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ABSTRACT

Biomolecules could be engineered to solve many societal challenges, including disease
diagnosis and treatment, environmental sustainability, and food security. However,
our limited understanding of how mutational variants alter molecular structures and
functional performance has constrained the potential of important technological ad-
vances, such as high-throughput sequencing and gene editing. Ribonuleic Acid (RNA)
sequences are thought to play a central role within many of these challenges. Their
continual discovery throughout all domains of life is evidence of their significant bio-
logical importance (Weinreb et al., 2016). The self-cleaving ribozyme is a class of non-
coding Ribonuleic Acid (ncRNA) that has been useful for relating sequence variants
to structural features and their associated catalytic activities. Self-cleaving ribozymes
possess tractable sequence spaces, perform easily identifiable catalytic functions, and
have well documented structures. The determination of a self-cleaving ribozyme’s
structure and catalytic activity within the laboratory is typically a slow and expensive
process. Most current explorations of structure and function come from these empir-
ical processes. Computational approaches to the prediction of catalytic activity and
structure are fast and inexpensive, but have failed both to achieve atomic accuracy or
to correctly identify all base-pair interactions (Watkins et al., 2018). One prominent
impediment to computational approaches is the lack of existing structural and func-

tional data typically required by predictive models (Jumper et al., 2021). Using data



from deep-mutational scanning experiments and high-throughput sequencing tech-
nology, it is possible to computationally map mutational variants to their observed
catalytic activity for a range of self-cleaving ribozymes. The resulting map reveals
important base-pairing relationships that, in turn, facilitate accurate predictions of
higher-order variants. Using sequence data from three experimental replicates of five
model self-cleaving ribozymes, I will identify and map all single and double mutation
variants to their observed cleavage activity. These mappings will be used to identify
structural features within each ribozyme. Next, I will show within a training tool
how observed cleavage for multiple reaction times can be used to identify the cat-
alytic rates of our model ribozymes. Finally, I will predict the functional activity for
model ribozyme variants of various mutational orders using machine learning models
trained only on functionally labeled sequence variants. Together, these three disser-
tation chapters represent the kind of analysis needed to further the implementation

of more accurate structural and functional prediction algorithms.
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a) RNA polymerase transcribes Deoxyribose Nucleic Acid (DNA) into
a single-stranded RNA sequence of nucleotides. b) Mature messen-
ger Ribonuleic Acid (mRNA) are translated into proteins. non-coding
Ribonuleic Acid (ncRNA) are RNA sequences that are not translated
into proteins but instead fold into functionally active molecules.

DNA’s double-stranded helix is formed by complementary base-pairing
between nucleotides. In DNA, A pairs with T and G with C. RNA
forms complex structures through complementary base-pairing between
nucleotides along its single-strand. In RNA, uracil (U) replaces T to
base-pair with adenine . . . . . . . . ... ... ... ... ...
The number of characterized RNA molecules cataloged annually in the
Protein Data Bank is far fewer than the number of proteins (Berman
et al., 2007, wwPDB consortium et al., 2019). . . . . ... ... ...
Some RNA transcripts are further translated into proteins while others
remain RNA that possess functional capabilities (also, ncRNA).

Sequence mutations cause structural changes that impact the fraction
cleaved. Measuring this functional change in relationship to specific

mutations indicates the positional importance to the catalytic reaction.
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Catalytic rate (k,ps) for all nine possible double mutations at position
1 and 2 of the twister ribozyme. Dark shades reflect higher catalytic
rates. Lighter shades reflect lower catalytic rates. . . . . . . .. . ..
Relative fitness for all possible single and double mutations of the
Twister self-cleaving ribozyme. Relative fitness normalizes the frac-
tion cleaved for a specific variant to that of the naturally occurring
variant. Dark shades reflect higher relative fitness. Lighter shades
reflect lower relative fitness. . . . . . .. ...
Relative activity of HDV ribozyme using restricted counting algorithm
(left) and deep counting algorithm (right). Insufficient counts on the
left hide structural features. . . . . . . . . .. ... ... ... ...
Single nucleotide mutations (C in position 1 or G in position 2) break
base-pairing. A double mutation consisting of both single mutations
retain base-pairing. Epistasis measures the non-linear result of the

double mutant in relation to the component single mutations.
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2.1

