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ABSTRACT

Semiconducting materials made from carbon-based molecules are potential replace-

ments for inorganic semiconductors, but with lower costs of processing. Devices made

from organic semiconductors can be produced at scale by inkjet printing and roll-to-

roll manufacturing of these molecules in solution or melt phases. The efficiency of

these organic devices is dependent on the structure of the active layer, so controlling

the morphology of organic molecules through self-assembly during manufacturing is a

key challenge to realizing their utility. Molecular self-assembly depends on the chem-

ical structure of the molecules, how key moieties interact with each other and with

any solvent present, and the thermodynamic paths that are sampled during process-

ing. Computer simulations of molecular self-assembly can predict the structure and

properties of candidate systems, and can improve the amount of information gained

from more expensive trials performed in a wet lab when used to guide and explain

experiments. Here we focus on the prediction of charge mobility in organic semi-

conducting materials, which requires a sequence of modeling calculations spanning

many orders of magnitude across both time and space. We describe an open-source

‘pipeline’ of calculations that serves as a virtual laboratory for the screening of or-

ganic semiconductors for their charge transport properties. We describe work on

Planckton, a software package for managing molecular simulations of organic semi-

conductors, and MorphCT, a package for managing kinetic Monte Carlo simulations,
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the modularization and testing of which improves their transparency, usability, repro-

ducibility, and extensibility. We measure improvements to Planckton and MorphCT

by using them to study two organic molecules of interest in the photovoltaics field. In

the first case study, of semiconducting polymer Poly-(3-hexylthiophene) (P3HT), we

validate qualitative trends of charge mobility against prior work from both simulation

and experiment. In the second case we predict the morphology and charge transport

of the semiconducting macromolecule 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-

indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:

5,6-b’]dithiophene (ITIC). We find that our work modularizing Planckton improves

the pace at which simulations can be iteratively tested. We validate the electronic

structure predictions made by pySCF against those previously made by the more

restrictively-licensed orca package. We measure specific features of local structure

that contribute to large-scale mobility trends in P3HT and describe predictions of

charge transport in ITIC. In sum we improve the software ecosystem for reproducibly

predicting charge mobility in organic semiconductors.
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CHAPTER 1:

INTRODUCTION

The unique properties of organic semiconductors make them ideal candidates for many

electronic applications. They are used today in ultra high resolution Organic Light

Emitting Diode (OLED) TVs and cellphone displays. They enable foldable OLED

screens and rollable TVs [1]. Organic semiconductors are also integral to the design

of next generation medical devices owing to their self-healing properties and their

biodegradability [2]. For more on bioelectronic materials, see Organic Electronic:

Emerging Concepts and Technologies [3].

In this thesis, we focus on a subclass of organic semiconductors, Organic Pho-

tovoltaic (OPV) materials, and their use in the active layer of Organic Solar Cell

(OSC) devices. A simple model for OSCs is that they they are OLEDs working in

reverse, absorbing photons and generating current rather than converting current into

light. The OSC schematic in Figure 1.1 summarizes the main processes involved in

the generation of electrical current from photonic energy. Any organic semiconductor

can exhibit a photovoltaic effect when photons with appropriate energy (equivalently,

wavelength) are absorbed. Therefore tuning an OPVs absorption spectra represents

one opportunity to optimize its properties to a particular application.

OSCs can improve on the flexibility, processability, and cost of manufacturing of

traditional inorganic solar cells. They are also used in more revolutionary electronic
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designs. For example, researchers have exploited the relatively narrow absorption

spectrum in OPVs (∼300nm) to make windows that act as OSCs. They achieved this

by tuning the active layer material to absorb radiation right above or right below the

visible spectrum (into the NIR or UV spectrum respectively). Semi-transparent OSCs

have already reached 11 % efficiency [4]. Non-transparent OSCs are approaching 20%

efficiency [5].

OPVs absorb photons very differently than inorganic semiconductors due to their

low permittivity. The coulombic attraction, V , between an excited electron and the

hole it left in a molecular orbital is given by Coulombs law as follows:

V = ke ·
e2

εr
(1.1)

where ke is Coulomb’s constant and e is charge of an electron. Relative permittivity,

εr, is a unitless quantity that describes a materials polarizability relative to that of

free space. That is, relative permittivity describes the readiness of a material to

polarize in response to an electric field. A low relative permittivity of ∼3 in OPVs

(for reference: εr∼12 for silicon [6] and εr∼78 for water [7]) means that OPVs are

only 3 times more polarizable than free space in response to the electric field created

between the electron and the hole. And, because the material occupying the space

between electron and hole is not willing (or able?) to fight back against the electric

field created between them, they stick together and behave as a quasipartcle. This

bound electron-hole quasiparticle is referred to herein as an exciton.

This excitonic absorption introduces a unique design challenge. That is, to extract

a charge from the device, the exciton must first be coerced apart. This coercion can

take place at the interface between donor and acceptor molecules, where the slight
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offset in energy levels creates a charge transfer state wherein it is more energetically

favorable for the donor to undergo electron transfer with an adjacent acceptor than it

is to radiatively decay to its ground state and photoemit. This means that, after pho-

toabsorbtion, the exciton must diffuse to this interface for the charge to be extracted.

Because an exciton can only diffuse so far (∼10nm [8]) before it relaxes to its ground

state, it is critical that absorption take place close to a donor/acceptor interface.

Producing extremely thin active layers could conceivably achieve this. However, pro-

ducing a layer this small is untenable from a manufacturing standpoint. Furthermore,

extremely thin active layers restrict the amount of radiation that a device interacts

with.

In 1986, Ching W. Tang showed that, processed under the right conditions, a blend

of donor and acceptor molecules can self-assemble into a Bulk Heterojunction (BHJ)

microstructure [9]. The interlocking phases of donor accepter molecules, ensure that

an exciton will intersect with the boundary between accepter and donor domains,

while also ensuring that there is a continuous escape route, albeit labyrinthine, for

the free charges to travel on their way to their respective electrodes.

As illustrated in 1.1, a BHJ active layer harvests photons through the following

steps: (1) photoabsorbtions, (2) exciton diffusion, (3) charge transfer, and (4) free

charge diffusion [10]. When a photon is incident on an OSC active layer, if it intersects

with a molecular segment in the donor, whose Highest Occupied Molecular Orbital

(HOMO) has comparable energy levels to the photon, the energy can be absorbed

via the promotion of an electron to the next available energy level; the LUMO. This

forms an exciton as described above, which can then diffuse until it intersects the

boundary. The excited electron would like to relax back into is lower energy level,



4

Figure 1.1: A cartoon representation of a BHJ device. All four stages
involved in harvesting photonic energy in a BHJ device are represented.
(1) The photon (green arrow) interacts with the material, exciting an
electron and creating an quasiparticle referred to as an exciton. (2) The
exciton diffuses about until it intersects the interface between donor and
acceptor material domains. (3) The exciton is coerced apart by the energy
offset between donor and acceptor molecules. (4) The, now unbound, hole
and the electron are free to diffuse about until they reach their respective
electrodes where they can be extracted.
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but at the interface with the acceptor, it finds a better option. The acceptor’s LUMO

is engineered to sit between the energy of the donor’s excited electron’s energy level

and the available lower energy level. Because of this, the electron cascades down to

the acceptors LUMO through a charge transfer reaction. Finally the free charges can

diffuse until they interact the electrode where it can be extracted. This is, of course,

an ideal description, as there are loss mechanisms at all four stages.

The BHJ design pushed the efficiency beyond the 1% milestone. However, early

BHJ devices utilized fullerene derivatives as acceptors which have a theoretical ef-

ficiency limit of ∼ 13% [11] and their spherical structure leads to difficult chemical

purification, weak absorption in the visible-NIR spectrum, and rapid device degrada-

tion. In 2015, a group of researchers conceptualized the use of Fused-ring Electron

Acceptor (FREA)s. FREAs consist of a fused-ring core and end groups that can be

engineered to achieve specific electronic characteristics and side chains that can be

engineered to achieve desired morphological features. The modularity of FREAs laid

the stage for headspinning progress in the following years from 4% efficiency to 18%

efficiency [12]. This designed modularity is a benefit to researchers, as they can alter

one moiety and test the effect on resulting charge characteristics. For example, in a

paper published in 2019 [13], researchers, knowing that flourine is an electronegative

atom, swapped 4 hydrogen atoms for flourine atoms on the end groups the FREA

molecule ITIC. Using ab initio DFT, they found that this substitution could lower the

exciton binding energy (discussed above using Equation 1.1), thus facilitating exciton

disassociation (stage 3 of BHJ). They also found that this flourination tends to re-

duce the reorganization energy, which we see in subsection 2.4.2, drastically increases

charge mobility. This trend is borne out through our simulations in Figure 2.8.
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Here we focus on (4), charge transport in BHJ active layers. We simulate the

self-assembly and charge mobility of pure acceptor (or pure donor) domains post

deposition. How the materials will self-assemble in the environment in which they are

deposited determines the morphology which intern governs charge mobility [14][15].

