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ABSTRACT

Mountain ranges are vital ”water towers” of the world and are uniquely threatened

by anthropogenic climate change. At the same time, the paucity of observing networks

limits our understanding of hydrometeorological processes in water-resource critical

regions, including the Western United States. In the past decade, non-hydrostatic,

convection permitting ( 1-4km horizontal resolution) regional climate models (RCMs)

have emerged as a promising tool for both reconstructing regional scale mountain

hydroclimates, and for forecasting the impacts of climate perturbations on water-

sheds and water-resources. Still, challenges remain. To-date, computational and

data storage limitations have generally precluded many RCM studies to a handful

of individual years, limiting the characterization of model uncertainties/biases and

thus the interpretation of model outputs. Moreover, validating spatial precipitation

fields from RCMs remains a challenge, as gridded precipitation datasets are highly

uncertain in locations far away from observing stations. Consequently, further val-

idations of regional climate models require leveraging diverse or indirect sources of

hydrologic information. I develop three studies to meet these challenges in this dis-

sertation. In the first, I examine the fidelity of coupled hydrologic-model/RCM for

simulating streamflow in four water resource significant, snow-dominated basins in

the Boise River basin. In the second, I develop a long-term RCM simulation (1987-

2020) in the Upper Colorado River basin and evaluate precipitation fields using a
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novel precipitation-from-streamflow bayesian inference strategy. The third chapter of

the dissertation examines orographic precipitation sensitivities to cloud-microphysical

parameterizations schemes, and leverages Airborne LIDAR snow-depth datasets to

evaluate both spatial patterns of precipitation enhancement and watershed-total pre-

cipitation delivery. Together, the results from this dissertation demonstrate the utility

of multi-decadal regional climate modeling for interrogating mountain hydro-climates,

and demonstrates the opportunities and challenges for leveraging diverse hydrologic

data sources (streamflow, airborne LIDAR) and methods (bayesian inference) for

evaluating RCMs.
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1

CHAPTER 1:

INTRODUCTION

1.1 Introduction

This dissertation aims to improve predictive understandings of hydrologic systems

in mountain regions, with particular emphasis on the Western United States. In these

regions, interactions between the solid-earth and atmosphere profoundly shape the

hydrologic cycle through orographic precipitation, geomorphic, ecological, and radia-

tive processes. Anthropogenic climate change can/will impact mountain watersheds

disproportionately (Mountain Research Initiative Edw Working Group et al., 2015).

Globally, one-sixth of the world’s population relies on water resources flowing from

mountain watersheds, often which falls in the form of snow that accumulates during

the course of the winter, acting as a natural reservoir (Sturm et al., 2017). Ecological

and biological diversity flourishes in in mountain regions, with high-elevation endemic

species adaptations to unique mountain hydroclimate and geomorphology (Immerzeel

et al., 2020). Regions of the Western United States (WUS) are experiencing warming

trends across seasons (Rangwala & Miller, 2012) and declining Spring snowpacks pri-

marily driven by temperature (Mote et al., 2005), in addition to changes in snowfall

extremes (Lute et al., 2015). Projections suggest that mountains of the WUS region

may see the first snow-free winters as early as 2050 (Siirila-Woodburn et al., 2021).



2

Still, observational and modelling limitations mean there are many uncertainties

related to the current state and future of mountain hydroclimates. Global climate

models (currently on the order of 50km grid-spacing) do not resolve the sharp gradi-

ents in climate found in most mountain ranges. Therefore, statistical or dynamical

methods of ”downscaling” are required to attribute global model solutions to lo-

cal scales (Prein et al., 2015). Validating such models is a persistent challenge, as

mountain regions are under-sampled by hydrologic and meteorological instrumenta-

tion throughout the US and globe. Frozen phase precipitation (snowfall) is difficult to

accurately measure with precipitation gauges (Lundquist et al., 2019), space-borne re-

mote sensing algorithms are challenged in complex terrain and for ice phases, (Letten-

maier et al., 2015), radar networks have poor coverage over mountain ranges (Maddox

et al., 2002), and gauge-based datasets (Daly et al., 2008; Thornton et al., 2016) are

themselves models of these processes, and can disagree substantially in complex ter-

rain (Henn et al., 2018). Consequently our ability to understand hydrologic processes

in mountains at regional scales is highly limited by the quality of meteorological data,

precipitation in particular, which limits studies of the current climate and the ability

to project changes into the future. Predicting the evolution and fate of snowpacks is

particularly dependent on the quality of precipitation input (Raleigh et al., 2015).

In the recent two-decades, non-hydrostatic, convection permitting numerical weather

models have proved to be increasingly useful tools for reconstructing hydrologic cycles

of mountain regions. These methods may go many names depending on the context:

regional climate modeling, dynamical downscaling, convection-permitting modeling,

limted area modeling, and mesoscale modeling to name a few. Convection-permitting

modelling refers to non-hydrostatic models at sub-4km grid spacing, at which deep
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atmospheric convection is theorized to emerge without the need of additional param-

eterizations (Weisman et al., 1997). These types of models can both make forecasts

at weather time scales for operational purposes (Benjamin et al., 2016) or use atmo-

spheric reanalyses datasets, which assimilate past atmospheric observations, as lateral

boundary conditions to hind-cast meteorological conditions at resolutions finer than

the parent reanalysis (Prein et al., 2015; Lucas-Picher et al., 2021). This latter config-

uration proven skillful for simulating precipitation and other meteorological fields in

a variety of mountain watersheds throughout the WUS (Gutmann et al., 2012; Ikeda

et al., 2010; Rasmussen et al., 2011; Liu et al., 2017) and globe.

The goal of this dissertation is to evaluate dynamical downscaling methods for

hydrological applications in watersheds of the Western US, namely the Boise River

basin (Chapter 1) and Upper Colorado River basin (Chapters 2,3). The disserta-

tion primarily uses the Weather Research and Forecasting (WRF; Skamarock et al.

(2008)) model. The goals are twofold. First, dynamical downscaling methods offer

Earth-science practitioners distributed, serially-complete reconstructions of surface

meteorological conditions (winds, precipitation, temperature, etc.) that can be used

for hydrologic, critical zone, biogeochemical or other studies in mountain watersheds

at fine-spatial and temporal scales ( 1-4km; hourly). To this end, the biases and

error characteristics of dynamically downscaled fields need to be evaluated to in-

form applications and interpretation of the end-results. Second, understanding the

multi-decadal behavior of dynamical downscaling models and associated biases re-

mains a poorly explored, in part because of computational limitations (Lucas-Picher

et al., 2021; Prein et al., 2015). Evaluating the multi-decadal behavior of dynamical

downscaling models for the recent climate ( 30 years ago to present) is an essential
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step for interpreting and understanding dynamical downscaling of climate change

outputs. However, observational constraints consistently limit some of the abilities

for verifying modeling outputs, particularly in complex terrain for the reasons al-

ready mentioned. Consequently, Lundquist et al. (2019) urges the hydrologic and

atmospheric science communities to better collaborate across disciplines, and to de-

velop better multi-objective methods of evaluating regional climate models. To this

end, I develop methods for using additional hydrologic information, beyond precipi-

tation gauge data, to evaluate the hydrologic fidelity of regional climate models. In

particular, Chapters 2 and 3 develop methods to use streamflow and snow remote

sensing to interrogating modelled precipitation. In addition, regional climate models

offer process-level understanding of mountain systems, and insights into how different

components of the land-atmosphere system interact. To this end, a section of the first

chapter is devoted to investigating soil-moisture atmosphere interactions, building off

of Rudisill et al. (2021).

The dissertation is structured into five chapters. In the first, I outline some of the

modeling fundamentals and scientific concepts used in this study. The latter three

are research articles. The first article concerns modeling river discharge for four wa-

tersheds in the Idaho Rockies, in addition to quantifying the role of land-atmosphere

interactions mediated through soil-moisture. The second chapter validates atmo-

spheric modelled precipitation in terms of seasonal accumulation, correlation, and

seasonality using a combination a Bayesian inference approaches (”doing hydrology

backwards”) and comparisons against NRCS Snotel measurements (Serreze et al.,

1999) and gauge-based precipitation products (Daly et al., 2008; Livneh et al., 2013;

Newman et al., 2015). The third chapter compares the sensitivity of winter pre-
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cipitation to three different microphysical schemes in the WRF model — Morrison

et al. (2005); Thompson et al. (2008a); Jensen et al. (2017) — and uses snow-lidar

datasets (Painter et al., 2016) to interrogate biases in accumulation and spatial dis-

tribution. The final chapter summarizes the key findings, challenges, and outlines

future directions for research.

The tools used in this dissertation are primarily physically based models of the

atmosphere and hydrologic flows — the language of fluid mechanics. These rules are

well established in classical physics. However, numerical closure problems and ”sub-

grid” scale processes both require ”parameterization” rules, meaning than physically

based models require major leaps of intuition and imagination to adequately describe

the phenomena in question (Stensrud, 2009). Processes leading to cloud-formation (so

called ”cloud microphysics”), turbulence, radiation interactions with clouds, and land

surface fluxes of heat/moisture/momentum are all processes that are ”parameterized”

in models. This section describes some of the fundamental scientific background

material that is used in this dissertation.

1.2 Foundations of Regional Climate Modeling

Some recent reviews of convection-permitting, regional climate modeling are de-

scribed in Prein et al. (2015) and Lucas-Picher et al. (2021). Regional climate mod-

elling is a boundary value problem, where reanalyses products are used as boundary

conditions. In this way regional climate models can be thought of as ”magnifying

glasses” into atmospheric scales not resolved from global reanalyses, which are typ-

ically on the order of 25-50 km in horizontal resolution. This is sufficient to resolve

the general structure of synoptic features (extratropical cyclones for example) but not

the small scales responsible for orographic precipitation (Roe, 2005).



6

Atmospheric flows can be described by the conservation laws of linear momentum,

energy, and mass of both dry-air and moisture in addition to an equation of state.

Such conservation laws are expressed in the language of partial differential equations.

The basic equations, or so called ”primitive equations” of numerical weather predic-

tion are expressed in parcel-following (lagrangian) form with cartesian coordinates

and the rotating Earth as frame by Pu & Kalnay (2019):

dV

dt
= −1

ρ
∇p−∇Φ + Fr − 2Ω×V (1.1)

∂ρ

∂t
= −∇ · (ρV) (1.2)

pα = RT (1.3)

Q = Cp
dT

dt
− 1

ρ

dp

dt
(1.4)

∂ρq

∂t
= −∇ · (ρVq) + Sq (1.5)

Where V is the 3-d wind vector field given by V(x, y, z, t), ρ is the air density, p

is pressure, T is temperature, g is the gravitational force, and q is the water vapor

mixing ratio, and Fr is the frictional force, and Ω is the Earth’s angular velocity at a

given latitude. Q is the diabatic heating term and Cp is the specific heat capacity of

dry air. The terms on the right side of Equation 1.2 are the pressure gradient force,

gravitational force, friction, and the apparent Coriolis forces (2Ω ×V). The second

equation expresses the continuity equation for dry air. The 1.2 equation is the ideal

gas law, the fourth equation is the conservation of energy, and the fourth equation is

the continuity equation for water vapor, where Sq is the source/sink term accounting
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for precipitation/evaporation. Analytical solutions for the governing equations are

not practicable, so equations are discretized on a grid and solved using numerical

methods.

In most cases, the equations are expressed using a coordinate system with a more

complicated vertical coordinate. The model used in this dissertation is the Weather

Research and Forecasting model (WRF; Skamarock et al. (2008)). WRF uses a hy-

brid vertical coordinate (as opposed to a pressure or Cartesian coordinate) follow-

ing Laprise (1992). Moreover, for numerical reasons equations are expressed using

Reynold’s averaging, where a given state variable is expressed as the sum of a mean

and perturbation component. WRF uses the compressible, non-hydrostatic Euler

equations for Equation 1.2. First, ”non-hydrostatic” refers to the hydrostatic ap-

proximation given by:

∂p

∂z
= −ρg (1.6)

Where p is pressure, z is height, ρ is atmospheric density, and g is the gravitational

force. Some models use this approximation to simplify Equation 1.2, but representing

mountain gravity waves at kilometer-scales requires non-hydrostatic models Prein

et al. (2015). The term ”convection permitting” refers not to the particulars of

the governing equations, but rather the horizontal length scales of the model. It is

accepted that a grid spacing of less than 4km are necessary to resolve horizontal

thermodynamic gradients responsible for convection (Weisman et al., 1997).

The governing equations are discretized and solved using numerical methods.

WRF uses a third-order Runge-Kutta finite difference method to integrate the sys-

tem of equations. A ”C-grid” staggering approach is used, following Arakawa & Lamb
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(1977). Boundary conditions are required at the model boundaries for each forecast

state variable.

