access of off uninterpreted function.

4.2.3 Reorder Stream on Permutation

Iterating through the source format and retrieving new positions using the get

function in Figure 4.7 is expensive. In the implementation, we introduce a data

structure that explores streaming. This technique iterates through the reorder func-

tion rather than the source format. This way explore keeping read accesses to the

reorder function in the cache and avoid unpredictable jumps when iterating through

the source format. We use a slightly modified data structure as seen in Figure 4.5.

Functions insert, setComparator, sort, and getSize are similar to the initial permute

data structure in Figure 4.7. The major change includes the introduction of the

getMap, getDim, and a dim parameter with the constructor. The getMap function

returns the new reordered position for an old position idx, and getDim returns the

dense dimension for some old position idx.

4.2.4 Complexity

This section discusses the complexity of the synthesis algorithm and the resulting

generated code from synthesis. The resulting code from synthesis is the inspector for



61

1 ReorderStream{
2 ReorderStream(dim)
3 void insert(Tuple tuple)
4 void setComparator(Comparator comp)
5 void sort()
6 getSize()
7 int getMap(idx)
8 int getDim(dimension,idx)
9 };

Figure 4.5: Permutation Data Structure Exploring Reorder Stream

sparse format conversion that converts from one sparse format to another. It should

be noted that the synthesis algorithm complexity is a compile time cost for inspector

generation while the inspector complexity of the generated code is a run time cost.

All evaluation done in this work in Section 4.3 evaluates the inspector code for format

conversion and not the synthesis algorithm complexity.

Synthesis Algorithm Complexity

The synthesis algorithm is made up of generating the initial SPF IR and code

generation from the SPF IR. The asymptotic complexity of generating the SPF IR

with the synthesis algorithm is O(nm) where n is the number of unknowns and m

is the number of constraints. The SPF IR supports code generation with polyhedral

scanning which has an exponential complexity O(qp) where q is the number of state-

ments in the IR and p is the tuple size of the execution schedule of the computation.

In practice, the number of statements and size execution schedule is usually small

and oftentimes influenced by the number of UFs present in the destination formats.

The overall complexity of the synthesis algorithm all the way to code generation is

given as O(qp).
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Inspector Complexity

In our generated code, the complexity depends on the reorder function been

present in the final generated code. In the situation where the permutation reorder

function is generated, the worst case of code generated will be O(n log n) where n

is the number of elements in the data of the source format. In situations when the

reorder function is not generated, the worst case of the code generated will be O(n).

The extra cost of using the reorder function is as a result of its required sorting step.

4.3 Evaluation

We evaluated the correctness and performance of the synthesized code using a set

of sparse matrices from the SuiteSparse Matrix Collection [23]. The synthesized code

is serial, we do not explore parallelization opportunities. We show results for COO

to CSR (COO CSR), CSR to CSC (CSR CSC), and COO to DIA (COO DIA). The

performance of the transformations varies depending on the target format. The COO

to CSR transformation is 2.85x faster than TACO, while the more complex COO to

DIA is 1.4x slower than TACO but faster than SPARSKIT and Intel MKL using a

geometric average. We evaluate results for COO MCOO by comparing our results

with handwritten z-Morton step reordering in HiCOO. All speedup or slowdown

comparisons use geometric averages.

4.3.1 Experimental Setup

All experiments are run on a Linux (CentOS release 7) cluster supporting 27

compute nodes, each with dual Intel Xeon E5-2680 14-core CPUs. We compile

generated code and TACO code using GCC 10.2.0.
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1 #define s_0(n, ii) rowptr(ii) = min(rowptr(ii),n)
2 #define s0(__x0, a1, __x2, a3, __x4, __x5, __x6, __x7, __x8, __x9,

__x10, __x11, __x12) s_0(a1, a3);
3 #define s_1(n, ii) rowptr(ii + 1) = max(rowptr(ii + 1),n + 1)
4 #define s1(__x0, a1, __x2, a3, __x4, __x5, __x6, __x7, __x8, __x9,

