
DATA-DRIVEN PASSIVITY-BASED CONTROL OF

UNDERACTUATED ROBOTIC SYSTEMS

by

Wankun Sirichotiyakul

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Boise State University

August 2022

© 2022

Wankun Sirichotiyakul

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Wankun Sirichotiyakul

Dissertation Title: Data-Driven Passivity-Based Control of Underactuated Robotic
Systems

Date of Final Oral Examination: 17 May 2022

The following individuals read and discussed the dissertation submitted by student
Wankun Sirichotiyakul, and they evaluated the presentation and response to questions
during the final oral e xamination. They found that the student passed the final oral
examination.

Aykut Satici, Ph.D. Chair, Supervisory Committee

Hao Chen, Ph.D. Member, Supervisory Committee

John Chiasson, Ph.D. Member, Supervisory Committee

Alireza Mohammadi, Ph.D. Member, Supervisory Committee

The final reading approval of the dissertation was granted by Aykut Satici, Ph.D.,
Chair of the Supervisory Committee. The dissertation was approved by the Graduate
College.

ABSTRACT

Classical control strategies for robotic systems are based on the idea that feedback

control can be used to override the natural dynamics of the machines. Passivity-based

control (Pbc) is a branch of nonlinear control theory that follows a similar approach,

where the natural dynamics is modified based on the overall energy of the system.

This method involves transforming a nonlinear control system, through a suitable

control input, into another fictitious system that has desirable stability characteristics.

The majority of Pbc techniques require the discovery of a reasonable storage function,

which acts as a Lyapunov function candidate that can be used to certify stability.

There are several challenges in the design of a suitable storage function, including:

1) what a reasonable choice for the function is for a given control system, and 2)

the control synthesis requires a closed-form solution to a set of nonlinear partial

differential equations. The latter is in general difficult to overcome, especially for

systems with high degrees of freedom, limiting the applicability of Pbc techniques.

A machine learning framework that automatically determines the storage function

for underactuated robotic systems is introduced in this dissertation. This framework

combines the expressive power of neural networks with the systematic methods of the

Pbc paradigm, bridging the gap between controllers derived from learning algorithms

and nonlinear control theory. A series of experiments demonstrates the efficacy and

applicability of this framework for a family of underactuated robots.

iv

TABLE OF CONTENTS

ABSTRACT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

1.1 Summary of Contributions . 3

1.2 Comparisons to Related Work . 5

1.3 Summary of Publications . 6

2 Preliminaries and Background . 8

2.1 Hamiltonian Mechanics . 8

2.2 Passive System Theory . 10

2.2.1 Stability of Passive Systems . 13

2.2.2 Passivity-Based Control (Pbc) . 14

2.2.3 Interconnection and Damping Assignment (IdaPbc) 16

2.3 Transverse Coordinates . 19

2.4 Neural Ordinary Differential Equations . 21

2.5 Sum of Squares Polynomials . 23

3 Neural Passivity-Based Control (NeuralPbc) 27

3.1 Problem Statement . 27

v

3.2 Solving the Optimization Problem . 31

3.3 Conclusion . 33

4 Neural Interconnection and Damping Assignment Passivity-Based

Control (NeuralIdaPbc) . 35

4.1 Problem Statement . 36

4.1.1 Stability Analysis . 37

4.1.2 Constraints . 40

4.1.3 Reducing the Sample Space . 42

4.1.4 Solving the Optimization Problem . 43

4.2 Conclusion . 44

5 Experiments . 46

5.1 Inertia Wheel Pendulum . 46

5.1.1 System Model . 47

5.1.2 Hardware Implementation . 48

5.1.3 NeuralPbc Experiments . 51

5.1.4 NeuralIdaPbc Experiments . 53

5.2 Cart-Pole . 58

5.2.1 System Model . 58

5.2.2 NeuralPbc Experiments . 59

5.3 Acrobot . 63

5.3.1 System Model . 64

5.3.2 Hardware Implementation . 64

5.3.3 NeuralPbc Experiments . 65

5.4 Ball-Beam System . 67

vi

5.4.1 System Model . 68

5.4.2 NeuralIdaPbc Experiments . 69

6 Conclusions and Future Directions . 72

REFERENCES . 74

vii

LIST OF TABLES

5.1 Inertia Wheel Pendulum (IWP) Model Parameters 49

5.2 IWP: Neural net architectures for NeuralIdaPbc 54

5.3 Cart-pole Model Parameters . 59

5.4 Acrobot Model Parameters . 65

5.5 Ball-beam System: Neural net architectures for NeuralIdaPbc 70

viii

LIST OF FIGURES

2.1 Example of a Passive System . 12

2.2 Visualization of the Transverse Coordinates . 20

3.1 NeuralPbc Sampling Strategy . 32

5.1 IWP: System Schematic . 47

5.2 IWP: Hardware Implementation Diagram . 49

5.3 IWP: Design Iterations . 50

5.4 IWP: Simulated NeuralPbc experiments . 52

5.5 IWP: Real-world NeuralPbc experiments . 53

5.6 IWP: NeuralIdaPbc Training Results (SoS V θ
d) 55

5.7 IWP: Simulated NeuralIdaPbc Experiments (SoS V θ
d) 55

5.8 IWP: NeuralIdaPbc Training Results (Neural Net V θ
d) 56

5.9 IWP: Simulated NeuralIdaPbc Results (Neural Net V θ
d) 56

5.10 IWP: Real-world NeuralIdaPbc Experiments 57

5.11 Cart-Pole: System Schematic . 58

5.12 Cart-pole: Learned Control Policy . 60

5.13 Cart-pole: Simulated NeuralPbc Experiment 61

5.14 Cart-pole: Real-world NeuralPbc Experiment 62

5.15 Acrobot: System Schematic . 63

5.16 Acrobot: Simulated NeuralPbc Experiment . 67

ix

5.17 Acrobot: Real-world NeuralPbc Experiment 68

5.18 Ball-Beam: System Schematic . 69

5.19 Ball-beam: NeuralIdaPbc Training Results . 70

x

1

CHAPTER 1

INTRODUCTION

Control problems for underactuated robotic systems have been addressed by many

researchers, using various design strategies ranging from bang-bang control, energy-

based approaches, and many others [1, 2, 3]. Passivity-based control [4, 5], which

may be viewed as a generalization of energy-shaping, has also been proven effective

for designing controllers for nonlinear systems. The Interconnection and Damping

Assignment (IdaPbc) is one of the more prominent techniques in this family, thanks

to its applicability to a large class of physical systems [6, 7, 8, 9].

The success of IdaPbc hinges on the ability to solve a set of nonlinear partial

differential equations (PDE) from which the control function is derived. In general,

control methodologies that involve solving nonlinear PDEs, such as optimal control

(i.e. the Hamilton-Jacobi-Bellman equation) and feedback linearization, are noto-

riously computationally expensive. To overcome these challenges, many researchers

have turned to learning-based control techniques that aim to solve the control problem

using data-driven approaches. In this category, learning algorithms utilize data to

find a control policy such that the closed-loop behavior of the system optimizes a

certain objective given by some notion of accumulative reward/cost. One of the most

commonly used techniques in this area of research is reinforcement learning (RL) [10],

which seeks a direct mapping from system states to control inputs through repeated

2

interactions with the environment.

Reinforcement learning algorithms have been used in multiple control tasks such as

robot locomotion and manipulation [11, 12] and control of underactuated systems [13].

Despite its success, RL approaches typically suffer from poor sample complexity,

slow convergence, and the lack of interpretability of the resulting control policy.

These shortcomings stem from the disregard for the potential geometric or algebraic

structures that exist in a typical robotic control system. While this increases the

flexibility of the approach, it also increases tremendously the amount of training data

required. In the analysis of physical control systems, the cost of data acquisition to

use these algorithms is effectively prohibitive. Furthermore, despite being the central

concern of any control problem, stability considerations in RL-based design methods

are often limited to heuristic algorithms and remain an open research question [14, 15].

Recent efforts in machine learning research have unsurprisingly indicated that it is

advantageous to inject prior knowledge about the system into the learning framework.

The Hamiltonian Neural Network [16] is among the first methods that attempt to

incorporate the structure of dynamical systems into a machine learning framework.

Using system states as data, this approach finds a neural network that represent the

Hamiltonian of the system. The equation of motion is then derived from the learned

Hamiltonian. This approach leads to predictions of system trajectories that obey

conservation of energy much more accurately than directly inferring the equations of

motion of the system, i.e. learning ẋ = f(x) directly. Neural ordinary differential

equation (ODE) [17], is another framework that connects deep neural networks to

continuous-time dynamical systems. This approach has provided researchers with a

modeling basis for incorporating physical structures into machine learning problems,

e.g. using Neural ODE to discover the Hamiltonian associated with a mechanical

3

system from recorded trajectories [18]. The learned Hamiltonian is then used to

devise an energy-shaping controller. Physics-Informed Neural Network (PINN) [19]

incorporates prior scientific knowledge in the form of partial differential equations in

neural network optimization problems. PINN has led to a series of notable results

across a range of problems involving high-dimensional PDEs such as fluid mechanics

and finite element analysis. In [20], the control function based on a Pbc structure is

parameterized by a set of user-defined basis functions. An actor-critic method that

minimizes the error from the robot’s current state to desired state is used to learn

the coefficients of these basis functions.

These methods provide an opportunity to use the approximation capabilities of

neural networks in existing control design methodologies that were derived from

first principles, taking full advantage of the available knowledge about the control

system at hand. This dissertation aims to use similar tools to merge many of the

clever techniques researchers have proposed with the flexibility of machine learning

approaches to design controllers for a family of underactuated robotic systems.

1.1 Summary of Contributions

We introduce two data-efficient learning frameworks that blend the techniques from

passivity-based control with the well-known capability of neural networks as universal

function approximators. The control problem is cast as an optimization problem that

searches for a suitable storage function, an essential concept in Pbc that facilitates

the stability analysis of the closed-loop system and informs control synthesis.

The first framework proposed is referred to henceforth as NeuralPbc, wherein

the storage function is represented by a neural network, and the control law is

4

parameterized by the gradients of the neural net. We develop a training algorithm

that efficiently finds a suitable set of parameters such that the corresponding control

law drives the system toward some desired equilibrium point. Unlike traditional

Pbc techniques, this framework is able to incorporate the optimization of any given

performance objective defined in terms of the behavior of the closed-loop trajectories

of the system. The contributions of NeuralPbc are summarized as follows:

1. Cast the Pbc problem as an optimization problem that searches for a set of

neural network parameters that best represent the storage (energy-like) function

2. Develop an algorithm that efficiently uses the available data, in the form of sys-

tem trajectories, to train the parameters such that the controller’s performance

encoded in the notion of accumulated loss is optimized.

3. Demonstrate the efficacy and robustness of our framework through a series of

experimental underactuated robotic systems: the inertia wheel pendulum, the

cart-pole system, and the Acrobot.

The second proposed framework is referred to as NeuralIdaPbc. This approach

aims to make a transparent connection between classical Lyapunov stability and

controllers derived from learning algorithms. Instead of attempting to infer stabil-

ity from controllers emerging from black-box approaches, we leverage the IdaPbc

method to design a learning framework in which stability is an intrinsic property.

The contributions of NeuralIdaPbc are summarized as follows:

1. Formulate an optimization problem that achieves the objective of IdaPbc,

2. Solve the optimization problem using a combination of deep neural networks

and/or Sum-of-Squares (SoS) polynomials as surrogates for the solution,

5

3. Show that as the surrogates converge to the true solution, our method yields a

faithful IdaPbc control law, preserving the intrinsic stability property,

4. Demonstrate the efficacy of the controllers through experiments on the inertia

wheel pendulum and the ball-beam system.

1.2 Comparisons to Related Work

In this subsection, we compare our work to related methods that incorporate prior

physical knowledge in machine learning frameworks, particularly in the subject of

dynamics and control of underactuated systems.

The Symplectic-ODE method [18] uses Neural ODE [17] to learn the robot’s

Hamiltonian dynamics using system trajectories as data. Once the Hamiltonian

dynamics is learned, the authors show that the learned model can be used to develop

controllers using familiar Pbc techniques [21]. In our NeuralPbc approach, the aim

is not to learn the dynamics of the system. Instead, we leverage the known dynamics

and incorporate it into a data-driven control design framework.

In [19], the approach of using neural networks as surrogates for solving PDEs

is referred to as Physics Informed Neural Network (PINN). The NeuralIdaPbc

framework we present here resembles the PINN approach to a small degree, as both

approaches offer a basis to inject physical laws in the form of PDEs into a machine

learning framework. However, in our work, the solution surrogates for the PDEs are

constrained differently. In PINN, the boundary conditions and other constraints are

represented in the objective function, whereas we constrain by the construction of the

relevant physical quantities, such as the positive-definiteness of the mass matrix, and

6

the boundedness of the potential energy. Our approach ensures that these quantities

are physically valid even when the training has not yet converged.

1.3 Summary of Publications

The contents of Chapter 3 (NeuralPbc) appear in the following publications:

1. [22] W. Sirichotiyakul and A. C. Satici, “Data-driven design of energy-shaping

controllers for swing-up control of underactuated robots,” in International Sym-

posium on Experimental Robotics. Springer, 2020, pp. 323-333.

2. [23] W. Sirichotiyakul and A. C. Satici, “Combining energy-shaping control of

dynamical systems with data-driven approaches,” in 2021 IEEE Conference on

Control Technology and Applications (CCTA). IEEE, 2021, pp. 1121-1127.

The contents of Chapter 4 (NeuralIdaPbc) appear in the following publication:

1. [24] W. Sirichotiyakul and A. C. Satici, “Data-Driven Passivity-Based Con-

trol of Underactuated Mechanical Systems via Interconnection and Damping

Assignment,” in International Journal of Control. (Accepted for publication

March 2022).

