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ABSTRACT 

Wikipedia is a free Internet-based encyclopedia that is built and maintained via the 

open-source collaboration of a community of volunteers. Wikipedia’s purpose is to benefit 

readers by acting as a widely accessible and free encyclopedia, a comprehensive written 

synopsis that contains information on all discovered branches of knowledge. The website 

has millions of pages that are maintained by thousands of volunteer editors. Unfortunately, 

given its open-editing format, Wikipedia is highly vulnerable to malicious activity, 

including vandalism, spam, undisclosed paid editing, etc. 

Malicious users often use sockpuppet accounts to circumvent a block or a ban 

imposed by Wikipedia administrators on the person’s original account. A sockpuppet is  an 

“online identity used for the purpose of deception.” Usually, several sockpuppet accounts 

are controlled by a unique individual (or entity) called a puppetmaster. 

Currently,  suspected sockpuppet accounts are manually verified by Wikipedia 

administrators, which makes the process slow and inefficient. 

The primary objective of this research is to develop an automated ML and neural-

network-based system to recognize the patterns of sockpuppet accounts as early as possible 

and recommend suspension. We address the problem as a binary classification task and 

propose a set of new features to capture suspicious behavior that considers user activity 

and analyzes the contributed content. To comply with this work, we have focused on 

account-based and content-based features. Our solution was bifurcated into developing a 

strategy to automatically detect and categorize suspicious edits made by the same author 
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from multiple accounts. We hypothesize that “you can hide behind the screen, but your 

personality can’t hide.” In addition to the above-mentioned method, we have also 

encountered the sequential nature of the work. Therefore, we have extended our analysis 

with a Long Short Term Memory (LSTM) model to track down the sequential pattern of 

users’ writing styles.     

Throughout the research, we strive to automate the sockpuppet account detection 

system and develop tools to help the Wikipedia administration maintain the quality of 

articles. We tested our system on a dataset we built containing 17K accounts validated as 

sockpuppets. Experimental results show that our approach achieves an F1 score of 0.82 

and outperforms other systems proposed in the literature. We plan to deliver our research 

to the Wikipedia authorities to integrate it into their existing system.    
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CHAPTER ONE: INTRODUCTION 

Wikipedia is a free Internet-based encyclopedia that started in 2001 [9]. It operates 

under an open-source management style and is maintained by the nonprofit Wikimedia 

Foundation [9]. They use collaborative software known as “wiki” that eases the creation, 

development, and distribution of articles. The goal of Wikipedia is to benefit readers by 

acting as a widely accessible encyclopedia that is free of cost and a comprehensive written 

synopsis that contains information on all discovered branches of knowledge [20]. 

Furthermore, generic audiences with minimal electronic device access benefit from 

Wikipedia articles because it presents a neutrally written summary of the available 

mainstream knowledge maintaining accuracy and fairness with a straightforward, “just-

the-facts style” [20].  

Collaborative projects like Wikipedia have been prevalent in recent times. The 

world’s largest crowd-sourced encyclopedia has emerged due to its decentralized nature 

[29]. Given its open-editing format, Wikipedia is highly vulnerable to malicious 

activity,  including vandalism, spam, undisclosed paid editing, etc. [22, 23, 24]. A free 

online forum like Wikipedia provides an excellent platform for users to communicate and 

share knowledge. On the other hand, it also facilitates online culprits to trick, scam, and 

increase the peril of universal users. According to Wikipedia’s policies, each user is 

supposed to create only one user account to maintain clarity and increase community trust. 

However, Wikipedia does not have a strict provision for a one-user one-account system 

[30]. As a result, users are free to create multiple accounts according to their choice. This 
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freedom of creating user accounts with minimal information has led malicious users to 

create multiple identities and use them for various purposes, ranging from the promotion 

of products, pushing one’s point of view, getting paid for articles, evasion of sanctions, 

false majority opinion claims, avoiding scrutiny, etc. [21]. If any user creates a secondary 

account for the above-mentioned malicious purposes, it is referred to as a sockpuppet. In 

technical terms, a sockpuppet is an “online identity used for creating deception” [21]. 

Usually, several sockpuppet accounts are controlled by a unique individual (or entity) 

called a puppetmaster.  

In Wikipedia, any user proven to contribute false information to generate an extra 

payment, vandalize existing articles, or manipulate generic perspectives through falsifying 

information is identified as guilty. Such proof can result in an immediate ban which is 

imposed upon them for some hours to a day, depending on the severity of the crime. 

Malicious users often use sockpuppet accounts to circumvent a block or a ban imposed by 

Wikipedia administrators on the person’s original account for unfaithful purposes [29].  

Typically, different sockpuppet accounts or IP addresses are operated to continue 

such articulated works by taking advantage of Wikipedia’s relaxed account creation policy. 

If any claim is pointed towards a user related to sockpuppetry, a sockpuppetry investigation 

case is filed. Unlike the simple account creation steps, the claim requires sufficient proof 

to result in a permanent ban. In addition, such claims need to be backed by concrete 

evidence related to manipulation, vandalism, advertising information, similar writing 

patterns, etc. [29].   

Although, in most cases, multiple accounts are created for personal gain, there are 

a few situations where it is required to maintain more than one account. For example, there 
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might be a scenario where a content creator writes an article related to sensitive topics such 

as politics or religion. Editors might need to use pseudonyms for contribution to such cases 

as revealing their real identity can create hatred and result in life-threatening consequences. 

In addition, users are also allowed to make extra accounts for privacy issues. For example, 

if the primary account is compromised, maintaining security while connecting through an 

unsecured network, keeping privacy while editing highly controversial topics, a clean start 

under a new username, participating in educational purposes, testing the appearance of 

another account while creating content, etc. [21].  