We believe that building and refining a high-throughput simulation pipeline can aid

researchers in screening these materials across a vast parameter space.

With that, we outline the data pipeline in Figure 1.2 through which we take

atomistic representations like those shown in Figure 1.3 and, through a series of com-

putations and simulations, arrive at data that is predictive of material properties.

This pipeline is laid out in further detail by Jones et al. [16]. The pipeline begins

with an atomistic description of a given molecule’s atom types and bonding structure.

On the basis of this description, forces between all atoms are defined. From the clas-

sical forces acting on particles in the system, equilibrium Molecular Dynamics (MD)

simulations can predict the morphological structure. The structural data obtained

from these simulations can then be fed as an input into kMC simulations that char-

acterize charge mobility (conductivity) in these chemistries based on the energetics

of electronically active molecular segments (‘chromophores’) within the morphology.

We present Planckton, our package for navigation MD simulations of OPVs in sub-

section 2.4.1. The focus of this thesis, however, is the development of MorphCT for

running kMC simulations, which we introduce more thoroughly in subsection 2.4.2.

We use the term “chromophore” liberally in this thesis. We take a brief aside to

be more explicit about its meaning. The term chromophore arose in a biochemical

context and is generally defined as a light-absorbing group or molecule [17]. In this

context, a chromophore is so named because these molecules are associated with
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Figure 1.2: The pipeline for progressively graduating atomistic data to
charge characteristics. On the left we see our packages developed for
navigating the pipeline.
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the color of a material. This is because, mechanistically, a photon collides with

a chromophore, the absorbed energy excites an electron from the HOMO to the

LUMO. When the chromophore relaxes to its ground state, it releases a photon with

wavelength (or color) λ = h̄c
E

, where h̄ is Plank’s constant, c is the speed of light, and

E represents the energy difference between the HOMO and LUMO. In plants, this

amounts to a rejection of the overabundant amount of light in the green region which

can damage the plant’s DNA. We continue with the use of the term chromophore for

the sake of brevity. In what is to follow, chromophore is taken to be defined as a

molecular segment over which the wave function of a free electron (hole) is assumed

to be localized. It is under this assumption that we execute a hopping model of

charge transfer between chromophores based on the Marcus rates of electrochemical

reactions. We will also use chromophore to refer to the object in computer memory

that stores all the information that we know about a chromophore within morphology

(e.g., atom locations, neighbors, energy levels).

Engineering the charge mobility of pure donor and acceptor domains is critical

to overall device performance [18]. An understanding of why this is the case can be

found from the inspection of Figure 1.1. If the electrons in stage 4 reach the anode

much faster than the holes reach the cathode, a traffic jam can occur at the anode

which can result in recombination with surrounding holes and ultimately a loss of the

charge via annihilation. An imbalanced charge carrier mobility can also lead to space-

charge build up in the low mobility material that can screen the built in field [19].

This phenomena has been shown by space charge limited current experiments [20].

To improve the efficacy of the pipeline we focus on developing simulation tools

that are Transparent, Reproducable, Usable, Extensible (TRUE) ([21]). These virtues
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provide a lens through which to evaluate the adherence to basic scientific principles

and to the best practices of distributed software development simultaneously. As

enumerated by Jankowski et al., some emerging best practices for scientific software

development include the following: (1) address cognitive load, (2) use version control,

(3) automate repetitive tasks, (4) develop open-source code, (5) write code in the

highest language possible [22]. “Addressing cognitive load” amounts to an admission

that a learner has a finite capacity for new ideas [23]. With that, if a new user

is spending substantial time navigating aspects of the pipeline that are not clearly

germane to the science, we have an opportunity to improve our software.

Here we improve the pipeline outlined in Figure 1.2. To do this, we: (1) integrate

an open source quantum chemical package into MorphCT, (2) perform verification and

sensitivity analysis on benchmark P3HT morphologies and (3) deploy the pipeline

from start to finish on ITIC. Informing this work is a new developer’s perspective on

cognitive load. Two specific challenges to this work were (1) understanding which

facets of quantum theory were being applied, and (2) navigating the application

programming interface of the MorphCT. Tutorials, documentation, github issues, and

searchable collaborative workspace forums (Slack) provided a foundation for using

and learning MorphCT. We aim to expand this foundation and address challenges (1)

and (2) through the publication of interactive Jupyter notebook tutorials.

We perform case studies using the charge transport prediction pipeline of P3HT,

a donor molecule, and ITIC, an acceptor molecule. With respect to organic electronic

devices, ‘acceptors’ are the organic analogue of n-type inorganic semiconductors and

‘donors’ the analogue of the p-type. We make this note because in chapter 2 we

describe a model of a charge hopping from one molecule to another. And as we
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(A) P3HT

(B) ITIC

Figure 1.3: (A) P3HT monomer structure and an oligomer composed of 15
identical monomers imbued in blue. (B) ITIC structure and a view of the
molecule viewed from above the plane of the backbone and in the plane of
the backbone. ITIC molecule is imbued with blue, red, and green to call
attention to the end groups, fused-ring core, and side chains respectively.

describe, our investigation involves hops within a pure donor domain or within a pure

acceptor domain (not to and from donor and acceptor as would be the case at the

interface). Any molecule can accept or donate a charge carrier. They merely receive a

donor/acceptor designation as a result of how they are primarily utilized in electronic

devices.

P3HT is a polymeric material that can self-assemble into a wide spectrum of

crystallinities depending on how it is processed. Polythiophenes as a whole have been

well investigated since 1883 when they were first characterized [24]. Seen in Figure 2.1,

the molecular structure of P3HT is such that these molecules can pi-stack into lamellar

structures that facilitate fast charge transport along the backbones. P3HT was first

synthesized by Rick Mcullough in 1992. The first devices to utilize P3HT showed

a low mobility due to a regio-randomness inhibiting the lamellar packing exhibited
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by the now widely used regio-regular (head-to-tail) P3HT shown in Figure 1.3 [25].

ITIC is not polymeric. Rather, it a material consisting of small molecules with no

long range bonding. ITIC is a FREA that was first synthesized in 2015 [26]. The

structure of ITIC is shown in Figure 1.3 wherein we have highlighted the moieties.

In chapter 2, we provide an exposition of the theories and software packages used

to model and simulate self-assembly and charge mobility in OPVs. The methods

used in this thesis are centrally motivated by, and justified for, the application of our

workflow to materials used in OSC design. However, the methods are not exclusively

applicable to these materials and could be applied similarly to supplement the en-

gineering of any organic electronic devices. In subsection 2.4.2, we verify that our

current MorphCT workflow produces results that are consistent with previous imple-

mentations of MorphCT. We do this by recreating charge mobility predictions on three

benchmark MD simulated morphologies of P3HT. Following that, again using P3HT,

we test the sensitivity of our charge mobility prediction to various input parameters.

We conclude subsection 2.4.2 by applying our pipeline, start to finish, to ITIC. In

chapter 3, we outline the ramification of subsection 2.4.2 and detail the areas of future

development of the workflow.
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CHAPTER 2:

METHODS

Predicting morphology and charge transport properties in OPVs is accomplished

through a combination of techniques, each modeling specific physical phenomena. In

this section we outline the models and theory employed throughout the pipeline to

describe the atomic structure of organic molecules, how they arrange, and how charges

move through them. For each of these approaches, we then describe the open-source

software tools that we create, modify, and use to implement these methods.

In section 2.1, we introduce the MD techniques used to predict self-assembly of

OPVs. In section 2.2, we describe Marcus model of charge hopping between chro-

mophores, the techniques we use to identify individual chromophores in simulated

volumes, and how we use QCC to estimate the Marcus hopping rate between neigh-

boring chromophores. In section 2.3, we describe the basics of stochastically modeling

kinetic processes and our specific kinetic Monte Carlo approach to modeling charge

transport in OPVs. Finally, in section 2.4, we enumerate the software used in this

thesis and outline the means by which it is developed. Particular focus is given to

two packages that are principally developed by members of the CMELab: Planckton

and MorphCT.
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Figure 2.1: Left: 1000 oligomer atomistic morphology of P3HT. Right:
1000 molecule atomistic morphology of ITIC.

