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ABSTRACT

This dissertation focuses on meshfree methods for solving surface partial differential

equations (PDEs). These PDEs arise in many areas of science and engineering where

they are used to model phenomena ranging from atmospheric dynamics on earth

to chemical signaling on cell membranes. Meshfree methods have been shown to

be effective for solving surface PDEs and are attractive alternatives to mesh-based

methods such as finite differences/elements since they do not require a mesh and can

be used for surfaces represented only by a point cloud. The dissertation is subdivided

into two papers and software.

In the first paper, we examine the performance and accuracy of two popular mesh-

free methods for surface PDEs:generalized moving least squares (GMLS) and radial

basis function-finite differences (RBF-FD). While these methods are computationally

efficient and can give high orders of accuracy for smooth problems, there are no pub-

lished works that have systematically compared their benefits and shortcomings. We

perform such a comparison by examining their convergence rates for approximating

the surface gradient, divergence, and Laplacian on the sphere and a torus as the res-

olution of the discretization increases. We investigate these convergence rates also

as the various parameters of the methods are changed. We also compare the overall

efficiencies of the methods in terms of accuracy per computation cost.

The second paper is focused on developing a novel meshfree geometric multilevel
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(MGM) method for solving linear systems associated with meshfree discretizations

of elliptic PDEs on surfaces represented by point clouds. Multilevel (or multigrid)

methods are efficient iterative methods for solving linear systems that arise in numer-

ical PDEs. The key components for multilevel methods: “grid” coarsening, restric-

tion/interpolation operators coarsening, and smoothing. The first three components

present challenges for meshfree methods since there are no grids or mesh structures,

only point clouds. To overcome these challenges, we develop a geometric point cloud

coarsening method based on Poisson disk sampling, interpolation/ restriction opera-

tors based on RBF-FD, and apply Galerkin projections to coarsen the operator. We

test MGM as a standalone solver and preconditioner for Krylov subspace methods on

various test problems using RBF-FD and GMLS discretizations, and numerically an-

alyze convergence rates, scaling, and efficiency with increasing point cloud resolution.

We finish with several application problems.

We conclude the dissertation with a description of two new software packages.

The first one is our MGM framework for solving elliptic surface PDEs. This package

is built in Python and utilizes NumPy and SciPy for the data structures (arrays

and sparse matrices), solvers (Krylov subspace methods, Sparse LU), and C++ for

the smoothers and point cloud coarsening. The other package is the RBFToolkit

which has a Python version and a C++ version. The latter uses the performance

library Kokkos, which allows for the abstraction of parallelism and data management

for shared memory computing architectures. The code utilizes OpenMP for CPU

parallelism and can be extended to GPU architectures.
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CHAPTER 1:

INTRODUCTION

1.1 Overview

This dissertation is comprised of two papers:

PI. A. M. Jones, G. B. Wright, P. A. Bosler, P. A. Kuberry. A comparison of gener-

alized moving least squares and radial basis function finite difference methods

for approximating surface derivatives. Submitted (2022)

PII. G. B. Wright, A. M Jones, and V. Shankar. A meshfree geometric multi-

level method for systems arising from elliptic equations on point cloud surfaces.

SIAM Journal on Scientific Computing. Accepted (2022)

and two software packages:

SI. A. M. Jones, MGM: Meshfree Geometric Multilevel Solver and Preconditioner.

https://github.com/AndrewJ3/MGM

SII. A. M. Jones, RBFToolkit: Radial basis function Toolkit.

https://github.com/AndrewJ3/rbftoolkit

PI is reproduced in Appendix A and the author contributions to this paper are de-

scribed in Chapter 2. Similarly, PII is reproduced in Appendix B, with author con-

tributions given in Chapter 3. Chapter 4 gives an overview of SI and SII. Finally,

https://github.com/AndrewJ3/MGM
https://github.com/AndrewJ3/rbftoolkit
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Chapter 5 gives some concluding remarks on the work. The remainder of this chapter

includes relevant background material on the topics of the thesis, overview of the

contributions made, and some future work. References for Chapter 1 are given at the

end of the chapter, while references for the PI and PII are included with the papers.

1.2 Mathematical modeling

Mathematical models provide a framework for predicting and understanding processes

and phenomena in various fields ranging from the natural and social sciences to en-

gineering. The prototypical example comes from classical mechanics formulated by

Newton and others in the 17th century. If we have a projectile of mass m subjected

to gravitational and linear drag forces Fg = mg and FD = −ku(t), respectively and

the velocity u(t) is changing over time t, then according to Newton’s second law, we

can sum the forces acting on the projectile to obtain a relation for the acceleration of

the entire projectile. This gives the following system of ordinary differential equations

(ODE) to solve for the velocity:

m
du(t)

dt
= −ku(t) +mg. (1.1)

For a given initial velocity u(0) = u0, this system of ODEs is linear and straight-

forward to solve analytically. Unfortunately, this is an exceptional situation. It is

much more common that mathematical models for real-world applications can never

be solved analytically. This can occur because of nonlinear relationships involving

the unknowns, the unknowns also depending on space as well as time, and/or the

spatial domains being geometrically complex.

Mathematical models for phenomena that depend on multiple variables, such as
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two or more spatial variables and/or time, typically lead to partial differential equa-

tions (PDEs). A simple example is the diffusion equation, which describes how some

quantity diffuses over time through a domain Ω. In three dimensions, the PDE takes

the form

∂u

∂t
= µ∆u (1.2)

where ∆ = ∂xx + ∂yy + ∂zz is the Laplacian operator and µ > 0 is the diffusion

coefficient, which depends on the medium of Ω. To complete the model, we must

also specify the initial conditions, and if Ω has boundaries, then we must specify how

the quantity behaves at the boundaries (commonly called boundary conditions). The

diffusion equation (1.2), and other related linear PDEs like the Poisson and wave

equations, can be “solved” with analytical methods like separation of variables or

Fourier transforms, only for a very limited number of domains; we illustrate some of

these simpler domains in the top row of Figure 1.1. However, even in these cases,

the solutions depend on infinite sources and/or integrals that can not be computed

analytically. If the domains have any geometric complexity, as illustrated in the bot-

tom row of Figure 1.1. Then these analytical methods fail. In these cases, we are

instead forced to solve these models approximately using numerical methods. This

thesis focuses on numerical methods for mathematical models on geometrically com-

plex domains, in particular, on PDEs posed on two-dimensional surfaces embedded

in three-dimensional space, such as the last three surfaces in Figure 1.1.
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Figure 1.1: Top row: Examples of domains where the diffusion equation
(1.2) can be “solved” analytically using separation of variables. Bottom
row: examples of domains where separation of variables fails.

1.3 Surface partial differential equations

Surface PDEs arise across many branches of science and engineering, for example,

in atmospheric flows [63], bulk surface biomechanics [32], and computer graphics for

texture generation [58]. An additional application is to activator and inhibitor systems

modeled by surface reaction-diffusion systems; some examples are shown in Figure

1.2. For our purposes, we focus primarily on PDEs like the diffusion and Poisson
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equations that are posed on smooth two-dimensional closed surfaces M⊂ R3.

Surface Diffusion Equation: ut −∆Mu = f, (1.3)

Screened Surface Poisson Equation: (α−∆M)u = f. (1.4)

Here ∆M is the surface Laplacian (or Laplace-Beltrami operator) on M, and α is

a parameter. The screened Poisson equation is equivalent to the non-homogenous

Helmholtz equation with imaginary wave number. When α = 0, the surface Poisson

equation is recovered. For the remainder of the section, we discuss the historical

development of surface PDEs and the mesh-based methods commonly used for solving

and discretization (SE, FE, FV, FD). Lastly, we discuss the benefits of meshfree

methods for surface PDEs.

Figure 1.2: Illustrations of solutions to coupled reaction diffusion PDEs
Fitzhugh Nagumo spiral wave (left) on a unit sphere and Turing spots
(right) on the Standford bunny.

Early numerical studies of surface PDEs were mainly restricted to the sphere
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and applied to problems in numerical weather prediction (NWP) [12, 51, 62, 43].

These early studies mainly utilized finite difference and spectral methods, but in

the 1980s and onward, additional methods were introduced based on finite volume

methods (FV) [44, 64] and spectral/finite element methods (FE/SE) [33, 54, 21].

Concurrently, solving PDEs on general surfaces was examined in the 1980s by [13]

using surface FE (SFE) methods, and as interest in these PDEs grew, techniques were

developed such as embedded finite element (EFE) [8, 35], and closest point (CP) [31]

methods. Development of meshfree methods for surface PDEs began in the early

2010s using global RBF methods [38, 19]; and development of localized versions of

these methods soon followed, including radial basis function finite differences (RBF-

FD) method [1, 28, 45, 39, 46, 61], generalized finite difference (GFD) methods [52],

and generalized moving least squares (GMLS) [29, 56, 23].

Figure 1.3: Illustrations of a surface discretized with a triangular tessella-
tion (left) and with a point cloud (right).

In contrast with FE-based methods, which use tessellation of triangular or quadri-

lateral elements like SFE, and also they do not extend into the embedding space like

EFE, meshfree techniques only require nodal points of mesh or simply a point cloud

as illustrated by Figure 1.3. This allows for more algorithmic flexibility. Meshfree
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methods can also proce high order accurate approximationsfor smooth problems. This

dissertation focuses on RBF-FD and GFD/GMLS methods for solving surface PDEs.

Before outlining the motivations and contributions for this dissertation, we give a

brief overview of the meshfree methods used in this work.

1.4 Global meshfree interpolation and

approximation

1.4.1 Radial basis functions

RBFs were originally developed in the 1970s for scattered data interpolation problems

arising in cartography [24] and have subsequently been used in many applications,

including for numerically solving PDEs starting in 1990 [26]. The RBF interpolation

process is illustrated in Figure 1.4. This figure shows a reconstruction of data collected

at scattered nodes using Gaussian RBFs. Starting with scattered data, the RBF

method produces an interpolant of this data using a linear combination of rotations

of a single radial kernel (e.g. the Gaussian) centered at each of the data sites.

For x,xj ∈ Rd, a general radial kernel centered at xj is defined as Φ(x,xj) :=

φ(||x − xj||) where || · || is the standard Euclidean norm and φ is a scalar function.

Given a set of N points X = {xk}Nk=1 ⊂ Rd, the basic RBF interpolant to a function

f sampled at X takes the form,

s(x) =
N∑
j=1

cjφ(||x− xj||). (1.5)

where the coefficients cj are determined by the interpolation conditions,
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Figure 1.4: Illustration of RBF interpolation of 2D scattered data: (a)
scattered data (b) radial basis functions (Gaussians), centered at data
locations, and (c) interpolant of (a) .

N∑
j=1

cjφ(||xi − xj||) = f(xi) , i = 1, . . . , N, (1.6)

These conditions can be written as the following


φ(||x1 − x1||) . . . φ(||x1 − xN ||)

...
. . .

...

φ(||xN − x1||) . . . φ(||xN − xN ||)


︸ ︷︷ ︸

A


c1

...

cN


︸ ︷︷ ︸

c

=


f1

...

fN


︸ ︷︷ ︸

f

. (1.7)

Some commonly used RBFs are the Gaussian, φ(r) = exp(−(εr)2), multiquadric,

φ(r) =
√

1 + (εr)2, and polyharmonic splines (PHS), φ(r) = r2`+1 and r2` log r, where

ε ∈ R+ is the shape parameter and ` ∈ Z+ is the smoothness parameter. In this dis-

sertation, we use PHS, which are advantageous because they do not require shape pa-

rameters. Choosing suitable shape parameters often requires expensive optimization

algorithms [15], and the interpolation matrix can become extremely ill-conditioned

for small shape parameters, prompting the use of so-called stable algorithms [18].

When using PHS, one often appends on low degree polynomials to (1.4.1) to guar-
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antee the well-posedness of the interpolation problem. However, more importantly,

this has the added benefit of improving approximation convergence rates and allows

for polynomial reproduction [18]. The new form of the interpolant is as follows:

s(x) =
N∑
j=1

cjφ(||x− xj||) +
L∑
k=1

bkpk(x), (1.8)

where {pk}Lk=1 are a basis for d-variate polynomials of degree ` and L is the dimension

of this space. To account for the new L coefficients, bk, the interpolant is subject to

the following moment conditions [60, 45]:

N∑
k=1

ckpj(xk) = 0, j = 1, 2, . . . , L.

One issue with global RBF interpolation methods is that the linear system (1.7)

is dense and not well suited for iterative methods. Direct methods require O(N3)

computational cost, which becomes prohibitive for large N . To fix this issue, we can

use localized, stencil-based approximations as discussed in Section 1.5.

1.4.2 Polynomial moving least squares (MLS)

The development of MLS methods are mainly based on work done in the 1960s using

moving averages for approximating irregular multivariate data in geophysics [48, 3].

Work involving such data had similar applications as RBF methods, such as mete-

orology and geography. MLS was refined from early 1980s [27], with extensions to

approximating PDEs in the 1990s [7] and the 2000s [30]. A MLS approximant to data
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{f1, f2, . . . , fN} sampled at X takes the form

q(x) =
L∑
k=1

bk(x)pk(x), (1.9)

where {pk}Lk are again a basis for d-variate polynomials of degree `. The coefficients of

the approximant are determined from the following weighted least squares problem:

b∗(x) = argmin
b∈Rn

N∑
i=1

wρ(xi,x)(q(xi)− fi)2 = argmin
b∈Rn

‖W (x)1/2(Pb− f)‖2
2, (1.10)

where W = diag(wρ(xi,x)) and wρ is a non-negative kernel. Note that the coefficients

depend on x because of the weight kernel. This is the origin of the name “moving”

for MLS methods. Some examples of weighting kernels are given as follows,

wρ(xi,x) =

(
1− ‖x1 − xi‖

ρ

)4

+

and wρ(xi,x) = exp

(
−‖x1 − xi‖2

ρ2

)
, (1.11)

where ρ is the support radius and ()+ is the positive floor operator. These weighting

kernels will be reintroduced in later chapters when we discuss the GMLS methods.

We can pose (B.12) as following (weighted) linear system

P TWρ(x)Pb = P TWρ(x)f , (1.12)

which are the normal equations to the weighted least squares problem. Provided that

P has full rank and Wρ(x) has strictly positive entries on its diagonal (1.12) has a

unique solution. Note that this system must be solved for each evaluation point x,

making MLS computationally expensive.
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1.5 Localized meshfree methods

Localized meshfree methods were developed to reduce the high computational cost as-

sociated with global methods like RBFs. These methods use local interpolants/approximants

over small stencils of points chosen from the global point set to approximate deriva-

tives, similar to finite difference methods.

1.5.1 Stencils and nearest neighbor searches

A stencil is a collection of n << N points from a global point set X = {xj}Nj=1

used for approximating a function f or some derivative of f at a point xc, called the

stencil center. Some examples of stencils are provided in Figure 1.5 for structured and

unstructured points X and n = 5. We denote a stencil with center xc = xk ∈ X as

Xk = {xj}j∈σk , where σk is the the index set containing the indices of the points in X

contained in a stencil. The points are typically chosen as some collection of the nearest

neighbors to xc. Figure A.1 illustrates two different techniques for determining these

nearest neighbors: ball and K nearest neighbors (KNN), which can be implemented

efficiently using a k-dimensional tree. Using the above notation, we can write a

stencil-based approximation to a linear differential operator L applied to a function

u sampled at X as

Lu|x=xi
≈

n∑
j∈σi

ciju(xj), i = 1, . . . , n. (1.13)

The weights cij depend on the locations, point spacings, stencil size, and approxima-

tion methods [18], which we discuss in the next section. Note that these weights can

be assembled into a sparse N ×N “stiffness matrix”.
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Figure 1.5: Structure (left) and unstructured (right) points on a square
domain with a five-point stencil. The red point is the stencil center, and
the blue points represent the stencil neighbors.

Figure 1.6: Illustration of two algorithms for determining nearest neigh-
bors: ε-ball (left) and KNN search (right). The red point is the stencil
center, and the blue points represent the stencil neighbors.
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1.5.2 RBF-FD

Suppose the first stencil contains the points X1 = {x1, . . . ,xn}. Then RBF-FD

determines the weights c1j in (A.1) as the solution to the following system,

n∑
j=1

c1jφ(||vx1 − xj||) = Lφ(||x− xi||)|x=x1 , i = 1, . . . , n, (1.14)

under the constraint that the weights {c1j} are exact for all polynomials of degree `:

n∑
j=1

c1jpk(xj) = Lpk(x)|x=x1 k = 1, . . . , L,

where {pk}Lk=1, are again a basis for the set of polynomials of degree `. As described

in detail by [18], the weights satisfying (1.14) under the above constraints can be

computed by solving the following linear system:

 A P

P T O


c1

γ

 =

Lφ(||x− xj||)|x=x1

LP (x)|x=x1

 , (1.15)

where A is given in (1.7) and Pjk = pk(xj), and γ is a Lagrange multiplier. The RBF-

FD weights for all the remaining stencils Xi, i = 2, . . . , N can be computed similarly

using (1.15).