Currently, suspected sockpuppet accounts are manually verified by Wikipedia 

administrators, which makes the process slow and inefficient [29]. The existing works of 

sockpuppetry detection from faithful singular or multiple accounts have focused on the 

stylistic, syntactic, and social network-focused features predominantly through 

crosschecking the similarity of different account holders. Inherited semantic meanings of 

edits are rarely taken into consideration by prior researchers. Alongside account-based 

stylistic and syntactic features, we will emphasize in this study the content or, in other 

words, the semantic meaning of edits to investigate the patterns associated with the 

sockpuppet accounts held by the same user. Our research extends the prior works by 

bringing the semantics, i.e., users’ writing patterns, tone, and additional elements of an 

edit, to connect to multiple account holders. 
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1.1 Thesis Statement 

This thesis aims to detect the presence of sockpuppet accounts on Wikipedia. Our 

works apply machine learning and deep learning algorithms to outcast such accounts. 

Throughout this work, we have focused on finding answers to the following research 

questions.  

RQ1: What are the patterns of sockpuppet accounts created by puppet masters? 

RQ2: Does semantic analysis from edits capture the writing pattern and contribution 

pages more sophisticatedly and identify the sockpuppet accounts better than syntactic, 

stylistic, and graph network-based works and bring out a deep level of contextual meaning? 

RQ3: Is it possible to detect sockpuppet accounts early and recommend suspension? 
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CHAPTER TWO: RELATED WORK 

Sockpuppet accounts are generally utilized to enhance the internet traffic of 

undesired niche content, paid posts, controversial topics, and irrelevant documents by 

manipulating votes and views of the content [32]. In addition, those extra accounts are also 

used for specific malicious behavior such as fraudulent attempts, spamming, identify fraud, 

and malware distribution. In general, multiple fake identities are created by a user to 

manipulate users’ perspectives, whereas the other forms of work include a sockpuppet 

group. A sockpuppet group can be a troupe of accounts created by one or multiple users to 

deviate the audience’s attention to the targeted posts and generate an illusion of support 

[32].   

The research history of sockpuppetry attempts on Wikipedia is not age-old. Until 

recent times such a concept was not established. With the emergence of social media and 

online platforms, multiple identity generation and fraudulent attempts on online platforms 

have become more prominent. Wikipedia has made its admin-based evaluation of 

sockpuppetry claims publicly available. Traditionally researchers have taken advantage of 

those publicly available data to move forward with the sockpuppetry investigation. 

In the literature, several works have analyzed and detected sockpuppet accounts in 

online social networks and discussion forums [25, 26, 27,28]. The initial approach to the 

sockpuppet detection problem revolved around the authorship attribution (AA) detection. 

All those types of AA detection generally followed a text classification framework where 

the authors were the number of classes. Historically, such works include simple and easy-



6 

 

to-implement machine learning algorithms for classification [1,2,3,4,5]. Specifically to 

Wikipedia, Solorio et al. [29,30] have addressed the problem of detecting whether or not 

the same user maintains two accounts using text authorship identification features. They 

have extensively focused on the comments and edits on talk pages and considered features 

such as punctuation marks, use of emoticons, capitalization, and part-of-speech to 

characterize the user writing style. Many of those earlier researches [29,30] drew our 

attention to the fact that low-level features like character n-grams can successfully identify 

unique writing styles. Their analysis reemphasized that semantic features such as bag-of-

words, stylistic features such as punctuation marks, use of emoticons, capitalization 

information, and syntactic information like part-of-speech level, all these types are 

particularly useful for sockpuppetry detection [29]. A different kind of work followed the 

ideology of similarity-based approaches. Author-specific features aided the process in such 

cases as similarity-based scores are usually calculated from them [6,7,8]. 

Yamak et al. [31] have focused on classifying sockpuppets vs. genuine accounts by 

using non-verbal behavior and considering editing patterns. They considered Wikipedia-

specific features, i.e., the number of edits, frequency of revert after each contribution in the 

same article, the time between registration and edits, etc. In continuation of the work, the 

same authors also addressed the grouping of detected sockpuppet accounts created by the 

same individual [32]. The authors developed relational graphs and combined them with 

community detection algorithms and account-focused attributes to catch sockpuppet 

groups. Tsikerdekis and Zeadally [33] performed a Wikipedia-focused analysis to detect 

identity deception through possessing non-verbal user activity. Their experiment reflected 

on 7,500 sockpuppet accounts with at least one revision and calculated non-verbal 
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behavior, including the number of total revisions on different Wikipedia pages (article, 

article discussion, user page, user discussion page), and the average number of bytes added 

or removed. 

Zheng [34] executed a sockpuppet analysis by considering sockpuppets in the same 

forum and cross-platform. They compared keyword-based similarity profiles for posts A1 

and A2 in two different forums and evaluated the probability of being a sockpuppet pair. 

They assumed puppet masters tend to follow similar writing patterns even if they use 

multiple accounts. 

Like Wikipedia, multiple account generation is prevalent in miscellaneous online 

social media. For instance, Maitry et al. [35] analyzed sockpuppet accounts on Twitter, and 

Swati Adhikari [36] performed a similar sockpuppet detection on Reddit data. In addition, 

Maitry et al. [35] emphasized real-time tweets and profile-focused features to identify 

accounts under the same user in a quick time, whereas Swati Adhikari [36] included Reddit 

users, their posts, subreddits, and their karma scores. However, both works are platform-

dependent and cannot be generalized on other cross-platforms.   

A multiple online community-based analysis was conducted by Kumar et al. [28]. 