2.1 Molecular Dynamics

Modelling charge transport in OPVs demands a methodology that is accurate across

orders of magnitude of resolution. Electronic wave functions operate at the atomic

scale while the morphological features (grain boundaries, crystallinity etcetera) that

govern charge transport occur across many nanometers. MD simulations are suited to

this task because they enable the combination of coarse-grained models with atomistic

representations to predict experimentally relevant length scales [27].

Molecular dynamics is a method of computer simulation for predicting the equilib-

rium geometries of molecular systems. MD simulations proceed iteratively by solving

Newtons laws of motion in accordance with a predefined interatomic interaction po-

tentials. The non-bonded interaction potentials are modeled with a classic Leonard-

Jones(LJ) potential [28]. Parameters can also be defined for equilibrium bond lengths,

angles between 3 bonded atoms, and angles between 4 bonded atoms (dihedral an-
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gles). At each iteration, a numerical integration over these potentials provide an

update to the velocities and positions of particles in the system.

Using the canonical ensemble (NVT) for example, conserving the number of par-

ticles, the volume, and the temperature allows for the exploration of the potential

energy surface of the system and sample the microstates from equilibrated region the

simulation for statistical analysis. Simulation ensembles are regulated via the Nosé-

Hoover thermostat [29] to maintain temperature using the MTK equations [30][31].

The system can be considered equilibrated when the sum of all interatomic potentials

no longer decreases with time. Determining the equilibrated region of the simulation

can be fleshed out statistically from the progression of the systems potential energy.

By binning the microstates into distinct regions, working backwards in time, a bin

can be added to the equilibrated region if its standard deviation in system potential

energy is less than twice that of the previous bin [32].

MD simulations can predict the self-assembly of OPV materials. To connect the

chemistry to the conductivity of the material we use Marcus theory coupled with

kMC.

2.2 Marcus Model

The movement of a free charge through a morphology can be modeled as a series of

Marcus nonadiabatic electron transfer reactions, or ‘hops’ between relatively weakly

interacting chromophores in the system. Each hop then is modeled as a thermally

activated process, the rate of which can be solved for analytically from the intersection

of two parabolic potential energy surfaces. Each parabola in Figure 2.2 represents

the potential energy well of a charge that is localized on one of two chromophores

in a dimer complex. With electron transfer much much faster than the movement
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Figure 2.2: Two intersecting dimer potential energy surfaces annotated
with λij, the reorganization energy, ∆Eij, the free energy difference be-
tween dimers. C∗

i /Cj and Ci/C
∗
j represent the dimer with charge on chro-

mophore i and on chromophore j respectively. C∗ represents an excited
chromophore, with the superscript representing an electron that has been
promoted to the LUMO (in the case of acceptor transport).

of nuclear coordinates (Franck-Condon principle), the intersection of the parabolas

corresponds to the unique nuclear geometry, and distinct vibrational mode, at which

charge transfer is assumed to take place.

Within this framework, the rate at which a charge will hop from chromophore i

to chromophore j, kij, is given by the following equation:

kij = |Tij|2
2π

h̄
√

4πλijkBT
exp

[
− (∆Eij − λij)2

4πλijkBT

]
(2.1)

with Boltzmann’s constant, kB, and Planck’s constant, h̄. The parameters Tij, λij,

∆Eij, T represent the electronic overlap, the reorganization energy, the free energy
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difference between chromophores, and temperature. These are discussed individually

in the results section, wherein we test the sensitivity of the kMC results to the choice or

computation of these parameters individually. The accuracy of the Marcus rate is thus

dependent on the accuracy with which the inputs can be estimated. In our work, λij

and T are set as constants. In the following section we outline our quantum chemical

treatment of both Tij and ∆Eij for all potential hops throughout the morphology.

Simulating hops through a morphology requires the identification of individual

chromophores and the calculation of hop rates to neighboring chromophores. Each

local molecular environment requires its own justification for where a chromophore

may be considered to harbor a localized free charge. In disordered organic systems,

unlike in metals or single crystal organic materials, electronic states are localized to

the frontier molecular orbitals of tightly bound packets of atoms within the mor-

phology. The spacial extent of a chromophore correspond roughly to the boundary

between packets of strongly interacting molecular regions.

For ITIC, the candidate location of chromophores naturally arises from its compo-

sition of distinct macromolecules. The charges are taken to be localized on individual

molecules of ITIC. The frontier molecular orbitals have negligible electron density

along the side chains. Therefore, the simplest model for chromophores then is taken

to be the backbone of individual molecules. Significant computational resources can

be conserved by leaving the side chain atoms out of the of the QCCs. To test this

on ITIC, we delineate the backbone and the whole molecule and compare carrier

mobility in section 2.8.

In the case of conducting polymers like P3HT this boundary is affected by the how

the chains are twisted or bent. A material that spans the gambit of disorder and crys-
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tallinity can be difficult to model, because charge transport can occur in a hopping

way, as described here, and also occur in an adiabatic metal-like transport. There-

fore, while experimental studies have suggested that charges localize along roughly

7 monomer chains in P3HT, our application of our model to three morphologies of

P3HT with vastly different structure mean that this may not be broadly applicable.

To disambiguate the results in this thesis we chose to take the simplest model. Individ-

ual monomers in the system to be chromophores. The single monomer chromophore

model has been shown to produce good results [16]. Deciding where a chromophore

should be expected is one step in the workflow that requires nuanced scientific justifi-

cations. However, after that decision has been made, the significant procedural hurdle

of computationally ascribing the atoms to their respective chromophores remains. We

describe our approach in subsection 2.4.2.

With the morphology chopped into chromophores and stored in memory, the en-

ergetics between neighboring chromophores can be estimated with quantum chemical

methods.

2.2.1 Quantum Chemical Methods

Calculating the rate at which a charge hops from one chromophore to the next us-

ing Marcus theory requires an understanding of the energy changes associated with

the hop, which requires a calculation of chromophore’s electronic orbital structure.

Quantum chemistry allows for the estimation of the energy levels of electrons (holes)

whose molecular orbitals are implied by the chromophore’s current atomic configura-

tion. Quantum chemical calculations comprise a set of methods, including ab initio

calculations implemented in Density Functional Theory packages that work from first

principles, and semi-empirical methods that use experimental data to make modeling
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approximations [33].

We assume that the electrons occupying the frontier molecular orbitals are the

sole participants in the hopping that is going on between chromophores. That is, if

an electron hops from i to j, it will hop into the LUMO of j, and out of the HOMO of

i. The driving force for a one electron charge transfer reaction, with a rate described

by Equation 2.1, is the difference between the energy that our electron currently

possesses on chromophore i, and the energy that it could enjoy over on chromophore

j. This is writtin as follows:

∆Eij = Ehomo,i − Ehomo,j. (2.2)

Quantum chemically, the values Ehomo,i and Ehomo,j represent the eigenvalues of the

time-independent Shrodinger equation corresponding to the HOMOs of chromophore

i and j respectively. In our work, these values are approximated with the MINDO/3

method, a variation of the intermediate neglect of differential overlap (INDO) method.

This method seeks recreate the ab initio Hartree-Fock results, where Hatree-Fock the-

ory allows for an iteratively convergent numerical solution to the Shrodinger equation

[34].

The value Tij in Equation 2.1 is a measure of the electronic orbital overlap between

chromophores. This value can be obtained using the the dimer splitting method [35].

This method compares the HOMO energies of chromophores i and j in isolation to

the energies of the frontier molecular orbitals of a dimer consisting of the two chro-

mophores. This difference is written as (Ehomo,dimer−Ehomo−1,dimer) where Ehomo,dimer

and Ehomo−1,dimer are the two highest energy occupied molecular orbitals of the dimer.

MINDO/3 is used again to approximate the eigenvalues of the frontier molecular or-
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bitals, but this time of the dimer Hamiltonian.

The dimer method can be imagined as a dimer being pulled apart. At some

distance the two highest occupied energy levels of the dimer will be the HOMOs of

their respective chromophores. If the chromophores are not interacting, then the two

highest energy molecular orbitals of the dimer will be the HOMO of chromophore

i and the HOMO of chromophore j. If there is electronic overlap, a comparison

between the two highest occupied molecular orbitals of the dimer and the HOMOs of

the chromophores calculated in isolation can quantify the degree of electronic overlap.

