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ABSTRACT 

I explore spatial and temporal aftershock patterns related to three instrumentally 

recorded earthquakes in Idaho -- the Sulphur Peak, the Challis, and the Stanley 

earthquakes. These three M>5 earthquakes border the eastern Snake River Plain and lie 

within the Intermountain Seismic Belt and Centennial Tectonic Belt. Using machine 

learning for event detection and phase picking from local and regional seismic networks, 

I generate new aftershock catalogs. I locate more aftershocks than in the USGS catalog 

due to lower signal-to-noise detections. Using my phase picks, I locate aftershocks using 

a range of velocity models and select a catalog that represents the smallest residuals in 

hypocenter locations. I compare my results with handpicked phases and previously 

published velocity models. My 2014-2017 Challis catalog is consistent with the work of 

Pang et al. (2018), with more high-quality events with similar average vertical error. My 

one-month aftershock catalog for the 2017 Sulphur Peak earthquake is spatially 

consistent with the results of Koper et al. (2018); however, I show that my machine-

learning approach produced relatively few aftershocks because afterslip events were not 

matched using a coseismic training dataset. Finally, I locate a factor of five more 

aftershocks from the 2020 Stanley earthquake when compared to the USGS catalog. I 

relocate the mainshock using biases computed by differencing my aftershock epicenters 

with the same aftershocks in the USGS catalog. The revised mainshock location now lies 

within a large and pronounced aftershock zone. My catalog suggests no motion along the 

active Sawtooth Fault, but instead I map a new N10W trending fault that accommodated 
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the mainshock and much of the aftershock slip. I conclude that aftershock catalogs 

derived from a machine-learning approach can enhance seismic detection and aid in 

determining the driving mechanisms responsible for a coseismically driven earthquakes.  
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CHAPTER ONE: INTRODUCTION 

 

Idaho has hosted several large instrumentally recorded earthquakes over the past 

50 years. The seismicity has been characterized as both coseismic and aseismic, with 

both strike-slip and dip-slip inferred fault motions. Three recent M>5 earthquake 

sequences are the focus of my research. The March 2020 Mw 6.5 Stanley earthquake, the 

April 2014-May 2017 ML 5.0 and ML 4.9 Challis earthquakes, and the September 2017 

Mw 5.3 Sulphur Peak earthquake were each recorded with a regional seismic network. 

Within days of each mainshock, a rapid temporary seismic station deployment provided 

additional phase arrival information to complement permanent regional network data. 

Each temporary station was located within about 50 km from the corresponding 

mainshock, but deployment strategies differed for each sequence. Most temporary 

stations did not provide real-time data for earthquake catalogs, but were only available 

for subsequent analyses. Here, with the use of a machine-learning approach, I create new 

aftershock catalogs and examine aftershock patterns for all three earthquakes using the 

combined temporary and permanent station networks. From these catalogs, I compare my 

automated detection approach to hand-picked catalogs for each sequence, which provides 

a chance to explore station density. I then discuss the aftershock characteristics for the 

Stanley sequence to provide an improved understanding of active tectonics in Idaho. 

Aftershock alignments and moment tensor solutions from each of these three 

modern earthquake sequences have called into question the nature of large earthquakes in 
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Idaho (i.e., Koper et al., 2018; Pang et al., 2018; Liberty et al., 2021). The enigmatic 

nature of presumed fault motions with intersecting faults suggests complex fault zones. 

Thus, additional aftershock characterization is warranted and required to better 

understand the regional tectonic setting. Through machine-learning, I increase the 

number of identified aftershocks to reduce the completion magnitude of each aftershock 

catalog. From these new catalogs, I aim to improve the understanding of each fault 

system.  

The 2020 Stanley earthquake occurred beneath central Idaho near two previously 

recorded M≥6 earthquakes that occurred in 1944 and 1945. These events were termed the 

Seafoam earthquakes (Dewey, 1987). The Stanley mainshock epicenter located northwest 

of the mapped Sawtooth Fault (Thackray et al., 2013; Figure 1), did not rupture the 

ground surface, and was felt widely across Idaho. Preliminary assessments suggested left-

lateral oblique strike slip motion along an unmapped fault (Liberty et al., 2021; Pollitz et 

al., 2021). Two years after the mainshock, M>3 aftershocks continue (U.S. Geological 

Survey, 2022b). I explore nine months of data recorded across a 16-station temporary 

local network and a permanent regional network. The local network was deployed within 

days of the mainshock (Liberty et al., 2021) and largely removed by November 2020. I 

use a combination of the local and regional stations to relocate aftershocks and explore 

fault motions and interactions. I then compare the machine-learning aftershock locations 

to the hand-picked catalog obtained using the same regional and local stations for quality 

assurance. In addition, I use the changing temporary seismic network to assess the value 

of the different deployment strategies.  
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The 2017 Sulphur Peak earthquake occurred near Sulphur Springs, Idaho, and 

was felt in Idaho, Utah, and Wyoming (Koper et al., 2018). The mainshock occurred near 

the East-Bear Lake normal fault (EBLF) (Evans et al., 2003). The aftershock sequence 

lasted from September through October 2017 and was highly energetic. In other words, a 

significant number of aftershocks with unexpectedly high magnitudes were recorded 

following the main shock. With the use of both temporary local and permanent regional 

networks, Koper et al. (2018) related many of these aftershocks to fluid-induced afterslip. 

I explore the one-month 8-station local network that was deployed within two weeks of 

the Sulphur Peak mainshock (Koper et al., 2018) to compare hand-picked and machine-

learning aftershock catalogs in the presence of both coseismic and aseismic moment 

releases. 

In April 2014, a ML 4.8 earthquake occurred near the town of Challis, Idaho 

(Pang et al., 2018). The earthquake epicenter was located about 25 km northwest of the 

surface rupturing 1983 Ms 6.9 Borah Peak earthquake, near the northern termination of 

the Lost River fault (Crone & Haller, 1991). The sequence lasted for a few months and 

was regionally felt. Beginning in January 2015, another series of aftershocks initiated 

with a ML 5.0 earthquake, centered approximately 20 km to the southeast of the April 

2014 earthquake. Unlike the Borah Peak normal faulting sequence, the Challis 

earthquakes did not have normal fault motions. I explore the use of an eight-station 

temporary local network deployed after the first mainshock in 2014. The network 

remained active until the end of 2014, when all but one temporary station was removed 

(Pang et al., 2018). Like the Sulphur Peak aftershock sequence, I compare hand-picked 

and machine-learning aftershock catalogs.  
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I am motivated by three hypotheses. First, machine-learning, specifically the 

Earthquake Transformer (EQT) algorithm (Mousavi et al., 2020), provides a robust 

method for low signal-to-noise earthquake detection and phase picking in Idaho and 

surrounding regions. Second, by increasing the number of local stations that are deployed 

immediately after a large earthquake, an improved aftershock catalog can be obtained via 

machine-learning on "big local data". Third, through machine-learning, the addition of 

quality events detected beyond the hand-picked catalogs will improve fault 

interpretations for each aftershock sequence and reduce the completion magnitude. For 

all aftershock sequences, I test the accuracy of EQT by comparing to hand-picked 

earthquake catalogs. I also compare my interpretations to those of previously published 

aftershock studies.  

In Chapter 2, I outline the geologic and tectonic background surrounding the 

Stanley, Sulphur, and Challis regions. In Chapter 3, I introduce the traditional methods 

used for aftershock detection and catalog construction. I then introduce the EQT 

machine-learning approach and compare the two processing strategies. In Chapter 4, I 

introduce two local velocity models used to locate aftershocks. I use these velocity 

models to locate events detected by EQT using Hypoinverse (Klein, 2014) and generate 

new earthquake hypocenter datasets for each aftershock sequence. I then quality control 

these hypocenter datasets to create high-quality, low-error catalogs and compare the 

hypocenter results to USGS catalog residuals.  In Chapter 5, I use these new EQT-based 

catalogs for interpretation, and I compare my results to previous catalogs constructed 

using the traditional methods (e.g., U.S Geological Survey, 2022a). I highlight the 

similarities and differences compared to previous interpretations. In Chapter 6, I provide 
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a detailed interpretation of the Stanley aftershock sequence and summarize the machine-

learning results for the Sulphur and Challis sequence. Finally, in Chapter 7, I present 

concluding statements from my thesis. 

 



6 

 

CHAPTER TWO: GEOLOGIC AND TECTONIC BACKGROUND 

 

The Stanley, Sulphur, and Challis regions lie within the Basin and Range 

Province (BRP) of the western United States (Figure 2.1). The BRP is a 750 km wide 

extensional tectonic province with Miocene to recent fault activity (Eaton, 1982). This 

province extends from Montana to Arizona and encompasses much of Idaho, Nevada, 

and Utah. Within the northern and eastern regions of the BRP, two subregions have been 

characterized. The Intermountain Seismic Belt (ISB) defines the eastern zone of BRP 

seismicity (Smith & Sbar, 1974). In Idaho, this zone coincides with the eastern border of 

Wyoming and Utah. The Sulphur Peak earthquake lies within the ISB. The northeast-

trending Centennial Tectonic Belt (CTB) represents a band of seismicity along the 

northern BRP margin in Idaho and Montana (Stickney et al., 1987). This zone has hosted 

some of the largest BRP earthquakes, including the 1959 M7.3 Hebgen Lake earthquake 

and the 1983 M6.9 Borah Peak earthquake. The Stanley and Challis regions lie within the 

CTB.  
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Figure 2.1 Topographic map showing M>2.5 earthquakes since 1981. Faults are 
from the Quaternary Fold and Fault Database (U.S Geological Survey, 2022c) and 

the Trans-Challis Faults System (TCFS) is from Lewis et al. (2012). Inset map shows 
BRP (gray shading), CTB, and ISB (diagonal lines) extent (modified from Liberty et 
al., 2021). Aftershocks and historical seismicity are from the U.S. Geological Survey 

comprehensive earthquake catalog (U.S. Geological Survey, 2022b). 

There is a parabolic-shaped pattern of seismicity that centers on the axis of the 

eastern Snake River Plain (SRP) and the Yellowstone Plateau (Anders et al., 1989) 

(Figure 2.1). This seismicity surrounds a region of aseismicity that includes the eastern 

SRP. The SRP represents a modern-day topographic low overprinted on the BRP. The 

SRP formation is related to the passage of the Yellowstone hotspot that emplaced mafic 

materials within the crust, then subsequent deflation (Armstrong et al., 1975). While 

geodetic data suggest variable motions within the SRP and BRP, it is unclear how strain 
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partitioning through time has impacted seismicity within each of the provinces and 

seismic zones (e.g., Payne et al., 2013).  