The authors analyzed sockpuppetry behaviors across nine different communities. Their in-

depth analysis revealed that the sockpuppets differ from ordinary users regarding their 

pattern of social media activity and corresponding social network structure. For example, 

they pointed that sockpuppets follow unique linguistic traits (more singular first-person) 

and have more chances of posting on the same discussion in a short timeframe. In addition, 

they claimed sockpuppet pairs follow similar writing styles and patterns compared to 

regular contributors.  
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Joshi et al. [24] investigated the use of sockpuppet accounts to perform undisclosed 

paid edits on Wikipedia. They found that sockpuppet accounts associated with undisclosed 

paid editors only work on a limited number of Wikipedia titles they are interested in 

promoting, whereas genuine users edit more pages related to their field of expertise. This 

shows that sockpuppets accounts’ behavior in Wikipedia differs from sockpuppetry in 

online discussion communities, where sockpuppets’ main goal is to interact with each other 

to deceive other users [28].  

 

 



9 

 

CHAPTER THREE: METHODOLOGY 

This section describes how we built a dataset containing sockpuppet and benign 

user accounts. We have collected and analyzed sockpuppet investigation data through an 

API (Application Programming Interface) that retrieves relevant information from 

Wikipedia. The following chapter describes our methodology and guides readers to apply 

the same methods to other problems. We started with defining the dataset curation process 

and later included the feature description and extraction process. 

3.1 Dataset 

For collecting the Wikipedia data, we have used the MediaWiki Action API [10]. 

The MediaWiki Action API is a web service that allows access to some wiki features like 

authentication, page operations, and search. In addition, it can provide meta-information 

about the wiki and the logged-in user. 

To start with the Wikipedia data collection through API, we have looked for all the 

subcategories that fall under the major category “Suspected Wikipedia sockpuppets.” All 

those subcategories under the major category were retrieved until 28th May 2022. These 

subcategories are sockpuppetry accounts identified by Wikipedia. All those subcategories 

usually follow the standard naming convention of Wikipedia and start with “Wikipedia 

sockpuppets of” followed by the account name. For instance, “Wikipedia sockpuppets of 

-dantbh” is a subcategory of sockpuppetry cases. Once all the Wikipedia subcategories 

were extracted, we focused on the user accounts under each sockpuppet subcategory. 

Usually, each sockpuppetry subcategory (for example, Wikipedia sockpuppets of -dantbh) 
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had multiple user accounts under the same account name. Our selected example 

subcategory (Wikipedia sockpuppets of -dantbh) had 20 different user accounts for the 

same account. Once the user accounts were retrieved for each user under each subcategory, 

we looked for each user’s contributions or edits. Our focus of the analysis was the 

contribution of each user. This contribution includes various kinds of information for each 

edit of the users. Based on the default parameter settings for the users, the generic format 

and the retrieved data look like figure 3.1 for a user.  
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Figure 3.1 Basic dataset structure from Wikipedia API 

For each edit, we retrieved the following information: the username (user), the 

userid, the page id,  the parent id, the revision id, page namespace (Wikipedia groups 

articles into multiple categories or namespaces, namely article, article discussion, user 

page, user discussion page, project,  etc.), the page title, the edit timestamp, the text of the 
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user contribution, and the size of the user contribution. A list of Wikipedia namespaces is 

shown in figure 3.2.  

 
Figure 3.2 Wikipedia categories by namespaces 

In our dataset, userid and user are the unique id and name for a user account. We 

identified all the accounts related to sockpuppetry as positive datasets for sockpuppet 

detection purposes. We initially collected a total number of 20,978 sockpuppet categories 

mentioned under the Wikipedia sockpuppets category. However, after intensive cleaning 

and removing empty and nan comments, we remained with 17,180 valid sockpuppet 

accounts. 

3.2 Negative Data 

To contrast the positive or identified sockpuppet account, we also needed some 

account information that is either identified as a genuine user or never had any claims 

against their accounts. We will be calling such examples negative samples. To get the 

negative dataset, we depended on the works of Kumar et al. [22]. They recorded 16,496 
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positive accounts, and we have used their recorded accounts as examples of negative users. 

Their reported dataset contains usernames which are identified as benign users. With a 

similar approach to the data retrieval process from Wikimedia API, the contribution of the 

benign users was downloaded as the set of negative users. To be consistent with the 

sockpuppet or positive dataset, we went through the same cleaning process for the benign 

users and remained with 16,043 final cases. So our combined dataset was almost 

balanced.   

For each of the considered accounts (both sockpuppets and benign users), we 

retrieved their first 20 edits. We considered 20  edits for each user as our goal is to build 

an automated detection system that can identify sockpuppet accounts as early as possible. 

3.3 Account-based Features for Identifying Sockpuppet Users 

In this section, we will describe and list down all the features we have used for 

sockpuppet detection.  

As mentioned in the data extraction process, we have a bunch of account attributes 

available from the contribution section of the user accounts. Based on that information, we 

have fixed several features derived from the users’ account names. From previous 

literature, it is evident that username is an important feature to detect 

spammers,  undisclosed paid editing, sockpuppetry, and other malicious behavior [23, 24, 

37]. Hence we considered the following features extracted from the username:  

The number of digits in a username: In order to create several accounts, 

sockpuppet users sometimes focus on creating similar account names with additional digits 

as the differentiator. That is why we have considered the number of digits in the username 

as an impactful indicator of sockpuppetry.  
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The ratio of digits to total alphabet characters in a username: Like the digits, 

characters are also a critical component of any username. Multiple account users often 

create an additional account just by tweaking some characters. In this feature, we have 

focused on the ratio of digits to total alphabet characters in the username to capture similar 

usernames with minor changes.  

The number of leading digits in a username: To differentiate between the 

usernames, puppet masters sometimes create accounts with leading digits that can 

distinguish between account names. To catch that sort of behavior, we have also focused 

on the number of leading digits that’s been used as a username. However, using leading 

digits is distinctive behavior compared to using numbers anywhere else in the user name. 