1.3 Overview of Cloud Microphysics

Chapter 4 investigates cloud microphysical parameterizations, which are respon-

sible for the Sq term in Equation 1.5. A brief overview of cloud physics is warranted,

and largely follows from Yau & Rogers (1996) and Morrison et al. (2020). Gener-

ally speaking, clouds form when the relative humidity of an air parcel reaches or

exceeds 100%, or when e >= es, where e is the vapor pressure and es is vapor pres-

sure at saturation. This can happen through a variety mechanisms, including cooling

by adiabatic expansion (caused by lifting air parcels), radiative cooling, or mixing

or air parcels. The growth of precipitation particles within clouds is controlled by

small scale thermodynamic and kinematic processes, on the order of micrometers to

millimeters, referred to as ”microphysics”. The physics of clouds are surprisingly com-

plicated, and are in many ways analogous to the complexity of turbulent atmospheric

flows. Most clouds do not precipitate and are relatively stable. Precipitation happens

when conditions favor cloud particles to grow large enough to overcome frictional and

restoring forces inhibiting their fall. The majority of precipitation and cloud growth

occurs heterogeneously, meaning that cloud condensation nuclei (CCN) are present.

The primary nucleation of ice crystals is very sensitive to the presence of CCN, as

ice particles will not freeze homogeneously (in a completely pure environment) until

-40◦C is reached. Consequently it is common to have super-cooled liquid water (below

0 ◦C) coexisting with ice particles in clouds (”mixed-phase” clouds). Since droplet

formation depends on the presence of CCNs, super-saturation is common, where the

relative humidity exceed 100% by a few tenths of a percent.
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1.3.1 Some Fundamental Cloud Chemistry

A few fundamental theories related to the growth of liquid and ice droplets are

worth describing. The temperature dependent saturation vapor pressure given by

the Clausius-Clapeyron relationship assumes a flat, infinitely wide water surface in

equilibrium with the atmosphere. To be applied to particles, the Clausius-Clapeyron

relationship must be adjusted to take into account surface tension and the shapes of

the particle. The effects of solutes (such as NaCl) also impact the saturation vapor

pressure, following Raolt’s law. The combined effects of solutes and and particle

radius on the saturation vapor pressure can be expressed as:

SR =
e′s(r)

es(∞)
= 1 + a/r − b/r3 (1.7)

Where es(∞) is the saturation vapor pressure calculated by the clausius-clapeyron

relationship and e′s(r) is the adjusted saturation vapor pressure for a spherical particle

of radius (r), and SR is the saturation ratio. The a/r term expresses the dependency

on curvature, and the b/r3 term expresses the effects of solute concentrations. a has a

linear dependency on temperature and b is depends on the concentration and proper-

ties of the solutes in the droplet (Yau & Rogers, 1996). Together these relationships

are described by ”Kohler curve” theory described a century ago (Köhler, 1921). The

addition of solutes will tend to lower vapor pressure (larger b/r3, making it easier

for droplets to form) whereas increasing particle radii make it more difficult to form

droplets (larger a/r). Kohler theory means that particles beyond a certain critical ra-

dius (found by locating the peak of Equation 1.7) curve will continue to grow through

condensation of environmental air until the super-saturated environmental air is de-
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pleted, whereas small droplets will remain small. Kohler theory explains the relative

stability of non-precipitating clouds

Another important thermodynamic process relates to ice phase. Ice particles have

a lower saturation vapor pressure (es) than super-cooled liquid water at the same

temperature. Consequently, ice will grow by vapor deposition faster than super-

cooled liquid water droplets through the so-called Bergeron process (Bergeron, 1935).

Still it is generally understood that the growth of hydrometeors by diffusional growth

cannot explain the observed rates of precipitation. Collision-coalescence mechanisms,

where droplets collide with other droplets, is another mechanism that may lead to

droplet growth. There are still many uncertainties about the growth processes in real-

world clouds (Morrison et al., 2020). Ice phases are difficult to model and understand

from a physcical perspective given the range of possible crystal habits (for instance,

an ice particle cannot be approximated as a sphere with radius, r, as in Equation

1.7).

1.3.2 Representing Microphysical Processes in Models

Models of the atmosphere must create rules that determine when/if a saturated

grid cell loses mass (water) to precipitation following some of the principles outlined

above. Early models used a simple precipitable water threshold value, above which

water is instantaneously removed from a given model cell (Morrison et al., 2020).

Early schemes such as Kessler (1969) scheme did not account for ice phase processes,

and only considered water vapor, cloud-water, and warm-rain. Modern bulk micro-

physical parameterizations evolved from this legacy, and now typically model the evo-

lution of include cloud-water, cloud-ice, snow, rain, graupel, and hail. Many modern

schemes predict two quantities for microphysical species: the Number Concentration
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(Nc; L
−3) and Mixing Ratio (q; kg/kg). A scheme that predicts both is referred to as

a ”Double Moment” scheme. The mixing ratio is simply the mass of the particle per

the mass of dry air. The number concentration is the quantity of individual particles

per volume of air. Expressions relating particle diameters and number concentrations

are often used of the form:

Nc =

∫ ∞

0

n(D)dD (1.8)

Where n(D) is the Drop Size Distribution function, with units (m−4). The is

typically given by an exponential equation of the form:

n(D) = zDx exp(−yD) (1.9)

Where D is diameter and n(D) has units m−4. The variables z, x, and y are

parameters that may or may not depend on various physical factors or may be set to

constant values. The relationship between diameter and drop-size distribution may

not seem intuitive. Nonetheless this is based on the canonical ”Marshall Palmer”

equation Marshall (1948). Modern microphysical schems Thompson et al. (2008a);

Morrison et al. (2005); Jensen et al. (2017) still use drop-size distribution functions

more or less of the same form as the original Marshall Palmer type.

The general continuity equation for a given hydrometeor species in a typical bulk

scheme can be given by:

∂χ

∂t
= −u · ∇χ+

1

ρa

∂ρaVχχ

∂z
+ Sχ (1.10)

This equation expresses the continuity equation for the scalar, χ, which can be
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the mixing ratio, number concentration, or other hydrometeor property. Vχ is the

weighted terminal velocity of the particle, ρa is the density of air, and Sχ is the

production/destruction term for the hydrometeor in question. The terminal velocity

of the particle (Vq) is related to the particle mass through the frictional force, which

typically has a scalar drag coefficient parameter.

The Sq terms represent processes that produce/destroy the hydrometeor species,

i. These may include autoconversion, accretion, vapor deposition, collection of rain-

water by snow, sublimation, and more. The complexity of the microphysics scheme

will determine which types, and how, processes are represented. Bao et al. (2019)

provides a good comparison of the modeled tendencies in three different commonly

used microphysical paramterizations in the WRF model.

1.4 Water Movement on Hillslopes and Stream

Channels

There are two different applications of streamflow modeling in this dissertation,

with two different aims. In each case daily streamflow values are analyzed for 20-30

year periods for snow dominated basins (Colorado Rockies; Idaho batholith).

1.4.1 Distributed Hydrologic Modeling

In Chapter 1, a regional climate model (WRF) is ”one-way” coupled with a dis-

tributed hydrologic model (WRF-Hydro) to simulate streamflow in the Boise River

basin. The WRF-Hydro model (Gochis et al., 2018) evolves from Land Surface Models

(LSMs) that are used to solve for the fluxes of energy/mass/momentum at the bot-

tom boundary of atmospheric models. These types of models typically do not move

water laterally from grid-cell to grid-cell, nor do they have channel routing functions.
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WRF-Hydro effectively adds another layer of hydrologic realism to NoahMP (Niu

et al., 2011), namely lateral saturated subsurface flow, overland flow, ponded water,

and channel routing formulae. In NoahMP (and WRF-Hydro) soil-water infiltration

follows the one-dimensional Richard’s Equation. The saturated subsurface flow equa-

tion uses a formula based on Wigmosta & Lettenmaier (1999) and derived from the

dupuit-forcheimer assumptions. For each grid cell in the model, the flux is computed

by:

qijk = −Tijk tan(βijk) wijk) (1.11)

Where T is transmissivity, β is the slope of the of the water table in the k direction,

and wijk is the flow width. qijk is then the flow rate from the i,j cell in the k direction.

The total flux is then found by summing all of the fluxes from each contributing grid

cell. Overland flow is modelled using a kinematic wave approximation. The kinematic

wave approximation is a simplification of the total momentum continuity equation

for shallow flows, where only the bottom slope and friction forces matter. In one

dimension, the continuity equation for a shallow kinematic wave is given by:

∂y

∂t
+

∂qx
∂x

= i0 (1.12)

qx = αy5/3 (1.13)

Where y is the water height, qx is the specific discharge. Equation 1.13 comes

from applying a resistance equation such as Manning’s equation (Eagleson, 1970),

which acts on the flow velocity at the channel bottom. In WRF-Hydro, α is given
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by α =
S
1/2
fx

nov
, where Sfx = Sox − ∂Y

∂x
. Sox is the terrain-slope, and ∂Y

∂x
is the change

in water height over length x and nov is a tunable parameter. Once water enters

a streamchannel, several different options can be used to model flow through an

idealized, trapezoidal channel described by a constant slope, bottom-width, roughness

coefficient, and follows the same principles of momentum and mass conservation.

WRF Hydro and other distributed hydrologic models require many such parame-

ters, including for soil properties like porosity and hydraulic conductivity. In practice

this means taking geographic maps of soil properties (such as Miller & White (1998))

and using different approaches of mapping soil categories to hydrologic parameters.

In this type of ”distributed” model, fluxes are computed for each grid cell within

the simulation domain and routed into an idealized trapezoidal channel, where the

muskingum-cunge streamflow routing equation is solved to produce a hydrograph for

each point in the idealized channel.

1.4.2 Bucket Modeling

Chapter Three applies soil-moisture accounting and stream channel runoff models,

but with a different aim than Chapter Two. A conceptual, ”bucket” hydrologic model

is employed based on the ”FUSE” model (Clark et al., 2008). In many ways, a bucket-

type model can be thought of as one grid-cell of a distributed model. Many of the

same physical principles and governing theories are applied (overland flow, infiltration,

etc). Rather than representing a watershed as a collection on interconnected cells,

a single ”bucket” with an upper and lower reservoir (representing the unsaturated

and saturated zones) is used. In place of a stream channel routing scheme, the

runoff signal is convolved with a unit-hydrograph (two parameter inverse gamma

function) to produce a realistic hydrograph. Advantages of bucket models are that
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they contain few parameters and are computationally efficient, meaning that iterative

inverse methods can be applied to estimate parameters. The goal of this particular

chapter is to invert for basin-mean precipitation following Henn et al. (2015).

While applied to a different basin, as we will see the conceptual model more

skillfully produces hydrographs. That, however, is not to say that the conceptual

model is better, as the questions being asked are different. Conceptual models may

be useful for inverse applications (where many model iterations are required) or for

purely predictive applications; distributed models offer a framework for testing a

range of other scientific hypotheses, such as the influence of vegetation removal on

streamflow generation, impacts of forcing heterogeneities, or other questions related

to the spatial organization of parameters and forcings.

1.5 Land-Atmosphere Interaction Phenomena

The first chapter of the dissertation examines roles of soil-moisture/atmospheric

coupling, in part building off of Rudisill et al. (2021). These processes fall under

the wider umbrella of ”land atmosphere interactions”. The atmosphere exchanges

heat, moisture, and momentum fluxes with the land. It has been well-recognized

that accurately predicting near-surface climate fields (temperature, humidity, etc)

is highly dependent on the land-surface conditions (soil moisture, vegetation cover,

albedo) but in many ways land-atmosphere couplings remain poorly observed, theo-

rized, and understood (Santanello et al., 2018). Among the central metrics used in

land-atmosphere interactions studies is the evaporative fraction:

EF =
LEsfc

LEsfc + SHsfc

(1.14)
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Where LEsfc is the latent heat flux and SHsfc is the sensible heat flux. The

energy balance at the land surface is given by:

LEsfc + SHsfc = SWnet + LWnet +G (1.15)

Where SW is the shortave radiation, LW is longwave radiation, and G is the

ground heat flux. All terms have units of w/m2 During the daytime and assuming

there is no water limitation, the evaporative fraction can be thought of as the fraction

of incoming energy that is partitioned into evaporation. Many of the studies of land

atmosphere interactions relate to diagnosing how the evaporative fraction influences

the growth of the day-time planetary boundary layer (PBL) and convection. The

PBL is the lower layer of the troposphere that is directly impacted by heat/moisture

fluxes from the land surface, and is typically characterized by a temperature inversion

at it’s top (an increase in temperature with height). The PBL tends to grow with

lowering evaporative fractions (more sensible heating), as this results in stronger

thermals rising from the surface. Understanding some of these processes, and the role

of moisture on PBL development and convection, begins with parcel theory, which is

described in most meteorology or thermodynamics textbooks such as Petty (2008).