Effects of mutations and pairwise epistasis in a CPEB3 ribozyme. A)
Relative activity heatmap depicting all possible pairwise effects of mu-
tations on the cleavage activity of a mammalian CPEB3 ribozyme.
Base-paired regions P1, P2, P3, P4, and T1 are highlighted and color
coordinated along the axes, and surrounded by black squares within
the heatmap. Pairwise epistasis interactions observed for each paired
regions are each shown as expanded insets for easy identification of the
specific epistatic effects measured for each pair of mutations. Instances
of positive epistasis are shaded blue, and negative epistasis is shaded
red, with higher color intensity indicating a greater magnitude of epis-
tasis. Catalytic residues are indicated by stars along the axes. B)
Secondary structure of the CPEB3 ribozyme used in this study. Each
nucleotide is shaded to indicate the average relative cleavage activity of
all single mutations at that position. C) Histogram showing the distri-
butions of epistasis in the paired regions of CPEB3. The distribution
for double mutants within a paired region that are not involved in a
base-pair is shown in grey, and the distribution for nucleotides involved

in a base-pair is shown in blue. . . . . . . .. ... .00
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2.2 Comprehensive pairwise epistasis landscape for a HDV self-cleaving

ribozyme. A) Relative activity heatmap depicting all possible pair-
wise effects of mutations on the cleavage activity of an HDV ribozyme.
Base-paired regions P1, P2, P3, P4, and T1 are highlighted and color
coordinated along the axes, and surrounded by black squares within
the heatmap. Pairwise epistasis interactions observed for each paired
regions are each shown as expanded insets for easy identification of
the specific epistatic effects measured for each pair of mutations. In-
stances of positive epistasis are shaded blue, and negative epistasis is
shaded red, with higher color intensity indicating a greater magnitude
of epistasis. Catalytic residues are indicated by stars along the axes.
B) Secondary structure of the HDV ribozyme used in this study. Each
nucleotide is shaded to indicate the average relative cleavage activity
of all single mutations at that position. C) Histogram showing the dis-
tributions of epistasis in the paired regions of HDV. The distribution
for double mutants within a paired region that are not involved in a
base-pair is shown in grey, and the distribution for nucleotides involved

in a base-pair is shown in blue. . . . . . . .. ... .00
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2.3 Comprehensive pairwise epistasis landscape for a hammerhead self-

cleaving ribozyme. A) Relative activity heatmap depicting all possible
pairwise effects of mutations on the cleavage activity of a hammer-
head ribozyme. Base-paired regions P1, and P2 are highlighted and
color coordinated along the axes, and surrounded by black squares
within the heatmap. Pairwise epistasis interactions observed for each
paired region are each shown as expanded insets for easy identification
of the specific epistatic effects measured for each pair of mutations.
Instances of positive epistasis are shaded blue, and negative epistasis
is shaded red, with higher color intensity indicating a greater magni-
tude of epistasis. Catalytic residues are indicated by stars along the
axes. B) Secondary structure of the hammerhead ribozyme used in
this study. Each nucleotide is shaded to indicate the average relative
cleavage activity of all single mutations at that position. C) Histogram
showing the distributions of epistasis in the paired regions of hammer-
head. The distribution for double mutants within a paired region that
are not involved in a base-pair is shown in grey, and the distribution

for nucleotides involved in a base-pair is shown in blue. . . . . . . ..
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2.4 Comprehensive pairwise epistasis landscape for a twister self-cleaving

ribozyme. A) Relative activity heatmap depicting all possible pairwise
effects of mutations on the cleavage activity of a twister ribozyme.
Base-paired regions P2, P4, T1, and T2 are highlighted and color co-
ordinated along the axes, and surrounded by black squares within the
heatmap. Pairwise epistasis interactions observed for each paired re-
gion are each shown as expanded insets for easy identification of the
specific epistatic effects measured for each pair of mutations. Instances
of positive epistasis are shaded blue, and negative epistasis is shaded
red, with higher color intensity indicating a greater magnitude of epis-
tasis. Catalytic residues are indicated by stars along the axes. B)
Secondary structure of the twister ribozyme used in this study. Each
nucleotide is shaded to indicate the average relative cleavage activity
of all single mutations at that position. C) Histogram showing the dis-
tributions of epistasis in the paired regions of twister. The distribution
for double mutants within a paired region that are not involved in a
base-pair is shown in grey, and the distribution for nucleotides involved