Indeed, Tij is written as follows:

Tij =
1

2

√
(Ehomo,dimer − Ehomo−1,dimer)2 − (∆Eij)2. (2.3)

Solving Shrodinger’s equation, with any level of accuracy, across an entire molec-

ular arrangement is a prodigious computational lift. Other studies have implemented

ab initio DFT methods at this stage of predicting mobility from molecular arrange-

ment to good effect [36]. These more rigorous methods are untenable on the scale of

the morphologies studied in this thesis. While INDO methods are less precise, the

results of using this method have shown good agreement with experimental and ab

initio DFT methods [37]. Computational quantum chemistry is a nascent and evolv-

ing field of its own, with quickly increasing efficiencies and accuracies. A particular

choice of method comes down to how well we can organize a workflow and integrate

the QCC portion of the workflow modularly to facilitate upgrading the QCC as more

efficient methods and/or software emerges.

In our implementation, a quantum chemical calculation must be performed for

every chromophore and every chromophore pair. To understand the scale of this lift,
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the reader is reminded that ‘n choose k’ notation gives the number of ways to choose

‘k’ objects from a set of ‘n’ objects as follows

(
n

k

)
=

n!

k!(n− k)!
. (2.4)

Therefore, the upper bound of possible chromophore pairs (pairs setting k = 2) is

given by the
(
n
2

)
where n is the total number of chromophores in the simulated volume.

With this, the effort of exhaustively calculating all chromophore pairs scales as n2−n
2

,

or using big Oh notation, O(n2). This quadratic scaling of computational effort

before performing kMC simulations can represent a bottleneck, so we investigate and

apply approaches for identifying and calculating only the chromophore pairs that are

spatially proximal.

In the following section we introduce our methods for determining which chro-

mophore pairs to consider using Voronoi analysis.

2.2.2 Voronoi Analysis

To minimize the number of dimer calculations, we use Vornoi analysis to locate the

spatially nearest neighboring chromophores. This analysis is performed on the Carte-

sian coordinates of the geometric center of the chromophore. A polyhedron cell is

constructed around the geometric center. The polyhedron cell consists of every point

in space that is closer to that chromophore center than any other chromophore center.

Chromophores are considered neighbors if their Voronoi cells abut one another.

For simplicity, we construct and visualize a Voronoi diagram of the xy components

of the chromophore centers of the crystalline P3HT system described in section 2.1. To

carry out this analysis, MorphCT incorporates the Voronoi class provided by freud;
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a python package for analysing and visualizing simulation data[38]. This class is

compatible with 2D or 3D simulation data.

Shown in Figure 2.3, 15,000 thousand dots represent the chromophore’s geometric

centers projected in the xy-plane. In this 2D analogue, cell edges are drawn in a

Euclidean way, with lines between polygons representing the set of points equidistant

from that point and its geometrically closest neighbor across the line. In the 3D case,

this analysis reduced the pairwise calculation from
(

15000
2

)
= 112, 492, 500 to 113, 315.

Euclidean space searching algorithms of this sort are an efficient way to parse

space. They are known to scale with O(n log n) in the worst case and as low as O(n)

in the average case [39].

However, an artifact of constructing neighbor lists in this way is that some neigh-

bors are too far apart to interact electronically, but are nevertheless closer to each

other than they are to any other chromophores and are therefore counted as neigh-

bors. Inspection of Figure 2.4 reveals how this phenomena can arise from this type

of construction. Because charges will not hop between these pairs, including them in

the pair list will result in superfluous QCCs.

In light of this, we introduce a parameter by which we further pare down the

neighbor list. This parameter is a naive cutoff distance, referred to as ‘dcut’ in this

thesis. We visualize various dcut values as black circles in Figure 2.4. It is clear from

this image that the choice of dcut could drastically effect the neighbor list and the

resulting charge mobility calculation. Note that the z-direction has been collapsed,

and the distances do not necessarily correlate to the distance between chromophores

in the system.

A proper choice of dcut will depend on the material under investigation, as the size



22

Figure 2.3: A 2D Voronoi diagram that was drawn from the xy components
of a crystalline P3HT morphology. Dots represent chromopore centers.
Lines represent points that are equidistant to the chromophore centers.
Polygons represent all points that are closer to the chromophore center
contained within than any other chromophore center. Even in 2d, the
lamellar crystal structure is visible in the clustering of chromophores. RED
SQUARE: Figure 2.4 shows the 15nm section of the sample zoomed in for
detail.
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Figure 2.4: Zoomed section of Figure 2.3 wherein we see a cartoon ver-
sion of a dcut radius cutoff used to supplement Voronoi analysis. Circles
represent the neighbor cutoff radius (dcut) beyond which we truncate chro-
mophores from the neighbor list. Cells are colored by number of neighbors.
This chromophore has ten Voronoi neighbors. If we applied the dcut radii
implied in this figure, the chromophore would have 0,2,4,7 and 10 neighbors
for the increasing dcut radii.
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of the individual chromophores will vary. In subsection 2.7.1, we test the sensitivity

of our results to the value of dcut for the crystalline P3HT data. From this testing,

we consider if the computational juice is worth the radial squeeze.

2.3 Kinetic Monte Carlo

With the MD data generated, the data chopped into individual chromophores, the

chromophore energetics quantified with QCC, and the Marcus hop rate calculated, a

single charge’s movement through the morphology can be simulated with the appli-

cation of a kMC algorithm.

Monte Carlo algorithms use pseudorandom numbers to solve computational prob-

lems. Our implementation can be described as a first choice method kMC algorithm,

where the kinetics involved is the rate of one electron charge transfer reactions and

the first choice is that of the fastest available hop for a given charge.

Using MorphCT, a charge is implanted as quasi-particle into a random chromophore

within the morphology. In this model, we assume that the only events that can take

place in the system are hops between chromophores. With this, the rate of all possible

events in the system are known and are given by Equation 2.1.

With the charge implanted, the hop rate, kij, to any neighboring chromophore is

taken to be inversely proportional to the amount of time, τ , that the system will have

to wait before that hop will take place. The τ of all available hops forms a queue of

hops from shortest wait time (fastest hop), to longest wait time (slowest hop). From

this queue, the shortest wait time (first choice) can be selected and the system can

be moved forward in time by τ .

However, hopping processes at the angstrom level do not proceed deterministi-

cally. Our implementation, and others like it [40][41], have successfully captured the
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stochasticity of these systems via a random shuffling of the hopping queue. The ran-

domly shuffled wait time for every potential hop from occupied chromophore i onto

a neighboring chromophore j is calculated as follows:

τ =
1

kij
· ln 1

x
(2.5)

where x is a random number between 0 and 1 and log (1/x) is a scaling factor.

From the rationally shuffled queue, the shortest wait time is chosen and the charge

is moved to its new chromophore host. The system is then considered to have moved

forward in time by τ . This proceeds until the charge carrier stalls out or hops past a

prespecified lifetime.

A core tenet of Monte Carlo sampling is ensuring a large sample size. With a

large enough sampling, significant reshuffling of the queue will take place, allowing

for a rare hop to jump the queue. For example, a charge carrier that hopped a million

times, and had exactly 5 neighbors at each hop, would require forming a million wait

time queues and 5 million individual wait time calculations. Shuffling each wait time

by ln (1/x), we can expect to see ∼50 wait times that have been shortened by 5 orders

of magnitude, ∼500 shortened by 4 orders of magnitude, and so on.

This is a lot to track in computer memory and this is carried out for hundreds

or thousands of individual charge carriers. A benefit to Monte Carlo analysis of this

type is that charge carriers can be simulated simultaneously. It is considered to be

‘embarrassingly parallel’ in that the subprocesses (charge carriers) require no commu-

nication. We discuss this from a software engineering point of view in subsection 2.4.2

How we analyze and aggregate data from thousands of single kMC simulations to ob-



26

tain macroscopic charge mobility is the subject of the following section.

2.3.1 KMC Analysis

Running a kMC simulation with MorphCT requires the choice of three parameters: the

kMC temperature, the number of individual kMC simulations to perform, and the

charge carrier lifetimes. Here we outline how we combine the data from the specified

number of individual kMC runs.