So, the total number of digits and username with the leading digit would be capable of 

capturing two different naming convention patterns. 

The unique character ratio in username: This feature focuses on the unique 

character ratio in the username. To derive this feature, we calculated the unique characters 

of the username and divided it by the total length of the user name. 

In addition to the username-focused features, we have included user characteristics 

to discover the hidden pattern of sockpuppet users. The following features are extracted to 

identify a user’s generic writing styles and norms. 

Average contribution length: An essential piece of information retrieved from 

each user’s contribution was their comments on each successive edit. Since benign users 

try to collaborate and contribute more, the length of the comment should be higher than 

their counterparts. That is why we considered the comment length a critical feature.  
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Average title length: We considered the average length of the titles of the pages a 

user-contributed to.  

Average time difference between two consecutive edits: The behavior over time 

is an essential feature for detecting any fraudulent activity [38]. Therefore, we considered 

the average time difference between two consecutive contributions as another feature.  

All the features mentioned earlier were calculated for each contribution of the user 

accounts. However, our focus is on detecting sockpuppet users, not their contributions. To 

serve that purpose, we have averaged the values of all the previously described features for 

each user. So the username-based features would be exactly the same for each user. 

However, each contribution’s comment or title length and the time difference are different. 

So for these three features, we have calculated their average value. 

3.4 Content-based Features for Sockpuppet Detection in Wikipedia 

The second category of feature we examined is content-based, for which we have 

evaluated edit content. Each edit is considered a single document in this case and carried 

out through the later-described process to elicit content-based features for our analysis.  

 We have followed two basic approaches to analyze the content of user 

contributions for sockpuppetry detection. One includes using the BERT transformer model 

[39], and another was integrating topic modeling to add topics of an edit as features for our 

analysis. The major motivation behind applying the transformer model and the topic 

modeling is to capture the semantics and meaning of the content. Traditionally 

sockpuppetry detection and similar NLP tasks have been primarily focused on capturing 

the syntactic inheritance and stylistic of the content [29, 30]. Little emphasis has been put 

on semantics-focused features. Our major contribution through this research is to bring in 
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the semantics meaning to understand the deep inheritance of the content or edit. The syntax 

is the set of rules needed to ensure a sentence is grammatically correct. Semantics, on the 

other hand, is how one’s writing pattern, grammatical structure, tone, and other elements 

of a sentence coalesce to communicate its meaning. 

 We hypothesize that considering the semantics of the user edits would capture the 

deep-level pattern of the content from the edits done by the same puppet master. For 

example, if a puppet master focuses on a specific type of content or person, that account 

holder will edit or publish similar content from multiple accounts. Since the behavioral 

pattern of the puppet master can be captured more efficiently through semantics, we 

decided to include the BERT embeddings and topic modeling in our study. For example, 

suppose a puppet master or group account holder tries to edit the pages related to Barack 

Obama. In that case, there is a high probability they would do that similar edit from multiple 

accounts. Capturing the semantic meaning would be the ideal step to shed light on such a 

problem. That is why in continuation to the stylistic or syntactic-focused analysis by 

previous researchers, we will carry out semantic-based research for further improvement.   

3.4.1 BERT Embeddings 

In this approach, we have put our concentration on the state-of-the-art transformer 

models. The transformer model is now widely used for several natural language processing 

tasks, i.e., machine translation [15], named entity recognition [16], biological sequence 

analysis [17,18,19], etc. We would also like to use a similar technology to see if transformer 

models can better perform to understand the sequential editing patterns compared to the 

existing approaches described in the related work section. The BERT model is our choice 

for this task.  
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BERT stands for Bidirectional Encoder Representations from Transformers. It is a 

unique deep learning model that works upon the attention process. Every output element 

in the model is connected to all the input elements and keeps the information flow by 

adjusting the weights. This unique process of connecting refers to as the attention 

mechanism and makes the whole system robust and powerful.  

BERT generally uses the attention mechanism to understand the contextual 

relationship between words. Two separate steps (encoding the text and decoding for 

prediction tasks) go harmoniously and extract the deep inheritance relationship between 

words in a text. It specifically helps to resolve ambiguity in texts by revealing the context. 

Unlike the directional model, which reads words sequentially (either left to right or right 

to left), the BERT encoder takes the entire sentence as one input. This simple strategy helps 

to understand the whole context of a text instead of focusing word by word. This specific 

capacity was included by the introduction of transformers and referred to as bi-

directionality. 

We used the BERT model to compute the embedding of each user contribution. 

Specifically,  we used the  BertTokenizer for tokenization and converting to tensors and 

the  BERT  “base”  model trained on lower-cased  English  (12  Transformer layers,  12 

self-attention heads,  hidden size of  768)  from the  Huggingface library [39]. Our choice 

of feature-based approach here comprised extracting the activations (or contextual 

embeddings or token representations or features) from one or more of the 12 layers without 

fine-tuning any parameters of BERT. The model contributes 768 contextual embeddings 

from each layer, and the output from the last layer was used as input to regular machine 
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learning and LSTM, followed by the classification of benign users from sockpuppet 

accounts. 

3.4.2 Topic Modeling 

Topic modeling is a way of discovering high-level topics through statistical 

modeling with respect to document collection. Our hypothesis is that identifying the 

contents’ topic can contribute significantly to detecting multiple identities. Users with good 

faith usually contribute to various sorts of content. However, sockpuppet users tend to post 

similar content even if they were removed earlier. To comply with this premise, we have 

taken advantage of the Latent Dirichlet Allocation (LDA) topic modeling technique 

provided by the Gensim library (we used the WordNetLemmatizer and the bigram model) 

[12]. LDA is a simple yet powerful topic generation process from a given corpus.     