in a base-pair is shown in blue. . . . . . . .. ... .00
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Comprehensive pairwise epistasis landscape for a hairpin self-cleaving
ribozyme. A) Relative activity heatmap depicting all possible pairwise
effects of mutations on the cleavage activity of a hairpin ribozyme.
Base-paired regions P1, P2, and P3 are highlighted and color coor-
dinated along the axes, and surrounded by black squares within the
heatmap. Pairwise epistasis interactions observed for each paired re-
gion are each shown as expanded insets for easy identification of the
specific epistatic effects measured for each pair of mutations. Instances
of positive epistasis are shaded blue, and negative epistasis is shaded
red, with higher color intensity indicating a greater magnitude of epis-
tasis. Catalytic residues are indicated by stars along the axes. B)
Secondary structure of the hairpin ribozyme used in this study. Each
nucleotide is shaded to indicate the average relative cleavage activity
of all single mutations at that position. C) Histogram showing the dis-
tributions of epistasis in the paired regions of hairpin. The distribution
for double mutants within a paired region that are not involved in a
base-pair is shown in grey, and the distribution for nucleotides involved
in a base-pair is shown in blue. D) Violin plots showing the distribu-
tions of epistasis in all terminal stem loops across all five ribozymes,
and epistasis observed within loop A, loop B, and between loop A and
loop B in the hairpin ribozyme. . . . . . . . . ..o
Histogram of the distributions of read counts (read depth) for the single
and double mutants matching to each ribozyme analyzed in this study
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CHAPTER 1:

INTRODUCTION

1.1 Research Motivation

Continued advancements in DNA sequencing technology have caused a revolution in
molecular biology. The wide availability of high-throughput sequencing means that
millions of genetic observations are commonly available to researchers (Levy & Boone,
2019). The genetic sequencing data contains clues to the causes of rare medical con-
ditions, desirable crop characteristics, and the essential features of environmental
habitats. When combined with modern methods for DNA synthesis and gene edit-
ing, these technologies form a bio-engineering toolkit capable of identifying genetic
opportunities and implementing desired modifications (Gupta & Shukla, 2017; Mao
et al., 2019; Bak et al., 2018). Standing in the way of the toolkit’s full utility is an
uncharted molecular complexity that pervades even the simplest of organisms. New
discoveries, however, continue to reveal and explain this complexity and within each
discovery comes the potential to engineer molecules that eliminate disease, improve
food security, or reduce environmental damage.

All living organisms are distinguished by a unique genetic sequence that encodes
their physical features and processes. DNA stores this genetic encoding within a poly-

mer sequence composed from just four nucleotide monomers (guanine (G), cytosine



(C), adenine (A), and thymine (T)). Base-pairing between DNA’s two complemen-
tary polymer strands gives DNA a stable storage structure and its familiar double
helical form. The DNA sequence is copied into molecularly similar, single stranded
RNA sequences, in a process termed transcription. These RNA sequences serve as
intermediaries between DNA and translated amino-acid sequences, called proteins
(Figure 1.1). Proteins are commonly known for their prominent role in life’s essen-
tial biological processes. But more recently, a class of untranslated RNA molecules
called non-coding Ribonuleic Acid (ncRNA) are also being found to play substantial
functional roles. Combined, proteins and ncRNAs provide many of the biological

functions necessary for life.

Chromosome a) Transcription

RMNA Polymerase

N

Protein

b) Translation

Created in BioRender.com bio

Figure 1.1: a) RNA polymerase transcribes DNA into a single-stranded
RNA sequence of nucleotides. b) Mature mRINA are translated into pro-
teins. non-coding Ribonuleic Acid (ncRNA) are RNA sequences that
are not translated into proteins but instead fold into functionally active
molecules.



Proteins are polymeric sequences composed from twenty distinct amino acid monomers.

These protein sequences fold into complex, three-dimensional structures, each pos-
sessing some functional capability. The protein’s physical structure is primarily de-
termined by its sequence and the inter-molecular hydrogen bonds that stabilize its
folds. Millions of distinct proteins have been identified.

ncRNA share characteristics of both DNA and protein molecules. Like DNA,
ncRNA sequences are composed from a similar set of four nucleotide monomers and
form structures as a consequence of complementary base-pairing (Figure 1.2). Like
proteins, ncRNA spontaneously fold into complex, three-dimensional structures that
perform an array of cellular functions. And, also like proteins, mutations to ncRNA
sequences can alter their structure and functional abilities. However, unlike proteins,
many ncRNAs are still being identified and, as a result, far fewer active structures

are known (Figure 1.3).

