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ABSTRACT 

Global pandemic Coronavirus Disease 2019 (COVID-19) has serious harmful 

effects on our day-to-day lives. To overcome challenges such as this, critical 

preparedness, readiness, and response actions are required. This thesis uses estimates of 

community resilience available through the CRE Tool, published by the US Census 

Bureau, and COVID19 cases published by John Hopkins Coronavirus Research Center 

for Idaho counties. Simple linear regression analysis was performed to identify a 

correlation between COVID-19 cases and deaths in Idaho counties and measures of their 

resilience. Understanding this correlation could lead to better estimation and prediction 

of the effect of disasters in Idaho’s counties. 

We determined that there is a weak negative correlation exists between the 

number of COVID-19 cases and the percentage of people who fall into low-risk 

categories, a weak positive correlation between the number of cases and the percentage 

of people who fall into medium-risk categories. We also determined that there is a 

moderate positive correlation between the number of deaths and the percentage of people 

in a high-risk category. Analysis of the residuals requires further study. 
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CHAPTER 1: INTRODUCTION 

COVID-19 is an infectious disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The common symptoms of COVID-19 include fever, dry 

cough, difficulty in breathing, etc. While most cases result in mild to moderate 

symptoms, some progress to pneumonia, multi-organ failure, and even death. The 

COVID-19 pandemic makes up a global health shock, with a death toll of over 6.2 

million and over 500 million people reported ill by 29 March 2022. The rapidly 

increasing number of COVID-19 cases represents an unprecedented public health 

challenge for federal, state, and local authorities. Given the need to control the spread of 

the virus, the evolving guidelines for front-line providers, institution and business 

closures, and social distancing have been highly disruptive to essential healthcare, 

economic activities, and social services, leading to a significant increase in individual and 

community stress. 

As the number of cases of COVID-19 increases, so does the associated anxiety. 

Disaster situations and traumatic events overwhelm our ability to cope. While this long-

term disease is still ongoing, and we still have no idea when this will end, it is possible to 

mitigate some consequences by measuring communities’ vulnerability and resilience. 

Community resilience can play a significant role in coping with shocks. However, it is an 

ambiguous concept, hard to define and measure. We define it as a complex and dialogical 

process in which communities create, develop and engage their resources to cope with 

shocks and their consequent uncertainty [23]. 
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1.1 Background 

Coronavirus disease was first reported as an outbreak of respiratory illness cases 

in Wuhan City, Hubei Province, China, in late December 2019. Later, WHO named the 

novel coronavirus disease COVID-19 in February 2020. In addition, the United States 

reported its first confirmed case of the novel coronavirus in January 2020. This virus has 

many potential naturals, intermediate, and final hosts (Fig. 1.1); due to these 

characteristics, there is a great challenge in preventing and treating the virus infection. 

The high infectivity and transmissibility make this disease a pandemic. And within a few 

months, researchers, manufacturers, organizations, media, and governments worldwide 

collaborate to gather and evaluate the COVID-19 data to predict and slow down the 

pandemic at any cost. WHO published healthcare, technical, preparedness and response, 

and social guidelines and then advised countries on responding suitably in the situations. 

Then, the first U.S. Food and Drug Administration (FDA) approved vaccine was 

available in August 2021, which was a milestone against the pandemic. Preventive 

measures for COVID-19 also include testing, isolating, maintaining social distancing, 

washing hands frequently, and avoiding touching the mouth, nose, and face. 

1.2 Problem Statement 

In this thesis, we focus on the community resilience of Idaho counties regarding 

COVID19 confirmed cases and confirmed deaths. Our objective is to use linear 

regression to identify the relationship between the community resilience data and the 

COVID-19 case data for 44 Idaho counties. An understanding of these relationships has 

the potential to predict and forecast how communities will respond to an epidemic.  
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Figure 1.1 Transmission of COVID-19 [40] 

Our research objectives focus on the following questions. 

1. How is resilience defined? 

2. What is community disaster resilience, and how can it be incorporated in the 

COVID19 pandemic in particular? 

3. How reliable is the proposed CRE tool, available through the U.S. Census 

Bureau, as a quantitative measure of how well counties in Idaho responded to 

the COVID-19 pandemic? 
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CHAPTER 2: COMMUNITY DISASTER RESILIENCE 

In this chapter, we review the concepts of community disaster resilience to form a 

better understanding of community resilience for a recent worldwide disaster, the 

COVID-19 pandemic. In addition, this chapter provides a theoretical foundation for 

developing the conceptual framework and relevance for measuring resilience discussed in 

Chapter 3. 

2.1 Resilience 

A system is usually designed to behave in a certain way under normal 

circumstances. However, when disturbed from equilibrium by a disruptive event, the 

performance of the system will deviate from its design level. The resilience of the system 

is its ability to reduce both the magnitude and duration of the deviation as efficiently as 

possible to its usual targeted system performance levels. Fig. 2.1 shows how a system 

returns to its normal equilibrium position after the disturbance occurs [36]. 

The term “resilience” was initially used in physics and mathematics to describe 

the capacity of a material or system to return to equilibrium after a displacement. Today, 

resilience has emerged in many wide-ranging diverse disciplines, including hazards, 

ecology, psychology, sociology, geography, economics, urban planning, and public 

health [28, 27]. As a concept, resilience thinking can be found anywhere from self-help 

guides on coping with hardships to major international agendas on reducing impacts from 

climatic change  and is defined in various ways depending on the discipline. However, 

when applied to people and their environments, “resilience” is fundamentally a metaphor. 
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Figure 2.1 How a system returns to normal performance equilibrium position 

[36] 

In recent years, the term ’resilience’ has gained increasing attention in the field of 

hazards and disasters. However, with its growing use in increasingly diverse areas, 

scholarly and policy prominence has come a fair amount of conceptual confusion and 

misapplication. So then, what does ‘resilience’ actually mean? Our primary focus is to 

identify key concepts and explores the relevance of resilience for disaster planning for 

communities. Resilience is a process linking a set of adaptive capacities to a positive 

trajectory of functioning and adaptation after a disturbance [28]. Government, industry, 

and charitable organizations have an increasing focus on programs intended to support 

community resilience to disasters. Most definitions of resilience share four common 

elements: context; disturbance; capacity; and reaction, shown in Fig 2.2 [17]. 

But has consensus been reached on what defines ’community resilience’ and its 

core characteristics? 
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Figure 2.2 Four elements of resilience defined by the Department for 

International Development [17] 

 

2.2 Community resilience 

Communities are complex entities, and the challenges they face in this 21st 

century are getting complicated. For example, human-caused and natural disasters are 

more frequent and cost more modern lives [22]. In addition, factors like climate change, 

globalization, and increased urbanization can bring disaster-related risks to more 

significant numbers of people. Addressing these threats, we need to be well prepared for 

upcoming unknown disasters by gathering all the known experiences and taking proper 

actions to secure our human society. 
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Community resilience can play a vital role in coping with shocks. However, the 

concept of “community resilience” raises the same concerns as the concept of resilience 

per se but is further complicated by variation in the meaning of community. Typically, a 

community is an entity that has geographic boundaries and shared fate. Communities are 

composed of built, natural, social, and economic environments that complexly influence 

one another. Past writings on community resilience have described everything from 

grass-roots groups and neighborhoods to complex amalgams of formal institutions and 

sectors in larger geopolitical units. This description is not inappropriate, as resilience can 

be understood and addressed at different levels of analysis. However, discussions of 

community resilience often note that the “whole is more than the sum of its parts,” 

meaning that a collection of individual resilience does not guarantee a resilient 

community [28]. 

The U.S. Census Bureau defines: “Community resilience is a measure of the 

capacity of individuals and households to absorb, endure, and recover from the health, 

social, and economic impacts of a disaster such as a hurricane or pandemic. When 

disasters occur, recovery depends on the community’s ability to withstand the effects of 

the event”[5]. To define community resilience, Paton said it is important to identify the 

personal and community characteristics and processes that promote a capability to 

“bounce back” and effectively use physical and economic resources to aid recovery 

following exposure to hazard activity. Resilience should be conceptualized and managed 

in a contingent rather than a prescriptive manner. Researchers, planners, and emergency 

managers must acknowledge heterogeneity in community characteristics and perceptual 

processes and develop models that accommodate contingent relationships between hazard 
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effects and community, cultural, geographical, and temporal factors within resilience 

models[35]. 

Community resilience is a process linking a set of networked adaptive capacities 

to a positive trajectory of functioning and adaptation in constituent populations after a 

disturbance. Community resilience describes the capability (or process) of a community 

adapting and functioning in the face of disturbance [28]. Communities and individuals 

harness local resources and expertise to help themselves in an emergency in a way that 

complements the response of the emergency services [6]. 

From a literature review of Patel and colleagues [34], three general types of 

definition were found: 

1. process i.e. an ongoing process of change and adaptation 

2. absence of adverse effect i.e. an ability to maintain stable functioning and 

3. range of attributes i.e. a broad collection of response-related abilities 

More recent studies tended to adopt the first type of definition 1. Community 

resilience is defined as “a reflection of people’s shared and unique capacities to manage 

and adaptively respond to the extraordinary demands on resources and the losses 

associated with disasters” [35] [28][12]. Furthermore, community resilience is defined as 

“a capability (or process) of a community adapting and functioning in the face of 

disturbance” [8]. 

The absence of adverse effect definition 2 uses the desired outcome of 

’maintaining stable functioning’ as their basis. Contrasting to the first type of definition, 

Gibson [18] stated that “...resilience is not a process, it is not a management system 

standard, nor is it a consulting product. Instead, resilience is a demonstrable outcome of 
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an organization’s capability to cope with uncertainty and change in an often volatile 

environment. Resilience is thus a product of an organization’s capabilities interacting 

with its environment. 