Within the CTB of Idaho, four subparallel northwest-striking normal faults 

contain Precambrian and Paleozoic igneous, sedimentary, and metamorphic rocks within 

their respective ranges (Stickney & Bartholomew, 1987). These faults are identified as 

the named faults in the northern center of Figure 2.1. Tertiary and younger sediments 

occupy the basins, and the relief between the mountain tops and the basin floor defines 

the long-term slip rate for these faults (Crone & Haller, 1991). Paleoseismic and 

geomorphic indicators show Quaternary activity and there are large tectonic scarps 

related to these faults (Scott et al., 1985; Thackray et al., 2013).  

The Stanley earthquake and aftershock sequence lies mostly to the north of the 

Sawtooth fault (Figure 2.1), and west of the Sawtooth Fault lies the Cretaceous Idaho 

Batholith that defines the western limits of the BRP and CTB. The east-dipping Sawtooth 

normal fault extends at least 60 km, but the total length and displacement is debated due 

to the lack of fault outcrop observations to the northwest and limited subsurface 

characterization. Thackray et al. (2013) documented four- to nine-meter high scarps that 

displace 11-14 ka glacial deposits. They also identified two- to three-meter high scarps 

that displace Holocene alluvial deposits. They noted that two or three postglacial surface 

rupturing events have occurred, suggesting that there are discrete fault segments. They 

estimated a Holocene slip rate of 0.5-0.9 mm/year, higher than the long-term Quaternary 

slip rate estimate of <0.2mm/year (Personius et al., 2009). Length-magnitude scaling 

relationships and a two- to three-meter high surface rupture suggest that the Sawtooth 

fault is capable of supporting a M7 earthquake. The relationship between the oblique 
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strike-slip 2020 Stanley earthquake sequence and the Sawtooth fault is poorly understood 

(Liberty et al., 2021). The Stanley epicentral region lies near its intersection with the 

northeast-trending faults of the Trans-Challis fault system (TCFS) and these faults may 

influence regional seismicity patterns. 

The Sulphur Peak earthquake and aftershocks were centered to the south of the 

Aspen Range and northeast of the EBLF (Figure 2.1). Evans et al. (2003) mapped the 

EBLF as a steep west dipping normal fault, possibly becoming listric at depth. The EBLF 

exhibits Quaternary-age fault scarps along three of its segments; as well as paleoseismic 

evidence for five to seven surface rupturing earthquakes (M6.8-M7.2) in the last 40,000 

years (Payne et al., 2013). The seismicity following the 2017 Sulphur Peak mainshock 

occurred within a short window of time, approximately one week, and the energy 

released in this window of time exceeded what was expected based on the magnitude of 

the mainshock (Båth, 1965). Within 10 days of the Sulphur Peak mainshock, 16 of 17 

earthquakes that occurred had exceeded the predicted maximum aftershock magnitude. 

This observation along with the rapid spatial expansion of aftershocks over ~10km to the 

SE, suggests there are additional driving mechanisms apart from the cosiesmic 

mainshock (Koper et al., 2018). The exact driving mechanism of seismicity in Sulphur 

Peak is enigmatic and does not reflect seismic trends occurring in the CTB or BRP 

(Payne et al., 2013). Previous interpretations have suggested that southeastern Idaho 

might be a region with slow slip or creep events, but the cause of aseismic creep is not 

entirely understood (Peng & Gomberg, 2010).  

The Challis earthquake and aftershock sequence was centered to the north of 

Challis, Idaho, near the west-dipping Lost River fault (Figure 2.1). The Lost River fault, 
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like the EBLF and Sawtooth fault, is a northwest trending normal fault that has 

accommodated significant vertical displacement along six segments (Crone & Haller, 

1991). The Lost River Fault and intersecting TCFS to the northwest controls a syn-

volcanic basin that accommodated Eocene extension and subsidence in the region 

(Kiilsgaard et al., 1986). While there is no direct evidence for active motion on faults that 

lie within the graben, prior paleoseismic indicators suggest Holocene activity in the 

central region of the Lost River Fault, including the Ms 7.3 Borah Peak earthquake in 

1983 (Bello et al., 2021; DuRoss et al., 2022; Scott et al., 1985). This earthquake 

epicenter was located near the southeastern end of the observed surface rupture. The 

hypocenter was reported at 16 km depth, near the edge of the brittle-ductile transition 

zone (Smith et al., 1985). Following the Borah Peak earthquake, aftershocks migrated to 

the northwest, but not along any known Quaternary faults (Pang et al., 2018). The 2014 

Challis sequence has been proposed as a continuation of the 1983 Borah Peak earthquake 

aftershock sequence (Pang et al., 2018).
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CHAPTER THREE: AFTERSHOCK ANALYSIS 

 

A pertinent question seismologists struggle to answer is where an earthquake is 

most likely to occur and what are the driving mechanisms for coseismic motion. 

Answering these questions relies heavily on the characteristics of the geologic 

environment and the nature of the past seismicity in the region. Aftershock sequences can 

provide vital information regarding why and where these earthquakes may occur in the 

future. Earthquakes occur due to many environmental factors, such as strain 

accumulation and release, fluid pressure, or another earthquake (i.e., a triggered event) 

(Peng & Gomberg, 2010). Aftershock analysis can show migration paths of earthquakes 

over time (Ruhl et al., 2016). Detecting aftershocks enables researchers to determine 

what physical drivers are causing the earthquakes. Analyzing the temporal history of an 

earthquake can provide insight into faults and the amount of time expected between 

events. This is pertinent information needed to assess the seismic risk associated with a 

given area (Dieterich, 1994).  

The most common methods used for aftershock detection require a high signal-to-

noise ratio and/or a robust seismograph station network. Importantly, the inability to 

detect events with a low signal to noise ratio can limit tectonic interpretation, and thus 

there is an obvious motivation to use an automated detection method that is less sensitive 

to low signal-to-noise ratio. I first outline the traditional earthquake detection and picking 

process. I then compare this process to the recently developed EQT machine-learning 
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approach and highlight the differences in required signal-to-noise ratio. In the end of this 

chapter, I compare EQT’s phase picking ability to hand-picked phases to validate using 

EQT phases for relocation. I note here that I have neglected a comparison of EQT and the 

other low signal-to-noise detection method called matched filtering. This is beyond the 

scope of this thesis. Instead, I focus on one machine-learning approach (EQT) and 

compare to the most common detection method. 

3.1 Traditional Earthquake Detection and Phase Picking 

A common earthquake detection method used by seismologists is the ‘Short Term 

Average-Long Term Average ratio’ (STA/LTA) trigger (Allen, 1982). This method is the 

most broadly accepted automated detection method used in earthquake detection far from 

an epicentral source (Trnkoczy, 2009). The method applies a specific picking threshold to 

a moving window amplitude ratio (i.e., the short-term average over the long-term 

average); if the amplitude of the ratio signal surpasses a given amplitude threshold, a 

picking trigger is turned on; once amplitudes decrease beneath a pre-set threshold, the 

trigger is turned off (Trnkoczy, 2009).  

The time-period of data between the station trigger on and off is considered the 

earthquake time series on that station. This process is repeated over all stations in the 

network. Then, through either automated picking (traditionally not based on machine-

learning) or hand picking, P- and S-wave arrival times are estimated (Di Stefano et al., 

2006). The availability of large seismic datasets has pushed the envelope of automated 

detection algorithms; however, despite seismologist’s best efforts, automatic trigger 

mechanisms have been relatively inefficient when compared to the trained eye of a 

seismologists. 
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3.2 Machine-Learning based Earthquake Detection and Phase Picking 

EQT is a multi-task deep neural network that can be used for simultaneous 

earthquake detection and phase picking. This approach recognizes similarities in 

waveforms to an existing detected earthquake and uses this as a method to detect 

potential aftershocks (Mousavi et al., 2020). The process for identification can be broken 

down into two levels of self-attention, a global and local level. Each level helps the 

program capture and exploit dependencies between local (individual phases) and global 

(full waveform) features that are characteristic of an earthquake signal (Mousavi et al., 

2020).  The continuous data fed to the algorithm are three-component seismograms. The 

three-components consist of north-south, east-west, and vertical components that provide 

absolute ground displacement at the sensor. 

EQT’s event detection process relies on the visual characteristics of a seismic 

signal, specifically, the full waveform, and the P- and S-wave first arrivals. The algorithm 

is implemented in the Python language. The algorithm uses one deep encoder and three 

separate decoders; an event detector, a P-picker, and a S-picker (Mousavi et al., 2020). 

The attention mechanisms within this neural network are inspired by a human’s visual 

attention, like how a seismologist would identify an earthquake signal by noticing a P-

wave and an S-wave, with the P-wave arrival always before the S-wave. After analyzing 

each station, the signal characteristics are compared to the characteristics that were 

observed in a similar time window across multiple stations. When time windows have 

characteristics that look like earthquakes across multiple stations, an earthquake is 

detected. The algorithm was trained using the Stanford Earthquake Dataset (STEAD). 

The STEAD dataset is a large-scale global dataset of labeled earthquake and non-



14 

 

earthquake signals. To train EQT, one million earthquake and 300,000 noise waveforms 

(including both ambient and cultural noise) were taken from approximately 2,600 seismic 

stations with epicentral distances up to 300 km. Many of the earthquake waveforms used 

in training are smaller than M2.5 and have been recorded within 100 km from the event 

epicenter (Mousavi et al., 2020). 

The global training data set enables the neural network to become familiar with 

many different varieties of seismic signals, including noise. The goal of training in this 

way is to create a universal approach to seismic event detection and phase picking. Figure 

3.1 shows all of the available stations used to acquire seismic data for training EQT. To 

test the program’s ability to locate and pick earthquake waveforms and phase arrivals, 

EQT’s high generalization ability was tested on five weeks of continuous data recorded 

during the 2000 Mw 6.6 Western Tottori, Japan earthquake (Figure 3.2). The Japan 

Meteorological Agency analyst picked 279,104 P- and S-wave arrival times on 57 

stations; EQT was able to pick 401,556 P- and S-wave arrivals on 18 of those stations 

(Mousavi et al., 2020).  
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Figure 3.1 Global map of earthquake station locations from the STEAD dataset 

used to train EQT from Mousavi et al. (2020). 