The choice of carrier lifetimes effectively serve as checkpoints at which the dis-

placement of charge carriers is recorded. For each specified lifetime, the prescribed

number of individual kMC simulations is run as in section 2.3. When a given charge

carrier hops past the specified lifetime, that is, the addition of the current iterations τ

advances the simulation beyond the specified lifetime, its displacement from its start-

ing location is stored in the carrier object. The Mean Squared Displacement (MSD)

of a charge over the course of that lifetime is taken to be the average squared dis-

placement across all the individual kMC runs. In other words, the MSD over a given

time period is the standard deviation in position for a free charge walking randomly

through this electronic environment.

It is known that the MSD of a diffusive particle increases linearly as time goes

to infinity. The slope of the MSD (diffusion coefficient), D, can be estimated as a

linear fit between the MSD values at the specified lifetimes. There is no objective best

practice for determining the slope of the MSD as time goes to infinity from simulation

data of this kind [42]. With that, we seek primarily to simplify the MSD analysis as

much as possible. Doing so will make for more accurately reported results and easier

apples to apples comparisons with future results. With that in mind, we choose only

two lifetimes in this work.
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Finally, the results of the MSD analysis can be related to zero-field mobility using

the following Einstein-Smoluchowski relation:

µ0 =
eD

6kBT
, (2.6)

where e is the elemental charge of a charge carrier, D is the diffusion coefficient, kB

is Planck’s constant and T is temperature.

The conductivity, σ, of a material is given by

σ = n · e · µ, (2.7)

where n is the number of charge carriers, e is the charge of an electron. µ is empirically

defined as drift velocity, v, over the electric field, E as follows [43]:

µ =
v

E
(2.8)

With that, our kMC simulation most closely models a measure of conductivity in a

bulk material in a controlled environment. That is, conditions wherein Equation 2.7

is measured with negligible n and E. This is the case for time-of-flight experiments

carried out on very thin films under low charge density conditions [44].

2.4 Software Development

Implementing these methods requires the active development of scientific software.

We develop two packages, Planckton and MorphCT, for performing and analyzing MD

and kMC simulations.

We manage the development of Planckton and MorphCT in public repositories
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hosted at github.com[45]. As with any open-source software project, these repositories

serve as a central hub for developers to collaborate and integrate code into the code

base. Repositories are version controlled with a snapshot of the code base saved

at each iteration. This allows researchers to reproduce each others work with the

exact version used to carry out the analysis. It also provides a documented and

controlled way to merge together divergent code through pull requests. Unit testing

and continuous integrating techniques provide passive protection against bugs in the

software that might emerge from active development.

Modular, python based code allows for the curation and publication of Jupyter

notebooks workflows and tutorials for performing reproducible analysis. Jupyter note-

books are a document format for publishing code that is executable and interactive

[46].

Having had no prior experience with these materials and/or materials simula-

tion prior to joining the CMElab, I was able to take an investigation of ITIC from

molecular structure to a charge mobility; a macroscopic property. We hope that the

combination of these two packages can make in silico screening of OPV materials

realistically attainable by any aspiring researcher.

All the tools used to implement, analyze, and visualize this work are freely avail-

able. The packages and tools are enumerated in Table 2.1. We now describe Planckton

and MorphCT in more detail.

2.4.1 Software for Molecular Dynamics Simulation

Planckton is a convenience package that integrates, Mbuild, foyer, and HOOMD-Blue

for performing MD simulations of self-assembly in OPVs. Planckton provides clearly

documented template scripts for inititializing and running MD simulations.
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Table 2.1: Packages

Package/tool Description

foyer python package for applying atom-typing rules [47]

freud python package for analyzing particle simulations [38]

HOOMD-Blue general purpose toolkit for performing simulations. [48]

mBuild python based molecule builder [47]

MorphCT python package for simulating and analyzing charge transport from
snapshots of MD simulations [16][45]

OVITO basic tool for visualization simulation data [49]

packmol python package for creating initial configurations of simulations [50]

Planckton python based convenience package for running HOOMD-Blue simula-
tions of OPVs [45]

Planckton-flow python based package that supports the use of Planckton on high
performance clusters[45]

pySCF open-source collection of electronic structure modules [51]

signac python based framework for managing large heterogeneous data
spaces [52]

VMD a molecular visualization program for displaying, analyzing, and an-
imating large biomolecular systems [53]
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Planckton uses foyer to interpret the forcefields used to generate the MD data.

The MD simulations performed for this thesis employ the Generalized Amber Force

Field (GAFF)[54]. The Amber forcefield was designed for use in modeling protein and

nucleic acid systems. Serendipitously, the generalized Amber forcefield has parame-

ters for organic molecules comprised of H,C,N,O, and P and can produces accurate

simulations of organic molecules for use in OPVs. Also provided are files that define

the atomic structure of many of the most commonly studied OPVs for OSC research

in a format that are compatible with GAFF forcefields.

Planckton is built using HOOMD-Blue simulation toolkit [48]. The native file for-

mat of HOOMD-Blue is the gsd file. gsd files store simulation data in a binary format.

As MD simulations proceed, the gsd files are populated with the microstate of the

system at regular intervals. MorphCT is developed to operate on particular microstates

stored within gsd files.

Planckton-flow is a dataspace manager that uses singularity [55] and docker

[56] to ‘contanerize’ Planckton [45]. Containers are virtual machines that contain

all the dependencies, configurations, code and data necessary to reproduce results

[57]. Docker images are binary files that contain the entire software stack necessary

to execute some code. This allows researchers to minimize dependency issues and

increase reproducibility. However, docker has no native support for the use of GPUs

and is not compatible with the more draconian permissions often present on HPCs.

With that, Planckton-flow uses singularity, a software designed to overcome these

shortcomings, to pull a docker image of Planckton to a container on the server.

Planckton-flow allows for a container of Planckton to be taken off the shelf

and pulled to a high performance computing cluster without having to build the
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software stack or write the simulation scripts from scratch. Screening OPV mate-

rials across many thermodynamic parameters can results in cumbersome data sets.

Planckton-flow automates the management of large these large multidimensional

data sets with signac.

2.4.2 Software for Kinetic Monte Carlo Simulation

MorphCT is a python package for running kMC simulations of charge transport in or-

ganics systems. MorphCT operates on gsd files containing the atom types and Carte-

sian coordinates of a system system. In this work we use MorphCT on equilibrium

microstates obtained from MD simulations. However, MorphCT is indifferent to how

the morphological data was obtained and does not measure physical accuracy of that

data.

MorphCT is a collection of python scripts for defining, instantiating, reading and

writing from the following three python objects: System, Chromophore, and Carrier.

In general, the MorphCT workflow proceeds via interfacing with the System object.

The System object can be instantiated from a gsd file.

Methods for adding chromophores, computing chromophore energies, and running

kMC are coded into the System object. The method for adding chromophores creates

a chromophore object based on a list of atom indices for every chromophore.

Every atom in the MD morphology has a unique index. All of the methods that

follow hinge on assigning the prescribed atom indices to their respective chromophore.

In this work, we manually index these chromophores. A tutorial for using VMDs

graphical user interface to visually select chromophores is maintained for MorphCT. We

also maintain workflows for automating the identification of chromophore positions

using smarts matching.
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The method for running kMC simulations MorphCT utilizes the python multipro-

cessing module to divide the prescribed number of charge carriers to be simulated

across all available cores.

In the development of MorphCT-flow, for analogous reasons to those outlined for

Planckton, we found that ORCA, the software used to perform QCC in MorphCT

inhibited containerization because it required a licensing agreement. For this reason,

ORCA was replaced with the fully open source pySCF (Python-based Simulations of

Chemistry Framework) [51]. This framework was chosen in the interest of reproduca-

bility and extensibility. pySCF is implemented almost entirely in the Python language,

which is becoming increasingly ubiquitous in the scientific computing community. The

modularity of pySCF allowed for the entire QCC code to be implemented in five lines

of code. These lines of code in asked asks pySCF to approximate the frontier energy

levels given the chromophore’s molecular arrangement.

With each step in the MorphCT corresponding to a method called on the system ob-

ject, saving progress becomes trivially easy. With the python pickle module, complex

objects can be saved as a binary file and subsequently brought back into computer

memory. In its current form, pickling is critical to the MorphCT workflow. For exam-

ple, a complete kMC simulation and analysis of a large P3HT of may take 5 days of

computation, with a day to create all the chromophore objects, a day to perform the

QCCs, and 3 days to run the kMC simulation. Pickling the system object after these

steps allows us to return to these morphologies for further analysis without having to

reconstruct the objects from scratch. Importantly, this means that the energetics of

the chromophores need only be calculated once per morphology.