__x10, __x11, __x12) s_1(a1, a3);
5 #define s_2(e1, e2) if ( not (rowptr(e1) <= rowptr(e2))){rowptr(e2)

= rowptr(e1);}
6 #define s2(__x0, a1, __x2, a3, __x4, __x5, __x6, __x7, __x8, __x9,

__x10, __x11, __x12) s_2(a1, a3);
7 #define s_3(n, ii, jj, ii1, k, jj1) col2(k)=jj1
8 #define s3(__x0, a1, __x2, a3, __x4, a5, __x6, a7, __x8, a9, __x10,

a11, __x12) s_3(a1, a3, a5, a7, a9, a11);
9 #define s_4(n, ii, jj, ii1, k, jj1) ACSR(ii,k,jj) = ACOO(n,ii,jj )

10 #define s4(__x0, a1, __x2, a3, __x4, a5, __x6, a7, __x8, a9, __x10,
a11, __x12) s_4(a1, a3, a5, a7, a9, a11);

11 ......
12 if (NR >= 1 && NC >= 1) {
13 // Case 2 : rowptr
14 for(t2 = 0; t2 <= NNZ-1; t2++) {
15 t4=row1_0(t1,t2);
16 s0(0,t2,0,t4,0,0,0,0,0,0,0,0,0);
17

18 }
19 // Case 3: rowptr
20 for(t2 = 0; t2 <= NNZ-1; t2++) {
21 t4=row1_0(t1,t2);
22 s1(1,t2,0,t4,0,0,0,0,0,0,0,0,0);
23 }
24 }
25 // Enforcing array property on rowptr
26 for(t2 = 0; t2 <= NR-1; t2++) {
27 s2(2,t2,0,t2+1,0,0,0,0,0,0,0,0,0);
28 }
29 if (NC >= 1 && NR >= 1) {
30 // Case1: col
31 for(t2 = 0; t2 <= NNZ-1; t2++) {
32 t4=row1_0(t1,t2);
33 t6=col1_1(t1,t2);
34 s3(3,t2,0,t4,0,t6,0,t4,0,t2,0,t6,0);
35 }
36 // Copy code
37 for(t2 = 0; t2 <= NNZ-1; t2++) {
38 t4=row1_0(t1,t2);
39 t6=col1_1(t1,t2);
40 s4(5,t2,0,t4,0,t6,0,t4,0,t2,0,t6,0);
41 }
42 }

Figure 4.6: An example of code generated COO To CSR. Code sections are omitted
for clarity.
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1 Permute <Comparator> {
2 vector<Tuple> newPos;
3 Permute(Comparator comparator)
4 void sort()
5 void insert(Tuple tuple)
6 int get(originalPos)
7 }

Figure 4.7: Permutation Data Structure

The performance comparison is made using the same matrix tensors used in

TACO’s format conversion work. Table 4.4 shows the matrices used in our evaluation.

The COO matrix is assumed to be sorted lexicographically row first. Table 4.5 shows

3D tensors used in evaluating COO MCOO reordering.

4.3.2 Performance Evaluation

We evaluate the inspector code for format conversion generated by our algo-

rithm by comparing to Intel MKL, TACO [31], SPARSKIT [47], and hand written

HiCOO’s [34] z-morton ordering. Figure 4.8c shows conversion results from COO

to CSR where we see a significant 2.85x speedup compared to TACO and other

libraries. Code generated for COO to CSC (Figure 4.8a) and CSR to CSC (Figure

4.8b) shows a 1.3x and a 1.5x speedup on a geometric average respectively. COO to

CSR shows a significant speed-up compared to CSR CSC and COO CSC due to the

row first lexicographical ordering of the source COO format, no permute function is

generated. The performance metric is the speed up of the execution times of the state

of the art compared to our work (the higher the better).

We compare our COO-3D to Morton COO-3D conversion to hand-written highly

optimized z-morton ordering step in Hi-COO and we also see a 1.64x slow down on

a geometric average as seen in Table 4.5. Hand-written z-Morton ordering splits the
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(a) COO to CSC. (b) CSR to CSC.