The work of Findell & Eltahir (2003) establishes some simple metrics for diagnosing

the impact of the evaporative fraction on PBL growth and convection which are used

in Chapter 1. Santanello et al. (2018) provides and up to date review of many of the

challenges and current opportunities of land-atmosphere interaction research.
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CHAPTER 2:

EVALUATING LONG TERM ONE-WAY

ATMOSPHERE-HYDROLOGY SIMULATIONS

AND THE IMPACTS OF TWO-WAY

COUPLING IN FOUR MOUNTAIN

WATERSHEDS

2.1 Abstract

Joint hydrologic-atmospheric model frameworks offer novel insights into the ter-

restrial hydrologic cycle and the potential for improved predictive capabilities for

stream discharge and other hydrologic fluxes. In this study, we examine both one-

and two-way coupled integrations of the Weather Research and Forecasting (WRF

v3.8.1) atmospheric and WRF-Hydro (v5.0) hydrologic models for four 1000-2000

km2 snow-dominated mountain watersheds (1500-2100 m mean elevation) in Idaho’s

Rocky Mountains. In watersheds where anthropogenic withdrawals are minimal (3

of 4 watersheds), we simulate stream discharge with high confidence (KGE>.63) for

a 20 year period in the uncoupled scenarios, and find that WRF winter precipitation

accumulations have less have less than 15% average error for all but two of the four-
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teen comparison NRCS Snotel sites. However, annual streamflow biases are highly

correlated (r2>.8 in some cases) with the annual errors in WRF cold-season precipita-

tion, suggesting that process representation of winter orographic precipitation limits

hydrologic predictability. In the second part of the study, we evaluate the potential

for “two-way” model coupling to influence hydrologic predictability by examining a

two month case-study period with active spring season convective precipitation. We

quantify the impacts of resolving hillslope-scale soil water redistribution on the ABL,

and find that while resolving overland and saturated subsurface soil moisture flow

influences soil moisture distributions and surface energy fluxes, the impact on pre-

cipitation is non-systematic, as precipitation is generally atmospherically controlled

during the study period. Consequently, future efforts should focus on improving win-

ter orographic process representation, as streamflow is highly sensitive to errors in

these processes.

2.2 Introduction

Efforts in the last decade have worked towards full terrestrial-atmospheric water

cycle prediction, where atmospheric models are coupled either “one-way” or “two-

way” with sophisticated hydrologic or groundwater models (Maxwell et al., 2011;

Gochis et al., 2013; Butts et al., 2014; Shrestha et al., 2014). While many of these ef-

forts are motivated by improving hydrologic prediction, models of coupled hydrologic-

atmospheric systems can help reveal the extent to which coupled land-atmosphere

processes influence observed hydrologic variables like streamflow, as well as the spa-

tiotemporal scales at which those coupled processes act. Distributed, physically-based

hydrologic models use more sophisticated representations of hillslope-scale soil water

exchanges not included in most land surface representations used in atmospheric mod-
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els (Stensrud, 2009; Dudhia, 2014), and may in particular solve for lateral soil water

diffusion, overland flow, re-infiltration, and stream channel flow with varying degrees

of complexity (Ivanov et al., 2004; Maxwell et al., 2009; Hamman et al., 2018). In

“one-way” coupling, the meteorological states from an atmospheric model are used

directly as forcing inputs into a distributed hydrologic model, with no feed-back

from the hillslope-scale hydrologic model to the atmospheric boundary layer (ABL).

Whereas in “two-way” coupling, the surface fluxes computed by the hydrologic model

are used as the lower boundary by the atmospheric model (Figure 2.1). One way cou-

pling approaches are of particular interest in mountain regions, where large spatial

heterogeneities of mountain precipitation challenge distributed meteorological forcing

products, which can differ substantially for a given watershed, despite using sim-

ilar input datasets (Henn et al., 2018) A growing body of evidence suggests that

convection-permitting atmospheric models, which account for nonlinear atmospheric

motions induced by topography, may outperform these techniques for estimating pre-

cipitation in mountain watersheds, though cross-compartment validation methods are

required to better address uncertainties (Lundquist et al., 2019).

The potential and unknown significance of soil moisture-precipitation feedbacks

on atmospheric circulations, arising from the influence of lateral moisture redistribu-

tion, are one mechanism through which two-way coupled models may improve hy-

drologic prediction. These interactions arise not only from a precipitation recycling

perspective, where local evapotranspiration contributes to local precipitation, but

also through indirect thermodynamic mechanisms where drier/moister atmospheric

boundary layers inhibit or promote atmospheric convection and subsequent precipi-

tation, which may or may not be sourced from local evaporation (Seneviratne et al.,
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2010). Both observational and model based investigations suggest that both wet

and dry soil biases can enhance/impede subsequent precipitation (Findell & Eltahir,

2003; Tuttle & Salvucci, 2016). Recent two-way coupled modeling efforts have found

that streamflow is only minimally influenced by land-atmosphere coupling mediated

through resolved sub-surface flow (Senatore et al., 2015; Arnault et al., 2016; Kerandi

et al., 2018). Givati et al. (2016) examined both one and two-way coupled simu-

lations of streamflow for an 800 km2 watershed basin in Israel and found modest

improvements in streamflow simulation with two-way coupling, but did not evaluate

the physical mechanisms that caused it. Lahmers et al. (2020) examined impacts of

resolved lateral flow during North American Monsoon events in New Mexico, and

found that two-way model coupling increased the degree of convective organization,

increasing precipitation. Other by-products of two-way coupling are that the total

evapotranspiration values can increase, relative to standard land surface models, since

overland flow can re-infiltrate soil columns as opposed to only being lost as runoff. In

this study, we examine one and two-way coupling of the Weather Research and Fore-

casting atmospheric model (Skamarock et al. (2019); WRF) and WRF-Hydro hydro-

logic model Gochis et al. (2018) for four snow-dominated watersheds in Idaho’s Rocky

Mountains. We evaluate the models against United State Geological Service (USGS)

stream discharge measurements, National Resource Conservation Service (NRCS)

Snotel precipitation gauges, and National Weather Service (NWS) radiosonde obser-

vations of atmospheric temperature and humidity profiles. We address the following

questions: (1) to what extent can one-way coupled atmospheric-hydrologic modeling

systems simulate stream discharge in snow dominated mountain watersheds, (2) what

can the error characteristics tell us about atmospheric model performance at climatic
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timescales, and, (3) what is the added-value, from a hydrologic perspective, of resolv-

ing lateral soil water redistribution via two-way coupling? To answer these questions,

we take two approaches. In the first section of the study, we evaluate streamflow

at a climatological timescale (20-years) in one-way coupled mode. WRF is run at a

convection-permitting resolution (1 km horizontal resolution). The outputs of pre-

cipitation, air temperature, humidity, surface pressure, winds, short and longwave

radiation from WRF are used as inputs to the WRF-Hydro model. Hydrologic model

errors are a combination of forcing input, model structure, and parameter uncertain-

ties (Gupta et al., 2008). Thus, evaluating the modeled stream discharge against

observations indicates, to some degree, how well the atmospheric model captures

the dominant hydroclimatic processes. The experimental framework also allows us to

evaluate potential deficiencies in model physical process representation and to identify

poorly simulated meteorological events. The operating assumption of the first exper-

iment is that soil moisture-precipitation coupling is not significant, so the impacts of

running a two-way coupled integration of WRF and WRF-Hydro are marginal. In the

second section, we question this assumption by developing and running a numerical

experiment for a shorter (two month) two-way coupled model integration from May-

June of 2018. While a longer model evaluation may be desirable, this experiment is

instead intended as a case-study, representing a time-period when two-way coupling is

likely to be significant. The goal is to isolate physical two-way coupling mechanisms

rather than aggregate or long term hydrologic effects. This experiment evaluates

three alternative configurations with two different initial soil moisture conditions and

the overland and subsurface flow routing features in WRF-Hydro turned on/off. We

interrogate the meteorological states, convective available potential energy (CAPE),
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and ABL characteristics for each model run. We apply the CTP-HILow framework

developed by Findell and Eltahir (2003) to quantify soil moisture precipitation cou-

pling regimes. The HiResInit initial conditions shorter time-period can help identify

important mechanisms that would manifest in longer integrations, and inform fu-

ture efforts for two-way coupled modeling at longer timescales. The combination of

these experiments increases fundamental, process level understandings of mountain

hydrologic cycles in the Western United states, with implications for water resources

management and model development.

2.3 Data and Methods

2.3.1 Study Area Geography, and Hydroclimate

We conduct the analyses in the Boise and Payette River Basins in the Rocky

Mountains of the interior Northwest of the United States (Figure 2.2). These snow-

dominated watersheds drain from the high elevation Sawtooth, Soldier, and Danskin

mountain ranges and are underlain by fractured Cretaceous granodiorite and shal-

low soils that are primarily sandy-loam and loamy-sand (Figure 3b; STATSGO Soil

Database, Miller & White (1998)). The Sawtooth ranges are oriented approximately

N-S and the highest peaks are over 3000 meters tall. We investigate the South Fork

of the Payette (SFP), the main fork of the Boise River at Twin Springs (MFB), South

Fork of the Boise (SFB), and Mores Creek (MC) watersheds. The SFP, MFB, and SFB

drain from the high-elevation Sawtooths, whereas the headwaters of MC are lower

elevation and are more southerly facing. The average elevations of the watersheds are

between 1488-2146 m and have drainage areas between 1028- 2154 km2 (Table 1) The

land-use types are primarily evergreen needleleaf and open shrublands, based on the
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USGS 20-category dataset (Figure 3d). The discharge hydrographs of the Payette and

Boise River basins (including Mores Creek) are typified by spring/summer snowmelt

peaks decaying to low baseflows and sporadic hydrologic responses of rainstorms in

the fall season. Occasionally, large mid-winter stream runoff occurs as the result of

rain-on-snow events, which are themselves often the result of Pacific-sourced atmo-

spheric rivers. Atmospheric rivers contribute approximately one-fifth of the average

annual winter precipitation for this region (Rutz et al., 2015) and can cause large snow

melting events Rudisill et al. (2021). The Idaho Rockies are, in general, sufficiently

far North to avoid southerly moisture transport associated with the North Ameri-

can Monsoon and receive relatively little precipitation during the summer months.

The NRCS operates snow pillow, precipitation, and meteorological instrument sites

across the Western United States (http://www.wcc.nrcs.usda.gov/snow), 14 of which

are in the vicinity or within the study watersheds (Figure 2). Of the fourteen Snotel

sites examined, and across all available data, approximately 80% of the water-year

precipitation arrives before May 1.

2.3.2 Model Descriptions

The WRF-Hydro modeling system (Gochis et al., 2018) is designed to run both

as a stand-alone, integrated hydrologic model, and to facilitate the coupling of ad-

ditional hydrologic processes with the WRF Atmospheric model The Noah-MP (Niu

et al., 2011) land surface option within WRF-Hydro is used for both the one-way

and the two-way model experiments described in the next section. Noah-MP im-

proves upon the original Noah model with a ’semi-tile’ approach for calculating the

turbulent fluxes for vegetation, bare soil, and snow surface separately in addition

to a multi-layer snow model. Noah-MP uses a one-dimensional form of Richard’s
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equation to solve for infiltration within the soil column. WRF-Hydro adds model

physics options for simulating surface overland flow, saturated subsurface flow, chan-

nel routing, and a conceptual baseflow model to the existing Noah-MP land surface

model. In Noah-MP, precipitation/snowmelt water that exceeds the soil infiltration

capacity is treated as overland flow and lost from the system. Whereas in WRF-

Hydro, infiltration excess water is allowed to ”pond” above the soil surface. When

the depth of ponded water exceeds a specified retention depth (a tunable parame-

ter), overland flow occurs as a shallow diffusive wave. We use the one-dimensional,

steepest-descent (in the direction of the most-negative head gradient) overland flow

routing option. The overland flow that reaches a channel grid point contributes to

streamflow or otherwise contributes to ponded water depth. Ponded water that does

not exceed the retention depth remains ponded and may subsequently infiltrate into

the soil column, become overland flow or evaporate. Once a soil column becomes

saturated, WRF-Hydro allows for 1 or 2-dimensional lateral redistribution following

the model developed in (Wigmosta & Lettenmaier, 1999). We use the 1-dimensional

steepest descent option for routing subsurface saturated flow. Water that infiltrates

through the lowest layer of the soil column is added to an empirical baseflow bucket

model. The ’bucket’ spills beyond a maximum depth parameter, and the discharge is

routed to all corresponding channel grid cells based on a groundwater mapping layer.

We use the Muskingum-Cunge channel routing formulation for modeling flow in the

channel. There are several major assumptions of the WRF/WRF-Hydro modeling

system worth mentioning. Soil columns are uniformly two-meters deep across the en-

tire modeling domain. Fersch et al. (2020) notes that this is not likely in mountains

with thin soils, and addressed this challenge by using spatially varying soil depths, but
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this modification is not implemented in this study. Moreover, deep groundwater feed-

backs are also not represented. Water that drains through the bottom of the soil layer

is lost to the groundwater bucket and will not re-infiltrate into the soil column. For

the one-way experiments, we use WRF v3.8.1 to generate meteorological forcings for

input into WRF-Hydro v5.0. Table 2 describes the WRF model physics parameters

used in this study. Climate Forecast System Reanalysis (CFSR; Saha et al. (2010))

is used as lateral boundary conditions. CFSR has a 0.5 degree horizontal resolution

and 40 vertical levels. For practical reasons, WRF v3.8.1 was used in the one-way ex-

periments, whereas a more recent version of WRF (v4.1.2) serves as the atmospheric

model in the two-way coupled with WRF-Hydro (also v5.0) experiments presented in

part two. In both instances, we use the Noah-MP land surface model options. WRF

is run with an inner grid resolution of 1 km and convective parameterizations are

turned off. Two nested grids are set up with ”one-way” nesting (the inner grid does

not feed-back to the outer grid). For the two-way experiments (described in the next

section), the “ndown” utility is used to generate lateral boundary conditions from

the previously run WRF output files for the outer grid. The NCAR technical note

and the references therein describe each physics option in greater detail (Skamarock

et al., 2019).