To utilize the techniques mentioned above, we have retrieved the summary of 

content or contribution of the users again through the MediaWiki Action API. Before this 

work, we analyzed a single comment or edit made by each user. However, we required 

more information to understand and calculate topics through LDA. MediaWiki API has 

another parameter named “extracts” which returns any page’s plain-text or limited HTML. 

Through the similar data collection process described in section 3.1, we retrieved the 

contents for each user. Finally, we used those content for extracting topics using LDA.  

The content that we received through the API consisted of HTML tags, extra 

punctuations, and spaces. Before feeding to the LDA model, this data required extensive 

cleaning. First, we have followed the basic text cleaning process, removing punctuation, 

extra spaces, and additional special characters. Later through tokenization and 

lemmatization, we prepared the raw texts for the next steps. Once we had the tokens for 
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each observation point, we developed a bigram model followed by a corpus on the entire 

data set, combining the sockpuppet and benign data. Specifically, we trained an LDA 

model with 20 topics on all the users’ comments and then assigned to each comment a 

vector with the corresponding topic distribution. 

3.5 Classification Models 

In order to test the features we are proposing for the automated detection task, we 

considered different classifiers, namely Logistic Regression, Gaussian Naive Bayes, 

Decision Tree, Multilayer Perceptron (MLP) Classifier, Random Forest, ExtraTree 

Classifier, and a Long short-term memory (LSTM). LSTMs are a complex area of deep 

learning whose network is a type of recurrent neural network capable of learning order 

dependence in sequence prediction problems. This is achieved because the recurring 

module of the model has a combination of layers interacting with each other. The above-

aforementioned methodology would help us to understand the dependability of the 

temporal sequence of users’ edit patterns. We have made the following considerations in 

deciding on architecture selection: 

i. The problem of detecting an editor’s comment is a classification task based on 

the edit history as such kind of data is generated while editors edit over a time period.  

ii. In order to predict the sequence of a user’s edit behavior at any time step, it is 

essential to learn from its behavior or action from earlier time steps. This gives our solution 

holistic feedback from prior time steps to the current step.  

iii. Additionally, LSTM can relay a constant flow of feedback without vanishing or 

exploding for a long sequence.  
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Although LSTM is a precise form of Recurrent Neural Network (RNN), unlike 

RNN, LSTM incorporates input, forget and output gates [13] that effectively resolves the 

problem of vanishing or exploding gradient. In our approach, we used an LSTM model 

architecture with a many-to-one setup or hidden layer output from only the last layer, as 

shown in figure 3.3.    

 
Figure 3.3 Many-to-one LSTM architecture 

We have used class-specific weighting to deal with class imbalance. In addition, 

this process allows the model to consider the entire sequence of a contributor before 

classifying an edit. With such model architecture, a standard cross-entropy loss function 

takes the form shown in equation 3.1. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ∑ 𝐶𝐶𝐶𝐶 (𝑊𝑊𝑇𝑇 . ℎ𝐿𝐿)𝑢𝑢∈𝑈𝑈     (3.1) 

Here, 

u € user in the set of users U 

L = length of edit sequence of user u  

For classical machine learning models, we considered all features described in the 

methodology section plus the average vector of the user contributions’ BERT embeddings 

and the average vector of the user contributions topics to capture the user semantics. One 

of our fundamental contributions through this research is to detect sockpuppet accounts 
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quickly. We have experimented with editing one to twenty sequentially, resulting in twenty 

different scenarios. For example, in the first scenario, we only took the first edit of each 

user’s contributions and evaluated all the features required for the classical models. For the 

second scenario, we took two consecutive edits and similarly calculated all the features 

again, and averaged for each user. We continued the same pattern for the rest of the edits, 

increasing the number of edits by one each time. By the end, we had results for k (1 to 20) 

edits at the user level as we averaged the features at the user level.     

For the LSTM model, we considered in input the sequence of features for each edit. 

For each edit, we considered the contribution length, the title length, the time difference 

between the current and previous edits, the BERT embedding of the contribution, and the 

vector of topics of the contribution. Finally, we concatenated the username-based features 

to the representation of the last cell of the LSTM and passed them to the classification 

layer. The contribution of the articles was not homogeneous for each user for neither benign 

nor sockpuppet users. We used padding in case there were less than 20 contributions by 

the editors to make each user input to the LSTM a fixed size of the number of features X 

20.   
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Figure 3.4 Edit frequency for benign users 

 
Figure 3.5 Edit frequency for sockpuppet users 
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Figure 3.4 and 3.5 shows the distribution of comments by each user for the benign 

and sockpuppet categories. An interesting pattern can be seen from the number of 

contributions by editors in both cases. After 100 usually, the benign users didn’t have any 

contribution, but the sockpuppet users kept contributing. Since there are few comments 

after 20 edits, we considered 20 edits for each category to avoid padding many zero values 

in LSTM and detecting sock puppetry quickly. 

3.6 Evaluation of Proposed Methods 

This section reports on our evaluation protocol.  

3.6.1  Metrics 

To evaluate our model’s performance, we have used the F1 score. F1 score is the 

weighted average of Precision and Recall. Precision refers to the total number of correctly 

classified positive data compared to the total number of positive data. The recall is the ratio 

of correctly predicted positive observations to all observations in actual class - yes. 

Therefore, the F1 score takes both false positives and negatives into account. Intuitively it 

is not as easy to understand as accuracy, but F1 is usually more helpful than accuracy, 

especially if we are dealing with an uneven class distribution.  

3.6.2 Comparison with Related Work 

To compare our work with the prior results, we have also included the works done 

by Solorio et al. [29] and Yamak et al. [31] in our research. Both tried to detect sockpuppet 

accounts using different feature sets and approaches but had similar objectives to ours. The 

work of Solorio et al. [29] was one of the preliminary works done on sockpuppet detection, 

whereas the last one is more recent. We have compared the previously mentioned metrics 
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through our methodology and their approach and tried to devise a more accurate way of 

detecting sockpuppetry as early as possible.   