(c) COO to CSR.
(d) COO to DIA (W/O Optimization) See
Figure 4.9.

Figure 4.8: Performance results of generated synthesis code for COO CSC, CSR CSC,
COO CSR and COO DIA. COO is assumed to be sorted lexicographically.

original tensor into smaller kernels and then applies a quick Morton sort to sort each

block. This results in a significantly improved performance compared to our results,

as they only sort small sections at a time. Our morton-ordered tensor conversion

routine spans the whole tensors.

The overhead introduced by permutation abstraction can be amortized by par-

allelizing insertion and sort. Permutation of source format can also be done in

place, which could potentially reduce the overhead of copying from the source to

the destination format. We do not explore this currently as we assume the original

source tensor will need to be available after synthesis. A faster copy from source to
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Figure 4.9: COO to DIA with binary search used to take advantage of monotonicity
of synthesized offset array used in copy.

destination can be done using direct memcopy which we do not explore in this work.

Performance results for COO DIA in Figure 4.8d show a fairly competitive perfor-

mance with handwritten libraries but 5x slower on average compared to TACO. This is

partially due to the fact that our optimizations cannot fuse the loops generating offset

and copy code. The synthesis algorithm generates code to enforce index properties

of unknown UF. The offset UF in this case has an index array property that has to

be enforced before the UF is valid to be used in the copied code preventing fusion

opportunities for copy code and offset code. Performance degrades with the number

of diagonals. Taking a closer look at majorbasis (see Figure 4.8d) which showed

the worst performance, the number of diagonals with nonzeros is 22 while the best

performing ecology1 has 5 diagonals. Our synthesized code tries every iteration to
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find the d that satisfies the constraints off(d)+i = j before copying the value into the

appropriate destination tensor. This constraint describes a linear search operation,

which when replaced with a binary search shows a better-performing result as shown

in Figure 4.9. Binary search is made possible due to the universal quantifiers on off

(See Table 4.1). This change shows an improved result as we are 3.1x and 3.54x faster

than SPARSKIT and MKL and 1.4x slower than TACO on a geometric average.

In summary, the synthesized code is competitive with the state-of-the-art, in some

cases beating the performance. We anticipate that more aggressive optimization will

yield better results.
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Table 4.1: Format Descriptors for COO, MortonCOO (MCOO), Morton COO 3D
(MCOO3)

Format Map Domain Range &
& Data Access Array Properties

COO RACOO→AD
= {[n, ii, jj]→ [i, j]| range(row1) = {0 ≤ i < NR}

row1(n) = i ∧ col1(n) = j∧ domain(row1) = {0 ≤ x < NNZ}
ii = i ∧ jj = j ∧ 0 ≤ i < NR∧ range(col1) = {0 ≤ i < NC}
0 ≤ n < NNZ ∧ 0 ≤ j < NC} domain(col1) = {0 ≤ x < NNZ}
DICOO→ACOO

= {[n, ii, jj]→ [n]}
COO3D RACOO3D→AD

= {[n, ii, jj, kk]→ [i, j, k]| range(row1) = {0 ≤ i < NR}
row1(n) = i ∧ col1(n) = j∧ domain(row1) = {0 ≤ x < NNZ}

ii = i ∧ jj = j ∧ 0 ≤ i < NR∧ range(col1) = {0 ≤ i < NC}
kk = k ∧ 0 ≤ k < NZ ∧ z1(n) = k domain(col1) = {0 ≤ x < NNZ}
∧0 ≤ n < NNZ ∧ 0 ≤ j < NC} range(z1) = {0 ≤ k < NZ}

DICOO3D→ACOO3D
= {[n, ii, jj, kk]→ [n]} domain(z1) = {0 ≤ x < NNZ}

MCOO RAMCOO→AD
= {[n, ii, jj]→ [i, j]| range(rowm) = {0 ≤ i < NR}

rowm(n) = i ∧ colm(n) = j∧ domain(rowm) = {0 ≤ x < NNZ}
ii = i ∧ 0 ≤ i < NR∧ range(colm) = {0 ≤ i < NC}
0 ≤ n < NNZ ∧ jj = j domain(colm) = {0 ≤ x < NNZ}
∧0 ≤ j < NC} ∀n1, n2 : n1 < n2 ⇐⇒