1.5.3 GMLS/GFD

The GMLS and GFD methods are very similar (and, in most cases, identical).

The procedure for generating FD-type weights is similar to RBF-FD, except a lo-

cal weighted polynomial least squares problem (B.12) is used. Using the notation

from the previous section, the weights for the first stencil X1 can be computed from
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the normal equations as follows:

c1 = Wρ(x1)P (P TWρ(x1)P )−1Lp|xc . (1.16)

In practice, one would use a QR factorization of Wρ(x1)P for one to solve (1.16) in a

numerically stable manner.

1.6 Node generation

Node or point cloud generation are initial or preprocessing stages of solving meshfree

discretizations of PDEs on surfaces. Overall there are mesh-based and meshfree

techniques for obtaining a point cloud. The mesh-based node generation can be

straight-forward, since one simply requires extracting nodes from mesh elements,

which must have good quality. A wide range of open source mesh generation packages

are available such as Meshlab [37] or Gmsh [20]. Using mesh-based node generation

can be computationally expensive and wasteful since we do not require all element

information (i.e. faces, edges). Meshfree node generation has been explored on general

planar domains and surfaces [66, 17, 47, 49] using node repulsion algorithms and

Poisson disk sampling.

1.7 Contributions of this dissertation

1.7.1 Contributions of PI

Motivation

Many multiphysics problems require the computation of derivatives on two-dimensional

surfaces embedded in R3. For example, simulating atmospheric flows with Eulerian

or Lagrangian numerical methods requires approximating surface gradients, diver-
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gence, and Laplacians of various quantities like wind, pressure, and bathymetry on

the sphere [59, 43, 63, 18, 9].Similar differential operators must be approximated for

much more complicated surfaces than the sphere in application such as glaciology

[22] in surface chemistry [65], computer graphics [34], multiphase flows with surfac-

tants [14], sea-air hydrodynamics [4, 2] and bulk-surface biomechanics [13, 42]. In

short, surface derivatives are of great importance across many areas of science and

engineering, and efficient and accurate methods are required for approximating these

quantities.

RBF-FD and GMLS have separately been developed for this task and have shown

to be quite effective since they can produce high orders of accuracy at low computa-

tional cost, and they do not require any gridding or meshing. While some studies have

been published comparing these methods for approximating functions and derivatives

in R2 and R3 [6]. No published studies compare these methods for approximating

derivatives on surfaces. This study aims to fill this gap and builds on the technical

report of Jones and Bosler [25].

Overview

We examine the performance and accuracy of the two methods for approximating

the surface gradient, divergence, and Laplacian. The focus is on how the methods

compare with each other when stencil sizes, polynomial degrees, differential operators,

and point clouds vary. We additionally show for the first time the equivalence of the

two local formulations of the surface derivatives, which are designated as the “local

coordinate method” and “tangent plane method”.

For the problems we tested, we found that RBF-FD and GMLS methods converge
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at nearly the same rates when using the same polynomial degree, and RBF-FD gives

lower errors for the same degrees of freedom. This is illustrated in Figure 1.7 for the

surface Laplacian on the torus and sphere. Additionally, when comparing the accu-

racy of the methods versus the computational cost, we found that RBF-FD performs

better when set-up costs are neglected. When these are accounted for, GMLS is more

competitive. This is illustrated for the Laplacian on the sphere in Figure 1.8.
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Figure 1.7: Convergence plots for approximating the surface Laplacian on
the torus (left) and sphere (right).

1.7.2 Contributions of PII

Motivation

Meshfree methods for PDEs such as RBF-FD and GFD lead to large sparse linear

systems of equations that need to be solved. To make these methods practical for

large-scale problems, effective iterative methods need to be developed for solving

these systems. One class of iterative methods that are particularly effective at solv-

ing systems associated with standard FD discretizations are multilevel methods, such
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Figure 1.8: Computational efficiency (Error vs. FLOPs) for approximating
the surface Laplacian on the sphere: set-up (left) and run-time (right)
costs.

as geometric multigrid [10, 57]. However, since meshfree methods do not have an

underlying grid structure, the extension of these methods to this setting is not ap-

parent. There is also the need for solvers that can handle degenerate PDEs (surface

Poisson equation) and high-order PDE discretizations. In this project, we focus on

solving these challenges and develop a meshfree geometric multilevel (MGM) method

for RBF-FD and GFD discretizations.

Overview

The components for any multilevel method are: a method for coarsening the points, a

solver for the coarse level correction equations, restriction methods for the residuals,

and an interpolation method for the corrections [10, 57]. The term “smoother” arises

from the nature of a relaxation method (e.g. SOR, damped Jacobi, or Gauss-Seidel)



18

to “filter” the high-frequency oscillations present in the error. This smoothing step is

conducted on all grid levels until the coarsest grid is reached, where the coarse grid

solution is computed. The next step is to prolongate (interpolate) the coarse solution

to the original fine grid. This completes what is called the V-cycle iteration [10, 57],

illustrated is shown in Figure 1.9.

Figure 1.9: A schematic for a two-level V-cycle method for solving an
elliptic PDE.

For a meshfree treatment of multilevel methods, we must have a hierarchy of

increasingly coarser point clouds rather than grids. We address this challenge using

a point cloud coarsening algorithm called weighted sample elimination [66]. The

interpolation and restriction is done using RBF-FD with polyharmonic splines (PHS)

plus constants. For the smoothing, we apply forward Gauss-Seidel, and a SparseLU

for the coarse level solve. In the numerical tests, we examine the convergence with

increasing polynomial and PHS degree ` using two meshfree discretizations: RBF-FD



19

and GFD. MGM is used as preconditioner and a independent solver and compared

with an algebraic multigrid software package PyAMG [36], some results for solving a

screened Poisson problem 1.4 are displayed in Figure 1.10. We finish this paper with

several application problems, computing geodesics distance and simulating pattern

formation driven by nonlinear reaction-diffusion; see Figure 1.11 for an illustration.
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Figure 1.10: Illustration of the residual convergence results for ` = 7 RBF-
FD discretizations of the sphere (left) and a cyclide (right) using MGM,
PyAMG, preconditioners for GMRES and BiCGStab.
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Figure 1.11: Left: Visualizations of the geodesic distance from the black
dot marked on the Armadillo. The colormap transitions from white to
yellow to indicate the increases in the distance. Right: Pattern formation
on the Stanford bunny.

1.7.3 Contributions of PI and PII

We present two new software packages that were developed in conjunction with this

thesis, MGM and RBFToolkit. MGM is a Python based meshfree multilevel solver

for elliptic PDEs. The libraries NumPy, SciPy, PyAMG handle the data structures

(n-dimensional arrays) and the numerical linear algebra (Krylov subspace methods,

relaxation/smoothers methods), and Matplotlib provides the data visualization. The

link to the code repository is https://github.com/AndrewJ3/MGM, the repository

homepage is shown in Figure 1.12. RBFToolkit will be a refactor of the RBFKokkos

C++ code presented in [25]. This updated version will be written in Python and will

include an improved C++ and Kokkos version. The repository can be found with

https://github.com/AndrewJ3/MGM


21

the following link https://github.com/AndrewJ3/rbftoolkit, and the homepage

is shown in Figure 1.12.

Figure 1.12: Github repositories for MGM and RBFToolkit.

1.8 Future work

Most studies of PDEs on the sphere focus on numerical weather prediction [51, 33, 43]

and in the last century, numerous discretizations of the sphere have arisen. Early

works in this area focus on latitude-longitude grids, which have failures due to sin-

gularities at the poles. This has prompted the examination of other spherical dis-

cretizations. Some of these other discretizations are the cubed sphere [44, 40] and

icosahedral mesh, [5], which each have a variety of different arrangements. These grids

are commonly used in FV/FE methods [63, 54]. Another family of “grids” is based on

ideal spiral arrangements that can be derived from the Fibonacci sequence, referenced

as “Fibonacci” grids [53]. Pseudo-random point distributions for the sphere have also

been studied for point picking [31] and Monte Carlo methods [55]. Also, there is

https://github.com/AndrewJ3/rbftoolkit
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Figure 1.13: Comparison of residual convergence of various itertive meth-
ods for solving the screened Poisson equation on the sphere using a SE
based discretization.

Poisson disk sampling which can produce quasi-uniform points efficiently [11]. An-

other study relevant to meshfree methods involves minimal energy [41] and maximum

determinant [50] point clouds for the sphere, which have been used with RBF-FD for

atmospheric flows [16]. Overall, no comprehensive study of PDEs on the sphere has

been conducted for this wide range of point clouds and PDE discretizations. We

address these areas of interest with some preliminary results using MGM to solve a

SE discretization of the screened Poisson equation (1.4). We compare MGM with

PyAMG and find improved convergence rates when using MGM; these results are

illustrated in Figure 1.13. Future work related to this dissertation, we will study the

various sphere discretizations with MGM.
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CHAPTER 4:

SOFTWARE CONTRIBUTION

The code repositories are available on Github.

https://github.com/AndrewJ3/MGM

https://github.com/AndrewJ3/rbftoolkit

4.1 Summary

One novelty of the software packages is they are written in open source languages

and they are some of the first of their kind. MGM will be the first published mesh-

free multilevel solver and preconditioner for surface PDEs, degenerate problems, and

extendable to mesh-based PDE discretizations. RBFToolkit will be the first RBF-

FD software package for computing derivatives, solving PDEs, and interpolating on

surfaces.

Open-source software is essential for transparency and wider collaboration in sci-

entific research. We present two open source codes for surface interpolation and for

discretization and solving of partial differential equations using meshfree methods.

The first code is our meshfree geometric multilevel (MGM) solver and preconditioner

for surface partial differential equations. This framework is written in Python and

utilizes NumPy [? ], SciPy [? ], and C++, for the data structures (lists, arrays,

k-dimensional tree, sparse matrices), linear algebra (QR, SparseLU), iterative meth-

https://github.com/AndrewJ3/MGM
https://github.com/AndrewJ3/rbftoolkit
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ods (BiCGStab, GMRES). The second code is RBFToolkit, this code is a refactored

version of the test code RBFKokkos [? ]. This code includes methods for inter-

polation and evaluation of surface derivatives on point clouds, the first version is

available in Python with performance libraries NumPy, SciPy, and, scikit-learn. The

C++ version will build on the RBFKokkos framework, by utilizing Kokkos for shared

memory parallelism. Additionally, the Trilinos [? ] packages Teuchos and Tpetra

will be included for distributed memory parallelism and sparse linear algebra. For

construction of k-dimensional trees and nearest neighbor searches (ball or kNN) we

use the NanoFlann [? ]. MGM will also be integrated into the C++ version of the

RBFToolkit as development progresses.
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CHAPTER 5:

CONCLUSIONS

We conclude this dissertation with an overview of the findings and accomplishments;

we presented a comparison of two meshfree methods for computing surface derivatives

(gradient, divergence, Laplacian). We found the formulations of surface differential

operators are equivalent when the tangent space is known exactly. Both methods

converge at the same asymptopic rates when using the same polynomial degree. RBF-

FD generally produces lower errors than GMLS for the same polynomial degree,

stnecil size and point cloud resolution. GMLS is more computationally efficient when

compariong the cost of building operators, however RBF-FD was more efficient for

evaluation cost.

MGM is the first geometric multilevel method for solving ellitpic equations on

surfaces. We find it scales nearly independent of point cloud spacing when used as

preconditioner. The overall computational complexity is O(N logN). The method

converges more rapidly than PyAMG especially as order of accuracy increases. It-

eration count for MGM is mostly constant comparedto solver and preconditioner for

elliptic surface PDEs, displayed favorable results compared to the AMG software,

PyAMG. Lastly, MGM can solve complicated problems (i.e. nonlinear reaction dif-

fusion).



37

APPENDIX A:
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A.1 Abstract

Approximating differential operators defined on two-dimensional surfaces is an impor-

tant problem that arises in many areas of science and engineering. Over the past ten

years, localized meshfree methods based on generalized moving least squares (GMLS)

and radial basis function finite differences (RBF-FD) have been shown to be effec-

tive for this task as they can give high orders of accuracy at low computational cost,

and they can be applied to surfaces defined only by point clouds. However, there

have yet to be any studies that perform a direct comparison of these methods for

approximating surface differential operators (SDOs). The purpose of this work is to

fill that gap. We focus on RBF-FD methods based on polyharmonic spline (PHS)

kernels and polynomials since they are most closely related to the GMLS method.

We give a detailed description of both methods, including the different ways that

they formulate SDOs. One key finding we make here is that these formulations are

equivalent when the tangent space to the surface is known exactly. We numerically

examine the convergence rates of the methods for various parameter choices as the

discretizations of the surfaces are refined. We also compare their efficiency in terms

of accuracy per computation cost.

A.2 Introduction

The problem of approximating differential operators defined on two dimensional sur-

faces embedded in R3 arises in many multiphysics models. For example, simulating at-

mospheric flows with Eulerian or Lagrangian numerical methods requires approximat-

ing the surface gradient, divergence, and Laplacian on the two-sphere [38, 42, 15, 8].

Similar surface differential operators (SDOs) must be approximated on more geomet-
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rically complex surfaces in models of ice sheet dynamics [17], biochemical signaling

on cell membranes [23], morphogenesis [34], texture synthesis [25], and sea-air hydro-

dynamics [2].

Localized meshfree methods based on generalized moving least squares (GMLS)

and radial basis function finite differences (RBF-FD) have become increasingly popu-

lar over the last ten years for approximating SDOs and solving surface partial differ-

ential equations (PDEs) (see, for example, [24, 22, 36, 35, 18] for GMLS and [1, 21, 14,

31, 30, 32, 33, 29, 43, 19, 41] for RBF-FD methods). This is because they can provide

high accuracy at low computational cost and can even be applied to surfaces defined

by point clouds, without having to form a triangulation like surface finite element

methods [12] or a level-set representation like embedded finite element methods [7].

While there is one study dedicated to comparing these methods for approximating

functions and derivatives in R2 and R3 [3], there are no studies that compare the

methods for approximating SDOs. The present work aims to fill this gap.

The RBF-FD methods referenced above use different approaches for approximat-

ing SDOs, while the GMLS methods essentially use the same approach. To keep

the comparison to GMLS manageable, we will thus limit our focus to the RBF-FD

method based on polyharmonic spline (PHS) kernels augmented with polynomials

since they are most closely related to GMLS [3]. Additionally, these RBF-FD meth-

ods are becoming more and more prevalent as they can give high orders of accuracy

that are controlled by the augmented polynomial degree [5] and they do not require

choosing a shape parameter, which can be computationally intensive to do in an au-

tomated way. The RBF-FD methods referenced above also use distinct techniques

for formulating the SDOs. To again keep this comparison manageable, we limit our
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focus to the so-called tangent plane formulation, as it provides a more straightfor-

ward technique for incorporating polynomials in the PHS-based RBF-FD methods

than [1, 21, 14, 31, 30, 32, 29, 41]. Additionally, the comparison in [33] of several

RBF-FD methods for approximating the surface Laplacian (Laplace-Beltrami opera-

tor) revealed the tangent plane approach to be the most computationally efficient in

terms of accuracy per computational cost. The tangent plane method was first in-

troduced by Demanet [11] for approximating the surface Laplacian using polynomial

based approximations. Suchde & Kuhnert [35] generalized this method to other SDOs

using polynomial weighted least squares to generate the stencil weights. Shaw [33]

(see also [43]) was the first to use this method for approximating the surface Laplacian

with RBF-FD and Gunderman et. al. [19] independently developed the method for

RBF-FD specialized to the surface gradient and divergence on the unit two-sphere.

The GMLS and RBF-FD methods are similar in that they use weighted combi-

nations of function values over a local stencil of points to approximate SDOs. They

also feature a parameter ` for controlling the degree of polynomial precision of the

formulas. However, they also have several major differences. First, GMLS is based

on weighted least squares polynomial approximants, whereas the type of RBF-FD

method considered here is based on PHS interpolants augmented with polynomials.