Solorio et al. [29] approached the problem from the authorship attribution 

perspective. Every single comment made by the user is considered one document, and they 

were classified to check the sockpuppetry claims. They worked following two steps. In the 

first step, they collected the comment level prediction for each account. Then through a 

majority voting schema, they put the account in the suspected or benign category. Their 

mentioned feature sets are specified below.  

Total number of characters: The authors calculated this feature to model the 

contributor’s behavior of writing, specifically long texts or short comments.  

Total number of sentences: This feature computes the total number of sentences 

in the comments. The authors assumed this would be a valuable feature to identify 

contributors’ choice of organizing text in sentences. To count sentence numbers, we have 

taken advantage of the sent_tokenizer package from NLTK.  

Total number of tokens: The total number of tokens excluding the white spaces 

are counted here. We have used the word_tokenizer package from NLTK to compute this 

feature.   

Words without vowels: The rate of words without vowels might indicate a signal 

for some contributors. Examples of words without vowels are: try, cry, fly, etc.  

Total alphabet count: This feature is the summation of all the alphabetic 

characters in the text. 

Total punctuation count: The user’s choice of punctuation usually varies in 

unique ways. For example, semicolons and hyphens are commonly used by some 
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contributors, and the rest ignores them. Some punctuation also varies in the way it’s been 

used worldwide. For example, the use of commas is distinctive, an important feature in 

detecting writing patterns.  

Two or Three punctuation count: In modern days, many formal and informal 

writing contains the use of multiple punctuation marks to put importance or simply express 

emotions. Such cases can be identified by checking the use of multiple punctuation marks 

used by contributors. Therefore, the authors believe various ways of expressing emotions 

would be an ideal indicator of sockpuppet users.  

Total contraction count: Contractions are generally used to shorten and combine 

words, i.e., don’t, it’s, and I’m. Separately used or contracted form, both cases are correct 

in English grammar. However, how a contributor writes or contributes is a choice of 

personal preference, and the calculation of contraction is an ideal way to extract the writing 

pattern or behavior.  

Parenthesis count: This feature is a generic way to determine authorship 

attribution and would play an important role in distinguishing contributors.  

All caps letter word count: The authors counted the number of tokens where all 

the words were upper case letters. Traditionally contributors use all caps letters either as 

abbreviations or to emphasize some words. Some examples are “USA” or “the word was 

pronounced INCORRECTLY.” 

Emoticons count: In today’s arena, expression and writing style are widely 

dominated by emoticons, especially in writings on web pages. Emoticons are a pictorial 

representation of feelings, especially facial expressions and internal emotions. The authors 
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evaluated the usage pattern of emoticon selection by counting the total number of 

emoticons in the content.  

Happy emoticons count: People are usually biased while selecting emoticons or 

expressing feelings. Many users only express positive or happy feelings. Happy emoticons 

dominate such writings. The authors separately counted the happy emoticons such as :) and 

:-) to evaluate the contributors.  

Sentence count without capital letter at the beginning: Some contributors prefer 

to start writing with a small letter or number. Examples of such cases can be “1862 was the 

year” or “big and bold all apply to our suspect.” The authors believe this feature would also 

capture the unique writing pattern. 

Quotation count: Similar to parenthesis count, authorship contribution is also 

essential to detect authorship contribution. In a real-life scenario, users are distinctive with 

their choice of quotation. So quotation count would help to discriminate writers from 

others.  

Parts of speech (POS) tags frequency: The authors considered 36 parts of speech 

tags from the Penn TREE-bank POS tag set and removed the punctuation marks as those 

were already considered through other features.  

Frequency of letters: English alphabet contains 26 letters, and the frequency of 

those letters in each comment was computed as separate features. The count was 

normalized by the total number of non-white characters in each comment.  

Function words frequency: Choice of functional words is an excellent way to tag 

writers to their corresponding writings. For example, the authors considered a list of 
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function words from [11]. This choice created 150 features from a list of 150 function 

words. 

All the above-mentioned features are typically used in authorship attribution, and 

the authors integrated some more features through manual inspection of their Wikipedia 

dataset. 

Small “i” frequency: Small “i” in place of “I” was commonly used by some 

Wikipedia contributors. It was interesting that contributors were prone to this mistake.  

Full stop without white frequency: Many writers forget to add white space after 

the full stop, and this was counted as a feature to distinguish sockpuppet accounts.  

Questions frequency: A few authors use question marks more often than others. 

So, this is an idiosyncratic feature as the authors claim some writers abuse the use of 

question marks for sentences that do not require question marks or use multiple question 

marks where one question mark would suffice.  

Sentence with small letter frequency: The authors observed a homogeneous 

writing pattern of not starting a sentence with capital letters, and they considered this a 

feature to examine unique writing habits.  

Alpha, digit, uppercase, white space, and tab frequency: The authors mentioned 

that this group of characters usually varies between Wikipedia contributors. So this would 

capture the formatting preferences of texts such as “zero” and “one” instead of “0” and “1” 

and uppercase letters for every word. 

“A” and “an” error frequency: Wikipedia users often make mistakes while 

typing “a” and “an’. Many content creators are habituated to such mistakes, and 

considering those can help us to detect sockpuppet cases.  
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“he” and “she” frequency: Choice of “he” and “she” is preferential to each 

contributor. The authors mentioned that any contributor’s use of “he” or “she” for an 

indefinite subject is consistent across edits or comments in different articles or talk pages. 

We averaged all the above-listed features among the same user contributions when 

putting them in input to classical machine learning classifiers. At the same time, we 

considered the feature sequence in input to LSTM. 

