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ABSTRACT 

Plants are continually defending themselves from the herbivores that consume 

them, often using an array of plant specialized metabolites (PSMs). Volatile organic 

compounds, including monoterpenes, are one such type of PSMs that can be emitted and 

induced by plants in response to mechanical damage and herbivory. These volatiles serve 

as direct defenses against herbivores and can alert neighboring plants about potential 

threats, resulting in protection against future attacks. However, how these chemicals 

change over time in response to browsing by vertebrates in the winter has received 

limited attention and is crucial to interpreting how monoterpenes defend plants against 

vertebrate herbivores. To assess induced defenses of plants in the winter, we investigated 

temporal changes of monoterpenes in Wyoming big sagebrush (Artemisia tridentata 

subsp. wyomingensis) naturally occurring in the Wyoming landscape following either a 

single event of mechanical damage (acute damage) or repeated damage (chronic damage) 

to leaves that simulated “bites” by the avian herbivore, Greater Sage-grouse 

(Centrocercus urophasianus). We hypothesized that plants would exhibit changes in 

specific monoterpenes through the process of emission which releases volatiles into the 

air in response to damage and then through induction which involves biochemical 

synthesis. We also hypothesized that the intensity of damage would influence 

monoterpene profiles. Based on these hypotheses, we predicted an initial decrease in the 

concentration of monoterpenes in leaves soon after damage due to emission which would 

be followed by increases in monoterpenes in leaves as the time course progressed 
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associated with induction. We also predicted that treatment plants would be less variable 

in monoterpene profiles compared to control plants and that higher levels of damage 

would result in greater changes in monoterpenes. Monoterpene profiles and 

concentrations were analyzed using gas chromatography. Multiple Principal Component 

Analyses (PCA) using Euclidean distance, ANOVAs, correlation matrices, and 

nonparametric Kruskal-Wallis tests were used to compare changes in monoterpenes over 

time within treatments, between treatment groups, and between levels of collection 

intensity after an initial simulated browsing event. We identified fourteen potential 

compounds of interest with the largest vector loadings from the PCAs which were 

reduced to six compounds of interest based on strong correlation with other compounds. 

There was no evidence that any compound of interest changed over time after simulated 

browsing within individual treatment groups. We found no evidence that browsing type 

or browsing intensity changed monoterpene profiles or concentrations of compound of 

interest. Results suggest that damage to sagebrush in the winter results in only minor 

changes in monoterpenes over a six-day time course. However, review of correlation 

among clusters of compounds following browsing indicate that chronic browsing results 

in more negative correlations between compounds suggesting conversion of 

monoterpenes into other metabolites. Lack of induced defenses associated with winter 

browsing is inconsistent with observed induced defenses in sagebrush damaged in the 

summer and suggests stable winter chemistry following leaf damage that may explain the 

relatively high winter foraging fidelity observed in sage-grouse. This research 

demonstrates the value of a multivariate approach to detect chemicals that might 

normally be ignored due to their relatively low concentration and rarity in a plant-
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herbivore system. The multivariate approach could be used to assess the relative 

plasticity of chemical defenses as a consequence of gene by environment interactions. 

Metrics of chemical stability relative to seasonality, climate, or herbivory could be used 

to inform management decisions of what plant genotypes to select for restoration of 

disturbed areas and predict how chemical responses will cascade up to influence species 

of conservation concern and entire communities.
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CHAPTER ONE: UNDERSTANDING TEMPORAL DYNAMICS OF PLANT 

SPECIALIZED METABOLITES IN RESPONSE TO SIMULATED BROWSING IN 

WINTER 

Introduction 

Plant specialized metabolites (PSMs) mediate plant-plant and plant-animal 

interactions at ecological and evolutionary scales (Ehrlich and Raven 1964, Heil and 

Karban 2010, Bouwmeester et al. 2019). Specifically, plants and herbivores have been in 

a chemical arms race for millennia, co-evolving different bioactive chemicals in plants 

and subsequent mechanisms in herbivores that counter these defenses (Ehrlich and Raven 

1964, Freeland and Janzen 1974, Agrawal 2000, Dearing et al. 2005, Sorensen et al. 

2005). For example, the leaf-chewing insect herbivore, Blepharida, has adapted to the 

chemical defenses of the tropical plant species Bursera (Burseraceae) by halting the resin 

flow of the leaf vein canals through cutting prior to feeding on the leaves (Becerra et al. 

2009). A well-observed co-evolution example are monarch caterpillars that are adapted to 

the chemical defenses of milkweed (Asclepiadaceae) which includes latex and cardiac 

glycosides (Dussourd and Eisner 1987, Birnbaum and Abbot 2018). This co-evolution of 

defense mechanisms has also been documented in vertebrate herbivores. For example, 

desert woodrats (Neotoma lepida) have duplicated genetically diverse cytochrome P450 

genes that result in a detoxification enzyme subfamily capable of combating PSMs in 

their primary food source creosote (Larrea tridentata) (Malenke et al. 2012, Greenhalgh 

et al. 2022). 



2 

 

Plant-plant and plant-animal interactions also occur across smaller spatial and 

shorter temporal scales often through the process of emission of volatiles from leaves 

(Fall et al. 1999, Ameye et al. 2018) and through biosynthetic induction (Baldwin and 

Schultz 1983, Karban and Myers 1989, Dudareva et al. 2013, Eisenring et al. 2017). Past 

studies have demonstrated the importance of emitted volatiles as chemical signals that 

can be detected by and influence the chemistry of neighboring plants (Karban et al. 2000, 

2006, Kost and Heil 2006). For example, when lima beans (Phaseolus lunatus) were 

exposed to volatiles emitted by conspecific neighbors, they exhibited less leaf loss to 

herbivores than the control plants that were not exposed to the volatiles (Kost and Heil 

2006). Induced defense strategies are both short-term and long-term (Tuomi et al. 1988, 

Heil and Karban 2010). For example, after tobacco (Nicotiana attenuata) has been 

damaged, they quickly begin producing nicotine and protease inhibitors to directly defend 

against herbivory (Steppuhn and Baldwin 2007, Backmann et al. 2019). After the foliage 

of mountain birch (Betula pubescens subsp.) has sustained damage, it not only 

accumulates phenols in its adjacent leaves, but maintains higher levels of phenolics for 3-

4 years after defoliation (Niemlae et al. 1979, Tuomi et al. 1984, Backmann et al. 2019). 

These studies demonstrate the immediate and long-term temporal dynamics of induced 

PSMs.  

The dynamics of PSM emission and induction also occur at varying biological 

scales and can have cascading spatial effects across a community of species (Glinwood et 

al. 2004, Heil and Karban 2010, Hussain et al. 2019). Intra-plant communication occurs 

when plants use their own volatile compounds to communicate among its different 

branches to coordinate a complete chemical defense across the entire plant (Karban et al. 
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2006). Intra-species communication occurs when chemo-typically and genetically related 

individuals have a quicker and more accurate response to emission from a conspecific 

that has been attacked (Karban et al. 2014a, Hussain et al. 2019). Lima bean plants 

(Phaseolus lunatus) induced both within-plant and caused intra-specific plant signaling 

after exposure to volatiles from conspecific shoots that were beetle-damaged (Heil and 

Bueno 2007). Inter-species communication can also occur when one species induces 

defenses in response to “eavesdropping” on the emissions resulting from herbivore 

damage on a different plant species (Baldwin et al. 2006). For example, barley plants 

(Hordeum vulgare) exposed to the volatiles released by two types of thistles (Cirsium 

arvense and Cirsium vulgare) were less acceptable to aphids due to the induced defenses 

in barley (Glinwood et al. 2004). Emission of volatiles from plants in response to 

herbivore damage can influence the behavior of both herbivores (Karban and Baxter 

2001, Forbey et al. 2009) and predators of herbivores (Wiens et al. 1991, Heil 2008, 

Clavijo McCormick et al. 2012). After leaf tissue damage has occurred, tomato plants 

(Solanum lycopersicum Mill.) emit PSMs that both repel herbivores and can attract 

natural herbivore predators (Unsicker et al. 2009, Raghava et al. 2010).  

The majority of induced defense studies focus on invertebrate damage in model 

plant systems (e.g., tomatoes, tobacco, Arabidopsis thaliana) that are fast-growing 

(Baldwin and Schultz 1983, Karban et al. 2000, Hulten et al. 2006, Heil and Karban 

2010). These studies look at the effects that invertebrate herbivores have on PSMs, 

inspecting various parts of a plant from its roots to its reproductive parts for changes in 

PSMs, and conducting experiments to assess how plants respond either over a single time 

point or intervals of time (Zangerl and Rutledge 1996, Karban et al. 2000, Nykänen and 
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Koricheva 2004, McCall and Karban 2006, Backmann et al. 2019, Chen et al. 2020). 

Studies in non-model plants often do not assess the time course of chemical profiles 

(Farmer and Ryan 1990, Karban et al. 2000, Godard et al. 2008) or tend to focus on 

profiles emitted (Karban et al. 2014a, Tzin et al. 2017) rather than the chemical profiles 

in the leaf tissue still available to herbivores after damage. In addition, studies often rely 

on palatability indices that quantify the number of browsed leaves following leaf damage 

that are not directly linked to changes in chemical concentrations of leaves (Karban and 

Baxter 2001). There are also a limited number of studies that vary the intensity and 

timing of damage which may better represent foraging damage by vertebrate herbivores 

compared to less mobile invertebrates (Underwood 1998, Kant et al. 2004, Pu et al. 

2015). Finally, the focus on invertebrates results in few studies investigating induced 

defenses in winter when low resource availability and lower temperatures may limit 

capacity for chemical biosynthesis (Hulten et al. 2006, Neilson et al. 2013). 

To our knowledge, the foraging consequences of vertebrate herbivores in the 

winter has yet to be linked to short-term, small-scale dynamic changes in chemistry of 

plants. It is likely that vertebrate herbivores are responding to volatile cues at small 

scales. For example, volatile PSMs explained foraging decisions of Greater Sage-grouse 

(Centrocerus urophasianus), where birds selected species, patches, and individual plants 

with the lowest volatile monoterpenes (Frye et al. 2013). Responses to monoterpenes 

could include avoidance of plants due to irritation caused by emitted volatiles (Cometto-

Muñiz et al. 1998, Forbey et al. 2009, Nobler et al. 2019), increased foraging on plants 

that are more vulnerable after emission of PSMs that results in lower concentrations in 

the leaves (Frye et al. 2013, Bouwmeester et al. 2019), leaving a patch before induction 
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of PSM begins (Basey et al. 1988, Kost et al. 2011), or a delay in returning to a patch that 

has been induced until enough time has passed for the induced defense to subside 

(Backmann et al. 2019). Predicting responses by vertebrate herbivores to PSMs requires 

greater understanding of not only the time course, but also the context in which induction 

may or may not occur. Induction may be dependent on plant species. For example, 

lomatium (Lomatium dissectum), lupine (Lupinus polyphyllus), and California valerian 

(Valeriana californica) did not induce a defense response when neighboring sagebrush 

(Artemisia tridentata) were experimentally clipped, but wild tobacco (Nicotiana 

attenuata) did produce a chemical defense response (Karban et al. 2004). Induction may 

also be dependent on environmental conditions. Induced defense is more commonly seen 

in fast growing plants in areas of high resource availability whereas slower growing 

plants found in environments low in resources may rely more on constitutive defenses 

(Karban 2011). For example, congeners across multiple genera in glade and white-sand 

low-resource areas had higher constitutive defenses and overall higher investments in 

total defenses compared to their respective congeners in non-glade and clay high-

resource areas (Fine et al. 2006, Zandt 2007). In subarctic systems, alder (Alnus) and 

birch (Betula) shrubs did deter vertebrate herbivory through higher concentrations of 

PSMs, but willows (Salix) were not able to produce a defense response (Bryant and 

Kuropat 1980, Bryant et al. 2014, Swanson 2015). In addition, induction is often 

herbivore specific (Kost and Heil 2006). In the shrub Baccaris salicifolia, damage by a 

generalist (Aphis gossypii, feeding on many plant species) resulted in a unique emission 

of PSM blends compared to a specialist (Uroleucon macolai, feeding only on Baccaris 

salicifolia and Baccaris polifolia) aphid species. This specificity resulted in induced 
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defense responses in the neighboring plants for the particular species of aphid that was 

present (Moreira et al. 2018) 

The gaps in knowledge surrounding plant induced defenses in the winter must be 

carefully addressed to better understand and manage the ecological interactions between 

plants and vertebrate herbivores. The sagebrush steppe represents an ideal system to 

understand dynamics of induced defenses in the winter that may help understand the 

foraging ecology of vertebrate herbivores of conservation concern and influence the way 

in which we manage sagebrush during restoration. First, there is evidence that induced 

defenses are occurring in sagebrush due to damage by herbivores in the summer (Wiens 

et al. 1991, Karban et al. 2000). Experimental clipping of sagebrush in the summer 

resulted in induced defense in conspecifics (Karban et al. 2006) and neighboring plants 

such as tobacco (Farmer and Ryan 1990), with neighboring undamaged plants exhibiting 

less insect herbivory than those farther away from damaged sagebrush (Karban et al. 

2004). Sagebrush is a good plant model to study induced defense responses in the winter 

because, unlike other plant species from this ecosystem, it is an evergreen and therefore is 

often the only leaf material available during the winter for vertebrate herbivores of 

conservation and economic importance. Specifically, vertebrate herbivores such as sage-

grouse (Centrocercus spp.), pygmy rabbits (Brachylagus idahoensis), pronghorn 

(Antilocapra americana), bighorn sheep (Ovis canadensis), and mule deer (Odocoileus 

hemionus) can feed almost exclusively on sagebrush in the winter due, in part, to 

sagebrush being the only leafy vegetation present (Wallestad and Eng 1975, Frye et al. 

2013, Dwinnell et al. 2019). As sagebrush in the landscape continues to decline (Reisner 

et al. 2013), the herbivores that rely on this plant for food will also decline. 
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Understanding how native and restored sagebrush responds chemically to biotic and 

abiotic stressors during the winter is important for landscape management and the 

conservation of vertebrate herbivores of conservation concern. Although several studies 

demonstrate that individual monoterpene concentrations in leaves influence habitat use 

and browsing by vertebrate herbivores (Frye et al. 2013, Ulappa et al. 2014, Fremgen 

2015), none have addressed how individual monoterpenes in leaves may change relative 

to browsing events to make plants more or less selected by herbivores in the future.  