Second, for GMLS one has to choose a weight kernel for the least squares problem,

while one has to choose the order of the PHS kernel in the RBF-FD method. Third,

GMLS uses local coordinates and approximations to metric terms to formulate the

SDOs. The RBF-FD method examined in this study, on the other hand, is based on

the tangent plane method, which does not explicitly include any metric terms.

In this study, we compare GMLS and RBF-FD for approximating the surface gra-
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dient, divergence, and Laplacian operators on two topologically distinct surfaces, the

unit two-sphere and the torus, which are representative of a broad range of application

domains. We investigate their convergence rates as the sampling density of points on

these surfaces increases for various parameter choices, including polynomial degree

and stencil sizes. In the case of the sphere, we also study the convergence rates of

the methods for different point sets, including two popular ones used in applications:

icosahedral and cubed sphere points. Finally, we investigate the efficiency of the

methods in terms of their accuracy versus computational cost, both when including

and excluding setup costs.

One key result we show analytically is that the local coordinate formulation of

SDOs used in GMLS is identical to the formulation of the tangent plane method

when the tangent space for the surface is known exactly for the given point cloud.

Furthermore, our numerical results demonstrate that RBF-FD and GMLS give similar

convergence rates for the same choice of polynomial degree `, but overall RBF-FD

results in lower errors. We also show that the often-reported super convergence of

GMLS for the surface Laplacian only happens for highly structured, quasi-uniform

point sets, and when the point sets are more general (but still possibly quasi-uniform),

this convergence rate drops to the theoretical rate. Additionally, we find that the

errors for RBF-FD can be further reduced with increasing stencil sizes, but that this

does not generally hold for GMLS, and the errors can actually deteriorate. Finally,

we find that when setup costs are included, GMLS has an advantage in terms of

efficiency, but if these are neglected then RBF-FD is more efficient.

The remainder of the paper is organized as follows. In Section A.3, we provide

some background and notation on stencil-based approximations and on surface dif-
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ferential operators. We follow this with a detailed overview of the GMLS and RBF

methods in Section A.4 and B.3.2, respectively. In Section A.6 we compare the two

methods in terms of some of their theoretical properties and in Section B.6 we give

an extensive numerical comparison of the methods. We end with some concluding

remarks in Section A.8.

A.3 Background and notation

A.3.1 Stencils

The RBF-FD and GMLS methods both discretize SDOs by weighted combinations of

function values over a local stencil of points. This makes them similar to traditional

finite-difference methods, but the lack of a grid, a tuple indexing scheme, and inherent

awareness of neighboring points requires that some different notation and concepts

be introduced. In this section we review the stencil notation that will be used in the

subsequent sections.

Let X = {xi}Ni=1 be a global set of points (point cloud) contained in some domain

Ω. A stencil of X is a subset of n ≤ N nodes of X that are close (see discussion

below for what this means) to some point xc ∈ Ω, which is called the stencil center.

In this work, the stencil center is some point from X, so that xc = xi, for some

1 ≤ i ≤ N , and this point is always included in the stencil. We denote the subset

of points making up the stencil with stencil center xi as Xi and allow the number of

points in the stencil to vary with xi. To keep track of which points in Xi belong to

X, we use index set notation and let σi denote the set of indices of the 1 < ni ≤ N

points from X that belong to Xi. Using this notation, we write the elements of the

stencil as Xi = {xj}j∈σi . We also use the convention that the indices are sorted by
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the distance the stencil points are from the stencil center xi, so that the first element

of σi is i.

With the above notation, we can define a general stencil-based approximation

method to a given (scalar) linear differential operator L. Let u be a scalar-valued

function defined on Ω that is smooth enough so that Lu is defined for all x ∈ Ω. The

approximation to Lu at any xi ∈ X is given as

Lu|x=xi
≈
∑
j∈σi

ciju(xj). (A.1)

The weights cij are determined by the method of approximation, which in this study

will be either GMLS or RBF-FD. These weights can be assembled into a sparse N×N

“stiffness” matrix, similar to mesh-based methods. Vector linear differential operators

(e.g., the gradient) can be similarly defined where (A.1) is used for each component

and L is the scalar operator for that component.

There are two main approaches used in the meshfree methods literature for de-

termining the stencil points, one based on k-nearest neighbors (KNN) and one based

on ball searches. These are illustrated in Figure A.1 for a scattered point set X in

the plane. The approach that uses KNN is straightforward since it amounts to sim-

ply choosing the stencil Xi as the subset of ni points from X that are closest to xi.

The approach that uses ball searches is a bit more involved, so we summarize it in

Algorithm 1. Both methods attempt to select points such that the stencil satisfies

polynomial unisolvency conditions (see the discussion in Section A.4.1). In this work,

we use the method in Algorithm 1 since

• it is better for producing stencils with symmetries when X is regular, which can
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Algorithm 1: Procedure for determining the stencil points based on ball
searches.
1 Input: Point cloud X; stencil center xc; number initial stencil points n;

radius factor τ ≥ 1;
2 Output: Indices σc in X for the stencil center xc;
3 Find the n nearest neighbors in X to xc, using the Euclidean distance;
4 Compute the max distance hmax between xc and its n nearest neighbors;
5 Find the indices σc of the points in X contained in the ball of radius τhmax

centered at xc;

be beneficial for improving the accuracy of the approximations;

• it is more natural to use with the weighting kernel inherent to GMLS; and

• it produces stencils that are not biased in one direction when the spacing of the

points in X are anisotropic.

To measure distance in the ball search, we use the standard Euclidean distance mea-

sured in R3 rather than distance on the surface since this is simple to compute for

any surface. We also use a k-d tree to efficiently implement the method. Finally, the

choice of parameters we use in Algorithm 1 are discussed in Section A.4.3.

A.3.2 Surface differential operators in local coordinates

Here we review some differential geometry concepts that will be used in the subsequent

sections. Much of this material can be found in a general book on this subject,

e.g. [39, 28].

We assume thatM⊂ R3 is a regular, orientable surface so that it can be described

by an atlas of local smooth charts [39]. Let TxM denote the tangent space to M at

x ∈M. We can express surface differentiable operators in a neighborhood of x ∈M
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(a) KNN (b) Ball search

Figure A.1: Comparison of the two search algorithms used in this paper
for determining a stencil. The nodes X are marked with solid black disks
and all the stencil points are marked with solid blue disks, except for the
stencil center, which is marked in red.

using the local chart

f = (x̂, ŷ, f(x̂, ŷ)), (A.2)

where x̂, ŷ are local coordinates for TxM, and f(x̂, ŷ) can be interpreted as a function

over the x̂ŷ-plane. This local parametric representation of M about x is called the

Monge patch or Monge form [28] and is illustrated for a bumpy sphere surface in

Figure B.1.

Using this parameterization, the local metric tensor G about x for the surface is

given as

G =

∂x̂f · ∂x̂f ∂x̂f · ∂ŷf

∂ŷf · ∂x̂f ∂ŷf · ∂ŷf

 =

1 + (∂x̂f)2 (∂x̂f)(∂ŷf)

(∂x̂f)(∂ŷf) 1 + (∂ŷf)2

 . (A.3)
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Letting gij denote the (i, j) entry of G−1, the surface gradient operator locally about

x is given as

∇̂M = (∂x̂f)
(
g11∂x̂ + g12∂ŷ

)
+ (∂ŷf)

(
g21∂x̂ + g22∂ŷ

)
. (A.4)

However, this is the surface gradient with respect to the horizontal x̂ŷ-plane (see

Figure B.1 (b)), and subsequently needs to be rotated so that it is with respect to

TxM in its original configuration. If ξ1 and ξ2 are orthonormal vectors that span

TxM and η is the unit outward normal to M at x, then the surface gradient in the

correct orientation is given as

∇M =

[
ξ1 ξ2 η

]
︸ ︷︷ ︸

R

∇̂M. (A.5)

Using this result, the surface divergence of a smooth vector u ∈ TxM can be written

as

∇M · u =
(
g11∂x̂ + g12∂ŷ

)
(∂x̂f)TRTu +

(
g21∂x̂ + g22∂ŷ

)
(∂ŷf)TRTu (A.6)

The surface Laplacian operator locally about x is given as

∆M =
1√
|g|

(
∂x̂

(√
|g|g11∂x̂

)
+ ∂x̂

(√
|g|g12∂ŷ

)
+

∂ŷ

(√
|g|g21∂x̂

)
+ ∂ŷ

(√
|g|g22∂ŷ

))
,

(A.7)

where |g| = det(G). This operator is invariant to rotations of the surface in R3, so
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(a) (b)

Figure A.2: Illustration of a Monge patch parameterization for a local
neighborhood of a regular surface M in 3D. (a) Entire surface (in gray)
together with the tangent plane (in cyan) for a point xc where the Monge
patch is constructed (i.e., TxcM); red spheres mark a global point cloud X
on the surface. (b) Close-up view of the Monge patch parameterization,
together with the points from a stencil Xc (red spheres) formed from X
and the projection of the stencil to the tangent plane (blue spheres); the
stencil center xc is at the origin of the axes for the x̂ŷ-plane and is marked
with a violet sphere.

no subsequent modifications of (A.7) are necessary.

A.4 GMLS using local coordinates

The formulation of GMLS on a manifold was introduced by Liang & Zhao [22] and

further refined by Trask, Kuberry, and collaborators [36, 18]. It uses local coordinates

to approximate SDOs as defined in (A.5)–(A.7) and requires a method to also approx-

imate the metric terms. Both approximations are computed for each xi ∈ X ⊂ M

using GMLS over a local stencil of points Xi ⊂ X. Below we give a brief overview of

the method assuming that the tangent/normal vectors for the surface are known for

each xi ∈ X. We then discuss a method for approximating these that is used in the
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Compadre Toolkit [20], which we use in the numerical experiments.

We present the GMLS method through the lens of derivatives of MLS approxi-

mants as we feel this makes the analog to RBF-FD clearer, it is also closer to the

description from [22]. Other derivations of GMLS are based on weighted least squares

approximants of general linear functionals given at some set of points, e.g. [40, 27, 37].

However, both techniques produce the same result in the end [27]. For a more thor-

ough discussion of MLS approximants, see for example [13, ch. 22] and the references

therein.

A.4.1 Approximating the metric terms

The metric terms are approximated from an MLS reconstruction of the Monge patch

of M centered at each target point xi using a local stencil of ni points Xi ⊂ X.

This procedure is illustrated in Figure B.1 and can be described as follows. First, the

stencil Xi is expressed in the form of (A.2) (i.e., (x̂j, ŷj, fj), j ∈ σi), where (x̂j, ŷj)

are the coordinates for the stencil points in Txi
M, and fj = f(x̂j, ŷj) are samples of

the surface as viewed from the x̂ŷ-plane. These can be computed explicitly as


x̂j

ŷj

fj

 =

[
ξ1
i ξ2

i ηi

]T
︸ ︷︷ ︸

RT
i

(xj − xi), (A.8)

where ξ1
i and ξ2

i are orthonormal vectors that span Txi
M and ηi is the unit normal to

M at xi. To simplify the notation that follows, we let x̂j = (x̂j, ŷj) and X̂i = {x̂j}j∈σi

denote the projection of the stencil Xi to Txi
M. Note that for convenience in what

comes later we have shifted the coordinates so that the center of the projected stencil

is x̂i = (0, 0).
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In the second step, the approximate Monge patch at xi is constructed from a MLS

approximant of the data (x̂j, fj), j ∈ σi, which can be written as

q(x̂) =
L∑
k=1

bk(x̂)pk(x̂), (A.9)

where {p1, . . . , pL} is a basis for P2
` (the space of bivariate polynomials of degree `)

and L = dim(P2
`) = (` + 1)(` + 2)/2 is the dimension of this space. The coefficients

bk(x̂) of the approximant are determined from the data according to the weighted

least squares problem

b∗(x̂) = argmin
b∈RL

∑
j∈σi

wρ(x̂j, x̂)(q(x̂j)− fj)2 = argmin
b∈RL

‖Wρ(x̂)1/2(Pb− f)‖2
2, (A.10)

where wρ : R2 × R2 → R≥0 is a weight kernel that depends on a support parameter

ρ, Wρ(x̂) is the ni × ni diagonal matrix Wρ(x̂) = (wρ(x̂j, x̂)), and P is the ni × L

Vandermonde-type matrix

P =

[
p1(x̂j) p2(x̂j) · · · pL(x̂j)

]
, j ∈ σi (A.11)

Here we use underlines to denote vectors (i.e., b and f denote vectors containing

coefficients and data from (B.12), respectively). Note that the coefficients bk depend

on x̂ because the kernel wρ depends on x̂ (this gives origin to the term “moving” in

MLS). We discuss the selection of the stencils and weighting kernel below, but for

now it is assumed that ni > L and Xi is unisolvent on the space P2
` (i.e., P is full

rank), so that (B.12) has a unique solution.

The MLS approximant q is used in place of f in the Monge patch (A.2) and it is
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used to approximate the metric terms in (A.5)–(A.7). To compute these terms, various

derivatives need to be approximated at the projected stencil center x̂i. Considering,

for example, ∂x̂q, the approximation is computed as follows:

∂x̂q
∣∣
x̂i
≈

L∑
k=1

b∗k(x̂i)∂x̂(pk(x̂))
∣∣
x̂i
, (A.12)

where b∗k(x̂i) come from (B.12) with x̂ = x̂i. Other derivatives of metric terms in

(A.5)–(A.7) are approximated in a similar way to (A.12). We note if the standard

monomial basis is used for {p1, . . . , pL}, then by centering the projected stencil in

(A.8) about the origin, only one of the derivatives of pk in (A.12) is non-zero when

evaluated at x̂i.

Note that (A.12) is only an approximation of ∂x̂q because it does not include the

contribution of ∂x̂(b
∗
k(x̂))

∣∣
x̂i

. This approximation is referred to as a “diffuse deriva-

tive” in the literature and is equivalent to the GMLS formulation of approximating

derivatives [27]. The term “GMLS derivatives” is preferred over “diffuse derivatives”

to describe (A.12), since the approximation is not diffuse or uncertain and has the

same order of accuracy as the approximations that include the derivatives of the

weight kernels [26].

A.4.2 Approximating SDOs

The procedure for approximating any of the SDOs in (A.5)–(A.7) is similar to the one

for approximating the metric terms, but for this task we are interested in computing

stencil weights as in (A.1) instead of the value of a derivative at a point. Since these

SDOs involve computing various partial derivatives with respect to x̂ and ŷ, we can

use (A.12) as a starting point for generating these stencil weights. If {uj}j∈σi are
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samples of a function u over the projected stencil X̂i, then we can again approximate

∂x̂u
∣∣
x̂=x̂i

using (A.12), with b∗k(x̂i) defined in terms of the samples of u. To write this

in stencil form we note that (A.12) can be written using vector inner products as

∂x̂u
∣∣
x̂i
≈ ∂x̂q

∣∣
x̂i
≈
[
∂x̂p1

∣∣
x̂i
· · · ∂x̂pL

∣∣
x̂i

]
︸ ︷︷ ︸

(∂x̂p(x̂i))
T

b∗(x̂i) =

[
ci1 · · · cni

]
︸ ︷︷ ︸

(cix̂)
T

u, (A.13)

where we have substituted the solution of b∗(x̂i) in (B.12) to obtain the term in the

last equality. This gives the stencil weights cix̂ as the (weighted) least squares solution

of the overdetermined system

Wρ(x̂i)
1/2Pcix̂ = Wρ(x̂i)

1/2(∂x̂p(x̂i)), (A.14)

which is typically solved using a QR factorization of Wρ(x̂i)
1/2P to promote numerical

stability.

Stencil weights ciŷ, c
i
x̂x̂, c

i
x̂ŷ, and ciŷŷ for the other derivative operators appearing in

(A.5)–(A.7) can be computed in a similar manner for each stencil X̂i, i = 1, . . . , N .

These can then be combined together with the approximate metric terms to define

the weights {cij} in (A.1) for any of the SDOs in (A.5)–(A.7).

A.4.3 Choosing the stencils and weight kernel

As discussed in Section A.3.1, we use Algorithm 1 to choose the stencil weights. For

the initial stencil size, we use L = dim(P2
`). The radius factor τ controls the size

of the stencil, with larger τ resulting in larger stencils, and we experiment with this

parameter in the numerical results section.