 
Figure 3.2 Comparison of aftershocks picked by hand (left) to those picked by 

EQT (right) from Mousavi et al. (2020). 

 

3.3 Earthquake Transformer Validation  

Rather than solely rely on the EQT creator’s quality assurance tests described in 

Mousavi et al. (2020), I compared phase-picks using the EQT results for the Stanley 

aftershock sequence and our hand-picked events. Blaine Bockholt, Dylan Mikesell, 

Kristinia Rossavik, and I picked P- and S-wave arrivals for all aftershocks M>2.5 (U.S. 

Geological Survey, 2022b) using the Seisan program (Havskov and Ottemoller, 1999). 



16 

 

The catalog used both regional and local seismic stations, described in Chapter 4, 

consisting of approximately 2,000 hand-picked events. Using the bounding box 

parameters presented in Table B.1, we set the geographic area EQT could search for 

available station data. The minimum and maximum latitude and longitude bounds were 

set to the main shock location +/- 0.5 degree of latitude and longitude. In this way, we 

created a 1-degree x 1-degree (~110 km x 110 km) square from which to process seismic 

data for each aftershock sequence. 

Once the geographic area is set, EQT needs to be parameterized for event 

detection and phase association. Figure 3.3 shows hand-picked events detected though 

identifying phase arrivals associated with the USGS catalog’s recorded origin times and 

comparing them to the phase arrival times identified by EQT. EQT detected 94% of the 

events in the USGS catalog. For this 94%, I computed the P- and S-arrival time 

differences between our picks and the EQT picks. The mean P-wave arrival time 

difference was 0.0217 s and the mean S-wave arrival time difference was 0.0043 s. The 

mean absolute deviation (MAD) was the same, 0.08 s for both P- and S-wave arrivals, 

exploiting the algorithms picking consistency despite the usual difficulties associated 

with detecting the S-wave signal from within the overlapping P-wave (Figure 3.3). The 

results were promising in comparison to what was achieved by the USGS, but they were 

also reasonable when compared to other applications using EQT.  

Mousavi et al. (2020) compared hand-picked phases to the EQT picks using the 

data from the JMA data set. Their results provided a mean P-and S-wave arrival time 

difference of 0.01 seconds for 279,104 earthquakes. The phase arrival differences using 

the Stanley events were slightly greater for the P-wave arrivals, but less than the mean 
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arrival time difference for the S-wave arrivals (Mousavi et al., 2020). The standard 

deviation obtained using the Stanley phases, P-wave σ = 0.19 s and S-wave σ = 0.16 s, 

were slightly greater than the results obtained by Mousavi et al. (2020), P-wave σ = 0.08 

s and S-wave σ = 0.07 s. Relative to the size of each data set the σ is low and did not 

deviate drastically from the mean arrival time difference in either study. Thus, EQT is 

capable of being used in other geologic settings and therefore the neural network was 

assumed to not need further training. 

 
Figure 3.3 P-wave pick time difference (left) and S-wave pick time difference 
(right). Presented are the average time difference (µ), the standard deviation (σ), 

and the mean absolute deviation (MAD). 
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CHAPTER FOUR: APPLICATION OF EQT TO THREE AFTERSHOCK 

SEQUENCES 

 

4.1 The Local Seismic Networks 

Before implementing a traditional earthquake detection method, or alternative 

method like EQT, a seismic network must be deployed. The seismic networks for each 

sequence were comprised of both regional, permanently deployed broadband 

seismometers, and local networks consisting of temporarily deployed broadband 

seismometers less than 50 km from each epicentral region (Pang et al, 2018; Koper et al., 

2018; Liberty et al., 2021).  The station geometry for each sequence varied and this 

variable is reflected in each sequence’s aftershock catalog, which I will explain later in 

Chapter 5. 

Although local networks are known to constrain seismic event locations and have 

lower travel time residual errors, waveforms from local station data can be hard to pick 

by hand. The trouble arises when events occur in a small window of time relative to other 

events, causing them to overlap in the recorded signal. The stacking of signals inherently 

makes the phases difficult to detect visually, even after STA/LTA trigger detection 

(Beroza, 1995). Detection algorithms like EQT avoid this issue by using waveform 

matching to detect events and locate phases across multiple stations (Mousavi et al., 

2020). In Figure 4.1 the local seismic arrays surrounding each sequence and the available 

regional network that was used to construct the USGS catalogs are shown.  
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Figure 4.1 Regional Map with temporary networks for each sequence and 

regional network along with the INL network (e.g., U.S. Geological Survey, 2022b). 
The station IE.DVCI corresponds to the only local station left to record seismicity 

during the second rupture of the Challis Sequence in 2015.   

4.1.1 The Stanley Seismic Network 

A Boise State team worked with the U.S. Geological Survey and Idaho 

Geological Survey to deploy 16 temporary broadband plus strong-motion seismometers 

near the epicentral region of the Stanley mainshock (Network XP and GS; stations: FOX, 

BANN, SAC, WARM, ATL, DDR, EPIC, IRON, SUNB, TRAP, TRP2, RDFL, TWRS, 

PETL, MFRD, and ID11) (Liberty et al., 2021). These stations, along with the regional 

network, Figure 4.1, provided local waveforms to generate an improved aftershock 

catalog. The temporary stations were deployed within the first two weeks following the 

mainshock and retrieved between October 28 and December 1, 2020. The analysis in this 
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thesis covers the time span from April 1 through December 31, 2020. Due to the 

changing network coverage, I study the influence of changing the local station geometry 

on the EQT results. 

4.1.2 The Sulphur Peak Seismic Network 

The Sulphur Peak sequence was recorded both regionally and locally using a 

temporary network of six broadband seismometers plus strong-motion (Network GS; 

stations ID [05-10]) and two strong-motion accelerometers (Network UU; stations: ASI4 

and ASI5). These stations were deployed within 4 to 10 days of the mainshock (Koper et 

al., 2018). The six GS stations were deployed starting on September 9, 2017 and 

demobilized in the end of October 2017, while the two UU stations remained active, 

although station ASI5 was moved 90 m and renamed ASI6. Figure 4.1 shows the current 

position of station ASI6 and not the AS15 position (Koper et al., 2018).  

4.1.3 The Challis Seismic Network 

The Challis sequence was recorded both regionally and locally following the first 

mainshock in April of 2014 (Pang et al., 2018). The local network was deployed as a 

combined effort between the University of Utah, Montana Bureau of Mines and Geology, 

INL, IGS, and USGS. The temporary network consisted of eight three-channel-

component broadband seismometers deployed April 4, 2014 and retrieved at the end of 

October 2014 (Networks GS, IE, and UU; stations ID01, ID02, ID03, ID04, DVCI, ASI1, 

ASI2, and ASI3). One local station, station DVCI, deployed by INL under the network 

code IE, became a permanent station and recorded the second sequence that initiated in 

January of 2015. The lack of local coverage for the aftershocks that followed the January 

2015 sequence is reflected in EQT’s detected phases and interpretive results.  
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4.2 Associated Velocity Models 

The standard velocity model used in earthquake locations is the AK-135f model 

(Montagner & Kennett, 1996), which I obtained from the IRIS Data Management Center. 

The USGS uses this model for their earthquake hypocenter location estimation. I 

compare this velocity model to three other velocity models by examining hypocenter 

inversion travel time residuals for every identified event. The AK-135f model, the two 

previous regional models used in Koper et al. (2018) and Pang et al. (2018) papers, and 

my own velocity model derived from smoothing AK-135f are listed in tables D1-4 in 

Appendix D.  

4.2.1. North of the Snake River Plain 

For the Stanley and Challis sequences, I use a smoothed AK-135f model for 

hypocenter determination (Table D.2). In this model, the P- and S-wave velocities 

gradually increase with depth. I refer to this model as the Gradient model. In the results 

section, I compare the Challis regional velocity model used by Pang et al. (2018) to my 

Gradient model. Their regional model was created from a geologic interpretation of the 

1983 Borah Peak earthquake rupture zone (Shemeta, 1989). Based on hypocenter results, 

I use my new model for both the Challis and Stanley sequences, which lie to the north of 

the Snake River Plain. To see the results using the Challis model reference Figure E.7 in 

Appendix E. Considering only three models are used in my results and interpretation, 

only those three models are compared in Figure 4.2; however, all four velocity models 

are listed in the Appendix D.  
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4.2.2. South of the Snake River Plain 

The regional velocity model for the Sulphur Peak sequence is derived from 

previous research by Brumbaugh et al. (2001), who used this model in the relocation of 

hypocenter events following the Draney Peak earthquake. The Brumbaugh model (Table 

D.4) was also used by Koper et al. (2018). I tested the Gradient model for the Sulphur 

Peak sequence, but I chose to use the Brumbaugh model for direct comparison of my 

results with the results of Koper et al. (2018). This comparison can be found in Chapter 5. 

Thus, south of the Snake River Plain I use the Brumbaugh model, which is distinctly 

different from the model I use for the sequences north of the Snake River Plain. Figure 

4.2 shows the P- and S-wave velocities for the AK-135f, Gradient (i.e., smoothed AK-

135f), and Brumbaugh models. The main velocity differences are in the upper 5km. The 

Gradient model has faster velocities than the Brumbaugh model in the upper 5km, while 

below this Brumbaugh is slightly faster down to 30km depth. I note that the velocity 

models used in this thesis are solely based on a comparison of the residual error for the 

three models. A more accurate velocity model (e.g., 2-D or 3-D) could further improve 

aftershock hypocenter estimates. 
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Figure 4.2 Brumbaugh, AK-135f, and the Gradient (i.e., smoothed AK-135f) 

velocity models used for hypocenter estimation in Hypoinverse. 

 

4.3 Hypocenter Estimations through Hypoinverse  

Using the velocity models described in the previous sections, I locate each 

aftershock with the program Hypoinverse (Klein, 2014). I use Hypoinverse for 

hypocenter estimation because it relies on a 1-D velocity model and simplifies the 

comparison of EQT to the results of Pang et al. (2018) and Koper et al. (2018), whose 

results were also obtained using 1-D local velocity models. Hypoinverse minimizes the 

arrival times between phase arrivals that are predicted and those that were measured at 

multiple stations distributed over an area. Using 1-D P-and S-wave velocity models to 

predict the travel times, the depth, epicenter, and origin time (i.e., the hypocenter) of each 

aftershock is determined based on which combination of these parameters provides the 
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minimum error between predicted and observed arrival times. Thus, the velocity model 

plays an important role in the travel time prediction process.  