We used the sagebrush system to demonstrate how an untargeted, discovery-

based, multivariate approach can be used to investigate differences in composition and 

concentrations of chemicals in sagebrush leaves (Artemisia tridentata subsp. 

wyomingensis) in response to simulated browsing by Greater Sage-grouse (Centrocercus 

urophasianus) with a focus on changes in monoterpenes throughout a time course in the 

winter (Heil and Karban 2010, Clavijo Mccormick et al. 2014, Bouwmeester et al. 2019). 

Multivariate techniques allow us to investigate the entire chemical profile (Hervé et al. 

2018) to pinpoint when chemical variation may be occurring following damage through 

differences in the PCA ellipses and correlation matrices. This exploration will expand 

upon knowledge already gathered from studies that have focused on single time points 

and single chemical changes, such as the clipping of sagebrush plants and measuring the 

methyl jasmonate released before and after damage (Karban et al. 2000), and over large 

expanses of time, such as phenols being observed to accumulate in birch trees years after 

defoliation (Tuomi et al. 1988). Exploration of how PSMs change immediately and over 

a few days is important in understanding how PSM dynamics influence habitat use and 

foraging of vertebrate herbivores (Tuomi et al. 1988, Nykänen and Koricheva 2004, 
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Karban et al. 2014a, Backmann et al. 2019, Moreira and Abdala-Roberts 2019). 

Currently, there has not been a multivariate analysis to investigate how PSMs in the 

leaves of sagebrush vary in response to herbivory over time during the winter. 

When plants are initially damaged, volatile monoterpenes are emitted to repel 

herbivores and communicate through intra-plant, intra-specific, and inter-specific ways 

(Karban et al. 2006, Karban et al. 2014a, Hussain et al. 2019). As such, our first 

hypothesis is that sagebrush plants will emit PSMs when initially damaged (Karban et al. 

2000, Dudareva et al. 2013, Bouwmeester et al. 2019). For example, sagebrush has been 

shown to emit volatiles one hour after mechanical clipping (Karban et al. 2000). The 

emission phase is predicted to cause a reduction in PSM concentration in the leaf material 

early on in the time course. Repeated damage when an herbivore continually returns to 

the same plant causes an increase in leaf monoterpenes through induced chemical 

biosynthesis to create potentially toxic concentration in the leaf material to deter 

herbivores over longer periods of time (Zangerl and Rutledge 1996, Moreira et al. 2018, 

Bouwmeester et al. 2019). Based on this evidence, our second hypothesis is that after 

initial emission, sagebrush plants will induce the chemical synthesis of volatiles over 

time (Karban et al. 2000, Dudareva et al. 2013, Bouwmeester et al. 2019). The induction 

phase is predicted to cause an increase in specific monoterpenes in the leaf material later 

on in the time course. To test the emission and induction predictions, we simulated 

browsing on sagebrush plants and collected samples of the leaves to analyze 

monoterpenes throughout a time course.  

In addition to a time course, we investigated how the intensity of damage would 

influence PSM dynamics. There are conditions in nature where an herbivore may 
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continually return to the same plant to browse which may cause greater induction of 

defenses compared to a single browsing event (Karban 2011). This has been 

demonstrated in acacia trees (Acacia sieberiana var. woodii) that exhibit significantly 

higher concentrations of cyanide (prussic acid) with high browsing intensity by giraffes 

(Giraffe camelopardalis) compared to lower browsing intensity sites (Zinn et al. 2007). 

Repeated chronic browsing on a single plant is predicted to have a longer lasting effect 

than acute browsing which would allow the plant to recover and return to baseline, 

constitutive monoterpene concentrations (Underwood 1998, Karban 2011). For example, 

soybean plants (Glycine max) that were attacked by Mexican bean beetles (Epilachna 

varivestis) exhibited strong resistance to herbivory up to three days after damage, but this 

resistance tapered off after about 15 days (Underwood 1998). In addition, plants up-

regulate a specific suite of monoterpenes that may more precisely target herbivores after 

being damaged rather than a breadth of baseline monoterpenes associated with a variety 

of biotic and abiotic factors (Zangerl and Rutledge 1996, Kant et al. 2004, Portillo-

Estrada et al. 2015). Based on this evidence, our third hypothesis was that higher 

intensity of browsing would have a stronger influence on the synthesis of PSMs 

(Underwood 1998, Karban 2011). As such, we predicted there would be greater 

monoterpene changes in our chronic treatment that received repeated damage than plants 

that received no damage or only a single damage event (Heil 2009, Heil and Karban 

2010). We also predicted that more intense browsing would reduce variability in 

monoterpenes profiles and would have more strongly correlated sets of compounds 

compared to plants with no or low damage (Heil 2009, Heil and Karban 2010). To test 

the intensity of browsing predictions, we varied the number of repeated browsing events 
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on plants. We used PCA ellipses to compare monoterpene profiles and ANOVAs to 

compare peaks of interest between levels of browsing intensity. We used correlation 

matrices to assess variation and strength of correlation among the compounds of interest.  

We propose that understanding the time course of induced defense in the winter 

from this study may help interpret winter habitat use, diet selection, and movement 

patterns of vertebrate herbivores within microsites and across landscapes. Knowledge of 

which plants or plant species are chemically stable or dynamic following damage by 

different forms of damage (e.g., mowing, insect damage, browsing of leaves versus stem) 

may inform management decisions on which species are best to use for restoration of 

disturbed areas. 

Methods 

Study Area 

This study was conducted between March 28th and April 4th of 2015 in Fremont 

County, Wyoming, 15 miles south of Hudson, Wyoming on Bureau of Land Management 

lands (N 42.833, W 108.4833, Figure 1.1). The minimum temperature during the study 

was -8.4°C and maximum temperature was 22.4°C. During the study, there was an 

average minimum and maximum temperature of 0.1°C and 15.4°C, respectively. The 

average daily precipitation during the study was 0.3 mm with the highest amount of snow 

or rain (2.1 mm) during April 2nd, 2015. Snow accumulation was recorded as a depth of 

1.3 mm average. The minimum and maximum wind speeds were 9.8 mph and 47.2 mph, 

respectively, with an average wind speed of 24.0 mph. This location was selected because 

it is dominated by Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) 

with a mix of Basin big sagebrush (A. t. subsp. tridentata) and black sagebrush (A. nova). 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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Experimental Design 

Within this location, 15 patches of Wyoming big sagebrush were identified by 

morphology, lack of fluorescence of leaves (Rosentreter et al. 2021), and taxonomic 

knowledge provided by local practitioners. Each patch was approximately 20 m in 

diameter and contained a minimum of 20 sagebrush plants. Each replicate patch was 

spaced a minimum of 100 m apart. Within each replicate patch, one sagebrush plant in 

the center of each patch was randomly selected and designated as treatment plant #1. 

Additional treatment plants (treatment plants #2-5) were assigned in reference to the 

previously selected treatment plant by selecting the closest plant at a minimum of 1.5 m 

towards the North, East, South, and West. For each treatment plant, a paired control plant 

was selected that was approximately 1.0 m away and located in the opposite direction of 

the other treatment plants radially (see original sketch of experimental design, Appendix 

A). The pairs of treatment and control plants were spaced at this distance to prevent 

“eavesdropping” among plants that could induce patch-wise chemical changes in 

response to simulated damage (Karban et al. 2000, 2006). This 1.0 m minimum distance 

was decided based on previous evidence that sagebrush plants had no response to clipped 

sagebrush when at a distance of more than 60 cm (Karban et al. 2006). 

For each patch at time zero (T = 0 hr), collections of 5-6 stems with leaves 

(approximately 5 g wet weight) were taken from the control plant #1. Both stems and 

leaves were collected by cutting with scissors and placing in coolers to avoid directly 

damaging the leaves and further inducing volatile release (Fall et al. 1999, Holopainen 

2004). The control plant biomass was collected before damaging the paired treatment 

plant. After the collection of stems with leaves from the control plant #1, simulated 
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browsing was performed on each treatment plant (plants #1-5) in each patch at time zero 

(T = 0 hr). Simulated browsing was done by mimicking natural browsing by sage-grouse, 

which involves breaking clusters of leaves with the beak and not the stems and leaves 

together (Figure 1.2). Clusters of individual leaves were portioned out and clipped with 

scissors to simulate sage-grouse biting on each treatment plant, which each received a 

total of 50 randomly simulated “bites” throughout the plant. The amount of 50 bites on 

each treatment plant was based on previous studies indicating that heavily browsed 

sagebrush plants had an average number of 50 bites throughout the plant (Fremgen 2015). 

At time zero (T = 0 hr), directly after treatment plant #1 was simulated browsed, 

collections of 5-6 stems with leaves were collected with scissors. Treatment plant #1 was 

spatially and temporally paired with unbrowsed control plant #1. After one hr from 

simulated browsing (T = 1 hr), collections were taken from treatment plant #2 and its 

spatially and temporally paired unbrowsed control plant #2. At 24 hr after simulated 

browsing (T = 24 hr), collections were taken from treatment plant #3 and its paired 

unbrowsed control plant #3 and a second collection was taken from treatment plant #2. 

At 48 hr after simulated browsing (T = 48 hr), collections were taken from treatment 

plant #4 and its paired unbrowsed control plant #4, a third collection was taken from 

treatment plant #2, and a second collection taken from treatment plant #3. At 144 hr after 

simulated browsing (T = 144 hr), collections were taken from treatment plant #5 and its 

paired unbrowsed control plant #5, a fourth collection was taken from treatment plant #2, 

a third collection taken from treatment plant #3, and a second collection taken from 

treatment plant #4. This design of sample collections allowed for varying levels of 

collection intensity at 144 hr after initial simulated browsing, where control plant #5 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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represents zero (no previous collections), treatment plant #4 represents low (one previous 

collection), treatment plant #3 represents medium (two previous collections), and the 

treatment plant #2 represents high (three previous collections) levels of increasing 

collection intensity at 144 hr (Table 1.1, Figure 1.3, but also see original sketch of 

experimental design in Appendix A). 

A total of 16 collections on ten control-treatment paired plants throughout 15 

patches were acquired. Sample collections (n = 244) were stored on wet ice in coolers or 

freezers before being transferred to storage at Boise State University where collections 

were stored at -20°C prior to being processed for chemical analysis. 

Laboratory Methods for Analysis of Monoterpenes 

Plant collections were manually de-wooded using liquid nitrogen to remove the 

leaves from the stems. Manually de-wooding occurred by fully submerging individual 

collections of sagebrush into liquid nitrogen and gently dislodging leaves from stems by 

hand using clean forceps. The resulting leaves from each individual collection were 

ground and homogenized using liquid nitrogen and a mortar and pestle to grind the leaves 

to less than 2 mm diameter particles. Forceps, mortars, and pestles were cleaned between 

samples using 70% ethanol. 

Concentrations of monoterpenes in sagebrush samples were quantified at Boise 

State University in the Forbey lab using a gas chromatograph (Agilent 6890N, Agilent 

Technologies; 5301 Stevens Creek Boulevard, Santa Clara, CA 95051, USA) with a 

headspace auto-sampler (Hewlett-Packard HP7694; 1501 Page Mill Road, Palo Alto, CA 

94204, USA) (Nobler 2016) (Appendix B). Homogenized subsamples (0.100 g wet 

weight [WW]) of each sample were placed in a 20 mL headspace vial. 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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A cocktail of monoterpene standards that are known to occur in sagebrush was 

run with the sample vials. Compounds in the cocktail include alpha-pinene (C10), 

camphene (C11), beta-pinene (C15), 3-carene (C21), p-cymene (C22), 1,8-cineole (C24), 

terpinolene (C38), and camphor (C53) (Figure 1.4). All cocktail compounds were 

dissolved in methylene chloride to combine the standards into a single sample for gas 

chromatography. Cocktail standards and monoterpenes in sagebrush samples had 

retention times (RT) quantified in minutes (Figure 1.4, Figure 1.5). Corresponding peak 

areas for each RT were quantified in area under the curve (AUC). HP ChemStation 

version B.01.00 (Santa Clara, California, USA) was used to calculate both values. The 

RTs generated by the cocktails were used to identify the compounds in sagebrush 

samples from co-chromatography (Frye et al. 2013, Fremgen 2015) (Table 1.2). All 

samples were dried for 24 hr at 60°C to obtain sample dry weights (DW). These values 

were then used to quantify monoterpene concentrations as AUC/gDW. 

There was an equipment failure on the headspace autosampler that required 

maintenance part way through the chemical analysis, leaving 53 samples that were not 

analyzed. These 53 samples were excluded from the analysis due to recalibration during 

the autosampler maintenance, resulting in 191 samples available for statistical analysis. 

The equipment failure limited inclusion of specific treatment groups or specific time 

points and prevented us from having repeated measures of monoterpenes for each plant 

(see Figure 1.6). 

Data Processing 

Data processing and statistical analyses were conducted using R 4.0.4 (R Core 

Team 2021) and RStudio Version 1.4.1717 (RStudio Team 2021). To begin data 
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processing, we used the align_chromatograms function in the package GCalignR 

(Ottensmann et al. 2018) to align all cocktail and sample chromatograms in R. A cutoff 

of 22 mins was placed on the inclusion of RTs from the chromatogram alignment to 

minimize effects of retention time drift influencing AUC values. Once alignment was 

complete, the resulting dataset was trimmed so that only RTs that were found in at least 

10% of the samples in a single control or treatment group were included. Manual 

adjustment had to be made to certain compounds, C1 and C2 as well as C24 and C25, 

throughout all samples. C1 and C2 were read as either one peak or two peaks for each 

sample, however nearly all samples possessed two peaks with the peak for C1 bleeding 

into the peak for C2. Therefore, the AUC values for C1 and C2 were combined into a 

single chemical identified as C1 because we could not separate the already merged peaks 

and wanted our values at this RT to be comparable across samples (Appendix C). Review 

of chromatograms show that the peaks of C24 and C25 were a single peak instead of the 

two separate peaks. The AUC values for C24 and C25 were combined into a single 

chemical identified as C24 and determined to be 1,8-cineole based on co-chromatography 

(Appendix C). Samples MF656, MF657, MF747, and MF775 were all excluded from the 

dataset because they were found to have duplicate identities where each duplicate 

differed in concentrations and therefore could not be properly identified. It was also 

determined that C14 needed to be excluded from the overall analyses due to C14 

appearing to have a portion of the peak dilute into C15 in an “oil-can” shape in the 

chromatogram (see peak “g” at 13.62 min RT in Figure 1.5) that randomly occurred 

across samples and batches of runs and never occurred in blank runs or in standard 

cocktails suggesting it was not a contaminant. It could not be determined if C14 was a 
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true individual peak, an early elution of the sequential peak of C15, or co-elution from 

previous injections. Analyses were previously conducted with the inclusion of C14 

(Appendix C). This resulted in 186 samples and 46 compounds for the analyses and 

outcomes of analysis did not differ from analysis where this peak was excluded (Figure 

1.6, Table 1.2).  