There are many choices for the weight kernel wρ in (B.12). Typically, a single
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radial kernel is used to define wρ as wρ(x,y) = w(‖x − y‖/ρ), where x,y ∈ Rd and

‖ · ‖ is the standard Euclidean norm for Rd. In this work, we use the same family of

compactly supported radial kernels as [36, 18] and implemented in [20]:

wρ(x,y) =

(
1− ‖x− y‖

ρ

)2m

+

, (A.15)

where m is a positive integer and (·)+ is the positive floor function. These C0 kernels

have support over the ball of radius ρ centered at y. While smoother kernels can

be used such as Gaussians, splines, or Wendland kernels [13], we have not observed

any significant improvement in the accuracy of GMLS derivative approximations with

smoother kernels. In general, proofs on how the choice of kernels effects the accuracy

of GMLS approximations have yet to be found.

Finally, we note that the support parameter ρ is chosen on a per stencil basis and

is set equal to τhmax from Algorithm 1.

A.4.4 Approximating the tangent space

When the tangent space Txi
M is unknown, a coarse approximation to it can be

computed for each stencil Xi using principal component analysis [22]. In this method,

one computes the eigenvectors of the covariance matrix X iX
T

i , where X i is the 3-

by-ni matrix formed from the stencil points Xi centered about their mean. The two

dominant eigenvectors of this matrix are taken as a coarse approximation to Txi
M

and the third is taken as a coarse approximation to the normal to M at xi; we

denote these by ξ̃1
i , ξ̃

2
i , and η̃i, respectively. Next, an approximate Monge patch

parameterization is formed with respect to this approximate tangent space using

MLS following the same procedure outlined at the beginning of Section A.4.1. This
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procedure is illustrated in Figure A.3 (a), where the coarse approximate tangent plane

is given in yellow. A refined approximation to the true tangent plane and normal at

the stencil center xc can be obtained by computing the tangent plane and normal

to the MLS approximant of the Monge patch at xc; this plane is given in cyan in

Figure A.3 (a). Once this plane is computed, a new Monge patch parameterization

with respect to this refined tangent plane approximation is formed, as illustrated in

Figure A.3 (b). This procedure is repeated for each stencil Xi and the refined tangent

space computed for each stencil is used in the procedure described in Section A.4.1

for approximating the metric terms.

(a) (b)

Figure A.3: Illustration of the tangent plane correction method. (a)
Monge patch parameterization for a local neighborhood of a regular sur-
face M (in gray) in 3D using a coarse approximation to the tangent plane
(in yellow) at the center of the stencil xc and the refined approximation
to the tangent plane (in cyan). (b) Same as (a), but for the Monge patch
with respect to the refined tangent plane. The red spheres denote the
points from the stencil and the blue spheres mark the projection of the
stencil to the (a) coarse and (b) refined tangent planes. The coarse and
refined approximations to the tangent and normal vectors are given as ξ1

c ,
ξ2

c , and ηc, respectively, with tildes on these variables denoting the coarse
approximation.
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A.5 RBF-FD using the tangent plane

As discussed in the introduction, there are several RBF-FD methods that have been

developed over the past ten years for approximating SDOs. We use the one based

on the tangent plane method for formulating SDOs and PHS interpolants augmented

with polynomials for approximating the derivatives that appear in this formulation.

The subsections below provide a detailed overview of these respective techniques.

A.5.1 Tangent plane method

The tangent plane method similarly uses local coordinates for the surface in the

tangent plane formed at each xi ∈ X, but unlike the method from Section A.4.1, it

does not use approximations to the metric terms. It instead approximates the SDOs

at each xi using the standard definitions for the derivatives in the tangent plane. So,

using local coordinates (A.2) about xi, the the surface gradient for the tangent plane

method is taken as

∇M = Ri


∂x̂

∂ŷ

0

 , (A.16)

and the surface divergence of a smooth vector u ∈ Txi
M is taken as

∇M · u =

[
∂x̂ ∂ŷ 0

]
RT
i u, (A.17)

where Ri is the rotation matrix given in (A.8). Similarly, the surface Laplacian in the

tangent plane method is

∆M = ∂x̂x̂ + ∂ŷŷ. (A.18)
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We next show that if Txi
M is known exactly for each xi ∈ X and the point at which

the SDOs are evaluated is xi, then the SDOs (A.16)–(A.18) are equivalent to the

corresponding ones involving metric terms (A.5)–(A.7). This was shown indirectly

in [11] for the surface Laplacian using the distributional definition of the surface

Laplacian. Here we show the result follows explicitly for each surface differential

operator (A.5)–(A.7) from the local coordinate formulation in Section A.3.2.

The first step is to note that the vectors ∂x̂f
∣∣
x̂i

and ∂ŷf
∣∣
x̂i

from the Monge pa-

rameterization (A.2) are tangential to the x̂ŷ-plane and must therefore be orthogonal

to the vector

[
0 0 1

]
. This implies ∂x̂f = ∂ŷf = 0 at x̂i, which means the metric

tensor (A.3) reduces to the identity matrix when evaluated at x̂i. Using this result in

(A.5) for ∇̂M means that the surface gradient formula (A.5) is exactly (A.16) when

evaluated at x̂i. The equivalence of the surface divergence formulas (A.6) and (A.17)

also follow immediately from this result.

The steps for showing the equivalence of the surface Laplacian operator are more

involved. To simplify the notation in showing this result, we denote partial derivatives

of f with subscripts. For the first step of this process, we substitute the explicit metric

terms, |g| = (1 + f 2
x̂)(1 + f 2

ŷ )− (fx̂fŷ)
2, g11 = (1 + fŷ)/|g|, g12 = g21 = −(fx̂)(fŷ)/|g|,

and g22 = (1 + fx̂)/|g|, into (A.7) and expand the derivatives. Next, we simplify to

obtain the following formula:

∆M =
1(

f 2
x̂ + f 2

ŷ + 1
)2

((
fŷfx̂ŷ

(
1 + 2f 2

x̂ + f 2
ŷ

)
− (fx̂fx̂x̂ + fŷfx̂ŷ)(1 + f 2

ŷ )− fx̂fŷŷ(1 + f 2
x̂)
)
∂x̂+

(
fx̂fx̂ŷ

(
1 + 2f 2

ŷ + f 2
x̂

)
− (fŷfŷŷ + fx̂fx̂ŷ)(1 + f 2

x̂)− fŷfx̂x̂(1 + f 2
ŷ )
)
∂ŷ

)
+

g11∂x̂x̂ + 2g12∂x̂ŷ + g22∂ŷŷ
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Using fx̂ = fŷ = g12 = 0 and g11 = g22 = 1 at x̂i, this formula reduces to (A.18).

A.5.2 Approximating the SDOs

Since the tangent plane method does not require computing approximations to any

metric terms, we only need to describe the RBF-FD method for approximating the

derivatives that appear in (A.16)–(A.18). We derive this method from derivatives

of interpolants over the projected stencils for each point xi ∈ X using the same

notation as Section A.4 and we assume that the tangent space is known. A method

for approximating the tangent space also using RBF-FD is discussed in Section A.5.4.

Let {uj}j∈σi be samples of some function u over the projected stencil X̂i =

{x̂j}j∈σi . The PHS interpolant to this data can be written

s(x̂) =

ni∑
j=1

ajφ(‖x̂− x̂σi
j
‖) +

L∑
k=1

bkpk(x̂), (A.19)

where φ(r) = r2κ+1 is the PHS kernel of order 2κ + 1, κ ∈ Z≥0, σij is the jth

index in σi, ‖ · ‖ denotes the Euclidean norm, and {p1, . . . , pL} are a basis for P2
` .

The expansion coefficients are determined by the ni interpolation conditions and L

additional moment conditions:

s(x̂j) = uj, j ∈ σi and

ni∑
j=1

ajpk(x̂σi
j
) = 0, k = 1, . . . , L. (A.20)

These conditions can be written as the following (ni + L)× (ni + L) linear system

 A P

P T 0


a
b

 =

u
0

 , (A.21)
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where Ajk = ‖x̂σi
j
− x̂σi

k
‖2κ+1 (j, k = 1, . . . , ni) and P is the same Vandermonde-type

matrix given in (A.11). The PHS parameter κ controls the smoothness of the kernel

and should be chosen such that 0 ≤ κ ≤ `. With this restriction on κ, it can be shown

that A is positive definite on the subspace of vectors in Rn satisfying the L moment

conditions in (B.8) [40]. Hence, if the stencil points Xi are such that rank(P ) = L

(i.e., they are unisolvent on the space P2
`), then the system (B.9) is non-singular and

the PHS interpolant is well-posed. Note that this is the same restriction on Xi for

the MLS problem (B.12) to have a unique solution.

The stencil weights for approximating any of the derivatives appearing in the

SDOs (A.16)-(A.18) can be obtained from differentiating the PHS interpolant (B.7).

Without loss of generality, consider approximating the operator ∂x̂ over the stencil

X̂i. Using vector inner products as in (A.13), the stencil weights for this operator are

determined from the approximation

∂x̂u
∣∣
x̂i
≈ ∂x̂s

∣∣
x̂i

=

[
∂x̂φ(x̂i) ∂x̂p(x̂i)

]T a
b

 .
where ∂x̂φ(x̂i) and ∂x̂p(x̂i) are vectors containing the entries ∂x̂‖x̂− x̂σi

j
‖2κ+1

∣∣
x̂i

, j =

1, . . . , ni, and ∂x̂pk(x̂)
∣∣
x̂i

, k = 1, . . . , L, respectively. Using (B.9) in the preceding

expression gives the stencil weights as the solution to the following linear system

 A P

P T 0


cix̂
λ

 =

∂x̂φ(x̂i)

∂x̂p(x̂i)

 , (A.22)

where the entries in λ are not used as part of the weights.

Stencil weights ciŷ, c
i
x̂x̂, c

i
x̂ŷ, and ciŷŷ for the other partial derivatives can be com-
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puted in an analogous way for each stencil X̂i, i = 1, . . . , N . These can then be

combined together to define the weights {cij} in (A.1) for any of the SDOs in (A.16)–

(A.18).

A.5.3 Choosing the stencils and PHS order

Similar to GMLS, we use Algorithm 1 to choose the stencils and also use the same

initial stencil size of n = L for this algorithm. The parameter κ used to determine

the PHS order should be chosen with an upper bound of κ ≤ ` (so that (B.10) is well

posed) and a lower bound such that the derivatives of the PHS kernels make sense for

whatever operator the RBF-FD stencils are being used to approximate. In this work

we use κ = ` as we have found that this choice works well for approximating various

SDOs across a wide range of surfaces. Choosing κ < ` can be useful for improving

the conditioning of the system (B.10) and for reducing Runge Phenomenon-type edge

effects in RBF-FD approximations near boundaries [6].

A.5.4 Approximating the tangent space

If Txi
M is unknown for any xi ∈ X, then we use a similar procedure to the one

discussed for GMLS in Section A.4.4 (and illustrated in Figure A.3) to approximate

it. The difference for RBF-FD is that instead of using an MLS reconstruction of the

Monge patch parameterization formed from the coarse tangent plane approximation

at each xi, we use the PHS interpolant (B.7) for the reconstruction. The refined

approximation to the tangent plane at each xi is then obtained from derivatives of

the PHS interpolant of the Monge patch for stencil Xi. We note that this approach is

new amoungst the different tangent plane methods, as previous approaches assumed

the tangent space was computed by some other, possibly unrelated techniques, and

not directly from the stencils [35, 33, 43].
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A.6 Theoretical comparison of GMLS and

RBF-FD

In this section, we make comparisons of the GMLS and RBF-FD methods in terms of

some of their theoretical properties, including the different approaches in formulating

SDOs, the parameters of the approximations, and the computational cost.

One of the main differences between the GMLS and RBF-FD approaches is that

the former uses the local coordinate method to formulate SDOs, while the latter uses

the tangent plane method. As shown in Section B.3.1 these methods are equivalent

if the tangent space for M is known for each xi ∈ X and the SDOs are evaluated

at the stencil center xi. However, the GMLS method does not take advantage of

this and instead includes metric terms in the formulation. These metric terms are

approximated with the same order of accuracy as the GMLS approximation of the

derivatives (see below), so that these errors are asymptotically equivalent as the

spacing of the points in the stencil goes to zero. When the tangent space is unknown,

both methods again approximate it to the same order of accuracy as their respective

approximations of the derivatives.

The GMLS and RBF-FD methods each feature the parameter `, which controls

the degree of the polynomials used in the approximation. For a given `, the formulas

for either method are exact for all bivariate polynomials of degree ` in the tangent

plane formed by the stencil center xi. Unsurprisingly, ` also effects the local accuracy

of the formulas in the tangent plane with increasing ` giving higher orders of accuracy

for smooth problems; see [26, 22] for a study of the accuracy of GMLS and [10, 4]

for RBF-FD. The order of accuracy of both methods depends on the highest order
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derivative appearing in the SDOs, and is generally ` if the derivative order is 1 and

` − 1 if the derivative order is two. However, for certain quasi-uniform point clouds

with symmetries, the order has been shown to be ` for GMLS applied to second order

operators like the surface Laplacian [22].

The computational cost of the methods can be split between the setup cost and

the evaluation cost. The setup cost depends on ` and ni (which depends on τ). For

each stencil Xi, the dominant setup cost of GMLS comes from solving the ni × L

system (B.13), while the dominant cost for RBF-FD comes from solving the (ni +

L)× (ni +L) system (B.10). We use QR factorization to solve the GMLS system and

LU factorization to solve the RBF-FD system, which gives the following (to leading

order):

Setup cost GMLS ∼ 2
N∑
i=1

niL
2 and Setup cost RBF-FD ∼ 2

3

N∑
i=1

(ni + L)3.

(A.23)

The stencil sizes depend on ` and τ , and for quasi-uniform point clouds X, ni is

typically some multiple γ of L. In this case, the setup cost of RBF-FD is higher

by approximately 1
3
(1 + γ)3. We note that the setup procedure for both methods is

an embarrassingly parallel process, as each set of stencil weights can be computed

independently of every other set. The evaluation costs of both methods are the same

and can be reduced to doing sparse matrix-vector products. So, for a scalar SDO like

the surface Laplacian

evaluation cost GMLS & RBF-FD: ∼ 2
N∑
i=1

ni. (A.24)
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If the ` and τ parameters remain fixed so that size of the stencils remain fixed as N

increases, then both the setup and evaluation cost are linear in N .

A.7 Numerical comparison of GMLS and

RBF-FD

We perform a number of numerical experiments comparing GMLS and RBF-FD for

approximating the gradient, divergence, and Laplacian on two topologically distinct

surfaces: the unit two sphere S2 and the torus defined implicitly as

T2 =
{

(x, y, z) ∈ R3
∣∣ (1−√x2 + y2)2 + z2 − 1/9 = 0

}
. (A.25)

For the experiments with the sphere, we consider three different point sets X: icosa-

hedral, cubed-sphere and Poisson disk points. The first two are commonly used in

numerical weather prediction [8, 42] and have been used in other studies on GMLS [36]

and RBF-FD [14] methods on the sphere. Unlike these first two point sets, Poisson

disk points can be generalized to other surfaces than the sphere and have also pre-

viously been used in studies on GMLS and RBF-FD methods [43]. Hence, we use

Poisson disk points also for the torus and use the weighted sample elimination (WSE)

algorithm [44] to generate them.

All of point sets we consider are quasi-uniform in the sense that the average

spacing between the points h (or more generally the mesh-norm [13]) decreases like

h ∼ N−1/2. Therefore, these points sets are well-suited for testing convergence rates of

GMLS and RBF-FD methods with N (i.e., convergence as the density of the sampling

of the surfaces increases). Table A.1 lists the different values of N used for each point

set. We experimentally examine the algebraic convergence rates β versus the
√
N ,
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assuming the error behaves like O(N−β/2). We include convergence rates results for

polynomial degrees ` = 2, 4, and 6.

Node set Values of N
Icosahedral 10242, 40962, 163842, 655362

Cubed sphere 6146, 24578, 98306, 393218
Poisson disk, sphere 8192, 32768, 131072, 524288
Poisson disk, torus 8153, 32615, 130463, 521855

Table A.1: Sizes of the node sets used in the numerical experiments.

All RBF-FD results that follow were obtained from a Python implementation of

the method that only utilizes the scientific computing libraries SciPy and NumPy. For

the GMLS results, we use the software package Compadre [20], which is implemented

in C++ and uses the portable performance library Kokkos.

A.7.1 Convergence comparison: Sphere

We base all the convergence comparisons for the sphere on the following function

consisting of a random linear combination of translates of 50 Gaussians of different

widths on the sphere:

u(x) =
50∑
j=1

dj exp(−γj‖x− yj‖2), x,yj ∈ S2, (A.26)

where yj are the centers and are selected as low discrepancy points on the sphere [9],

and dj & γj are sampled from the normal distributions N (0, 1) & N (15, 4), respec-

tively. This function has also been used in other studies on RBF-FD methods [21].