DNA RNA

~ Sugar -Phosphate Backbone
Coding Strand / ~

Template Strand

Base Pairing

QEUpUAGE AOHGHAQN
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Created in BioRender.com | bio

Figure 1.2: DNA’s double-stranded helix is formed by complementary
base-pairing between nucleotides. In DNA, A pairs with T and G with
C. RNA forms complex structures through complementary base-pairing
between nucleotides along its single-strand. In RNA, uracil (U) replaces
T to base-pair with adenine
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Figure 1.3: The number of characterized RNA molecules cataloged annu-
ally in the Protein Data Bank is far fewer than the number of proteins
(Berman et al., 2007; wwPDB consortium et al., 2019).

The ncRNA sequences that have been characterized clearly demonstrate their im-
portance to gene expression. For example, transfer Ribonuleic Acid (tRNA) is a 76-90
nucleotide ncRNA that physically links an mRNA molecule to a protein’s chain of
amino acids during translation (Figure 1.1b). The RNA components of ribosomal
Ribonuleic Acid (rRNA) also participates in translation by carrying out protein syn-
thesis. Ribozymes are another type of ncRNA molecule that catalyzes biochemical
reactions such as the ligation and cleavage activities used in gene expression (Fedor &
Williamson, 2005). ncRNA are common genetic actors, representing a large majority

of a cell’s pool of RNA (Figure 1.4).
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Figure 1.4: Some RNA transcripts are further translated into pro-
teins while others remain RN A that possess functional capabilities (also,
ncRNA).

Because of their roles in gene expression, the lack of data characterizing their ac-
tive structures, and a limited understanding of how mutations affect these structures,
ncRNA represent a significant unmet opportunity to explain biological complexity. A
well developed understanding of how ncRNA can be used to regulate an organism’s
genome could be a critical precursor to achieving a wide array of bio-engineering
objectives. This dissertation seeks to contribute tools, methods, and data to the ex-
ploration of how ncRNA sequence variants relate to structural features and functional
activity. My hope is that these contributions provide useful insight into the complexi-
ties of ncRNA and are helpful to those seeking to incorporate their functional abilities

into bio-engineered molecules.

1.2 Research Objectives

Many valuable contributions to our understanding of how mutations affect active
structures are accomplished in the laboratory using slow and expensive experimen-
tal processes. Consequently, considerable interest has developed in the application
of computational algorithms to speed up discovery by supplementing or replacing

experimental processes. Recently, algorithms have successfully predicted previously



unknown protein structures from sequences using machine learning models (Jumper
et al., 2021). However, structural predictions of ncRNA has been far less successful
and the functional consequences of ncRNA mutations remain an unresolved area of
study.

This dissertation focuses on the implementation of computational approaches to
reveal relationships between ncRNA sequences and their active structures, using ri-
bozymes as model systems. Ribozymes are ncRNA molecules that catalyze chemical
reactions. Self-cleaving ribozymes are a common and naturally occurring class of ri-
bozymes that catalyze a reaction which breaks the chemical bonds at a specific site
along their phosphodiester backbone. Sequence mutations within a self-cleaving ri-
bozyme can affect base-pair relationships, resulting in structural changes that affect
its catalytic rate. In Chapter Two, we explore the effects of all possible single and
double mutational variants found within experimental replicates of five, self-cleaving
ribozymes. A variety of different cleavage metrics for each of these variants is position-
ally mapped to reveal structural relationships within the sequences. This extensive
mapping represents a valuable contribution to a currently limited pool of ncRNA
data. I was involved in conceptualizing the project, managed data, performed all
computational work for formal analysis and visualization, and reviewed and edited
the published manuscript. In Chapter Three, we use cleavage counts to calculate the
catalytic rates for all single and double mutation variants of the Twister self-cleaving
ribozyme. Using observed data at multiple time periods, we fit an exponential decay
function to reveal activity across a larger dynamic range. This algorithm is incorpo-
rated into a documented set of training materials for use by future lab members. I

was involved in conceptualizing the project, managed data, performed computational



work for formal analysis and visualization, and wrote the Jupyter book. In Chapter
Four, we use cleavage activity data from two Cytoplasmic Polyadenylation Element
Binding Protein 3 (CPEB3) self-cleaving ribozyme libraries to predict the cleavage
activity of higher-order mutational variants using a variety of machine learning meth-
ods. Such predictions are a critical tool for identifying active ncRNA structures
within the immensity of possible mutational variants. I was involved in conceptual-
izing the project, managed data, performed computational work for formal analysis
and visualization, and reviewed and edited the published manuscript. Together, these
chapters contribute tools and methods for assessing the impact of mutations on active
ncRNA structures and important mutational data for five, self-cleaving ribozymes to

the research community.