The adjusted dataset of AUC for each compound was divided by biomass of each 

sample to generate AUC/gDW as our quantitative value following previous methods for 

quantifying monoterpenes based on biomass of leaf material (following Frye et al. 2013, 

Fremgen 2015). Log transformation was performed on the resulting AUC/gDW values to 

assist with the skewed distributions observed (Hervé et al. 2018). Centering was then 

used on the log transformed values to help with interpretations and visualization analyses 

of the data for the PCAs (Hervé et al. 2018) (Appendix D). 

Statistical Analyses 

To test predictions of the emission hypotheses that we would observe lower 

concentrations of monoterpenes in leaves early in the time course and the induction 

hypotheses that we would observe higher concentrations later in the time course, we first 

compared chemical profiles over time points within each control or treatment group using 

a Principal Component Analyses (PCAs). We also used PCAs to test our prediction of the 

browsing intensity hypotheses that monoterpene profiles would change more (e.g., 

distinct PCA ellipse) and be less variable (e.g., smaller PCA ellipse) than control 

treatments. Separate PCAs were generated to compare control versus acute and control 

versus chronic (Figure 1.8). A PCA was also generated to determine the influence of 

collection intensity levels at time 144 hr (T = 144 hr) and assess the prediction that higher 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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intensities of browsing would have greater changes in monoterpene concentration (Figure 

1.9). These PCAs were generated using the log transformed and centered dataset (Figure 

1.7) with the base R function prcomp (R Core Team 2021) and the function 

fviz_pca_biplot in the package factoextra (Kassambara and Mundt 2020). From each 

subsequent PCA, the vector loading values for each compound were extracted to 

determine the contribution of each compound to the principal components. A cutoff of +/-

0.3 was established for these loadings to constitute a substantial contribution to the 

overall variation observed (Merenda 1997, Peterson 2000) (Table 1.3). Any loading value 

that made it above this cutoff value after rounding was deemed a potential compound of 

interest.  

To test our prediction of the browsing intensity hypotheses that chronic browsing 

would result in less chemical variation and more strongly correlated chemicals, 

correlation matrices were generated for each treatment group using the functions cor and 

corrplot in the package corrplot (Wei and Simko 2021). Correlation matrices were used 

to assess the degree of correlation among potential compounds of interest extracted from 

the PCA vector loadings that made it above the +/-0.3 loading cutoff as well as all 

monoterpene standards (Figure 1.10). A matrix was created for all of the samples within 

this experiment as well as each subset to correspond with each PCA respectively. For 

better visualization, a correlation matrix was also generated using only the compounds of 

interest to better determine the strength of the correlation between high loading 

compounds (Figure 1.11, Appendix E). Within the control and each treatment group, the 

total amount of correlated values with an r2 > +/-0.4 were tallied (Table 1.4, Appendix E). 

The sets of strongest positive and negative correlation clusters were determined by the 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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strongest r2 values within in any one control or treatment group to better compare 

strongly positive or negative correlation clusters among groups. Nonparametric Kruskal-

Wallis tests were used to compare the strength of positive and negative correlations 

among control and treatment groups using only correlation pairs where at least one of the 

treatments groups had a pair with an r2 > +/-0.4 (Appendix F). Nonparametric Kruskal-

Wallis tests were also used to compare the correlation values between the two sets of 

strongest positive and strongest negative correlation clusters based on the r2 values 

strengths (Appendix F). If the Kruskal-Wallis test was significant, a Pairwise Wilcoxon 

Rank Sum test was performed to determine which treatment groups were significantly 

different from each other.  
Correlation values were also used in conjunction with the PCA loadings to 

determine which compounds that made it above the +/-0.3 loading cutoff were selected 

for the final analyses (Figure 1.12). After it was determined which compounds were 

strongly correlated, final compound selection was performed using several criteria. These 

included being a compound that aligned with a standard using co-chromatography 

(Figure 1.5), high loading across multiple PCAs (Table 1.3), larger loading values in 

comparison to the correlated compound loading values throughout the PCAs (Appendix 

E), and lowest occurrence of zero values within the samples.  

To test predictions of the emission, induction, and browsing intensity hypotheses 

that monoterpenes would be lower in plants immediately after damage (emission 

hypothesis), higher in plants later in the time course (induction hypothesis), and changes 

would be higher in chronic treatments, we used two-way ANOVAs on the log 

transformed and centered dataset of concentrations (AUC/gDW) from final compounds 
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of interest. Although our experimental design was established to allow for a two-way 

repeated measures ANOVA (i.e., each plant within each treatment group [acute and 

chronic] was repeatedly measured over time), we could not use for this approach because 

of an instrumentation issues that prevented the availability of all time points for each 

plant (see GC batch comparisons in Appendix D). Instead, we used the function aov in 

the R base package stats (R Core Team 2021) to compare time points within treatment 

groups and between treatment groups. There was no significant interaction between 

treatment groups and time points (Appendix G and H) and therefore each comparison 

was analyzed separately for each of the final compounds of interest. One-way ANOVAs 

were also performed to test the effect of collection intensity at 144 hr on the log 

transformed and centered dataset of concentrations (AUC/gDW) from final compounds 

of interest.  

Results 

Exploratory PCAs of Time Points within Treatment Groups 

Overall, PCAs reveal only minor differences among time points within treatment 

groups, between treatment groups, and among levels of collection intensity (Figures 1.7, 

1.8, 1.9). PCAs and vector loadings identified several compounds that consistently 

influenced variation along dimensions of PCAs (i.e., C28 and C34) regardless of 

treatment and some that were unique influencers of variation within treatments (i.e., C26, 

C34, C38, and C44).  

PCA of Time Points within Control 

Of the total accumulated variation, or eigenvalues, of the PCA from the time 

points within the control treatment group (Figure 1.7a), 20.0% of the variation was 



20 

 

accounted for across dimension 1 and 18.0% of the variation was accounted for across 

dimension 2. The four compounds of interest identified from the vector loading values, or 

eigenvectors, above +/-0.3 (Table 1.3a) and represented correlated compounds (Figure 

1.12) in the time course within the control group PCA were C26, C28, C34, and C44. The 

ellipse for the zero hr time point was generally neutrally aligned across all positive and 

negative dimensions 1 and 2 and had the widest dimensional space. Compound C28 

contributed most to the one hr ellipse pulling towards the positive quadrant of dimensions 

1 and 2. The ellipse for the 24 hr time point was widest across dimension 1 and narrowest 

across dimension 2 with C26 contributing most to the pull of this ellipse. The ellipse for 

the 48 hr time point pulled relatively equally across dimension 1 and 2 with C44 

contributing most to the pull of this ellipse. Similar to the 24 hr time point, the ellipse for 

the 144 hr was widest across dimension 1 and narrowest across dimension 2 with C26 

contributing most to the pull of this ellipse. 

PCA of Time Points within Acute 

Of the total accumulated variation, or eigenvalues, of the PCA from the time 

points within the acute treatment group (Figure 1.7b), 24.9% of the variation was 

accounted for across dimension 1 and 13.3% of the variation was accounted for across 

dimension 2. The three compounds of interest identified from the vector loading values, 

or eigenvectors, above +/-0.3 (Table 1.3b) and represented correlated compounds (Figure 

1.12) in the time course within the acute group PCA were C28, C34, and C44. The ellipse 

for the zero hr time point was narrowest across dimension 1 and widest across dimension 

2 with C44 contributing the most to the pull of this ellipse. Similar to the zero hr time 

point, the ellipse for the one hr time point was narrowest across dimension 1 and widest 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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across dimension 2 with C44 contributing most to the pull of this ellipse. The ellipse for 

the 24 hr time point had the smallest dimensional space and is generally neutrally aligned 

across all positive and negative dimensions 1 and 2 with C28 and C34 contributing most 

to the pull of this ellipse. Compounds C28, C34, and C44 contributed most to the 48 hr 

ellipse which had the largest dimensional space across dimension 1. There was no ellipse 

for the 144 hr time point as there were insufficient samples to generate an ellipse. 

PCA of Time Points within Chronic 

Of the total accumulated variation, or eigenvalues, of the PCA from the time 

points within the chronic treatment group (Figure 1.7c), 21.1% of the variation was 

accounted for across dimension 1 and 12.7% of the variation was accounted for across 

dimension 2. The four compounds of interest identified from the vector loading values, or 

eigenvectors, above +/-0.3 (Table 1.3c) and represented correlated compounds (Figure 

1.12) in the time course within the chronic group PCA were C26, C28, C34, and C38. 

The ellipse for the one hr time point was generally neutrally aligned across all positive 

and negative dimensions 1 and 2 with C28, C34, and C38 contributing most to the shape 

of this ellipse. The ellipse for the 24 hr time point had the widest dimensional space and 

is widest across dimension 1 and narrowest across dimension 2 with C26 and C28 

contributing most to the pull of this ellipse. Compounds C28, C34, and C38 contributed 

most to the 48 hr time point ellipse with it being generally neutrally aligned across all 

positive and negative dimensions 1 and 2. In contrast to the 24 hr time point, the ellipse 

for the 144 hr time point had the smallest dimensional space and is narrowest across 

dimension 1 and widest across dimension 2 with C26 and C38 contributing most to the 

pull of this ellipse.  

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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PCA of Control versus Acute Treatments 

Of the total accumulated variation, or eigenvalues, of the PCA from the control 

versus acute treatment groups (Figure 1.8a), 20.2% of the variation was accounted for 

across dimension 1 and 15.7% of the variation was accounted for across dimension 2. 

The four compounds of interest identified from the vector loading values, or 

eigenvectors, above +/-0.3 (Table 1.3d) and represented correlated compounds (Figure 

1.12) in the time course within the control versus acute PCA were C26, C28, C34 and 

C61. The ellipse for the control treatment group was generally neutrally aligned across all 

positive and negative dimensions 1 and 2 with C26 and C61 contributing most to the 

shape of this ellipse. The ellipse for the acute treatment group was widest across 

dimension 1 and narrowest across dimension 2 with C28 and C34 contributing most to 

the pull of this ellipse.  

PCA of Control versus Chronic Treatments 

Of the total accumulated variation, or eigenvalues, of the PCA from the control 

versus chronic treatment groups (Figure 1.8b), 19.0% of the variation was accounted for 

across dimension 1 and 15.5% of the variation was accounted for across dimension 2. 

The four compounds of interest identified from the vector loading values, or 

eigenvectors, above +/-0.3 (Table 1.3e) and represented correlated compounds (Figure 

1.12) in the time course within the control versus acute PCA were C26, C28, C34, and 

C44. The ellipse for the control treatment group was generally neutrally aligned across all 

positive and negative dimensions 1 and 2 with C26, C34, and C44 contributing most to 

the pull of this ellipse. Similar to the control treatment group, the ellipse for the chronic 

treatment group was generally neutrally aligned across all positive and negative 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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dimensions 1 and 2 being the widest across dimension 1 and narrowest across dimension 

2 with C28, C34, and C44 contributing most to the shape of this ellipse.  

PCA of Collection Intensity 

Of the total accumulated variation, or eigenvalues, of the PCA from the collection 

intensity levels (Figure 1.9), 20.2% of the variation was accounted for across dimension 1 

and 16.0% of the variation was accounted for across dimension 2. The five compounds of 

interest identified from the vector values, or eigenvectors, above +/-0.3 (Table 1.3f) and 

represented correlated compounds (Figure 1.12) in the time course within the control 

versus acute PCA were C26, C28, C34, C38, and C61. The ellipse for the zero level 

collection intensity was widest across dimension 1 and narrowest across dimension 2 

with C38 and C61 contributing most to the pull of this ellipse. Compounds 28, C34, and 

C61 contributed most to the low level collection intensity ellipse which was widest across 

dimension 1 and narrowest across dimension 2. The ellipse for the medium level 

collection intensity was pulling towards the positive section of dimension 2 while 

otherwise being generally neutrally aligned across positive and negative dimension 1 

with C28, C34, and C38 contributing most to the pull of this ellipse. The ellipse for the 

high level collection intensity was generally neutrally aligned across all positive and 

negative dimensions 1 and 2 with C26, C38, and C61 contributing most to the shape of 

this ellipse.  

Correlation Matrices of Compounds of Interest and Standards 

 The correlation matrices were generated with the initial compounds of interest 

that made it above the +/-0.3 loading cutoff (Tables 1.3) and all standards. These matrices 

were made for all samples within the study and the subsets corresponding to each PCA 

https://docs.google.com/document/u/2/d/1o3zSeU9j3e3zu3DJvILVA-2lrHrkAVDDoNg2t33TCvQ/edit
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(Figures 1.10 and 1.11) and were used to identify the two strongest positive correlation 

clusters and two strongest negative correlation clusters among the treatment groups based 

on r2 values (Appendix E). In general, the control treatment had the strongest positive 

correlations and were less variable within each cluster and the chronic treatment had the 

strongest negative correlations and were more variable within each cluster. The control (n 

= 60), acute (n = 58), and chronic (n = 58) treatments had similar numbers of positively 

correlated values with an r2 > 0.4, but the chronic treatment had more negatively 

correlated values with an r2 > -0.4 (n = 17) than control (n = 5) or acute (n = 1) treatments 

(Table. 1.4). Positive correlation values of paired compounds where at least one treatment 

group had an r2 > 0.4 did not differ among treatment groups (χ2
(2, 222) = 2.704, P = 0.259, 

Table 1.6). However, the negative correlation values did differ among groups (χ2
(2, 60) = 

18.798, P = <0.001, Table 1.6) where the chronic treatment had more negatively 

correlated compounds than control (Pchronic-control = 0.0017) and acute (Pchronic-acute = 

<0.001) treatments, but control and acute did not differ (Pcontrol-acute = 0.153, Table 1.7).  