We use samples of u in the surface gradient tests and measure the error against the

exact surface gradient, which can be computed using the Cartesian gradient ∇ in R3

as ∇Mu = ∇u− η(η · ∇u), where η is the unit outward normal to S2 [16] (which is
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just x). Applying this to (A.26) gives

∇Mu = 2
50∑
j=1

djγj(yj − x(x · yj)) exp(−γj‖x− yj‖2). (A.27)

We use samples of this field in the surface divergence tests. Since ∇M ·∇Mu = ∆Mu,

we compare the errors in this test against the exact surface Laplacian of u, which can

be computed using the results of [15] as

∆Mu = −
50∑
j=1

djγj(4− ‖x− yj‖2(2 + γj(4− ‖x− yj‖2))) exp(−γj‖x− yj‖2).

We also use this in the tests of the surface Laplacian using samples of u.

For all these tests, we set radius factor τ in the stencil selection Algorithm 1 to 1.5.

This gave the best results for GMLS (see the next section for some results on the effects

of increasing τ). While the exact tangent space for the sphere is trivially determined,

we approximate it in all the results using the methods discussed in the Section A.4.4

for GMLS and Section A.5.4 for RBF-FD. These approximations are done with the

same parameters for approximating the different SDOs to keep the asymptotic orders

of accuracy comparable. Although not included here, we did experiments with the

exact tangent space and obtained similar results to those presented here.

Figures A.4—A.6 display the convergence results for GMLS and RBF-FD as a

function of N . Each figure is for a different point set type and contains the results for

approximating the surface gradient, divergence, and Laplacian in both the relative

two- and max-norms and for different polynomial degrees `. We see from all the

figures that the measured convergence rates for GMLS and RBF-FD are similar, but

that RBF-FD gives lower errors for the same N and ` in almost all cases. One
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Figure A.4: Convergence results for (a) surface gradient, (b) divergence,
and (b) Laplacian on the sphere using icosahedral point sets. Errors are
given in relative two-norms (first column) and max-norms (second col-
umn). Markers correspond to different `: filled markers are GMLS and
open markers are RBF-FD. Dash-dotted lines without markers correspond
to 2nd, 4th, and 6th order convergence with 1/

√
N . β are the measured

order of accuracy computed using the lines of best fit to the last three
reported errors.
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notable exception is on the cubed sphere points, where the convergence rates of the

max-norm errors for the GMLS approximations of the Laplacian are noticeably larger.

The results in the figure also show that the measured convergence rates in the two-

norm for the surface gradient and divergence approximations are close to the expected

rates of ` for all the point sets. However, when looking at the convergence rates of

the surface Laplacian, we see from Figures A.4 & A.5 that the icosahedral and cubed

sphere points have higher rates than for the Poisson disk points in Figure A.6. These

improved convergence rates have been referred to as superconvergence in the GMLS

literature and rely on the point set being structured so that the stencils have certain

symmetries [22]. When these symmetries do not exist, as is the case for the Poisson

disk points, then the convergence rates for the surface Laplacian follow more closely

the expected rates of `− 1.

A.7.2 Convergence comparison: Torus

The convergence comparisons on the torus are based on the target function

u(x) =
x

8
(x4 − 10x2y2 + 5y4)(r2 − 60z2), x ∈ T2, (A.28)

where r =
√
x2 + y2. This function has also been used in other studies of RBF

methods for surfaces [16]. As with the sphere example, the surface gradient of u can

be computed as ∇Mu = ∇u− η(η · ∇u), where η is the unit outward normal to T2,

which can be computed from the implicit equation (A.25). The surface Laplacian of

(A.28) is given in [16] as

∆Mu(x) = − 3x

8r2
(x4 − 10x2y2 + 5y4)(10248r4 − 34335r3 + 41359r2 − 21320r + 4000), x ∈ T2.
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Figure A.5: Same as Figure A.4, but for the cubed sphere points.
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Figure A.6: Same as Figure A.4, but for the Poisson disk points on the
sphere.
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Figure A.7: Same as Figure A.4, but for torus using Poisson disk points.
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Figure A.8: Relative two-norm errors of the surface Laplacian approxima-
tions as the stencil radius parameter τ varies. Left figure shows errors for
several different values of τ and a fixed N = 130463. Right figure shows the
convergence rates of the methods for different τ and a fixed ` = 4.

Similar to the sphere, we use samples of ∇Mu in the tests of the divergence and

compare the results with ∆Mu above.

We first study the convergence rates with the stencil radius scaling τ = 1.5 and

approximate the tangent space, as we did with the sphere tests. Figure A.7 displays

the results for the surface gradient, divergence, and Laplacian. We see that errors

for RBF-FD are again smaller than the errors for GMLS in almost all cases over the

range of N tested. However, GMLS has a slightly higher convergence rates in the case

of the surface gradient and divergence, but not for the Laplacian. Both methods have

convergence rates that are close to the expected rates of ` for these surface gradient

and divergence and `− 1 for the Laplacian.

Next we investigate how the approximation properties of the two methods change

when τ is increased, which results in larger stencil sizes. We focus on approximating

the surface Laplacian as similar results were found for the other SDOs. In the left

plot of Figure A.8, we show the relative two-norm errors of the approximations for a
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fixed N as τ varies from 1.5 to 2.5. We see that increasing τ has opposite effects on

the two methods: the errors decrease for RBF-FD and increase with GMLS. We see

similar results in the right plot of Figure A.8, where we show the convergence of the

methods with increasing N for different fixed values of τ (and ` fixed at 4). While

the convergence rates do not appear to change with τ , the overall errors decrease for

RBF-FD and increase for GMLS.

These results make sense when one considers the different types of approximations

the methods are based on: RBF-FD is based on interpolation, while GMLS is based

on least squares approximation. As the stencil sizes increase, RBF-FD has a larger

approximation space consisting of more shifts of PHS kernels, which can reduce the

errors [10]. However, GMLS has the same fixed approximation space of polynomials

of degree ` regardless of the stencil size. This gives another parameter that can be

tuned for RBF-FD to give better results for the same fixed polynomial degree.

Finally, we compare the errors when the exact and approximate tangent spaces

are used in the two methods. We focus only on the surface Laplacian and for ` = 4

since similar results were obtained for the other operators and other `. Table A.2

shows the results for both methods. The approximate tangent spaces were computed

using the methods from Sections A.4.4 (GMLS) and A.5.4 (RBF-FD) also using the

polynomial degree ` = 4. We see from the table that the differences between using

the exact or the approximate tangent spaces is minor.
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GMLS RBF-FD
N Exact Approx. Exact Approx.

8153 4.7984e-04 4.8004e-04 1.3311e-04 1.3312e-04
32615 6.0457e-05 6.04654e-05 1.5321e-05 1.5322e-05
130463 7.5486e-06 7.5488e-06 1.8811e-06 1.8811e-06
521855 8.0158e-07 8.0159e-07 2.0177e-07 2.0176e-07

Table A.2: Comparison of the relative `2 errors for the surface Laplacian on
the torus using the exact tangent space for the torus and approximations
to it based on the methods from Sections A.4.4 (GMLS) and A.5.4 (RBF-
FD). In all cases, ` = 4 and the points are based on Poisson disk sampling.

A.7.3 Efficiency comparison

The results in Section B.6 demonstrate that RBF-FD and GMLS have similar asymp-

totic convergence rates for the same `, but that RBF-FD can achieve lower errors for

the same N and stencil sizes. In this section, we consider which of the methods is

more computationally efficient in terms of error per computational cost. We examine

both the efficiency when the setup costs are included and when just the evaluation

costs are included, as measured by (A.23) and (A.24), respectively. We limit this

comparison to τ = 1.5 since this gave the best results for GMLS. Figure ?? displays

the results of this examination for the case of computing the surface Laplacian on the

tours discretized with Poisson disk sampling. Similar results were obtained for other

SDOs and for the sphere, so we omit them. We see from the figure that GMLS is

more efficient when the setup costs are included, but that RBF-FD is more efficient

when only evaluation costs are included. For problems where the point sets are fixed

and approximations to a SDO are required to be performed multiple times—as occurs

when solving a time-dependent surface PDEs—the setup costs are not as important
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as the evaluation costs since they are amortized across all time-steps. In this scenario

RBF-FD is the more efficient method.

A.8 Concluding remarks

We presented a thorough comparison of the GMLS and RBF-FD methods for ap-

proximating the three most common SDOs: the gradient, divergence, and Laplacian

(Laplace-Beltrami). Our analysis of the two different formulations of SDOs used in

the methods revealed that if the exact tangent space for the surface is used, these for-

mulations are identical. Our numerical investigation of the methods showed that they

appear to converge at similar rates when the same polynomial degree ` is used, but

that RBF-FD generally gives lower errors for the same N and `. We further examined

the dependency of the stencil size on the methods (as measured by the τ parameter)

and found that the errors produced by GMLS deteriorate as the stencil size increases.

The errors for RBF-FD, contrastingly, appear to keep improving as the stencil size

increases. However, we don’t expect this trend to continue indefinitely, as eventually

the tangent plane formulation breaks down when the stencil size becomes too large.

Finally, we investigated the computational efficiency of the methods in terms of error

versus computational cost and found GMLS to be more efficient when setup costs are

included and RBF-FD to be more efficient when only considering evaluation costs.
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B.1 Abstract

We develop a new meshfree geometric multilevel (MGM) method for solving linear

systems that arise from discretizing elliptic PDEs on surfaces represented by point

clouds. The method uses a Poisson disk sampling-type technique for coarsening the

point clouds and new meshfree restriction/interpolation operators based on polyhar-

monic splines for transferring information between the coarsened point clouds. These

are then combined with standard smoothing methods in a V-cycle iteration. MGM

is applicable to discretizations of elliptic PDEs based on various localized meshfree

methods, including RBF finite differences (RBF-FD) and generalized finite differences

(GFD). We test MGM both as a standalone solver and preconditioner for Krylov sub-

space methods on several test problems using RBF-FD and GFD, and numerically

analyze convergence rates, efficiency, and scaling with increasing point cloud sizes.

We also perform a side-by-side comparison to algebraic multigrid (AMG) methods for

solving the same systems. Finally, we further demonstrate the effectiveness of MGM

by applying it to three challenging applications on complicated surfaces: pattern

formation, surface harmonics, and geodesic distance.

B.2 Introduction

Partial differential equations (PDEs) defined on surfaces (or manifolds) arise in many

areas of science and engineering, where they are used to model, for example, atmo-

spheric flows [50], chemical signaling on cell membranes [28], morphogenesis [42], and

textures for computer graphics [46]. Solutions of these models can rarely be achieved

by analytical means and must instead be approximated using numerical techniques.

While numerical methods for PDEs on the sphere have been developed since the
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1960s [50], development of methods for PDEs on more general surfaces only began

in the late 1980s [15], with interest growing considerably in the early 2000s [16].

These techniques include surface finite element (SFE) [16], embedded finite element

(EFE) [8? ], and closest point (CP) [29] methods. More recently, various meshfree

(or meshless) methods have also been developed for PDEs on general surfaces that

use a local stencil approach, including radial basis function-finite differences (RBF-

FD) [2, 26, 39, 35, 40, 48], generalized finite differences (GFD) [43], and generalized

moving least squares (GMLS) [27, 44, 20]. These methods can be applied for surfaces

represented only by point clouds and do not require a surface triangulation like SFE

methods or a level-set representation of the surface like EFE methods. Additionally,

these meshfree methods approximate the solutions directly on the point cloud and do

not extend the PDEs into the embedding space like the EFE and CP methods.

In this paper, we concentrate on local meshfree methods for elliptic PDEs on

surfaces, which are challenging to solve with iterative methods because of the poor

conditioning of the systems. We specifically focus on the surface Poisson and shifted

(or screened) surface Poisson problems, which, for example, in surface hydrodynam-

ics [20], computer graphics [36], and time-implicit discretizations of surface reaction

diffusion equations [39]. We focus on two methods for these PDEs: polyharmonic

spline-based RBF-FD with polynomials and GFD. These meshfree discretizations re-

sult in large, sparse, non-symmetric, linear systems of equations that need to be

solved. Direct solvers for these systems have most commonly been used, but these do

not scale well to large point clouds and high-orders of accuracy, motivating the need

for efficient and robust iterative methods.

Multigrid methods are known to be effective solvers and preconditioners for linear
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systems that arise from discretizing elliptic PDEs (e.g., [45]). These methods can be

classified into two types: geometric and algebraic. While algebraic multigrid (AMG)

methods are general purpose solvers/preconditioners, geometric methods, when they

can be developed, generally converge faster and work as better preconditioners for

Krylov subspace methods. Geometric multigrid methods have been developed for

SFE and CP discretizations (e.g., [24] and [10]) and it is the aim of this paper to also

develop these methods for meshfree discretizations.

The basic components of geometric multigrid methods that need to be devel-

oped are (1) techniques for coarsening the grid or mesh, (2) constructing interpo-

lation/restriction operators for transferring the information between levels, (3) dis-

cretizing the differential operator on the coarser levels, (4) smoothing the approximate

solution, and (5) solving the system of the coarsest level. The first component presents

a challenge for meshfree surface PDEs as there is only a point cloud available and

no grid or mesh to create a hierarchy of coarser levels. To overcome this challenge

we use the weighted sample elimination (WSE) method from [52], which is a general

purpose method for selecting quasi-uniformly spaced subsets of points from a point

cloud and falls into the general category of Poisson disk sampling methods [9]. The

lack of a grid or mesh also presents a challenge for component (2) as standard transfer

operators cannot be used. To overcome this challenge, we use RBFs to construct the

interpolation operators for transferring the defect from coarser to finer levels. For

the restriction operators, we simply use the transpose of the interpolation operators,

which is a standard choice [45]. With these transfer operators, we generate com-

ponent (3) using a Galerkin projection, often referred to as the Galerkin coarse grid

operator. Finally, for component (4) we use standard Gauss-Seidel smoothing and for
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(5) we use a direct solver. We combine all of these components in a V-cycle iteration

and apply it both as a solver and preconditioner. The resulting method is entirely

meshfree and we refer to it as the meshfree geometric multilevel1 (MGM) method.

The new MGM method has some similarities to the meshfree multicloud meth-

ods [22, 54], but also some key differences. The first major difference is that multicloud

methods have been developed for PDEs posed in planar domains, whereas MGM is

for surface PDEs. Another difference is with the choice of transfer operators. The

method of [54] uses one-point, piecewise constant operators, while the method of [22]

uses two-point, inverse-distance weighted interpolation and restriction operators. It is

not clear how these latter transfer operators should be generalized to surfaces. MGM

instead uses transfer operators based on RBFs, which are well suited for interpolation

on surfaces [17]. A second difference is the strategy for geometric coarsening of the

given point cloud. Multicloud methods use a graph coloring-type scheme for finding

maximally-independent subsets of vertices to determine the coarser levels. This does

not allow the size of the point clouds on the coarser levels to be controlled precisely,

and it limits the coarsening factors to approximately four (for 2D problems). MGM

instead uses WSE [52], which allows for arbitrary coarsening factors and for the sizes

of the points in the coarser levels to be controlled exactly. A third difference is that

MGM can handle degenerate PDEs (e.g., the surface Poisson equation), while the

multicloud methods have been tailored to non-degenerate PDEs (e.g. planar Poisson

equation with mixed Dirichlet-Neumann boundary conditions). Finally, multicloud

methods have only been tested on second order accurate discretizations of PDEs;

these discretizations typically only use small stencils. We demonstrate that MGM

1We use the term multilevel rather than multigrid, since this method does not depend on a grid.
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works for discretizations at least up to sixth order accurate with large stencil sizes.

The remainder of the paper is organized as follows. In Section B.3, an overview is

given of the two meshfree methods for surface PDEs that the MGM algorithm is used

to solve. The next section presents the RBF-based transfer operators. Section B.5

describes the remaining components of the MGM algorithm, including a discussion

of the changes necessary to solve the degenerate surface Poisson problem. Section

B.6 presents an extensive array of numerical results for the MGM method, including

a comparison with algebraic multigrid (AMG) methods. Section B.7 then uses the

method in three challenging applications to further demonstrate its effectiveness.

Finally, the paper concludes with some final remarks on the method and some future

directions in Section B.8.