In addition to the hypocenter parameters, Hypoinverse provides a quality 

parameter obtained from the residual travel time errors and the event-to-station distance 

(Klein, 2014). Using all the hypocenters for each sequence, I compare Hypoinverse 

quality ratings to their corresponding residual errors. The aim of this exercise is to 

determine whether the Hypoinverse quality rating is the best parameter to determine 

which EQT picks provide useful earthquake hypocenters. Given that the EQT process is 

fully automated, with only a few parameters that can be changed, it is important to 

identify ways to quality control (QC) the final hypocenter estimates. The quality rating 

from Hypoinverse is simply one approach. I determine my own approach in the next 

section. 

4.3.1 Producing a High-Quality Catalog 

The quality rating determined by Hypoinverse consists of A-, B-, C-, and D-type 

events. The A-type events are located with the highest certainty. The D-type events are 

the poorly located hypocenters with the highest spatial uncertainty. Hypoinverse uses 

seven parameters to assign quality to a hypocenter estimate: root-mean-squared (RMS) 

travel time residual, ERH (horizontal location error), ERZ (vertical location error), NWR 

number of weighted stations reading phases, MAXGAP (maximum angular gap in 

degrees between azimuthally adjacent stations), the earthquake depth uncertainty, and the 

minimum distance to the closest station. Using these parameters, Hypoinverse applies a 

quality rating that is an average of two weighting parameters (Klein, 2014). The first 

quality rating is based on errors and goodness of fit. The letter next to the range of values 
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below represents the level of quality that Hypoinverse associates with those values, A- 

being the best, D- being the worst. 

A. RMS < 0.15 sec and ERH ≤ 1.0 km and ERZ ≤ 2.0 km 

B. RMS <0.30 sec and ERH ≤ 2.5 km and ERZ ≤ 5.0 km 

C. RMS < 0.50 sec and ERH ≤ 5.0 km 

D. Greater than above 

The second quality rating is based on station geometry: 

A. NWR ≥ 6 and MAXGAP ≤ 90 and either DMIN ≤ DEPTH or DMIN ≤5.0 

B. NWR ≥ 6 and MAXGAP ≤ 135 and either DMIN ≤ 2*DEPTH or DMIN ≤10 

C. NWR ≥ 6 and MAXGAP ≤ 180 and DMIN ≤ 50 

D. Greater than above 

The distance from the event to the nearest station is weighted using a kriging 

approach. The ideal-distance weighting scheme reduces the weight of the distant stations 

when an event is detected within the interior of a seismic network (Klein, 2014). The 

Hypoinverse distance weighting function is 1.0 for near stations and 0.0 for far stations; 

for stations in-between, the weighting follows a cosine taper. Figures 4.3-4.5 display the 

spatial and temporal uncertainties for each sequence’s hypocenters, Stanley, Sulphur 

Peak, and Challis, respectively, colored by Hypoinverse event type. The velocity model 

used in all figures is the Gradient model.  
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Figure 4.3 The distribution of A-, B-, C-, and D-events determined by 

Hypoinverse for Stanley; bottom panels are zoomed versions of the top panels. The 
plots show the relationship between ERZ, ERH and RMS residual error for each 

event type.  



27 

 

 
Figure 4.4 The distribution of A-, B-, C-, and D-events determined by 

Hypoinverse for Sulphur Peak; bottom panels are zoomed versions of the top 
panels. The plots show the relationship between ERZ, ERH and RMS residual error 

for each event type.  
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Figure 4.5 The distribution of A-, B-, C-, and D-events determined by 

Hypoinverse for Challis; bottom panels are zoomed versions of the top panels. The 
plots show the relationship between ERZ, ERH and RMS residual error for each 

event type.  

Based on analysis of event type to the different hypocenter error estimates, it is 

clear that the station distance parameter used in evaluating location quality had assigned 

poor quality ratings to reliable earthquake locations. Figures 4.3 through 4.5 show that all 

event types can have both high and low residual errors. Many of the C- and D-type events 

have high residual errors and can therefore be neglected; however, not all these poorly 

rated events have unreliable hypocenter estimations. Many of these events had quite 

small error estimates and travel time residuals (lower panels in Figures 4.3-4.5). When 
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considering their spatial locations, they map to the same regions as A- and B-type events, 

often with the same magnitude of error.  

The waveforms and travel time picks used to produce my final aftershock catalogs 

are determined using only the spatial error and depth. As observed in Figures 4.3-4.5, 

many C- and D-type events have horizontal and vertical errors less than 5 km. In 

addition, many C- and D-type events have travel time residuals less than 1 s. Thus, any 

event that occurred at a depth greater than 20 km or an ERZ or ERH ≥5 km was not 

added to the final aftershock catalogs. This is because 20 km is deeper than the presumed 

seismogenic zone for south Idaho (Anders et al., 1989; Doser & Smith, 1985) and 

because the spatial errors were larger than the distances, we wanted to asses in the spatial 

patterns of aftershock seismicity for each sequence. Using these high-quality 

hypocenters, we assess the EQT location and compare them to the results of Pang et al. 

(2018) and Koper at al. (2018).  
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CHAPTER FIVE: MACHINE-LEARNING RESULTS 

 

5.1 EQT Results and Comparisons 

To assess the EQT event detection and phase picking approach, I search each 

unfiltered EQT catalog for matching events in the USGS catalog. Events are considered a 

match if their origin time difference is less than 10 seconds. If multiple EQT events fall 

within these 10 second times differences, I take the EQT event closest to the USGS origin 

time. This is done to determine if EQT identifies and picks events that were 

independently identified and hand-picked by a USGS seismologist/analyst. Additionally, 

it allows me to assign earthquake magnitude to corresponding EQT aftershocks.  

5.1.1. Stanley Results 

The first thing to consider is the event identification using EQT. Figure 5.1 shows 

a significant drop in number of EQT detected events at the end of October, indicated by 

the black line. The drop in detected events coincides with the removal of the local seismic 

stations. We see that this is not the case for the USGS catalog. This is likely due to the 

USGS seismic-analyst picking events not detected on at least three seismic stations, 

therefore unable to be identified by EQT. 

The next thing to consider is how well EQT identifies events, specifically those 

picked by a seismic-analyst. Comparing the USGS catalog to my complete EQT catalog, 

I note that approximately 89% of the USGS aftershocks are identified within the 74,670 

event EQT catalog. From the high percentage of matched events, I confirm that EQT 
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does identify Stanley aftershocks and that the Gradient model does not measurably 

influence the arrival times of events located using the AK-135f model. Of the 113 USGS 

events that were not detected by EQT, I speculate that this could have resulted from a 

poorly picked phase within the USGS catalog (or EQT) resulting in an origin time 

difference greater than my 10 s threshold. 

 
Figure 5.1 Number of detected Stanley aftershocks binned by month from the 
USGS (top) and EQT (bottom) catalogs spanning from April through December 
2020. Here “n” equals total number of detected aftershocks.  The solid black line 

represents local station removal in the lower plot near November 2022. 

I next compare the high-quality EQT catalog (i.e., ≤5 km ERZ and ERH, <20 km 

depth) created with the Gradient model to the same EQT events obtained using the AK-

135f velocity model. EQT provided 52,125 high-quality events using the Gradient 
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velocity model, but only 2,265 events when using the AK-135f model to locate 

hypocenters using EQT picks. In my high-quality EQT catalog, 87% of all aftershocks 

had an RMSE of less than 0.2 s compared to the 0.7 s returned by the AK-135f model.  

Thus, I interpret the discrepancy as Hypoinverse being unable to find accurate 

hypocenters using the AK-135f model due to this model not representing the 1-D 

subsurface structure in the Stanley area. Using the Gradient model, all the spatial and 

temporal residuals except for the standard deviation of the depth was reduced compared 

to the AK-135f velocity model; thus, another indicator the Gradient model likely matches 

the true subsurface more closely. The hypocenter error statistics for each velocity model 

are presented in Table 5.1.  It is clear that the Gradient model is superior to AK-135f 

based on these results. 

Table 5.1 The Stanley residual errors for the Gradient and AK-135f velocity 
models using EQT picks. 

Total number of EQT Phase Picks 

74672 

Gradient Model  AK-135f Model 

Number of Located Events 52125 2265 

RMSE (s) 0.16 0.7  

RMSE Std. Deviation (s) 0.85 3.6 

Average Depth (km) 9.6 5  

 

The Gradient model provided the lowest residual errors compared to the other 

velocity models that I tested, but this is only one factor for the high number of detected 

events. Figure 5.2 shows that average ERZ and ERH increased when fewer local stations 

were deployed. These low deployment windows include the three weeks after the main 
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shock on March 31, 2020, and the months of November and December 2020. The low 

residual errors associated with EQT’s detected events is strongly influenced by the 

availability of local stations and seismic network geometry. The local network allows 

EQT to make phase picks near the epicentral region of interest, thus diminishing the ERZ 

and ERH associated with events located farther away from a seismic station. Another 

way to say this is that the local stations provide a better constraint on the hypocenter. 

This is in part because these local stations are less influenced by incorrect velocity 

models compared to regional stations where the waves (i.e., P and S) have traversed a 

much larger distance.  
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Figure 5.2 The change in average vertical (ERZ) and horizontal (ERH) error for 

the Stanley sequence through time (left axis). Station count used for EQT picks 
through time on the right axis.  

Finally, earthquakes are typically constrained to the brittle portion of Earth’s 

crust. My catalog shows a mean aftershock depth of 9.6 km below sea level (Figure 5.3). 

I note that 92% of all aftershocks lie between 3 km and 15 km depth. The depth 

distribution shown below suggests that the maximum depth of the seismogenic zone is 

about 15 km below sea level. 
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Figure 5.3 Earthquake density map for Stanley using the Gradient model. The 
black lines are the TCFS from Lewis et al. (2012). The northern most star is the 
USGS location and the southernmost star is the Montana Bureau of Mines and 

Geology location (e.g., U.S Geological Survey, 2022b). The density map shows events 
binned in 0.5 x 0.5 km horizontal bins. The lower left panel shows the distribution of 

depths with the mean depth (standard deviation) and total number of events. The 
lower right shows the travel time root mean squared error with the mean (standard 

deviation). 
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5.1.2 Sulphur Peak Results 

The Sulphur Peak aftershock catalog derived from EQT and the Brumbaugh 

velocity model match only ~53% of the 551 USGS aftershocks identified between 

September 9, 2017 and October 28, 2017. The bottom panel of Figure 5.4 shows an initial 

gap in EQT detected events in early September. This is because the temporary network 

was not deployed until approximately a week after the mainshock. In addition, the spatial 

uncertainties presented in Figure 5.5 reflect this lack of station coverage, showing that the 

average ERZ and ERH are greatest at the start of the sequence.   
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Figure 5.4 Number of detected events for USGS (top) and EQT (bottom) binned 

by day for the Sulphur Peak sequence; “n” equals total number of events in each 
catalog.  