2.4 Experiment Descriptions

2.4.1 Uncoupled Long-Term Runs

In Part 1, we evaluate the simulated discharge from the one-way WRF/WRF-

Hydro model for Mores Creek (MC), North Fork Boise (SFB), Main Fork Boise

(MFB), and South Fork Payette (SFP) river basins for water years 1995-2014. The
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WRF model integrations were completed as 20 parallels runs, each preceded by a

two-week spinup in advance of the start of each water year (starting October 1st).

This afforded more expedient completion of the simulation. WRF output variables

are written out hourly. WRF-Hydro supports running multiple watersheds at once,

but we run each basin separately, using model domain files downloaded from the

CUAHSI National Water Model (“NWM”) subset tool (https://subset.cuahsi.org/).

WRF-Hydro can be operated in a variety of configurations,for this study, we use

the ”National Water Model” run settings described in the WRF-Hydro documen-

tation Gochis et al. (2018). We calibrated land surface and hydrologic parameters

against observed streamflow values for each of the four streams. Hydrologic param-

eters for each basin were calibrated, independently, for a two year period. We use

the Dynamic Dimension Search (DDS) scheme, an automated stochastic global op-

timization algorithm developed by Tolson & Shoemaker (2007). An implementation

of the calibration code is available on github Rudisill (2021). The calibrated param-

eters include soil-physics related parameters (bexp, smcmax, dksat), runoff related

parameters (lksatfac and slope), baseflow parameters (zmax, zinit, Coeff), and snow

parameters (mfsnow; Table 3). The “mfsnow” parameter controls the shape of the

subgrid snow depletion curve which is a functional relationship between snow wa-

ter equivalent and snow covered area, and therefore influences grid-cell total albedo

and energy available for snowmelt and evapotranspiration. The DDS algorithm uses a

stochastic parameter selection methodology, where each iteration perturbs a randomly

chosen subset of the model parameter space. We use a multiplicative perturbation

value following a prescribed Gaussian distribution, centered at one for each parame-

ter. We performed 200 iterations of the DDS algorithm run for two water years, and
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evaluate KGE scores for the final 9 months of simulation, thus allowing additional

spin-up of the updated model state before evaluating model performance. We use

the Kling-Gupta Efficiency (Equation 1; KGE hereafter) as the objective function for

the model calibration. A perfect value of KGE is one, whereas using the mean value

of a dataset (compared against itself) will produce a KGE of -.46. The KGE score

weights contributions of model/observed correlation, model bias (expressed as ratios

of the respective mean values), and ratios of model and observed variance, equally

(Knoben et al., 2019). The model bias term in the KGE equation is the same as the

percent-bias term given in Equation 2. The Nash-Suttcliffe Efficiency (NSE; Equa-

tion 3) is also used as a diagnostic, but not as an objective function in the calibration

process. The WRF-Hydro model is configured to output discharge on an hourly basis.

To compare against USGS stream gauge observations, we aggregate both the model

and observed flow to a daily-mean flow. Consequently, we do not evaluate the diel

cycle of discharge, though this information likely contains interesting insights about

model behavior.

Fully-Coupled Runs

We run WRF two-way coupled with WRF-Hydro for a two-month spring period

(May-June) to investigate the potential ramifications of subsurface lateral soil mois-

ture redistribution on atmosphere conditions in the region. While a longer model

integration is desirable, it is computationally expensive. This period was specifically

chosen since there is significant precipitation and deep cumulus cloud development

(visible from satellite imagery; see https://worldview.earthdata.nasa.gov/). We hy-

pothesize that if soil moisture-mediated land-atmosphere couplings occur, they are
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more likely to be active during this time period than other seasons. Specifically, we

anticipate that there are larger gradients of both soil moisture in the spring season

(owing to, for example, differential snow melt on North- and South-facing hillslopes),

which in turn influence the partitioning of sensible and latent heat into the ABL

and could potentially feedback into precipitation initiation or enhancement through

soil-moisture ABL interactions. We create three scenarios, each initialized May 1,

2018 from model restart files and run for the following two months to test impacts of

lateral flow impacts on the ABL. The ”Control” scenario has overland and subsurface

flow turned off. The ”Routing” scenario has overland and subsurface flow turned

on. These two scenarios use land surface initial conditions created by running the

WRF-Hydro offline (forced by WRF) for 10 consecutive years with subsurface and

overland flow turned off. A third scenario, called “HiResInit” (i.e, high resolution

initialization), has overland and subsurface flow turned on during the spinup process

to test the impacts of the long term soil moisture state that would result from includ-

ing lateral flow. Thus, “Control” and “Routing” have the same initial conditions and

“Routing” and “HiResInit” have the same physics options, but different initial condi-

tions. Soils are close to saturated in many of the mountain regions, where snowmelt

has already occurred, for both scenarios. Yet, turning on overland and subsurface

flow during the spin-up process (“HiResInit”) generally makes the valleys wetter and

the peaks drier (Figure 4). We use the convective triggering potential (CTP) and

humidity-index (HILow) framework to quantify the potential for soil-moisture influ-

enced precipitation (Findell and Eltahir, 2003). The theory is based on the idea that

the air mass approximately 1-3 km above the ground surface in the morning hours

will become incorporated into the PBL during the day. The properties of this air mass
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then determine whether wet or dry soils (as they impact heat and moisture fluxes) will

promote convective precipitation, or if convection is independent of surface influence

(i.e, atmospherically controlled). The CTP measures atmospheric stability by inte-

grating the differences in environmental temperature between 100 and 300 hPa above

the surface and the moist-adiabat starting at the same origin. Negative CTP values

indicate that the atmosphere is too stable to convect. Large positive values mean

that the atmosphere is close to dry-adiabatic, and intermediate positive values mean

the atmosphere is closer to moist-adiabatic. According to the underlying theory, wet

soils (higher latent heat flux) can promote precipitation at intermediate CTP values

by increasing moist static energy and lowering the level of free convection (LFC),

whereas dry soils can promote precipitation at high positive CTP values by growing

the boundary layer height though enhanced sensible heating to the level of the LFC.

The HILow metric is simply the difference between the environmental and dew-point

temperatures at 50 hPa and 150 hPa above the surface (Equation 4). Lower values

of HILow indicate a moister atmosphere. Santanello et al. (2018) provides an addi-

tional description of the CTP-HILow framework and summarizes several applications

from the literature. The thermodynamic calculations are performed using the MetPy

python libraries.

2.5 RESULTS

2.5.1 One-Way Coupled Long-Term Streamflow Simulations

Simulated Streamflow Performance

The calibrated and uncalibrated (“NWM”) parameters and hourly WRF meteo-

rological forcing outputs (Figure 1) are used to run the model for the twenty year



30

study period. The model evaluation period begins October 1 1994 (the start of water-

year 1995) and ends August of 2014. Streamflow simulation performance is evaluated

against daily USGS observations. For both years simulated, the discharge peaks ap-

proximately in May and June, and baseflows are reached roughly by August. The

same calibration process method was applied for each basin independently, but for

brevity, we only show and describe the SFB calibration (Figure 5). Prior to calibra-

tion, the model exceeds the maximum discharge by over 100 m3/s in many cases.

Following calibration, model hydrographs have good temporal correlation (pearson’s

r>0.84), and the model shows KGE values greater than 0.6 for the MBR, SFB, and

SFP for the entire 20 year simulation (Table 4). While each basin was only calibrated

for two years, calibration improved the overall KGE scores for the full twenty-year

period. The SFB has the highest and Mores Creek the lowest respective skills scores

(NSE of 0.763 and -0.681, and KGE of 0.693 and -0.154 respectively). Another mea-

sure of timing, the median difference in dates-of-peak flow, are the same for SFP

and SFB and only one day off in the MFB, and 5 days for MC. The distributions

of date-of-peak errors contain a notable outlier value in water year 1997 (Figure 6)

when a large atmospheric river event caused flooding throughout the Pacific North-

west in the early winter (Leung & Qian, 2009). However, the model does capture

several similar early-winter runoff events (the MFB in 2011, for example). Stream-

flow percent biases (Equation 2) vary between each basin. The annually averaged

biases are positive (more model streamflow than observed) with the exception of the

SFP. On average, there is 60% higher modeled streamflow in MC than what is ob-

served. The MFB shows only 5% bias compared to the observed. Aggregating biases

at the daily level and examining the histograms (Figure 6, right column) reveals bi-
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modal distribution, reflecting different errors for baseflow and peak flow conditions.

The modeled hydrographs generally overestimate discharge during the runoff season

and underestimate summer baseflow conditions. The impacts of calibration can be

seen in the distributions of daily errors (Figure 6) as peaks shift closer to zero by

varying degrees (especially noticeable for the Mores Creek watershed, where positive

daily biases are reduced). The streamflow bias can be directly attributed to errors

in the mass-balance of the watershed, governed by the hydrologic budget (Equation

5). Streamflow biases imply that water inputs are over/underestimated or that the

partitioning of water between ET, storage, and streamflow is incorrect.

Correlations between Runoff and Model Forcing Errors at Meteorological

Stations

The upper limit of runoff is bounded by water input into the system, in the form

of precipitation (rain or snow and it’s subsequent melt) or changes in storage (Equa-

tion 5), the latter of which is likely small on the scale of a given water year. If

energy is not limiting, then water losses to ET are also constrained by the available

soil moisture and thus antecedent precipitation. Therefore, to evaluate the sources of

WRF-Hydro streamflow biases, we compare errors in the WRF model precipitation

against observed NRCS Snotel Observations. No discrimination is made between rain

and snow, though hydrometeor phase does impact measurement error (Harpold et al.,

2017). The percent bias in the accumulated October - May precipitation (i.e., the

cold-season, during which the majority of precipitation falls) between WRF and the

Snotel sites examined is less than 20% on average for all sites. Nine of the 14 sites

have less than 10% error in cold-season accumulated precipitation, on average. There
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is no clear relationship between Snotel site elevation and WRF precipitation bias. Er-

rors in the calibrated WRF-Hydro simulated stream discharge for the SFP, SFB, and

MFB watersheds are highly correlated with the cold-season WRF-derived precipita-

tion errors at Snotel sites, with significant linear relationships (p<0.05) for each site

that is located in, or in the vicinity of, each respective watershed (denoted by gray

boxes in Figure 6). Moreover, the slopes of the significant lines are all positive, mean-

ing that years forced with higher than observed winter precipitation tend to result

in higher than observed annual streamflow. Mores Creek streamflow biases are not

correlated to either Snotel site that is within or very close to the watershed bound-

aries, but they are correlated with 4 other sites outside of the watershed with low r2

values (between 0.46 and 0.66) compared to the other watersheds. Errors in accumu-

lated precipitation at site 550 (Jackson Peak) are correlated with streamflow errors

for each watershed, and are particularly high for the SFP and MFB watersheds(r2 of

0.90 and 0.87 respectively). When the same analysis is applied to include the entire

water-year (not shown, October through September), precipitation, the pattern is

largely the same, but the highest r2 values are reduced (maximum of 0.70). This

could suggest that relatively more cold-season precipitation is partitioned into runoff,

versus late season precipitation that may become lost as ET. Errors in temperatures

at Snotel stations were also investigated. Temperature errors correlated much more

weakly with discharge bias than for precipitation errors. It is worth noting that time

series of Snotel temperature may have systematic biases over time related to sensor

calibration methodologies and other factors (Oyler et al., 2015), though visual inspec-

tion did not make such errors apparent. Correlations between streamflow bias and

temperature are negative, meaning that when WRF temperatures are warmer than
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observed, simulated streamflow tends to be lower than observed, possibly because of

increased evaporative losses. The relationship between peak flow-timing and errors

in temperature across different time periods were also examined, as too-cold or too-

warm temperatures could influence rates of snowmelt (and thus timing of streamflow)

through sensible heat fluxes, but there was no significant relationship found.