Overall, there were reoccurring patterns of clusters of correlated compounds with 

only minor differences across treatment groups. There were two strongly positive and 

two strongly negative correlation clusters that occurred relatively consistently throughout 

the control, acute, and chronic subsets (Figure 1.10, Table 1.5, Appendix F).  

The first positive correlation cluster was observed among C5, C7, C28, C32, and 

C34 (Appendix E). The positive correlations occurring in this cluster were fairly 

consistent throughout each subsetted treatment group with minimal differences observed. 

There was no difference in the overall strength of positive correlations within this cluster 

among treatment groups (χ2
(2, 27) = 2.5497, P = 0.280, Table 1.8). The strongest positive 
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correlations across all treatment groups within this cluster were between C5 and C7 (r2 > 

0.97) (Table 1.5). 

The second positive correlation cluster was observed among C8, C10, C11, C22, 

C24, and C44 (Appendix E). The correlations observed within this cluster were also 

fairly consistent in strength throughout each subsetted treatment group (χ2
(2, 42) = 1.617, P 

= 0.446, Table 1.8). The strongest positive correlations across all treatment groups were 

between C8 and C11 (r2 > 0.97). The control treatment had consistently higher positive 

correlations, but each treatment had a different combination of minimum negative 

correlated values (Table 1.5). 

The first negative correlation cluster was observed among C8, C10, C11, C22, 

C24 (which comprise our second positively correlated cluster) and C28, C32, and C34 

(which comprise our first positively correlated cluster). The negative correlations 

occurring in this cluster were significantly different among treatment groups (χ2
(2, 42) = 

10.12, P = 0.006, Table 1.8) where the chronic treatment had more negatively correlated 

compounds than control (Pchronic-control = 0.011) and acute (Pchronic-acute = 0.011) treatments, 

but control and acute did not differ (Pcontrol-acute = 0.935) (Table 1.9). All groups had 

different combinations of minimum and maximum negatively correlated values (Table 

1.5). The strongest negative correlations were between C22 and C32 for the chronic 

treatment (r2 > -0.59), between C8 and C34 for the acute treatment (r2 > -0.39), and 

between C24 and C28 for the control treatment (r2 > -0.37) (Table 1.5).  

The second negative cluster was observed among C8, C26, C37, and C38 with the 

chronic treatment being the most variable. There was no difference in the overall strength 

of negative correlations within this cluster among treatment groups (χ2
(2, 9) = 1.500, P = 
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0.4724, Table 1.8). Chronic and acute treatments shared the same combinations of 

minimum and maximum negatively correlated values (Table 1.5). The strongest negative 

correlation was between C37 and C38 for both chronic (r2 = -0.53) and acute treatments 

(r2 = -0.41) and the strongest negative correlation was between C26 and C38 for the 

control treatment (r2 = -0.44) (Table 1.5).  

Selection of Compounds of Interest Based on Correlations 

Compounds C18, C26, and C33 were correlated (mean r2 = 0.623; SEM = 0.225) 

with C26 chosen due to it appearing in nearly every PCA above the +/-0.3 loading cutoff 

and having the highest loading values among the correlated compounds. Compounds C5, 

C7, C9, and C28 were correlated (mean r2 = 0.659; SEM = 0.258) with C28 chosen due 

to it appearing in every PCA above the +/-0.3 loading cutoff and having the highest 

loading values among the correlated compounds. Compounds C32 and C34 were 

correlated (mean r2 = 0.768; SEM = 0.129) with C34 chosen due to it appearing in every 

PCA above the +/-0.3 loading cutoff, having the highest loading values among the 

correlated compounds, and having the lowest occurrence of zero values. Compounds C37 

and C38 were correlated (mean r2 = -0.414; SEM = -0.260) with C38 chosen due to it 

being the standard terpinolene. Compounds C8 and C44 were correlated (mean r2 = 

0.665; SEM = 0.098) with C44 chosen due to it appearing more often in PCAs above the 

+/-0.3 loading cutoff. Compound C44 did not appear as having a high PCA loading 

above the +/-0.3 cutoff in the collection intensity group and therefore was not included 

for subsequent analyses for collection intensity but was included for analyses for time 

points and treatment groups. Compound C61 was not strongly correlated with any of the 

other compounds of interest, but it was selected as a final compound of interest due it to 
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its appearance in the collection intensity PCA loadings above the loading cutoff of +/-0.3. 

The resulting final compound of interest were therefore C26, C28, C34, C38, C44, and 

C61. 

Comparing Time Points and Treatment Groups 

We found that there was no statistically significant effect for any compound 

among time points or among treatment groups (Table 1.10, Figure 1.13, Appendix G). 

Although not significant, there were a few notable patterns with most chemicals in most 

treatments decreasing with time following the initial simulated browsing event. 

Concentrations of C26 were constant for both the control and acute treatments for the 

first three time points (T = 0 – 24 hr) and then both decreased at 48 hr. Concentrations of 

C28 also remained constant across time for acute treatment plants and then show a 

decrease at 48 hr that was 87.1% lower than control plants during this time point. 

Concentrations of C38 remained relatively constant with a slight increase at 1 hr for acute 

that was 1.97 times higher than control plants followed by a decrease in concentration at 

24 and 48 hr with chronic plants having 1.83 times higher concentrations than control at 

24 hr. Both acute and chronic groups showed a gradual decrease in concentrations of C44 

over time with acute plants 60.3% lower than control at 48 hr and chronic plants 53.1% 

lower than control at 144 hr. Although it was not selected based on the previously 

mentioned criteria for the final compounds of interest, C18 also showed a decrease in 

concentration with time (P < 0.05) across all treatments (Appendix H).  

Comparing Collection Intensities 

We did not find any statistically significant differences for any compounds of 

interest among collection intensity levels (Table 1.11, Figure 1.14). Although not 
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significant, there were a few notable patterns. Concentrations of C28 were 2.53 times 

higher for the low level of collection intensity and 2.01 times higher in the high level of 

collection intensity compared to the control plants at 144 hr. In addition, concentrations 

of C61 in the high level of collection intensity were 43.1% lower than plants in the low 

and 35.7% lower than plants in the medium level of collection intensity.  

Discussion 

In this investigation we used a time-interval based approach to investigate 

induction of monoterpenes in sagebrush (Artemisia tridentata subsp. wyomingensis) in 

the winter in response to simulated browsing of an avian herbivore. This experiment was 

designed to detect changes in monoterpene profiles over a six-day period to identify if, 

when, and to what extent monoterpenes change in response to damage, thus signaling the 

onset of an induced chemical defense response (Zangerl and Rutledge 1996, Kant et al. 

2004, Heil 2009, Heil and Karban 2010, Portillo-Estrada et al. 2015). Overall, we found 

substantial overlap in the ellipses of all generated PCAs subsetted either by time points 

within treatment groups, between treatment groups, and among levels of collection 

intensity (Figures 1.7, 1.8, 1.9). This strong ellipses overlap suggests that an induced 

defense response is not occurring in sagebrush in winter regardless of the level of damage 

to leaves. We found minimal evidence that the compounds of interest that best explained 

the variation within and among treatment groups and different levels of collection 

intensity changed following simulated browsing (Figures 1.10, 1.11, 1.13, 1.14, Tables 

1.10, 1.11). Support for our hypotheses were inconsistent. Results did not support the 

emission hypothesis that monoterpenes concentrations would initially decrease at the start 

of the time course or the induction hypothesis that monoterpene concentrations would 
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increase as the time course progressed. We also did not support the hypothesis that 

treatment plants were less variable in the types of monoterpenes present compared to 

control plants (Figure 1.8). Our results also did not support the hypothesis that higher 

browsing intensity would cause greater changes in concentrations via chronic treatment 

(Figures 1.7, 1.13) or higher collection intensity (Figures 1.9, 1.14). One pattern of 

interest observed that was in support of the higher browsing intensity hypothesis was 

more negative correlations among compounds in the chronic treatment group than control 

and acute treatment groups (Table 1.4, 1.6, Table 1.8). 

Results generally indicate very minimal changes in chemistry of sagebrush after 

damage in the winter for this subspecies in this specific location (Tables 1.10, 1.11, 

Figures 1.13, 1.14). These results differ from previous studies in sagebrush that found 

significant changes in monoterpenes released and levels of leaf palatability between 

undamaged control plants and damaged treatment plants in the summer during a single 

collection event (Karban et al. 2000, 2006, Karban and Baxter 2001) and various time 

courses (Karban and Maron 2002, Kessler et al. 2006, Shiojiri and Karban 2008). There 

are numerous plausible reasons why our results differ from other studies. First, we 

performed this study in the winter when there is less nitrogen availability and sunlight 

and temperatures are lower compared to the summer when resources are relatively 

higher. Lower resources could be a causative agent for the overall lack of induced 

defense response observed by limiting the production of monoterpenes and other 

defensive chemicals through glycolysis derivates and enzymatic biosynthesis (Millard et 

al. 2001, Schultz et al. 2013). During the winter the process of detection of damage from 

herbivore browsing by plants may be slowed (Bilbrough and Richards 1993). It is 
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therefore possible that dormancy of chemical responses by sagebrush in the winter limits 

responses to browsing with the plants having little capacity to change their gene 

expression in response to damage (Kelsey et al. 1982, Morin et al. 2007, Lazarus et al. 

2019). Our study suggests there may be limited chemical plasticity of sagebrush in the 

winter associated with a gene by browsing interaction. Analysis of monoterpene profiles 

of genetically distinct Artemisia subspecies (collected between May and October) within 

a common garden environment indicate that emission of monoterpenes in sagebrush is 

largely under genetic control but is also influenced by the environment (Jaeger et al. 

2016). Given that monoterpenes can classify taxa of sagebrush relative to the 

environment, further understanding of chemical plasticity relative to gene by winter 

environment may advance our knowledge of the functional role of monoterpenes in the 

ecology and evolution of sagebrush.  

The specific leaf type present on sagebrush could also impact the induced defense 

response. Ephemeral leaves, which are present during the spring and early summer, are 

larger in size compared to persistent leaves which are present all year (Miller and Schultz 

1987). Due to ephemeral leaves only being produced in the productive growing season of 

summer where it is expected that they are more digestible, they may possess different 

chemical defense mechanisms than the persistent leaves that may instead rely on a 

constitutive defense mechanism with higher concentration of chemicals (Karban and 

Myers 1989, Zangerl and Rutledge 1996, Ito and Sakai 2009). Insect herbivores that are 

more prevalent in the summer may have a preference for leaf type, feeding more heavily 

on ephemeral rather than persistent due to the lower antioxidant levels (Pu et al. 2015), 

thus leading to heavier herbivore browsing and greater need for induced defense in this 
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leaf type. In support, ephemeral leaves have higher crude protein digestibility (2.4% 

higher), lower total phenolics (30.1% lower), and lower total monoterpenes (2.1% lower) 

compared to persistent leaves (unpublished data, Forbey). It is also possible that because 

the persistent leaves are the only leaf type present in the winter that they are dormant and 

are not able to respond to damage (Kelsey et al. 1982, Morin et al. 2007, Lazarus et al. 

2019). This potential dormancy could be assessed by measuring the photosynthesis rate 

of the leaves during the winter. The enzymes responsible for sagebrush photosynthesis 

are functional at an approximate optimal temperature of 24°C, with large variation in 

temperature causing a decrease in enzyme functionality and subsequent photosynthesis 

rate (DePuit and Caldwell 1973, Hansen et al. 2008, Kleinhesselink and Adler 2018). 

During our study period and site, the average minimum temperature was 0.1°C and the 

maximum temperature never increasing above 22.4°C which suggests that the observed 

stability of monoterpenes during winter may be due to a complete lack of photosynthesis 

occurring in these leaves.  

Results may also be related to the species of plant used in our study. The plant 

species for this study, Wyoming big sagebrush (Artemisia tridentata subsp. 

wyomingensis), was selected because of its high prevalence in the sagebrush steppe 

ecosystem that is currently threatened by fires, drought, and human encroachment 

(Kelsey et al. 1983, Takahashi and Huntly 2010, Reisner et al. 2013, Kleinhesselink and 

Adler 2018). Previous studies used A. t. cana, A. t. vaseyana, A. douglasiana or 

sagebrush (A. tridentata) without indicating subspecies (Karban et al. 2000, 2004, 2014b, 

2016, Karban and Baxter 2001, Shiojiri and Karban 2008). This study may represent the 

first test of induced defenses in Wyoming big sagebrush. It is possible that Wyoming big 
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sagebrush relies on constitutive defenses rather than induce defenses (Karban and Myers 

1989, Zangerl and Rutledge 1996, Ito and Sakai 2009) in the winter that are already 

highly deterrent to herbivores which may explain avoidance of this species by sage-

grouse compared to A. nova (Frye et al. 2013). Wyoming big sagebrush is slow growing 

and located in environments that are relatively low in resources (Bilbrough and Richards 

1993). Moreover, the synthesis of volatile chemicals may come at a cost to the plant in 

the form of reduced growth and increasing resource allocation (Engelberth and 

Engelberth 2019). For example, maize seedlings (Zea mays) that were exposed to 

volatiles to promote an induced defense response showed a significantly reduced growth 

when compared to the control seedlings over a period of approximately two weeks 

(Engelberth and Engelberth 2019). The use of volatiles in an induced defense rather than 

constitutive defense can be an efficient strategy due to its minimization of overall plant 

cost during times of stress and an increase in plant fitness (Raffa and Berryman 1982, 

Karban and Myers 1989, Heil and Karban 2010, Neilson et al. 2013, Backmann et al. 