B.2.1 Assumptions and notation

Throughout the manuscript we letM be a smooth embedded manifold of co-dimension

one in 3 with no boundary and let ∆M denote the Laplace-Beltrami operator (LBO)

(or surface Laplacian) on M. When referencing points on M, we assume they are

represented as coordinates in R3, e.g., for x ∈ M, and we write x = (x, y, z). For a

point x ∈ M, we let TxM denote the tangent plane to M at x. We denote normal

vectors to M as n and assume that they are available either analytically or using

some approximation technique (see for example [23]).

We use sub/superscripts h and H on variables to indicate whether they are associ-

ated with the fine or coarse level point clouds, respectively. For example, Xh and XH

denote the set of points in the fine level and coarse level point clouds, respectively.

This is meant to mimic the notation that is used in traditional grid based geometric

multigrid methods [45], but these parameters do not relate to anything specific about
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the spacing of the points and do not need to be computed.

The focus of this study is on the elliptic equation

Lu = f, (B.1)

where u : M → R is unknown and f : M → R is known. Here L = ∆M or

L = I − µ∆M, where I is the identity operator and µ > 0, which correspond to the

surface Poisson and shifted (or screened) surface Poisson equation (B.1), respectively.

For the surface Poisson problem, we assume f satisfies the compatibility condition∫
M f dA = 0, which is a necessary and sufficient condition for (B.1) to have a solution.

In this case, any solution is unique up to the addition of a constant since constants

satisfy the homogeneous equation.

B.3 Localized meshfree discretizations

Several localized meshfree methods have been developed for approximating the solu-

tion of (B.1), e.g., [27, 44, 2, 26, 39, 35, 40]. For the sake of brevity, we limit the

focus of this study to two localized meshfree methods: polyharmonic spline (PHS)-

based RBF-FD with polynomials and GFD. Both of these methods use the so-called

tangent plane approach, but differ in the approximation spaces used. They should be

sufficient to demonstrate the general applicability of the MGM method.

The RBF-FD and GFD methods are based on approximating the strong form of

the equation, and amount to discretizing the LBO ∆M over a local stencil of points

on the surface. This stencil based approach can generally be described as follows.

Let Xh = {xi}Nh
i=1 denote the global point cloud (node set) discretizing M. For each

xi ∈ Xh, i = 1, . . . , Nh, let σhi denote the set of indices of the ni > 1 nearest neighbor
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nodes in Xh to xj. Here we use the Euclidean distance in 3 to define the nearest

neighbor distances. The points Xi
h = {xj}j∈σh

i
are the stencil for xi, and xi is the

stencil center. The stencil based approximation to ∆Mu at xj then takes the form

∆Mu
∣∣
xi
≈
∑
j∈σi

h

ciju(xj), (B.2)

where cij are some set of weights determined by the RBF-FD or GFD methods dis-

cussed below. These weights can then be assembled into a global Nh-by-Nh (sparse)

differentiation matrix Dh and an approximate solution to (B.1) is given as a solution

to the linear system

Lhu
h = fh, (B.3)

where uh, fh ∈ RNh contain the unknown solution and known right hand side of (B.1),

respectively, sampled at Xh. The matrix Lh is given by Lh = Dh or Lh = Ih − µDh,

where Ih is the Nh-by-Nh identity matrix. Note that the latter Lh arises from time-

implicit discretizations of surface diffusion-type problems. The MGM method will be

used for solving the system (B.3).

In the remainder of this section, we give specific details on determining the stencil

weights in (B.2) for the LBO using RBF-FD and GFD methods. Since both of these

methods use the tangent plane technique, we review it first.

B.3.1 Tangent plane method

The tangent plane idea was introduced by Demanet [13] and recently further refined

by Suchde & Kuhnert [43], Shaw [41], and, in the case of the unit two-sphere, by
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Gunderman et. al. [21]. The central idea of the method is to approximate the LBO

at the center of each stencil Xi
h using an approximation to the standard Laplacian

on the plane tangent to the surface at the stencil center, Txi
M. The approximation

is constructed from a projection of the stencil points to Txi
M. In this work, we use

the projection advocated in [43], which is known as an orthographic projection when

M is the unit sphere.

(a) (b)

Figure B.1: Illustration of the tangent plane method for a 1D surface
(curve). The solid black lines indicates the surface, the solid red circles
mark the n = 11 stencil nodes, the open blue circles mark the projected
nodes, and the ×’s marks the stencil center. (a) Direct projection of the
stencil points according to (B.4). (b) Rotation and projection of the stencil
points according to (B.6).

With out loss of generality, we describe the method for the first stencil X1
h with

index set σ1
h. To simplify notation, we assume σ1

h = {1, . . . , n}, so that the stencil

points are simply X1
h = {x1, . . . ,xn}. The tangent plane method from [43] projects

these points onto Tx1M along the normal vector n1 (the normal to the surface at x1).

This projection is illustrated in Figure B.1 (a) for a one dimensional surface (curve)
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in 2. The projected points can be computed explicitly by

ξj = (I − n1n
T
1 )(xj − x1), j = 1, . . . , n, (B.4)

where we have shifted the projected points so that ξ1 is at the origin. For a two

dimensional surface, the projected points can be expressed in terms of orthonormal

vectors t1 and t2 that span Tx1M as follows

ξj =

[
t1 t2

]
︸ ︷︷ ︸

R

x̂j
ŷj


︸ ︷︷ ︸

x̂j

, j = 1, . . . , n. (B.5)

The 2D coordinates x̂j in the tangent plane for the projected points are what will be

used for constructing the approximations to the Laplacian. These can be computed

directly from the relationship (B.4) and (B.5) as

x̂j = RT (xj − x1), j = 1, . . . , n, (B.6)

where we have used RT (I − n1n
T
1 ) = RT . We denote the the projected stencil as

X̂1
h = {x̂1, . . . , x̂n}. The above procedure is repeated for every stencil Xi

h, to obtain

the projected stencils X̂i
h, i = 1, . . . , Nh.

We note that, geometrically speaking, (B.6) amounts to first shifting the stencil

points so the center is at the origin, rotating them so the normal n1 is orthogonal to

the xy-plane, and then dropping the third component. This is illustrated in Figure

B.1 (b) for the case of a 1D curve.
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B.3.2 PHS-based RBF-FD with polynomials

The RBF-FD method for determining the weights in (B.2) can be derived by con-

structing an RBF interpolant over each of the projected stencil points to the tanget

plane, applying the standard 2D Laplacian to the interpolants, and then evaluating

them at the stencil center. In this study we focus on interpolants constructed from

PHS kernels and polynomials [5, 14, 41]. Without loss of generality, we again describe

the method for the first stencil, with X1
h = {x1, . . . ,xn}, to simplify notation.

For the stencil X1
h, the PHS interpolant to the projected stencil X̂1

h takes the form

s(x̂) =
n∑
i=1

ai‖x̂− x̂i‖2k+1 +
L∑
j=1

bjpj(x̂), (B.7)

where x̂ =

[
x̂ ŷ

]T
∈ Tx1M, ‖ · ‖ denotes the Euclidean norm, k is the order of the

PHS kernel, and {p1, . . . , pL} is a basis for bivariate polynomials in Tx1M of degree `

(so that L = (`+ 1)(`+ 2)/2). The order k controls the smoothness of the PHS and

is chosen such that 0 ≤ k ≤ `. We note that the polynomials can be chosen to be

the standard bivariate monomials in the components of x̂. For samples {u1, . . . , un}

of an arbitrary function at the stencil points X1
h, the coefficients for the interpolant

in the tangent plane are determined by the conditions

s(x̂i) = ui, i = 1, . . . , n and
n∑
i=1

aipj(x̂i) = 0, j = 1, . . . , L, (B.8)
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which can be written as the following linear system

 A P

P T 0


a
b

 =

u
0

 , (B.9)

where Aij = ‖x̂i − x̂j‖2k+1 (i, j = 1, . . . , n), Pij = pj(x̂i) (i = 1, . . . , n, j = 1, . . . , L),

and underlined terms denote vectors containing the corresponding terms in (B.8). If

the stencil nodes X̂1
h are unisolvent with respect to the space of bivariate polynomials

of degree ` (i.e., rank(P ) = L), then (B.9) has a unique solution, so that (B.7) is well-

posed [47]. This is a mild condition on the stencil nodes, especially for “scattered”

nodes on the tangent plane.

The stencil weights c1j in (B.2) are determined from the approximation

∆Mu
∣∣
x1
≈ ∆̂s

∣∣
x̂1

=
n∑
i=1

ai∆̂(‖x̂− x̂i‖2k+1)
∣∣
x̂1

+
L∑
j=1

bj∆̂(pj(x̂))
∣∣
x̂1

=

[
∆̂s ∆̂p

]T a
b

 ,
where ∆̂ = ∂x̂x̂+∂ŷŷ, ∆̂s and ∆̂p are vectors containing the entries ∆̂(‖x̂−x̂i‖2k+1)

∣∣
x̂1

,

i = 1, . . . , n, and ∆̂(pj(x̂))
∣∣
x̂1

, j = 1, . . . , L, respectively. Using (B.9) in the above

expression, the stencil weights are given as the solution to the following linear system

 A P

P T 0


c
λ

 =

∆̂s

∆̂p

 , (B.10)

where c contains c1j and λ are unused.
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We note that one can interpret (B.10) as the solution to an equality constrained

optimization problem where the weights are determined by enforcing they are exact

for ∆̂(‖x̂− x̂i‖2k+1)
∣∣
x̂1

, j = 1, . . . , n, subject to the constraint that they are also exact

for ∆̂(pj(x̂))
∣∣
x̂1

, j = 1, . . . , L. Under this interpretation, λ is the vector of Lagrange

multipliers [5].

In this work, we choose the order of the PHS as k = ` and fix the stencil size nj = n,

j = 1, . . . , N as n = d2Le, which is a common choice for RBF-FD methods [5]. The

degree ` of the appended polynomial can then be used to control the approximation

order of the method, with larger ` leading to higher orders [12].

B.3.3 GFD

This method is similar to the RBF-FD method, but instead of using an interpolant,

the method is based on a (weighted) polynomial least squares approximant. Using

the same notation and assumptions as the previous section and again focusing only

on the first stencil X1
h, the approximant for the projected stencil X̂1

h takes the form

q(x̂) =
L∑
j=1

bjpj(x̂). (B.11)

The coefficients of the approximant are determined from the samples {u1, . . . , un}

according to the the following weighted least squares problem:

b∗ = argmin
b∈Rn

n∑
i=1

w(x̂i)(q(x̂i)− ui)2 = argmin
b∈Rn

‖W 1/2(Pb− u)‖2
2, (B.12)

where W = (w(x̂i)). Here we again assume the stencil nodes X̂1
h are unisolvent with

respect to bivariate polynomials of degree L so that (B.12) has a unique solution.
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There are many different options for selecting the weight function w in the literature.

In this work, we follow [43] and use the following Gaussian function:

w(x̂i) = exp

(
−α‖x̂1 − x̂i‖2

ρ2
1 + ρ2

i

)
,

where ρk is the support of the kth projected stencil X̂i
h, i.e. the radius of the minimum

ball centered at x̂i that encloses all the points in X̂i
h. The parameter α > 0 is used

for controlling the shape of the weight function and is typically chosen in an ad hoc

manner [43].

The stencil weights in (B.2) are determined from the approximation

∆Mu
∣∣
x1
≈ ∆̂q

∣∣
x̂1

= (∆̂p)T b∗.

Using the normal equation solution of (B.12) in the above expression, the vector of

stencil weights c is given as

c = WP (P TWP )−1(∆̂p). (B.13)

In practice, a QR factorization of WP is used instead of the normal equations to

improve the numerical conditioning of (B.13).

In this work, we choose the number of points in the stencils Xi
h for this method in

the same manner as the RBF-FD technique. Note that, similar to RBF-FD, increasing

the polynomials degree ` also increases the order of accuracy of the GFD method.
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B.4 Multilevel transfer operators using RBFs

Operators for transferring information between coarse and fine levels are one of the

key components of multilevel methods. The interpolation transfer operators are used

to transfer information from coarse level to a finer level, while the restriction operators

are used for the reverse. Let Xh = {xi}Nh
i=1 ⊂ M denote the fine set of nodes and

XH = {yj}NH
j=1 ⊂ M the coarse set, where NH < Nh. We denote the interpolation

operator by IhH and the restriction operator by IHh . These can be represented of as

(sparse) matrices, so that for a vector uH of data on the coarse nodes XH , the vector

containing the interpolation of uH to Xh is given as uh = IhHuH . In this section, we

discuss a novel meshfree method for constructing IhH based on RBF interpolation. For

the restriction operator, we use IHh = (IhH)T , which is a standard choice, especially in

AMG methods [45, Appendix A].

Similar to the discrete LBO, we compute the interpolation operator using a stencil

based approach. Letting σiH be the indicies of the mi nearest neighbors in XH to xi,

the interpolation of {uHj }j∈σH
i

to uhi , the entry in uh corresponding to xi, is given as

uhi =
∑
j∈σi

H

diju
H
j . (B.14)

We again use the Euclidean distance in R3 to define the index set σiH . The weights

for each stencil can be assembled to form the (sparse) interpolation matrix IhH .

We use local RBF interpolants about each stencil Xi
H = {yj}j∈σH

i
to determine the

weights in (B.14) and form these interpolants in the embedding space R3. This is con-

siderably simpler than using intrinsic coordinates toM and the resulting interpolants

have good approximation properties [17]. One could alternatively use interpolants in
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the tangent plane about each stencil center similar to Section B.3.2, but these are

only accurate when the surface is well discretized by the underlying point cloud. This

will not necessarily be the case for the nodes XH as we coarsen the the finer levels.

We again use a PHS kernel to form the interpolants and describe the method for the

first stencil X1
H , which, to simplify the notation, we assume to consist of the nodes

{y1, . . . ,ym}.

For the stencil X1
H , the PHS interpolant takes the same form as (B.7), but with x̂

replaced by x and {x̂i} is replaced by {yi}. Additionally, we only consider the PHS

kernel with k = 0 and a constant term appended to the interpolant (i.e. ` = 0). The

weights d1j in (B.14) are determined by evaluating this interpolant at x1 and can be

computed in a similar procedure to that used in deriving the system (B.10). The

linear system for the interpolation weights takes the form

A 1

1T 0


d
λ

 =

s
1

 , (B.15)

where Aij = ‖yi− yj‖ (i, j = 1, . . . ,m), 1 is the vector of length n with all ones, and

s has entries ‖x1 − yi‖, i = 1, . . . ,m. Again, λ is unused.

While higher order PHS kernels (k > 0) and higher degree polynomials (` > 0)

could be used in constructing the interpolation weights, we found that the simple for-

mulation above gave good results, while also being efficient, for the range of problems

we considered. This formulation also has the added benefit that the system (B.15)

has a unique solution, provided the points are distinct [47]. When using larger k and

` this may not be the case as the points must be unisolvent with respect to the space

of trivariate polynomials of degree `, i.e., (P ) = L. Since the interpolation is done
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Algorithm 2: Two-Level Cycle

1 Pre-smooth initial guess: uh ← presmooth(Lh, u
h, fh, ν1);

2 Compute residual: rh = fh − Lhuh;
3 Restrict the residual to XH : rH = IHh r

h;
4 Solve for the defect: LHe

H = rH ;
5 Interpolate the defect to Xh: e

h = IhHe
H ;

6 Correct the approximation: uh ← uh + eh;
7 Post-smooth the approximation: uh ← postsmooth(Lh, u

h, fh, ν2);

in the embedding space, this can be an issue for certain algebraic surfaces (e.g., the

sphere with ` ≥ 2).

B.5 Meshfree geometric multilevel (MGM)

method

In this section we present the MGM method for solving the discrete problem (B.3).

We first present the MGM method in terms of a two-level cycle, which is summa-

rized in Algorithm 2, describing its primary components: coarsening the point cloud

Xh → XH , forming the coarse level operator LH , smoothing the approximation, and

solving for the defect on the coarse level. The interpolation/restriction operators are

described in the previous section. We then focus on some modifications to the al-

gorithm that are necessary when (B.3) corresponds to the surface Poisson problem.

This is followed by a description of the multilevel extension of the method. Finally,

we comment on using the method as a preconditioner for Krylov subspace methods.

B.5.1 Node coarsening

The technique we propose for generating the coarser point clouds on general sur-

faces is based on (WSE) method from [52]. This algorithm falls into the category of

Poisson disk sampling methods, which produce quasiuniformly spaced point sets [9].
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The WSE method approximates the solution to the following optimization problem:

Given a point cloud Xh with Nh samples, determine a subset XH of Xh with NH

samples that has maximal Poisson disk radius. The Poisson disk radius is defined

as one half the minimum distance between neighboring points in the set (which is

called the separation radius in the meshfree methods literature [47]). This optimiza-

tion problem is NP complete, but the WSE algorithm approximates the solution in

Nh − NH steps with a theoretical complexity of O(Nh logNh) operations [52]. The

method works for point clouds defined on many different sampling domains, including

arbitrary manifolds, where it uses the Euclidean norm in R3 to define nearest neigh-

bor distances. We use the implementation by the author of the WSE method, called

cySampleElimination, that is provided in the cyCodeBase [53].