DIMCOO→AMCOO
= {[n, ii, jj]→ [n]} MORTON(rowm(n1),

colm(n1)) <
MORTON(rowm(n2)

, colm(n2))
MCOO3 RAMCOO3→AD

= {[n, ii, jj, kk]→ [i, j, k]| range(row1) = {0 ≤ i < NR}
row1(n) = i ∧ col1(n) = j∧ domain(row1) = {0 ≤ x < NNZ}

ii = i ∧ jj = j ∧ 0 ≤ j < NC∧ range(col1) = {0 ≤ i < NC}
kk = k ∧ 0 ≤ k < NZ domain(col1) = {0 ≤ x < NNZ}
∧z1(n) = k ∧ 0 ≤ i < NR range(z1) = {0 ≤ k < NZ}
∧0 ≤ n < NNZ} domain(z1) = {0 ≤ x < NNZ}
DIMCOO3→AMCOO3

= ∀n1, n2 : n1 < n2 ⇐⇒
{[n, ii, jj, kk]→ [n]} MORTON(row1(n1),

col1(n1), z1(n1)) <
MORTON(row1(n2),

col1(n2), z1(n2))
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Table 4.2: Format Descriptors for Sorted-COO(SCOO), CSR, DIA and CSC.

Format Map Domain Range &
& Data Access Array Properties

SCOO RASCOO→AD
= {[n, ii, jj]→ [i, j]| range(rows) = {0 ≤ i < NR}

rows(n) = i ∧ cols(n) = j∧ domain(rows) = {0 ≤ x < NNZ}
ii = i ∧ jj = j ∧ 0 ≤ i < NR∧ range(cols) = {0 ≤ i < NC}
0 ≤ j < NC ∧ 0 ≤ n < NNZ} domain(cols) = {0 ≤ x < NNZ}

DISCOO→ASCOO
= {[n, ii, jj]→ [n]} ∀n1, n2 : n1 < n2 ⇐⇒

rows(n1) ≤ rows(n2)
CSR RACSR→AD

= {[ii, k, jj]→ [i, j]| range(rowptr) = {0 ≤ n ≤ NNZ}
ii = i ∧ jj = j ∧ col2(k) = j domain(rowptr) = {0 ≤ x ≤ NR}

∧0 ≤ ii < NR ∧ rowptr(ii) ≤ k∧ range(col2) = {0 ≤ i < NC}
k < rowptr(ii+ 1)} domain(col2) = {0 ≤ x < NNZ}

DICSR→ACSR
= {[ii, k, jj]→ [k]} ∀ii1, ii2 : ii1 < ii2 ⇐⇒

rowptr(ii1) ≤ rowptr(ii2)
∀k1, k2 : k1 < k2 ⇐⇒
dim0(k1) ≤ dim0(k2)

CSC RACSC→AD
= {[jj, k, ii]→ [i, j]| range(colptr) = {0 ≤ n ≤ NNZ}

∧0 ≤ jj < NC ∧ colptr(jj) <= k∧ domain(colptr) = {0 ≤ x ≤ NC}
k < colptr(jj + 1)} range(row) = {0 ≤ i < NR}

DICSC→ACSC
= {[ii, k, jj]→ [k]} domain(row) = {0 ≤ x < NNZ}

∀jj1, jj2 : jj1 < jj2 ⇐⇒
colptr(jj1) ≤ colptr(jj2)
∀k1, k2 : k1 < k2 ⇐⇒
dim1(k1) <= dim1(k2)

DIA RADIA→AD
= {[ii, d, jj]→ [i, j]| domain(off) = {0 ≤ x ≤ ND}

i = ii ∧ 0 ≤ i < NR ∧ 0 ≤ d < ND ∀d1, d2 : d1 < d2 ⇐⇒
∧j = i+ off(d) ∧ 0 <= j < NC} off(d1) < off(d2)
DIDIA→ADIA

= {[ii, d, jj]→ [kd]|}
kd = ND ∗ ii+ d}
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Table 4.4: Matrices statistics used in evaluating COO CSR, CSR CSC,COO DIA.