2.5.2 Two-Way Coupled Model Analysis

May-June, 2018 Meteorological Analysis

Comparing the atmospheric profiles of temperature and humidity from the WRF

Control run against the National Weather Service radiosonde observations (located

in Boise, see Figure 2 for location) shows generally good agreement, though upper

level humidities show some discrepancies (Figure A.1). Time series spatial averages

of CAPE, 500 hPa geopotential heights, two meter air temperature, and precipitation

illustrate the meteorological conditions during the two-month model period (Figure

8) Convective available potential energy (CAPE) is a widely-used measure of buoyant

energy of rising, moist air parcels from the boundary layer, and is often correlated

with rainfall intensity (Eltahir & Pal, 1996). CAPE is similar to CTP, except it is cal-

culated between the level of free convection (if present) and level of neutral buoyancy,

as opposed to a fixed 100 hpa and 300 hPa above ground levels in the morning. Values

are averaged spatially across a square region encompassing the four study watersheds

(shown in Figure 4). There is a significant sequence of precipitation during the second

half of May and lasting into early June. The May precipitation events correspond

to a lowering of the 500 hpa geopotential height during this time period ( 5800 to

5550m on May 15). There is very little variation in heights between the three model

scenarios on the order of 1-2m (within the resolution of the line-widths). Averaged
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CAPE values can reach moderately high (600 J/kg) values averaged across the study

area and correspond with time periods of rainfall. Examining the diurnal cycle (not

shown) shows that both CAPE and precipitation peak in the late afternoon. There

is slightly less accumulated precipitation in the HiResInit scenario compared to the

other two (101 mm versus 106 mm in the Control) and slightly less domain averaged

peak CAPE values (as much as 100 J/kg higher in the Control) particularly between

May 15 - June 1, however the Routing scenario has slightly lower peak CAPE values

than the Control. The Control case has typically lower peak values of latent heat

flux, and correspondingly higher sensible heat, on average, than the scenarios with

lateral flow turned on. Average temperatures vary between +/- 1 C between scenar-

ios. Examining spatial data averaged across time (May 1 to June 28) for the same

domain shows the relationship between topography, soil moisture, ABL characteris-

tics, and precipitation (Figure 9). The second soil moisture layer is deeper and more

slowly evolving than the top layer, and thus a better metric for comparing impacts

of resolved lateral flow than the top layer. For comparison, the time averaged sensi-

ble/latent heat fluxes, temperature, and afternoon CAPE are differenced between the

Control and Routing/HiResInit scenarios, in addition to the percent difference (rela-

tive to Control) of afternoon PBL height. Averaged across the entire two months, the

difference in soil moistures between the Control and Routing scenario are relatively

small (+/- 20% degree of saturation). The impacts of turning on overland/subsurface

flow are more obvious during the first weeks of the model run (not shown), where soils

are closer to saturation and runoff/lateral exchanges are occurring. The differences

in the initial spatial organization of soil moisture (in the HiResInit scenario) persist

for the two months (Figure 9). Still, the Control run is generally drier in the low
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elevation foothills region and the peaks of mountain tops than the Routing scenario,

which started with the same initial soil moisture conditions. Drier regions correspond

with more energy partitioned into sensible heat than latent heat and higher two me-

ter air temperatures. The average afternoon PBL height varies by roughly +/- 20%,

between the Control, HiResInit and Routing scenarios, and correlates with increases

in sensible heating in the southwest corner of the domain. The highest accumula-

tions of precipitation (¿200 mm) are in high elevation (¿2000 m) regions. While the

domain mean precipitation is very similar, there are substantial differences in the

spatial organization of precipitation across scenarios. Likewise, average CAPE varies

spatially, but the differences in CAPE are poorly spatially correlated with differences

in precipitation accumulation, as the highest precipitation accumulations are in the

highest elevation zones, where CAPE values are low. In this situation, mechanical

uplift forced by the orography is likely the dominant precipitation generating process

as opposed to surface based moist convection (Kirshbaum et al., 2018). To isolate

periods of convective-dominant precipitation and examine surface influences, we can

examine low-elevation (¡2000 m) grid-cells during the period of highest precipitation

(May 15 - June 1). Average daytime CAPE values tend to increase with higher aver-

age daytime evaporative fractions (the ratio of latent heat to the total turbulent flux),

and can correspond with higher precipitation accumulations (Figure 10). Moreover,

the degree of soil saturation strongly influences the evaporative fraction and thus la-

tent heating of the boundary layer. In the absence of other effects, higher evaporative

fractions promote shallower boundary layers (Santanello et al., 2018), but advection

of outside air masses likely complicates this view in this case.
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Examining Soil Moisture Influences using the CTP-HILow Metric

The CTP-HILow framework helps explain some of the lack of influence of soil

moisture conditions on total precipitation accumulations. The metric is computed

each day during the months of May and June (Figure 11) using morning (5:00 a.m.

local time) model outputs and atmospheric soundings (available in Boise). A high

elevation ( 2000 m) location in the Stanley basin (Figure 2) is also chosen though

observations are not present there. These locations are also chosen because they

are in flat valleys, consistent with the assumptions of the CTP-HILow framework

development. The majority of morning soundings for both Boise and Stanley locations

are in the “atmospherically controlled” or “too stable” zones as defined by (Findell &

Eltahir, 2003), meaning that surface fluxes of latent/sensible heat into the boundary

layer alone are not sufficient to promote convective precipitation. Wet soil advantage

zones have positive CTP values and HILow values between 5 and 10C, whereas dry-

soil zones have CTP values greater than 150 J/kg and HILow values between 10 and

15C. Precipitation can still occur, according to the theory, but must be associated

with larger scale systems or 3-d wind effects (Findell, 2003). The proportion of wet-

soil advantage and dry-soil advantage days is approximately equal (6 days averaged

across scenarios) for the Stanley location, and the Boise location has more days in

the dry-soil advantage zone (8 versus 3 days averaged across scenarios).
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2.6 DISCUSSION

2.6.1 One-Way Model Coupling Improves Precipitation Process

Understanding

One-way model coupling between atmospheric and hydrologic models that sim-

ulate streamflow allow for enhanced process level understandings of the terrestrial-

atmospheric water cycle. By preserving meteorological states, and not imposing ad

hoc corrections to simulated hydrologic input fields, one way coupling allows for a

tractable method of attributing hydrologic errors to parent atmospheric processes,

offering novel insights for model improvements. The hydrologic model performance

(Table 4) is similar to that of similar studies. Senatore et al. (2015) found NSE val-

ues of 0.80 for one year of simulation with WRF-Hydro run with observation based

meteorological forcings for a basin in Italy. Holtzman et al. (2020) found that WRF

and NoahMP combined with a simple channel routing-rule and groundwater model

achieved similar NSE values after manual parameter-tuning and adjustments to the

WRF model microphysics. Fersch et al. (2020) reports NSE values of 0.64 for a us-

ing WRF/WRF-Hydro watershed in Germany for a five month period. We are not

aware of other studies that have used 20 years (or greater) of a convection-permitting

atmospheric model configuration to force a distributed hydrologic model to simulate

stream discharge.

Evaluating streamflow in the one-way coupled approach adds more data points for

evaluating the skill of the WRF modeled precipitation, as precipitation is typically

understood to be the most uncertain forcing input in snow-dominated watersheds

(Raleigh et al., 2015). However, other hydrologic forcing variables, including ra-
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diative fluxes can also have large impacts on streamflow timing (Mizukami et al.,

2014). Other forcing variables beyond temperature and precipitation are not eval-

uated here, given insufficient long-term observational data. The highly variable an-

nual average precipitation recorded at each Snotel station illustrates some of the

complex mountain-atmospheric processes influencing hydrology in this region (Table

A.1). Precipitation not only depends on elevation, but also orientation with respect

to the mountain topography and atmospheric moisture delivery pathways (Swales

et al., 2016). Senatore et al. (2015) found that WRF precipitation biases increased

with topographic elevation for a region in the Mediterranean, but errors are more

uniformly dispersed across elevation in this study. A variety of studies have evalu-

ated similar dynamically downscaled precipitation fields in North American mountain

regions, and evidence suggests that such model integrations are skillfully capturing

precipitation (Ikeda et al., 2010; Currier et al., 2017; Lundquist et al., 2019). This

study demonstrates similar performance to that of other studies. Rasmussen et al.

(2011) found that 75% of the SNOTEL sites examined in Colorado had less than 25%

absolute error in accumulated precipitation, and similarly Jing et al. (2017) reports

that more than 95% of Snotel precipitation measurements compared against WRF

estimates have less than 40mm per month of bias (the percent of the total observed

is not reported). In this study, all of the sites recorded on average less than 25% ab-

solute percent-bias in water year accumulated precipitation, and only two of the sites

had greater than 15% error on average (Figure 7). However, spatial representivity of

individual precipitation gauges in complex terrain, and undercatch of falling snow as

high as 10-15% (Yang et al., 1998) limit the conclusions that can be drawn from such

comparisons about overall model precipitation performance. Incorporating stream-



39

flow in a one-way coupled framework allows for greater confidence interrogating the

modeled precipitation fields, and the attribution of errors at a point to regional er-

rors, since streamflow integrates precipitation inputs (and ET losses) from the entire

watershed. Such insights are impossible to glean from shorter model integrations

that have fewer years (or months) and less statistical power. The strong correlations

(r2 =0.90 in some cases) between streamflow biases and precipitation biases have

several significant ramifications. First, it suggests that streamflow simulations can

be improved by enhancing the accuracy of modeling cold season precipitation (Octo-

ber - May), during which the majority of precipitation falls. Several windows were

tested, including water-year total precipitation, but cold-season precipitation had the

highest correlation. Cold-season precipitation is also a useful window for water man-

agement purposes, since many reservoir management decisions must be made in the

early spring prior to peak stream runoff. Thus, in our modeling workflow, having

some indication about errors in cold-season precipitation connotes a degree of skill

in knowing streamflow bias at the scale of the water year. Streamflow biases are not

always improved by reducing precipitation bias; in some cases (the MFB, for exam-

ple), the regression lines do not always go through the origin (zero precipitation bias,

zero streamflow bias (Figure 7). This could suggest that errors in precipitation are

compensating for errors in other processes that may influence water-losses, like ET,

or “getting the right answer for the wrong reason” (Kirchner, 2006), though it likely

reflects cross-correlation structures in the true two dimensional precipitation error

fields (a high-bias in one individual point could correlate with a zero-bias averaged

across the entire region, for example).
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2.7 Investigating One-Way Coupled Streamflow

Performance

Errors in mass balances of simulated hydrographs are influenced by two factors:

1) imperfect parameterizations and model physics approximations that influence par-

titioning of precipitation into ET/sublimation, storage, or losses, and 2) errors in

precipitation inputs. Calibrating the land surface parameters in this study against

KGE scores did reduce model biases, with the exception of the SFP. In the case of

Mores Creek, weaker or non-existent correlations with precipitation errors suggest

that loss processes, such as mountain block recharge Markovich et al. (2019) are

poorly represented in the model as implemented. Unlike the other three watersheds,

anthropogenic water withdrawals are also a factor in Mores creek, and can be as

high as 7 m3/s (Havens et al., 2019). In the context of WRF-Hydro, mountain block

recharge would manifest as open lower boundaries with groundwater-bucket loss or

channel loss, and anthropogenic withdrawals could also be implemented as a channel

loss. Lahmers et al. (2019) introduced a channel loss function for WRF-Hydro, which

may be one mechanism for improving the performance of Mores Creek, but testing

it, or quantifying anthropogenic diversions, is beyond the scope of this study. Signif-

icant precipitation enhancement in Mores creek occurs at the small ridge in the far

northwest corner of the watershed (near Snotel site 637, Figure 2), so runoff biases are

also likely sensitive to the degree to which precipitation falls on/over the watershed

boundary and upwind of the orographic barrier.
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2.8 Impacts of Two-Way Coupling

This study examined three scenarios designed to test the role of resolving over-

land/subsurface flow with two-way coupling on ABL characteristics and precipitation.

While two-way model coupling (Routing and HiResInit) influences the distributions

of soil moisture throughout the domains and latent and sensible heat fluxes, the im-

pacts on precipitation appear non-systematic. The HiResInit scenario has the largest

spatial gradients in initial soil moisture (due to overland/subsurface flow turned on

during spin up; Figure 4) and has slightly less precipitation accumulation during the

two month study period, though part of this result could be from precipitating cells

shifting outside of the averaging region. However, the lack of influence of soil moisture

on precipitation can partially be explained by applying the CTP-HILow framework.

CTP-HILow measures how “primed” the atmosphere is to convect, and the results

(Figure 11) suggest that convective precipitation requires advection of upwind air

masses and is thus not influenced by soil moisture mediated surface sensible/latent

heat fluxes. This finding is consistent with global coupling regime analyses that like-

wise identifies the interior Pacific Northwest soil-moisture coupling as atmospherically

controlled Ferguson & Wood (2011). It is important to note that this framework does

not consider influences of background winds or complex topography, which compli-

cate the framework assumptions (Findell & Eltahir, 2003). That being said, this early

morning-recorded metric is still a good indicator of the likelihood of precipitation, as

none of the days with large humidity deficits (large HILow values) precipitate in the

following twelve hours for the Stanley or Boise locations (not shown). We do not di-

rectly quantify interactions between soil moisture heterogeneity and mountain-valley

thermal wind circulations that can potentially influence orographic precipitation Kir-
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shbaum et al. (2018), but the systematic effects are likely small. Forrester & Maxwell

(2020) used the Parflow model two-way coupled with WRF and found that CAPE and

mountain-valley wind circulation strength increased in mountain valleys as a result of

lateral groundwater flow for a three month period in the Colorado Rockies. Similarly,

Lahmers et al. (2019) examined two-way coupled WRF/WRF-Hydro during a North

American Monsoon event and found relatively minor impacts on precipitation totals

compared against WRF alone, similar to other studies (Senatore et al., 2015; Givati

et al., 2016), but also that surface moistening increased peak values of convective

organization across a larger study area. In this study, higher evaporative fractions

within scenarios tended to increase CAPE at lower elevations (Figure 10), but differ-

ences in CAPE among scenarios is less organized and not as directly attributable to

specific topographic or soil moisture features. Different model structures of soil water

movement on hillslopes and groundwater (such as Parflow) may impact soil moisture

distributions, but are not evaluated in this study. While two-way model coupling

does not have a clear effect on precipitation, other aspects of two-way model coupling

may improve streamflow predictability. Lateral water movement on slopes couples

with evapotranspiration and temperature, thus influencing water balances (Figure

9). Two-way coupling could potentially improve some of the observed mass-balance

found in the Mores Creek watershed (Table 4) by modifying water-losses through

ET, but this hypothesis is not explicitly tested, and these mechanisms are likely less

significant than improving hydrologic model structures or parameterizations for this

case (accounting for anthropogenic loss, for example; Section 4.2).
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2.9 CONCLUSIONS

In this study, we simulated 20 years of streamflow for four snow-dominated, moun-

tain rivers using the WRF-Hydro model with meteorological inputs downscaled by the

WRF atmospheric model at a convection-permitting resolution (one-way coupling).