This notion of community resilience as an outcome was adapted by others who 

noted the importance of explicitly identifying and strengthening abilities in a community, 

creating definition 3. An example of these definitions can be found in which community 

resilience is defined as “communities and individuals harnessing local resources and 

expertise to help themselves in an emergency, in a way that complements the response of 

the emergency services” [6]. This report suggests that primarily, community resilience 

has to do with having a responsive and collective action of local support to help the 

community after/during an incident. “A community’s capacities, skills, and knowledge 

that allows the community to participate fully in the recovery from disasters” [28] is 

called community resilience. Additionally, definitions exist that blend one or more of 

these general definition types. In a recent review, Ostad Taghizadeh and colleagues [33] 

produced a definition that blended definition 2 and 3, now used by the United Nations 

Office for Disaster Risk Reduction (UNDDR): the “ability of a system, community, or 

society exposed to hazards to resist, absorb, accommodate to and recover from the effects 

of a hazard in a timely and efficient manner including through the preservation and 

restoration of its essential basic structures and functions.” 

Therefore, community resilience was an amorphous concept that different 

research groups understood and applied differently to different communities. In essence, 

community resilience can either be seen as an ongoing process of adaptation, the simple 

absence of adverse effects, the presence of a range of positive attributes, or a mixture of 
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all three [34]. Unfortunately, we currently have no consensus on what exactly a culture or 

community should look like to be more resilient. Until we resolve this fundamental 

question, attempts to measure or enhance resilience will remain discordant and 

inefficient, while the academic literature will continue to be confused by papers assessing 

different concepts but using the same terminology. However, now that we have grown 

some concept of community resilience, we will address the question of what community 

resilience means in the context of disaster? 

2.3 Community resilience in a disaster 

The word disaster is used in diverse ways, primarily to refer to any sudden, 

unexpected or extraordinary misfortune, regardless of the number of people, region, 

country, or the entire world. In the disaster context, resilience is often treated as the 

simple inverse of fragility [36]. 

At present, definitions of community disaster resilience tend to either focus on 

specific aspects of the concept that may lead to overlooking some elements or tend 

towards all encompassing definitions that may be too complex to apply at the local level. 

It may be more appropriate to consider community resilience as a term for the range of 

elements that may be important for a community facing or recovering from a disaster. 

Resilience is now a key element of the United Nations International Strategy for Disaster 

Reduction(UNISDR), defining it as ‘the ability of a system, community or society 

exposed to hazards to resist, absorb, accommodate to and recover from the effects of a 

hazard in a timely and efficient manner, including through the preservation and 

restoration of its essential basic structures and functions...is determined by the degree to 

which the community has the necessary resources and is capable of organizing itself both 
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before and during times of need’ [27]. In conceptual terms, vulnerability and disaster 

resilience are closely related. Some researchers see vulnerability as the opposite of 

disaster resilience, while others view vulnerability as a risk factor and disaster resilience 

as the capacity to respond [24]. While labeling an individual or group of individuals as 

“vulnerable” seems to discourage peoples’ efforts in dealing with disasters, the concept 

of community disaster resilience appears to be more proactive. It encourages collective 

efforts in a community to deal with disasters. 

Community disaster resilience is a broader concept that encompasses a large part 

of the risk spectrum [42]. It emphasizes the community’s capacities and how to 

strengthen them, and it places less emphasis on the factors which make the community 

vulnerable. Some researchers see resilience as “a multi-dimensional attribute that in its 

different forms contributes in various but equally important ways to disaster recovery” 

[11]. 

The literature review indicates that conceptual and methodological problems still 

exist concerning community disaster resilience that needs to be addressed. The concept of 

disaster resilience seems to be central to understanding the complex interactions within 

and across communities and how communities respond and function during disasters. 

Researchers agree that disaster resilience is the capacity or ability of people, a group of 

people, a community, or a society to continue functioning in the face of a disaster, the 

ability of a system to absorb, resist or deflect disaster impact and when impacted to 

relatively quickly recover and learn or adapt to future risks [25]. In general, we can 

define that community disaster resilience describes a community’s intrinsic capacity to 

resist and recover from a disaster or disturbance, capacity to adapt to crises. 
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Developing community resilience helps disaster planners and community 

members to build traditional preparedness while promoting robust community systems 

and addressing the many factors contributing to health. In addition, a resilience approach 

adds features like building social communication and improving the community systems’ 

everyday health and overall wellness. 

2.4 Community resilience in the context of COVID-19 

Worldwide, basic knowledge of COVID-19 across populations is now expected – 

including knowledge about COVID-19 symptoms. Available global data suggests that 

64% of survey participants could correctly describe COVID-19 signs and symptoms [38]. 

Risk perception is a crucial driver of behaviors, and there is growing evidence that 

people’s risk perception of COVID-19 infection is declining. People are becoming 

complacent; thus, risk perceptions are lowering. People feel less confident in what they 

can do to control the virus. People do recognize COVID-19 as a serious disease; 

however, they often feel COVID-19 is more of a threat to others: their friends and family, 

their community and country, than to themselves [30]. Understanding the transmission of 

this highly contagious disease, shown in Fig 1.1, is vital in the sense of control and 

preventing the spread of the virus, as well as reducing community transmission and being 

supportive of the affected people of our society. 

People’s behavior and their willingness to follow public health and social 

measures remain the most powerful weapons to stop spreading the virus. However, 

human behavior is complex. Therefore, it is crucial for risk management to understand 

people’s changing perceptions and attitudes and the barriers and enablers influencing 

their ability and motivation to adopt and sustain positive health behaviors. Multiple 
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efforts are made to collect, analyze, and use socio-behavioral evidence in response to this 

pandemic. Consequently, there is an unprecedented need to elevate community resilience 

to mitigate the impact of pandemics. People have enough knowledge about COVID-19 

and the necessary preventive measures. However, as the situation continues, ’pandemic 

fatigue’ is occurring. This fatigue is likely to lead to a decrease in people’s motivation to 

follow recommended preventive behaviors and create a number of detrimental emotions, 

experiences, and perceptions [32]. However, community-led approaches are championed 

widely, resulting in increased trust and social cohesion and ultimately a reduction in the 

negative impacts of COVID-19. 

Pandemic fatigue can be influenced by a variety of factors depending on the 

context. These factors include a decrease in risk perceptions related to the disease; an 

increase in the socio-economic and psychological impact of the crisis and restrictions; the 

urge for self-control and self-determination in a constantly changing and restricting 

environment; and the feeling of getting used to the situation. Self-efficacy is a vital driver 

of behavior change towards stronger community participation. In countries where people 

feel less confident in their ability to protect themselves, people are also less likely to 

practice preventive measures [20]· Social perceptions have consequences. They can 

hamper efforts to stop or slow the spread of COVID-19 and mitigate its impacts. 

Community engagement and participation have played a critical role in successful disease 

control and elimination campaigns in many countries [2], including outbreaks that 

occurred previous to COVID-19 [19], [4]. That is, people-centered and community-led 

approaches are championed widely, resulting in increased trust and social cohesion and 

ultimately a reduction in the negative impacts of COVID-19. 
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According to Giamberardino et al., 2020 [14], it took about 18 months for an 

infectious disease to spread throughout the world in the nineteenth century. It took less 

than 36 hours in recent years, which is shorter than the incubation period of most 

diseases. Also, nearly 400 million people go to another country or region every year, 

which undoubtedly accelerates the spread of the virus. The global outbreak of COVID-19 

is a non-linear and dynamic process. 

The COVID-19 pandemic is a disaster that combines a biological threat with 

various vulnerabilities, such as physical, social, and economic. Various attempts have 

been made in the last years to study the spread of epidemic diseases, and the main 

problem is to understand and describe the modalities of the geographic spread among 

nations with different community characteristics and health statuses and the effects of 

migration phenomena. Governments have taken health, social and economic measures to 

address the emergency and reduce the impact of the crisis on the most vulnerable. Most 

of the countries in the region have made notable efforts, considering their reduced fiscal 

space. 

2.5 Summary 

The concept of community resilience is widely used in the academic and policy 

literature, yet the meanings of the term differ. Nevertheless, these core elements have 

been consistently suggested as constituting community resilience as it applies to 

disasters: local knowledge, community networks and relationships, communication, 

health, governance and leadership, resources, economic investment, preparedness, and 

mental outlook. Further exploration of these individual elements may lead to a greater 

understanding of community resilience and how it can be measured and enhanced for the 
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worldwide pandemic Covid-19. In the meantime, the attempt to define the concept of 

community resilience would be unhelpful if it obscures the main point- being resilient as 

a community when a disaster occurs. 

The definitions and various concepts reviewed in this chapter provide a better 

understanding of resilience, community resilience and how they should be conceptualized 

and applied in the research for pandemic Covid-19. Only by understanding the character 

of a community adequately, i.e., their communication and collaboration skills, 

knowledge, needs, and gaps in understanding about COVID-19, can we achieve a 

community-driven response that will reduce the spread of the virus and create a disaster-

resilient community. 
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CHAPTER 3: COMMUNITY RESILIENCE DATA 

This chapter discusses the importance of creating a tool to measure community 

disaster resilience problems associated with creating an effective tool and highlights the 

applications of the tools in specific fields. Then it introduces a newly developed 

experimental estimate, Community Resilience Estimates (CRE) tool, developed by the 

U.S. Census Bureau. To understand this tool, we reviewed concepts of resilience, 

community resilience, community resilience for disaster, and COVID-19 from the 

literature to identify key elements that can be used to validate the tool. 

Public health emergencies in the United States have been complex, frequent, and 

increasingly costly in the past decade. Emergencies are not always predictable, and 

adequate resources are not always available to prepare in advance when a new threat 

emerges [9]. Communities in Idaho rely on self-governance and state fund allocation to 

combat natural disasters, diseases, and everyday life. Improved readiness can mitigate the 

impact of disasters on at-risk populations and the economic burden on individuals, 

households, and governments. However, often it can be difficult to fully understand 

which areas are most at risk for these unexpected events. Therefore, it is vital to find a 

metric to identify at-risk populations and adequately allocate resources to those 

communities. Identifying the generic principles, i.e., risk factors, that support resilience 

can facilitate the development of models capable of use with diverse communities and 

hazards as well as provide emergency managers with a framework within which they can 

develop suitable strategies tailored to the specific context (e.g., a mix of hazard and 
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community characteristics). Resilience variables must have predictive validity 

independent of the community or hazard under investigation to be useful for emergency 

planning. 