Matrix Dimensions NNZ
pdb1HYS 36.4K × 36.4K 4.3M
jnlbrng1 40.0K × 40.0K 199K
obstclae 40.0K × 40.0K 199K
chem master1 40.4K × 40.4K 201K
rma10 46.8K × 46.8K 2.4M
dixmaanl 60.0K × 60.0K 300K
cant 62.5K × 62.5K 4.0M
shyy161 76.5K × 76.5K 330K
consph 83.3K × 83.3K 6.0M
denormal 89.4K × 89.4K 1.2M
Baumann 112K × 112K 748K
cop20k A 121K × 121K 2.6M
shipsec1 141K × 141K 3.6M
majorbasis 160K × 160K 1.8M
scircuit 171K × 171K 959K
mac econ fwd500 207K × 207K 1.3M
pwtk 218K × 218K 11.5M
Lin 256K × 256K 1.8M
ecology1 1.00M × 1.00M 5.0M
webbase1M 1.00M × 1.00M 3.1M
atmosmodd 1.27M × 1.27M 8.8M

Table 4.5: Tensors used in evaluating COO3D MCOO3.

Tensor Dim Mode NNZ Exec Time(s)
M-Hi-
coo

Ours

darpa 22K × 22K ×
24M

3 28M 11.85 20.13

f-m 23M × 23M ×
166

3 100M 49.35 78.24

fb-s 39M × 39M ×
532

3 140M 70.52 114.45
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Table 4.6: Automatic sparse format conversion support in our work compared to
others.

Format Description Support
Tool Mapping Re- Universal

order Quantifiers
TACO [31] ✓ × ×
Nandy et. al [39] × ✓ ✓
Venkat et. al [54] × ✓ ✓
This work ✓ ✓ ✓
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CHAPTER 5

RELATED WORK

This chapter discusses prior work most closely related to this work with a focus

on polyhedral model tools, program dependence graphs, sparse polyhedral model

tools, sparse tensor re-ordering, automatic sparse layout conversion (see Table 4.6),

handwritten sparse layout conversion, and program synthesis.

5.1 Polyhedral Model Tools

Tools such as Polly [26], Pluto [12], Loopy [38], PolyMage [37] use the polyhedral

model to transform regular codes. Polly automatically detects and transforms im-

portant code sections in the LLVM IR, breaking the limitations of most tools limited

to a single source language. PolyMage is a domain-specific language that automates

the generation of efficient implementations of image processing pipelines. Halide [44]

is another compiler for generating code for image computing algorithms. Halide

separates algorithm and scheduling specification, thereby allowing optimization en-

gineers to write different schedules for optimum performance. Their work also uses

autotuning to generate efficient code by performing a stochastic search to find good

schedules for the algorithm.

Pluto [12] is a fully automatic source-to-source transformation tool that optimizes

programs for parallelism and locality. Pluto uses integer linear programming to decide
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on optimal code using parallelism and locality as part of its cost functions. Loopy,

is a tool that allows a programmer to describe loop transformation at high level and

verifies the transformation for correctness. Loopy, like Polly is implemented in LLVM.

isl [56] is a tool for manipulating sets and relations in the polyhedral model. This

tool forms the basis for affine transformations used in all the tools earlier discussed

in this section [12,37,38,44].

5.2 Program Dependence Graphs

PDFGs are based on a line of research started by Ferrante et. al, [25] with their

work on program dependence graphs. Existing work demonstrates the benefit of poly-

hedral dataflow optimizations. Olschanowsky et al. demonstrated this benefit on a

computational fluid dynamic benchmark [40]. Davis et al. automated the experiments

from the previous work using modified macro dataflow graphs [22]. The Concurrent

Collections (CnC) programming model [14] is a dataflow and stream-processing lan-

guage where a program is a graph of computation nodes that communicate with each

other. DFGR [48] is based on CnC and Habanero-C [7] programming models and

allows developers to express programs at a high level with dataflow graphs as an

intermediate representation. Our work uses the dataflow graph to focus on serial

code optimization while DFGR and CnC explores parallelism. Stateful dataflow

multigraphs (SDFGs) [8] are a data-centric intermediate representation that enables

separating code definition from its optimization. Our work differ from SDFGs due to

the use of the polyhedral model. The graphs are not the intermediate representation,

but a view of that representation. Any graph operation performed to transform the

graph is translated to relations and applied to the underlying polyhedral representa-



75

tion.