The contents of this dissertation lay the groundwork for an ongoing research that

extends NeuralPbc and NeuralIdaPbc to account for uncertainty in the param-

eters of the nominal dynamical model used during training. Preliminary results from

this research area are presented in the following articles:

1. [25] W. Sirichotiyakul, N. A. Ashenafi, and A. C. Satici, “Robust Data-Driven

Passivity-Based Control of Underactuated Systems via Neural Approximators

7

and Bayesian Inference,” in 2022 American Control Conference, ACC. IEEE,

Accepted for publication January 2022.

2. N. A. Ashenafi, W. Sirichotiyakul, and A. C. Satici, “Robust Passivity-Based

Control of Underactuated Systems via Neural Approximators and Bayesian In-

ference,” in 2022 Conference on Decision and Control, CDC. IEEE. (Submitted

for review March 2022).

3. W. Sirichotiyakul, N. A. Ashenafi, and A. C. Satici, “Robust Interconnection

and Damping Assignment Passivity-Based Control via Neural Bayesian Infer-

ence,” in IEEE Transactions on Automatic Control. (Submitted for review

April 2022).

8

CHAPTER 2

PRELIMINARIES AND BACKGROUND

This chapter aims to provide the reader with the preliminary background to formulate

the passivity-based control design as a neural network optimization problem. In Sec-

tion 2.1 we provide a brief overview of the connection between Lagrangian mechanics

to Hamiltonian mechanics, the modeling basis used in this dissertation. Section 2.2

introduces the concepts of passive systems and their inherent stability properties.

Properties of passive systems are the fundamental concepts for the control synthesis in

a family of techniques called passivity-based control (Pbc), described in Section 2.2.2.

The machine learning frameworks introduced in Chapters 3 and 4 require familiarity

with transverse coordinates, adjoint sensitivity analysis, and sums-of-square (SoS)

polynomials. A cursory exposition of these subjects are presented in Section 2.3

through Section 2.5, and references for further study are provided therein.

2.1 Hamiltonian Mechanics

Following [26], we begin by stating the equations of motion of a physical system

from the Lagrangian point of view. Let x ∈ R2n denote the state of a conservative

dynamical system. The state x may be represented in terms of the generalized

positions q ∈ Rn and their velocities, i.e. x = (q, q̇). The evolution of the system

in the configuration space from point to another is governed by the Euler-Lagrange

9

equation:
d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0, (2.1)

where L is the Lagrangian, defined as the difference between kinetic energy T and

potential energy T :

L = T − V .

It can be shown, using techniques of calculus of variations, that the dynamic path of

a system described by the Lagrangian L from time t = t0 to t = t1 coincide with the

extremal of the functional

Φ =
∫ t1

t0
L(q, q̇, t) dt.

This notion is called the Hamilton’s principle of stationary action. This principle

reduces the problem of deriving the equations of motion of a system to an optimization

problem of a functional.

The Lagrangian formulation of mechanics is not the only possible way to describe

the motion of a system. There is also the Hamiltonian formulation, where we describe

the state of the system in terms of the generalized coordinates q and momenta p. For

simplicity, we restrict ourselves to mechanical systems and view the Hamiltonian

formulation as a consequence of the Euler-Lagrange equation and a simple change

of variables. We begin by defining a conjugate variable p, called the generalized

momenta, as follows

p ,
∂L(q, q̇, t)

∂q̇
. (2.2)

The Hamiltonian is defined as the Legendre transform of the Lagrangian with respect

to the conjugate variable p, i.e.

10

H(q, p, t) = p>q̇ − L(q, q̇, t) (2.3)

For most mechanical systems where the kinetic energy is a homogeneous quadratic

function in q̇, the Hamiltonian is equivalent to the total energy, i.e.

H = T + V .

Then, from the Euler-Lagrange equation (2.1), we can directly deduce the Hamilton’s

canonical equations of motion as

q̇

ṗ

 =

 0 I

−I 0


∇qH

∇pH

 . (2.4)

These equations are 2n-dimensional, first-order ordinary differential equations.

2.2 Passive System Theory

In this subsection, a brief overview of the theory of passive systems is treated follow-

ing [5, 27], laying the foundation for the work developed in this dissertation. Consider

the state space of the general form

Σ :
ẋ = f(x, u),

y = h(x, u),
(2.5)

where x ∈ X ⊂ R2n is the local coordinate for a 2n-dimensional state space, u ∈

U ⊂ Rm is the control input, and y ∈ Y ⊂ Rm is the output. We assume that

f : R2n×Rm → R2n is locally Lipschitz, h : R2n×Rm → Rm is continuous, f(0, 0) = 0

11

and h(0, 0) = 0. The state of a robotic system may be represented in terms of the

generalized positions q ∈ Rn and momenta p ∈ Rn, i.e., x = (q, p).

Definition 2.2.1 (Dissipative Property). The system Σ is dissipative with re-

spect to a supply rate s if there exists a nonnegative function H : X → R+, called

the storage function, such that the following inequality holds for all initial conditions

x(t0) = x0 at any time t0, all input function u, and all t1 ≥ t0:

H(x(t1)) ≤ H(x(t0)) +
∫ t1

t0
s(u(t), y(t)) dt. (2.6)

The inequality (2.6) is called the dissipation inequality. It states that the energy

stored in the system at a future time t1 is at most equal to the energy stored at the

present time t0, plus the total externally supplied energy s(t) accumulated during the

time interval (t0, t1). That is, in dissipative systems, there is no generation of energy,

and only the internal dissipation of energy is possible.

A dynamical system that is dissipative with respect to a particular choice of the

supply rate function s is passive.

Definition 2.2.2 (Passive Property). The system Σ with U ,Y ⊂ Rm is passive if

it is dissipative with respect to the supply rate s(u, y) = u>y. That is, Σ is passive if

there exists a continuously differentiable storage function H(x) such that

u>y ≥ Ḣ = ∂H
∂x

f(x, u), ∀ (x, u) ∈ R2n × Rm.

Moreover, Σ is said to be

• input strictly passive if there exists a > 0 such that u>y ≥ Ḣ + a ‖u‖2

• output strictly passive if there exists b > 0 such that u>y ≥ Ḣ + b ‖y‖2.

12

• strictly passive if there exists c > 0 such that u>y ≥ Ḣ + c ‖x‖2.

Example 2.2.3. Consider the electrical circuit shown in Figure 2.1. By Kirchoff’s

law, the system is described by the differential equation

Σe : v = Ri + 1
C

∫ t

0
i(τ) dτ + L

di

dt
.

where v is the source voltage, i is the current, L is the inductance, R is the resistance,

and C is the capacitance. Rearranging, we have

vi−Ri2 = d
dt

 1
2C

(∫ t

0
i(τ) dτ

)2

︸ ︷︷ ︸
V

+ 1
2Li2

︸ ︷︷ ︸
T

 .

Let H = V + T , and integrate to obtain

H(t)−H(0) =
∫ t

0
v(τ)i(τ) dτ −

∫ t

0
Ri2(τ) dτ ≤

∫ t

0
v(τ)i(τ) dτ.

Therefore, the system Σe is passive with respect to the supply rate s(t) = v(t)i(t)

and the storage function H.

Figure 2.1: The RLC circuit is a passive system with the storage function H = V+T .

13

2.2.1 Stability of Passive Systems

Passivity lays the groundwork as an important tool for the analysis of autonomous

dynamical systems, as the property relates nicely to Lyapunov and L2 stability. We

provide a cursory exposition of this important connection in the following subsec-

tion. The interested reader may refer to [5, 27] and references therein for a detailed

explanation.

Lemma 2.2.4. If the system Σ given by (2.5) is passive with a positive definite

storage function H(x), then the origin of ẋ = f(x, 0) is stable.

Proof. Take H as a Lyapunov function candidate for ẋ = f(x, 0). Then, Ḣ ≤ 0.

To prove asymptotic stability of the origin of f , we apply LaSalle’s invariance

principle by considering a case where Ḣ = 0 when y = 0, and then require the

additional property that

y(t) ≡ 0 ⇒ x(t) ≡ 0 (2.7)

for all solutions of (2.5). Equivalently, this requires that no solutions of f(x, 0) can

stay identically in the set {x ∈ R2n |h(x, 0) = 0} except for the trivial solution

x(t) ≡ 0. The property (2.7) may be interpreted as an observability condition.

Definition 2.2.5. The system Σ is zero-state observable if no solution of ẋ = f(x, 0)

can stay identically in {x ∈ R2n |h(x, 0) = 0} other than the trivial solution x(t) ≡ 0.

Lemma 2.2.6. The origin of (2.5) is asymptotically stable if the system is

• strictly passive, or

• output strictly passive and zero-state observable.

14

Furthermore, if the storage function is radially unbounded, the origin will be globally

asymptotically stable.

Proof. See [27] for the proof if this lemma.

These results provide the fundamental concepts used in passivity-based control, a

paradigm in which the control objective is to transform the system Σ such that the

closed-loop system is rendered passive with respect to some desired storage function.

This dissertation introduces a systematic way to automatically find a suitable storage

function and synthesize controllers using Pbc techniques. The following subsection

provides the preliminary background on the subject of Pbc.

2.2.2 Passivity-Based Control

Let x ∈ X ⊂ R2n denote the state of the robot. The state x is represented in terms

of the generalized positions q ∈ Rn and momenta p ∈ Rn, i.e., x = (q, p). The

Hamiltonian H of the robot is defined as

H(q, p) = 1
2p>M−1(q)p + V (q), (2.8)

where M : Rn → Sn×n
++ is the positive-definite mass matrix, and V : Rn → R represents

the potential energy. Henceforth, we denote the positive definiteness of a matrix with

the notation � 0, and the positive semidefiniteness with the notation � 0. The

system’s equations of motion can then be expressed as

q̇

ṗ

 =

 0 In

−In 0


∇qH

∇pH

+

 0

G(q)

u,

y = G>q̇,

(2.9)

15

where ∇x denotes vector of partial derivatives of a function with respect to x, G(q) ∈

Rn×m is the input matrix, In denotes the n× n identity matrix, and u ∈ U ⊂ Rm is

the control input.

Definition 2.2.7. The system (2.9) is underactuated if rank G = m < n.

The quintessential idea of Pbc [5] is to design the control input u with the

objective of imposing a desired storage function Hd : X → R on the closed-loop

system, rendering it passive. In the standard Pbc formulation, the control law

u comprises two fundamental steps: 1) energy shaping ues where the total energy

function of the system is modified in order to assign the new desired equilibrium q?,

and 2) damping injection udi to achieve asymptotic stability

u = ues(x) + udi(x), (2.10)

where ues and udi are selected such that the closed loop dynamics satisfies

Hd(x(t))−Hd(x(0)) =
∫ t

0
u>

di(τ)y(τ) dτ − d?(x),

where d? ≥ 0 is the desired damping dissipation. For mechanical systems, one solution

to the Pbc problem is of the form

ues(x) = −G† (∇qHd −∇qH) , (2.11)

udi(x) = −Kv y, (2.12)

where G† =
(
G>G

)−1
G>, and Kv � 0 is the damping gain matrix. The most straight-

forward solution is to assign a quadratic potential energy such that the minimum is

16

at q?, i.e., with Kp � 0.

Hd(q, p) = 1
2p>M−1(q)p + 1

2(q − q?)>Kp(q − q?). (2.13)

Note that this choice is untenable for most underactuated systems and is only suitable

for fully actuated or redundant systems. There is, in general, an infinite number of

choices for Hd that achieves the objective of Pbc. In Chapter 3, we embed Pbc

techniques into a machine learning framework with an objective of automatically

discovering a suitable choice for Hd such that a certain objective function, defined

based on the general behavior of the closed-loop trajectories, is optimized.

Since the first introduction of Pbc in the 1980s, control researchers have proposed

several systematic methods to design a suitable Hd, leading to a variety of Pbc tech-

niques. Extensions of the Pbc approach introduce additional algebraic structure to

the system in order to improve performance and ease stability analysis for a family of

dynamical systems. In the following subsection, we present one such extension called

the interconnection and damping assignment passivity-based control (IdaPbc) [8],

which is a prominent approach in the domain of underactuated mechanical systems.

2.2.3 Interconnection and Damping Assignment

The materials described in this subsection are used in Chapter 4 of this dissertation.

In IdaPbc, the closed-loop dynamics is chosen to take the port-controlled Hamilto-

nian (PCH) form given by

q̇

ṗ

 =
[
Jd(q, p)−Rd(q, p)

] ∇qHd

∇pHd

 (2.14)

17

where Jd and Rd are, respectively, the desired interconnection and damping matrices:

Jd = −J>
d =

 0 M−1Md

−MdM−1 J2(q, p)

 , Rd = R>
d =

0 0

0 GKvG>

 � 0,

with J2 = −J>
2 and Kv � 0 is a tunable gain matrix for damping injection. The

storage function Hd is chosen as a Hamiltonian of a fictitious mechanical system, i.e.,

Hd is quadratic in the system momenta p:

Hd(q, p) = 1
2p>M−1

d (q)p + Vd(q), (2.15)

where Md(q) � 0 is the closed-loop, positive definite mass matrix and Vd : Rn → R is

the closed-loop potential energy function that satisfies

q? = argmin
q

Vd(q). (2.16)

With the control law of the form given by (2.10), the energy shaping term ues may

be obtained by equating the system given by (2.9) to the one given by (2.14)

 0 I

−I 0


∇qH

∇pH

+

0

G

 (ues + udi) =

 0 M−1Md

−MdM−1 J2(q, p)−GKvG>


∇qHd

∇pHd

 .