I compare the EQT residual errors with locations derived using the Brumbaugh, 

Gradient, and AK-135f velocity models. Using the Brumbaugh velocity model, I obtain 

2,170 aftershocks. With the Gradient model, I obtain 2,336 aftershocks. Using the AK-

135f model, only three aftershocks are located. The errors for the Gradient model were 

the lowest and returned more high-quality hypocenters (i.e., ERH ≤5 km and ERZ ≤5 

km). Despite the low residual error, the depth distribution was greater than the reported 

depths published by Koper et al. (2018). The results suggests that the Sulphur Peak 

aftershock sequence may be improved with a different velocity model. The scope of my 
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research involves testing the quality of EQT picks in conjunction with previous published 

results. Therefore, to assess the measurable quality of EQT, I opted to use the published 

velocity model rather than the Gradient model. The residual errors for all velocity models 

are presented in Table 5.2.  

Table 5.2 The Sulphur Peak residual errors for the Brumbaugh, Gradient, and 
AK-135f velocity models. 

Total number of EQT Phase 

Picks 2946 

Brumbaugh 

Model  

Gradient 

Model  

AK-135f Model 

Number of Events 2170 2336 3 

RMSE (s) 0.09 0.08 2.4 

RMSE Std. Deviation (s)  0.07 0.06 0.1 

Average Depth (km) 5.4 9 5.8 

 
Figure 5.5 shows that at the initial start of the Sulphur Peak aftershock sequence, 

the average ERZ and ERH for estimated hypocenters were at their maximum.  In the third 

week of the sequence, another local station was deployed and the ERZ and ERH 

decreased further. ERH seems to slowly increase and then decrease over time, whereas 

ERZ remains consistent once all eight temporary stations are deployed. Prior to the 

deployment of temporary stations EQT is incapable of detecting events, which accounts 

for the lack of ERZ and ERH prior to September 9, 2017, in Figure 5.5.  
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Figure 5.5 The change in average vertical (ERZ) and horizontal (ERH) error for 

the Sulphur Peak sequence through time (left axis). Local station count used for 
EQT picks through time on the right axis.  
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Figure 5.6 Earthquake density map for Sulphur Peak using the Brumbaugh 

velocity model (Brumbaugh, 2001). The red star is the mainshock location and the 
green star represents the town of Soda Springs, ID. The black line is the EBLF from 
the USGS quaternary faults and folds database (U.S. Geological Survey, 2022c). The 

density map shows events binned in 0.25 x 0.25 km horizontal bins. The lower left 
panel shows the distribution of depths with the mean depth (standard deviation) 

and total number of events. The lower right panel shows the travel time root mean 
squared error with the mean (standard deviation). 

The Sulphur Peak aftershock sequence was characterized as being highly 

energetic and not entirely dominated by tectonic processes (Koper et al., 2018). The total 

number of high-quality aftershocks was 2,170 using the Brumbaugh model and 2,336 

using the Gradient model. The observed mainshock-aftershock sequence using either 

velocity model does not follow the relationship of aftershock magnitude expected from 

Båth’s Law (Båth, 1965). The depth distribution of events for Sulphur Peak was 

measurably shallower compared to the Stanley sequence depths shown on the depth 
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distribution plots (Figure 5.6 for Sulphur Peak and Figure 5.3 for Stanley). The mean 

travel time RMSE for Sulphur Peak events was 0.09 seconds (Figure 5.6). The high-

quality events outline a N10W trending aftershock alignment (Figure 5.6) with a 

concentration of events south of Soda Springs (green star on map). This is a similar 

pattern as shown in Koper et al. (2018). We do not interpret our hypocenter results 

beyond this brief comparison. It appears that the EQT results are consistent with the 

published results of Koper et al. (2018). It is possible that future work here could be done 

to better understand the shallow seismicity, but this is beyond the scope of this thesis. 

5.1.3 Challis Results 

Despite a sparse array of temporary seismometers following the initiation of the 

second Challis 2015 mainshock, I use EQT and the Gradient model to identify a localized 

concentration of aftershocks to the south of the 2014 main shock (Figure 5.7). Figure 5.8 

shows the monthly distribution of aftershocks detected by EQT using the Gradient model 

compared to temporal distribution of aftershocks in the USGS catalog. Comparing USGS 

and EQT origin times, I note that 161of the 189 USGS cataloged events were detected by 

EQT.  

The two observed peaks in aftershock densities (Figure 5.8) indicate two distinct 

sequences starting in April 2014 and January 2015, respectively (Pang et al., 2018). 

Another interesting characteristic of this sequence is that fewer number of aftershocks 

followed the second mainshock. I identify 2,095 aftershocks between April through 

December, 2014 and 737 aftershocks following the second mainshock on January 1, 

2015. Between April 14, 2014, and December 31, 2014, I note a reduction of seismicity 

with time as would be expect with any earthquake. However, the second mainshock is 
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followed by a rather abrupt decrease in aftershocks after one month. Pang et al. (2018) 

observed an active period of seismicity following the January 2015 mainshock, but this is 

not observed using EQT. I suspect this result reflects the poor station availability and 

inability of EQT to detect events without a dense array of seismometers and not related to 

tectonic processes. While there was one local station available at this time, the minimum 

requirement for EQT to consider an event an earthquake is that it must be detected on 

three different (local) stations. Therefore, as event magnitude decreased with time, the 

likelihood of events being detected using the regional network decreased as their 

amplitudes likely did not exceed background noise levels and the difference in arrival 

times may have been too great, i.e., >10 seconds, to be considered the same earthquake.  
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Figure 5.7 Earthquake density map for Challis sequence using the Gradient 

model. The black lines to the west are the TCFS from Lewis et al., (2012) and the 
black line to the east intersecting the southern portion of seismicity is the Lost River 

fault (U.S. Geological Survey, 2022c). The two red-stars to the north-west are the 
first two M>4 events that occurred in April 2014, and the star to the south is the 

M5.1 event that occurred on January 1, 2015.The density map shows events binned 
in 0.5 x 0.5 km horizontal bins. The lower left panel shows the distribution of depths 

with the mean depth (standard deviation) and total number of events. The lower 
right panel shows the travel time root-mean-squared error with the mean (standard 

deviation). 
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Figure 5.8 Number of detected events for USGS (top) versus EQT (bottom) 

binned by month starting in April 2014 and ending in March 2017 for the Challis 
Sequence. Here “n” equals total number of detected events. The black line in the 

lower plot represents the start of the second sequence on January 1, 2015. 

Using the high-quality (i.e., ERZ ≤5 km and ERH ≤5 km) events, I compare the 

residual error of EQT detected events located using the local Challis (Shemeta, 1989), 

Gradient, and AK-135f velocity models. I located 2,401 hypocenters using the Challis 

model, 2,845 using the Gradient model, and 852 using the AK-135f model. All the spatial 

and temporal residuals using both the Gradient model and Challis model were lower than 

what was obtained using the AK-135f model. The Gradient velocity model not only 
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outperformed AK-135f, but also the local Challis velocity model used by Pang et al. 

(2018). The residual error statistics are presented in Table 5.3.  

Table 5.3 The Challis residual errors for the Challis (local), Gradient, and AK-
135f velocity models. 

Total number of EQT Phase Picks  

5614 

Challis Model  Gradient 

Model  

AK-135f 

Model 

Number of Events 2401 2845 852 

RMSE (s) 0.23 0.09 0.18  

RMSE Std. Deviation (s) 0.16 0.11 0.15 

Average Depth (km) 4.6 7.5 5.4 

  

The Challis aftershocks lasted three years (Pang et al., 2018). However, with EQT 

I obtain a relatively small aftershock catalog compared to Sulphur Peak and Stanley 

sequences.  I hesitate to contribute this small catalog to the incapability of EQT’s phase 

picking or the Hypoinverse locations given the spatial clustering results of Pang et al. 

(2018) are similarly reflected in the EQT results (Figure 5.7). Instead, I contribute the 

lack of recognized aftershocks to the poor azimuthal station coverage surrounding the 

epicentral region. The lack of local stations following the initiation of the second 

mainshock is responsible for depth bias and high uncertainty in ERZ observable in Figure 

5.9. The inadequate station geometry limits the ability of EQT to match events on 

separate seismic stations. The high ERZ suggests that events were most likely being 

relocated either too close or too far from the available local station to account for travel 

time error as phases were detected on regional stations much farther from the aftershock 

hypocenters.  
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Figure 5.9 The change in average vertical (ERZ) and horizontal (ERH) error for 
the Challis sequence through time (left axis). Local station count used for EQT picks 

through time on the right axis.  

Despite the poor local station count for half the Challis sequence duration, the 

total number of high-quality aftershocks detected was 2,845 using the Gradient velocity 

model. Using only EQT and constraining the minimum number of events in 0.5 x 0.5 km 

bins (Figure 5.7), I was able to replicate the spatial distribution observed by Pang et al. 

(2018) without using GrowClust. The GrowClust algorithm tightens aftershock 

distributions spatially by using nearby events as a proximal source to relocate events 

closer together, i.e., double-difference relocation (Trugman & Shearer, 2017). The 

density map shows an expected spatial distribution of events with an average RMSE of 

0.09 seconds (Figure 5.7). The maximum depth of the seismogenic zone is ~15-18 km 
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interpreted by the notable decrease in events below this depth (lower left Figure 5.7).  

The results of Pang et al. (2018) demonstrate that by introducing local stations they 

constrained ERZ to 1.4 km for 705 relocated earthquakes using HypoInverse. In this 

study, I used the same stations with the new Gradient velocity model to generate a 

catalog with two times the number of events with the same ERZ of 1.4 km.  

5.2 Discussion of Hypoinverse Results using EQT Phase Picks 

The cumulative number of aftershocks in the Stanley sequence increased by a 

factor of five with my catalog compared to the USGS catalog. Apart from the Stanley 

sequence, Sulphur Peak and Challis provided results that honor the work of Koper et al. 