The U.S. Census Bureau has completed an analysis that classifies counties based 

on their community resilience. The Bureau is the nation’s leading provider of quality data 

with advanced statistical capabilities about its people and economy and is uniquely 

positioned to provide the most accurate and timely measures for an individually focused 

community resilience indicator. It uses detailed demographic and economic data about 

individuals to build these estimates, with lower sampling error, compared to other 

institutions. In addition, the Bureau can adapt the estimates as needed to incorporate the 

latest and most relevant data. As a result, the Bureau produces estimates with the most 

granularity, highest statistical quality, and broadest coverage while still protecting 

privacy. 

The U.S. Census Bureau has created a tool to help measure the degree of a 

community’s resilience in the face of disasters and other emergencies in June 2020. This 

newly developed experimental estimate, Community Resilience Estimates (CRE), is a 

resilience measure that identifies a community’s ability to endure, respond and recover 

from the impact of disasters. This tool can be used for any purpose where specific risk 

factors are helpful at low levels of geography, i.e., by county. The CRE tool estimates 

community resilience to disasters using small area estimation (SAE) techniques to 

combine data from several sources and produce high-quality estimates. These techniques 

are flexible and can easily be modified for a broad range of uses (hurricanes, tornadoes, 

floods, economic recovery, etc.). Resilience to a disaster is partly determined by the 
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vulnerabilities within a community. The Bureau designed population estimates based on 

individual and household-level risk factors to measure these vulnerabilities and construct 

the community resilience estimates. 

Community resilience does not necessarily improve when they are able to cope 

with disasters and their aftermath alone; rather, it improves when public health systems 

strengthen protective factors such as social networks that aid people and communities to 

manage, adapt, and ultimately recover well from disasters. Indeed, a good measure of 

resilience implies that communities’ day-to-day health and wellbeing can help reduce the 

negative impacts of disasters and being a member of multiple social networks or groups 

can affect health and wellbeing, particularly during times of change. Therefore, 

strengthening community resilience in the months and years will require a whole system 

approach working with different sectors. The updated version of the CRE tool (updated 

on August 2021) is produced using the information on individuals and households from 

the 2019 American Community Survey (ACS) and the Census Bureau’s Population 

Estimates Program (PEP) to identify the population most at risk of the Coronavirus 

pandemic. 

The ACS is a nationally representative survey with data on the characteristics of 

the U.S. population. The sample is selected from all counties and county-equivalents and 

has a sample size of about 3.5 million housing units each year. It is the premier source for 

detailed population and housing information about the U.S. and communities within it. 

The estimates analyze the individual, and household level restricted ACS microdata to 

determine the number of individual risk factors. The PEP produces and publishes 

estimates of the population living at a given time within a geographic entity in the U.S. 
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and Puerto Rico. The estimates use population data from the PEP by tract, age group, 

race and ethnicity, and sex. Once the weighted estimates are tabulated, small area 

modeling techniques are utilized to create the CRE tool. 

Resilience is measured using risk factors. Risk factors are determined by 

examining the following ten demographic, socioeconomic, and housing characteristics in 

the ACS. Risk factors are binary components that add up to 10 possible risks. For 

household-level variables, if the household meets the criteria for the risk flag, every 

individual in the household receives that risk flag. Risk Factors (R.F.) for Households 

(H.H.) and Individuals (I) are: 

• R.F. 1: Income-to-Poverty Ratio (IPR) < 130 percent (H.H.) 

• R.F. 2: Single or zero caregiver household - only one or no individuals living 

in the household age 18-64 (H.H.) 

• R.F. 3: Unit-level crowding defined as > 0.75 persons per room (HH) 

• R.F. 4: Communication barrier defined as either -Limited English speaking 

households (H.H.) or; no one in the household over the age of 16 with a high 

school diploma (H.H.) 

• R.F. 5: No one in the household is employed full-time, year-round. The flag is 

not applied if all household residents are aged 65 years or older (H.H.) 

• R.F. 6: Disability posing constraint to significant life activity - Persons who 

report having any one of the six disability types (I): hearing difficulty, vision 

difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and 

independent living difficulty 

• R.F. 7: No health insurance coverage (I) 
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• R.F. 8: Being aged 65 years or older (I) 

• R.F. 9: Households without a vehicle (H.H.) 

• R.F. 10: Households without broadband Internet access (H.H.) 

Note that risk factor four is not double flagged. For example, if a household is 

linguistically isolated and no one over the age of 16 has attained a high school diploma or 

more education, those in that household are only flagged once. A ”Limited English 

speaking household” is one in which no member 14 years old and over (1) speaks only 

English at home or (2) speaks a language other than English at home and speaks English 

”Very well.” 

The result is an index that produces aggregate-level (tract, county, and state) small 

area estimates: the CRE. The CRE provides an estimation of the total number of people 

living in a community by the number of risk factors. The estimates are categorized into 

three groups: 0 risk factors (Low risk), 1-2 risk factors (Medium risk), and three or more 

risk factors (High risk). Individuals with three or more risk factors – from health and 

income to age and living conditions – are considered high risk. Likewise, communities 

are at high risk if at least 30% of their population has three or more risk factors. 

Communities with more risk factors are considered less resilient to disasters and, 

therefore, important to identify. By finding these counties, lawmakers can better allocate 

resources and provide targeted help to the most needy. And this is especially important in 

the recent pandemic of COVID-19. From the beginning of the pandemic, the adverse 

effects of COVID-19 have been strongly affecting individuals and households. This tool 

maps the risk assessment of local populations down to the neighborhood level and allows 

national and community leaders to respond more efficiently to emergencies. In addition, 
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stakeholders can use CRE and other tools to help combat the current crisis and plan for 

future health and weather-related disasters. 
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CHAPTER 4: HEALTH EFFECT 

This chapter looks at the global conditions due to the COVID-19 pandemic, the 

affected and death numbers of different countries due to other mortality methods, discuss 

the new variants, vaccines, U.S. situation, and then focuses on Idaho number. The U.S. 

health and risk factors levels are compared to the number of COVID-19 cases and deaths. 

4.1 Global health effect 

The COVID-19 pandemic makes up a global health shock, with an official death 

toll of over 5.6 million and over 350 million people reported ill by January 23, 2022 [3]. 

Once the pandemic took hold, the world witnessed the devastating collapse of health 

systems when the first wave of coronavirus attacked. There was so much chaos from the 

beginning of this novel coronavirus, starting from denying the new virus attack, ignoring 

the symptoms, finding an effective testing procedure, developing and choosing safe and 

efficient vaccines from dozens of vaccines through clinical trials, how the virus spread 

and fighting with new variants, which group of people gets affected most, whether masks, 

lockdown, isolation and social distancing work, which vaccine to take, etc. The ultimate 

impact of the pandemic directs people to uncertainty and ignorance, perplexing thinking, 

and reflexive panic; on top of everything, unemployment, insufficient medical care, and 

the misery of losing loved ones led worldwide people to protest against lockdowns, 

vaccines, and government [45], [10], [7]. 

A question central to the COVID-19 pandemic is why the COVID-19 mortality 

rate varies so greatly across countries. One reason is that COVID-19 testing methods 
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differ from country to country. Another reason discovered recently is that the mortality 

methods vary from one research approach to another. For example, the Lancet, a peer-

reviewed journal, measured the COVID-19 death number by excess mortality and found 

that 18.2 million people may have died globally from COVID-19, three times the official 

total, by December 2021 [43]. Another excess-mortality database maintained by The 

Economist also estimates global excess mortality & puts the figure above 20.3 million 

COVID-19 death (with 95% confidence interval) by March 27, 2022. 

The numbers vary so broadly that accounting for them entirely changes the 

picture of the experience of individual nations but the whole world, rearranging 

everything about our gathered knowledge [1]. Based on the crude count of official death 

reports, North America and Europe have death counts almost eight times as high as Asia 

and 12 times as high as Africa. South America’s death toll is ten times as high as Asia 

and 15 times as high as Africa. The excess-mortality data tells a different story. There is 

still a clear continent-by-continent pattern, but the gaps between them are much smaller, 

making the experiences of other parts of the world much less distinct and telling a 

universal story about the devastation wrought by this once-in-a-century contagion. With 

this view, Oceania, Europe, and North America were among the best at preventing deaths 

among the old, and they were better at protecting their elderly than Africa and South 

Asia. By almost any metric, Oceania does better, and the estimate of excess deaths 

among the elderly in New Zealand is zero, according to The Economist. In the country-

by-country data, the world’s worst pandemic, according to the data, has been in Bulgaria, 

followed by Serbia, North Macedonia, and Russia, then Lithuania, Bosnia, Belarus, 

Georgia, Romania, and Sudan [21], [43]. 
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The coronavirus has mutated through time and causes different variants. The delta 

variant is considered one of the most contagious, causes severe illness, and the omicron is 

more infectious [16]. Fortunately, vaccination effectively prevents serious illness, 

hospitalization, and death from COVID-19. In the beginning, fewer people were 

vaccinated, which meant many people were vulnerable [37]. Other factors have impacted 

whether COVID-19 cases are increasing or declining in particular locations. These 

factors include the effectiveness of vaccines over time, human behavior, infection 

prevention policies, mutation of the virus, and the number of vulnerable people. We are 

now in this overall stable situation after many trial and error procedures of our 

government and health guidelines [41]. 