With the damping injection term chosen as

udi = −KvG>∇pHd, (2.17)

the equation of motion is reduced to

18

 0 I

−I 0


∇qH

∇pH

+

0

G

ues =

 0 M−1Md

−MdM−1 J2(q, p)


∇qHd

∇pHd

 .

The first row of these equations is trivially satisfied, revealing the matching condition

Gues = ∇qH −MdM−1∇qHd + J2M
−1
d p. (2.18)

If the system is underactuated, G is not invertible, and Equation (2.18) can only be

solved if the following constraint is satisfied for any choice of ues:

G⊥
{
∇qH −MdM−1∇qHd + J2M

−1
d p

}
= 0. (2.19)

Equation (2.19) is a set of nonlinear PDEs, which is often referred to as the matching

equations in the literature, parametrized by Md, Vd, and J2. The skew-symmetric

matrix J2 serves as free parameters to ease the burden of solving the PDEs. Once a

suitable Hd is determined, the energy shaping term is given by

ues = G†
(
∇qH −MdM−1∇qHd + J2M

−1
d p

)
, (2.20)

where G† =
(
G>G

)−1
G> is the left pseudo-inverse of G.

The success of the IdaPbc approach hinges on the ability to obtain the closed-

form solutions to the nonlinear PDEs given by (2.19). That is, as long as the choice

of Hd satisfies (2.19) and (2.16), the closed-loop dynamics takes on the form given

by (2.14), and the following proposition reveals the stabilization properties of the

passivity-based control law u = ues + udi:

Proposition 2.2.8. The closed-loop Hamiltonian Hd in IdaPbc is, by construction,

19

a Lyapunov function for the closed-loop system. The time-derivative of Hd is

Ḣd = (∇qHd)> q̇ + (∇pHd)> ṗ = (∇pHd)>
(
J2 −GKvG>

)
∇pHd

≤ −λmin{Kv}
∣∣∣(∇pHd)> G

∣∣∣2 ≤ 0,

where the last inequality follows from J2 = −J>
2 and Kv � 0. Therefore, as long as

Vd is bounded from below and the conditions (2.16) and (2.19) are satisfied, (q?, 0) is

a stable equilibrium of the system (2.14).

As with other nonlinear PDEs, solving the matching equations is computationally

expensive. Since the original introduction of the IdaPbc approach in the early

2000s, researchers have worked to classify a family of dynamical systems to which the

method is applicable. In [8], the authors identified a class of underactuated mechanical

systems where the matching equations are solvable. Chapter 4 of this dissertation

presents a way to automatically and efficiently find an approximate solution to the

matching equations.

2.3 Transverse Coordinates

One of the performance objectives considered for the control design framework in-

troduced in this dissertation is the ability to track a given orbit or trajectory γ?.

An orbit is the solution (or flow) to the (ODE) (2.5) starting at a given x(t0) = x0.

This subsection describes an efficient method to quantify how closely the system is

tracking this orbit, using the concept of transverse coordinates [28, 29, 30].

The transversal coordinate system is adapted to the desired orbit γ?. In these

coordinates, the error between the current state x and γ? can be efficiently computed.

20

(a) Single Poincaré section [31] (b) Moving Poincaré sections [28]

Figure 2.2: Visualization of Poincaré section

In order to define this adapted coordinate system, we start by explaining the idea of

a moving Poincaré section.

Given a state x ∈ R2n in the original coordinate system, define τ , a scalar

coordinate aligned with the flow of the system along the desired orbit γ?. At each τ ,

we define a 2n − 1 dimensional hypersurface transversal to this orbit, resulting in a

family of hypersurfaces S (τ), mimicking the behavior of a Poincaré section that is

moving along the orbit. This is visualized in Figure 2.2.

The remaining coordinates, denoted x⊥ ∈ R2n−1 and referred to as the transverse

coordinates, are defined such that they represent the location of the state x on each

S (τ) relative to the desired orbit, with x⊥ = 0 implying that x = γ?(τ). Once the new

coordinate system is constructed, we then define a smooth mapping Π : x 7→ (x⊥, τ)

that relates original coordinate system to the transversal coordinates

x⊥(τ) = Π(τ) x, x ∈ S (τ). (2.21)

This construction gives us a continuous representation of the system’s evolution

21

along the orbit, as opposed to at a single section when using the Poincaré map.

Moreover, it allows for an efficient definition of a penalty or loss incurred whenever

the state x spends time away from the desired orbit, e.g. by requiring that penalty

vanishes everywhere along the orbit, and is strictly positive everywhere away from the

orbit. The concept of transverse coordinates is used in the NeuralPbc framework

presented in Chapter 3.

2.4 Neural Ordinary Differential Equations

Neural ordinary differential equation (ODE) is a deep learning model recently devel-

oped in [17]. Starting with the initial value problem (IVP)

ẋ = f(x), x(t0) = x0,

this method parametrizes the dynamics with a neural network fθ(x) and uses time

series data x̂ = (x̂t0 , . . . , x̂tf
) to learn to approximate any sufficiently smooth f .

Collecting training data for fθ consists of numerically integrating the IVP to obtain

a solution xθ(t) with respect to the current choice of the neural network parameters

θ. Training a neural ODE then amounts to minimizing a cost function, for example,

J(θ) =
tf∑

τ=t0

∥∥∥∥xθ(τ)− x̂τ

∥∥∥∥.
This optimization problem may be solved with any gradient-based method, as long

as the computation of the gradient ∇θJ is feasible. It is not immediately clear how

this quantity may be computed. Employing the chain rule yields that this amounts

22

to calculating ∂x/∂θ, the gradients of the solution xθ(t) with respect to the neural

network parameters.

From a software implementation perspective, the quantity ∂x/∂θ may be obtained

by leveraging the recent development of automatic differentiation (AD) suites avail-

able in most modern machine learning libraries, e.g. PyTorch, Flux.jl, TensorFlow.

However, combining AD with numerical ODE solvers introduces numerical errors in

the gradients. Furthermore, the required memory footprint is significant, limiting

their applicability in practice.

To combat memory consumption issues, the application of adjoint sensitivity

methods in a machine learning framework is first introduced by [17]. This method

computes the desired derivative ∂J/∂θ by first defining another ODE, known as the

adjoint problem:
dλ

dt
= −λ

∂f

∂x
.

The desired gradient of the loss function may be computed through the following

expression that depends on the solution to the adjoint problem:

∂J

∂θ
= λ(t0)

∂f

∂x
.

This approach is based on Pontryagin’s maximum principle [32] and is quite mathe-

matically elegant. The adjoint problem needs to be solved backwards in time, which

may be done numerically [33, 34]. However, the numerical methods for solving the

adjoint problem require specialized implementations of the solver. Furthermore, they

may require storing multiple forward solutions of the ODE to implement; hence, their

execution can quickly become quite computationally costly. These obstacles make it

difficult for researchers to apply the adjoint method, as most of the available numerical

23

differential equation solvers are not designed to accommodate this feature.

Recent advances in differentiable programming has enabled more efficient compu-

tations of the desired gradients through a solver implemented entirely in a language

with pervasive AD. In [35], several automatic differentiation systems and the adjoint

method are generalized to enable efficient gradient computation through solutions of

ODEs. In Chapter 3, we leverage this recent development for the computation of the

relevant gradients in our control design framework.

2.5 Sum of Squares Polynomials

Control synthesis using passivity-based control techniques relies on the discovery of

a storage function, one manifestation of which may be the total energy in mechanical

systems. One of the qualifications of a storage function is a well-defined, isolated

minimum at some desired equilibrium point. This allows the storage function to be

conveniently used as a Lyapunov function candidate to prove stability.

Without loss of generality, the isolated minimum condition can be imposed by

choosing a storage function that is nonnegative and attains a value of zero at the

desired equilibrium. A sum of square (SoS) polynomial offers a computationally

efficient way to achieve this property. In this section, we provide the necessary

background relating positive semidefinite matrices to SoS polynomials. We emphasize

the aspect of computing the SoS decomposition. The interested reader may refer

to [36, 37] for more information.

Definition 2.5.1 (SoS Polynomial). A polynomial P ∈ R[x] of degree d = η1 +

· · ·+ ηn,

24

P (x) =
∑

η1+···+ηn≤d

cηxη1
1 · · ·xηn

n , ηi ∈ N,

is a sum-of-squares if there exist a finite number of polynomials Pi ∈ R[x] such that

P can be written as P (x) = ∑
i P 2

i (x).

Note that if P (x) is an SoS, then P (x) ≥ 0 ∀x ∈ Rn. David Hilbert proved

that not every positive semidefinite polynomial can be written as a sum-of-squares.

However, in 1927, Artin’s Theorem answered Hilbert’s seventeenth problem by stating

that every semidefinite polynomial is a sum-of-squares of rational functions [38]. This

leads us to the question: When can a polynomial be written as a sum-of-squares?

Theorem 2.5.2. [39] A polynomial P ∈ R[x] of degree 2d has a sum-of-squares

decomposition if and only if there exists a positive semidefinite matrix Q such that

P (x) = µ>(x)Qµ(x),

where µ is the vector of all monomials in x1, . . . , xn of degree less than or equal

to d, i.e. µ(x) =
[
1 x1 x2 . . . xn x2

1 x1x2 . . . xd
n

]
. There exist

(
n+d

n

)
such

monomials.

This representation theorem, based on the Gram matrix method, implies that the

set of sum-of-squares polynomials are parametrized by the (convex) set of positive

semidefinite matrices. Searching for a SoS polynomial can be formulated as an

optimization problem that searches for a positive semidefinite matrix Q that will

ensure the nonnegativity of P (x) for any x ∈ Rn while satisfying a set of affine

constraints. Note that this is a finite-dimensional, convex optimization problem, which

can be solved efficiently via semidefinite programming [40].

25

Example 2.5.3. An example taken from [37] illustrates the theorem. Consider the

polynomial in two indeterminates of degree 4

P (x) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2.

We want to check whether P can be written as a sum-of-squares polynomial. By

Theorem 2.5.2, we search for a matrix Q such that with the vector of monomials

defined as µ(x) =
[
x2

1 x2
2 x1x2

]>
, we have

p(x) = µ>(x)Qµ(x)

= µ>(x)


q11 q12 q13

q12 q22 q23

q13 q23 q33

µ(x)

= q11x
4
1 + q22x

4
2 + q33x

2
1x

2
2 + 2q12x

2
1x

2
2 + 2q13x

3
1x2 + 2q23x1x

3
2.

Equating the coefficients leads to

q11 = 2, q22 = 5, q33 + 2q12 = −1, q13 = 1, q23 = 0.

We are left with one unknown parameter, q12 (or q33). Whether P ∈ R[x] is a

SoS polynomial or not is equivalent to questioning a q12 exists such that Q � 0.

The feasibility of the following semidefinite program then would verify that p is a

sum-of-squares polynomial

26

Q =


2 0 1

0 5 0

1 0 −1

+ q12


0 1 0

1 0 0

0 0 −2

 � 0.

One solution to this feasibility problem is q12 = −3, which implies that p is indeed

an SoS polynomial.

Remark 2.5.4. By the Cholesky decomposition [41], a matrix Q ∈ Rm×m is non-

negative definite if Q can be factored as Q = LL>, where L is a lower-triangular

matrix. This allows an efficient way to construct SoS polynomials by constructing a

lower-triangular matrix L with real entries.

In Chapter 4, we use Theorem 2.5.2 along with the Cholesky decomposition in an

optimization framework to efficiently find a suitable storage function that achieves

the objective of IdaPbc.

27

CHAPTER 3

NEURAL PASSIVITY-BASED CONTROL

This chapter describes NeuralPbc, a control design approach that integrates passiv-

ity based control methods with a machine learning framework. This approach directly

embeds a learning-based control law, which is parameterized by the gradient of a

neural network, into the dynamical model of a robotic system. The derivation of the

control policy is inspired by the techniques of Pbc, where the control action depends

on the gradient of an energy-like (storage) function, akin to a Lyapunov function

for stability analysis of autonomous dynamical systems. We invoke techniques from

machine learning to automatically determine this energy-like function through an

optimization of a cost function, derived from the general behavior of the closed-loop

system trajectories.

3.1 Problem Statement

Concretely, this chapter considers mechanical systems governed by equations of mo-

tions of the form given by Eq. (2.9), which is repeated here for convenience:

q̇

ṗ

 =

 0 In

−In 0


∇qH

∇pH

+

 0

G(q)

u,

y = G>q̇,

28

where the state x = (q, p), the Hamiltonian is H = 1
2p>M(q)p + V (q), M � 0 is

the positive-definite mass matrix, and V (q) is the potential energy. We consider the

task of asymptotically stabilizing a desired equilibrium x? = (q?, 0) of (2.9), using

passivity-based control techniques described in Section 2.2.

We choose the control law u of the form given by Eq. (2.10) with the energy

shaping term ues and the damping injection term udi defined according to Eq. (2.11)

and (2.12), respectively. However, rather than limiting the closed-loop energy-like

function Hd to be of a certain form, for instance the one given by Eq. (2.13), we

leverage the expressive power of neural networks and formulate an optimization

problem to automatically come up with a suitable function. We aim to find an

energy-like function Hd such that the behavior of the closed-loop trajectories optimizes

a certain objective encoded in the notion of accumulated loss. In this setting, the

control task is viewed as ensuring the trajectories of (2.9) pass through a small

neighborhood of the desired equilibrium x?, at which point a standard linear controller

may be employed.