(2018) and Pang et al. (2018) while providing insight into the factors that negatively 

affect EQT performance. The Sulphur Peak and Challis sequence results show that EQT 

picks are well suited for the application of HypoInverse. This holds as long as an 

appropriate velocity model is used to locate the EQT picks. Hypoinverse relies heavily on 

a 1-D-velocity model to obtain appropriate hypocenter locations and the results obtained 

using the Gradient and Brumbaugh velocity models provide relatively low residual errors 

and high spatial certainties. However, the low residuals of the Gradient model when used 

to locate Sulphur Peak picks suggests that the velocity model used in Koper et al. (2018) 

could be improved. Future work utilizing an inverse velocity tomography approach could 

help to constrain the location of earthquakes for all sequences in this study; potentially 

helping to determine the driving mechanisms related to seismicity in each region. 

In the case of Sulphur Peak, the limited number of matched USGS events found 

in the EQT catalog did not affect the observed spatial distribution of aftershocks. See 

Appendix E for a complete comparison of the spatial distribution for each sequence using 
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the local and AK-135f velocity models, as well as USGS picks using the AK-135f model. 

Using the Brumbaugh velocity model, the EQT aftershock catalog contained twice as 

many hand-picked aftershocks compared to the Koper et al. (2018) catalog which 

contained 1,048 events. The cause for the low percentage of matched EQT and USGS 

hypocenters is further discussed in Chapter 6.   

In the case of Challis, my results show that local station count alongside an 

appropriate velocity model is a critical factor in the success of utilizing EQT. Despite 

having the sparsest local seismic network, EQT managed to provide more high-quality 

events and maintain a low average ERZ. Pang et al. (2018) used the local network to 

detect what they considered to be 705 earthquakes with good location certainty and an 

average ERZ of 1.4 km. Using the same local station data and the Gradient model, EQT 

detected 2,845 events, over three times as many, and had the same ERZ.  In conclusion, 

EQT performed well and should be considered as an opportunistic tool in the realm of 

automated seismic event detection and phase picking, but this should not negate the fact 

that an accurate velocity model is still needed for hypocenter estimation. 

In the following chapter, I explore the Stanley catalog and constrain the spatial 

certainty to ERZ ≤1 km and ERH ≤0.5 km to interpret aftershock patterns.  Utilizing the 

highly constrained hypocenters, I provide a geologic interpretation of the Stanley 

aftershock sequence. 
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CHAPTER SIX: INTERPRETATION 

 

6.1 Stanley Mainshock Characteristics 

The Stanley mainshock that initiated on March 31, 2020, was initially located by 

the USGS using the AK-135f velocity model and a sparse array of regional seismometers  

(U.S. Geological Survey, 2022b). Within the USGS catalog, a epicentral location 

uncertainty of ± 8.5 km and a depth uncertainty of ± 3.8 km was estimated. This 

uncertainty prompted the Montana Bureau of Mines and Geology to relocate the 

mainshock using 62 regional seismic stations and a regional velocity model obtained 

from Bremmer et al. (2019). They constrained the epicentral location uncertainty to ± 0.7 

km and a depth uncertainty of ± 3.8 km (U.S. Geological Survey, 2022a). The moment 

tensor solution obtained from the University of Utah Seismograph Stations (U of U 

Seismograph Stations, 2022) suggested left-lateral strike slip motion, consistent with that 

obtained from a similar analysis by St. Louis seismologists (Saint Louis University 

Moment Tensors Determinations, 2022).  

6.2 Stanley Aftershock Patterns 

The 15,040 EQT aftershocks obtained with my gradient velocity model with 

depth errors <1 km and horizontal errors <0.5 km are shown in Figure 6.1. This map 

provides the most current hypocentral distribution for the Stanley sequence to date. The 

map contains two mainshock locations, the USGS and the alternative Montana Bureau of 

Mines. Comparison of the USGS catalog to the EQT catalog shows an average shift of 
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epicenters to the southeast by ~7 km using only low residual error events. The low 

residual error events had an average depth uncertainty of ±1.2 km and average horizontal 

uncertainty of ±0.7 km, significantly less than the ±3.8 km depth uncertainty and the 

same horizontal uncertainty associated with the Montana mainshock location (U.S. 

Geological Survey, 2022a). Using this estimated bias, I relocate the mainshock location 

by ~7 km to the southeast (159°) of the Montana epicenter, aligning the mainshock 

within a dense zone of seismicity focused along an 82-degree west dipping N10W 

trending fault (cross section A-A’ on Figure 6.1) that I term the Cape Horn fault. These 

aftershocks extend 30 km to the north from near the northern termination of the Sawtooth 

fault. These aftershocks are focused between 6 and 15 km depth. I interpret this 

aftershock alignment as a new fault because of the aftershock alignment along a steep 

west-dipping trend that is opposite the dip direction of the northwest-trending Sawtooth 

fault (Liberty et al., 2021). There are no known scarps or other geophysical expressions 

that align with the Cape Horn fault.  

Another aftershock cluster is highlighted with cross-section B-B’ (Figure 6.1). I 

map these aftershocks mostly between 4 and 10 km depth, and these aftershocks align 

along a west-dipping ~79-degree fault plane. Assuming a northeast dip for the Sawtooth 

fault, the aftershocks define a west-dipping antithetic fault to the Sawtooth fault. 

Connecting the surface trace location of the Sawtooth fault with the termination in 

seismicity along B-B’ places a 67-degree northeast dip on the Sawtooth fault, consistent 

with previous fault dip estimates (e.g., Thackray et al., 2013). The aftershocks associated 

with B-B’ extend approximately 5 km in length, consistent with a M5 earthquake (Wells 

& Coppersmith, 1994). While the largest reported aftershock in this region was M3.6 
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(U.S. Geological Survey, 2022a), a larger earthquake along this fault may trigger motion 

on the related Sawtooth fault. 

I note two aftershock clusters to the south of most aftershocks and to the west of 

the Sawtooth fault (Figure 6.1). These zones of seismicity host multiple M>3 aftershocks, 

including one reported M4.4 event (U.S. Geological Survey, 2022a). My hypocenter 

locations for these aftershock clusters lie between 8 and 10 km depth and are focused in 

the footwall (west) block of the Sawtooth fault. Despite being isolated zones of 

seismicity, they align with the apparent N10W trending aftershock alignment (Figure 

6.1).  

The seismicity near the northern termination of the Sawtooth Fault is best 

represented by a complex interplay of small length faults of various trends. Perhaps with 

a more accurate 3-D velocity model, aftershock alignments would improve a multi-fault 

model in this area. While the Sawtooth Fault lies directly south of this energetic region, 

no aftershocks align along an east dipping fault; implying that the Sawtooth fault did not 

move during this nine-month window.  
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Figure 6.1 Earthquakes color coded by depth for 15,040 high-quality events in 
the Stanley aftershock sequence. The two cross sections shown on the right of the 

image labeled A-A` and B-B` are seen in map view within the black bounding boxes. 
The north-eastern star represents the USGS mainshock location (U.S. Geological 

Survey, 2022a), the north-western most star is the Montana mainshock location. The 
red star to the south is the town of Stanley, ID. The thin black lines indicate the 

TCFS from Lewis et al. (2012). 
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6.3 Fault Interplay 

Figures 6.2 and 6.3 show that seismicity follows apparent trends. The heat density 

map shown in Figure 6.2, defined by a bin size of 0.5 km by 0.5 km, exhibits aftershock 

clusters that may be controlled by faults related to the TCFS. If true, this indicates that 

further investigation into the role of relic faults is warranted, but this is beyond the scope 

of my thesis research. For example, the presence of hot springs aligned with structures 

related to the TCFS may suggest that seismicity has promoted upward flow of 

hydrothermal fluids from great depths (e.g., Killsgard et al., 1986). Whether related or 

not, the question remains what are the driving mechanisms for fault motions and 

aftershock patterns in this area? 
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Figure 6.2 Earthquake density map and intersecting faults for the Stanley 

aftershock sequence. The northeastern red star represents the USGS mainshock 
location, the north-western most red star is the Montana mainshock location. The 

black triangles represent the temporary seismic stations. The thin black lines are the 
faults in the area (Lewis et al., 2012; U.S. Geological Survey, 2022c). 
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Figure 6.3 Earthquakes color coded by depth using the same scale as Figure 6.1. 

The black dots are EQT event locations corresponding to USGS events. The 
moment tensors are from the St. Louis University moment tensor catalog and are all 
>M3.9 (Saint Louis University Moment Tensor Determinations, 2022). The red star 

represents the town of Stanley, ID and the two white stars to the north are the 
Montana (southwest) and USGS (northeast) mainshock locations. The thin black 
lines are the TCFS from Lewis et al. (2012) and the thick red line is the Sawtooth 

fault (U.S. Geological Survey, 2022c).   

6.3.1 Southern Seismicity associated with the Stanley Sequence 

The St. Louis moment tensor solutions relocated using the Gradient velocity 

model suggests that the southernmost aftershock cluster exhibits left-lateral strike slip 

motion (Figure 6.3; Saint Louis University Moment Tensors Determinations, 2022). This 

reflects a general trend seen in the moment tensor solutions in Figure 6.3, but the 

southern cluster is characterized by aftershocks aligned along a vertical plane. The reason 
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for this alignment within the Sawtooth fault’s footwall block is not clear, but by 

investigating the temporal distribution of this cluster and using Bäths law (Bath et al., 

1965) to estimate the rate of seismicity, it may be possible to hypothesize the type of 

driving mechanisms that are present, i.e., coseismic or fluid-driven afterslip. Unlike the 

southern portions of isolated seismicity, the seismicity to the north is occurring on the a 

previously unmapped fault and exhibits expected aftershock alignment along its N10W 

strike and west dipping plane. 

6.3.2 Northern Seismicity associated with the Stanley Sequence 

I interpret the N10W aftershock alignment shown in Figure 6.1 as the 30 km long 

Cape Horn fault. The fault length to mainshock magnitude is consistent with empirical 

studies (Wells and Coppersmith, 1994). This observation supports the relocation of the 

mainshock to my new location. This fault may also have moved during the Seafoam 

earthquakes, as the location and magnitudes align with this aftershock trend. 