4.2 U.S. health and community resilience 

Health includes physical, behavioral, social, and well-being, which is a big part of 

overall resilience [44]. In many ways, health is a crucial foundation of resilience because 

almost everything we do to prepare for disaster and protect infrastructure is ultimately in 

the interest of preserving human health and welfare. In this pandemic, vaccines are 

serving the primary purpose, which is to prevent severe illness, hospitalizations, and 

death, critically reducing the load on the overburdened healthcare system, and overall 

improving resilience [13]. Since the pandemic began, U.S. states and territories have used 

different approaches to reporting data about COVID-19 cases, deaths, tests, and vaccines. 

The lack of uniformity has complicated efforts to track COVID-19 in near real-time. As 

of March 2022, 81.6 million COVID-19 cases and 1 million deaths have been reported, 

and more than 45 million COVID-19 vaccine doses have been administered in the U.S. 

[15], translating to 62% of the total population being fully vaccinated. The vast majority 
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of individuals have access to a free vaccine. However, many have chosen not to accept 

one. 

Table 4.1 Death rates for US states 

US States with highest COVID-19 death rate COVID-19 death rate per 100k 
population 

Mississipi 416.5 
Arizona 396.8 
Alabama 393.2 

US states with lowest COVID-19 death rate COVID-19 death rate per 100k 
population 

Hawai 97 
Vermont 98.9 

Utah 146.9 
COVID-19 death rate in Idaho 

274.9 
*till March 29, 2022 

 

Table 4.2 Case rates for US states 

US States with highest COVID-19 case rate COVID-19 case rate per 100k 
population 

Rhode Island 34054 
Alaska 32590 

North Dakota 31550 
US states with lowest COVID-19 case rate COVID-19 case rate per 100k 

population 
Oregon 16823 

Maryland 1686 
Hawaii 17183 

Total COVID-19 case rate in Idaho 24903 
*till March 29, 2022 

 

The COVID-19 death rate is the number of fatalities from the disease per 100,000 

people. Table 4.1, presents states with the highest and lowest death rates. Furthermore, 

Table 4.2 presents states with Rhode Island, Alaska, and North Dakota have the highest 

and Oregon, Maryland, Hawaii have the lowest COVID-19 case rates. However, rates are 
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not the best measure when comparing data. According to the World Health Organization, 

”any attempt to capture a single measure of fatality in a population will fail to account for 

the underlying heterogeneities between different risk groups, and the important bias that 

occurs due to their different distributions within and between populations” [31]. For 

instance, data shows COVID-19 death rate is higher among Latinos, Blacks, and 

Indigenous Americans than among non-Hispanic whites, shown in Figure 4.1. Also, rural 

counties are far more likely to have greater proportions of high-risk populations. Thirty 

percent of all rural counties are high-risk compared to 14% of all urban counties. Some of 

the factors associated with more high-risk communities include low income, especially in 

rural communities, a greater proportion of single mothers, a majority Black and Hispanic 

population, and a significant proportion of residents 65 and older are at considerable risk 

for infection and developing severe illness. 

Counties with at least 30% of their population with three or more risk factors are 

considered high risk. The simple graph in Figure 4.2 shows the high risk counties of the 

U.S., provided by the U.S. Census Bureau. According to the Bureau, the CRE data 

indicates that Florida, Nevada, Texas, New York, New Mexico, and Arizona have a 

significant percentage of high-risk populations; around 30% of their population is highly 

vulnerable. For instance, Florida is the most at-risk state; 31% of the population is at high 

risk. Followed by Nevada, New York, and Texas have the highest percentage of high risk 

people. However, Texas has a significant number of high risk counties; for example, Real 

County, Texas, has 47% of its population with high risk factors, making its population 

vulnerable to pandemics. On the other hand, more than 60% of people in California and 

Hawaii have 1 or 2 risk factors, which means most people are at medium risk. Vermont, 
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New Hemisphere, and Maine have more than 30% of people having no or low risks, 

pointing that they are less vulnerable to disaster. Countywise, Salt Lake County, Utah, 

has 66% zero or low risk people, having the most community resilience in the entire 

nation. 

 
Figure 4.1 High risk communities of US by race, ethnicity majority 
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4.3 COVID-19 and Idaho resilience data 

The first case relating to the COVID-19 pandemic in Idaho was confirmed on 

March 13, 2020, when a woman from Ada County tested positive, and Idaho’s first 

COVID-19 deaths were on March 26 [39]. As of March 29, 2022, there have been 

443,792 confirmed cases and 4,870 deaths within Idaho, while 930,380 people have been 

fully vaccinated (not including booster doses). To compare with other states, on average, 

counties in Idaho have 23% of its residents with high risk, 50% with medium risk, and 

27% with low risk, see Figure 4.3.  

 
Figure 4.2: Community resilience of US by Census Bureau 

Figure 4.3 shows the community resilience estimates for the county-level state 

profile for Idaho, sorted by the greatest percentage of residents in the county with three or 

more risk factors to least. According to the CRE tool, Clearwater is a high risk county 
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with 33% of its residents at high risk, following Washington and Idaho counties having 

around 30% high risk people. In contrast, Teton County has 37% low risk people, being 

the most resilient in Idaho. Franklin, Jefferson, and Butte counties also keep their risk 

low. Madison, Jerome, Caribou, and Canyon counties have around 50% to 60% of 

medium risk populations. 

Looking at the percent of death cases in Idaho counties, Clark (43% at medium 

risk) and Camas (54% at medium risk) counties have zero COVID-19 death cases, and 

Lewis ( 44.15% at medium risk) and Shoshone (45% at medium risk) counties have the 

highest percent of COVID-19 death cases, even though most people are at medium risk. 

Table 4.3 Confirmed case rates for Idaho counties 

Idaho counties with highest COVID-19 
confirmed case rate 

COVID-19 confirmed case rate per 
100k population 

Madison County 269.25 
Lewis County 236.87 

Clearwater County 229.9 
Idaho counties with lowest COVID-19 

confirmed case rate 
COVID-19 confirmed case rate per 

100k population 
Camas County 99.37 
Custer County 104.4 
Clark County 110.3 

*till March 29, 2022 
 

Table 4.4 Idaho counties sorted by high risk 

Greatest percentage of high 
risk counties percentage of residents with high risk 

Clearwater County 32.56% 
Washington County 30.26% 

Idaho County 29.68% 
Least percentage of high risk 

counties 
 

Latah County 15% 
Jefferson County 16.63% 
Caribou County 16.86% 
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4.4 Summary 

The worldwide COVID-19 pandemic illuminated the fact that communities 

respond differently to disasters. For example, greater engagement in health-promoting 

behaviors may promote resilience in the face of infectious diseases like COVID-19 and 

prevent chronic diseases, including respiratory disease and diabetes. All countries can 

improve their readiness as we continue building a culture of preparedness. Collaborative 

efforts of the government and community are crucial to the success of the response to and 

recovery from public health emergencies and the resilience of a country. Because 

community resilience research is an emerging field, the indicators and indices of disaster 

resilience are sufficient with a wide range of tools that claim to measure disaster 

resilience, and our concern is to verify the CRE tool in this case. 
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Figure 4.3 County-level community resilience estimates of Idaho 
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CHAPTER 5: REGRESSION ANALYSIS 

This chapter uses a simple linear regression model to quantify the relationship 

between COVID-19 cases and deaths, released by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University [15], and the resilience indices CRE 

tool from the U.S. Census Bureau CRE tool (census.gov). The COVID-19 data are 

cumulative values from March 13, 2020, until January 17, 2022. 

5.1 Simple Linear Regression 

In this research, we choose simple linear regression analysis because it captures 

the straightforward relationship between two variables. We will use it to determine if the 

number of COVID-19 cases and deaths depend on Idaho counties risk factors. 

Regression can be restrictive because it relies on a fixed set of parameters β0 and 

β1 and assumes a linear relationship between variables, i.e., y =β0+β1x. An important 

objective of simple linear regression analysis is to estimate the unknown parameters β0 

(intercept) and β1 (slope) in the regression model. This process is called fitting the model 

to the data. We use the Ordinary Least Square (OLS) method with our data to find 

estimates of β0 and β1, denoted by βˆ
0 and βˆ

1 respectively. 

To understand the effectiveness of the fitted linear model, we present summary 

statistics available through the summary() command in R. These statistics give us detailed 

information on the model’s performance and coefficients, including standard errors, t-

statistics, p-values, and the F-test results. However, we usually cannot detect departures 
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from the underlying assumptions in our model by examining the standard summary 

statistics, such as t or F statistics or R2. These are global model properties, and as such, 

they do not ensure model adequacy. Therefore, we also check the adequacy of our simple 

linear model. 

Regression analysis typically includes model adequacy checking, where the 

appropriateness of the model is studied, and the quality of the fit is ascertained. Through 

such analyses, the usefulness of the regression model may be determined. The outcome 

of adequacy checking may indicate either the model is reasonable or that the original fit 

must be modified. Thus, regression analysis is an iterative process in which data lead to a 

model, and a model’s fit to the data is produced. A regression model does not imply a 

cause-and-effect relationship between the variables. To establish the causality, the 

relationship between the regressors and the response must have a basis outside the sample 

data- for example, the relationship may be suggested by theoretical considerations. 

Finally, it is crucial to remember that regression analysis is part of a broader data-analytic 

approach to problem-solving. That is, the regression equation itself may not be the 

primary objective of the study. Instead, it is usually more important to gain insight and 

understanding concerning the system generating the data [26]. 

5.1.1 Assumptions of a simple linear regression model 

If the following assumptions are validated, the simple linear model can acceptably 

represent the data: 

1. The relationship between the response y and the regressor x is linear. 

2. The residuals, or errors ε = yˆ−βˆ
0−βˆ

1x are normally distributed with zero 

mean. 
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3. The residuals have a constant variance. 

4. The residuals are independent. 

Therefore, our regression analysis involves assessing the validity of these 

assumptions to understand the model’s adequacy. Model inadequacies have potentially 

severe consequences. In particular, gross violations of the assumptions may yield an 

unstable model in the sense that a different sample could lead to a totally different model 

with opposite conclusions. 