We did not apply further downscaling or correction factors to the meteorological forc-

ings. We also evaluated the roles of resolved lateral flow on the surface energy balance,

convection, and precipitation by running WRF-Hydro two-way coupled with WRF

for a shorter, two-month time period and evaluate land-atmosphere coupling using

the CTP-HILow framework developed by Findell & Eltahir (2003). The two-way

coupled model experiments show that resolving lateral flow can significantly impact

sensible/latent heat fluxes and temperatures. However, the influence on precipitation

is modest (1-5% averaged across the domain) and appears non-systematic. Examining

the CTP-HILow space shows that the majority of days are atmospherically controlled

using the Findell & Eltahir (2003) criteria, and thus precipitation is not influenced

by soil moisture feedbacks. While we do not make a direct comparison with the un-

coupled streamflow simulations, we conclude that the added value of a fully coupled

model framework for discharge prediction and water-budgets at annual timescales in

this study region is likely small. This arises, in part, because the impacts of the

coupled simulation on precipitation are themselves non-systematic and streamflow

errors depend strongly on cold-season precipitation processes that are likely insensi-

tive to soil-moisture coupling. Thus, soil moisture precipitation feedbacks are likely

of secondary importance to other factors such as cold-season orographic precipita-

tion processes and model structure/parameter uncertainty in simulating streamflow

in these regions. We could reproduce streamflows with KGE values of>0.6 in all
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watersheds without significant anthropogenic withdrawals (three out of four) for the

entirety of the 20-year simulation period, and that WRF cold season (October - May)

accumulated precipitation has less than 15% error for twelve of the fourteen Snotel

sites examined. A key conclusion from this study is that using WRF (or similar atmo-

spheric models configured at convection-permitting scales) can provide skillful meteo-

rological forcings for distributed hydrologic models, yielding skillful stream discharge

simulations in mountainous snow-dominated watersheds at climatological scales (20

years). This is particularly beneficial, given the sparsity observations in typical moun-

tain watersheds. The success of simulating stream discharge lends credence to the

growing body of work suggesting that dynamical downscaling methods are viable for

reproducing surface hydrometeorology in complex mountain terrain, which is difficult

to observe and validate. We also find that streamflow biases are highly correlated

(r2>0.9 in some cases) with WRF wintertime precipitation biases evaluated against

nearby Snotel sites. These findings suggest hydrologic model improvements in these

regions should focus on improvement of winter time precipitation, and that one-way

coupled model frameworks can improve process level understandings of hydrologic

and atmospheric processes in mountain environments.
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Watershed
USGS

Gauge ID
Basin Area

(km2)
Avg.

Elevation (m)

Avg. Annual
Specific Discharge

(mm)
Mores Creek
(MC)

13200000 1028.2 km2 1488 m 229.71

South Fork Payette
(SFP)

13235000 1155.1 km2 2068 m 662.97

South Fork
Boise River (SFB)

13186000 1160.2 km2 2146 m 549.40

Main Fork
Boise River (MFB)

13185000 2154.0 km2 1950 m 520.73

Table 2.1: Table 1: Study watershed descriptions. USGS gauge identifier,
basin area, average elevation, and the annual average of specific stream
discharge (m3/s) measured at the corresponding USGS gauge for the study
period (Water Year 1995-2014).

WRF (v3.8.1)
Lateral Boundary Conditions Climate Forecast System Reanalysis (CFSR)
Grid resolution (km) 3, 1
W-E Dimension (cells) 340, 349
N-S Dimension (cells) 290, 328
Vertical Levels 50, 50
Timestep 15s
Microphysics Thompson
Land Surface Model Noah-MP; Noah-MP + WRF Hydro
Surface Layer Monin-Obukhov
Planetary Boundary Layer (PBL) Mellor-Yamada-Janjic
WRF-Hydro v5.0
Routing grid resolution (m) 250
Forcing input timestep (uncoupled) Hourly
Channel routing timestep (s) 30
Snow albedo parameterization CLASS (option 2)
Terrain Routing Timestep (s) 10

Table 2.2: Table 2: Select WRF and WRF-Hydro model configuration
options used in the one and two-way coupled model experiments. Two
numbers correspond with the outer/inner nest.
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Parameter Name Description
bexp Soil beta parameter
smcmax Saturated soil moisture value
dksat Saturated soil hydraulic conductivity
LKSATFAC Lateral saturated soil hydraulic conductivity multiplier
slope Lower soil boundary drainage parameter
mfsno Snow covered area curve parameter
Zmax Conceptual groundwater parameter
Zinit Conceptual groundwater parameter
Coeff Conceptual groundwater parameter

Table 2.3: Table 3: List of WRF-Hydro parameter names, as they ap-
pear in the model files (left), calibrated for the one-way coupled model
experiments.

Watershed KGE Pearson r Percent Bias NSE
Date of Peak
Difference

Calibrated -0.154 .847 60.336 -.681 5.0
MC

NWM -0.33 .806 95.435 -.99 26.5
Calibrated 0.80 .919 5.303 .659 1.0

MFB
NWM 0.568 .913 5.769 .593 1.0
Calibrated 0.693 .947 7.875 0.763 0.

SFB
NWM 0.304 .904 26.966 0.206 0.
Calibrated 0.637 .924 -17.693 0.829 0.

SFP
NWM 0.583 .927 -5.965 0.613 5.

Table 2.4: Table 4: WRF-Hydro simulated stream discharge performance
metrics for the Moore’s Creek, Boise River, Southfork Boise River, and
South Fork Payette watersheds for the 20-year validation period. The
modeled discharge is compared against corresponding USGS river gauges
aggregated to daily values.



47

src/FigureFiles/Figure1_conceptual_figure.png

Figure 2.1: Conceptual diagram illustrating the one and two-way coupled
WRF/WRF-Hydro experiments.
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src/FigureFiles/Figure2_wsheds.png

Figure 2.2: Satellite view of the four study watersheds (yellow outline).
Clockwise from the left: Mores creek (MC), the South Fork Payette (SFP),
the South Fork Boise (SFB), and the Main Fork Boise (MFB) in the
center. Black diamonds indicate USGS stream gauge locations used to
evaluate model discharge. Red squares indicate the location of NRCS
Snotel meteorological stations.



49

src/FigureFiles/Figure3_landuse_map_wsheds.png

Figure 2.3: a) Percent canopy coverage, b) dominant soil category type,
c) topographic elevation, and d) land-use category for the inner-WRF
domain. Black outlines are the boundaries of the watersheds examined in
this study
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src/FigureFiles/Figure4_initial_soil_moisture.png

Figure 2.4: Initial soil saturation conditions for the top soil layer (10 cm
depth) for the Control/Routing, HiResInit, and the difference between
the two (right). Soil saturation is the soil moisture relative to the soil
porosity.
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src/FigureFiles/Figure5_calibration.png

Figure 2.5: Hydrograph demonstrating the efficacy of the calibration pro-
cedure for the uncoupled WRF-Hydro simulations for the South Fork Boise
River. Showing 200 iterations of the dynamic-dimension-search algorithm.
The dashed lines are observed USGS streamflow observations and the
shaded region denotes the model min and max values in the calibration
iterations.
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src/FigureFiles/Figure6_20yr_discharge_plots.png

Figure 2.6: Simulated daily discharge (m3/s) from the uncoupled WRF-
Hydro model, forced by hourly WRF meteorological forcings, for a 20-year
(1995-2014) period compared against corresponding USGS stream gauge
measurements. Right column shows the distribution of daily streamflow
biases (model-observed). From the top down: the South Fork Boise (SFB),
Moore’s creek (MC), the main fork of the Boise River (MFB), and the
South Fork Payette (SFP).
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src/FigureFiles/Figure7_SnotelPrecip_Qbias.png

Figure 2.7: Linear relationship between WRF cold-season (October-May)
precipitation percent bias, evaluated against NRCS Snotel sites (columns)
and WRF-Hydro stream discharge percent biases evaluated at USGS
gauge locations for each watershed (rows), 1995-2014. Markers with sig-
nificant correlations (p¡.05) are filled. The colorbar indicates coefficient of
determination (R2 ). Far left row shows the distribution of annual stream-
flow percent biases. Top row shows the distribution of annual precipitation
percent biases
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src/FigureFiles/Figure8_Coupled_Timeseries.png

Figure 2.8: Time Series view of 500 meter geopotential height (top),
precipitation rate (mm/hr; mm), Convective Available Potential Energy
(J/kg), two meter air temperature (℃), latent heat flux (LH; w/m2) and
sensible heat flux (HFX; w/m2), and soil saturation of the 2nd soil layer.
Plots are spatially averaged across the study region box (Figure 7). “ Con-
trol” denotes the difference between the Control run and each respective
scenario.
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src/FigureFiles/Figure9_MapAvgs.png

Figure 2.9: Temporal averages across the subdomain of soil saturation (2nd
layer), two-meter air temperature (℃), afternoon Convective Available
Potential Energy (CAPE; J/kg), latent heat flux (LH; w/m2) and sensible
heat flux (HFX; w/m2), Planetary Boundary Layer height (PBLH) and
Accumulated Precipitation at the final timestep. Differences (Control-
Routing and Control-HiResInit) are expressed as percent of Control for
PBLH, Precipitation, and CAPE.
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src/FigureFiles/Figure10_ScatterPlots.png

Figure 2.10: Figure 10: May 15 - June 1, Low elevation (¡2000m) tem-
porally averaged relationships throughout the subdomain between CAPE
(J/kg), accumulated precipitation (mm), evaporative fraction (EF; frac-
tion of latent heat relative to the sum of latent and sensible heat flux),
planetary boundary layer height (PBLH), and soil saturation in the second
soil moisture layer.
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src/FigureFiles/Figure11_CTP-HILow.png

Figure 2.11: The coupled model experiments convective-triggering-
potential (CTP) and HILow indices, evaluated at 5:00 a.m local time.
Graphs correspond with individual WRF grid cells located in Stanley and
Boise (Figure 2). National weather service radiosonde observations from
Boise are also plotted (black triangles). Green hatched boxes indicate
thermodynamic conditions where precipitation is considered atmospher-
ically controlled/insensitive to surface conditions based on (Findell and
Eltahir, 2003).
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src/FigureFiles/Appendix_Figure1_Soundings.png

Figure 2.12: Observed and WRF-model Skew-T Log P diagrams for morn-
ing (12z) and afternoon (00z) during May and June of 2018.
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CHAPTER 3:

EVALUATING 34 YEARS OF DYNAMICALLY

DOWNSCALED PRECIPITATION IN THE

COLORADO ROCKIES



Abstract

Convection Permitting atmospheric Models (CPM) have recently become tractable at

climate-approaching timescales. These approaches have tremendous utility for water

resource studies, but better characterizations of model biases and skill of simulated

hydrologic fluxes at multidecadal timescales is required. This study examines 34 years

(1987-2020) of CPM precipitation output from the Weather Research and Forecast-

ing model (WRF; V.3.8.1) forced with Climate Forecast System Reanalysis (CFSR;

CFSv2) lateral boundary conditions. Precipitation is compared against point observa-

tions (Snotel), gridded climate datasets, and Bayesian reconstructions of watershed-

mean precipitation conditioned on streamflow and high-resolution snow remote sens-

ing products. We find that the cool-season precipitation percent error between WRF

and 23 NRCS Snotel gauges has a low overall bias (µ=.246%, σ=13.63%), and that

WRF has a higher percent error during the warm season (µ=10.37%, σ=12.79%)).

Warm season bias manifests as a high number of low-precipitation days, though the

low resolution or Snotel gauges precludes analyzing the lower limits of daily pre-

cipitation in the regions sampled by the Snotel network. Regional comparisons be-

tween WRF precipitation accumulation and three different gridded datasets (New-

man, Livneh, and PRISM) show differences in accumulated precipitation on the order

of +/- 20%, and particularly at the highest elevations with the fewest gauge locations.