Workflow examples are maintained as jupyter notebook tutorials on github.
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2.5 Summary

We present our results in three parts.

In section 2.6, we use MorphCT to test the performance of pySCF at the level of the

chromophore. Two experiments are reported. In the first, we calculate the frontier

molecular orbital energies for fused ring oligomers of increasing length. We compare

the results of our experiment to the results of the same experiment done with more

rigorous DFT methods. In the second, we test the performance of the pySCF dimer

calculations outlined in chapter 2. We take two simple chromophores, two thiophene

rings, in 5680 orientations and calculate the electronic coupling between them. We

do so to test if our dimer calculation correlates sensibly to the angle and distance

between chromophores. These experiments are broadly meant to confirm that we

have integrated pySCF into MorphCT properly, and that the quantities produced com-

port with the physics of these systems. We then deploy MorphCT on three benchmark

P3HT morphologies to obtain charge mobility and compare the results to previously

reported values for these morphologies. This section provides verification of the cur-

rent implementation of MorphCT. In section 2.7, we test the sensitivity of our MorphCT

calculated mobilities to dcut, chromophore reorganization energy, kMC temperature,

and choice of charge carrier lifetimes for MSD analysis. Using a benchmark P3HT

morphology, holding all other parameters constant and sweeping across relevant scales

provides context for how to treat these parameters in future investigations.

In section 2.8, we extend our simulation pipeline to ITIC.
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2.6 Implementation Verification

2.6.1 Quantum Chemical Calculation Verification

As outlined in subsection 2.2.1, QCC is used in two distinct ways in our workflow.

First it is used to estimate free energy difference between individual chromophores

as the difference in their HOMO (or LUMO) energy levels. Secondly, it is used to

estimate the electronic overlap (Tij) with the dimer splitting method which involves

calculating the HOMO (or LUMO) of the dimer formed by the two chromophores.

We present the results from two experiments meant to evaluate pySCF’s suitability

for performing these duties: (1) we compare frontier molecular energies of single

chromophores given by pySCF to those given by more rigorous ab initio DFT and (2)

we evaluate the performance pySCF’s dimer calculation.

Experiment 1 Methods

At the level of a single chromophore, we calculate the HOMO-LUMO gap for fused-

ring oligomers of increasing length. The difference between the HOMO and LUMO

energy levels, the HOMO-LUMO gap, is an approximation of the amount of energy

necessary to promote an electron to a higher energy level. Fused-ring geometries are of

particular interest for accepter molecules, as discussed for FREAs in the introduction.

The fused thiophenes in this experiment represent a generic FREA core, whose frontier

molecular orbitals are the landing cites for a charge propagating through an acceptor

material.

To recreate these experiments, using mBuild [58], oligomers composed of 4-8 pla-

nar fused thiophene rings were initialized and saved to a gsd file. The gsd files
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Figure 2.5: HOMO-LUMO gaps obtained using MorphCT for fused-ring
molecules of oligmer length 4− 8.

were fed into MorphCT which uses pySCF to quantify the frontier orbital energy levels

subsection 2.2.1.

Experiment 1 Results

Our values for the HOMO-LUMO gap are plotted by oligomer length in Figure 2.5.

Our HOMO-LUMO gap ranges between 7.27eV and 6.34eV . Consistent with our

findings using a larger data set in section 2.8, the wall time for these individual

calculations take place on the order of seconds.

It is known that there is a near linear relationship between HOMO-LUMO gap

and oligomer length. We find that our use of pySCF (MINDO/3) replicates this trend

and this is clear from Figure 2.5.
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Our absolute values are in the range expected for INDO methods, which are known

to overestimate DFT values by a factor of 2-3 [59]. Our HOMO-LUMO gap values

compare well to those found using ab initio DFT (between 5.26eV and 4.92eV )[60].

Experiment 2 Methods

At the level of the chromophore pair, we explore the effect of angle and distance

on the electronic orbital overlap, Tij, between two non-bonded thiophene rings. Two

thiophene rings are positioned in electronic proximity using mBuild and saved to gsd.

A reference thiophene was placed at the origin in the xy-plane with the y-axis

running through the sulfur atom as shown in Figure 2.6(a). For the second thiophene,

two sets of 12 rotations about the x-axis and z-axis (with −π
2
< θ < π

2
) and two sets

of 12 translations between 0nm and 0.5nm along the x-axis and z-axis were defined.

The Cartesian product of these sets define a space of 124 = 20736 orientations for

second thiophene.

Orientations resulting in atoms that were less than 0.3nm were removed from the

data set as distances shorter than this are considered unphysical. The remaining 5680

atomic arrangements were saved to a gsd and the Tij was quantified for each with

MorphCT.

Experiment 2 Results

The data resulting from this experiment, 5680 orientations of electronically interact-

ing non-bonded thiophenes and the corresponding Tij between them, provide evidence

that MorphCT is rationally capturing the orbital overlap between chromophores. The

Tij resulting from these 5680 orientations are shown in Figure 2.6. The figure shows
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that, as expected, a decrease in center-to-center distance results in more orbital over-

lap and thus an increase in Tij. Also observable in the figure is that a negative rotation

about the x-axis orients the sulfur downward, resulting in a smaller sulfur-to-sulfur

distance and a greater Tij.

For the orientations found to be most and least optimal we calculate (shown in

Figure 2.6), a Tij of .00005eV and .15eV respectively. In the context of Equation 2.1

and Equation 2.5, the corresponding wait time for a charge to hop between to thio-

phenes in these orientations is τ = 2 ·10−14s and τ = 2 ·10−7s. With latter case being

two orders of magnitude slower than the lifetimes allowed in our kMC simulations, a

hop would be highly unfavored for this orientation.

Creating the directory of gsds and quantifying the Tij between them took a wall

time of 3.2h which averages to ∼2s per orientation.

As evidenced by Figure 2.6((a)), for orientations resulting in a center-to-center

distance of less than 0.5nm we calculate an average Tij of∼0.28eV . These calculations

match closely those calculated using more rigorous ab initio DFT methods[61], where

realistic distances between thiophene rings in lamellar P3HT crystals between 0.38nm

and 0.4nm gives Tij values between 0.07eV and 0.1eV .

In a similar work using a random forest machine learning to predict Tij between

thiophenes based on 9 input features, the authors found that the features of most

importance for predicting Tij was bonded vs non bonded, center-to-center distance

and rotation about the y-axis [62].

Graduating these pairwise energetics to charge characteristics on the scale of MD

simulations requires the use of an iterative algorithm. For this we employ kMC

simulations using MorphCT.
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(a) Individual dots correspond to 5680 distinct combinations of rotations
and translations of the upper thiophene. Dots are colored based on the
Tij between thiophenes for the given x-axis rotation, z-axis rotation,
and center to center distance from the reference thiophene.

(b) LEFT: The orientation (x-axis rotation ∼0.14, z-axis rotation ∼−0.14,
center-to-center ∼3.2) with the highest Tij. RIGHT: The orientation (x-
axis rotation ∼− 0.14, z-axis rotation ∼− 1.5, center-to-center ∼5) with
the lowest Tij.

Figure 2.6
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2.6.2 Charge Transport Calculation Verification

Having explored the performance of pySCF on the level of the molecule, we graduate

these computations to the macroscopic scale with MorphCT to obtain charge mobility.

In a previous work [27], researchers used MorphCT to predict charge mobility in P3HT.

With pySCF newly integrated into MorphCT for reasons outlined in subsection 2.4.2,

we verify our charge mobility against this work. The benchmark morphologies, which

are the final frame of benchmark MD simulations, used to carry out this verification

are public [63].

These benchmark simulations were carried out using coarse-graining techniques

wherein molecular segments have been unified and treated as individual beads to lower

computational cost and allow for larger and longer simulations. Using the Optimized

Potentials for Liquid Simulations United Atom (OPLS-UA) force field, the researchers

ran united-atom simulations, which do not explicitly keep track of the hydrogens in the

simulation, but nevertheless accurately predict equilibrium geometries. This allowed

the researchers to access length scales at which individual grains can form within the

morphology. The orientation and boundaries of these grains effect charge transport

and therefore provide a critical benchmark to compare against.