Yamak et al. [31] experimented with a few types of features in their work. Those 

are listed below.  

The number of users’ contributions by namespaces: The user’s contribution is 

basically categorized into six types. These are article, article discussion, user page, user 

discussion page, project namespace, and other (all the other namespaces goes into this 

category). The authors assumed that the categories mentioned above are the most important 

in terms of detecting the writing behavior and interest of Wikipedia users.  

The average of bytes added and removed from each revision: With the desire to 

identify the writing patterns of user’s behavior, the authors calculated the average of the 

numbers of bytes of the information that was added in the article for all the contributions 

(revision) of each account. They also calculated the average number of bytes of the 

information removed in the articles for each account’s contributions. Their hypothesis was 

the manipulation of Wikipedia contributors can be checked through the addition/removal 

behavior.     

The average contribution in the same article: The idea behind the inclusion of 

this feature was to compute the average number of time an author contributes to an article. 
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The authors assumed manipulators usually try to manipulate the same article multiple 

times.  

The interval between the user’s registration and his first contribution: For this 

feature, the authors calculated the difference between the registration and the time of the 

first contribution in the EnWiki by each account. They assumed sockpuppet users create 

many accounts at the beginning and later leave them unused. However, these backup 

accounts are resued when an active account is blocked.   

The frequency of revert after each contribution in the same article: The 

underlying hypothesis for this feature is that most of the manipulation of a sockpuppet user 

will be reverted by another user, as multiple contributors generally manage each page. 

Whenever they find a malicious contribution, they usually revert them directly.  

The last feature considers whether an edit has been reverted by another user, 

making the detection not completely automated as human input is required. As we propose 

an automatic detection approach that does not rely on human input, we did not include the 

reverted-based feature in our implementation of the Yamak et al. [31] approach for a fairer 

comparison. We also excluded the interval between the user’s registration and his first 

contribution as we do not have this information in our dataset. 

3.6.3 Comparison with ORES 

Objective Revision Evaluation Service (ORES) is a machine learning-based 

prediction system as a web service that provides services for Wikimedia projects like 

Wikipedia and Wikidata. Such a system is designed to help human editors perform 

sophisticated tasks while considering Wikipedia as an information source [14]. In addition, 

ORES can detect vandalism and remove edits that were not done in good faith. ORES  is 
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developed by the Wikimedia Scoring Platform [14]. They are experts in developing easy-

to-access AI (Artificial Intelligence) based models which are transparent and ethical. This 

open-access tool aids in human decision-making.    

ORES is designed as a back-end service and was intended to generate structured 

information by developers. To retrieve the ORES scores, a simple scores API (Application 

Programming Interface) and a reference UI (User Interface) is available [14]. Many 

researchers also access ORES via third-party tools developed by volunteers.   

We have also used the available API to gather ORES scores for each edit for both 

the benign and sockpuppet users’ contributions More specifically, given an edit, ORES 

provides a probability distribution (draft quality scores) of being in one of the following 

four classes: spam, vandalism, attack, or OK. The faster seriously problematic types of 

draft articles are removed, the better. We averaged the draft quality scores of all the edits 

of the same user when using classical machine learning algorithms while we considered 

the sequence of the draft quality scores for the edits of the same user in input to the LSTM. 
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CHAPTER FOUR: EXPERIMENTAL RESULTS 

 This section will look at the experimental results from our machine learning and 

neural network-based approach. For this, we have utilized features described in the 

methodology section. We have performed our analysis by considering all the features 

described in Section 3 to determine the sockpuppet accounts on Wikipedia. Details of the 

analysis steps and works are presented in this chapter.  

4.1 Final Dataset Size 

We have used the entire dataset of the positive and negative samples mentioned in 

the methodology section. After collecting and cleaning, we had nearly a balanced dataset. 

However, the contributions of those accounts’ total number of edits were different. The 

final dataset sample counts are listed in Table 4.1.  

Table 4.1 Number of final samples  

 Positive data Negative data 

Number of users 17,180 16,043 

Total number of edits 420,111 393,950 

 
 

4.2 Experiment Process and Setup 

As described in the methodology section, we have used several classification 

algorithms for our features to build a model ideal for separating genuine accounts from 

multiple account holders. The dataset that we used was pretty much balanced. So, we did 

not need to use any class imbalance techniques. However, to be on the safer side, we have 
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focused on stratified cross-validation. We have done a 5-fold cross-validation. To measure 

the performance, we considered the F1 score.   

4.3 Results of Our Proposed Features 

Results of different machine learning models with our proposed features are shown 

in Table 4.2. As we can see, among all the considered machine learning models, Random 

Forest achieves the best F1 score of 0.82. Furthermore, these models perform better than 

LSTM, which achieves a lower F1 score of 0.75. 

Table 4.2 F1 score comparison of different machine learning models with our 
proposed features in input to predict sockpuppet accounts. The best scores are in 
bold. 

Classifier F1 score 

Random Forest 0.82 

Logistic Regression 0.75 

Extra tree classifier 0.75 

Gaussian Naive Bayes 0.60 

Decision tree 0.75 

MLP classifier 0.77 

LSTM 0.75 

 
 

4.4 Feature Analysis 

To measure the feature importance, we performed feature ablation, i.e., for each 

group, g of considered features were moved and performed the classification with the 

remaining features. The higher the drop in the F1 score, the more important the group of 

features for the classification task. Results are shown in Figures 4.1 and 4.2. As we can 

see, the most important group of features is the one of LDA topics, as removing it decreases 
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the F1 score to 0.71 for 20 edits. The second most important feature group contains the 

average contribution length, the average title length, and the average time difference 

between two consecutive edits. Removing this group of features decreases the F1 score to 

0.81. Username-based features and the BERT embedding of user comments are equally 

important, and removing one of them slightly decreases the F1 score. Removing both of 

them drops the F1 score to 0.81. Figure 4.2 ensures this pattern is consistent even if fewer 

edits are considered.  