Let Hθ
d : X → R be a neural network, and Kθ

v ∈ Rm×m be a positive-definite

matrix. Let φ = φ (t, x0, u) denote the flow of the equations of motion (2.9) with

the initial condition x0 ∈ X . With the decision variables θ ∈ Rw comprising the

parameters of Hθ
d and the entries of Kθ

v , we introduce the minimization problem:

minimize
θ

J(θ) =
∫ T

0
`
(
φ, uθ

)
dt,

subject to ẋ =

 ∇pH

−∇qH

+

 0

G(q)

uθ,

uθ = −G†∇qH
θ
d −Kθ

v G>∇pHθ
d ,

(3.1)

29

where T > 0 is the time horizon, and ` : X × U → R+ is a running cost function

through which the control task is encoded. For any given x0, we denote by γ : t →

φ(t; x0, u) the closed-loop trajectory of (2.9) under the application of the control law

u = uθ with the parameters θ fixed.

The running cost function ` that represents the control objective is defined as

` := `set(γ) + `⊥
(
γ, uθ

)
, (3.2)

where `set is the set distance from the closed-loop trajectory γ to a goal set S

containing a neighborhood of x?, and `⊥ is the transversal distance between γ and

a preferred orbit γ?. This formulation allows the user to additionally include the

performance objective of a task execution in the optimization, a feat that is not

easily achievable in the original Pbc framework. Each term of ` is now described in

detail as follows.

1. The set distance `set is constructed by defining a convex open neighborhood S

containing x? and computing the set distance of γ to S:

`set(γ) = inf
t
{‖a− b‖ : a ∈ γ(t), b ∈ S}. (3.3)

For instance, the set S may be chosen as a ball around of radius r around x? in

the standard norm topology. Here, r becomes a hyperparameter of the training

algorithm. With this particular S, if at any point along the prediction γ the

state x is closer than r to x?, no penalty is incurred by `set.

2. The transversal distance `⊥ to a preferred orbit γ? is defined in terms of the

transverse coordinates [42], denoted by x⊥, along γ?. By construction, the

30

prediction γ converges to γ? if and only if x⊥ → 0 as t→∞. This provides an

efficient way to compute the penalty `⊥ as

`⊥(x, u) = x>
⊥Qx⊥ + u>Ru, Q � 0, R � 0. (3.4)

The preferred orbit may be generated using any motion planning algorithm

that runs fast enough, such as RRT [43], A? [44], trajectory optimization [45],

virtual holonomic constraints [46], etc. In some cases, there are natural choices

for these preferred orbits, such as the homoclinic orbit of the pendulum [47]. If

there is no preferable γ? available, we simply let Q = 0 and only incur penalty

due to the expenditure of the control effort u.

Symmetry of the Control Policy

For robotic systems that naturally possess symmetric properties, e.g. f(x) = −f(−x),

it is desirable to maintain the symmetry in the closed-loop system. Imposing this

symmetry constraint in the control function halves the sample space over which

the neural network has to train. This speeds up the training process and increases

consistency in the behavior of the closed-loop system.

This property can be achieved by designing a symmetric control policy uθ(x) =

−uθ(−x) through the decomposition of the control function into even and odd parts.

Another way to achieve symmetry in our control law is by designing a symmetric

function h(x) as the input to the first layer of the neural network Hθ
d . To demonstrate

this, consider a simple two-layer neural network whose weights, biases, and activation

function of the ith layer denoted by Wi, bi, and σi, respectively:

31

Hθ
d(q) = W2 σ1(W1h(q) + b2) + b2.

The gradient of Hθ
d with respect to the input x is

∇xHθ
d(x) = W2 σ′

1(W1h(x) + b2)�W1 � h′(x),

where � denotes the Hadamard (element-wise) product operator. Selecting h(x) =

h(−x) and hence h′(x) = −h′(−x), we obtain the desired symmetry, i.e. ∇xHd(x) =

−∇xHd(−x), which is directly reflected in the control policy uθ(x).

3.2 Solving the Optimization Problem

The optimization problem (3.1) reduces the infinite-dimensional search for a suitable

energy-like function Hd to a finite-dimensional search for a set of parameters θ for the

neural network surrogates Hθ
d and the damping gain matrix Kθ

v . In this subsection,

we develop an algorithm leveraging a combination of methods from machine learning

and optimization in order to efficiently reach a satisfactory solution.

The objective function of (3.1) depends on the initial state x0 ∈ X through the

trajectory γ. We are interested in obtaining a controller that performs well for a

known distribution of initial states rather than for a single point. Viewing x0 as

a random variable over the state space X , the objective function of (3.1) may be

expressed as the expectation of the loss over the known distribution of x0:

J(θ) = Ex0∼p(x0)

[
`
(
φ(t, x0), uθ

)]
. (3.5)

In this subsection, we describe a strategy that samples X efficiently.

32

(a) Desired set S and orbit γ? (b) Execute current uθ (c) Sample from trajectory

Figure 3.1: The sampling strategy used to train NeuralPbc, demonstrated on the
phase space of a simple pendulum. (a) The desired set S containing x? is defined,
along with any potential preferred orbit γ?. (b) The system is simulated forward under
the control law uθ with current knowledge of the parameters θ. (c) Sample points
along the resultant trajectory from previous step, and use them as initial conditions
to generate trajectories {γ} to train from.

Instead of randomly sampling the entire space, we adopt the key ideas from

DAgger [48]. Let D denote the training dataset of size ND. This is a collection of

initial states {x0} from which the collection of trajectories {γ} will be generated and

used to compute the loss. DAgger populates D with points along the trajectories

generated by executing the control law uθ with the current set of parameters θ. This

captures the evolution of the system under the application of uθ and iteratively collects

new samples from the regions of the state-space visited by the learned control policy.

This process is demonstrated on the phase space of the simple pendulum, shown in

Figure 3.1.

Initially, uθ is poorly trained, and D may be dominated by points that are far away

from the goal set S. In high-dimensional state spaces with complicated dynamics, it

may be difficult to recover from locally optimal solutions if {γ} predominantly misses

the goal set S by a large amount. To circumvent this problem, the training algorithm

randomly alternates between populating D using (a) the DAgger strategy, and (b)

sampling from a normal distribution centered at x?, i.e. x0 ∼ N (x?, Σ), where the

33

Algorithm 1 Solution to Nonlinear Program (3.1)
1: procedure NeuralPBC(H, G, θ)
2: f ← f(H, G) dynamics given by ODE (2.9) with u = uθ

3: D ← {x0}(ND) . ND samples of x0 (DAgger)
4: while i < maxiters do
5: for each batch ⊂ D do
6: J ← 0 . Batch loss
7: for each x0 ∈ batch do
8: γ ← integrate f from x0 with current θ
9: J ← J + `(γ; θ) . Eq. (3.2)

10: θ ← θ + αi∂J/∂θ . SGD step
11: D ← {D}(1,...,ND−NR) ∪ {x0}(NR) . Replay buffer
12: i ← i + 1
13: return θ

variance Σ is kept small. The likelihood of populating D by DAgger is gradually

increased as training progresses. This kickstarts the algorithm with a dataset that

has several initial states already close to the goal set S. Finally, after each iteration

through the entire dataset, we substitute NR points in D with new samples, keeping

an ND − NR portion of initial states as the replay buffer, a common technique used

in reinforcement learning algorithms [49]. Algorithm 1 provides a summary of the

NeuralPbc training process.

3.3 Conclusion

This chapter introduces NeuralPbc, wherein a passivity-based control law is syn-

thesized by training a neural network that serves as a surrogate for the storage

function Hd of a passive system. We formulate a machine learning framework that

automatically finds a suitable set of parameters of the controller, which is governed by

the neural network gradients. The training algorithm uses the closed-loop trajectories

34

as data, and performs backpropagation through the ODE solutions using the help of

adjoint sensitivity analysis and automatic differentiation. The training process is

paired with a carefully designed sampling strategy that efficiently covers the relevant

portion of the state space without incurring too much sample complexity.

In Chapter 5, we study the efficacy of NeuralPbc through a series of simulated

and real-world experiments commonly used as benchmark control problems. The

experiments demonstrate that the proposed framework enables a feasible way to

simultaneously employ Pbc techniques and incorporate performance considerations

into the control design. Further, the performance of our controllers remains satisfac-

tory in hardware implementation, empirically demonstrating robustness properties

against model uncertainties and measurement noise.

35

CHAPTER 4

NEURAL INTERCONNECTION AND DAMPING

ASSIGNMENT PASSIVITY-BASED CONTROL

One of the primary goals of this dissertation is to bridge the gap between controllers

derived from learning algorithms and rigorous stability analysis from nonlinear control

theory. An astute reader may recognize that while the NeuralPbc framework

enables a flexible way to design controllers, it is not immediately clear how rigorous

stability analysis may be performed when the energy-like (storage) function Hd is

chosen as a dense neural network. In this chapter, we make further progress toward

this goal by leveraging the IdaPbc method and formulate an optimization problem

that restricts Hd to be of a more parsimonious form that facilitates stability analysis.

We introduce NeuralIdaPbc, a systematic method that alleviates the burden of

solving the matching PDEs (2.19) in closed-form by finding an approximate solution

that respects the structure and constraints imposed by the original IdaPbc frame-

work. In particular, we leverage Proposition 2.2.8 and use the fact that when the

choice of Hd satisfies equation (2.19), the controller given by (2.10) transforms the

dynamics into the port-controlled Hamiltonian form (2.14), whose stability results are

well established [5]. Our main interest lies in obtaining a solution to the matching

PDEs (2.19) through an optimization problem without breaking the intended struc-

ture of the closed-loop system. In the subsequent sections, we describe the formulation

36

of the optimization problem and how the relevant constraints are imposed.

4.1 Problem Statement

Control synthesis in the IdaPbc paradigm can be formulated as the following feasi-

bility problem that searches for a suitable closed-loop Hamiltonian Hθ
d :

minimize
Md, J2, Vd

0,

subject to 0 = G⊥
(
∇qH −MdM−1∇qHd + J2M

−1
d p

)
,

Hd = 1
2p>M−1

d (q)p + Vd(q),

Md = M>
d � 0,

J2 = −J>
2 ,

q? = argmin
q

Vd.

(4.1)

This is an infinite-dimensional, nonlinear optimization problem that is intractable to

solve in general. We therefore seek to reduce the problem to a finite-dimensional one

by the means of approximation by neural networks.

To this end, we proceed by representing the candidate solutions (surrogates)

Md(q), J2(q, p), and Vd(q) by function approximators. We define M θm
d : Rn → Rn×n

and J
θj

2 : R2n → R2n×2n using fully-connected neural networks, where θm ∈ Rnm and

θj ∈ Rnj each denote the corresponding neural network parameters. The surrogate

V θv
d : Rn → R to the closed-loop potential energy needs to satisfy the condition

given by (2.16). We elaborate on a suitable choice for this function approximator in

Section 4.1.2.

Let θ := (θm, θj, θv) ∈ Rnθ with nθ = nm + nj + nv. For compactness, we drop the

37

notation m, j, v from the function approximators and shall refer to them as M θ
d , Jθ

2 , V θ
d

henceforth. The loss function lθ(x) = lθ(q, p) is defined as

lθ(x) =
∥∥∥G⊥

(
∇qH −M θ

d M−1∇qH
θ
d + Jθ

2 M θ
d

−1
p
)∥∥∥2

, (4.2)

where Hθ
d(q, p) = 1

2p>
(
M θ

d

)−1
p + V θ

d (q). We denote by uθ the resulting control law

obtained by substituting Hθ
d into equation (2.10). The proposed framework aims

to approximate the solution to (4.1) by finding the parameters θ such that lθ is

minimized over an appropriate region Ω ⊂ X of the state space. We arrive at the

following finite-dimensional optimization problem:

minimize
θ

J =
∑
x∈Ω

lθ(x),

subject to M θ
d =

(
M θ

d

)>
� 0,

Jθ
2 = −

(
Jθ

2

)>
,

q? = argmin
q

V θ
d .

(4.3)

The first two constraints preserve the port-controlled Hamiltonian structure given by

equation (2.14) in the closed-loop system, as originally intended in IdaPbc. The last

two constraints enforce the arg min condition given by (2.16).

4.1.1 Stability Analysis

By construction of (4.3), as J → 0, the solution Hθ
d of the optimization problem (4.3)

converges to a Lyapunov function of the closed-loop system. This allows us to

make a connection between stability and controllers derived from learning algorithms,

using the well-known fact that solutions of ordinary differential equations depend

38

continuously on their parameters.

Proposition 4.1.1. Suppose the optimization problem (4.3) has an optimal solution

at θ? with the optimal value J? = 0. The control law uθ is a continuous function of

the objective value J and the solution θ of the optimization problem.

Proof. Let U = U(θ) denote the right side of equation (2.18). In this notation, the

objective function of (4.3) is the squared norm of G⊥U. Let (·)(k) denote the kth

iteration of the optimization algorithm. Since J (k) → 0, U(k) → U?, and θ(k) → θ?,

there exists an integer K > 0 such that when k > K, the following are true:

1. 0 ≤ J (k) < δ1,

2. 0 ≤
∥∥∥U(k) − U?

∥∥∥ < δ2,

3. 0 ≤
∥∥∥θ(k) − θ?

∥∥∥ < δ3.

Since G†(q) =
(
G>(q)G(q)

)−1
G>(q) is a continuous function of q, and uθ

es = G†U

is linear in U, it follows that for all ε > 0, ∃δ2 > 0 such that
∥∥∥G†U(k) −G†U?

∥∥∥ < ε

whenever
∥∥∥U(k) − U?

∥∥∥ < δ2. The claim of the proposition is demonstrated by noting

that uθ
es = G†U and uθ?

es = G†U?.