We first fined-grained MD data (hydrogens appended back into the morphology)

and converted from xml to gsd format. At current, MorphCT is compatible with all-

atom data and gsd format. As visualized in Figure 1.3, chromophores are taken

to be individual monomers. Using MorphCT, for each chromophore, a unique object

is instantiated and the energetics are obtained using pySCF. A kMC simulation is

performed on the basis of these energetics with kMC temperature set to 300K. For

each morphology, 10,000 individual charge carriers are injected (one at a time) into
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Figure 2.7: The results of mobility prediction on benchmark P3HT mobil-
ities. We report the data in this way to show that the we found the same
trend as previously reported using ORCA for QCCs.

the morphology, with 5,000 restricted to a lifetime of a tenth of a nanosecond and

5,000 restricted to a lifetime of a nanosecond. As outlined in subsection 2.3.1, from

the difference in MSD between these sets of charge carriers, the zero-field charge

mobility for the morphology is obtained.

It is known about P3HT that it can have vastly different crystallinities based on

how it has been processed. We predict charge mobility in three morphologies with

crystallinities that vary from amorphous to highly crystalline. These morphologies

have been coerced into various levels of crystallinity through a simulated annealing

process. We refer to these morphologies as amorphous, semi-crystalline, and crys-

talline.

Results from our work compare well to a predecessor of our work, which imple-

mented ZINDO/s, another semi-empirical QCC method [64][16]. Their work utilized

an earlier version of MorphCT which used the QCC software ORCA [65] to provide the

quantum chemical approximations. ORCA’s proprietary licensing was prohibitive in



41

the efforts to containerize MorphCT for use on cluster and for creating reproducible

results. This motivated the restructuring of MorphCT for use with pySCF.

The results in 2.7 show the charge mobility reported in the prior work, which

used ORCA for the QCC calculation, and the charge mobility obtained using using the

current workflow, which uses pySCF. The previous work found that charge mobility

is highest for the crystalline morphology, followed by the amorphous, and finally the

semicrystalline. This seemingly anomalous behavior can be explained. While the

semicrystalline morphology has more ordered high speed highways of transport, the

anisotropic movement inhibits average displacement. Our work replicates this trend.

In the previous work on these P3HT morphologies, 7 lifetimes were chosen and a

linear regression was performed to estimate the slope of the MSD. The current work

found that the mobility can be appropriately reproduced with an appropriate choice

of 2 lifetimes beyond the ballistic transport timescale. It was found that with the

squared displacement averaged over 5000 holes at 10−9s and again 10−10s the slope of

the MSD can be reproduced with 1000’s less individual holes having to be simulated.

2.7 Charge Transport Sensitivity Analysis

The sensitivity of our kMC simulation analysis to various parameters was performed

on the benchmark crystalline P3HT morphology. As the overarching goal is to connect

the morphological features to charge mobility, it is critical to be explicit about how

each parameter can affect the resulting value of charge mobility.

By pressure testing the algorithm with a range of values for our input parameter,

we explore the robustness of the algorithm to individual inputs. Sensitivity analysis

can also help us understand where to invest resources into dialing the accuracy of

any given parameter. It also gives motivation to be meticulous about keeping these
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Table 2.2: dcut Sensitivity

dcut Å 4 6 8 10 12 14 16

pairs 318 22000 49000 96000 113026 113315 113315

µ0 (cm2/V s) −2.17 · 10−6 6.13 · 10−4 .01 .17 .17 .22 .22

parameters constant across analysis of the same material under different processing

conditions. For example, if a higher charge mobility is discovered for a given mor-

phology after some simulated annealing, it should be confirmed that it is not because

the researcher used a lower reorganization energy for example.

We perform sensitivity analysis for 4 parameters: (1) neighbor cutoff distance

(dcut), (2) chromophore reorganization energy, (3) kMC temperature, and (4) choice

of carrier lifetimes.

2.7.1 Neighbor Cutoff (dcut)

Voronoi analysis allows for the computationally efficient partitioning of space into

polyhedra chromophore cells. As shown in 2.4, chromophore i is the neighbor of

chromophore j if the voronoi cells constructed around their geometric center share a

boundary with one another.

With each chromophore pair requiring a relatively costly QCC, after narrowing

down the chromophore pairs with voronoi, it could be computationally preferable to

calculate the distances between all pairs and remove neighbors more than dcut apart.

Table 2.2 shows the effect of cutoff distance on value of calculated mobility. We

can see in table 2.2, that with dcut = 10 we get comparable mobilities to the dcut = 12

simulation with 105 less pairs, which could suggest that beyond dcut = 10 there is a

diminishing returns on mobility prediction with the additional chromophores.

However, we found for the materials currently under investigation, pySCF is speedy
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enough such that introducing dcut adds more ambiguity into the workflow than is

necessary given that the average time per QCC dimer calculation is .036s for P3HT

and 1.2s for ITIC. Furthermore, with MorphCT acting on static atomistic orientations,

these calculations are only necessarily performed once per morphology. With that,

our workflow defaults this cutoff distance to half the length of the simulation box,

rendering it effectively moot.

If, in the future, more computationally expensive methods are incorporated into

the QCC step, or chromophores in other organic materials are a heavier lift pySCF,

it could be beneficial to reintroduce this cutoff distance. The optimal dcut will vary

depending on the material and before doing large sweeping analysis on a new material

it is at a discount to do some preliminary analysis to determine an appropriate value.

2.7.2 Reorganization energy

In the context of section 2.2, reorganization energy, λij, constitutes the energy re-

quired to distort the dimer’s equilibrium geometry with a charge on chromophore i

into the dimers equilibrium geometry with charge on chromophore j. Reorganization

energy consist of the energy change associated with the distortion of the dimers ge-

ometry, and the distortion of the surrounding medium in response the movement of

the charge. It can be written as follows:

λtotal = λinternal + λexternal. (2.9)

λ = 0.3eV is chosen to be the default reorganization energy (λinternal = 0.1eV and

λexternal = .02eV ) as others have done with P3HT [16] and a flourene-triphenylamine

copolymer, TFB [40].
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(A)

(B) λ = 100 (C) λ = 800

Figure 2.8: Figure (A) shows how kMC simulated mobility values scale
with the prescribed reorganization energy values, λ. Figures (B) and (C)
show the distribution of hopping rates with λ = 100eV and λ = 800eV
respectively. We see that the exponential decay of charge mobility as
reorganization energy increases is a result of a shift in the distribution of
hop rates throughout the simulation.
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In our workflow, reorganization energy is set as an attribute to the chromophore

object. It is defaulted to ∼300meV as for all chromophore objects. To test the

sensitivity of the algorithm to this value we ran 8 simulations with chromophores

assigned reorganization energies of 100 − 800meV . In MorphCT, this is as easy as

retrieving the pickled crystalline system, looping through the chromophores, setting

the reorganization energy, and rerunning the kMC simulation.

The results, shown in Figure 2.8, are expected from the inspection of Equation 2.1.

Because these simulation were run on the same morphology, the variation in distri-

butions of kij values, shown in Figure 2.8(B)(C), is solely due to the choice of λ. The

cumulative outcome of this is the exponential decay in mobility as λ is increased.

2.7.3 Temperature

To test the sensitivity of our implementation to temperature, 15 kMC simulations

from 100K to 800K were run on the benchmark P3HT crystalline morphology. It

is clear from the results in figure 2.9(A) that the mobilities trend upward with tem-

perature. This should be expected from the assumptions of the model outlined in

section 2.2. With relatively weak electronic coupling (Tij) between chromophores,

electron transfer proceeds nonadiabatically [8]. With this weak coupling, the temper-

ature in the Gibbs free energy of activation term dominates the effect that tempera-

ture has on the hop rate value calculated with Equation 2.1.

An interesting result is that increasing the temperature of the kMC simulation also

increases the wall time of the kMC simulations. As an illustration of why this is the

case, the distribution of hop rates is plotted for 100K and 800K in figure 2.9(C)(D).

With the distribution of hop rates skewed drastically higher at 800K, each charge

carrier will experience orders of magnitude more hops during its specified lifetime.
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(A) (B)

(C) 100K (D) 800K

Figure 2.9: The resulting mobility (A) and kMC wall time (B) of 15 kMC
simulations from 100K to 800K. The hop rate distribution for the lowest
(C) and highest (D) temperature kMC simulations are provided as context
for the relationships observed in (A) and (B). With each hop modeled as a
thermally activated process, an increase in temperature increases average
hop rate and mobility. Orders of magnitude faster hops means orders of
magnitude more hops to track in computer memory over a charge carrier’s
lifetime, which we see results in longer kMC simulation wall times.
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2.7.4 MSD (lifetimes)

Introduced in subsection 2.3.1, the ‘carrier lifetimes’ chosen for a given simulation can

effect the analysis of the slope of the MSD as time goes to infinity. Including MSD data

for an extremely short lifetime can inflate the estimation. Including MSD data for

extremely long lifetimes wastes computation and could introduce unnecessary noise

into the data [42]. For example, in an attempt to simulate out to the physical limit,

a simulation with a microsecond(10−6s) lifetime resulted in a single hole hopping for

9 wall time hours.