1.3 Self-Cleaving Ribozymes

Self-cleaving ribozymes are being used to engineer biological systems. In addition to
their natural roles, self-cleaving ribozymes have been synthetically incorporated into
molecules designed to control gene expression. These engineered systems can adjust
expression by affecting, positively or negatively, the ribozyme’s cleavage rate. This
is accomplished by introducing mutations to the ribozyme’s sequence that modifies
its structure, resulting in a changed catalytic rate. Because of this direct connection
between sequence, structure, and function, self-cleaving ribozymes are a particularly
interesting model system for bio-engineering.

Self-cleaving ribozymes also have several physical properties that are well-suited
for exploring the connections between sequences, structures, and functional activities.
First, there exists a variety of self-cleaving ribozymes possessing known structures

from which base-pairs, tertiary contacts, and catalytically involved nucleotides have



been identified. Second, each typically has a sequence length that is sufficiently small
enough to easily synthesize mutational variants. Third, each cleaves spontaneously
upon achieving a folded conformation and requires no other molecules to catalyze
their reaction. And fourth, each cleaves during the transcription reaction. Upon the
reaction’s conclusion, a fraction cleaved can be calculated for each ribozyme variant by
counting the number of times it exists in either a cleaved or uncleaved state (Equation
A2).

The fraction cleaved for each sequence variant can be used to relate positional
mutations to catalytic effects. Mutations that impact structurally or chemically im-
portant nucleobases are indicated by changes in their activity (Figure 1.5). Mutations
that maintain or improve upon active structures retain a high fraction cleaved. Muta-
tions that disrupt active structures, on the other hand, cause a lower fraction cleaved.
Mutations that reduce fraction cleaved typically break base pairs within critical struc-

tures or alter required nucleotides at catalytically important positions.
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Figure 1.5: Sequence mutations cause structural changes that impact the
fraction cleaved. Measuring this functional change in relationship to spe-
cific mutations indicates the positional importance to the catalytic reac-
tion.

The observed fraction cleaved is also time dependent. Self-cleaving ribozyme
variants that require more time to fold into an active state will cleave given sufficient
time. Those variants that don’t cause structural defects will fold more quickly into
an active state than those that do. A longer reaction time will cause variants to skew
towards a higher fraction. If all mutations produce relatively high activity levels, then
structural changes caused by mutations will be difficult to discern. Consequently, the
selected reaction time can limit the visibility of structure within a sequence.

This dissertation uses a heatmap representation to examine mutational effects.
The combined affects of mutations can be explored by their positions within the
sequence to locate functionally important structures. For example, Figure 1.6 displays

the catalytic rate (ko) for all possible mutations at position one and two of the
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Twister self-cleaving ribozyme sequence. A sequence possessing two mutations can
take on any one of nine (i.e., 3?) possible nucleotide variants. Within a three-by-three
grid, each individual pixel shows how a different mutational combination affects its
observed cleavage rate. Obvious differences can be seen in how specific mutations are

tolerated at these positions.
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Figure 1.6: Catalytic rate (k,s) for all nine possible double mutations
at position 1 and 2 of the twister ribozyme. Dark shades reflect higher
catalytic rates. Lighter shades reflect lower catalytic rates.

This same technique can be used to evaluate all possible single and double mu-
tations for an entire ribozyme. Figure 1.7 shows the fraction cleaved for all single
and double mutations within the Twister ribozyme sequence. Here, adjacent three-
by-three grids on any anti-diagonal represent contiguous mutational combinations

occurring throughout the sequence.
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Relative Activity

Figure 1.7: Relative fitness for all possible single and double mutations of
the Twister self-cleaving ribozyme. Relative fitness normalizes the fraction
cleaved for a specific variant to that of the naturally occurring variant.
Dark shades reflect higher relative fitness. Lighter shades reflect lower
relative fitness.

1.4 Experimental Data
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