Apart from the Cape Horn fault, there are intersecting planes of seismicity to the 

north, northeast, and southwest of the Sawtooth fault which may be the result of the 

intersecting TCFS. Available moment tensor solutions show that large magnitude events 

(M>3.9) tend to terminate where the TCFS intersects seismically active regions (Figure 

6.3). There are zones of seismicity with M>3.9 events that do not intersect known relic 

faults, suggesting other unmapped faults in the region may exist.  Therefore, the TCFS is 

likely playing an active role in energy migration along the unnamed faults, in hand 

controlling where larger earthquakes are likely to occur.  
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6.4 Sulphur Peak Aftershocks 

My Sulphur Peak aftershock catalog contained the largest number of aftershocks 

that were not temporally matched to USGS aftershocks. Despite the difference in arrival 

times, the depth distribution shown in Figure 5.6 suggests a seismogenic zone that lies 

mostly above 9 km depth. Although this result is consistent with Koper et al. (2018), I 

note that the Gradient model places seismicity at a greater depth. The inferred shallow 

seismicity and overall trend of ~1km/day to the southeast (Koper et al., 2018), too fast to 

be considered fluid source driven (Shapiro et al., 2003), is consistent with aftershock 

migration driven by aseismic afterslip (Koper et al., 2018). Understanding the driving 

mechanism of seismicity in Sulphur Peak paired with EQT’s inability to match the hand-

picked phase arrivals for this sequence, suggests the neural network is not well suited to 

picking seismic signals caused by afterslip and should be retrained for such. Retraining 

EQT to match these waveforms, along with a more robust velocity model, may improve 

the aftershock distributions for the Sulphur Peak sequence.  

6.5 Challis Aftershocks 

The aftershock distribution for Challis resembled the work of Pang et al. (2018) 

but aftershock detection was limited by inadequate station coverage. The results obtained 

by EQT do not show anything that has not been previously reported, but it can be 

confirmed that EQT performed well when making picks using the local array of 

seismometers. Through EQT and Hypoinverse, I determine that the depth of the 

seismogenic zone is measurably deeper than the Sulphur Peak sequence and comparable 

to the reported depth of the Borah Peak mainshock in 1983 (Scott et al., 1985). The 

maximum aftershock depth lies near 15 km, similar to the Stanley sequence. Considering 
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the velocity models used for each sequence were the same and that both sequences lie 

north of the SRP, EQT exhibits consistency in its ability to detect aftershocks north of the 

SRP. The cause of seismicity in Challis and Stanley is still not entirely understood; 

however, through aftershock detection, EQT’s detection mechanisms do provide insight 

into prior geodetic observations surrounding this region.  
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CHAPTER SEVEN: CONCLUSION 

 

Machine-learning is a valuable tool capable of detecting aftershocks. EQT 

detected five times the number of hand-picked aftershocks for the Stanley sequence. The 

quick deployment of seismometers surrounding the epicentral zone of seismicity for 

Stanley clearly enhanced the usability and quality of EQT for seismic detection in this 

region. 

By comparing all three aftershock sequences, I conclude that the presence of local 

stations is an essential component for the reliability of this automated method alongside 

an appropriate velocity model. Using machine-learning for seismic detection means that 

the construction of seismic networks needs to be carefully dictated by the capabilities of 

the algorithm being used. EQT eliminates the concern for picking events out of stacked 

phases and supports the use of dense local seismic networks rather than regional seismic 

arrays. These types of networks enhance the algorithms’ ability to match seismic signals 

and minimizes the distance between stations, therefore minimizing travel time error for 

P- and S-wave arrivals.  

Despite the increase in the number of quality events, EQT does require further 

attention to be used in a broader sense for seismic detection. The Sulphur Peak sequence 

exploits the programs’ inability to identify seismic activity that is driven by afterslip. The 

program detected a similar number of quality events to the hand-picked Sulphur Peak 

catalog but only 54% of these events were associated to the origin times of events found 
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in the INL and USGS catalogs. The aseismic afterslip driven aftershock sequence 

therefore eluded EQT and proved that the program is most well suited for a tectonically 

driven earthquake, at least using the pre-trained version available on GitHub.  

The coseismic nature of Challis and the number of events detected by EQT, as 

well as the temporal and spatial distribution of quality events are comparable to the work 

completed by Pang et al. (2018). The second sequence of events that initiated in early 

January of 2015 was poorly represented and can be directly correlated to the lack of local 

stations (Figure 5.9). Despite poor station coverage near Challis, EQT managed to 

provide a complete catalog of aftershocks that encompassed 85% of the total hand-picked 

catalog and maintain the same average ERZ reported by Pang et al. (2018) with over 

three times the number of detected events. I conclude that provided seismicity is due to 

active tectonism and constrained using a local and regional network, EQT is a viable tool 

to aid in aftershock detection and assist in determining the driving mechanisms for 

seismicity.  

The updated Stanley catalog outlines a predominant N10W west dipping fault that 

I term the Cape Horn fault that extends for approximately 30 km. The relationship 

between subsurface fault length and magnitude (Wells and Coppersmith, 1994) suggests 

that the Cape Horn fault is responsible for the Mw 6.5 earthquake that occurred in March 

2020. 

 Future work that would benefit this thesis would be an improved velocity model 

for all aftershock sequences. Also, gravity and magnetic data may assist in the 

understanding whether a complex relationship between subsurface fault and the 

intersecting relic faults exists.  A better structural analysis of the region encompassing 
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these faults is necessary to characterize the faults and determine the likelihood of future 

seismicity in the region. I conclude that EQT supported the geologic investigation 

surrounding Stanley by cataloging an immense quantity of high-quality aftershocks. The 

capabilities of EQT are worth further investigation but when observed within the scope of 

this research, the program provided 52,125 aftershocks with ≤5 km ERZ and ERH errors 

for Stanley and provided similar aftershock catalogs to the previous studies about Challis 

and Sulphur Peak. In conclusion, EQT shows promise as a qualitative and quantitative 

tool to assist in low signal-to-noise aftershock detection in zones of coseismic seismicity. 
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APPENDIX A 

Depth Correction 
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Depth Correction Process 

The 1D velocity model used in the event relocations was a homogenous crustal 

model, designated by the command ‘CRH’ in the Hypoinverse ‘inlloc’ file.  ‘CRH’ 

models compute location depths relative to the top of the datum, which varied for each 

velocity model tested. It is important to note when using Hypoinverse that using a CRH 

model will only output depths relative to the datum as positive depths. Each velocity 

model in this study represents elevation above sea level as a negative depth; however, the 

datum for each pick was determined by averaging the elevation of the five nearest 

stations to an earthquake. This average station elevation is the geoid depth or surface 

elevation relative to a single aftershock. Therefore, depths had to be transformed from the 

relative datum to the velocity model datum by subtracting the ‘CRH’ depth datum, 

outputted in the ‘arc’ file form the model depth in the ‘sum’ file of Hypoinverse. (Klein, 

2014). The depth datum is divided by 1000 to convert from meters to kilometers. A 

graphic representation of each layer is provided in Figure A.1.  

The relationship is as follows:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ (𝑘𝑘𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ (𝑘𝑘𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

1000  
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Figure A.1 The representation of relative depths using velocity model depth 
datum, seismic stations, sea level represented as geoid depth, and datum depth 

represented as station elevation. The figure is from the Hypoinverse 1.4 Manual 
(Klein, 2014). 
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APPENDIX B 

The EQT Workflow 
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EQT Workflow Process 

The first step in parameterizing machine-learning code is defining a minimum and 

maximum latitude and longitude as well as a start and stop time for temporal and spatial 

bounds used in data retrieval. Within these bounds EQT relies on the IRIS data 

management center (DMC) to determine whether data exists. If the data exists, it 

retrieves three-channel component seismic data on any available stations within the 

spatial bounds and creates a station list that is sorted in the current directory and called 

later. The number of processors used for data processing must be set within the data 

retrieval step, this simply controls the time it will take to process all the data for a given 

sequence. It is important to note that for large volumes of data it is beneficial to run the 

code in monthly chunks and then concatenate the output files. This is especially 

beneficial if the number of available processors is limited.  

Once the date has been retrieved using an available DMC client, EQT begins a 

preprocessing step to prepare the metadate for event detection. The downloaded miniseed 

files are used directly for detection and phase picking. There is a separate option that 

allows the user to test how well the EQT model is performing on a snippet of the data. In 

this thesis I performed detection and phase picking directly on the miniseed data because 

it saves processing time and space by not creating an hdf5 file for event traces. The 

authors of EQT recommend this method for larger datasets and in this thesis each 

sequence exceeded a terabyte.   

Once the DMC client is chosen, the method for pre-processing is chosen, an EQT 

trained input model is defined, and the user defined inputs for overlapping window time 
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(seconds) and P-/S-wave amplitude picking is set, the code is almost ready to be ran. The 

last step is phase association necessary to determine the nature of the arriving phases.  

Here lies one critical difference between a human picking phase arrivals and a 

machine. A human can determine the impulsive or emergent nature of an arrival by 

looking at the signal directly. EQT requires an additional step, and this is controlled by 

the phase association function within the script. The output file, Y2000.phs, must be 

created first for the traces and phases to be stored within a file and not to the current 

directory. Once the empty output file is created the phase association step is implemented 

and the output file is readily transferrable to a traditional relocation algorithm such as 

HypoInverse (Mousavi et al., 2020). Figure B.1 shows the general workflow from 

obtaining seismic data to cataloging hypocenters. 

The programmatic parameters for phase association and event detection were as 

follows:  

1.) Minimum number of stations needed for event detection equals three. 

2.) A preset overlapping window of 0.3 seconds used for template matching of 

potential events. 

3.) A P-wave probability threshold of 0.1 amplitude, S-wave probability threshold of 

0.1 amplitude.  