1. Linear relationship between x & y 

The first assumption of linear regression is a linear relationship between the 

independent variable, x, and the independent variable, y. The easiest way to detect this 

assumption is to create a scatter plot of x vs. y. This allows us to visually see if there is a 

linear relationship between the two variables. If it looks like the points in the plot could 

fall along a straight line, then there exists some linear relationship between the two 

variables, and this assumption is met. Here we run the regression equation and estimate 

the parameters βˆ
0 and βˆ1. 

After creating a scatter plot, if we see no linear association between the two 

variables, there is some option to fix this. We can apply a nonlinear transformation to the 

independent and/or dependent variable by taking the log, the square root, or other data 

transformations. For example, if the plot of x vs. y has a quadratic shape, it might be 

possible to add X2 as an additional independent variable in the model. 

2. Residuals are Normally Distributed 

The residuals play a key role in evaluating model adequacy. Residuals can be 

viewed as the observed values of the model errors. To check the constant variance and 
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uncorrelated errors assumption, we must first ask ourselves if the residuals look like a 

random sample from a normal distribution with these properties. After estimating the 

parameters, the residuals (e) are calculated as the difference between the observed value 

(y) and the corresponding fitted values (ˆy); i.e., the ith residual is, ei = yi −yˆi = yi 

−(βˆ
0+βˆ

1xi). There are two common ways to check if the residuals are normal: 

1. Check the assumption visually using Q-Q plots. If the points on the plot 

roughly form a straight diagonal line, then the normality assumption is met. 

2. Check assumptions using formal statistical tests like Shapiro-Wilk, 

Kolmogorov Smirnov, Jarque-Barre, or D’Agostino-Pearson. However, these 

tests are sensitive to large sample sizes – that is, they often conclude that the 

residuals are not normal when the sample size is large. This is why it is often 

easier to use graphical methods like a Q-Q plot to check this assumption. 

However, small departures from the normality assumption do not affect the model 

greatly, but gross non-normality is potentially more serious as the t or F statistics and 

confidence and prediction intervals depend on the normality assumption. If the normality 

assumption is violated, we have a few options: 

• Verify that any outliers are not significantly impacting the distribution. If 

outliers are present, make sure that they are actual values, not some data entry 

errors. 

• If the errors come from a distribution with thicker or heavier tails than the 

normal, other estimation techniques should be considered, i.e., robust 

regression methods. 
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• Apply a nonlinear transformation to the independent and/or dependent 

variable. Common examples include taking the log, the square root, or the 

reciprocal of the independent and/or dependent variable. 

3. Residuals have constant variance 

It is an assumption of linear regression that residuals have constant variance at 

every level of fitted values ˆy, or homoscedasticity occurs. The simplest way to detect 

non-constant variance is by creating a residual plot against a fitted value (ˆy) of the 

model. If the plot resembles that the residuals can be contained in a horizontal band, then 

there are no obvious model defects. This verifies the assumption that the residuals are 

randomly distributed and have constant variance. When this is not the case, the residuals 

are said to suffer from heteroscedasticity. Heteroscedasticity indicates that the variance is 

not constant or the true relationship between x and y is not linear. 

There are some ways to fix heteroscedasticity: 

• Transform the regressor and/or response variable, i.e., apply log or inverse 

tarnsformation. 

• Use weighted regression. 

4. Residual terms are independent 

The linear regression model assumes that residuals are independent. This is 

relevant mainly when working with time-series data. However, as our data is not time-

ordered, this assumption check is unnecessary. 

5.1.2 Lack of fit of the model 

The formal statistical test for the lack of fit of a regression model assumes that the 

normality, independence, and constant-variance requirements for residuals are met, and 
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only the linear relationship assumption is in doubt. For example, if there is a linear 

relationship between x and y, we say there is no lack of fit in the simple linear regression 

model. Otherwise, the true relationship could be quadratic, for example. In this case, what 

we claim to be a random error could be a systematic departure due to not fitting enough 

terms. Data transformation of a new model is needed to fix these types of errors. 

5.2 Analysis of community resilience data 

Estimation and hypothesis testing are complementary inferential processes of a 

regression model. A hypothesis test is used to determine whether or not a treatment has 

an effect, while estimation is used to determine how much effect. For example, using the 

Ordinary Least Squares Method (OLS), we estimate the parameter β1. Once we are done 

with estimation, we need to do hypothesis testing to make inferences about the 

population. Thus, we would like to know how close βˆ (estimated β) is to true β or how 

close the variance of βˆ is to the true variance. If all assumptions of the linear regression 

are satisfied, OLS gives us the best linear unbiased estimates. In this section, we estimate 

the coefficient, test of hypothesis, and verify the assumptions of the linear model for six 

individual cases. 

The fitted simple linear regression model is: 

 yˆj,k(i)=βˆ
0 j,k +βˆ

1 j,kxk(i) (5.1) 
 

where, i represents a county in Idaho (i = 1,2,.....44), j represents number of confirmed 

cases (j = 1) or confirmed deaths (j = 2) adjusted for population, k indicates low (k = 0), 

medium (k = 1), or high (k = 2) risk factors. For example, Y1(i) represents percent of 
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COVID-19 confirmed cases in Idaho County i, and X2(i) represents percent of individuals 

with high risk factors. Values for Yj(i) were obtained from Johns Hopkins Coronavirus 

Resource Center [3], while values for the independent variables Xk(i) were obtained from 

the CRE tool offered by census.gov. The COVID-19 data are cumulative values from 

March 13,2020 to March 29, 2022 during which time there has been over 500 million 

confirmed cases and 6.2 million confirmed deaths in the entire state of Idaho. 

5.2.1 Case I: confirmed cases vs. low risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with low-risk 

factors in Idaho counties, and the response variable is the percent of confirmed cases in 

corresponding counties. Our goal is to find if there exists any linear relationship. 

First, we created a scatter plot in Figure 5.1 by plotting the percentage of 

individuals with low-risk factor x0(i) on the x-axis and the percent of confirmed covid 

cases y1(i) on the y-axis. There are 44 points in this plot for 44 Idaho counties. The plot in 

Figure 5.1 indicates a downhill pattern as we move from left to right, implying a negative 

relationship between the percent of low risk people and the number of COVID-19 cases.  
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Figure 5.1 Case I: COVID-19 confirmed cases vs low risk for 44 Idaho counties 

 

We then use command lm() in R to fit linear models to data using OLS. The result 

(Table 5.1) contains coefficients for ˆy1(i)=βˆ01,0+βˆ11,0x0(i), where βˆ01,0 is the x-intercept 

and ˆ 1,0β1 is the slope. From this equation, we could interpret that for each unit increasing 

rate of individuals with low-risk factors, the rate of confirmed cases decreased by 

0.03442. 

We use the following null and alternative hypotheses for this t-test: 

 

H0 : β1 = 0 

H1 : β1 ̸= 0. 

Our t-statistic value is −2.147 from Table 5.1, and its corresponding p-value is 

0.0376 (< significant level, α = 0.05). In practice, any p-value below 0.05 is usually 

deemed as significant. From these results, we can conclude that there is strong evidence 
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that the coefficients in this model are not zero, meaning there is a correlation between our 

dependent and independent variable; however, the correlation is very weak. From Table 

5.1, we see standard error (SE) 0.001603, which is close to zero. SE is an indication of 

the reliability of the mean. This small SE is an indication that the sample mean is a more 

accurate reflection of the actual population mean. The correlation coefficient is r = 

−0.314 indicating the negative relation between the variables. The coefficient of 

determination R2 = 0.090887 indicates a very weak correlation between our predicted and 

predictor variables (see Table 5.7). 

Table 5.1 Least Square Coefficients for case I 

 Estimate Std. Error t value Pr (|> |t||) 

ˆ 1,0 β0 0.2922 0.043596 6.7 3.86e-08 

ˆ 1,0 β1 -0.00344 0.0016 -2.147 0.037 

 

 
 (a) Q–Q plot of confirmed cases Y1(i) (b) Boxplot of confirmed cases Y1(i) 

Figure 5.2 Normality and outliers of confirmed cases 
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 (a) Q-Q plot for residual in case I (b) Residual vs. fitted plot for case I 

Figure 5.3 Model adequacies of residuals for case I 

Now we look at our response variable, confirmed cases Y1(i). Q–Q plot of the 

response variable in Figure 5.2a shows that our confirmed cases are samples from a 

normal distribution. The boxplot in Figure 5.2b gives us a visual representation of the 

range and outliers of the confirmed cases. We get one outlier, Madison County, having 

the highest percent of cumulative confirmed cases. 

Lastly, we verify the assumptions for the residuals to check for model adequacy. 

To validate the normality check for residual, we look at the Q–Q plot of our residual here, 

Fig 5.3a, which indicates the residual is from a normal distribution. Now we tested if 

residuals have constant variance by plotting the residual vs. fitted values ˆy in Figure 

5.3b. Here the pattern of dots is dense around the midline, but the red line deviates from 

the midline for small and large values of y1. This reflects some extreme residuals 

represented by 19 ( Custer County), 31 (Lewis County), and 33 (Madison County). 

However, from the boxplot of our y1 in Figure 5.2b, we see the only significant outlier of 

confirmed cases is Madison County. This residual plot indicates either the variance of the 

residual may not be constant, or these counties are outliers. 
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We could understand the situation better by applying suitable transformation on 

the regressor and/or the response variable or the use of weighted least squares. These 

experiments have been left for future work. 

5.2.2 Case II: Confirmed cases vs. medium risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with medium risk 

factors in Idaho counties, and the response variable is the rate of confirmed cases in 

corresponding counties. The scatter plot in Figure 5.4 shows the percentage of individuals 

with medium risk factor x1(i) as the x-axis and the percent of confirmed Covid cases y1(i) 

on the y-axis. The plot in Figure 5.4 indicates an uphill pattern as we move from left to 

right, implying a positive relationship between the number of people in the medium risk 

category and the number of confirmed cases. 