2019). However, when a plant is under constant herbivore pressure, it may rely on 

constitutive defense strategies to provide continual protection against herbivores using a 

more stable chemical profile (Underwood 1998, Ito and Sakai 2009, Karban 2011). 

Although not required in summer, the application of the enzymes found in 

herbivore saliva that remains after a bite has occurred may be required to properly 

simulate an induced defense response in sagebrush in the winter (Paré et al. 2005). The 

simulated browsing that was performed in this experiment was done using scissors to 

snip and imitate the beak cuts on sagebrush leaves for each treatment plant to mimic 

natural herbivore browsing by sage-grouse and thereby produce a defensive chemical 
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response (Heil and Karban 2010, Fremgen 2015, Moreira et al. 2018, Bouwmeester et al. 

2019, Moreira and Abdala-Roberts 2019) (Figure 1.2). It is possible that this form of 

mechanical damage may not have been sufficient to produce an induced defense response 

in sagebrush due to the lack of herbivore biotic factors co-occurring with the physical 

damage which would occur under natural browsing conditions (Paré et al. 2005, Kessler 

and Halitschke 2007). The lack of herbivore biotic factors, such as the saliva left behind 

after any bites have been made or oviposition fluids from insects, could potentially be the 

reason why there were generally no significant differences between the treatment groups 

when observing the generated PCAs (Figure 1.7, Figure 1.8).  

Various abiotic environmental factors could also contribute to the lack of changes 

observed with wind being a major contributor. The degree and directionality of any wind 

present across the experimental landscape (e.g., average wind speed 24.0 mph at our site) 

could influence potential interactions between study plants and the variation in detection 

and induced response to emitted signals (Murlis et al. 2000, Aartsma et al. 2017). This 

study was performed in Wyoming, which is notoriously windy and could have 

complicated our ability to detect changes if they were occurring. Other studies were done 

in very controlled areas that were less impacted by windy conditions (Karban et al. 2000, 

2004, Karban and Baxter 2001). The presence of wind could impact neighboring 

eavesdropping even if they are distanced over 60 cm apart by increasing the airflow 

between plants, thus potentially complicating the results (Karban et al. 2006, Aartsma et 

al. 2017). Wind can also cause turbulence within an area that mixes blends of emitted 

volatiles, further contributing to the chemical variation while simultaneously causing 

chemical breakdown and signal misinterpretation (Aartsma et al. 2017). Other abiotic 
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environmental factors such as temperature or snow depths could also contribute to the 

lack of change observed. The lower temperatures during our study (average minimum 

temperature 0.1°C, average maximum temperature 15.4°C) could cause enzymatic 

chemical synthesis to slow or stop entirely (Hulten et al. 2006, Neilson et al. 2013). It 

could also be that each time point could have had collections taken at different minimum 

or maximum temperatures, leading to potentially different reactions to these conditions 

and confounding the results. The accumulation of snow could create micro-climates 

depending on where it lands throughout a landscape and the resulting depths (average 

snow depth 1.27 mm during our study). Snow covering plants could potentially cause 

temperature discrepancies through insulation and partial coverage from browsing 

herbivores (Nobrega and Grogan 2007, Kelsey et al. 2021).  

Regardless of the reason for lack of induced defense, our results indicate that 

there is overall stability of monoterpenes in Wyoming big sagebrush in this landscape 

irrespective of treatment group or damage level. Results suggest that after damage, plants 

are not becoming more vulnerable through loss of volatiles from leaves associated with 

emission or more chemically defended within 144 hr after damage through synthesis of 

new chemicals. Due to this lack of chemical induction, herbivores may not have to 

respond to temporal variation in the plant chemistry. Both sage-grouse (Frye et al. 2013, 

Wing and Messmer 2016) and pygmy rabbits (Ulappa et al. 2014, Pu et al. 2015, Nobler 

et al. 2019) detect and respond to chemical concentrations in Wyoming big sagebrush. As 

such, lack of induced defenses may allow these vertebrate herbivores to consistently 

return to plants originally selected based on lower chemical defenses. The stability of 

chemistry after being browsed is beneficial for foraging herbivores because they will not 
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have to search for new plants that have not been previously browsed in the winter. The 

high fidelity at winter sites by sage-grouse (Fischer et al. 1993, Gibson et al. 2014) may 

be encouraged by lack of induced defenses of sagebrush in the winter. Foraging fidelity 

(Fischer et al. 1993, Gibson et al. 2014) versus tracking of foraging resources (van der 

Graaf et al. 2006, Aikens et al. 2020) has been observed in a diversity of herbivores and 

could be partially linked not only to plant availability but also stability versus induction 

of chemical traits associated with historical browsing events.  

However, we did discover some chemical patterns that deserve further attention, 

mainly revolving around the general decreases detected in compounds of interest (C26, 

C28, C34, C38, C44, and C61) (Figures 1.13, 1.14). Detection of subtle changes in 

chemical concentration or gain of specific chemicals, even if in low concentrations, can 

have biological effects in herbivores. For example, the odds that pygmy rabbits 

(Brachylagus idahoensis) will browse sagebrush (Artemisia spp.) decreases by 1.03 times 

for every 100 µg/gDW increase in artemiseole concentration, which was 17.1% higher in 

unbrowsed than browsed plants (Ulappa et al. 2014). An increase in 1,8-cineole and an 

unidentified monoterpene decreased the odds of patch use by 18% and 40%, respectively, 

for each 1 AUC/100 μgDW increase in concentration for Greater Sage-grouse 

(Centrocercus urophasianus) (Frye et al. 2013). This implies that the chemical changes 

do not necessarily need to be large to have an impact on diet selection of herbivores. We 

found that the largest concentration differences were seen in C28 and C38. The low and 

high levels of collection intensity had 2.53 times and 2.01 times higher concentrations of 

C28 respectively compared to the zero level control plants (Figure 1.14). Acute treatment 

plants had 1.97 times higher concentration of C38 at 1 hr after damage than control 
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plants. Chronic treatment plants also had 1.83 times higher concentration of C38 at 24 hr 

after damage than control plants (Figure 1.13). In addition, we found a general reduction 

over time of the main compounds of interest in the acute treatment group which may be 

indicative of a release in volatile chemicals following stimulated browsing. We also 

observed more variable responses in the AUC/gDW concentrations of the compounds of 

interest in the chronic treatment group (Figure 1.13) which may be influential for central 

placed foragers, like pygmy rabbits, because unpredictable chemistry may prevent them 

from accurately assessing concentrations while foraging. These concentration changes are 

larger than the concentration difference that caused a decrease in odds of use by pygmy 

rabbits (Brachylagus idahoensis) and sage-grouse (Centrocercus urophasianus) (Frye et 

al. 2013, Ulappa et al. 2014). Although we did detect small changes in concentrations, the 

overall stable chemistry observed at our study site suggests that foraging behavior of 

herbivores would not be severely influenced by previous damage by herbivores. We 

predict that herbivores at our site will have high foraging fidelity at this site and that 

stability of PSMs relative to browsing may be a novel factor contributing to the stability 

of herbivore populations (Fischer et al. 1993, Gibson et al. 2014). However, in another 

location where induction does occur, herbivores are expected to have higher movement 

within and among foraging patches to find a plant that has not been induced. 

The second pattern we observed that may contribute to understanding plant-

herbivore interactions is associated with patterns in correlated compounds. Patterns of 

compounds that are more negatively or positively correlated can help identify specific 

biochemical pathways involved in induced defenses that may prime plants to respond to 

future stressors. The various correlation matrices (Figure 1.10) can help identify which 
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compounds are substrates and products within biosynthetic pathways based on either 

strong positive values, when compounds are occurring together, or strong negative 

values, when compounds are occurring in the absence of the other. Correlated compounds 

may occur in the same biosynthetic pathways, possess similar biological functions, or be 

common biomarkers of stress. For example, alpha-pinene (C10) is produced in the 

methylerythritol pathway (MEP) which receives its substrates from the pyruvate product 

from glycolysis. The MEP pathway converts pyruvate into isopentenyl pyrophosphate 

(IPP) and Dimethylallyl pyrophosphate (DMAPP), which can both be further modified to 

create geranyl diphosphate (GPP) where all monoterpenes are derived. GPP can be 

converted into linalyl diphosphate that can further undergo enzymatic conversion to 

produce alpha-pinene (Schwab et al. 2001, Mahmoud and Croteau 2002, Chang and 

Keasling 2006, Muhlemann et al. 2014, Risner et al. 2020). Changes in correlation 

strength or direction can potentially link known standards and their pathways to the 

production and function of unknown monoterpenes (Muhlemann et al. 2014, Cofer et al. 

2018). For example, stronger negative correlation between alpha-pinene (C10) and C34 

in the chronic treatment (r2 = -0.42) compared to control (r2 = -0.16) might indicate that 

our unknown C34 is a chemical in the same biosynthetic pathway as alpha-pinene 

(Appendix E). With the chronic treatment group having significantly more negative 

correlations below the -0.4 threshold, it implies that these plants are converting one 

monoterpene into another. It is therefore necessary to investigate which compounds are 

negatively correlated in the chronic treatment group, but not in the control to better 

understand how browsing might influence these biosynthetic pathways. Many of the 

strongly correlated compounds were either not detected or had generally low 
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concentrations within the samples that would normally have been ignored. Correlation 

patterns could therefore lead to further exploration that could specifically identify the 

compounds of interest that have shared biological, defensive, or metabolic significance 

(Dudareva et al. 2004, Clavijo Mccormick et al. 2014, Bouwmeester et al. 2019). 

With the advancement of multivariate techniques, it is now possible to examine 

the nuances of defensive chemicals (Wallestad and Eng 1975, Heil and Karban 2010, 

Frye et al. 2013, Moreira et al. 2018, Bouwmeester et al. 2019, Moreira and Abdala-

Roberts 2019). We examined multiple variables of time points, treatment groups, and 

damage level through collection intensity to determine when and how entire monoterpene 

profiles are changing in response to damage. This approach was useful because it allowed 

for the detection of potentially rare compounds and those with low concentrations that 

were previously likely to be overlooked to be examined as potential biomarkers of 

induction. Multivariate approaches can also help in identifying low concentration 

chemicals that should be reassessed in existing studies on diet selection (Zangerl and 

Rutledge 1996, Kant et al. 2004, Portillo-Estrada et al. 2015). Analytical limitations in 

detecting compounds that are at or below detection limits may cause some compounds to 

be overlooked or excluded (Lavagnini and Magno 2007, Myrick and Baker 2018). Our 

approach allows us to identify which compounds to quantify that may be involved in 

potential induced defense strategies (Wold and Marquis 1997, Karban et al. 2000, Thaler 

et al. 2002). We can use the knowledge gained from determining the compounds of 

interest and correlation patterns by investigating other types of defensive chemicals that 

may further advance our understanding of induced defense mechanisms. For example, 

high-performance liquid chromatography (HPLC) could be used to assess how phenolic 
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compounds that are produced through a different metabolic pathway are changing in the 

leaf tissue (Mattila et al. 2000, Koricheva 2002, Wing and Messmer 2016, Bouwmeester 

et al. 2019). We could also run further analyses such as mass-spectrometry (MS) and 

Nuclear Magnetic Resonance spectroscopy (NMR) that help identify unknowns and 

couple data on mixtures of chemicals with linear discriminant analysis (LDA), Nonmetric 

multidimensional scaling (NMDS), and random forest to reduce dimensionality to better 

understand the patterns of chemical change occurring (Angelini et al. 2010, Hervé et al. 

2018, Papana et al. 2021). 

By understanding how plants respond, either by chemicals that remain stable or 

through emission or induction, may help inform management decisions. Our approach 

should be applied to other populations of sagebrush, other herbivores, and other highly 

important forage shrubs to better understand unique chemical patterns and responses 

associated with each plant-herbivore system (Agrell et al. 2003, Clavijo McCormick 

2016). A more comprehensive understanding of what biotic stressors affect chemical 

profiles of plants could also help determine what types of plants may be better adapted 

for a specific area in regard to certain management decisions. For example, restoration 

efforts should consider plants that can adapt to local environmental conditions and remain 

stable to local and native herbivores (Provenza et al. 2003, Heil 2009, Heil and Karban 

2010). To do this requires that monoterpene profiles within species are examined before 

and after they are placed on new landscapes. Having a diverse array of monoterpene 

profiles and knowledge surrounding how they are responding to their environmental 

factors will create a more adaptable, diverse population (Karban et al. 2014a, Hussain et 

al. 2019). For example, a plant that is chemically dynamic may help it establish in a new 
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environment because it is less palatable to herbivores. However, a chemically dynamic 

plant may not adequately support a local herbivore population. These herbivores may 

avoid the newly established plants because they do not recognize the chemical signals or 

do not have the ability to detoxify the chemicals in the plant which could complicate 

recovery of the herbivore population (Koricheva 2002, Neilson et al. 2013, Veblen et al. 

2015) (See Chapter 2). Overall, there are many opportunities for future studies to 

elucidate the complex and temporally dynamic chemical dance between plants and 

herbivores through observing the subtle changes in chemical concentrations using our 

multivariate approach. Moreover, the discovery of the correlated chemicals in response to 

herbivore damage could reveal novel biosynthetic pathways and help uncover the 

biological importance of correlated compounds for plant defense (Hervé et al. 2018) with 

novel pharmacological purposes (McLean et al. 2007, Clavijo McCormick et al. 2012, Li 

et al. 2017) (See Chapter 2).  
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Table 1.4. The number of correlated pairs (Figure 1.10, Figure 1.11) that were 
above the +/-0.4 threshold for control, acute, and chronic treatment group. 

Treatment Positive Negative 
Control 60 5 
Acute 58 1 
Chronic 58 17 
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Table 1.6.  Kruskal-Wallis test results comparing positive and negative 
correlated values among the control, acute, and chronic treatment groups where 
only pairs were included if at least one treatment group had an r2 > +/-0.4. 

 
Positive Correlations   
 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2, 222 2.7037 0.2588 

 
 
 
Negative Correlations   
 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2, 60 18.798 <0.001 
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Table 1.7.  Pairwise Wilcoxon Rank Sum test to determine which treatment 
groups of control, acute, and chronic were significantly different from each other 
when at least one treatment group had an r2 > -0.4. 
 