In real systems, free charge carrier lifetime is subject to a complex interplay be-

tween geminate recombination, non-geminate recombination, charge trapping, tem-

perature, and charge density. These dynamics play out across a picosecond to mi-

crosecond timescales and vary wildly from material to material and from microstruc-

ture to microstructure for a given material [66].

Testing the sensitivity of this choice was not as one-to-one as it was for the pa-

rameters tested above. We could choose as many lifetimes across whatever length

scales we please. We saw that the choice of two lifetimes is sufficient for estimating

slope in section 2.6. So we test the sensitivity to setting the first lifetime progressively

shorter.

To do so, we set the second lifetime comfortably in the linear region of the MSD.

In a previous work on P3HT, the slope becomes linear around a tenth of a nanosecond

[16]. With that, we take the second life time to be two orders of magnitude beyond

that at ten nanoseconds. 6 simulations were run with progressively shorter first

lifetimes. The first lifetime was set to 10−9s, 10−10s, 10−11s, 10−12s, and 10−13s

respectively. The results are plotted in figure 2.10.
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Figure 2.10: The results of running 5 kMC simulations with the first
lifetimes as described in the text. It can be seen that below the ballistic
timescale (∼10−10s), the resulting mobility increases.

As expected, as the first lifetime progresses in the ballistic transport timescale,

the resulting mobility increases. If the starting lifetime is even shorter the workflow

breaks down because as can be seen from the hop rate distribution in figure 2.9(D),

even at extreme temperatures, holes need more time that that to hop even once.

Interestingly, the algorithm seems to be quite robust against choice of lifetimes.

As can be seen in the figure, order of magnitude differences in lifetime choices results

in less than 2X difference in the resulting mobility. Furthermore, as we saw on sec-

tion 2.6, fitting the slope of the MSD from only two lifetimes results in a satisfactory

charge prediction. This suggests that going lifetime crazy is a waste of computa-

tion. What is more important then is reporting the lifetimes used in the study for

comparison across multiple studies.
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2.8 ITIC

Our pipeline is meant to facilitate the computational screening of OPVs. Here we

use the pipeline to predict charge mobility in ITIC. This is a first foray into the

extensibility of the complete pipeline to a material not named P3HT.

The ITIC morphology was simulated using Plankton-Flow [45] on Fry, a high

performance computing cluster at Boise State University. Using planckton-flow, a

1000 molecule morphology of ITIC was equilibrated over a 107 step MD simulation at

room temperature. From the results of the ∼200nm3 MD simulation, the last frame

of the atomic trajectories is taken to represent an accurate equilibrium geometry of

ITIC.

To apply the hopping model to this atomistic morphology requires the delineation

of segments within the morphology upon which charges can delocalize along LUMO

(or HOMO for donors). The LUMO of ITIC delocalizes along the backbone of the

molecule, with negligible electron density in the side chains. This makes the backbone,

composed of the fused-ring core and end groups, the obvious choice of chromophore.

This has been quantified and well visualized using ab initio DFT at the level of the

molecule by Han et al. [67]. We have visualized this at the nanometer scale in figure

2.11 using the openly available visualization tool OVITO [49].

A single molecule of ITIC has 186 atoms, with the backbone consisting of 70

atoms. We deployed two different approaches to the delineation of chromophores

within the ITIC morphology. We first take the backbone to be the chromophores. In

another simulation, we take the whole molecule to be a chromophore.

Including the whole molecule necessarily requires more heavy lifting from pySCF

but is trivially easy from an indexing perspective. Similar to the results of the dcut
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Figure 2.11: 1000 molecule ITIC morphology. Colored atoms were included
in the QCCs for the backbone chromophore simulation (LEFT) and whole
molecule chromophore simulations (RIGHT).

investigation, this implementation of pySCF, combined with clever pickling of system

objects at various stages of the workflow, suggest that the laborious delineation of

chromophores can be largely circumvented in macromolecular systems like ITIC. We

found that, while the 70 atom chromophores took 1.2s per dimer while, the whole

molecule dimer calculations with 186 atoms per chromophore took on average 3.3s.

This is a substantial increase across a hundred thousand pair calculation. However,

as we have seen in subsection 2.4.2, organizing a workflow that ensures that this step

only be performed once minimizes the computational blow.

We found comparable mobilities of (1.019 ± 0.001) · 10−3 for the backbone chro-

mophores and (1.275 ± 0.001) · 10−3 for the whole molecule. This slight increase in

mobility comports with the reality, as including the side chains adds some electron

density off the axis of the backbone which could facilitated hopping pathways unex-

plored by the backbone only simulations. While the contribution from the electron
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density along the side chains is minimal when discussing mobility values that vary

orders of magnitude, the contribution is not zero.

As discussed in the sensitivity analysis, our mobility calculations are relatively

sensitive to the choice of reorganization energy. For ITIC, λinternal has been well

investigated and is widely reported as 0.15eV [67]. The external reorganization is

harder to estimate. We take λtotal = 0.3eV as we did for P3HT. With the fused

backbone resulting in a higher internal contribution and the lack of long range order

resulting in a lower external contribution.

The reported experimental electron mobility of ITIC varies depending on how it

was processed and how it was measured. Time-of-flight electron mobilities on the

order of 10−4 [68] and field effect mobilities on the order of 10−2 [69] have been

reported. Another computational study, that also used Marcus hopping and kMC,

found an electron mobility of 7 · 10−4 [70] in a pure ITIC crystal.
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CHAPTER 3:

CONCLUSION

As others have argued [71][40][16], the kind of workflow outlined in this thesis can

allow for cheaper and more expansive screening of OPV materials across varied

chemistries and processing conditions.

We have shown that it is theoretically possible and practically achievable to sim-

ulate OPVs. Through the publication of workflows, code development, and data

we have outlined a Transparent, Reproducable, Usable, Extensible pipeline through

which any researcher can quantify material properties in organic semiconductors. We

have verified that our implementation is satisfactorily prediction charge mobility. We

have performed sensitivity analysis on our pipeline using benchmark P3HT morpholo-

gies. Through our study on ITIC, have also seen that the pipeline is readily extensible

to other OPV’s.

Throughout this work, the most critical resource has been collaboration with

other developers. This collaboration took place in real time with active developers

and asynchronously through the trails of bread crumbs left behind by predecessors in

the form of documentation, searchable public communication, and tutorials. This is

unsurprising, because learners that are new to an area of research, or to an application

programming interface, will often experience similar pitfalls. Open source software

development provides a scaffolding around which we can take note of these pitfalls and
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actively work to smooth the path for the next researcher to expand the boundaries

of the research further.

Through this lens, we have seen that the frayed edges, the pure scientific theory

and the pure data/computer science, of scientific software development can entangle

an aspiring researcher. For this particular project, that meant learning quantum

theory and data science simultaneously. We have attempted to tie these ends together

by creating tutorials that expose a new user to the MorphCT code base and to the

scientific theory underlying it. Maintaining these tutorials as part of the code base

allows future researchers to modify and expand on them. Tutorials for using MorphCT

to explore the energetics of an organic compound (commit 8695a81), to delineate

chromophores within an atomistic morphology (commit 8695a81), and to perform a

mobility prediction for a morphology (commit 29d6b33) are maintained on the github

repository for MorphCT [72]. Jupyter notebooks containing the code used to generate

the figures for this work can be found on the github repository for this thesis [73].

As for the algorithm employed with MorphCT, we have learned that PySCF is quan-

titatively and computationally sufficient for providing QCCs across large atomistic

morphologies. We found that the efficacy of PySCF allows for the simplification of

our algorithms for neighbor listing and chromophore delineation.

We have provided a proof of concept of the extensibility of our pipeline in our

investigation of ITIC. However, the next step in this research will be to improve

the extensibility of MorphCT through the development of MorphCT-Flow for the con-

tainerization and dataspace management for large scale screening across molecules

and state spaces.
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