 
Figure 5.4 Case II: confirmed cases vs medium risk for 44 Idaho counties 
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We see in Table 5.2 for this case that the rate of confirmed cases increased by 

0.003775 for each unit, increasing the rate of individuals with medium-risk factors. Our t-

statistic value is 2.456 and its corresponding p-value is 0.018. We see standard error 

0.0015, which is close to zero, indicating the reliability of the mean. From these results, 

we can conclude that there is strong evidence that the coefficients in this model are not 

zero, meaning there is a correlation between our dependent and independent variable; 

however, the correlation is very weak. The positive sign of the correlation coefficient r = 

0.354 indicates the positive relation. The coefficient of determination (R2 = 0.125) 

indicates a very weak correlation between our predicted and predictor variables. 

The Q–Q plot of the response variable confirmed cases Y1(i) is given in Figure 

5.2a. The plot indicates that our confirmed cases are samples from a normal distribution. 

The boxplot in Figure 5.2b is of one outlier, Madison County, having the highest percent 

of cumulative confirmed cases. 

 

Table 5.2 Ordinary Least Square coefficients for case II 

   Estimate Std. Error t value Pr (|> |t||) 

ˆ 1,1 β0 0.0107 0.0771 0.139 0.889 

ˆ 1,1 β1 0.0037 0.0015 2.456 0.018 
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 (a) Q-Q plot for residual in case II (b) residual vs. fitted plot for case II 

Figure 5.5 Model adequacies of residuals for case II 

Lastly, we verify the assumptions for the residuals. To validate the normality 

check for residual, we look at the Q–Q plot of our residual here, Fig 5.5a, which indicates 

the residual is from a normal distribution. We tested if residuals have constant variance 

by plotting the residual vs. fitted values ˆy in Figure 5.5b. Here the pattern of dots is 

dense around the midline, but the red line deviates from the midline for large and small 

values for y, as in case I. In this case, some extreme residuals are 13 (Camas County), 18 

(Clearwater County), and 31 (Lewis County). However, from the boxplot of our y1 in 

Figure 5.2b, we see the significant outlier of confirmed cases is Madison County. Again 

we conclude the variance of the residual is not constant, or these counties are considered 

outliers, and future work indicates applying transformation or weighted least squares. 

5.2.3 Case III: Confirmed cases vs. high risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with high-risk 

factors in Idaho counties, and the response variable is the rate of confirmed cases in 

corresponding counties. The scatter plot in Fig 5.6 shows the percentage of individuals 

with high-risk factor x2(i) as the x-axis and the percent of confirmed Covid cases y1(i) on 
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the y-axis. Unfortunately, the plot in Fig 5.6 does not indicate any significant pattern as 

we move from left to right; we have to look at the summary statistics for further 

information. 

 
Figure 5.6 Case III: confirmed cases vs high risk for 44 Idaho counties 

 

We see in Table 5.3 for this case that the rate of confirmed cases decreased by 

0.000553 for each unit, increasing rate of individuals with high-risk factors. Our t-statistic 

value is −0.326 and its corresponding p-value is 0.746. we see standard error 0.0016, 

which is very small, indicating the reliability of the mean. From these results, we can 

conclude that there is insufficient evidence of a correlation between our dependent and 

independent variables. The positive sign of the correlation coefficient r = −0.05 indicates 

the positive relation. The coefficient of determination R2 = 0.0025 indicates a very weak 

correlation between our predicted and predictor variables. 
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 (a) Q-Q plot for residual in case III (b) residual vs. fitted plot for case III 

Figure 5.7 Model adequacies of residuals for case III 

 

The Q–Q plot of the response variable is given in Figure 5.2a. The plot indicates 

that our confirmed cases are samples from a normal distribution. The boxplot in Figure 

5.2b is of one outlier, Madison County, having the highest percent of cumulative 

confirmed cases. 

Table 5.3 Least Square Coefficients for case III 

 

 

 

 

Lastly, we verify the assumptions for the residuals. To validate the normality 

check for residual, we look at the Q–Q plot of our residual here, Fig 5.7a, which indicates 

the residual is from a normal distribution. We tested if residuals have constant variance 

by plotting the residual vs. fitted values ˆy in Figure 5.7b. Here the pattern of dots is 

dense around the midline, but the red line deviates from the midline for large and small 

 Estimate Std. Error t value Pr (|> |t||) 

ˆ 1,2 β0 0.2124 0.0396 5.364 0.0000032 

ˆ 1,2 β1 -0.0005 0.0016 -0.326 0.746 
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values for y1 as in case I. In this case, some extreme residuals are numbers 13 (Camas 

County), 31 (Lewis County), and 33 (Madison County). However, from the boxplot of 

our y1 in Figure 5.2b, we see the significant outlier of confirmed cases is Madison 

County. Again we conclude the variance of the residual is not constant, or these counties 

are considered outliers, and future work indicates applying transformation or weighted 

lease squares. 

5.2.4 Case IV: Confirmed deaths vs. low risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with low-risk 

factors in Idaho counties, and the response variable is the percent of confirmed deaths in 

corresponding counties. The scatter plot in Figure 5.8 shows the percentage of individuals 

with low-risk factor x0(i) as the x-axis and the percent of confirmed deaths y2(i) on the y-

axis. The plot in Figure 5.8 indicates a downhill pattern as we move from left to right, 

implying a negative relationship between the number of people in the medium risk 

category and the number of confirmed deaths. 

 
Figure 5.8 Case IV: confirmed deaths vs low risk for 44 Idaho counties 
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 (a) Q–Q plot of confirmed deaths Y2(i) (b) Boxplot of confirmed deaths Y2(i) 

Figure 5.9 Pattern and outliers of confirmed deaths 

 

We see in Table 5.4 for this case that the rate of confirmed deaths decreased by 

−8.055e− 05 for each unit, increasing the rate of individuals with low-risk factors. Our t-

statistic value is −1.582 and its corresponding p-value is 0.121. We see standard error 

0.00005. SE is close to zero, indicating that the sample mean accurately reflects the actual 

population mean. The negative sign of the correlation coefficient r = −0.237 indicates the 

negative relation. The coefficient of determination R2 = 0.056 indicates that if there exists 

any linear relationship between our predicted and predictor variable, it is very weak. 

From these results, we can conclude that there is no solid evidence to conclude a 

correlation between our dependent and independent variable. 

The Q–Q plot of the response variable confirmed deaths Y2(i) is given in Figure 

5.9a. The plot indicates departure from a normal distribution. The boxplot in Figure 5.9b 

is of two outliers, Shoshone County and Lewis County, having the highest percent of 

cumulative confirmed deaths. 

Lastly, we verify the assumptions for the residuals. To validate the normality 

check for residual, we look at the Q–Q plot of our residual here, Fig 5.10a, which 
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indicates the residual is from a normal distribution. We tested if residuals have constant 

variance by plotting the residual plot in figure 5.10b. Here the pattern of dots is dense 

around the midline, but the red line deviates from the midline for large and small values 

for y2. 

 

Table 5.4 Least Square Coefficients for case IV 
 

 

 
 (a) Q-Q plot for residual in case IV (b) residual vs. fitted plot for case IV 

Figure 5.10 Model adequacies of residuals for case IV 

 

In this case, some extreme residuals are 31 (Lewis county), 33 (Madison County), 

and 40 (Shoshone County). However, from the boxplot of our y2 in Figure 5.9b, we see 

the significant outliers of confirmed deaths are Shoshone and Lewis County. Again we 

conclude the variance of the residual is not constant, or these counties are considered 

outliers and our future work indicates applying transformation or weighted least squares.  

 Estimate Std. Error t value Pr (|> |t||) 

ˆ 2,0 β0 5.2e-03 1.38e-03 3.76 0.0005 

ˆ 2,0 β1 -8.05e-05 5.09e-05 -1.582 0.121 
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5.2.5 Case V: confirmed deaths vs. medium risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with medium-risk 

factors in Idaho counties, and the response variable is the rate of confirmed deaths in 

corresponding counties. The scatter plot in Figure 5.11 shows the percentage of 

individuals with medium risk factor x1(i) as the x-axis and the percent of confirmed 

deaths y2(i) on the y-axis. The plot in Figure 5.11 indicates a downhill pattern as we 

move from left to right, implying a negative relationship between the number of people in 

the medium risk category and the number of confirmed deaths. 

 
Figure 5.11 Case V: confirmed deaths vs medium risk for 44 Idaho counties 

 

We see in Table 5.5 for this case that the rate of confirmed deaths decreased by 

0.00009097 for each unit, increasing the rate of individuals with medium-risk factors. 

Our t-statistic value is −1.855, and its corresponding p-value is 0.07. We see the standard 

error is 0.000049, which is very small. The small SE value indicates that the sample mean 

is a more accurate reflection of the actual population mean. From these results, we can 
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conclude that there is no solid evidence to conclude a correlation between our dependent 

and independent variable. The negative sign of the correlation coefficient r = −0.275 

indicates the negative relation. The coefficient of determination R2 = 0.075 indicates a 

very weak correlation between our predicted and predictor variables. 

 
 (a) Q-Q plot for residual in case V (b) residual vs. fitted plot for case V 

Figure 5.12 Model adequacies of residuals for case V 

 
The Q–Q plot of the response variable confirmed cases y2(i) is given in Figure 

5.9a. The boxplot in Figure 5.9b gives us two outliers, Shoshone County and Lewis 

County, having the highest percent of cumulative confirmed deaths. 

Table 5.5 Least Square Coefficients for case V 
 

 
 

 

Lastly, we verify the assumptions for the residuals. To validate the normality 

check for residual, we look at the Q–Q plot of our residual here, Fig 5.12a, which 

indicates the residual is from a normal distribution. 