Negative Correlations    
Pairwise comparisons using Wilcoxon rank sum exact test  

   Control Acute  
  Acute 0.153 -  
  Chronic 0.0017 <0.001  

 
  



63 

 

Table 1.8.  Kruskal-Wallis test results on the correlation values between the 
strongest positive and negative correlation clusters to compare strength among the 
control, acute, and chronic treatment groups. 
 
Positive Correlation Cluster: C5, C7, C28, C32, C34 

 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2, 27 2.5497 0.2795 

  
 
Positive Correlation Cluster: C8, C10, C11, C22, C24, C44 

 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2, 42 1.617 0.4455 

  
 
Negative Correlation Cluster: C8, C10, C11, C22, C24, C28, C32, C34  

 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2, 42 10.12 0.0063 

  
 
Negative Correlation Cluster: C8, C26, C37, C38 

 Kruskal-Wallis Rank Sum Test 
    df χ2  P 
r2 by Treatment 2,9 1.5 0.4724 
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Table 1.9.  Pairwise Wilcoxon Rank Sum test to determine if the treatment 
groups of control, acute, and chronic were significantly different from each other 
when observing the strongest negative correlation cluster.  

 
Negative Correlation Cluster C8, C10, C11, C22, C24, C28, C32, C34 

Pairwise comparisons using Wilcoxon rank sum exact test  

   Control Acute 

  Acute 0.935 - 
  Chronic 0.011 0.011 
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Table 1.10.  Two-way ANOVA results for the final compounds of interest 
identified from comparing treatment groups and time points. 

 
C26      

   ANOVA 
Sources of Variation df F P 
Treatment  2, 139 1.368 0.258 
Time Points  4, 139 1.163 0.330 

 
 

C28      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 139 1.829 0.164 
Time Points  4, 139 0.501 0.735 

 
 

C34      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 139 1.169 0.314 
Time Points  4, 139 0.283 0.889 

 
 

C38      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 139 0.537 0.586 
Time Points  4, 139 0.625 0.646 

 

C44      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 139 1.272 0.284 
Time Points  4, 139 0.318 0.865 
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Table 1.11.  One-way ANOVA results from the final compounds of interest from 
comparing the varying levels of collection intensity.  

 
C26      

   ANOVA 
Sources of Variation df F P 
Collection Intensity 3, 49 0.561 0.643 

 
 

C28      
   ANOVA 

Sources of Variation df F P 
Collection Intensity 3, 49 0.463 0.709 

 
 

C34      
   ANOVA 

Sources of Variation df F P 
Collection Intensity 3, 49 0.272 0.845 

 
 

C38      
   ANOVA 

Sources of Variation df F P 
Collection Intensity 3, 49 0.56 0.644 

 
 

C61      
   ANOVA 

Sources of Variation df F P 
Collection Intensity 3, 49 0.62 0.605 
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Figures 

 
Figure 1.1.  Map of 15 collection patches in Fremont County, Wyoming, USA 
where the induced defense experiment was conducted. The overlay map in the 

upper left corner displays the sagebrush biome distribution throughout the western 
United States. The red star indicates the location of the study area. Sagebrush biome 

distribution map acquired from the USGS (Jeffries and Finn 2019).  
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Figure 1.2.  (Left) Overview of induced defense experiment with treatments that 
mimic natural browsing by sage-grouse on sagebrush where distinct bite marks are 
made on the leaves. This browsing damage was simulated by cutting 50 leaves from 

each simulated browsed treatment plant (indicated by bird beak icon) in each 
collection site at zero hr (T = 0 hr). After the simulated browsing treatment, leaf and 

stem material was collected using scissors at various time points (0, 1, 24, 48, and 
144 hr). Collections were taken from treatment plants and (Right) a spatially and 
temporally paired control plant that was unique and had never received simulated 

browsing or prior collections. All paired treatment and control plants were 
positioned at a minimal distance of 1 m apart. 
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Figure 1.3.  Diagram of induced defense data structure and the associated number 

of collection samples in each group. 
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Figure 1.4.  Chromatogram of a cocktail of monoterpene standards used for co-
chromatography. The standards correspond to the compound names (inset) based 

on the retention times (mins) that they appear on the chromatogram. The first peak 
corresponds to the solvent methylene chloride used to combine standards into a 

single sample for gas chromatography. 
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Figure 1.5.  Representative monoterpene chromatograms for sagebrush (Artemisia 

tridentata subsp. wyomingensis) (top three lines) and the cocktail of monoterpene 
standards (bottom blue line). The peaks represent individual compounds with the 

relative abundance measured as area under the curve (AUC) with the 
corresponding retention time (RT) in mins. The main compounds of interest and 

standards are marked using compound names based on associated RTs (Table 1.2).
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Figure 1.6.  Consort diagrams that details the decisions made for inclusion and 

exclusion of samples and monoterpene compounds into the analyses.
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Figure 1.7.  Principal Component Analyses (PCAs) generated for comparing time 

points (1, 24, 48, and 144 hr) within a) control, b) acute, and c) chronic treatment 
groups separately using the calculated centered values. The colored ellipses 

represent the different time points (hr) after simulated browsing within each 
treatment and where time points fall across the different PC dimensions. The 

compounds are represented by the vectors of varying lengths with the longer vectors 
having a stronger influence on the variation among the samples within the time 

point category (see Table 1.3 for PCA loadings).  

 

Time Points 
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Figure 1.8.  PCAs generated for the a) control versus acute treatment for all time 

points and b) control versus chronic treatment for all time points using the 
calculated centered values. The colored ellipses represent the different treatment 

groups present and where they fall across the different PC dimensions. The 
compounds are represented by the vectors of varying lengths with the longer vectors 

having a stronger influence on the variation among the samples within the 
treatment category (see Table 1.3 for PCA loadings).  
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Figure 1.9.  PCA generated for the different levels of collection intensity (see 
Figure 1.2 and 1.3) using the calculated centered values. The colored ellipses 

represent the control and the different levels of collection intensity (low – high) and 
where they fall across the different PC dimensions. The compounds are represented 
by the vectors of varying lengths with the longer vectors having a stronger influence 

on the variation among the samples within the collection intensity category (see 
Table 1.3 for PCA loadings).   
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Figure 1.10.  Correlation matrices generated from the area under the curve per 

gram dry weight (AUC/gDW) values of the fourteen main vector loadings that made 
the cutoff threshold of +/-0.3 (see Table 1.3) and the monoterpene standards. The 

size of each circle corresponds to the strength of the correlation represented by the 
correlation coefficients between -1.0 and +1.0 among the respective compounds 

while the color indicates either a positive (blue) or a negative (red) correlation. All 
compounds aside from the standards appeared in at least one of the PCA loading 

tables. The correlation matrices are created through comparing a) all samples in the 
experiment, b) time points within control, c) time points within acute, d) time points 
within chronic, e) control versus acute, f) control versus chronic, and g) collection 
intensity. Compound C14 was excluded in the subsequent analyses due to its “oil-

can” appearance that bled into C15 (see Appendix C for details). 
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Figure 1.11.  Correlation matrices generated from the area under the curve per 
gram dry weight (AUC/gDW) values of the compounds of interest that made it 

above the cutoff of +/-0.3 that signified a substantial contribution to the variation 
being observed among all samples within the experiment (see Table 1.3). The size of 

each circle corresponds to the strength of the correlation between -1.0 and + 1.0 
between the respective compounds while the color indicates either a positive (blue) 
or a negative (red) correlation. All compounds appeared in at least one of the PCA 

loading tables as having a loading value above the +/-0.3 cutoff.  
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Figure 1.12.  Consort diagram that details the decisions made for inclusion and 
exclusion of the final compounds of interest that made it above the PCA loading 

cutoff of +/-0.3 for the final analyses (see Table 1.3). 
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Figure 1.13.  Mean monoterpene concentrations (AUC/gDW) for the final 

compounds of interest when comparing treatment groups across the time points 
(hours) after the first simulated browsing event. Each bar graph has associated 

standard error bars.
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Figure 1.14.  Mean monoterpene concentrations (AUC/gDW) for the final 

compounds of interest when comparing across the varying levels of collection 
intensity for plants at 144 hr following the first simulated browsed event. Each bar 

graph has associated standard error bars.
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CHAPTER TWO: APPLYING KNOWLEDGE OF PLANT INDUCED DEFENSE TO 

ECOSYSTEM MANAGEMENT, AGRICULTURE, AND PHARMACOLOGY 

THROUGH USE-INSPIRED RESEARCH IN CHEMISTRY 

 The underlying mechanisms of plant communication at multiple levels are vital to 

understanding how organisms and ecosystems are linked. For example, the volatile 

communication of willow trees (Salix eriocarpa) is involved in the attraction of the 

natural predator ladybird (Aiolocaria hexaspilota) when damaged by a willow leaf beetle 

(Plagiodera versicolora), demonstrating a tritrophic interaction (Yoneya and 

Takabayashi 2013). However, uncovering these communication mechanisms that control 

these different levels of ecosystem interactions has yet to be fully investigated across 

various habitats and species (Aartsma et al. 2017, Takabayashi 2022). There are 

thousands of new plant species discovered every year, each with unique mechanisms by 

which they interact with other organisms to shape their survival (Christenhusz and Byng 

2016). Simultaneously, we are losing species in threatened ecosystems such as the 

sagebrush steppe (Reisner et al. 2013), amazon rainforests (Codato et al. 2019), tropical 

ecosystems (Noh et al. 2020), and coral reefs (Mumby and Steneck 2008) that are reliant 

on chemical signals. The lack of knowledge of plant communication throughout an 

ecosystem is problematic because these chemical messages are what influence the 

responses of other organisms. Uncovering communication mechanisms in diverse 

ecosystems would help provide knowledge of the diversity that exists in plant systems by 

elucidating the multiple specific responses and chemicals for different organisms across 
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trophic levels. Chemical signals are not only used to map the distribution of new and 

existing species (Li et al. 2014, Olsoy et al. 2020), but also to predict interactions with 

other organisms (Kost and Heil 2006, Ninkovic et al. 2016). To uncover these 

communication mechanisms, chemicals must be monitored over time, across landscapes, 

and when exposed to different biotic and abiotic factors. For example, studies that 

investigate the communication dynamics of plants when exposed to herbivore damage 

(Chapter 1) lay the foundation for uncovering which chemicals are most likely to 

contribute to the interactions observed between sagebrush and sage-grouse and how these 

organisms and their interactions are impacted. 

To understand how chemistry mediates interactions between organisms of interest 

in other fields and systems, applying the approach of a time course could be used to 

investigate the full chemical profile and the changes observed (Heil and Karban 2010, 

Clavijo Mccormick et al. 2014, Bouwmeester et al. 2019). Detecting dynamics in 

chemicals would help identify how plants are able to communicate in specific 

environments and how chemical signaling in response to biotic or abiotic stimuli differs 

across plant taxa. Advances in detection technology allow chemical interactions to be 

investigated across larger spatial areas and time. For example, unmanned aerial systems 

have been used to map the different chemotypes in plants across space by linking 

phytochemical measurements in the field to sagebrush classification through machine 

learning and object based image analysis of shrub structural features (Olsoy et al. 2020). 

Gas chromatography has been used to examine the changes in chemical profiles across 

time (Lavagnini and Magno 2007, Clavijo McCormick 2016). We propose that a better 

understanding of the diversity and dynamics of chemicals in native and non-model plants 
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will benefit natural resources management, agriculture, and pharmacology through use-

inspired research in chemistry. 

Understanding how plants respond to damage by either herbivores or 

environmental conditions can inform how we manage ecosystems after disturbances 

(Koricheva 2002, Neilson et al. 2013, Veblen et al. 2015). For example, the chemical 

communication among successional plant communities arising after habitats are altered 

by abiotic disturbance, such as wildfires or floods, or by human decisions such as logging 

or conifer removal (Davies et al. 2012, Inderjit et al. 2017), may be asynchronous or 

disrupted and could influence the rate at which environments recover back to their 

original state (Huxel and Hastings 1999). In addition, chemical communication and the 

plasticity of chemicals that influence foraging of herbivores may depend on gene by 

environment conditions (Jaeger et al. 2016) that could influence the success of vegetative 

recovery by organizations such as the U.S. Fish and Wildlife Service and the Bureau of 

Land Management (BLM). These organizations reseed areas with key plant species that 

support the environment without knowing how chemical profiles that influence trophic 

interactions will respond to plant genotypes interacting with the local environment. For 

example, the BLM applied a suite of management responses to the 2015 Soda Fire in the 

sagebrush steppe along southern Idaho and eastern Oregon that primarily consisted of 

vegetation restoration through sagebrush reseeding of 3,637 average seedlings per acre 

over the 279,000 acres that were burned (Germino et al. 2022). Additional treatments 

included reseeding of other shrubs, forbs, and grasses and preemergent spraying of 

herbicide (Germino et al. 2022). This effort is consistent with other studies that reseeded 

disturbed areas with 0.25 pounds per acre of sagebrush seedlings after fire (Meyer and 
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Warren 2015, Grant-Hoffman and Plank 2021). In many of the historical reseeding 

efforts, seeds from plants adapted to the local environment are not used and instead 

randomly selected seeds from other areas within a seed bank are used (Shaw et al. 2005). 

The relatively low recovery of sagebrush after fires (Baker 2006) may have to do with the 

use of plants that are not locally adapted (Mahood and Balch 2019). 

We propose that understanding complex chemical signals between both local and 

foreign seedlings may improve recovery. Specifically, understanding which plants 

respond fastest or more specifically to biotic and abiotic disturbances of a specific habitat 

could be used to more accurately determine which subspecies would be best chemically 

suited for a disturbed area to help the surrounding ecosystem recover (Kessler and 

Halitschke 2007, Moreira et al. 2015). Evidence that plants communicate better with 

closer relatives of the same subspecies (Karban et al. 2006, Heil and Karban 2010, 

Kigathi et al. 2013) could be used to identify chemotypes that are similar and allow for 

more precise decision making for reseeding actions and improve restoration efforts with 

plants of the same or similar chemotypes. Identifying which non-conspecifics eavesdrop 

on the emissions of other plants (Karban and Maron 2002, Karban et al. 2003, Karban 

2011) could be used to help increase the adaptive resistance to herbivores. Identifying 

which chemical dialect neighboring plants respond best to (Karban et al. 2014, 2016) 

could be used to better reestablish an area with chemical dialects that are more locally 

adapted. Moreover, understanding the demographic differences of key plant species in 

their induced defense patterns in local communities compared to common garden 

experiments could prove beneficial in explaining variations in plant communities 

(Chaney et al. 2017, Germino et al. 2019, Zaiats et al. 2022). Application of these 
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approaches would help reestablish disturbed areas by using knowledge of how plants 

across different systems and populations are responding in different ways to various 

stressors, allowing for better management decisions on which plants may be better 

adapted to a specific area (Agrell et al. 2003, Clavijo McCormick 2016). 