In this work, we coarsen the point cloud Xh by a fixed factor of 4, so that XH has

NH = bNh/4c points. This mimics the standard coarsening of geometric multigrid

for two-dimensional domains. We tested other coarsening factors, but found that

coarsening by 4 generally gave the best results in terms of iteration count and wall

clock time for the multilevel method. Figure B.2 illustrates the coarse point clouds

XH with this coarsening factor computed from the WSE algorithm for two example

surfaces.

B.5.2 Coarse level operator

There are two main approaches to constructing the coarse level operator in multilevel

methods. The first is direct discretization, where the differential operator is discretized

directly on the coarse level points XH . The second is based on a Galerkin projection
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(a) Xh → XH (b) Xh → XH

Figure B.2: Illustration of the WSE algorithm for generating a coarse level
set XH of NH = bNh/4c points from a fine level set Xh of Nh points. Here
Nh = 14561 & NH = 3640 for the cyclide (a) and Nh = 14634 & NH = 3658 for
the Stanford Bunny (b) .

involving the interpolation IhH and restriction IHh operators, and is defined as follows:

LH = IHh LhI
h
H . (B.16)

This latter operator, referred to as the Galerkin coarse grid operator, provides a

simple means of coarsening Lh and has been shown to be robust for a large class of

problems, especially those where a direct discretization on the coarse grid does not

adequately represent the approximation on the fine grid [45, §7.7.4]. It also gives

rise to a variational principle that is exploited in the analysis of algebraic multigrid

(AMG) [45, §A.2.4] methods. While this latter result relies on the matrix being

symmetric positive define, modifications to this theory have also been developed for

non-symmetric problems, which involve choosing the restriction operator differently

than the transpose of the interpolation operator [30]. We use the Galerkin approach

for forming LH , as we have found that it approximates the fine grid operator on the

coarser levels better than the direct discretization technique and it makes for a more

robust solver/preconditioner. While Lh is not symmetric for our discretizations, we
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have nonetheless found that simply choosing IHh = (IhH)T works well over a large array

of test problems.

One disadvantage of the Galerkin approach is that LH has to be formed explicitly

through sparse matrix-matrix multiplication, which is more computationally expen-

sive in terms of time and memory than the direct discretization approach. Sev-

eral researchers have developed methods to reduce this cost on parallel architectures

(e.g.,[6, 4]), but we have not used these methods in our implementation. We simply

construct LH as part of a set-up phase using a sparse matrix library. However, we

do some minor alterations to improve the computational performance. These include

reordering the rows and columns of Lh to decrease its bandwidth using the reverse

Cuthill-McKee (RCM) algorithm prior to forming LH . This essentially leads to a

reordering of the nodes Xh, which in turn leads to a reordering of the interpolation

operator IhH . We also use RCM to reorder the rows and columns of LH after it is

formed, which leads to a re-ordering of the nodes Xh and of the columns of IhH . We

have found that these matrix reorderings not only reduce the wall-clock time of MGM,

but also the number of iterations to reach convergence.

B.5.3 Smoother and coarse level solver

For the smoothing operator we use classical Gauss-Seidel (GS) method. One appli-

cation of the smoother can be written as

uh ← uh +B−1
h (fh − Lhuh), (B.17)

where Bh is the lower triangular part (called forward GS) or upper triangular part

(called backward GS) of Lh. In some cases we vary the version of the smoother for the
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pre- and post- smoothing operations (e.g., forward GS for pre-smooth and backward

GS for the post-smooth). We denote the number of applications of the smoother for

the pre- and post-phases of the cycle as ν1 and ν2, respectively.

To solve for the defect on the coarse level, we use a direct solver based on a sparse

LU factorization of LH (e.g., SuiteSparse or SuperLU).

B.5.4 Modifications to the two-level cycle for the surface

Poisson problem

When (B.3) corresponds to the discretization of a surface Poisson problem (Lh = Dh),

the system is singular and some modifications to the two level cycle in Algorithm 2 are

necessary. To understand the nature of the singularity, we can look at the continuous

problem (B.1). As discussed in Section B.2.1, this problem has a solution if and only

if the right hand side satisfies the compatibility condition. Furthermore, the solution

is only unique up to the addition of a constant. The degeneracy in the continuous

problem manifests in the discrete problem as a one dimensional null space of Lh

corresponding to constant vectors. The discrete analog of the consistency condition

is that (B.3) has a solution if and only if fh is orthogonal to the left null vector of Lh

(i.e., fh is in the range of Lh). Also, similar to the continuous case, any solution of

(B.3) is only unique up to the addition of a constant vector.

The primary issue that arises with using multilevel methods (and other iterative

methods) for these types of singular systems stems from the fact that, in practice, fh is

rarely in the range of Lh. This can cause the iterations to fail to converge to a suitable

approximation. Three standard approaches to bypass this issue include the following.

First, one can project fh into the range of Lh. However, this requires computing the
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left null vector, which can be computationally expensive2. It also requires modifying

the coarse level solver to use the pseudoinverse (or some approximate inverse). A

second approach is to impose that the solution is zero at one point. This fixes the

non-uniqueness issue and transforms the problem into solving a non-singular system

of one dimension smaller. However, this can lead to a deterioration of the convergence

of the multilevel method since the pointwise condition is not well approximated on

coarser levels [49]. Additionally, the solution to this approach can be less accurate

and less smooth than the projection approach [51]. The third approach is to enforce

a global constraint on the solution, such as the discrete mean of uh is zero [45, §5.6.4].

This constraint can be enforced using a Lagrange multiplier, which transforms the

linear system into the constrained system

Lh bTh

bh 0


︸ ︷︷ ︸

L̃h

uh
λh


︸ ︷︷ ︸
ũh

=

fh
0


︸ ︷︷ ︸
f̃h

, (B.18)

where bh is a row vector of length N with all of its components set to 1 (i.e., the

summation operator), and λh is the Lagrange multiplier. Provided bh is not orthogonal

to the left null space of Lh (which is likely to be true because of the compatibility

condition for the continuous problem), this constrained system will have a unique

solution [45, Lemma 5.6.1]. Furthermore, if this condition holds, the solution will

be the same (up to a constant) as the projection approach, since fh − λhbTh is then

necessarily in the range of Lh. We use the third approach in the MGM method.

Some modifications to the two-level cycle are required to handle the constrained

2Note that Lh is not symmetric, so the constant vector is not necessarily the left null vector
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system (B.18). First, the transfer operators have to also transfer the Lagrange mul-

tipler through the fine and coarse levels and the Galerkin coarse grid operator has to

include the transferred constraint. We follow the approach from [1] and modify these

operators according to the following definitions:

L̃H =

IHh 0

0 1


︸ ︷︷ ︸

ĨHh

Lh bTh

bh 0


︸ ︷︷ ︸

L̃h

IhH 0

0 1


︸ ︷︷ ︸

ĨhH

=

IHh LhIhH IHh b
T
h

bhI
h
H 0

 , (B.19)

where ĨhH and ĨHh are the modified interpolation and restriction operators, respectively,

and L̃H is the modified Galerkin operator. These modified transfer operators simply

pass the Lagrange multiplier between levels without alteration.

For the smoother of the constrained system (B.18), we use the approach discussed

in [45, §5.6.5], where only the solution uh is smoothed and the constraint is left alone.

We again use GS for smoothing uh and one application of the modified smoother

takes the form

uh ← uh +B−1
h (fh − Lhuh − bhλh),

where Bh is the same as (B.17). This smoother is equivalent to one iteration of the

undamped inexact Uzawa method with the Schur complement set equal to zero [7].

Finally, we use a direct solve to compute the defect eh and Lagrange multiplier λH

on the coarse level. This system takes the form L̃H ẽ
H = r̃H , where ẽH =

[
eH λH

]T
and r̃H is the restricted residual for the modified system: r̃H = ĨHh (f̃h− L̃hũh). When

solving a Poisson problem, we use the modifications described above in Algorithm 2.



102

Algorithm 3: MGM preprocessing phase

1 Input: Fine level nodes X1 and operator L1; minimum number of coarse
level points Nmin;

2 Re-order rows and columns of L1 using RCM;
3 Re-order X1 according to the RCM ordering;
4 Compute number of levels: p = blog(N1/Nmin)/ log(4)c+ 1;
5 for j = 1 . . . p− 1 do
6 Generate coarse point cloud Xj+1 with Nj+1 = bN1/4

jc points ;

7 Generate interpolation operator Ijj+1 from Xj+1 to Xj;

8 Set the restriction operator to Ij+1
j = (Ijj+1)T ;

9 Generate Galerkin coarse level operator Lj+1 = Ijj+1LjI
j+1
j ;

10 Re-order rows and columns of Lj+1 using RCM;

11 Re-order rows of Ijj+1 and columns of Ij+1
j according to the RCM ordering;

12 end
13 Compute sparse LU decomposition of Lp;

B.5.5 Multilevel extension

The multilevel extension of the two-level cycle can be obtained by applying it recur-

sively until a sufficiently coarse level is reached to make a direct solver practical. To

simplify the notation in describing the multilevel cycle, we replace the h/H super-

script/subscript notation with a number corresponding to the level, with j = 1 being

the finest level. For example, for the jth level, Xj denotes the point cloud, Nj denotes

its size, Lj denotes the operator, rj denotes the residual, and Ij+1
j is the restriction

to level j + 1.

Before the multilevel cycle begins, we compute all the coarse point clouds, trans-

fer operators, and Galerkin coarse level operators in a preprocessing step, which is

outlined in Algorithm 3. The number of levels, p, depends on the number of fine level

nodes and minimum number of nodes on the coarsest level, Nmin, and is determined

on line 4 of this algorithm. This guarantees that the number of nodes on the coarsest
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level satisfies Nmin ≤ Np < 4Nmin. We note that when using WSE to generate the

coarse point cloud Xj on line 6 of the preprocessing algorithm, we use the finer point

cloud Xj+1, rather than the finest node X1. This reduces the cost in performing this

step.

The multilevel cycle is outlined in Algorithm 4 in non-recursive form. This algo-

rithm is what we call the MGM method and corresponds to a traditional V-cycle in

multigrid methods, which is typically denoted V(ν1, ν2) corresponding to the number

of pre-/post smoothing operations. Other cycling methods can also be used (e.g., F-

or W-cycle [45, §2.4]), but we limit our focus to the V-cycle. While this algorithm is

described for a shifted Poisson problem, it can be easily modified for solving a Poisson

problem following the modifications discussed in Section B.5.4.

Algorithm 4: MGM V(ν1, ν2)-cycle

1 Input: Right hand side f 1; Initial guess u1; Number levels p; {Lj}p−1
j=1;

{Ijj+1}
p−1
j=1; {Ij+1

j }
p−1
j=1;

2 RCM re-orderings; Sparse LU factorization of Lp;
3 Re-order f 1 and u1 according to RCM re-ordering of L1;
4 Presmooth initial guess: u1 ← presmooth(L1, u

1, f 1, ν1);
5 Compute/restrict residual: r1 = I2

1 (f 1 − L1u
h)

6 for j = 2 . . . p− 1 do
7 Presmooth defect: ej = presmooth(Lj, 0, r

j, ν1) ;

8 Compute/restrict residual: rj+1 = Ij+1
j (rj − Ljej) ;

9 end
10 Compute defect: Solve Lpe

p = rp using sparse LU decomposition of Lp ;
11 for j = p− 1, . . . , 2 do

12 Interpolate/correct defect: ej ← ej + Ijj+1e
j+1;

13 Post smooth defect: ej ← postsmooth(Lj, e
j, rj, ν2);

14 end
15 Interpolate defect/correct approximation: u1 ← u1 + I1

2e
2;

16 Post smooth approximation: u1 ← postsmooth(L1, u
1, f 1, ν2);

17 Undo re-ordering of u1 from RCM of re-ordering of L1;
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B.5.6 Preconditioner for Krylov subspace methods

The MGM method has the benefit of being relatively straightforward to implement.

However, as shown in the numerical experiments in the next section, it may converge

slowly when using it as a standalone solver, especially for higher order discretizations

of the LBO on more irregular point clouds. A common approach to bypassing these

issues for standard geometric and algebraic multigrid methods is to combine them

with a Krylov subspace method (e.g., [45, §7.8] or [33, 18]). In this case, multi-

grid is viewed as preconditioner for the Krylov method. We also take this approach

with MGM, using it a preconditioner for two Krylov methods: generalized minimum

residual (GMRES) and bi-conjugate gradient stabilized (BiCGSTAB) [37]. This com-

bination appears to result in an efficient and robust method for solving the discretized

surface Poisson and shifted Poisson equations on quite complicated surface.

B.6 Numerical Results

In this section, we analyze the MGM method as a solver and preconditioner for the

Poisson and shifted Poisson problem on two surfaces: the unit sphere and the cyclide.

The latter is shown in Figure B.2 and the implicit equation describing the surface

is given in [26]. We test the method on both RBF-FD and GFD discretizations

using the parameters given in the first part of Table B.1. In all the tests, we are

interested in how the method scales to higher order discretizations, and thus give

results for polynomial degrees ` = 3, 5, and 7, which correspond to approximately

second, fourth, and sixth order accuracy, respectively [41, 43]. For the sphere tests,

we generate the point clouds from the vertices of icosahedral node sets, which are

used extensively in numerical weather prediction [? ]. For the cyclide, we use point
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Variable Description Value(s)

Parameters for the discretization the LBO
` Poly. degree for discretizing the LBO with RBF-FD or

GFD
3, 5, or 7

k Order of the PHS kernel for discretizing the LBO with
RBF-FD

`

α Weighting parameter for the Gaussian kernel in GFD 4 or 5
n Stencil size for discretizing the LBO with RBF-FD or

GFD
d(`+ 1)(`+ 2)e

Parameters for MGM
Nmin Minimum number of nodes on the coarsest level 250
Bh Pre- and post-smoother (see (B.17)) Forward GS
ν1, ν2 Number of applications of the pre- and post-smoother 1
m Stencil size of the interpolation/restriction operators 3

Table B.1: Description of parameters and their values used in the numer-
ical results.

clouds produced from Poisson disk sampling of the surface. This latter approach

results in much more unstructured point clouds than the sphere case (see Figure B.2

for an illustration).

Unless otherwise specified, the parameters of the MGM method are set according

to those given in the second part of Table B.1. We tested the method with different

combinations of these parameters and found that the ones listed in the table generally

gave the best results in terms of iteration count and wall-clock time. Additionally,

when using MGM with Krylov methods, we use it as a right preconditioner, which is

generally recommended [18]. Finally, all the MGM results presented were obtained

from a MATLAB implementation of the method, with a MEX interface to the WSE

method, which is implemented in C++.

In the first several experiments, we compare MGM to AMG, as implemented

in the Python package PyAMG [32]. In addition to being very popular blackbox
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solvers and preconditioners for a wide range of problems, AMG methods have been

used previously for solving linear systems associated with meshfree discretizations of

elliptic PDEs in the plane [38] and on surfaces [20]. We use the smoothed aggregation

version of AMG, as we found it performed better than classical AMG. Additionally,

we use one application of symmetric GS as the pre- and post-smoother, a V-cycle

for the multilevel cycle, and sparse LU for the coarse level solver. We experimented

with other combinations of parameters and again found these generally gave the best

results in terms of iteration count and wall-clock time. Additionally, when using

PyAMG with GMRES, we use it as a right preconditioner (with the fgmres option),

while for BiCGSTAB we use it as a left preconditioner (as this is the only option).

Finally, in the comparisons with AMG, we focus on the shifted Poisson problem as

PyAMG does not offer a specialized way to deal with the constrained system (B.18).

B.6.1 Standalone solver vs. preconditioner

In the first set of tests, we compare MGM and PyAMG both as standalone solvers and

preconditioners. For the latter approaches we refer to these solvers as MGM GMRES,

MGM BiCGSTAB, PyAMG GMRES, and PyAMG BiCGSTAB, to indicate the type

of Krylov method employed. We use these solvers on the shifted Poisson problem on

the unit sphere and cyclide with Nh=2,621,422 and Nh=2,097,152 nodes, respectively.