5.3 Sparse Polyhedral Model Tools

Work done on representing indirect memory accesses in a computation using the

polyhedral model has seen the development of tools such as Omega [30], and Chill [45].

Omega [30] is a C++ library for manipulating integer tuple relations and sets.

Codegen+ [18] is built on omega and generates code with polyhedral scanning in the

presence of uninterpreted functions. Chill [45] is a polyhedral compiler transformation

and code generation framework that uses Codegen+ for code generation. It allows

users to specify transformation sequences through scripts. Our work differs from this

work as we represent a holistic view of a computation and we support more precise

transformations in the presence of sparse computations.

5.4 Sparse Tensor Reordering

Sparse tensor reordering involves changing the order of non-zero entries in sparse

formats to improve spatial or temporal locality. This includes heuristic techniques:

BFS-MCS a breadth-first search over maximum cardinal search family, and Lexi-

Order an extension of the doubly lexical ordering of matrices to tensors [35]. Another

approach to tensor reordering is to use discrete cosine transform (DCT) to compress

Convolutional Neural Networks (CNN) [35]. Our work is similar to this class of work

as we introduce a formal approach to specify reordering functions for the automatic

synthesis of conversion routines.
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5.5 Automatic Sparse Layout Conversion

Table 4.6 shows work on automatic data layout transformations. Mapping includes

work that uses a function to describe the relationship between the sparse space and

dense space, reordering is a class of work with data layout shuffling, and universal

quantifiers describe array properties and integrate such information in dependence

analysis and optimizations.

Script-based techniques introduce a set of transformations when combined in

certain order to facilitate data layout transformations [39, 53, 54]. Compiler trans-

formations are used as building blocks to write scripts that transform from one data

format to another. This approach requires 2n scripts to be manually written; one for

each possible combination of formats. Our work differs from this work as we focus on

format conversion, and use a descriptor-based approach using maps to automatically

synthesize code between formats. Our approach is similar as we build on the sparse

polyhedral framework; we also both support reordering and make use of universal

quantifiers which opens up opportunities for dependence tests and optimizations.

Arnold et al. [6] uses a functional little language (LL) to describe sparse layout

through its conversion process from a dense matrix. LL enables generating and

proving the correctness of sparse computation under different layouts. However, loop

transformations like fusion and tiling are not supported.

TACO [19, 20, 31] is a tensor algebra compiler that defines sparse layouts using a

set of names for each dimension of the tensor called level formats. Level functions are

defined for this format to support primitive operations of the dimension, including

iterating, accessing, and assembling. Format conversion is achieved in TACO by

mapping to and from the dense space, analyzing the tensor’s structural statistics,
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and assembling the destination layout using the level functions. This work, however,

does not consider attributes such as universal quantifiers and reordering as shown in

Table 4.6.

Bik et al. [10] sparse tensor work is complementary to our work, they describe

sparse formats with level properties and generate sparse computation code in MLIR.

In a case where there is the need to transform from one format to another, level

properties can be translated to our high-level sparse description after which our

synthesis algorithm is applied. Our synthesis produces a high-level intermediate

representation that can be extended to generate code for MLIR.

5.6 Optimal Tensor Layout

Bik et al. [11] and SIPR [43] optimize computation involving sparse tensors by sug-

gesting more efficient layouts from statically analyzing the computation. Sparso [46]

optimizes a sequence of tensor computation using context-driven collective reordering

analysis and matrix property discovery. Sparso can determine automatically based

on static and runtime information when should layout be converted using pre-defined

library routines. However, these works do not target the conversion routine: either

excluding them from consideration or treating them as a black box.