 
Figure 4.1 Ablation study of our proposed features: drop-in F1 score for each 

considered group of features 



34 

 

 
Figure 4.2 Ablation study of our proposed features for k edits 

 

4.5 Comparison of Our Proposed Method with Related Work 

The F1 scores of our proposed approach and the considered competitors are shown 

in Table 4.3, where we also compare the features in input to the best classical machine 

learning model (Random Forest in the case of all competitors) and LSTM. As we can see, 

our proposed approach achieves a higher F1 score of 0.82 as compared to ORES with 

Random forest (RF), Yamak et al. [31] with RF, and Solorio et al. [29] with LSTM, which 

achieve an F1 score of 0.54, 0.64, and 0.77, respectively. 

 



35 

 

Table 4.3 F1 score comparison of our proposed features vs. related work. We 
compare features in input to Random forest (which results in the best classical 
machine learning algorithm) and LSTM. The best scores are in bold. 
 

Random forest LSTM 

Our proposed features 0.82 0.75 

ORES 0.54 0.53 

Yamak 0.64 0.59 

Solorio 0.75 0.77 
 
 

4.6 Early Detection of Wikipedia Sockpuppet Accounts 

We study the effect of the first-k edits made by the user on the prediction F1 score. 

Figure 4.3 shows the variation in the F1 score when k is varied from 1 to 20. We show our 

features compared to related work features in input to Random Forest and LSTM. Our 

proposed set of features is able to detect a sockpuppet account with an F1 score of 0.73 by 

just considering the user’s first edit (vs. 0.68 achieved by Solorio et al. [29]) and an F1 

score of 0.80 by considering the first six edits. Moreover, Random Forest is always better 

than LSTM, especially for early prediction. The only exception is given by  Solorio et al. 

[29], where LSTM is slightly better starting from 12 edits. 
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Figure 4.3 Early detection of Wikipedia sockpuppet accounts 

 

4.7 Answer to Research Questions 

In this section, we will try to summarize our findings to answer the research 

questions fixed at the beginning of the study. 

RQ1: What are the patterns of sockpuppet accounts created by puppet masters? 

Ans: By analyzing the features included in our research, we found that sockpuppet 

accounts make shorter contributions as compared to benign users (mean average 

contribution length of 27 vs. 31 characters), and edit pages with longer titles (the mean 

average title length is 18 for sockpuppets vs. 17 characters for benign users), and edit more 

frequently (the mean average time difference between two consecutive edits is 3.5 days vs. 
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17 days for benign users). So overall, puppetmasters’ sockpuppet accounts have a 

distinctive contribution pattern compared to innocent users.  

RQ2: Does semantic analysis from edits capture the writing pattern and 

contribution pages more sophisticatedly and identify the sockpuppet accounts better 

than syntactic, stylistic, and graph network-based works and bring out a deep level 

of contextual meaning? 

Ans: Our selected semantic analysis from edits captured the writing patterns better 

than the syntactic, stylistic, and graph network-based works. Our RF-based model 

performed better than the established method and brought out a deep level of contextual 

meaning.  

RQ3: Is it possible to detect sockpuppet accounts early and recommend 

suspension? 

Ans: Our described approach could early detect sockpuppet accounts by considering 

the user’s first 20 edits and achieved an F1 score of 0.73 by just considering the first edit 

(vs. a score of 0.68 achieved by the best competitor). So, it is possible to detect sockpuppet 

accounts right after they start contributing.   
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CHAPTER FIVE: CONCLUSIONS 

5.1 What Have We Done So Far? 

In this research, we presented our proposed approach to address the problem of 

automatically identifying sockpuppet accounts on Wikipedia. We handle the problem as a 

binary classification task and propose a set of new features to capture suspicious behavior 

that considers user activity and analyzes the contributed content. Specifically, content-

based features have never been considered before and constitute the novelty of our work.  

We tested our approach on a dataset we collected containing 17K accounts 

validated by Wikipedia as sockpuppets. Experimental results show that our proposed 

method can detect sockpuppet accounts with an F1 score of 0.82 (vs. a score of 0.77 

achieved by the best competitor)  by considering the user’s first 20 edits and 0.73 by just 

considering the first edit (vs. a score of 0.68 achieved by the best competitor). We also 

showed that computing the topics of the user contributions is particularly important for 

detecting these types of malicious accounts. We could also distinguish the generic pattern 

of sockpuppet users as the mean average contribution length and the mean average time 

difference between two consecutive edits differed significantly from authentic user 

accounts. In general, we have seen the importance of semantic level features for 

sockpuppetry detection compared to other established prior separate approaches. Our 

analysis also includes extensive early detection of unfaithful accounts to eliminate their 

contribution in quick times.  

  



39 

 

5.2 Future Directions 

As part of future work, we plan to test our features on predicting whether two 

accounts belong to the same sockpuppet investigation. Throughout the current work, we 

have focused on detecting if an account is a sockpuppet or not. To extend such phenomena, 

we would like to work in the future on evaluating if two accounts are tied under the same 

investigation.  

We are also interested in cross-media platforms. For instance, we will check if the 

same sockpuppets group exists on both Facebook and Twitter. Such analysis would be 

fundamental to recognize if abusive users focus on only one platform or carry out similar 

behavior across any other platform. The study’s motivation is to check whether advertisers, 

spammers, and promoters, irrespective of the social platform, work in a similar pattern or 

form a group to carry on such heinous activity. An ensemble model capable of combining 

data from multiple platforms and analyzing sockpuppetry would ensure the holistic 

improvement of the functionality of tracking numerous account holders.   
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