We find that WRF has a slightly higher correlation than the gridded precipitation

product when compared to the Bayesian reconstruction, particularly when changing

gauge densities are taken into account. The conclusions are that the CPM model
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reasonably captures orographic precipitation in this region, and demonstrates that

leveraging additional hydrologic information (streamflow, snow remote sensing data)

improves the ability to characterize biases in modelled precipitation fields. Error char-

acteristics reported in this study are essential for leveraging CPM models for studies

of past and future climates.
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3.1 Introduction

3.1.1 Quantifying andModeling Mountain Precipitation: Challenges

and Consequences

Over 1.6 billion people globally rely on water resources flowing from mountain

regions (Immerzeel et al., 2012), often in the form of seasonal snowpacks. At the

same time, mountains are uniquely sensitive to climate change (Mountain Research

Initiative Edw Working Group et al., 2015), and snowpacks are forecast to decline

significantly in the coming decades (Siirila-Woodburn et al., 2021). Reducing uncer-

tainties in climate change projections at watershed relevant scales requires improved

modeling efforts or precipitation. Currently, most GCMs are too coarse to project

climate change at water-resource relevant scales, where variations in local topography

(finer than the GCM grid) enhance/inhibit precipitation in significant ways. Even

small terrain features interacts with the atmosphere to modify flow fields and pro-

mote/inhibit precipitation through a variety of mechanisms, which may include stable,

mechanically forced uplsope ascent, ”seeder feeder” mechanisms, and thermally in-

duced convection from differential heating (Roe, 2005; Houze, 2012; Kirshbaum et al.,

2018). The last decade has demonstrated that non-hydrostatic, convection permitting

regional climate models are capable tools for capturing these processes (Ikeda et al.,

2010; Rasmussen et al., 2011; Gutmann et al., 2012; Liu et al., 2017) and the related

task of modeling mountain snow accumulations (Currier et al., 2017; Wrzesien et al.,

2019), of which precipitation in the first-order control. Grid resolutions less than 4km

can permit convection, in addition to better capturing uplift caused by more realistic

terrain Prein et al. (2015).
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Evaluating biases in regional models in a persistent challenge, as gridded, gauge

based datasets that are commonly considered a ”gold-standard” can disagree substan-

tially in mountain watersheds (Henn et al., 2018) because of methodological choices,

and should themselves be considered model products and not treated as observations

(Lundquist et al., 2019). Commonly used precipitation datasets include applied inter-

polation techniques used to map sparse gauge observations across terrain (Daly et al.,

2008; Thornton et al., 2016). Remote sensing based precipitation products (such as

Ashouri et al. (2015)) also exist, but less suitable for stratiform clouds, nor those

composed of ice-phase hydrometeors, which are both common during mid-latitude

winter precipitation in mountains (Lettenmaier et al., 2015). Ground based radar

systems can be used to measure precipitation rates in conjunction with station data

Lin2005-on, but radar beam blockage limits the utility in complex terrain (Maddox

et al., 2002). Consequently, more work is needed to be done to interrogate precipita-

tion outputs from dynamical down-scaling models in mountain watersheds. Moreover,

regional climate models are often run for fairly short time scales (less than a year, or

a handful of years), so evaluations have less statistical power and thus cannot capture

a range of synoptic conditions and teleconnection patterns such as ENSO. Lundquist

et al. (2019) urges the community to consider merging indirect hydrologic informa-

tion, such as but not limited to, ecology, soil-moisture, snowpacks, and streamflow

in order to better evaluate precipitation datasets in mountainous watersheds. The

uncertainties in mountain precipitation (rates, phases, magnitudes) propagate into

studies of hydrologic systems for both water resource applications, snow modeling ap-

plications (Raleigh et al., 2015)), and aqueous biogeochemistry (Maina et al., 2020).

Better quantifying mountain precipitation in the current climate is also a necessary
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step for closing global water-budgets, and a necessary first step for using dynamical

downscaling models to project impacts in the future.

3.1.2 Experiment Outline

This study evaluates 34 years of Weather Research and Forecasting model version

3.8.1 (WRF v3.8.1) precipitation output throughout the Colorado Rocky Mountains,

with emphasis on the East River watershed, a high elevation 750 km2 watershed in

the headwaters of the Upper Colorado river basin (Hubbard et al., 2018). The range

of synoptic conditions present can reveal important insights about model behavior

not captured in other studies, which are often conducted for only a handful or years

(Ikeda et al., 2010; Rasmussen et al., 2011; Gutmann et al., 2012). In the first sec-

tion, regional-scale precipitation is evaluated against 24 Snotel stations (Serreze et al.,

1999) in the vicinity of the East. Many aspects of precipitation simulation can be im-

portant, depending on the question (diurnal cycles, peak intensity, phase, for instance;

Trenberth et al. (2003)), and not all are considered here. We examine the biases in an-

nual, cold-season (October-April) and warm-season (April-September) precipitation

in addition to temporal correlations of accumulation and daily precipitation rates

against Snotel. Lastly, spatial patterns of average precipitation accumulations are

compared against three gridded preciptiation products, namely the Parameter Re-

gression on Independent Slopes model (PRISM; Daly et al. (2008)), Livneh (Livneh

et al., 2013), and Newman (Newman et al., 2015) model products. We compare each

across the entirety of the WRF model grid (˜100,000 km2) and the differences with

respect to elevation are considered.

After examining regional-scale precipitation, we focus on evaluating WRF precip-

itation at headwaters specific scales. We examine spatial patterns of precipitation
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across the East River watershed and locations of orographic enhancement by season.

The East River is the focus of several ongoing and future intensive field campaigns

(Hubbard et al., 2018), and the results of this study are intended to guide and con-

textualize research activities currently taking place in the East River. The East River

watershed (Figure 3.1) is an exemplar of Rocky-Mountain alpine landscapes (Hub-

bard et al., 2018) and flows from the Elk mountains, approximately in the center of

the WRF dmodel omain described in the next section. Elevation ranges bewteen 2500

and 4200 meters above sea level. To better evaluate differences between WRF and

PRISM in the East River, we compare basin-mean precipitation from each dataset

against a Bayesian precipitation methodology. The inference method estimates basin-

mean precipitation using a combination of parsimonious snow/soil water accounting

models, precipitation gauge observations, streamflow records, and a limited number of

Airborne Snow Observatory snow-lidar surveys for water years 2018 and 2019 (ASO;

Painter et al. (2016). This work builds upon prior precipitation-from-streamflow work

by incorporating lidar-derived snow water equivalent estimates (described in section)

into the precipitation estimating framework, similar to Henn et al. (2016).

3.2 Datasets and Methods

3.2.1 WRF Model Domain and Configuration

We use the Weather Research and Forecasting, version 3.8.1 (WRF; Skamarock

et al. (2008)) model with two nested domains. The inner domain has a 1km resolution

and 50 vertical levels, and the outer domain has a 3km horizontal resolution. The

inner grid dimensions are approximately 300 by 300 grid cells. We use CFSR and

CFSRv2 pre/post 2011 (Saha et al., 2010) lateral boundary conditions. CFSR has a
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.5 degree horizontal grid resolution. This model configuration differs from the com-

monly accepted three-to-one horizontal resolution ratio between boundary condition

data and the outermost grid resolution. The outermost domain encompasses the en-

tirety of Colorado’s Rocky mountains and extends East into the Kansas lowlands, and

West as far as Utah’s Uintas range. Due to the time and computational constraints,

each water-year (October 1 - September 30) is run independently and preceded by

a two week spinup period. Consequently, multi-year soil-moisture/atmosphere in-

teractions might not be well represented, as the soil moisture fields (and other land

surface states) are initialized at the beginning of each water year with the coarse

CFSR soil moisture field. In this way, multiple water years can be run concurrently.

The horizontal grid resolution of both domains is less than the 4km typically con-

sidered necessary to permit convection (Weisman et al., 1997) so convective param-

eterizations are turned off. The Thompson et al. (2008a) microphysical scheme and

other WRF parameters listed in Table 3.1. Precipitation sensitivities to microphysi-

cal parameterization can be significant (cite Liu) and will be addressed in a follow-up

manuscript.

In general, two predominant synoptic regimes control water-inputs to the East

River watershed, namely winter baroclinic waves (frontal systems) and summer-time

convective precipitation events that can sometimes be assosciated with the North

American monsoon. Winds and moisture are predominantly from the West during

the winter. The Colorado front range is also affected by upslope storms typified

by northerly and easterly winds (Rasmussen et al., 1995). Nevertheless, river hy-

drographs are typified by single large peaks during the early summer decaying to

baseflows during the late summer.
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3.2.2 Comparison Precipitation Datasets

We compare WRF precipitation accumulations against NRCS Snotel precipitation

observations. Snotel stations are designed to provide cost-effective climate informa-

tion for water-resource important regions throughout the Western US and have been

used extensively in the study of hydrology and climate (Serreze et al., 1999). Ulti-

mately twenty-three Snotel sites are compared, ranging between 8000-11000 feet above

sea level (purple triangles in Figure 3.1). The CFSR reanalyses used to force WRF do

not assimilate Snotel precipitation data (Saha et al., 2010), so precipitation recorded

at the Snotel station is a completely independent check of WRF precipitation.

We also compare WRF precipitation fields against the Parameter Regression on

Independent Slopes model (PRISM; Daly et al. (2008)), Livneh (Livneh et al., 2013),

and Newman (Newman et al., 2015) model products, respectively. There are a number

of differences between each model product, and elucidating the precise nature of the

differences is beyond the scope of this article. One key difference is that PRISM and

Newman use data from NRCS snotel networks, whereas Livneh uses observations from

the NWS COOP stations that have at least 20 years of data. However Livneh precip-

itation accumulations are scaled such that the monthly means match mean PRISM

climatology from 1961-1990. All three products use the PRISM terrain-precipitation

relationships to distribute orographic precipitation. PRISM uses a mapping method-

ology that regresses precipitation for each individual grid cell based on nearby station

observations and terrain orientation with respect to climactic variables.

3.2.3 Precipitation Inference Methodology

Precipitation-from-streamflow, or ”doing hydrology backwards” methods have

been employed in a number of studies (Kirchner, 2009; Pan & Wood, 2013) includ-
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ing those in snow-dominated alpine watersheds (Le Moine et al., 2015; Valery et al.,

2009) and glaciated watersheds (Immerzeel et al., 2012) using glacier mass-balance

as opposed to streamflow. Henn et al. (2015) used a Bayesian inference method to

evaluate gauge-based precipitation products, with further applications in Henn et al.

(2016), Henn et al. (2018), and Hughes et al. (2020), the latter of which used such a

methodology to evaluate atmospheric model performance for watersheds in the Seirra

Nevada. The approach adopted in this study is intended to follow Henn et al. (2015)

as closely as possible. In essence, the method combines a temperature index snow

accumulation/ablation model run in elevation bands, a soil-water accounting and

streamflow routing ”bucket” model, and precipitation and temperature equations

with that distribute point-scale observations to each elevation band. Figure

A Bayesian inverse routine finds the most likely ranges of parameters, including

parameters in the precipitation/temperature distributing functions, that best matches

observed streamflows. The precipitation in each elevation layer (at height z) is given

by the following equation:

P(z) = m ∗ [(Ps + Pbias) ∗ (1 +OPG ∗ dz)] (3.1)

Where Ps is the daily observed precipitation at a Snotel location (at height z0),

Pbias is a precipitation gauge undercatch factor, OPG is an orographic precipitation

enhancement factor, and m is a multiplicative error term, and dz = zeff − z0 where

z0 is the station elevation. In order to account for the oft observed decreases in snow

water content with elevation, an ”effective” layer elevation (zeff ) is prescribed by:
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zeff =


z − γ(z − ζ) if z > ζ

z otherwise

In this way, precipitation begins to decrease after a certain tuneable elevation ζ at a

rate of γ. We use the Snow17 (Anderson, 1976) snow model run in discrete elevation

layers to model the accumulation/melting of snow. In order to provide estimates

that are as independent as possible of WRF, we use NRCS Snotel data from the

Butte and Schofield stations located in the East and vicinity of the East watersheds,

respectively to force the model. Periods of missing or poor quality temperature data

(a small percentage) are corrected using adjusted data from the Schofield station

(elevation corrected by the dry-adiabatic temperature lapse rate), when available, or

interpolated between neighboring values.

To infer precipitation, a three-part inference process is applied. In the first step,

Snow-17 parameters are calibrated for the Butte Snotel (381) site, including a pre-

cipitation undercatch term using a standard (non-bayesian) minimization algorithm.

Next, the OPG, ζ, and γ, and temperature lapse rate parameters are fitted to the

mean Airborne Snow Observatory SWE for water years 2018 and 2019. ASO pro-

duces three-meter scale estimates of snow-water equivalent by taking repeat LiDAR

observations of snow surfaces and modeling snow density using energy balance mod-

eling. ASO data products for the East River are publicly available from the National

Snow and Ice Data center.

In the second step, SNOW-17 (and the tuned precipitation distributing paramters)

is coupled with a bucket hydrologic model based on FUSE hydrologic model frame-

work (Clark et al., 2008). SNOW-17 provides rain and snowmelt inputs to the hy-
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drology model. The hydrologic model also requires a potential evapotranspiration

forcing, which is computed using the Hamon forumula (Hamon W. R., 1961). The

model structure used in this study is the most similar to the VIC/PRMS forms de-

scribed in (Clark et al., 2008). The structure was chosen for simplicity and to have

as few free parameters as possible. There are two state variables, soil moisture in the

top and bottom buckets (SM1, SM2) with maximum capacities SMmax
1 and SMmax

2 .

The model fluxes equations are described in Table (??) and illustrated in Figure 3.7.

FUSE produces a hydrograph that can be compared against observed streamgauge

data.