By Proposition 2.2.8, the control law uθ with the optimal parameters θ = θ?

asymptotically stabilizes the desired equilibrium x? = (q?, 0). Since uθ is continuous

on J, θ, and the solution of (2.9) is continuous with respect to the control input,

we deduce that for ‖θ − θ?‖ sufficiently small, the control law uθ will still steer the

trajectories to pass through a small neighborhood of x?, at which point standard

linear control techniques may be employed to achieve asymptotic stability.

39

Proposition 4.1.2. The Hamiltonian system (2.9) enters a neighborhood of (q?, 0)

upon the application of uθ as long as the optimal value of the optimization prob-

lem (4.3) is sufficiently small.

Proof. Let θ? denote an optimal solution of the problem (4.3) so that G⊥Uθ? = 0,

and let the corresponding control law be denoted by uθ? . By Proposition 2.2.8, the

control law uθ? asymptotically stabilizes x? = (q?, 0). By Proposition 4.1.1, we know

that uθ is a continuous function of the optimal value J . It is well-known that the

solution of the dynamical system (2.9) is a continuous function of u, hence it is also

a continuous function of the parameters θ [50].

Combining these continuity results, we conclude that there exists a time horizon

T > 0 such that the flow φ
(
t; uθ(x)

)
of the ODE (2.9) under the application of uθ

satisfies φ(T) ∈ Br(x?), where Br(x) denotes a ball of radius r around x. In this

context, the radius r is a function of the tolerance of the optimization algorithm.

These results imply that the control law derived from the optimal solution of (4.3)

is guaranteed to stabilize the desired equilibrium x?, whenever it is combined with a

linear controller designed to stabilize (2.9) in a neighborhood of x?.

Proposition 4.1.3. The optimal control law uθ can be combined with a linear sta-

bilizing controller û, such as the Linear Quadratic Regulator (LQR), in order to

asymptotically stabilize system (2.9) at x?.

Proof. In Proposition 4.1.2 we have shown that the closed-loop trajectories of (2.9)

passes through a neighborhood Br(x?), and r is a continuous function of the opti-

mization precision. Suppose the region of attraction of the linear control law û(x)

contains Br̂(x?). Choose δ2 sufficiently small such that ∃T > 0 with φ(T) ∈ Br̂(x?).

40

This guarantees that the trajectories of (2.9) asymptotically converge to x? as t→∞

under the application of uθ whenever x 6∈ Br̂(x?) and û whenever x ∈ Br̂(x?).

4.1.2 Constraints

In the subsequent sections, we elaborate on how the constraints in the optimization

problem (4.3) are imposed. In the remainder of this chapter, we let Sn denote the set

of symmetric n× n matrices, S+
n the set of positive semidefinite n× n matrices, and

S++
n the set of positive definite n× n matrices.

Positive-Definiteness of M θ
d and Skew-Symmetry of Jθ

2

We leverage the Cholesky decomposition to express M θ
d in the form

M θ
d (q) = Lθ(q)L>

θ (q) + εMIn, (4.4)

where εM > 0 is a small constant, In is an n× n identity matrix, and Lθ ∈ Rn×n is a

lower-triangular matrix whose n(n + 1)/2 entries are outputs of a neural network.

The skew symmetric Jθ
2 is constructed by taking a square matrix Aθ, whose entries

are outputs of a dense neural network, and computing

Jθ
2 (q, p) = Aθ(q, p)− A>

θ (q, p). (4.5)

Positivity of V θ
d with an Isolated Minimum at q?

This section describes the construction of the surrogate for the closed-loop potential

energy V θ
d such that the condition (2.16) is satisfied. If V θ

d is convex, only first-order

41

derivative information is sufficient to guarantee the condition (2.16). To this end, we

propose to approximate Vd(q) with a sum-of-squares (SoS) polynomial.

Let V θv
d : Rn → R denote a SoS polynomial of degree 2d, with θnv ∈ Rnv

representing the polynomial coefficients. The advantages of parametrizing V θ
d with

a SoS polynomial are as follows. First, it is easy to ensure the existence of a lower

bound. If V θ
d (q) is SoS, then V θ

d (q) ≥ 0, ∀q ∈ Rn. If the constant term is zero, then

V θ
d (q) = 0 ⇐⇒ x = 0. This allows the constraint (2.16) to be imposed without loss

of generality by shifting the coordinate of q and aligning q? with the origin. Moreover,

any SoS polynomial can be parametrized in terms of a positive semidefinite matrix;

hence, the search for a SoS polynomial is computationally efficient.

Following Theorem 2.5.2, we construct V θ
d in terms of a positive definite matrix

using the same Cholesky decomposition as (4.4). That is, with Rθ an n × n lower

triangular matrix with constant entries, we define

V θ
d (q) = µ>(q)RθR

>
θ µ(q), (4.6)

where µ is the vector of monomials µ(q) =
[
q1 . . . qn q1q2 . . . qd

n

]>
. The con-

stant monomial is excluded from µ(q) to place the minimum of V θ
d is at the origin.

For robotic systems with high-dimensional state space and complicated dynamics,

the expressive power of V θ
d may not be sufficient if the degree d of the polynomial is

kept low. We combat this concern by introducing an option of choosing the desired

potential function V θ
d as a neural network whose output is a scalar. In this setting,

the condition (2.16) can be achieved by using a neural network architecture with no

bias. With Wi denoting the weights of the ith layer, σ denoting the activation function

in each layer, and φ a differentiable function, we have

42

V θ
d (q) = φ (Wiσ (Wi−1σ (. . . W2σ(W1x)))) . (4.7)

V θ
d satisfies (2.16) as long as σ(0) ≡ 0; φ(0) ≡ 0; and φ(z) > 0, z 6= 0. Common

choices for the activation function σ satisfying these requirements include, e.g. Relu

and Elu [51].

4.1.3 Reducing the Sample Space

In this subsection, we show how the loss function (4.2) can be expressed in a more

parsimonious form, which only depends on the configuration variable q instead of

the state x = (q, p). This halves the sample complexity of the training algorithm.

The main PDE (2.19) can be separated in terms that depend on p and terms are

independent of p:

G⊥
{
∇q

(
p>M−1p

)
−MdM−1∇q

(
p>M−1

d p
)

+ 2J2M
−1
d p

}
= 0, (4.8)

G⊥
{
∇qV −MdM−1∇qVd

}
= 0. (4.9)

Following [8], we use the fact that

∇q

(
z>A(q)z

)
= [∇q (A(q)z)]> z, ∀z ∈ Rn, ∀A ∈ Sn,

to write the PDE constraint (4.8) as

G⊥
{[[
∇q

(
M−1p

)]>
−MdM−1

[
∇q

(
M−1

d p
)]>

+ 2J2M
−1
d

]
p
}

= 0.

The identity ∇q (A(q)z) = ∑n
k=1∇q

(
A(·,k)

)
zk, where A(·,k) denotes the kth column

of the matrix A, holds for all z ∈ Rn and all A ∈ Rn×n. We use this identity to

43

reparameterize Jθ
2 in terms of the matrices U θ

k (q) =
(
−U θ

k (q)
)>
∈ Rn×n as

2Jθ
2 =

n∑
k=1

U θ
k pk.

We can now express (4.2) only in terms of q as lθ = (∑n
k=1 l1k,θ) + l2,θ, where

l1k,θ(q) =
∥∥∥∥G⊥

{[
∇q

(
M−1

(·,k)

)]>
−M θ

d M−1
[
∇q

(
M θ

d

)−1

(·,k)

]>
+ U θ

k

(
M θ

d

)−1
}∥∥∥∥2

, (4.10)

l2,θ(q) =
∥∥∥∥G⊥

{
∇qV −M θ

d M−1∇qV
θ

d

}∥∥∥∥2
. (4.11)

Note that (4.10) is only dependent of M θ
d and U θ

k . This implies that the problem (4.3)

can be solved in two stages, as elaborated in the following subsection.

4.1.4 Solving the Optimization Problem

We split the problem (4.3) into two subproblems, the first of which is

minimize
θ

J1 =
∑
q∈Q

(
n∑

k=1
l1k,θ(q)

)
,

subject to M θ
d =

(
M θ

d

)>
� 0,

U θ
k = −

(
U θ

k

)>
, k = 1, . . . , n.

(4.12)

To solve this optimization problem, we employ the reverse-mode automatic differen-

tiation (AD) to obtain the appropriate gradients for use with gradient-based search

algorithms, such as ADAM [52]. For differentiation of scalar functions, reverse-mode

AD performs fewer computations than forward-mode AD, at the expense of memory

44

consumption [53]. In our application where neural net architectures are small, the

reduced computation significantly outweighs the memory usage trade off.

Given the solutions M θ
d , U θ

k to (4.12), the following optimization problem can be

solved to obtain the coefficients of V θ
d :

minimize
θ

J2 =
∑
q∈Q

l2,θ(q),

subject to V θ
d (q) is SoS,

V θ
d (q?) = 0.

(4.13)

When V θ
d is an SoS polynomial, the gradient of (4.6) can be analytically obtained, and

the problem (4.13) can be re-formulated as the least squares problem: min ‖Ax− b‖2.

This problem is then solved in a single step, significantly increasing the computation

speed of our algorithm.

The computational complexity of our optimization problem increases linearly as

the degree of freedom of the dynamics increases. Similarly, however, as the model

complexity increases, so does the difficulty in obtaining the closed-form solutions of

the PDEs in the original IdaPbc framework. Our framework provides an alternative,

and arguably a more practically applicable methodology, to apply IdaPbc to more

realistic, complicated systems.

4.2 Conclusion

In this chapter, we have introduced a learning framework that automatically finds

a stabilizing controller for a class of underactuated mechanical systems. First, we

construct an optimization problem that leverages the IdaPbc methodology without

destroying the passive structure and other physical constraints. By the approxima-

45

tion capability of neural networks, we solve the optimization problem that yields

approximate solutions of the nonlinear PDEs relevant to the IdaPbc problem. We

show that as the optimization converges to a faithful solution of the matching PDEs,

the corresponding control law is guaranteed to steer the trajectories to pass through

a neighborhood of the desired equilibrium, at which point standard linear control

techniques may be employed to achieve asymptotic stability.

In Chapter 5, we apply this framework to the two benchmark problems presented

in the original IdaPbc paper [8]. With relatively minimal computation, the con-

trollers found by our learning framework successfully stabilize the desired equilibria

of these systems. Current research is under way to rigorously improve the robustness

of these controllers by accounting for model uncertainties during training.

46

CHAPTER 5

EXPERIMENTS

This chapter presents the results from a series of experiments that has been per-

formed to study of the efficacy of NeuralPbc and NeuralIdaPbc, as well as

to demonstrate their applicability on a wide range of underactuated robotic systems.

Section 5.1 documents the NeuralPbc and NeuralIdaPbc experiments performed

on the inertia wheel pendulum. Our custom hardware implementation for the IWP

is described in detail therein. Experimental NeuralPbc results on the cart-pole

system are presented in Section 5.2, and on the Acrobot system in Section 5.3. Finally,

simulation experiments for NeuralIdaPbc are performed on the ball-beam system

in Section 5.3.

5.1 Inertia Wheel Pendulum

The inertia wheel pendulum (IWP) is a simple planar pendulum that consists of an

actuated wheel at the end of the arm instead of a static mass. The joint connecting the

pendulum to the ground has no actuation. The wheel has mass m, and is connected

to a massless rod of length l. The position of the rod is denoted by the angle q1, and

the position of the wheel is denoted by q2. Figure 5.1 depicts the IWP system and

the convention of the configuration variables q1 and q2.

47

q

q

(a) Schematic (b) Hardware implementation

Figure 5.1: (a) Schematic of the IWP system. The joint q1 is not actuated. (b)
Hardware implementation. The joint q2 is actuated by a belt-drive system with a
motor mounted along the axis of rotation of q1 to minimize the moment arm length.

The control task studied for the IWP is the swing-up task, in which the system

must use the torque exerted on the inertia wheel to move the system into a vertical

configuration then balance. This system is representative of the primary challenge in

the control of underactuated robots. In order to perform the swing up, the control law

must reason about the energetic coupling between the actuated (q2) and unactuated

(q1) degrees of freedom.

5.1.1 System Model

The Hamiltonian of the IWP is given by Eq. (2.8) with n = 2 and

H(q, p) = 1
2p>M−1p + V (q) = 1

2p>

I1 0

0 I2


−1

p + mgl (cos(q1)− 1) ,

48

where p = (I1q̇1, I2q̇2). The input matrix for this system is G =
[
−1 1

]>
. The state

of the system is x = (q1, q2, q̇1, q̇2). The parameter I1 denotes the moment of inertia of

the pendulum, I2 is the moment of inertia of the rotating wheel, g is the gravitational

constant, and l is the length between q1 and q2.

The equations of motion of the IWP can be written in standard form as

I1 0

0 I2


q̈1

q̈2

+

−mgl sin q1

0

 =

−1

1

u, (5.1)

where the control input u is the torque applied to the inertia wheel. The maximum

torque produced by the motor is limited to |u| ≤ umax = 0.4 N-m, which is insufficient

to overcome the gravity term mgl = 1.795 N-m. The desired equilibrium of this

system is x? = (q?, 0) = 0, which corresponds to the upright position. A summary of

the system parameters is provided in Table 5.1

5.1.2 Hardware Implementation

This subsection describes the custom design of the inertia wheel pendulum system.

The first link l is a pair of laser cut carbon fiber sheets separated by standoffs, pro-

viding the necessary rigidity for mounting heavy components. The link is supported

by the ground through a series of low-friction ball bearings. The position q1 of the

first link is measured using an Autonics E40 encoder with a resolution of 4096 pulses

per revolution in quadrature mode. The velocity q̇1 is approximated by computing

the backward difference of the position divided by the sample period.