Identifying which PSMs change in response to herbivory and serve to deter future 

herbivores can prove useful in the field of agriculture (Kaplan and Lewis 2015, 

Brzozowski and Mazourek 2018). Specifically, identifying which PSMs contribute most 

to a plant’s defensive capabilities could result in discovery and production of natural 

pesticides that could be applied to crops to deter herbaceous insects (Gish et al. 2015, 

Aartsma et al. 2017). Plant-derived pesticides could replace artificial herbicides or 

pesticides that can have negative effects on both the plant and the consumer (Altman and 

Campbell 1977, Souto et al. 2021). Volatile PSMs that are identified after damage could 

be used to attract natural predators from the surrounding environment to consume the 

herbivores causing damage (Peñaflor and Bento 2013). Intentional emission of specific 

PSMs could also be used as a method that naturally triggers induced defense mechanisms 

of plants (Brilli et al. 2019). For example, the volatile thujone from Artemisia absinthium 

L. (Asteraceae) plants offers a potential source of natural herbicide or pesticide that could 

be applied to an entire agricultural area (Höld et al. 2000, Souto et al. 2021). For all of 

these potential applications of defensive PSMs, the size of the area where the PSM would 

be applied must be considered. In predator-prey population simulations of natural 

chemical defenses of crops, it was found that larger areas of application of a chemical 

that attracts predators decreased the actual benefit of the applied chemical because 

predators could not properly cover the distances required to find the prey (Kaplan and 
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Lewis 2015). It also needs to be ensured that natural chemicals are not overused to reduce 

the potential of local predators becoming desensitized to chemical signals due to not 

receiving prey as a reinforcement (Glinwood et al. 2011, Kaplan and Lewis 2015). 

Environment conditions such as wind or rain should also be considered when applying 

natural chemicals because these factors may negate the effects of volatile chemicals 

(Murlis et al. 2000, Beyaert and Hilker 2014, Gish et al. 2015). In addition, PSM 

application at the agriculture-native landscape boundary might impact the interactions 

between native plants, herbivores, and predators through disrupting the natural balance 

among these organisms, driving more predators towards the agricultural environment 

rather than in their native area (Akter et al. 2018). 

Finally, understanding the patterns of induced PSMs can open up the possibility 

of discovering novel natural products in plants that are most likely to have biological 

properties that could be used for pharmaceutical purposes (Kabera et al. 2014, Lautié et 

al. 2020). Many chemicals detected in plants do not have a known function, but could 

have pharmacological activity (Reumann et al. 2007, Dudareva et al. 2013). For example, 

a diterpenoid found naturally in yew species (Taxus spp.) is a drug that treats many types 

of cancer including breast, ovarian, and lung cancer (Patel 1998, Wang and Wu 2005). In 

addition, the yield of diterpenoids from yew plants can be increased by increasing the 

amount of water stress (Hoffman et al. 1999), decreasing shade intensity (FengJian et al. 

2009), limiting the amount of damage to the plant tissue (Egan et al. 1996), and placing 

post-harvest containment samples in cold storage (Zhao et al. 2006), indicating the value 

of understanding changes in chemistry in plants responding to abiotic and biotic stressors. 

It is worth investigating if the monoterpenes found in this study or similar studies benefit 
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not only the plant of interest, but also have other biological targets for potential 

pharmaceutical use. Finally, identifying the biotic and abiotic conditions that maximize 

induction of chemicals could support methods that increase the yield of bioactive 

chemicals in plants prior to development of other forms of biosynthesis (Yukimune et al. 

1996). For example, the yield of the anti-malaria drug artemisinin from sweet wormwood 

(Artemisia annua) increased following mechanical wounding on the plant tissue while 

also inducing several key genes in the biosynthesis pathway of artemisinin (Liu et al. 

2010). 

We propose several steps that could be used to apply knowledge of induced 

defense to improve restoration outcomes, benefit pest management in agriculture, and 

advance discovery and use of natural products for human health. First, better distribution 

maps of distinct chemotypes before disturbance to identify related and diverse taxonomic 

groups (Jaeger et al. 2016). For example, use of unmanned aerial systems could provide 

more accurate and extensive maps of chemically distinct plants across an entire landscape 

to better understand specific regional forage quality (Olsoy et al. 2020). Incorporating 

near-infrared spectroscopy (NIRS) could also assist in detecting different plant species, 

different chemical phenotypes among species, different populations of closely related 

species or subspecies, and various plant phenologies to gain a more accurate assessment 

of the chemotypic distribution across a landscape (Robb et al. 2022). For example, NIRS 

and unmanned aerial systems have been implemented in the study of both wheat 

(Triticum spp.) and poplar (Populus spp.), helping assess the nutritive and chemical 

qualities (Garnsworthy et al. 2000, Mazurek et al. 2022), detect and predict complex 

traits (Rincent et al. 2018), and classify different subtypes of each species (Rincent et al. 
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2018, Spoladore et al. 2021). Second, the approaches used to analyze the data obtained 

from gas chromatography (Chapter 1) can be applied and modified where needed for 

other systems other than the sagebrush and sage-grouse interaction in the winter season 

investigated in this study. The experimental design could easily be adapted to other plants 

of interest, the response of other herbivore browsing styles in timing or the manner in 

which damage occurs, how often collections are taken, in a variety of different 

environmental systems, or during different times of the year. The overall goal of any of 

these approaches should be to determine if the plants of interest are chemically stable or 

responding dynamically when exposed to different biotic and abiotic stressors. This 

information could be used for ecosystem management by allowing the detection of 

chemical plasticity for more strategic collection and reseeding that may improve 

restoration efforts to help the surrounding ecosystem recover. For agriculture, this 

knowledge could provide insight into how the size of the area where the PSM is applied 

can impact the desired response strength with secondary consequences of reducing 

predators to the native landscape. The discovery of chemicals with the most bioactivity 

could be better understood along with how to best simulate the biotic and abiotic 

conditions to maximize yield in cultivars and in culture for pharmaceutical use. However, 

none of these potential applications for induced defense chemistry are possible without 

conservation of diverse chemicals in native non-model organisms. Conservation of 

biodiversity is the first steps necessary to both identify the diversity of chemicals in 

plants and assess their dynamics.  
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APPENDIX A 

Original Sketch of Experimental Design 
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The original sketch of the field experimental design demonstrating how each 

treatment and control plant were spatially selected and the approximate distances 

between them (Figure A.1). This is included to provide additional clarity for the setup for 

how collections were taken to create the different time points, treatment groups, and 

collection intensity levels through the paired plant design.  
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Figure A.1.  Original sketch of the field experimental design showing the spatial 
extent by which plants were treated and how they were paired with control plants. 

Plant numbers match those in Table 1.1 and the overview layout of Figure 1.2. 
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APPENDIX B 

Gas Chromatography Settings 
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Concentrations of monoterpenes in sagebrush samples were quantified using a gas 

chromatograph (Agilent 6890N, Agilent Technologies; 5301 Stevens Creek Boulevard, 

Santa Clara, CA 95051, USA) with a headspace auto-sampler (Hewlett-Packard HP7694; 

1501 Page Mill Road, Palo Alto, CA 94204, USA). One ml of headspace gas was 

injected into a J&W DB-5 capillary column (30m x 250µm x 0.25µm). 

Headspace auto-sampler operating conditions were as follows: 100°C oven 

temperature, 110°C loop temperature, 120°C transfer line temperature, 20 min vial 

equilibrium time, 0.20 min pressurization time, 0.50 min loop fill time, 0.20 min loop 

equilibrium time, and a 0.50 min injection time. 

Gas Chromatogram operating conditions were as follows: 250°C splitless injector 

temperature, 300°C flame ionization detector temperature, 40°C oven temperature for 2 

min, then increasing 3°C/min to the temperature of 60°C, then increasing 5°C/min to the 

temperature of 120°C, then increasing 20°C/min to the temperature of 300°C, and held 

for 7 min at 300°C. Nitrogen was the make-up gas and helium was the carrier gas. The 

inlet pressure was set at 80 KPa with the flow rate of 1.0 mL/min (Nobler 2018). 
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APPENDIX C 

Compound Inclusion, Exclusion, and Merging 
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Compounds C1 and C2 received manual adjustment to merge the peaks together 

into C1 for all AUC values. The AUC values for each peak could not be separated in the 

samples that had only one peak being read. This merging of peaks was performed due to 

C1 and C2 being read as either one peak or two for each sample with nearly all samples 

possessing two peaks with the peak for C1 bleeding into the peak for C2 (Figure C.1).  

Compounds C24 and C25 received manual adjustment to merge the peaks 

together into C24 (1,8-cineole) for all AUC values. The AUC values were being falsely 

separated into two peaks for C24 instead of as a single peak as indicated by manual 

review of the chromatograms (Figure C.2).  

The appearance of C14 was investigated to determine that it needed to be 

excluded from the overall analyses. This was due to the questionable dilution of C14 into 

C15 in an “oil-can” shape in the chromatograms. It was determined that C14 appeared in 

random samples and run batches. C14 never occurred in blank runs or in standard 

cocktails which suggested that it was not a contaminant (Figure C.3).  

The following figures of flow charts, chromatograms, PCAs, boxplots, and 

ANOVAs (Figures C.4 – C.10, Tables C.1 – C.3) were previously generated with C14 

included in the analyzed compounds. The compound C14 needed to be excluded from the 

overall analyses due to the appearance of the peak diluting into C15 in an “oil-can” 

nature. It could not be determined if C14 was a true individual peak or an early elution of 

the sequential peak of C15. Analyses were previously conducted with the inclusion of 

C14 to attempt to account for the variation between the treatment groups, time points, and 

collection intensities. It was from these former analyses that it was determined that C14 

should be excluded due to it supposedly accounting for the largest portion of the variation 
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within each subset. Due to its questionable appearance and nature in these analyses, it 

was concluded that excluding C14 was the best course of action for this study. Overall 

results for all PCA visualizations did not differ when C14 was excluded. Its exclusion did 

help to elucidate which compounds were contributing the most variation to the subsets 

and therefore which compounds to place focus on for analyses.  
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Figure C.1.  Stacked chromatograms of randomly selected samples that contained 
either one or two peaks being recorded for AUC values of C1 and C2 (Table 1.2). C1 
and C2 are indicated by their retention time (min). C1 is shown to constantly bleed 

into C2.   
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Figure C.2.  Stacked chromatograms of randomly selected samples that contained 
either one or two peaks recorded for AUC values of C24 and C25 (Table 1.2). C24 
and C25 are indicated by their retention time (min). The peak for C24 is shown to 

overlap the position for C25 due to its large peak size and range.   
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Figure C.3.  Representative chromatograms of monoterpene cocktail standard 

runs (top for chromatograms) and blanks (bottom 3 chromatograms). The red bar 
transecting each chromatogram at 13.62 min retention time indicates the location 
for C14 that appeared randomly throughout the samples with an “oil-can” shape 

(Figure 1.5, Figure C.4). C14 never occurred in any of the blank or standard 
cocktail runs suggesting it was not a contaminant.  
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Figure C.4.  Representative chromatograms of monoterpenes in sagebrush 

(Artemisia tridentata spp.) (top two lines) and the monoterpene cocktail standard 
(bottom line). The peaks represent the initial individual compounds with the relative 

abundance measured in area under the curve (AUC) with the corresponding 
retention time in minutes. The main compounds of interest are marked prior to C14 

exclusion. Here the “oil-can” appearance of C14 (at 13.62 min) is clearly 
demonstrated.  
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Figure C.5.  Principal Component Analyses (PCAs) generated for comparing time 
points (1, 24, 48, and 144 hr) after simulated browsing within a) control, b) acute, 
and c) chronic treatment groups separately using the calculated centered values 
with the inclusion of C14. The colored ellipses represent the different time points 

(hr) within each treatment and where time points fall across the different PC 
dimensions. The compounds are represented by the vectors of varying lengths with 
the longer vectors having a stronger influence on the variation among the samples 

within the time point category. In each PCA, C14 is a strongly pulling vector. 
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Figure C.6.  PCAs generated for the a) control versus acute treatment for all time 
points and b) control versus chronic treatment for all time points using the 

calculated centered values with the inclusion of C14. The colored ellipses represent 
the different treatment groups present and where they fall across the different PC 
dimensions. The compounds are represented by the vectors of varying lengths with 
the longer vectors having a stronger influence on the variation among the samples 

within the treatment category. In each PCA, C14 is a strongly pulling vector. 
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Figure C.7  PCA generated for the different levels of collection intensity using the 
calculated centered values with the inclusion of C14. The colored ellipses represent 

the different levels of collection intensity (zero – high) and where they fall across the 
different PC dimensions. The compounds are represented by the vectors of varying 
lengths with the longer vectors having a stronger influence on the variation among 
the samples within the collection intensity category. In this PCA, C14 is a strongly 

pulling vector. 
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Table C.1.  Principal Component Analysis (PCA) loadings cutoff tables for 
comparing time points (1, 24, 48, and 144 hr) within a) control, b) acute, or c) 
chronic treatment groups separately and comparing d) control versus acute, e) 
control versus chronic, and comparing f) varying levels of collection intensity at 144 
hr, all with the inclusion of C14. These tables were created from a threshold 
equation of sqrt(1/ncol(dataframe)) that resulted in the value of 0.132 for all groups 
(Holland 2019). Similar loading values represent compounds that are correlated 
within the positive or negative quadrant of the PC dimensions (PC1 or PC2). Only 
loadings that are above the threshold of 0.132 (in bold) were included. Any loading 
in either PC1 or PC2 higher than +/-0.4 rounded (previous threshold) were 
considered a compound of interest (indicated by red shading) as they signified a 
substantial contribution to the variation being observed among the groups being 
compared (Merenda 1997, Peterson 2000).  
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Figure C.8. Correlation matrices generated from the area under the curve per 
gram dry weight (AUC/gDW) values of the main vector loadings that made the 

cutoff threshold of +/-0.3 (see Table 1.3) with the inclusion of C14. The size of each 
circle corresponds to the strength of the correlation between -1.0 and + 1.0 among 

the respective compounds while the color indicates either a positive (blue) or a 
negative (red) correlation. All compounds aside from the standards appeared in at 
least one of the PCA loading tables. The correlation matrices are creating through 
comparing a) all samples in the experiment, b) time points within control, c) time 

points within acute, d) time points within chronic, e) control versus acute, f) control 
versus chronic, and g) collection intensity.  
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Figure C.9.  Mean monoterpene concentrations (AUC/gDW) for the initial 

compounds of interest when comparing treatment groups across the time points 
(hours) after the first simulated browsing event. Each bar graph has associated 
standard error bars. These were generated using the four main compounds that 

displayed the highest vector loadings when C14 was included.  
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Figure C.10.  Mean monoterpene concentrations (AUC/gDW) for the initial 

compounds of interest when comparing treatment groups across the varying levels 
of collection intensity. Each bar graph has associated standard error bars. These 
were generated using the four main compounds that displayed the highest vector 

loadings when C14 was included. 
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Table C.2.  Two-way ANOVA results for the initial compounds of interest 
identified from comparing treatment groups and time points. These were calculated 
when C14 was included in the analysis. 
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Table C.3.  One-way ANOVA results from the final compounds of interest from 
comparing the varying levels of collection intensity. These were calculated when C14 
was included in the analysis. 
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APPENDIX D 