For the BiCGSTAB results, we count the number of applications of the preconditioner

as the iterations since each step of this method applies the preconditioner twice,

whereas GMRES applies it once.

Figure B.3 displays the results in terms of relative residual vs. iteration count for

RBF-FD, while Figure B.4 displays the results for GFD. For the RBF-FD results, we

see that the methods using MGM converge more rapidly than the methods based on
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PyAMG for both surfaces. For the sphere, MGM works very well as a standalone

solver and preconditioner even as ` increases, but for the cyclide the convergence rates

of MGM as a standalone solver decrease considerably. This may be due to the more

irregular nature of the cyclide point cloud. We note, however, that the preconditioned

versions of MGM only have a very mild decrease in convergence rates for the cyclide.

The figures also show that the methods using PyAMG do not converge as rapidly

as the corresponding MGM methods, with the fastest converging PyAMG method

taking more than double the number of iterations as the fastest MGM method when

` = 3 and triple when ` = 5 and 7. We see similar patterns in the GFD results, but the

methods based on both MGM and PyAMG generally converge faster in this case and

the gap between the fastest converging MGM and PyAMG methods is not as wide.

Finally, we note that MGM BiCGSTAB seems to converge at a very similar rate to

MGM GMRES, whereas this does not hold for PyAMG. This is a promising result for

large systems since the storage requirements of BiCGSTAB are fixed, whereas they

grow with the size of the Krylov subspace for GMRES [18].

These experiments also indicate that, while MGM can be an effective standalone

solver for small ` (lower order discretizations), it is more robust for larger ` (higher

order discretizations) and when used as a preconditioner. This also seems to be the

case when applying it to different surfaces and point clouds based on regular nodes

(like the sphere) and irregular nodes (like the cyclide). From the PyAMG results,

it is clear that it should be used as a preconditioner to get the most robust results,

which is generally the case for AMG methods applied to nonsymmetric systems [18].
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Sphere
PyAMG MGM

N ` = 3 ` = 5 ` = 7 ` = 3 ` = 5 ` = 7
10242 30 (38) 39 (56) 46 (70) 18 (19) 18 (18) 18 (20)
40962 35 (42) 43 (54) 53 (78) 19 (19) 19 (20) 19 (20)
163842 40 (50) 49 (64) 59 (84) 19 (21) 19 (20) 19 (20)
655362 45 (62) 55 (80) 68 (90) 20 (20) 20 (20) 20 (21)
2621442 52 (66) 64 (102) 75 (94) 20 (21) 20 (22) 20 (22)

Cyclide
PyAMG MGM

N ` = 3 ` = 5 ` = 7 ` = 3 ` = 5 ` = 7
8192 25 (30) 34 (48) 42 (62) 17 (19) 19 (20) 20 (22)
32768 32 (40) 39 (48) 46 (64) 19 (20) 22 (22) 24 (26)
131072 35 (46) 45 (66) 54 (74) 20 (21) 23 (26) 28 (31)
524288 41 (50) 49 (68) 60 (78) 21 (22) 25 (27) 30 (39)
2097152 45 (54) 56 (78) 65 (90) 20 (21) 24 (25) 27 (29)

Table B.2: Comparison of the number of PyAMG and MGM precondi-
tioned GMRES/BiCGSTAB iterations required to reach a relative residual
tolerance of 10−12 for solving the shifted Poisson problem with RBF-FD
discretizations. The numbers not in parenthesis are for GMRES, while
the numbers in parenthesis are for BiCGSTAB.

B.6.2 Scaling with problem size

In the next set of tests, we examine how both the MGM and PyAMG methods scale

as the size of the point clouds Nh increases. We focus on the preconditioned versions

of these methods and test them again on the sphere and cyclide. Tables B.2 and

B.3 display the results for the RBF-FD and GFD methods, respectively, in terms

of number of iterations required to reach a relative residual of 10−12. We see from

these tables that the preconditioned MGM methods appear to scale much better than

the PyAMG methods, both in terms of Nh and `. For RBF-FD discretizations, the

increase in the iteration count for MGM is more mild with increasing ` than for GFD.

However, in all cases but ` = 7 on the sphere, the iteration count is lower for the
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GFD discretizations; we examine this further in Section B.6.4.

Sphere
PyAMG MGM

N ` = 3 ` = 5 ` = 7 ` = 3 ` = 5 ` = 7
10242 15 (18) 20 (26) 26 (34) 10 (10) 14 (14) 20 (21)
40962 17 (20) 23 (26) 30 (42) 10 (11) 15 (16) 23 (25)
163842 20 (22) 27 (36) 34 (42) 11 (12) 15 (17) 26 (29)
655362 23 (26) 30 (42) 39 (48) 12 (13) 16 (17) 27 (28)
2621442 27 (30) 35 (46) 43 (60) 13 (15) 16 (17) 27 (29)

Cyclide
PyAMG MGM

N ` = 3 ` = 5 ` = 7 ` = 3 ` = 5 ` = 7
8192 13 (16) 17 (20) 23 (28) 10 (11) 14 (14) 18 (19)
32768 16 (20) 21 (24) 26 (30) 12 (12) 17 (18) 24 (26)
131072 19 (24) 24 (32) 30 (36) 12 (13) 18 (21) 25 (27)
524288 22 (26) 27 (34) 34 (40) 13 (14) 18 (18) 26 (29)
2097152 25 (30) 32 (40) 39 (50) 14 (14) 17 (18) 24 (26)

Table B.3: Same as Table B.2, but for GFD discretizations. For these
results, we set α = 4 for all Nh, but the largest, where we set α = 5.

In Figure B.5 we display the wall-clock times for the results in Tables B.2 and

B.3 for GMRES PyAMG and MGM. These results were run on a Linux Workstation

with Intel i9-9900X 3.5 GHz processor (with no explicit parallelization) and do not

include the set-up times. We see from Figure B.5 that MGM has a lower wall-clock

time than PyAMG for all but the first Nh in the case of the sphere. Furthermore,

for the largest Nh, MGM is between 3 and 5 times faster. Additionally, the dotted

line in these scaling plots marks perfect linear scaling and we see that the results for

both methods have a very similar slope to this line. Finally, we note that the timing

results for BiCGSTAB follow a similar trend to GMRES, so we omitted displaying

the results. However, the gap between the MGM and PyAMG timings were larger in

this case.
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B.6.3 Spectrum analysis

The previous two sections showed the preconditioned MGM methods outperform-

ing the PyAMG methods. To better understand these results, we investigate the

spectrum (eigenvalues) of the preconditioned matrices from both methods. Letting

Mh denote the matrix representation for applying one V-cycle of either MGM or

PyAMG, we can write the (right) preconditioned system as LhMhz
h = fh, where

zh = (Mh)
−1uh. The convergence behavior of Krylov methods can be understood by

analyzing the spectrum LhMh. As discussed in, for example [34], the more clustered

this spectrum is to one, the faster the Krylov methods will converge. In Figure B.6

we display the complete spectrum of the preconditioned matrix LhMh of both MGM

and PyAMG for the RBF-FD discretizations on the sphere and cyclide. Due to the

cost of this eigenvalue computation, we were only able to compute the results for with

Nh = 10242 and 8192, respectively. We see from the figure that spectra for MGM are

more clustered around one than PyAMG for both surfaces and increasing `, which

explains the better iteration counts in Table B.2. We omit the results for GFD, but

note that the spectra were similar to RBF-FD, but were even more clustered near

one.

B.6.4 Iteration vs. accuracy

In the final set of tests we focus on solving the (discretized) Poisson problem with

MGM GMRES and examine how the accuracy of the RBF-FD and GFD discretiza-

tions depend on the iteration count for increasing Nh and `. We restrict our at-

tention to the sphere, for which it is easy to construct test problems with exact

solutions based on spherical harmonics. For the test problem in the experiments,

we use the Y 4
5 spherical harmonic, which can be written in Cartesian coordinates as
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Y 4
5 (x, y, z) = z(x4−6x2y2 +y4). We fix the number of iterations of MGM GMRES for

solving the discretized systems to 1, 5, 10, 15, 20, 25, 30, and compute both the relative

residual and relative errors (in the 2-norm) in the approximate solutions. Figure B.7

displays the results from these experiments. We see from the figure that in almost

all cases the minimum error for either the RBF-FD and GFD is reached before the

minimal residual is reached. Additionally, the results indicate that while the residuals

for GFD converge faster than RBF-FD, the errors for a given Nh and ` are smaller

for RBF-FD. So the cost per error for both methods is much more comparable than

the previous experiments indicated and favor RBF-FD.

B.7 Applications

In this section we demonstrate the performance of MGM on three different applica-

tions involving complicated surfaces represented by relatively large point clouds; see

Figure B.8. All these applications involve solving discrete (shifted) surface Poisson

problems, for which we use the RBF-FD method to approximate the LBO and MGM

GMRES to solve the resulting linear systems.

B.7.1 Surface harmonics

We first consider approximating the first several eigenvalues and eigenfunctions of

the LBO on the Chinese Guardian Lion model. The eigenfunctions of the LBO

or the “surface harmonics” have been used in various applications in data analysis.

For example, Reuter et. al. [36] used the low frequency surface harmonics for shape

segmentation and registration.

The LBO eigenvalue problem is given as ∆Mu = λu. To approximate the solutions

of this problem we use the RBF-FD method with ` = 5 to approximate the LBO and
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ARPACK [25] (accessed through the eigs function in MATLAB) to solve the discrete

system for the first several eigenpairs that are smallest in magnitude. ARPACK uses

the Arnoldi method on the shifted inverse of a matrix to find the eigenpairs closest to

the shift σ, which, for the surface problem, requires a routine for repeatedly solving

systems of the form (Lh − σIh)vh = fh, for different fh. We use MGM GMRES to

solve these linear systems with σ = −1 and set the tolerance to 10−10. Figure B.9

displays the first 10 non-zero harmonics computed with this technique. The ARPACK

routine used 49 linear system solves to determine the eigenpairs; the median number

of MGM GMRES iterations required to solve these systems was only 15 and the max

was 16.

B.7.2 Pattern formation

We next consider solving two coupled reaction-diffusion (RD) equations on the Stan-

ford Bunny model. These types of equations arise, for example, in phenomenological

models of color patterns in animal coats [31]. We consider the Gierer-Meinhardt

two-species RD system [19] given as follows:

∂u

∂t
=Du∆M u+ A−Bu+

u2

v(1 + Cu2)
, (B.20a)

∂v

∂t
=Dv∆M v + u2 − v. (B.20b)

By altering the parameters A, B, C, Du, and Dv appropriately, this system can

produce solutions that converge to spot or labyrinth patterns at “steady-state” [31].

For the bunny model, we set A = 0.08, B = 1.5, C = 0.45, Du = 5 × 10−5, and

Dv = 10−3 to produce the labyrinth pattern. We use a random initial condition,

where at each point in Xh the values of u and v are selected from a uniformly random
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distribution in the interval [0, 1].

To approximate the solution of (B.20) we use the RBF-FD method with ` = 3 to

approximate the LBO and apply the second-order accurate semi-implicit backward

difference scheme (SBDF2) [3] as the time-stepping method that treats the diffusion

implicitly and reactions explicitly. We set the time-step to ∆t = 0.05. The temporal

discretization results in two decoupled (discrete) screened Poisson problems that need

to be solved at each time-step for which we use GMRES preconditioned with MGM.

For the GMRES method we set the tolerance on the relative residual to 10−8 and

use the previous time-step as the initial guess. We set the final integration to 300

time units, which resulted in a near steady-state pattern. Figure B.10 displays the

results of the simulations. Included in the figure are the iterations required by the

preconditioned GMRES method as a function of time. We see from the figure that

the maximum iteration count is 6 for the u variable and 11 for the v variable, and

decreases to 2 and 3, respectively as the solutions approach steady-state. The larger

iteration count for the v variable is expected since the diffusion coefficient is larger in

(B.20b).

B.7.3 Geodesic distance

Lastly, we consider the classic problem of approximating the geodesic distance from

a given point on a surface to all other points. We use the heat method introduced

by Crane et. al. [11] to solve this problem. This method transforms the non-linear

geodesic distance problem, typically formulated in terms of the eikonal equation, into

solving a pair of linear parabolic and elliptic problems. The heat method is comprised

of the three steps:

1. Solve ut = ∆Mu, with u0 = δ(x∗), to some time tfinal > 0
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2. Compute the vector field η = −∇Mu/|∇Mu|

3. Solve the Poisson problem ∆Mϕ = ∇M · η

Here x∗ ∈ denotes the target point on the surface M to compute the distance from,

∇M denotes the surface gradient, ∇M· is the surface divergence, and δ denotes the

Dirac delta function. As discussed in [11], the function ϕ approximates the geodesic

distance and converges to the exact distance as tfinal → 0.

We apply the heat method on the Armadillo model. We again use the RBF-FD

method with ` = 3 to approximate the LBO in steps 1 and 3 above. To approximate

the surface gradient and divergence, we also use the RBF-FD method formulated

in the tangent plane similar to the method described in [43] for GFD. For these

approximations, we use ` = 2, which result in a second-order approximation. We

discretize the heat equation in the first step with backward Euler in time with a

time-step of ∆t = 10−3 and set tfinal = 3∆t. To solve the linear systems associated

with this implicit discretization and the system from the discretized Poisson equation

in step 3, we use GMRES preconditioned with MGM, setting the tolerance to 10−8.

The results for a point x∗ on the chest of the Armadillo are displayed in the first

to images of Figure B.11. The last image in this figure displays the iterations of

the preconditioned GMRES method for solving the systems from the heat equation

discretization for three time-steps and the Poisson system to determine ϕ. We see

that the iteration count remains low for all these systems.

B.8 Concluding remarks

We have presented a new geometric multilevel method, MGM, for solving linear sys-

tems associated with discretizations of elliptic PDEs on point clouds. The method
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is entirely meshfree and uses the WSE algorithm for coarsening the point clouds,

interpolation/restrictions operators based on polyharmonic spline RBFs, Galerkin

coarsening of the operator, and standard smoothers. All of these choices make MGM

particularly straightforward to implement. We numerically analyzed the method as a

standalone solver and preconditioner on test problems for the sphere and cyclide dis-

cretized using RBF-FD and GFD methods, and found that it compares favorably to

AMG methods in terms of convergence rates and wall-clock time. When using MGM

as a preconditioner, we also found that it scaled well as both the problem size and

accuracy of the discretizations increased. Finally, we demonstrated that the method

can be used in three challenging applications involving large systems of equations.

There are several extensions of MGM that we plan to pursue in the future. One

is to test the method on other discretizations. MGM is agnostic to the underlying

discretization and could be used even for (nodal) mesh-based discretizations. Here

the nodal points of the mesh could be treated as a point cloud and WSE could

be applied, or if there is a natural way to coarsen the mesh, then this could be

used instead. A second idea we plan to pursue is extending MGM to domains with

boundaries, which in principle should be straightforward. Finally, we plan to look

into parallel implementations of the method to further improve the performance.
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Figure B.3: Convergence results for MGM and PyAMG based solvers for
RBF-FD discretizations of a shifted Poisson problem with random right
hand side. The sphere results are for Nh = 2621442, while for the cyclide
Nh = 2097152.
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Figure B.4: Same as Figure B.3, but for GFD discretizations of the shifted
surface Poisson problem.
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Figure B.7: Relative residuals (left) and relative 2-norm errors (right) for
solving a Poisson problem on the sphere with MGM GMRES. Solid lines
correspond to RBF-FD discretizations, while dashed lines correspond to
GFD.

Figure B.8: Point clouds for the surfaces considered in the applications:
Chinese Guardian Lion (Nh = 436605), Stanford Bunny (Nh = 291804), and
Armadillo (Nh = 872773).
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Figure B.9: Left: pseudocolor map of the first 10 non-zero surface har-
monics of the Chinese Guardian Lion model.
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Figure B.10: Left: pseudocolor map of the u variable in the numerical
solution of (B.20) on the Stanford Bunny model; the colors transition from
white to yellow to red to black, with white corresponding to u = 0 and
black to u = 1. Right: iteration count of MGM GMRES for solving the
linear systems associated with u and v variables at each time-step in the
semi-implicit scheme for (B.20).
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Figure B.11: Left: pseudocolor map of the approximate geodesic distance
from the solid circle on the chest of the Armadillo model (viewed from
the front and backside) computed with the heat method. Solid black
lines mark the contours of the distance field and the colors transition
from white to yellow to red with increasing distance from the solid circle.
Right: iteration count of GMRES preconditioned with MGM for solving
the linear systems associated with the heat method.
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