The joint q2 connects the second link to the first link through radial ball bearings.

This joint is actuated by a Nanotec DFA90 brushless DC motor through a belt drive

49

Computer

Microprocessor

Motor Amplifier
Maxon EPOS2 (Current control)

Brushless Motor

Pendulum link
rosserial

CANOpen

ARM Cortex-M7

Configurable Inertia Wheel

Belt drive system

Revolute joint

+

Figure 5.2: Custom hardware implementation of the IWP. The design uses a cus-
tomizable inertia wheel for the purpose of testing robustness of control policies.

system. The motor is mounted concentrically with the joint q1 to minimize mgl.

A Maxon EPOS2 motor amplifier powers the motor through a 40V battery, and is

responsible for the control of the motor torque (current) and for the data acquisition of

the q2 joint. The link attached to q2 is reconfigurable so that multiple combinations of

system parameters are possible, enabling researchers to efficiently examine robustness

properties of their controllers. Moreover, a second pendulum may be mounted in place

of the inertia wheel, quickly turning the system into an Acrobot [54]. The system

parameters for each possible IWP configuration are summarized in Table 5.1.

Table 5.1: System parameters of the IWP. The errors in the last column are
normalized with respect to the nominal

Parameter set I1 I2 mgl Error
Nominal 0.0455 0.00425 1.795 0
Type A 0.0417 0.00330 1.577 0.122
Type B 0.0378 0.00235 1.358 0.243
Type C 0.0340 0.00141 1.140 0.365

50

Figure 5.3: Design iterations of the inertia wheel. The final design maximizes inertia
while minimizing mass, allowing large torque to be exerted on the wheel without
spinning up too fast and thus minimizing the effects of the back electromotive voltage
of the motor.

The inertia wheel is a multi-piece construction designed to concentrate the mass

as far away from the axis of rotation as possible. The first piece is the core, which is

3D printed using polylactic acid (PLA) plastic filament with a light infill, minimizing

mass. The remaining pieces are stainless steel rings, bolted to the core around the

perimeter. Up to four stainless steel rings may be mounted to the core. This design

minimizes mass while maximizing I2, which allows the motor to exert high torque

on the wheel without speeding it up too quickly. This avoids the saturation of the

supply voltage due to the back electromotive voltage of the motor at high speed. The

design iterations for the inertia wheel are shown in Figure 5.3.

The data acquisition and the digital signal processing of this system is performed

on a Teensy 4.1 development board with the IMXRT1060 processor based on the ARM

Cortex-M7 architecture. This development board communicates with the control

computer through a serial protocol implemented in the open source library rosserial

The communication between the computer executing the control law and the motor

amplifier is established through the CANOpen protocol [55].

51

5.1.3 NeuralPbc Experiments

We apply the NeuralPbc framework to the IWP system with the energy-like func-

tion Hθ
d chosen as a fully-connected neural network with two hidden layers, each with

the Elu activation function [51]. The parameters θ are initialized according to the

Glorot (Xavier) [56] scheme. We apply Algorithm 1 to learn the parameters of Hθ
d and

Kθ
v . In each gradient descent step, a batch of 4 initial conditions {x0} is integrated

forward with using the Tsitouras 5(4) Runge-Kutta solver with a time horizon of T = 3

seconds. The cost function is then computed and back-propagated using the AD-

assisted adjoint method implemented in the open source library DiffEqFlux.jl [35],

written in the Julia computing language . The ADAM [52] optimizer is used to

update the parameters. A replay buffer size of 400 initial conditions is used.

The control objective is to ensure that closed-loop trajectories of (5.1) enters the

goal set S defined as

S =
{

x ∈ R4 :
∥∥∥∥∥x−

[
2πn q2f 0 0

]>
∥∥∥∥∥ ≤ 0.01, n ∈ Z, q2f ∈ R

}
.

Once the system reaches the set S, a linear stabilizing controller can be employed

for asymptotic stabilization. In particular, we apply the NeuralPbc controller in

conjunction with the Linear Quadratic Regulator (LQR) for the linearization of (5.1)

about x?. The LQR gains are obtained by solving the Riccati equation with the

cost matrix Q = R chosen as the identity matrix. The LQR controller is activated

whenever the state x comes sufficiently close to the LQR’s region of attraction. The

learned controller is evaluated by simulating the system for 20 seconds from a range

52

Figure 5.4: Comparison of accumulated control effort ‖uθ‖ required to swing up the
IWP, computed from simulated trajectories starting from each (q1, q̇1) grid. From left
to right: NeuralPBC and classical IdaPbc.

of initial states with q, q̇ ∈ [−π, π]. The initial wheel position and velocity are zero.

The performance metric is chosen as the accumulated expenditure of control action

‖uθ‖ along the trajectories of the closed-loop system. If the control law uθ fails to

bring the system inside the region of attraction of LQR, i.e., failing to stabilize x?,

the performance metric is defined as ∞. Figure 5.4 shows that the expenditure of

control action required to swing-up by the NeuralPbc controller is much lower (2

orders of magnitude) than that of the classical IdaPbc control law.

The robustness of our control law is examined by executing the learned controller

on physical hardware, which differ from the nominal dynamical model (5.1) due to

the effects of errors in the parameters, friction in the bearings, and any contribution

to the dynamics from the belt-drive system. Further, we deliberately modify the

hardware to introduce large errors in the model parameters and test the controllers

without any additional training. In particular, the inertia wheel attached to q2 is

replaced with parts whose mass and inertia values differ from the nominal values (see

Table 5.1).

53

Time (s)

0 5 10

A
n
gl

e
q

1
(r

ad
)

-6

-5

-4

-3

-2

-1

0

Angle q1 (rad)

-6 -5 -4 -3 -2 -1 0

A
n
gu

la
r

v
el

oc
it

y
 q

̇ 1
(r

ad
/s

)

-10

0

10

Figure 5.5: Recorded trajectories of the IWP system with modified system parameters
in Table 5.1. Lines with lighter shade correspond to larger errors in the parameters.
The NeuralPbc control law uθ is trained once with the nominal parameters, but
maintains the ability to bring the system to the desired equilibrium x? even with large
amount of discrepancies in the system parameters.

The experiment starts with the system at rest in the downward pose, i.e. x =

(π, 0, 0, 0). A small disturbance in the q1 direction is introduced to start the swing-up.

The state x is recorded, and a set of sample trajectories from the experiment trials

are shown in Figure 5.5. In all scenarios, the controller is still able to perform the

swing-up task despite the large errors introduced in the system parameters.

5.1.4 NeuralIdaPbc Experiments

In this subsection, we describe the NeuralIdaPbc experiments performed on the

IWP. For this particular system with a constant mass matrix, the PDE constraint (4.8)

would have been trivially satisfied if M θ
d was a constant matrix, and U θ

1 = U θ
2 = 0.

However, we demonstrate the flexibility of our approach by using the framework to

automatically discover an appropriate solution, not necessarily the trivial one.

The entries of each of the matrices M θ
d , U θ

1 , U θ
2 are outputs of neural networks. The

54

architecture of each network is summarized in Table 5.2. The closed-loop potential

energy V θ
d is a SoS polynomial of degree 4 (d = 2). In total, there are 1,261 parameters

in θ to train.

To gather the data for solving the optimization problems (4.12) and (4.13), the

configuration space is sampled uniformly from q1, q2 ∈ [−π, π], with a step size of

0.1. There are a total of 3,969 samples. The collection of these samples are then

shuffled and organized into batches. The number of batches is a hyperparameter to

be selected by the user.

For each batch, the objective function J is evaluated, and the gradient descent

algorithm updates the parameters θ according to the gradient ∂J/∂θ. An epoch is

completed when all samples have been processed. This process is repeated until the

objective value is smaller than a user-defined threshold, or until a maximum number

of epochs is reached.

Figure 5.6 shows the progress of the objective value from the training session. The

loss rapidly decreases after only a few iterations. Each epoch typically takes about

10-15 seconds to perform on a machine with the Intel Core i7-10750H processor,

without any parallel computation. This amount of computation is relatively small

compared to a typical training session in reinforcement learning algorithms. It took

84 iterations to obtain the results shown in this subsection. These results demonstrate

the computational efficiency of our approach.

Table 5.2: Neural network architectures for solving (4.12) in the IWP case study. The
ordering of the layer dimensions and activations are arranged from input to output.

Layer Dimensions Activation Functions
M θ

d Equation (4.4) (2, 16, 16, 3) (ELU, ELU, ELU, Identity)
U θ

1 Equation (4.5) (2, 8, 8, 1) (ELU, ELU, ELU, Identity)
U θ

2 Equation (4.5) (2, 8, 8, 1) (ELU, ELU, ELU, Identity)

55

(a) The learned energy-like function V θ
d (q)

0 20 40 60 80
Iterations

100

102

104

106

J
(θ
)

(b) The objective value of equa-
tion (4.12) during training

Figure 5.6: (a) The energy-like function V θ
d for the IWP after training, which has an

isolated minimum at the desired equilibrium q? = (0, 0), and (b) the loss of the PDE
constraints (4.8) rapidly decreasing during training.

Figure 5.7: Time evolution of inertia wheel pendulum with the data-driven IdaPbc.
The last plot to the right shows the learned Hamiltonian Hθ

d decreasing along the
trajectory of the system.

We demonstrate the efficacy of our approach through simulated experiments.

After training, the swing-up controller is derived according to equations (2.10), (2.20)

and (2.17). The damping gain Kv in (2.17) is chosen as the identity matrix. A

simulated trajectory executed using the learned controller is shown in Figure 5.7.

For this particular simulation, the system starts at rest with the initial configuration

q(0) = (3, 0), i.e. the pendulum is near the downward equilibrium. The controller

successfully brings the mechanism to the desired upright equilibrium. The results here

suggest that approximations to the solutions of the matching PDEs in the IdaPbc

56

Pendulum angle q1 (rad)

− π − π/2 0 π/2 π

R
o
to

r
an

gl
e

q
2
(r

ad
)

-50

-25

0

25

50

Pendulum angle q1 (rad)

− π − π/2 0 π/2

q
̇ 1
(r

a
d
/s

)

-10

-5

0

5

10

-4

-2

0

2

4

Figure 5.8: The left plot shows the level sets of the closed-loop potential energy V θ
d (q),

which has an isolated minimum at the desired equilibrium q? = 0. The right plot
shows the control effort uθ derived from Hθ

d , projected on q1-q̇1 plane with q2 = q̇2 = 0.
The controller correctly commands torque in the appropriate direction, pushing the
trajectories to x?.

Pendulum angle q1 (rad)

0 1 2 3

q
̇ 1
(r

a
d
/s

)

-3

-2

-1

0

1

Time (s)

0 1 2 3 4

H
am

il
to

n
ia

n
 H

dθ

0.0

0.1

0.2

0.3

0.4

Figure 5.9: The time evolution of the system under the application of the controller
derived from the learned Hamiltonian Hθ

d . The right plot shows Hθ
d decreasing along

the trajectories of the closed-loop system, satisfying Lyapunov’s criteria.

design methodology is an effective way to algorithmically find stabilizing controllers

for underactuated mechanical systems.

We further investigate the flexibility of our framework by replacing the potential

energy function V θ
d with a fully-connected neural network given by Eq. (4.7) with

Φ(z) = ‖z‖2
2 and two hidden layers, each of which has the activation function Elu.

The contours of the neural net V θ
d and the corresponding control law are shown in Fig-

ure 5.8. We observe that the condition (2.16) is still satisfied with the neural net V θ
d .

57

Time (s)

0 5 10

A
n
gl

e
q

1
(r

ad
)

-6

-4

-2

Angle q1 (rad)

-6 -4 -2

A
n
gu

la
r

v
el

oc
it

y
 q

̇ 1
(r

ad
/s

)

-10

-5

0

5

10

Figure 5.10: Time evolution of inertia wheel pendulum with the data-driven Neu-
ralIdaPbc controller.

The ability to switch between a neural network and SoS polynomials in our framework

offers an additional degree of flexibility for control practitioners. Simulation studies

for this choice of V θ
d are shown in Figure 5.9. The trajectories converge to the desired

equilibrium and Hθ
d remains a faithful Lyapunov function of the closed-loop system.

We repeat the same real-world experiments performed for NeuralPbc to test

the NeuralIdaPbc control law. We run the experiments with the four configuration

of system parameters in Table 5.1 to test to robustness of our controller. Figure 5.10

shows four trajectories corresponding to each of the system configurations. We note

that the trajectories recorded from hardware do not match the simulated trajectories

in Figure 5.9, as the allowable torque is insufficient to overcome the gravity term mgl.

However, the controller is still able to add enough energy to swing-up the IWP such

that LQR successfully stabilizes x?.

58

Figure 5.11: Schematic of the Cart-Pole system. The origin of the cart position x
is at the center of the track. Cart position is constrained to between −0.4 and 0.4
meters.

5.2 Cart-Pole

The cart-pole system consists of an unactuated simple pendulum, mounted via a

revolute joint to a linear cart that is actuated. A schematic of this system is shown

in Figure 5.11. The position of the pendulum is denoted by the angle q between

the centerline of the arm and its upright position. The center of mass (CoM) of

the pendulum is located at a distance l from the center of the revolute joint. The

position of the cart is denoted by xc, and is constrained to remain within the interval

(−0.4, 0.4) m. Both the revolute joint and the cart is modeled with viscous friction

with coefficients Bp and Beq, respectively.