Future Statistical Approaches 
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Mixed linear models of PERMANOVAS that incorporate random effects to 

correct for correlated values will be used to compare AUC/gDW concentrations across 

time and treatment group for each final compound of influence. This analysis will be 

performed using the lmer function in the lme4 package (Bates et al. 2015). To determine 

the statistical significance between the concentrations, Tukey’s HSD post-hoc analysis 

will be performed.  

To evaluate the effect of collection intensity at time 144 hr (T = 144 hr) of control 

and chronic treatment groups, alpha-diversity measurements will be calculated using the 

diversity function in the vegan package (Oksanen et al., 2020). The resulting alpha-

diversity measurements will include the Simpson diversity index, Shannon diversity 

index, and Richness. To analyze these alpha-diversity measurements, linear mixed-effects 

models of each will be generated using the lmer function in the lme4 package (Bates et 

al., 2015), with Site ID as a random effect to correct for correlated values. Beta-diversity 

measurements will be calculated to analyze the effect of collection intensity at time 144 

hr (T = 144 hr) between the control and chronic to measure relatedness between groups. 

A repeated measures analysis was not used for the approach for the repeated 

sample collection in this study because of the excluded batch 2 samples. This exclusion 

made it so that there was incomplete repeated data for each plant that did not allow for 

the appropriate statistical analyses. This is currently being remedied by rerunning the 

Batch 2 samples and comparing the AUC values to observe how much shift occurred 

between batches. The objective of this approach is to combine the newly aligned Batch 2 

samples with the Batch 1 samples and then reanalyze chemicals of interest (Figures 1.13, 

1.14) using a two-way repeated measures ANOVA where acute and chronic represent 
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treatment groups and monoterpene concentration at each time point is the repeated 

measure. Preliminary results of samples that were run repeatedly in Batch 1 and Batch 2 

suggest high correlation and repeatability of AUC between batches (Figures D.1, D.2) 
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Figure D.1.  Correlation plot of concentration (in area under the curve) for the 

monoterpene standard 1,8-cineole between Batch 1 (blue) and Batch 2 that occurred 
after recalibration of the gas chromatography machine (red) for the same 17 

sagebrush samples.  
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Figure D.2.  Comparison of concentration (in area under the curve) for the 

monoterpene standard 1,8-cineole between Batch 1 (blue) and Batch 2 that occurred 
after recalibration of the gas chromatography machine (red) for the same 17 

sagebrush samples. The repeat of each individual plant samples are connected 
between the two groups to show potential discrepancy.   
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APPENDIX E 

Correlation Matrices r2 Values for Each Treatment Group 
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The correlation matrices for each of the subsetted treatment groups were further 

investigated for the r2 values between pairs of compounds. These correlations were 

filtered based on positive and negative r2 values. The following tables provide a visual 

representation of the three correlation matrices to better display the patterns being 

observed among the treatment groups. Any pair within any single treatment group with a 

correlated values r2 > +/-0.4 was included in additional analyses to compare strength of 

correlation among treatment groups (Table 1.4, 1.5, 1.6, 1.8). The sets of strongest 

positive and negative correlation clusters were determined by the strongest r2 values seen 

to appear in any one treatment group. 
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APPENDIX F 

Boxplots of Subsetted Correlation Matrices r2 Values 
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Boxplots of correlation r2 values among treatments where compounds were only 

included if at least one treatment had a compound correlations above +/-0.4 and for sets 

of the strongest positive and strongest negative correlation clusters based on the r2 values 

strengths (from Appendix F). 
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Figure F.1.  Boxplots of the positive correlation pairs for each treatment group 

where only pairs were included if at least one treatment group had an r2 > 0.4. Each 
boxplot has an associated median and quartiles for each treatment group. 

 

 
Figure F.2.  Boxplots of the negative correlation pairs for each treatment group 
where only pairs were included if at least one treatment group had an r2 > -0.4. 
Each boxplot has an associated median and quartiles for each treatment group. 
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Figure F.3.  Boxplots of the strongest positive correlation cluster for each 

treatment group. Each boxplot has an associated median and quartiles for each 
treatment group. 

 

 
Figure F.4.  Boxplots of the second strongest positive correlation cluster for each 

treatment group. Each boxplot has an associated median and quartiles for each 
treatment group. 
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Figure F.5.  Boxplots of the strongest negative correlation cluster for each 

treatment group. Each boxplot has an associated median and quartiles for each 
treatment group. 

 

 
Figure F.6.  Boxplots of the second strongest negative correlation cluster for each 

treatment group. Each boxplot has an associated median and quartiles for each 
treatment group. 
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APPENDIX G 

Effect of Treatment Groups, Time Points, and Treatment by Time Point 

Interactions 
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 An interaction effect of treatment groups and time points for chosen compounds 

of interest was evaluated with paired repeated two-way ANOVAs. For C26, there was no 

effect of treatment group (F2,134 = 1.346, P = 0.264) or an effect of time points (F2,134 = 

1.144, P = 0.339), and there was no interaction between treatment group and time points 

(F2,134 = 0.550, P = 0.738) (Table G.1). 

 

Table G.1. Two-way ANOVA results for C26 comparing the effects of treatment 
group, time points, and treatment by time point interactions on the compound 
concentrations. 

 
Table G.1 - C26      

   ANOVA 
Sources of Variation df F P 
Treatment  2, 134 1.346 0.264 
Time Points  4, 134 1.144 0.339 
Treatment * Time Points 5, 134 0.550 0.738 

 
 

For C28, there was no effect of treatment group (F2,134 = 1.828, P = 0.165) or an 

effect of time points (F2,134 = 0.501, P = 0.735), and there also was no interaction 

between treatment group and time points (F2,134 = 0.975, P = 0.435) (Table G.2). 

 

Table G.2. Two-way ANOVA results for C28 comparing the effects of treatment 
group, time points, and treatment by time point interactions on the compound 
concentrations. 

 
Table G.2 - C28 

   ANOVA 
Sources of Variation df F P 
Treatment  2, 134 1.828 0.165 
Time Points  4, 134 0.501 0.735 
Treatment * Time Points 5, 134 0.975 0.435 
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For C34, there was no effect of treatment group (F2,134 = 1.154, P = 0.318) or an 

effect of time points (F2,134 = 0.279, P = 0.891), and there also was no interaction 

between treatment group and time points (F2,134 = 0.638, P = 0.671) (Table G.3). 

Table G.3. Two-way ANOVA results for C34 comparing the effects of treatment 
group, time points, and treatment by time point interactions on the compound 
concentrations. 

Table G.3 - C34 
ANOVA 

Sources of Variation df F P 
Treatment 2, 134 1.154 0.318 
Time Points 4, 134 0.279 0.891 
Treatment * Time Points 5, 134 0.638 0.671 

For C38, there was no effect of treatment group (F2,134 = 0.547, P = 0.580) or an 

effect of time points (F2,134 = 0.637, P = 0.637), and there also was no interaction 

between treatment group and time points (F2,134 = 1.536, P = 0.183) (Table G.4). 

Table G.4. Two-way ANOVA results for C38 comparing the effects of treatment 
group, time points, and treatment by time point interactions on the compound 
concentrations. 

Table G.4 - C38 
ANOVA 

Sources of Variation df F P 
Treatment 2, 134 0.547 0.580 
Time Points 4, 134 0.637 0.637 
Treatment * Time Points 5, 134 1.536 0.183 

For C44, there was no effect of treatment group (F2,134 = 1.305, P = 0.275) or an 

effect of time points (F2,134 = 0.326, P = 0.860), and there also was no interaction 

between treatment group and time points (F2,134 = 1.728, P = 0.132) (Table G.5). 
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Table G.5. Two-way ANOVA results for C44 comparing the effects of treatment 
group, time points, and treatment by time point interactions on the compound 
concentrations. 
 

Table G.5 - C44      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 134 1.305 0.275 
Time Points  4, 134 0.326 0.860 
Treatment * Time Points 5, 134 1.728 0.132 

 



140 

APPENDIX H 

Effect of Treatment Groups, Time Points, and Treatment by Time Point 

Interactions for C18 
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Although it was not selected based on the previously mentioned criteria for the 

final compounds of interest, C18 was also assessed in a basic two-way ANOVA due to 

this study being an exploratory approach (Tables H.1, H.2). We found C18 generally 

decreased in concentration with time (P = 0.0015), but this decrease was consistent 

across treatments and therefore not associated with simulated browsing. This was 

considered a type I error but may represent a future compound of interest. 

 

Table H.1. Two-way ANOVA results for C18 comparing the effects of treatment 
group and time points on the compound concentrations. 
 

C18      
   ANOVA 

Sources of Variation df F P 
Treatment  2, 139 1.925 0.1498 
Time Points  4, 139 4.629 0.0015 

 
 
 
Table H.2.  One-way ANOVA results for C18 comparing the effects of the varying 
levels of collection intensity on the compound concentrations.  
 
C18      

   ANOVA 
Sources of Variation df F P 
Collection Intensity 3, 49 0.298 0.826 

 
 
 
  



142 

Ta
bl

e 
H

.3
.  

Tu
ke

y’
s H

on
es

tly
 S

ig
ni

fic
an

t D
iff

er
en

ce
 (H

SD
) t

es
t c

om
pa

ri
ng

 th
e 

m
ul

tip
le

 m
ea

ns
 o

f e
ac

h 
tr

ea
tm

en
t g

ro
up

 a
nd

 
tim

e 
po

in
t i

n 
a 

pa
ir

w
ise

 m
an

ne
r 

fo
r 

C
18

 to
 id

en
tif

y 
an

y 
di

ffe
re

nc
es

 th
at

 m
ay

 b
e 

gr
ea

te
r 

th
an

 th
e 

ex
pe

ct
ed

 st
an

da
rd

 e
rr

or
. 

C1
8 

M
ul

tip
le

 c
om

pa
ris

on
s o

f m
ea

ns
 9

5%
 fa

m
ily

-w
ise

 c
on

fid
en

ce
 le

ve
l 

Tu
ke

y's
 H

SD
 

Tr
ea

tm
en

t 
D

iff
er

en
ce

 
Lo

w
er

 b
ou

nd
s 

U
pp

er
 b

ou
nd

s 
P 

A
cu

te
-C

on
tro

l 
14

.3
76

8 
-1

81
.5

28
4

21
0.

28
21

 
0.

98
35

 
Ch

ro
ni

c-
Co

nt
ro

l 
-1

70
.3

50
8 

-4
00

.4
29

8
59

.7
28

3 
0.

18
91

 
Ch

ro
ni

c-
A

cu
te

 
-1

84
.7

27
6 

-4
26

.0
36

5
56

.5
81

4 
0.

16
89

 

Ti
m

e 
Po

in
ts

 
D

iff
er

en
ce

 
Lo

w
er

 b
ou

nd
s 

U
pp

er
 b

ou
nd

s 
P 

1-
0

-4
12

.1
27

 
-7

79
.6

81
-4

4.
27

29
0.

01
96

 
24

-0
-4

15
.8

56
5 

-7
47

.5
29

2
-8

4.
18

39
0.

00
62

 
48

-0
-4

04
.0

19
7 

-7
32

.2
14

2
-7

5.
82

51
0.

00
77

 
14

4-
0

-4
41

.1
44

3 
-7

83
.3

18
5

-9
8.

97
0

0.
00

45
 

24
-1

-3
.7

30
-3

35
.4

02
2

32
7.

94
31

0.
99

99
 

48
-1

8.
10

73
-3

20
.0

87
3

33
6.

30
19

0.
99

99
 

14
4-

1
-2

9.
01

73
 

-3
71

.1
91

5
31

3.
15

69
0.

99
93

 
48

-2
4

11
.8

36
9 

-2
75

.6
04

3
29

9.
27

8
0.

99
99

 
14

4-
24

-2
5.

28
77

 
-3

28
.5

92
7

27
8.

01
73

0.
99

94
 

14
4-

48
-3

7.
12

46
 

-3
36

.6
22

3
26

2.
37

31
0.

99
70

 



143 

A Tukey’s Honestly Significant Difference (HSD) post-hoc test was performed on 

the two-way ANOVA for C18 to determine which time points showed significant 

differences that may be greater than the expected standard error (Table H.3). It revealed 

that zero h (T = 0 h) was significantly different when compared to all other time points of 

1, 24, 48, and 144 hr (T = 1, 24, 48, 144 hr) (p = 0.02, p = 0.006, p = 0.008, p = 0.005). 
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