5.7 Manual Sparse Format Conversion

Sparskit provides various functionalities for dealing with sparse matrices. It

helps to translate one matrix form to others [47]. It supports 12 different storage

formats for matrices. Intel MKL is another library that provides various routines and

functionalities to perform computations on sparse matrices [58]. Sometimes to get to
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a destination format, an intermediary format has to be converted first. Our approach

is different from this approach as we require n description to automatically synthesize

2n conversion routines.

5.8 Program Synthesis

Satisfiability modulo theories (SMT) solvers and higher-order logic (HOL) provers

are commonly used to check if the generated code agrees with the provided specifica-

tion. Synthesizing a general program would result in an unmanageable search space

of the generated code, thus constraints and heuristics are provided.

Sketching [13,49,50] is an approach to program synthesis that limits the scope of

the synthesis to low-level details in an algorithm sketch or meta-sketches provided

by the programmer. Syntax-guided synthesis [4] uses a counter-example-guided-

inductive-synthesis strategy for solving the synthesis problem under valid programs

following a set of syntax. More recently, Knoth et al. [32] introduced a type system

that provides automatic amortized resource analysis to use as a heuristic during the

synthesis process.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter gives an overal summary of the contributions of this dissertation and

discusses directions for future work.

6.1 SPF Intermediate Representation

This work presents an object-oriented API to the sparse polyhedral library. The

API provides a standard interface to fully specify a computation in the Sparse Poly-

hedral framework from a single entry point. The single entry point is enabled by

tight integration among IEGenLib, CodeGen+, and PDFGs. PDFGs have been

expanded to represent non-affine loop boundaries, imperfect loop nests, and loop

carried dependences. The API does not currently support early exits, loops where

the bounds are modified within the loop nests, and loops without bounds such as

while loops. In the future, we hope to explore techniques such as those from [9] to

overcome the limitations of representing unbounded loops and exit predicates.

We provide support for combining Computations through inlining. This increases

reusability and reliability. The code generated by a computation encompasses state-

ment macros and, when needed, variable declarations. This means that in the future,

memory layout decisions for temporary storage can be made entirely within the SPF.
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Future tools will use this API to generate the SPF IR, manipulate it, and produce

optimized code from legacy applications and custom high-level or domain-specific

languages. Additionally, this API will be used when iteratively transforming a com-

putation; the PDFG will be displayed at every step to guide the performance expert’s

decisions.

6.2 Code Synthesis

In this work, we introduce an approach to formally describe sparse tensor formats

and synthesize translation code between them using the sparse polyhedral framework.

This work presents a formal definition of sparse tensor formats and an automated

approach to synthesize the transformation between formats. This approach is unique

in that it supports ordering constraints not supported by other approaches and

synthesizes the transformation code in a high-level intermediate representation suit-

able for applying composable transformations such as loop fusion and temporary

storage reduction. We demonstrate that the synthesized code for COO to CSR with

optimizations is 2.85x faster than TACO, Intel MKL, and SPARSKIT while the more

complex COO to DIA is 1.4x slower than TACO but faster than SPARSKIT and

Intel MKL using the geometric average of execution time.

6.3 Future Directions

For future work, we intend to explore more transformations in SPF to improve

the overall performance of our work. Automatically guiding users in selecting the

best sparse formats would be an interesting direction. Incorporating data layout

transformations as part of a preexisting compiler pipeline is a direction we will explore.
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In the synthesis work, there is no formal way to verify the validity of sparse

descriptors. Sparse descriptors not properly described in our work cause a halting

problem in our algorithm. All sparse descriptors defined in this work have been

tested to work and generate correct code empirically. An interesting future work will

be to formally verify the validity of a sparse format descriptor. Exploring support

for abstract data type transformation is a possible direction for future work. A

great direction for this work is full integration with pre-existing compilers such as

MLIR, LLVM, and GCC. Integrating with compilers will mean data layouts can be

automatically transformed for optimal performance.
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6.4 Synthesis Artifact Appendix

6.4.1 Abstract

This artifact introduces a technique for data layout transformations based on

constrained relationships between different forms of data. In this artifact, we apply

this technique to generate code for transforming from one source format to another.