5.2.1 System Model

With the state x = (xc, ẋc, q, q̇), the equations of motion of the cart-pole system are

I2ẍc = I1
(
Fc −Beqẋc −mlq̇2sq

)
+ ml (mglcqsq −Bpq̇cq) ,

I2q̈ = (M + m) (mglsq −Bpq̇) + ml (Fccq −Beqẋccq −mlq̇cqsq,)
(5.2)

59

Table 5.3: Physical parameters for the cart-pole system

Parameter Symbol Value Units
Cart mass M 0.37 kg
Pendulum mass m 0.23 kg
Pendulum length L 0.60 m
Length to CoM l 0.3302 m
Pendulum inertia I 7.884E-03 kg-m2

Cart friction coeff. Bp 4.3 Nm-s
Pivot friction coeff. Beq 0.0024 Nm-s/rad
Max cart force Fmax 5.3606 N

where sq and cq denote, respectively, sine and cosine of q; I is the inertia of the

pendulum; I1 = I + ml2; I2 = (M + m)I + ml2 (M + m sin2 q); Fc is the actuator

force acting on the cart; and g is the gravitational constant. The force is limited by

|Fc| ≤ Fmax. The model parameters are provided in Table 5.3.

Hardware Implementation

The hardware experiments for this system are performed on the Quanser Linear Servo

Unit with Inverted Pendulum. A detailed description of the system may be found in

the user manual published by manufacturer [57].

The NeuralPbc controller, which requires the computation of neural network

gradient ∇xHθ
d with respect to the input, is implemented in Matlab. The controller

is connected to the hardware through the manufacturer provided Simulink program.

5.2.2 NeuralPbc Experiments

The control objective is to swing up the pendulum by moving the cart left and right

without falling off the track, i.e. |xc| ≤ xmax = 0.4 m must be satisfied. The goal set

60

-2π -1π 0π 1π 2π

q (rad)

-10

-5

0

5

10
q̇

(r
ad

/s
)

Hθ

d(x)

-2π -1π 0π 1π 2π

q (rad)

-10

-5

0

5

10
uθ(x)

10

20

30

40

50

−4

−2

0

2

4

F
or

ce
(N

)

Figure 5.12: (Left) The learned energy-like function Hθ
d(x), and (right) the corre-

sponding control policy uθ(x) for the cart-pole system, projected onto the q-q̇ plane
with xc = ẋc = 0. The function Hθ

d attains a minimum at x? mimicking the behavior
of the standard (quadratic) choice for Hd, e.g. the one given by Eq. (2.13).

S used during training is defined as

S =
{

x ∈ R4 :
∥∥∥∥∥x−

[
0 0 2πn 0

]>
∥∥∥∥∥ ≤ 0.01, n ∈ Z, w ∈ R

}
.

We use a neural network for Hθ
d with the following dimension in each layer: (4, 64,

64, 1). Since the cart-pole system is symmetric, we apply the procedure described in

Section 3.1 to impose symmetry. In particular, we process the input with h(x) = x2

before feeding it to the neural network. The training procedures in Algorithm 1 are

otherwise carried out with the same set of hyperparameters used for the IWP training.

The learned controller is used to bring the state close to x?, where we switch to the

LQR controller to stabilize the upright position. The LQR gains are designed by

solving the Riccati equation with the cost matrices Q = R chosen as the identity

matrix.

We evaluate a total of 2,500 simulations starting from a range of initial states

drawn from θ ∈ ±[30, 150] degrees, θ̇ ∈ [8, 8] rad/s, and zero in other dimensions. The

61

-1.0 -0.5 0.0 0.5 1.0
Cart velocity ẋc

-5
-4
-3
-2
-1
0
1
2
3
4
5

P
o
le

v
el

o
ci

ty
q̇

Learned Controller

-1.0 -0.5 0.0 0.5 1.0
Cart velocity ẋc

-5
-4
-3
-2
-1
0
1
2
3
4
5

P
o
le

v
el

o
ci

ty
q̇

Energy-shaping

20
30
40
50
60
70
80
90
100
110

Figure 5.13: Comparison of accumulated quadratic cost (5.3) over an 8-second
simulation from the corresponding initial cart and pole velocity in each grid. The
initial cart position is xc = 0 and the pole starts at the downward position. The
learned controller performs the swing-up while incurring lower cost than the classical
energy-shaping controller [3].

learned controller achieves a 100% success rate for the cart-pole system. The trained

energy-like function Hθ
d and the corresponding control law are shown in Figure 5.12.

To demonstrate the advantages of our approach over the classical energy-shaping

control [3], we compare in Figure 5.13 the accumulated cost given by

Jexp = 1
2

∫ T

0
x>Qx + uRu dt, Q = R = In, (5.3)

incurred during the swing-up on the cart-pole. The same cost matrices are used

for both the learned controller and the energy-shaping controller. Our approach

resulted in lower accumulated cost and successful swing-up from a wide variety of

initial conditions.

The results from running the NeuralPbc controller on hardware are shown in

Figure 5.14. The controller swings up the pendulum without going over the cart

track limit. The LQR controller successfully catches the swing and stabilizes the

62

q

q

Figure 5.14: Evolution of the closed-loop cart-pole system, recorded on actual
hardware. The controller is able to swing up the pendulum while maintaining within
the track limits.

upright position. The successful experiments bolster the efficacy and robustness of

our approach. During training, the nominal system parameters and the viscous

friction model are only approximations of the true system models. The use of

an approximation for velocity measurements further deviates the system from the

conditions used during training. These results empirically show that our approach is

robust against uncertainties to a favorable degree.

63

u

(a) Schematic (b) Hardware implementation

Figure 5.15: Schematic of the Acrobot. The elbow joint q2 is actuated, and the
shoulder joint q1 is not. The control task studied here is the swing-up task using the
control law from the NeuralPbc framework.

5.3 Acrobot

The Acrobot is a two-degree-of-freedom planar robotic manipulator with a single

actuator at the elbow (joint q2), and no actuator at the shoulder (joint q1). The

system resembles a gymnast (or acrobat, hence the name) hanging from a parallel

bar, and his or her motion is controlled predominantly by the effort at the waist, and

not at the wrist. Like the IWP, this system highlights one of the primary challenges in

the control problems for underactuated robots. However, for this system, the coupling

between the actuated and unactuated degrees of freedom is state dependent, adding

complexity to the problem. Figure 5.15 (adapted from [58]) depicts the system and

the convention of the configuration variables q1 and q2.

64

5.3.1 System Model

Let the state x = (q1, q2, q̇1, q̇2). Let ci denote cos qi, and si denote sin qi, for i ∈ {1, 2}.

The equation of motion of the Acrobot is given by

Mq̈ + Cq̇ + D = Bu− bq̇, (5.4)

where

M =

I1 + I2 + m2l
2
1 + 2m3c2 I2 + m3c2

I2 + m3c2 I2

 , C =

−2m3s2q̇2 −m3s2q̇2

m3s2q̇1 0

 ,

D =

m1glc1s1 + m2g(l1s1 + lc2s1+2)

m2glc2s1+2

 , B =
[
0 1

]>
, b =

[
b1 b2

]>
,

where m3 = m2l1lc2. The system parameters are summarized in Table 5.4.

5.3.2 Hardware Implementation

The links l1, l2 are constructed using round carbon fiber tubes and machined alu-

minum parts. The joint q1 has no actuation and is mounted to the ground via radial

ball bearings. The position of q1 is measured with an optical encoder with a resolution

of 4096 pulses per revolution in quadrature encoding mode. The link l1 connects joint

q1 to joint q2, and houses the actuator for the joint q2. The actuator is a Maxon RE40

brushed DC motor, mounted as close as possible to the axis of rotation of q1 to

minimize the term m1glc1. A long driveshaft with bevel gears connects the joint q2 to

the motor through the inside of the link q1. The position of q2 is measured using an

optical encoder with a resolution of 2000 pulses per revolution in quadrature encoding

65

Table 5.4: Model parameters for the Acrobot

Parameter Symbol Value Units
Link 1 mass m1 2.701 kg
Link 2 mass m2 0.405 kg
Link 1 length l1 0.600 m
Link 2 length l2 0.532 m
CoM of link 1 lc1 0.186 m
CoM of link 2 lc2 0.177 m
Link 1 inertia I1 0.3029 kg-m2

Link 2 inertia I2 0.0277 kg-m2

Joint 1 friction coeff. b1 0.05 Nm-s
Joint 2 friction coeff. b2 0.0096 Nm-s

mode. The motor torque is controlled by a Maxon Escon 50/5 servo controller, which

is powered by a 48V power supply.

The velocity measurements are estimated from q1 and q2 signals using the back-

ward difference of the positions divided by the sample period. The signal processing,

motor command generation, and communication are carried out on a Teensy 4.1

development board with a microprocessor based on the ARM Cortex-M7 architecture.

5.3.3 NeuralPbc Experiments

We seek to learn a storage function Hθ
d and obtain the associated controller that

swings the system up close to the unstable equilibrium (q?
1, q?

2) = (±π, 0). The region

of attraction of the LQR controller used for catching the swing and balancing is very

small, and the controller must learn to swing the system up without overshooting.

The neural network used for Hθ
d has the dimensions (6, 128, 128, 1), equating

to a total of 17,537 parameters. We use the 6-dimensional input that consists of

z = (c1, s1, q̇1, c2, s2, q̇2), instead of the robot’s state to avoid numerical problems that

66

sometimes occur from multiple revolutions of q2 during training. The goal set S for

this system is defined as

S =
{

x ∈ R4 :
∥∥∥∥∥x−

[
πn 2πk 0 0

]>
∥∥∥∥∥ ≤ 0.01, n ∈ Z, k ∈ Z

}
.

The learned controller is evaluated by simulating the system for 40 seconds from

a range of initial states with 10 ≤ |q1| , |q2| ≤ 90 degrees and zero velocities. A total

of 1,156 evenly-spaced samples of different initial (q1, q2) are simulated. A trajectory

from one of these simulations are shown in Figure 5.16. The performance of the

trained controller is evaluated by the ability to catch and balance the swing with

LQR controller. There are 1,098 successful simulations, resulting in a success rate of

94.98%. In the failed simulations, the learned controller still adds energy and swings

up the system, but LQR is unable to catch it and q1 continues to swing past ±π.

Improving the performance of the linear controller will increase our success rate, but

we do not pursue the problem in this work.

We further validate the controller by implementing it on the custom-built hard-

ware. This tests the robustness of the learned controller against model uncertainties.

In our setup, the joint q1 has high friction that cannot be accurately represented with

a viscous model. The values in Table 5.4 are only rough approximations of the true

parameters, and the velocity measurements q̇1, q̇2 are noisy.

A recorded trajectory using the learned controller to swing up is shown in Fig-

ure 5.17. The initial state of the system is near the downward equilibrium with a small

q̇1. The controller successfully performs the swing up and brings the system close to

the upright equilibrium. To ensure stabilization with LQR, its region of attraction can

be incorporated into the training process through the definition of the set distance in

67

0 20 40
-1.0π

-0.5π

0.0π

0.5π

1.0π
q1(t) (rad)

0 20 40
−10

0

10
q̇1(t) (rad/s)

0 20 40
-0.5π

0.0π

0.5π
q2(t) (rad)

0 20 40

−5

0

5

q̇2(t) (rad/s)

Figure 5.16: Evolution (simulation) of the Acrobot with the learned controller as
input. The system starts near the downward equilibrium at (q1, q2) = (−10, 10)
degrees with near zero velocities. The learned controller swings up the system and
brings the state into the region of attraction of the linear controller, allowing it to
successfully stabilize at the upright position.

the loss function. With S is the solution to the corresponding Riccati equation of the

LQR policy, the quantity x>Sx ≥ 0 can be used to estimate the region of attraction,

e.g. using Sum-of-Squares optimization [59]. With each swing, we observe that this

quantity becomes smaller, suggesting that our controller can be used in conjunction

with LQR and its estimated region of attraction to ensure stabilization of x?.

5.4 Ball-Beam System

The ball and beam system is depicted in Figure 5.18. The beam of length L is

actuated by a revolute joint located at the center. The ball is free to roll on the

beam. The position of the ball with respect to the beam center is denoted by q1. The

68

Figure 5.17: Recorded trajectory from hardware implementation with the learned
controller. The learned controller adds energy and successfully swings up the system.
The quantity x>Sx, which can be used to estimate the region of attraction of LQR,
becomes smaller with each swing.

angle of the beam relative to the horizontal position is denoted by q2. The control

task for this system is to stabilize the equilibrium q? = (0, 0).

5.4.1 System Model

The Hamiltonian of the system is H = 1
2p>M−1p + V (q), where

H(q, p) = 1
2p>M−1p + V (q) = 1

2p>

1 0

0 L2 + q2
1


−1

p + gq1 sin(q2),

and g is the gravitational constant. The input matrix of this system is G =
[
0 1

]>
.

The equations of motion of this system can be written as

69

Figure 5.18: Schematic of ball and beam system. The beam is actuated by a revolute
joint at the center, and the ball is free to roll on the beam.

q̈1 + g sin q2 − q1q̇
2
2 = 0,(

L2 + q2
1

)
q̈2 + 2q1q̇1q̇2 + gq1 cos q2 = u.

where the control input u is the torque applied to the revolute joint at the center of

the beam. The length of the beam is chosen as L = 5 m. The control task studied in

this experiment is to stabilize the equilibrium x? = (q?, 0) = 0.

5.4.2 NeuralIdaPbc Experiments

We begin by selecting an architecture for the three neural networks: M θ
d , U θ

1 , U θ
2 .

Since the mass matrix M(q) of this system is a function of q, it is not sufficient to

let U θ
1 = U θ

2 = 0. The architectures for the function approximators are summarized

in Table 5.5. The degree of the SoS polynomial V θ
d is 4 (d = 2). In total, there are

3,726 parameters in θ to train.