 Estimate Std. Error t value Pr (|> |t||) 

ˆ 2,1 β0 7.6e-03 2.4e-03 3.089 0.0035 

ˆ 2,1 β1 -9.097e-05 4.9e-05 -1.855 0.07 
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We tested if residuals have constant variance by plotting the residual vs. fitted 

values yˆ in Figure 5.12b. Here the pattern of dots is dense around the midline, But the 

red line deviates from the midline for some small and large values for y2. In this case, 

some extreme residuals are 17 (Clark County), 31 (Lewis County), and 41 (Teton 

County). However, from the boxplot of y2 in Figure 5.9b, we see the significant outliers 

of confirmed deaths are Lewis and Shoshone County. Again we conclude the variance of 

the residual is not constant, or these counties are considered outliers and our future work 

indicates applying transformation or weighted least squares. 

5.2.6 Case VI: Confirmed deaths vs. high risk in Idaho counties 

In this case, our predictor variable is the percent of individuals with high-risk 

factors in Idaho counties, and the response variable is the rate of confirmed deaths in 

corresponding counties. The scatter plot in Figure 5.13 shows the percentage of 

individuals with high-risk factor x2(i) as the x-axis and the percent of confirmed Covid 

deaths y2(i) on the y-axis. The plot in Figure 5.13 indicates an uphill pattern as we move 

from left to right, implying a positive relationship between the number of people in the 

high risk category and the number of confirmed deaths. 
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Figure 5.13 Case VI: confirmed deaths vs high risk for 44 Idaho counties 

 

We see in Table 5.2 for this case that the rate of confirmed deaths increased by 

0.00017 for each unit, increasing the rate of individuals with high-risk factors. Our t-

statistic value is 3.96 and its corresponding p-value is 0.00027. We see standard error 

0.0000448, which indicates that the sample mean accurately reflects the actual population 

mean. From these results, we can conclude that there is strong evidence that the 

coefficients in this model are not zero, meaning there is a correlation between our 

dependent and independent variable; however, the correlation is very weak. The positive 

sign of the correlation coefficient r = 0.522 indicates the positive relation. The coefficient 

of determination R2= 0.272 indicates a very weak correlation between our predicted and 

predictor variables. 

The Q–Q plot of the response variable is given in Figure 5.9a. The boxplot in 

Figure 5.9b is of two outliers, Shoshone County and Lewis County, having the highest 

percent of cumulative confirmed deaths.  
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Table 5.6 Least Square Coefficients for case VI 
 

 
 

 

Lastly, we verify the assumptions for the residuals. To validate the normality 

check for residual, we look at the Q–Q plot of our residual here, Figure 5.14a, which 

indicates the residual is from a normal distribution. We tested if residuals have constant 

variance by plotting the residual vs. fitted values ˆy in Figure 5.14b. Here the pattern of 

dots is dense around the midline, but the red line deviates from the midline for large and 

small values for y. In this case, some extreme residuals are 17 (Clark County), 19 (Custer 

County), and 31 (Lewis County). However, from the boxplot of our y2 in Figure 5.9b, we 

see the significant outliers of the confirmed deaths are Lewis and Shoshone County. 

Again we conclude the variance of the residual is not constant, or these counties are 

considered outliers and our future work indicates applying transformation or weighted 

least squares. 

 
 (a) Q-Q plot for residual in case VI (b) residual vs. fitted plot for case VI 

Figure 5.14 Model adequacies of residuals for case VI 

 Estimate Std. Error t value Pr (|> |t||) 

ˆ 2,2 β0 -1.051e-03 1.05e-03 -1.002 0.322 

ˆ 2,2 β1 1.78e-04 4.48e-05 3.966 0.00027 
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5.3 Discussion 

P-values and correlation coefficients in regression analysis tell us which 

relationships in our model are statistically significant and the nature of those 

relationships. The coefficients describe the mathematical relationship between 

independent and dependent variables for six cases. The p-values help determine whether 

the relationships that we observe in the sample also exist in the population. Table 5.7 

summarizes view of the linear relationship between our predicted and predictor variables. 

From Table 5.7 we can see that for the case I, the significant p-value gives us 

evidence of a relationship between the number of cases and those in low risk categories, 

and a weak and negative correlation exists. For case II, the p-value is significant, and 

there exists a weak correlation between a number of cases and those in medium risk 

categories. For case III, the p-value is not significant, and a negligible correlation exists 

between a number of cases and those in high risk categories. For case IV, the p-value is 

not significant, as well as a negligible correlation exists between the number of deaths 

and those in low risk categories. For case V, the p-value is not significant, and a 

negligible correlation exists between the number of deaths and those in medium risk 

categories. For case VI, the p-value is significant, and there is a moderate positive 

correlation between the number of deaths and those in high-risk categories. 

We also checked the model adequacy. All of the cases show negligence or weak 

relationship between variables. Also, cases III, IV, and V give us some insignificant 

results. We ran the same analysis excluding outliers we find from y1 and y2 and verified 

that the outliers are not significantly impacting the distributions. Furthermore, we are 

inconclusive if our variance of residual is constant in each case. 
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Table 5.7 Correlation Coefficients and p-values for six cases 

 

 

 

Cases Correlation Coefficient, r p-values(< 0.05) 
I -0.3144 0.037 
II 0.354 0.018 
III -0.237 0.121 
IV -0.2768076 0.07 

V -0.2267045 0.1389 
VI 0.522 0.000279 



57 

 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

As the world is diverse, its community characteristics are discrete, and people are 

vulnerable to different factors depending on geography, race, ethnicity, etc. Thus, 

identifying a worldwide community resilience that could apply to multiple hazards is 

difficult to measure. But understanding the overall structural environment of global, 

regional, and local community resilience is crucial for public health strategies. Severity 

and frequency of a hazard, numbers of people and assets exposed to the hazard, and their 

vulnerability are some components of disaster risk. Reducing vulnerability is one of the 

most effective ways to reduce disaster risk. 

After analyzing the current list of community resilience indicators, we choose to 

work with CRE tool. CRE tool designates at-risk populations by determining if a person 

has three or more factors, that make them particularly vulnerable. This available data 

giving insight on vulnerability, which is important for emergency management 

organizations. The CRE can help determine outreach services, the number and type of 

personnel to deploy, and disaster assistance programs that can be activated to aid affected 

areas. CRE also provides insight into a community’s capacity to recover from a disaster 

like tornadoes, flooding and severe storm. However, our analysis shows that this metric is 

not very compatible with the COVID-19 John Hopkins data. 

On the other hand, COVID-19 pandemic creates a multidimensional crisis, 

affecting different socioeconomic group and environmental area in different way. 

Unfortunately, Covid-19 has a more significant impact on poor areas. Poverty is both a 
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driver and a consequence of disaster risk because economic pressures force people to live 

in unsafe conditions. Thus income-to-poverty ratio, crowded house, and full-time year-

round employment are most likely relatable/significant indicators for COVID-19. 

It is difficult to estimate the actual effect of the pandemic due to several reasons. 

Early in the pandemic, people who died of COVID-19 may not have been recognized 

because of inadequate knowledge of the symptom or lack of testing availability. Many 

people who die while infected with COVID-19 are never tested for it and do not enter the 

official totals. Some countries and organizations choose to hide the true toll of COVID-

19 due to political or other issues. Conversely, some people whose deaths have been 

attributed to COVID-19 had other ailments that might have ended their lives in a similar 

timeframe anyway. 

There are different methods to count the fatality rate, i.e., crude mortality rate, 

case fatality rate, infection fatality rate, and excess death rate. Various organizations 

follow different methods; thus, the results vary. Also, modeling epidemiologic years 

instead of calendar years would reduce the excess deaths estimate. 

Rural and urban areas vary by the health infrastructure/number of hospitals and 

health services, and these could also influence the rate of COVID-19 cases and deaths. 

The health and safety between urban counties (9) and rural counties (35) in Idaho are not 

equal. The residents of rural and underserved areas tend to experience higher rates of 

poverty, lower per capita income, and distant from hospitals, as compared to their urban 

counterparts, thus more exposed to vulnerability [29]. For example, Washington County 

is showing high risk and having a greater number of confirmed death rate. Also, 

misinformation and poor communication disproportionally affect individuals with less 
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access to information channels. These people are therefore more likely to ignore 

government health warnings. 

Sample size affects the generalizability of the results. It is a genuine problem 

because a small sample size is associated with low statistical power. In this research, we 

are dealing with only 44 counties, and it is hard to get any kind of meaningful result from 

these few data points. And this could also applicable when dealing with small populations 

of the counties. For example, Lewis County shows outliers in both confirmed and death 

cases and its population size (3864) is relatively small compared to other counties. So, 

small sample size effect may affect Lewis County. 

Our analysis did not get an enough correlation between the CRE tool and 

COVID-19 cases and deaths to use the data for further estimations and predictions. 

Residual vs. fitted plots of a few cases show heteroscedasticity may occur, but graphs and 

plots are very subjective. We ran the analysis with and without outliers, which did not 

create a huge difference. At the same time, we do not have enough logic to delete the 

COVID-19 variables just because the rates are high, as these are the true values from 

reliable sources. Also, we stopped updating our COVID-19 data on March 29, 2022, for 

our research analysis. There is a possibility that the future data could give a better 

relationship for our variables. 

The CRE tool is the weighted aggregate of the ten risk factors. All these ten 

factors get equal importance in this measure, but in reality, some risk factors are more 

vulnerable than others. For example, age is a significant factor in this pandemic 

compared to households without internet access. This tool could be more useful if the 

data of the ten risk factors were available alongside with this CRE data, we could look at 
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the separate risk factors as separate indicators. These individual indicators can 

recommend to which resources be directed, according to the reality of each county. 

Motivation behind this aggregate-level metric need further explanation. Overcoming 

these limitations could serve a better analysis and help us predict and create a resilient 

community during hazards and disasters. 

For future research, there are several options available. 

• Deleting the outlier and performing the same analysis to find a better 

relationship between the variables. However, strong reasoning is needed to 

delete the variables in this case. 