4.) A probability detection threshold of 0.3 for the hierarchical attentive processing of 

EQT. 
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Figure B.1 Workflow diagram. 
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Table B.1 Catalog Characteristics Table   

Characteristic  Stanley Sulphur Peak Challis 

Main shock t0 2020-03-

31T23:52:31 UTC 

2017-09-

02T23:56:53 UTC 

2014-04-

13T00:04:39 UTC 

Main shock(s) 

magnitude 

Ml 6.5 1st: Mw 4.9 

2nd: Mw 5.3 

1st: Ml 4.5 

2nd: Ml 5.0 

Main shock (lat, lon) 44.484°, -115.1361° 42.647°, -111.449° 44.62°, -114.33° 

Sequence start date 2020-03-31 2017-09-01 2014-04-17 

Station bounding box 

[deg] [latmin, latmax, 

lonmin, lonmax]  

[41.46, 47.46, -

117.64, -112.64] 

[41.80, 43.56, -

113.15, -110.10] 

 

[43.00, 45.50, -

115.00, -111.70] 

Number of Events 

(EQT) 

74672 2946 5614 

Number of Events < 

5km Vertical / 

Horizontal Error  

(i.e., quality events) 

52125 2170 2845 

Mean depth [km] 

(EQT quality events) 

8.5 5.8 7.0 
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Characteristic Stanley Sulphur Peak Challis 

Mean horizontal error 

[km] (EQT quality 

events) 

0.7 0.9 1.6 

Mean vertical error 

[km] (EQT quality 

events) 

1.2 0.8 1.4 

Mean depth [km] 

(USGS) 

8.7 8.0 8.9 

Mean horizontal error 

[km] (USGS) 

2.21 1.5231 2.66 

Mean vertical error 

[km] (USGS)  

 

3.35 3.87 5.04 

Percentage of Events 

located by EQT in 

USGS catalog 

89% 53% 85% 

Percentage of Events 

located by EQT in 

INL catalog 

97% 57% 84% 
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APPENDIX C 

Local Network Stations 
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Table C.1 Stanley Temporary Network/Stations 
Network Station Latitude Longitude Site Name Start Time End Time 
XP BANN 44.303339 -115.23458 Banner 

Summit 
2020-04-
01T20:50:32 

2021-05-
19T00:37:25 

XP DDR 44.588581 -114.82811 Diamond 
Ranch 

2020-04-
09T21:12:50 

2020-10-
26T18:54:04 

XP EPIC 44.394424 -115.17500 Epicenter 2020-04-
01T23:30:34 

2020-10-
18T20:57:45 

XP FOX 44.166052 -115.27810 Fox Creek 2020-04-
01T21:56:39 

2021-05-
19T01:21:18 

XP IRON 44.220541 -114.98112 Iron Creek 2020-04-
02T03:14:01 

2020-10-
18T19:06:30 

XP MFRD 44.423645 -115.29398 Middle Fork 
Road 

2020-04-
05T19:08:24 

2020-10-
15T19:44:03 

XP PARK 44.274849 -115.01898 PARK 2020-04-
13T17:13:06 

2020-06-
13T00:41:00 

XP PETL 43.986603 -114.86994 Pettit Lake 2020-04-
12T00:13:20 

2020-10-
28T19:08:30 

XP RDFL 44.165629 -114.90439 Red Fish 
Lake 

2020-04-
11T22:50:00 

2020-10-
28T20:09:23 

XP SAC 44.160875 -115.18114 Sacajawea 
Hot Springs 

2020-04-
01T20:44:05 

2020-10-
15T17:27:23 

XP SUNB 44.282725 -114.73131 Sunbeam 2020-05-
08T20:28:40 

2020-10-
28T17:50:51 

XP TCK 44.721792 -115.00560 Thomas 
Creek Ranch 

2020-04-
09T23:05:50 

2020-10-
26T17:30:27 

XP TRAP 44.319286 -115.09571 Trap Creek 
Campground 

2020-04-
02T02:14:13 

2020-05-
30T20:13:55 

XP TRP2 44.319394 -115.10057 Trap Creek 
Campground 
2 

2020-04-
02T20:23:26 

2020-05-
30T19:48:42 

XP WARM 44.674593 -115.68838 Warm Lake 2020-04-
10T19:43:50 

2020-10-
25T22:54:54 

GS ID11 44.11278 -115.43722 Stanley 2020-04-
05T00:00:00 

2021-05-
26T19:00:00 
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Table C.2 Sulphur Peak Temporary Networks/Stations 

Network Station Latitude Longitude Site Name Start 

Time 

End Time 

GS ID05 42.6429 -111.459 Sulphur 

Canyon Road, 

, ID, USA 

2017-09-

07 

19:05:00 

2017-10-

24 

16:15:00 

GS ID06 42.5852 -111.4518 Fossil 

Canyon, 

Idaho, USA 

2017-09-

08 

00:00:00 

2017-10-

24 

18:55:00 

GS ID07 42.5349 -112.0797 Smith Canyon 

Rd., Idaho, 

USA 

2017-09-

08 

21:40:00 

2017-10-

25 

18:28:00 

GS ID08 42.8966 -111.8389 Devils Gate, 

Idaho, USA 

2017-09-

09 

00:00:00 

2017-10-

25 

20:14:00 

GS ID09 42.2444 -111.1936 Alton, Idaho, 

USA 

2017-09-

09 

18:00:00 

2017-10-

26 

16:40:00 

GS ID10 44.5183 -110.8919 Lander 

Cutoff, WY, 

USA 

2017-09-

12 

23:00:00 

 

2017-10-

26 

18:10:00 
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  UU ASI4 42.6567 -111.6032 Soda Springs, 

ID 

2017-09-

05 

00:00:00 

2019-06-

13 

23:59:59 

UU ASI5 

(ASI6) 

42.4775 

(42.476) 

-111.3694  

(-

111.3694) 

Georgetown, 

ID 

2017-09-

06 

00:00:00 

2017-12-

04 

23:59:59 
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Table C.3 Challis Temporary Networks/Stations 

Network Station Latitude Longitude Site Name Start Time End Time 

GS ID01 44.4356 -114.1499 Challis, ID 2014-04-17 

00:00:00 

2014-09-

24 

14:09:00 

GS ID02 44.6047 -114.1844 Challis, ID, 

7.5mi N off 

of Rte 9 

2014-06-25 

00:00:00 

2014-09-

25 

00:11:00 

GS ID03 44.4534 -113.8789 East of 

Route 461 

near 

Challis, ID, 

USA 

2014-06-25 

00:00:00 

2014-09-

25 

00:11:00 

GS ID04 44.8456 -114.2429 Mogan 

Creek Rd 

Rte 129, 

ID, USA 

2014-06-25 

00:00:00 

2014-09-

25 

00:11:00 

IE DVCI 44.3736 -113.9991 Devils 

Canyon 

2015-06-24 

00:00:00 

OPEN 

UU ASI1 43.9290 -114.729 Bonanza, 

ID, U.S.A. 

2014-04-18 

00:00:00 

2014-09-

23 

23:59:59 
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UU ASI2 44.5744 -114.2577 Darling 

Creek, 

Challis, ID, 

USA 

2014-04-17 

00:00:00 

2015-07-

14 

23:59:59 

UU ASI3 44.5047 -114.2299 Challis, ID, 

USA 

2014-04-16 

00:00:00 

2014-09-

24 

23:59:59 
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Velocity Models 

  



84 

 

Below are the various velocity models I tested during the process of selecting the 

final velocity models.  

 

Table D.1 AK-135f Velocity Model 

Layer Depth of Top of the Layera (km) P-Wave Velocity (km) 

1 -3.00 5.8 

2 20.00 5.8 

3 20.10 6.5 

4 35.00 6.5 

5 35.10 8.04 

6 77.50 8.045 

aThe datum is set to be 3.10 km above sea level for this model  

The Vp/Vs ratio for this model 1.69. 

 

Table D.2 Gradient Velocity Model 

Layer Depth of Top pf the Layera (km) P-Wave Velocity (km) 

1 -3.00 5.8 

2 20.00 6.5 

3 35.00 8.04 

4 77.5 8.05 

aThe datum is set to be 3.10 km above sea level for this model.  

The Vp/Vs ratio for this model 1.69.  
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Table D.3 Sulphur Peak Velocity Model 

Layer Depth of Top pf the Layera (km) P-Wave Velocity (km) 

1 -2.29 1.9 

2 -2.09 4.7 

3 -0.29 5.1 

4 1.31 5.6 

5 2.91 6.1 

6 4.71 6.2 

7 19.71 6.8 

8 39.17 7.9 

aThe datum is set to be 2.29 km above sea level for this model. 

The Vp/Vs ratio for this model 1.73 

 

Table D.4 Challis Velocity Model  

Layer Depth of Top pf the Layera (km) P-Wave Velocity (km) 

1 -3.10 4.75 

2 -0.36 5.72 

3 4.95 6.06 

4 16 6.80 

5 38 8.00 

aThe datum is set to be 3.10 km above sea in this model. 

The Vp/Vs ratio for this model is 1.74. 
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APPENDIX E 

Other EQT Catalog Results 
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Figure E.1 Origin time difference between EQT picks and USGS (left) and INL 
(right) Stanley catalogs. The letter “n” represents the total number of events found 

by EQT in either the USGS or INL catalog.  
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Figure E.2 Origin time difference between EQT picks and USGS (left) and INL 
(right) Sulphur Peak catalogs. The letter “n” represents the total number of found 

by EQT in either the USGS or INL catalog 
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Figure E.3 Origin time difference between EQT picks and USGS (left) and INL 

(right) Challis catalogs. The letter “n” represents the total number of found by EQT 
in either the USGS or INL catalog.  
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Figure E.4 The left column of histograms shows the ERZ and the right shows 

ERH in bins of 0.1km. The rows from top to bottom are Stanley, Challis, and 
Sulphur Peak. The orange line on each plot shows the cumulative number of events 

at any point in time with the right axis being the percentage of total events in the 
EQT catalog. The data being shown is from Hypoinverse relocations using my 

velocity model for Stanley and Challis sequences and the Brumbaugh model for the 
Sulphur Peak sequence. 
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Figure E.5 Earthquake density plots of Sulphur Peak sequence are shown above. 

The first column represents the EQT picks with a localized velocity model from 
Brumbaugh (2001), the middle column shows EQT picks with the AK135f model, 
and the last column shows the USGS catalog. The bins for earthquake density are 

0.25 x 0.25 km horizontal bins. The black line is the EBLF (U.S. Geological Survey, 
2022c). The highest density per bin is set to be 80 earthquakes for the first two 

columns tested by EQT. The middle row represents aftershock depth distribution, 
the labels are the mean, followed by the standard deviation, and the total number of 

events. The last row shows the travel time residual error for each column 
accompanied by the mean and standard deviation.   
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Figure E.6 Earthquake density plots of Challis sequence are shown above. The 

first column represents the EQT picks with a localized velocity model from Shemeta 
(1989), the middle column shows EQT picks with the AK135f model, and the last 

column shows the USGS catalog. The bins for earthquake density are 0.5 x 0.5 km 
horizontal bins. The highest density per bin is set to be 80 earthquakes for the first 
two columns tested by EQT. The black line is the Lost River fault (U.S. Geological 

Survey, 2022c). The middle row represents aftershock depth distribution, the labels 
are the mean, followed by the standard deviation, and the total number of events. 

The last row shows the travel time residual error for each column accompanied by 
the mean and standard deviation.   
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