The collection of training data consists of uniformly sampling the state from q1 ∈

[−L/2, L/2] and q2 ∈ [−π/2, π/2]. The samples are then processed into batches in

the same manner to the IWP sampling process. The only hyperparameters to be

tuned are the batch size, how finely to sample the state space, and the termination

conditions for the training algorithm.

70

(a) Level sets of Vd(q) for the ball-beam system. (b) Time evolution of ball-beam system

Figure 5.19: (a) The energy-like function V θ
d for the ball-beam system after training,

which has an isolated minimum at the desired equilibrium q? = (0, 0), and (b) the
time evolution of (q1, q2) of the ball-beam system.

We demonstrate the efficacy of our approach through simulation studies. After

training, the swing-up controller is derived according to equations (2.10), (2.20)

and (2.17). The damping gain Kv in (2.17) is chosen as the identity matrix. A

simulated trajectory executed using the learned controller is shown in Figure 5.19b.

For this particular simulation, the system starts at rest with the initial configuration

q(0) = (0, 0.2618), i.e. the beam is rotated 15 degrees counter-clockwise, with the

ball starting at the center. The learned controller successfully brings system to the

desired equilibrium x?.

Combined with the NeuralIdaPbc experiments for the IWP system, these

results suggest that our control design framework is applicable to the same class

Table 5.5: Neural net architectures for the program (4.12) in the ball-beam case study.

Layer Dimensions Activation Functions
M θ

d equation (4.4) (2, 32, 32, 3) (ELU, ELU, ELU, Identity)
U θ

1 equation (4.5) (2, 32, 32, 1) (ELU, ELU, ELU, Identity)
U θ

2 equation (4.5) (2, 32, 32, 1) (ELU, ELU, ELU, Identity)

71

of mechanical systems where the IdaPbc is applicable. By eliminating the need to

analytically solve the nonlinear PDEs, our methods overcome a major hindrance of us-

ing IdaPbc and automatically find a stabilizing controller in a data-efficient manner.

Our framework provides an alternative, and arguably a more practically applicable

methodology to apply IdaPbc techniques on underactuated robotic systems.

72

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we have introduced fundamental components for incorporat-

ing passivity-based control techniques in machine learning frameworks. First, the

NeuralPbc framework is presented as a flexible tool that streamlines the search

process for a suitable storage function in the Pbc paradigm. Unlike traditional Pbc

techniques, the control synthesis is cast as an optimization problem that incorporates

performance metrics defined based on the evolution of the closed-loop system. We

formulate an algorithm that efficiently finds a solution the optimization problem using

techniques adapted from reinforcement learning approaches.

The second approach presented in this dissertation is the NeuralIdaPbc frame-

work. This method eases the burden of control synthesis in the IdaPbc approach,

which requires solving nonlinear partial differential equations in closed-form. Neu-

ralIdaPbc emphasizes stability guarantees and leverages the powerful results of

IdaPbc to construct a machine learning framework that transparently connects to

classical stability properties. We prove that as the objective function of the learning

problem vanishes, the corresponding control policy converge to a faithful IdaPbc

control law, which has well-established stability properties.

A series of experiments, both in simulation and on hardware, is designed and

carried out in order to study the efficacy and applicability of the NeuralPbc and

73

NeuralIdaPbc approaches. We show how these methods can be applied to a family

of underactuated robots and evaluate their performance through these experiments.

The results show that both approaches compare favorably to the traditional control

laws designed using Pbc techniques. Furthermore, experiments on hardware empir-

ically suggest that our controllers benefit from the inherent robustness properties of

Pbc, as they are able to withstand errors in the nominal dynamical models used

during training, as well as measurement noise encountered during control execution.

As a compelling future research direction, the robustness of properties of the

NeuralPbc and NeuralIdaPbc methods may be rigorously studied and further

improved by accounting for the errors in the dynamical models used during training.

Bayesian neural network and the corresponding learning techniques are good can-

didates for tackling these problems. The deterministic neural network architectures

used in NeuralPbc and NeuralIdaPbc may be replaced by Bayesian neural nets,

whose weights and biases are modeled as random variables. The training algorithms

need to be modified in such away that the probability distributions for these random

variables are inferred, instead of finding point estimates through gradient descent.

The IWP hardware implementation in this dissertation is designed with robustness

tests in mind, serving as a testbed for conducting future research in this area.

74

REFERENCES

[1] M.-S. Park and D. Chwa, “Swing-up and stabilization control of inverted-
pendulum systems via coupled sliding-mode control method,” IEEE transactions
on industrial electronics, vol. 56, no. 9, pp. 3541–3555, 2009.

[2] P. Mason, M. Broucke, and B. Piccoli, “Time optimal swing-up of the planar pen-
dulum,” IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1876–1886,
2008.

[3] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy control,”
Automatica, vol. 36, no. 2, pp. 287–295, 2000.

[4] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots: A
tutorial,” Automatica, vol. 25, no. 6, pp. 877–888, 1989.

[5] A. Van Der Schaft, L2-gain and passivity techniques in nonlinear control.
Springer, 2000, vol. 2.

[6] J. A. Acosta, R. Ortega, A. Astolfi, and A. D. Mahindrakar, “Interconnection
and damping assignment passivity-based control of mechanical systems with
underactuation degree one,” IEEE Transactions on Automatic Control, vol. 50,
no. 12, pp. 1936–1955, 2005.

[7] A. D. Mahindrakar, A. Astolfi, R. Ortega, and G. Viola, “Further constructive
results on interconnection and damping assignment control of mechanical sys-
tems: The acrobot example,” International Journal of Robust and Nonlinear
Control: IFAC-Affiliated Journal, vol. 16, no. 14, pp. 671–685, 2006.

[8] R. Ortega, M. W. Spong, F. Gómez-Estern, and G. Blankenstein, “Stabilization
of a class of underactuated mechanical systems via interconnection and damp-
ing assignment,” IEEE transactions on automatic control, vol. 47, no. 8, pp.
1218–1233, 2002.

[9] G. Viola, R. Ortega, R. Banavar, J. Á. Acosta, and A. Astolfi, “Total energy
shaping control of mechanical systems: simplifying the matching equations via
coordinate changes,” IEEE Transactions on Automatic Control, vol. 52, no. 6,
pp. 1093–1099, 2007.

75

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[11] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. Eslami, et al., “Emergence of locomotion behaviours in
rich environments,” arXiv preprint arXiv:1707.02286, 2017.

[12] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous
in-hand manipulation,” The International Journal of Robotics Research, vol. 39,
no. 1, pp. 3–20, 2020.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[14] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world
reinforcement learning,” arXiv preprint arXiv:1904.12901, 2019.

[15] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement
learning for control: Performance, stability, and deep approximators,” Annual
Reviews in Control, vol. 46, pp. 8–28, 2018.

[16] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[17] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordi-
nary differential equations,” Advances in neural information processing systems,
vol. 31, 2018.

[18] Y. D. Zhong, B. Dey, and A. Chakraborty, “Symplectic ode-net: Learning
hamiltonian dynamics with control,” arXiv preprint arXiv:1909.12077, 2019.

[19] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[20] S. P. Nageshrao, G. A. Lopes, D. Jeltsema, and R. Babuška, “Passivity-based re-
inforcement learning control of a 2-dof manipulator arm,” Mechatronics, vol. 24,
no. 8, pp. 1001–1007, 2014.

[21] R. Ortega, A. J. Van Der Schaft, I. Mareels, and B. Maschke, “Putting energy
back in control,” IEEE Control Systems Magazine, vol. 21, no. 2, pp. 18–33,
2001.

76

[22] W. Sirichotiyakul and A. C. Satici, “Data-driven design of energy-shaping con-
trollers for swing-up control of underactuated robots,” in International Sympo-
sium on Experimental Robotics. Springer, 2020, pp. 323–333.

[23] ——, “Combining energy-shaping control of dynamical systems with data-driven
approaches,” in 2021 IEEE Conference on Control Technology and Applications
(CCTA). IEEE, 2021, pp. 1121–1127.

[24] ——, “Data-driven passivity-based control of underactuated mechanical systems
via interconnection and damping assignment,” International Journal of Control,
2022.

[25] W. Sirichotiyakul, N. A. Ashenafi, and A. C. Satici, “Robust data-driven
passivity-based control of underactuated systems via neural approximators and
bayesian inference,” in 2022 American Control Conference. IEEE, 2022.

[26] V. I. Arnol’d, Mathematical methods of classical mechanics. Springer Science
& Business Media, 2013, vol. 60.

[27] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall, 2002.

[28] I. R. Manchester, “Transverse dynamics and regions of stability for nonlinear
hybrid limit cycles,” arXiv preprint arXiv:1010.2241, 2010.

[29] G. A. Leonov, “Generalization of the andronov-vitt theorem,” Regular and
chaotic dynamics, vol. 11, no. 2, pp. 281–289, 2006.

[30] J. Hauser and C. C. Chung, “Converse lyapunov functions for exponentially
stable periodic orbits,” Systems & Control Letters, vol. 23, no. 1, pp. 27–34,
1994.

[31] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. CRC press, 2018.

[32] L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze, “The
mathematical theory of optimal processes,” 1962.

[33] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis for
differential-algebraic equations: The adjoint dae system and its numerical so-
lution,” SIAM journal on scientific computing, vol. 24, no. 3, pp. 1076–1089,
2003.

[34] J. Calver and W. Enright, “Numerical methods for computing sensitivities for
odes and ddes,” Numerical Algorithms, vol. 74, no. 4, pp. 1101–1117, 2017.

77

[35] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar,
D. Skinner, A. Ramadhan, and A. Edelman, “Universal differential equations
for scientific machine learning,” arXiv preprint arXiv:2001.04385, 2020.

[36] D. Henrion and A. Garulli, Positive polynomials in control. Springer Science &
Business Media, 2005, vol. 312.

[37] P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. California Institute of Technology, 2000.

[38] A. Prestel and C. Delzell, Positive polynomials: from Hilberts 17th problem to
real algebra. Springer Science & Business Media, 2013.

[39] M.-D. Choi, T. Y. Lam, and B. Reznick, “Sums of squares of real polynomials,” in
Proceedings of Symposia in Pure mathematics, vol. 58. American Mathematical
Society, 1995, pp. 103–126.

[40] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,
vol. 38, no. 1, pp. 49–95, 1996.

[41] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,
2012.

[42] I. R. Manchester, “Transverse dynamics and regions of stability for nonlinear
hybrid limit cycles,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 6285–6290,
2011.

[43] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion
planning using the rrt,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 1478–1483.

[44] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E.
Kavraki, S. Thrun, and R. C. Arkin, Principles of robot motion: theory, algo-
rithms, and implementation. MIT press, 2005.

[45] B. Conway, “Practical methods for optimal control using nonlinear program-
ming,” 2002.

[46] A. Shiriaev, J. W. Perram, and C. Canudas-de Wit, “Constructive tool for orbital
stabilization of underactuated nonlinear systems: Virtual constraints approach,”
IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1164–1176, 2005.

[47] M. W. Spong, P. Corke, and R. Lozano, “Nonlinear control of the reaction wheel
pendulum,” Automatica, vol. 37, no. 11, pp. 1845–1851, 2001.

78

[48] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for imitation
learning and structured prediction,” in In AISTATS. Citeseer, 2011.

[49] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[50] P. Hartman, Ordinary differential equations. SIAM, 2002.

[51] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[53] A. Griewank et al., “On automatic differentiation,” Mathematical Programming:
recent developments and applications, vol. 6, no. 6, pp. 83–107, 1989.

[54] M. W. Spong, “The swing up control problem for the acrobot,” IEEE control
systems magazine, vol. 15, no. 1, pp. 49–55, 1995.

[55] IEC 61800-7-201: Adjustable speed electrical power drive systems - Part 7-201:
Generic interface and use of profiles for power drive systems - Profile type 1
specification, International Electrotechnical Commission, 2015, rev. 2.0.

[56] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference Pro-
ceedings, 2010, pp. 249–256.

[57] Linear Servo Base Unit with Inverted Pendulum, Quanser, 2013, rev. 1.0.

[58] R. Tedrake, Underactuated Robotics, 2022. [Online]. Available: underactuated.
mit.edu

[59] W. Sirichotiyakul, A. C. Satici, E. S. Sanchez, and P. A. Bhounsule,
“Energetically-optimal discrete and continuous stabilization of the rimless wheel
with torso,” in International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, vol. 59230. American
Society of Mechanical Engineers, 2019, p. V05AT07A067.

underactuated.mit.edu
underactuated.mit.edu

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Summary of Contributions
	Comparisons to Related Work
	Summary of Publications

	Preliminaries and Background
	Hamiltonian Mechanics
	Passive System Theory
	Stability of Passive Systems
	Passivity-Based Control (Pbc)
	Interconnection and Damping Assignment (IdaPbc)

	Transverse Coordinates
	Neural Ordinary Differential Equations
	Sum of Squares Polynomials

	Neural Passivity-Based Control (NeuralPbc)
	Problem Statement
	Solving the Optimization Problem
	Conclusion

	Neural Interconnection and Damping Assignment Passivity-Based Control (NeuralIdaPbc)
	Problem Statement
	Stability Analysis
	Constraints
	Reducing the Sample Space
	Solving the Optimization Problem

	Conclusion

	Experiments
	Inertia Wheel Pendulum
	System Model
	Hardware Implementation
	NeuralPbc Experiments
	NeuralIdaPbc Experiments

	Cart-Pole
	System Model
	NeuralPbc Experiments

	Acrobot
	System Model
	Hardware Implementation
	NeuralPbc Experiments

	Ball-Beam System
	System Model
	NeuralIdaPbc Experiments

	Conclusions and Future Directions
	REFERENCES