• Performing data transformation, redefining dependent variables to remove 

heteroscedasticity for each case, and running the analysis to get a better 

relationship between variables. 

• If there is no strong correlation, chances are there are non-linear models. Here, 

fitting different non-linear models to different cases can be a solution. 

However, these need a lot of trial-and-error processes. 

• Confirmed deaths (Y2) showing departure from normal distribution. Usually, 

this could happen for 2 reasons, 

1. Our dependent variable confirmed deaths come from a non-normal 

distribution. 

2. Existence of a few outliers or extreme values which disrupt the model 

prediction.  
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In this case, several normality tests are there to run, for example, Shapiro-Wilk test, 

Kolmogorov–Smirnov test. 

• Run Logistic Model instead of simple linear regression, for each case. 

• Research the indicators further and improve the method. 

• Analyze other community resilience indicators to get the best fit for COVID-

19 data. 
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APPENDIX A 

List of Counties with Covid-19 Confirmed Cases 
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No. County Name Population Low 

Risk 
Medium 
Risk 

High 
Risk 

 Percent of 
confirmed cases 

13 Camas County 1127 29.46 53.59 16.95 0.1153505 
19 Custer County 4271 24.61 46.24 29.15 0.1203465 
17 Clark County 852 32.16 42.84 25.00 0.1255869 
8 Boise County 7600 26.95 48.28 24.78 0.1335526 
4 Bear Lake County 6050 30.30 49.47 20.23 0.1484298 
30 Lemhi County 7949 24.15 46.89 28.96 0.1557429 
2 Adams County 4231 20.28 51.29 28.43 0.1567005 
11 Boundary County 11928 28.60 46.17 25.23 0.1656606 
21 Franklin County 13713 35.34 46.69 17.98 0.1680158 
32 Lincoln County 5360 24.68 50.47 24.85 0.1684701 
36 Oneida County 4488 30.35 48.48 21.17 0.1733512 
22 Fremont County 12751 29.04 48.54 22.42 0.1735550 
29 Latah County 37379 32.78 52.22 15.01 0.1749646 
34 Minidoka County 20816 27.45 49.27 23.28 0.1757302 
25 Idaho County 16105 22.78 47.54 29.68 0.1782676 
24 Gooding County 15153 23.39 52.72 23.88 0.1791724 
12 Butte County 2609 32.85 47.68 19.47 0.1809122 
37 Owyhee County 11614 26.85 50.28 22.88 0.1831410 
9 Bonner County 44625 26.97 50.13 22.90 0.1840672 
39 Power County 7748 26.20 52.98 20.82 0.1862416 
16 Cassia County 23730 23.99 52.03 23.97 0.1904762 
23 Gem County 17581 27.67 45.59 26.74 0.1975428 
40 Shoshone County 12736 26.65 45.76 27.59 0.1985710 
26 Jefferson County 29359 34.18 49.20 16.63 0.2003134 
15 Caribou County 7009 25.31 57.83 16.86 0.2080183 
6 Bingham County 46114 28.97 48.18 22.86 0.208852 
27 Jerome County 23956 20.85 57.97 21.18 0.2112623 
5 Benewah County 9217 24.06 50.46 25.47 0.2128675 
35 Nez Perce County 39879 29.28 47.82 22.90 0.2178089 
20 Elmore County 27122 26.58 53.49 19.93 0.2204483 
43 Valley County 11002 26.29 49.87 23.84 0.2206871 
44 Washington County 10117 23.40 46.35 30.26 0.2207176 
38 Payette County 23496 27.15 51.02 21.83 0.2219527 
7 Blaine County 22601 28.26 50.41 21.32 0.2237954 
41 Teton County 11640 36.97 43.31 19.73 0.2281787 
42 Twin Falls County 85624 23.51 51.21 25.28 0.231523 
28 Kootenai County 160924 27.15 51.67 21.18 0.237174 
3 Bannock County 85629 26.97 51.09 21.94 0.2385056 
1 Ada County 461076 26.61 54.17 19.22 0.2496465 
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14 Canyon County 221400 21.23 55.67 23.10 0.13930894 
10 Bonneville County 116497 25.68 53.21 21.11 0.2582114 
18 Clearwater County 8086 21.88 45.56 32.56 0.2687361 
31 Lewis County 3846 28.16 44.15 27.69 0.2888716 
33 Madison County 38730 17.63 64.42 17.94 0.3215337 
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APPENDIX B 

List of Counties with Covid Confirmed Deaths 
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No. County Name Population Low 

Risk 
Medium 
Risk 

High 
Risk 

 Percent of 
confirmed deaths 

41 Teton County 11640 36.97 43.31 19.73 0.0006872852 
17 Clark County 852 32.16 42.84 25.00 0.0011737089 
29 Latah County 37379 32.78 52.22 15.01 0.0012841435 
33 Madison County 38730 17.63 64.42 17.94 0.0012909889 
7 Blaine County 22601 28.26 50.41 21.32 0.0013273749 
43 Valley County 11002 26.29 49.87 23.84 0.0014542810 
8 Boise County 7600 26.95 48.28 24.78 0.0017105263 
13 Camas County 1127 29.46 53.59 16.95 0.0017746229 
19 Custer County 4271 24.61 46.24 29.15 0.0021072348 
21 Franklin County 13713 35.34 46.69 17.98 0.0021147816 
22 Fremont County 12751 29.04 48.54 22.42 0.002117481 
1 Ada County 461076 26.61 54.17 19.22 0.0021861906 
16 Cassia County 23730 23.99 52.03 23.97 0.0021913190 
26 Jefferson County 29359 34.18 49.20 16.63 0.0022139719 
10 Bonneville County 116497 25.68 53.21 21.11 0.0024378310 
36 Oneida County 4488 30.35 48.48 21.17 0.0024509804 
4 Bear Lake County 6050 30.30 49.47 20.23 0.0024793388 
20 Elmore County 27122 26.58 53.49 19.93 0.00258093 
39 Power County 7748 26.20 52.98 20.82 0.0025813113 
27 Jerome County 23956 20.85 57.97 21.18 0.0026715645 
32 Lincoln County 5360 24.68 50.47 24.85 0.0027985075 
3 Bannock County 85629 26.97 51.09 21.94 0.0028845368 
34 Minidoka County 20816 27.45 49.27 23.28 0.0029784781 
14 Canyon County 221400 21.23 55.67 23.10 0.0030578139 
30 Lemhi County 7949 24.15 46.89 28.96 0.0031450497 
25 Idaho County 16105 22.78 47.54 29.68 0.0031667184 
6 Bingham County 46114 28.97 48.18 22.86 0.0033178644 
42 Twin Falls County 85624 23.51 51.21 25.28 0.0033752219 
12 Butte County 2609 32.85 47.68 19.47 0.0034495975 
2 Adams County 4231 20.28 51.29 28.43 0.0035452612 
15 Caribou County 7009 25.31 57.83 16.86 0.0035668426 
38 Payette County 23496 27.15 51.02 21.83 0.0036176370 
24 Gooding County 15153 23.39 52.72 23.88 0.0036296443 
28 Kootenai County 160924 27.15 51.67 21.18 0.0036414705 
35 Nez Perce County 39879 29.28 47.82 22.90 0.0036861506 
9 Bonner County 44625 26.97 50.13 22.90 0.0040784314 
18 Clearwater County 8086 21.88 45.56 32.56 0.0040811279 
5 Benewah County 9217 24.06 50.46 25.47 0.0044483021 
37 Owyhee County 11614 26.85 50.28 22.88 0.0044773549 
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23 Gem County 17581 27.67 45.59 26.74 0.0044934873 
11 Boundary County 11928 28.60 46.17 25.23 0.0049463447 
44 Washington County 10117 23.40 46.35 30.26 0.0056340812 
40 Shoshone County 12736 26.65 45.76 27.59 0.0058888191 
31 Lewis County 3846 28.16 44.15 27.69 0.0075403016 
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APPENDIX C 

Covid-19 Data Sources 
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Terms for COVID-19 data: 

Confirmed Cases: Confirmed cases are counts of individuals whose coronavirus 

infections were confirmed by a laboratory test and reported by a federal, state, territorial or local 

government agency. Only tests that detect viral RNA in a sample are considered confirmatory. 

These are often called molecular or RT-PCR tests [3]. 

Confirmed Deaths: Confirmed deaths are individuals who have died and meet the 

definition for a confirmed COVID-19 case. Some states reconcile these records with death 

certificates to remove deaths from their count where COVID-19 is not listed as the cause of 

death. We follow health departments in removing non-COVID-19 deaths among confirmed cases 

when we have information to unambiguously know the deaths were not due to COVID-19, i.e. in 

cases of homicide, suicide, car crash or drug overdose [3]. 
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Source Description Level 

JHU Johns Hopkins University CSSE Global County/State, United States 

CTP The COVID Tracking Project State, United States 

NYC New York City Department of Health and 
Mental Hygiene 

ZCTA/Borough, New York City 

NYT The New York Times County/State, United States 

UVA University of Virginia School of Medicine Municipality/State, South America 

SES Monitoring COVID-19 Cases and Deaths in 
Brazil 

Municipality/State/Country, Brazil 

DPC Italian Civil Protection Department NUTS 0-3, Italy 

RKI Robert Koch-Institut, Germany NUTS 0-3, Germany 

JRC Joint Research Centre Global NUTS 0-3, Europe 

ERA5 The fifth generation of ECMWF reanalysis All levels 

NLDAS North American Land Data Assimilation 
System 

County/State, United States 

CIESIN C. for International Earth Science 
Information Net. 

Global gridded population 

OxCGRT Oxford COVID-19 Government Response 
Tracker 

National (global) subnational (US, UK) 

CRC Johns Hopkins Centers for Civic Impact National (global) subnational (US) 

IHME Institute for Health Metrics and Evaluation National (global) subnational (US) 
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