We provide a docker container to replicate results. To ease testing we provide already

generated transformation codes wrapped around necessary macros to evaluate our

work. We also provide artifacts from the state-of-the-art discussed in our work.

6.4.2 Artifact check-list (meta-information)

• Algorithm: Constraint solving, polyhedral code generation, optimizations

• Compilation: Known to compile with GCC v10

• Transformations: fusion, dead-code elimination

• Data set: SuiteSparse Matrix Collection [24] see Table 6.1

• Metrics: Relative speedup

• Output: Graph plots in paper
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• How much disk space required (approximately)?: 35 Gig Docker Image

Space

• How much time is needed to prepare workflow (approximately)?: 20 mins

to download artifact files

• How much time is needed to complete experiments (approximately)?: 2

hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Archived (provide DOI)?:Yes, at the following link:

https://doi.org/10.1145/3554347 [42]

6.4.3 Description

How to access

Artifact material can be publicly accessed using this link https://doi.org/10.1145/3554347 [42].

The artifact contains a README.MD, License.txt, source codes, and scripts for

replicating results in this paper.

Hardware dependencies

Known to work on amd64 and intel architecture.

Software dependencies

Docker Container
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Matrix Dimensions NNZ
pdb1HYS 36.4K × 36.4K 4.3M
jnlbrng1 40.0K × 40.0K 199K
obstclae 40.0K × 40.0K 199K
chem master1 40.4K × 40.4K 201K
rma10 46.8K × 46.8K 2.4M
dixmaanl 60.0K × 60.0K 300K
cant 62.5K × 62.5K 4.0M
shyy161 76.5K × 76.5K 330K
consph 83.3K × 83.3K 6.0M
denormal 89.4K × 89.4K 1.2M
Baumann 112K × 112K 748K
cop20k A 121K × 121K 2.6M
shipsec1 141K × 141K 3.6M
majorbasis 160K × 160K 1.8M
scircuit 171K × 171K 959K
mac econ fwd500 207K × 207K 1.3M
pwtk 218K × 218K 11.5M
Lin 256K × 256K 1.8M
ecology1 1.00M × 1.00M 5.0M
webbase1M 1.00M × 1.00M 3.1M
atmosmodd 1.27M × 1.27M 8.8M

Table 6.1: Matrices statistics used in evaluating COO CSR, CSR CSC, COO CSC

Data sets

Table 6.1 shows data used in evaluating COO CSR, CSR CSC, COO CSC, and

COO DIA can be found in the docker container obtained from SuiteSparse Matrix

Collection [24]. Table 6.2 shows tensors used for Morton re-ordering evaluation.

6.4.4 Installation

Installation instructions can be found in the README.MD document in the root

folder of the artifact.
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Tensors Dimensions Mode NNZ
darpa 22K × 22K × 24M 3 28M
fb-m 23M × 23M × 166 3 100M
fb-s 39M × 39M × 532 3 140M

Table 6.2: Tensors used in evaluating COO3D MCOO3

6.4.5 Experiment workflow

There are five experiments conducted in this work, we have provided scripts that

will run both the state-of-the-art, and our work for each conversion routine. We also

provide scripts to generate the figures in the paper. Kernels generated by our code

generation tool have already been optimized and added to a driver, this is also the

case for Taco’s format conversion tool. We do provide a convenient script (run.sh) to

run all experiments to replicate results in the paper. Instructions for the experiment

workflow can be found in the README.MD. The experiment will generate all 4

graphs from the paper.

1. coocsr.png

2. csrcsc.png

3. coodia.png

4. coocsc.png

6.4.6 Evaluation and expected results

Results should be consistent with the figures in the paper. While there might be

some slight changes in the result.
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6.4.7 Notes

For some tests in COO DIA, expect bad allocation due to the 75 percent zeros

introduced when converting from these matrices to DIA. In the paper, we do not

include these tensors in the result sections and will be filtered out before graphs are

generated.