Posterior model parameters (θ), conditioned on the model structure and observed

streamflow data (d), are can be expressed using Bayes’ rule:

P(θ|d) ∝ P(d|θ)P(θ) (3.2)

Analytical expressions for the posterior are not possible, so Markov chain monte-carlo

sampling methods are used, specifically the DEM-Metropolis algorithm implemented

in the python “PyMC3” library (Salvatier et al., 2016). The model-likelihood function

P (d|θ) is a standard least-squares error model which assumes that residuals follow

a gaussian distribution with a mean of zero. The standard deviation of the error

term is a linear function of the daily magnitude of discharge, following Henn et al.

(2015) and Thyer et al. (2009), given by σt = αQt + β, where Qt is the observed

discharge at timestep t. The coefficients of the error model are inferred along with

model parameters.
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3.3 Results

3.3.1 Regional Scale Comparison

Seasonal Precipitation Accumulations Compared Against Snotel

WRF precipitaiton from the 34 year period is compared against corresponding

Snotel grid-cells shown in Figure 3.1. Comparing WRF precipitation against Snotel

observations demonstrates that WRF captures important features of water-delivery

throughout the region. The analysis is divided into two rough categories, the ”cold-

season” (October-March) and ”warm-season” (April-September) which are intented

to roughly demarcate winter stratiform and summer-time convective precipitation

regimes. Analyzing the monthly averages of integrated vapor transport and 500 hPa

wind directions shows that wind and moisture overwhelmingly come from the West

during the cold-season (October - April) and from the West-South-West during the re-

mainder of the year (not shown). The percent errors in water-year total precipitation,

expressed as

% Error =

∑
PWRF −

∑
PSnotel∑

PSnotel

∗ 100 (3.3)

are also examined. There is no immediately apparent trend in location of Sno-

tel site with respect to elevation or topography and error characteristics. The worst

performing site is Brumley (369), located on the lee-side of a mountain ridge, where

WRF overpredicts precipitation consistently throughout the study period. Interest-

ingly, sites located only a few kilometers away on the windward side of the range

are well predicted. While the correlations are similar between season, the errors in
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precipitation accumulation are not evenly distributed across the water-year. During

the warm-season, WRF is wetter than Snotel sites for sixteen of the twenty-three

Snotel sites, with an average accumulated precipitation percent-bias of 10.4%. The

cold-season percent error averaged across all years and Snotel locations is, remark-

ably, .264% but with a 10.1% standard deviation. Comparing one-week rolling mean

timeseries of WRF averaged across all Snotel locations, compared with the average

Snotel precipitation, shows good correlation (R2 of .85 and .88 for the warm and cold-

season, respectively). The relationship between binning-window (daily-monthly) and

correlation was also examined, and found that correlations were low at the daily in-

crements, but tended to flatten beyond averaging window-lengths greater than three

to four days.

Daily Precipitation Frequency and Rates

Examining daily correlations between model precipitation and precipitation at

Snotel sites introduces problems because of the Snotel sensor resolution (2.54 mm per

day). This is illustrated in Figure 3.3, which compares the average number of days

with precipitation (”wet” days) and dry-days bewteen WRF and Snotel datasets.

When the ”wet” threshold is set to 2.54 mm, WRF and Snotel have similar wet/dry

statistics (Figure 3.3), with both datasets agreeing on wet-days more often than

not. However, when the ”wet” threshold is relaxed to daily precipitation > 0 mm,

WRF has significantly more wet-days than Snotel particularly during the warm season

(more than double). The relationship between daily precipitation rates and seasonal

accumulation can be expressed by the Precipitation Intensity Contribution (PIC) to

the total, given by:
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PIC(j) =

∑n
i=1(Pi if Pi > j ; else 0)∑n

i=1 Pi

(3.4)

Where P is precipitation, i is the time index (daily), and j is a particular rate in

millimeters per day. This expresses the percent of the total precipitation caused by

daily rates less than or equal to that of each bin. Averaged across all Snotel locations

and water-years, more than 10% of all precipitation fromWRF is attributable to daily

rates less than 2.54 mm, or ”drizzle” (rain or snow) that would not be reported in

the Snotel dataset. Moreover, close to one quarter of the Snotel precipitation results

from days where the reported value is at the minimum resolution. This is likely in

part because of Snotel buckets collecting, but not reporting precipitation until the

.1 in threshold is reached. Consequently it is likely that Snotel gauges under report

the number of ”wet” days and the fidelity of light precipitation days is difficult to

quantify in the mountain regions they sample.

Regional Comparison of WRF and Gridded Dataset

Three gridded precipitation datasets are compared against WRF for across the

inner WRF domain 3.1. The PRISM (4km) product, Livneh (1/16◦), and Newman

(1/8◦) are regridded to a common grid using the xESMF python package. The last

decade is ignored since Livneh and Newman are only available until 2012 and 2013

respectively. The comparison of water-year averaged precipitation (1987-2010) shows

significant differences between WRF and the gridded datasets, on the order of plus

or minus 25% and up to 400mm in some regions (Figure 3.4) The differences among

the gridded datasets are lesser, in particularly between PRISM and Livneh. Some of

the differences are due to the underlying data resolution. Comparing precipitation as
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a function of height shows that WRF typically has less precipitation at the highest

elevations (greater than 3500 m) compared to PRISM, and that the two datasets

disagree the most in regions that are poorly sampled by Snotel locations (the Snotel

maximum elevation is 3500 meters). Moreover, PRISM has a more skewed distribu-

tion at higher elevations in addition to higher maxima. Both datasets show a clear

rain-shadowing effect between 2250-2400 meters, corresponding with the region to

the East of the San Juan mountains in the South East corner of the domain, though

PRISM is drier than WRF (Figure 3.4).

The following section analyzes precipitation throughout the East River watershed

region (Figure 3.1).

3.3.2 East River Precipitation Analysis

The spatial patterns of precipitation are compared between WRF and PRISM

for the warm and cold seasons averaged between water-years 1987-2020. To examine

spatial differences in precipitation, we define the enhancement factor for each grid

cell, given by:

EFi,j =
Pi,j

1
m

1
n

∑m
i=1

∑n
i=j Pi,j

(3.5)

Which is simply the ratio of the accumulated precipitation in each grid cell i, j to the

m by n points averaged across the watershed.

Livneh and Newman are ultimately quite similar in the East, so consequently only

PRISM and WRF are compared subsequently. Both datasets show that more precip-

itation accumulates during the Cold season on average. In many years, the mountain

slopes on the windward side (West; left of the figure) receives more precipitation in

WRF relative to PRISM (Figure 3.5), despite having an overall lower precipitation.
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WRF has a much higher enhancement factor on the windward East side compared

to PRISM, which has a very high enhancement factor and very high positive bias

relative to WRF in the Northwest. There does appear to be a significant downward

shift in PRISM basin-mean precipitation in the final decade of the simulation, the

causes of which are discussed in the next section. PRISM generally has a higher

precipitation-elevation gradient compared to WRF, for both the East river watershed

and the entire WRF domain (Figure 3.11). The averaged elevation/precipitation re-

lationship is most similar at low-to mid elevations and deviates most strongly at the

highest elevations.

Comparisons against Streamflow Inferred Basin-Mean Precipitation

In order to better understand some of the discrepancies between WRF and gridded

datasets, the streamflow from inference method adapted from (Henn et al., 2015) is

adapted to examine basin-mean precipitation in the East River watershed. This

method cannot isolate spatial precipitation patterns (which are significant; Figure

3.6), only basin-mean. This is nonetheless useful as the differences in the mean are

large ( 150mm) A three-part inference process is applied. First, Snow-17 parameters

are calibrated for the Butte Snotel (381) site, including a precipitation undercatch

term using a standard (non-bayesian) minimization algorithm (Pbias, Equation 3.1.

Next, the orographic precipitation gradient (”opg”), temperature lapse rates, and

precipitation gradient cutoff terms are calibrated against two-years of Airborne Snow

Observatory SWE products. Water year 2018 and 2019 are low and high precipitation

years, respectively, with approximately peak SWE values of greater than 2000 mm

in 2019 and approximately 1000 mm in 2018 (Figure 3.8). This is fortuitous, as that
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these years represent both extremes and are thus good for approximating the long-

term behaviour. Aggregating SWE with respect to elevation bins shows a remarkably

consistent increase in SWE with elevation, after which SWE values tend to decline. A

similar pattern is found in the Tuolmne basin in California (Henn et al. (2016), Figure

4). Tuning the opg-gradient slope-break (ζ) and decrease-rate (equation γ) allows for

fitting the observed ASO SWE curves. It is worth noting that the precipitation

reduction term ultimately represents a small fraction of the total watershed area (less

than 10%). The calibrated opg parameter is ultimately close to the initial guess of

.002 km−1. The temporal evolution of SWE in corresponding bin closely matches

that of the Snotel site (Figure 3.8.c). Following calibrating the snow model, the

time-invariant hydrologic model parameters are inferred for the entire time series of

discharge (1990-2020). The parameters are the hydrologic parameters listed in Table

3.3. Extensive testing of the Bayesian inference approach found sampler convergence

criteria were only met after treating the upper-zone maximum soil moisture as fixed.

A value of 400 mm was chosen, reflecting approximately 1 meter on average of sandy-

loam soil. Inference was performed with different fixed values of soil storage, and

found there was ultimately little difference in the inferred values of other parameters.

The baseline model skill is high at this stage, with average root mean squared error

of .65 mm prior to inferring precipitation forcing errors, suggesting that the model

structure is a good approximaton of the watershed dynamics.

After inferring the time-invariant hydrologic model parameters, forcing model

parameters are inferred on an annual basis against streamflow. This includes the

precipitation error multipliers (m), OPG, OPG gradient slope-break (ζ) elevation,

and temperature bias. The PDFs of basin-mean inferred precipitation for each year
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are compared against PRISM and WRF (Figure 3.9.A) and model streamflow skill

displayed (3.9.B). Newman and Livneh were also examined but the mean was al-

most identical to PRISM. Averaged across all years, the mean-inferred precipitation

multiplier has a mean close to 1 and OPG parameters are again close to the initial

guess of .002 (Figure 3.9.C) Model skill-scores are high, with kling-gupta-efficiencies

typically .8-.9 or higher and low root-mean-square errors, indicating the model well-

captures both the temporal behavior of discharge and mass-balance (Figure 3.9.D)

WRF typically has a lower mean precipitation compared to inferred, and PRISM

is higher. Notable outlier years with significant spread between estimates includes

water year 2002 and water year 1995, a low and high discharge year respectively.

The three estimates become more alike approximately after water year 2010. This

change in behavior is almost certainly due to the addition of the Upper Taylor Snotel

(site 1141) in water-year 2010, immediately to the East of the basin. Of the three

Snotel sites closest to the East, Butte receives the least precipitation, Schofield the

most (almost twice that of Butte), and the Taylor typically a value in between the

two. The PRISM basin-mean precipitation is a fairly constant +200mm (standard

deviation 60mm) relative to the precipitation received at the Butte Snotel site, and

the difference between the two values is significantly reduced after water year 2010

(Figure 3.10)

3.4 Discussion

3.4.1 Comparisons against other Convection Permitting Simulations

Several other studies have evaluated WRF against Snotel and gridded precipi-

tation datasets for the Colorado Rockies, though few have presented analyses for
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simulations spanning three decades. Rasmussen et al. (2011) reports similar per-

formance metrics between Snotel stations and WRF. Jing et al. (2017) found that

winter-time precipitation accumulations compared against a number of Snotel sites

was less than 15% using a 2km WRF configuration with NARR boundary conditions.

The absolute biases and percent-differences between WRF and PRISM from this

study are similar both the Jing et al. (2017) 2km WRF and 4km WRF results from

Liu et al. (2017), both presented in Jing et al. (2017) Figure 7. Similar patterns are

also observed in Gutmann et al. (2012) who examined winter-only precipitation using

a 2km WRF configuration with NARR boundary conditions. The similarity of results

is significant, since there are differences in resolutions, nesting configurations, model

code versions, boundary conditions, microphysical schemes and other options. The

robustness of patterns across these convection-permitting model configurations sug-

gests that the orographic precipitation solutions are robustly tied to model structural

processes that are fundamentally different from the assumptions made in PRISM-like

gridded precipitation datasets.

Differences in error behavior between cold and warm season can likely be at-

tributed to precipitation generating regimes. WRF has a lower weekly correlation

with Snotel stations (lower R2 value), higher percent-errors, and an excessive number

of wet-days relative to Snotel during the warm season. Jing et al. (2017) likewise

found that WRF skill decreased in April, concurrent with an increase in convec-

tive available potential energy. Surface heating tends to increase during the warmer

months leading to convective instabilities and localized precipitation, compared to

more uniform stratiform precipitation during the winter (Dai, 2006). Warm season

errors may be more sensitive to the exact locations of precipitating cells. At the same
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time, the nature of errors at the gauge locations can depends on the phase of falling

hydrometeors (rain versus snow), as snowflakes have lesser fall speeds and are more

subject to undercatch during stronger winds (Goodison et al., 1998; Harpold et al.,

2017). Consequently it is even more interesting that cold-season discrepancies are

lower, even though the gauge errors are expected to be higher. Some studies have

attempted to account for gauge undercatch at Snotel sites using the co-located snow

pillow SWE measurements, but these methods are not employed here for the precipi-

tation evaluation (Livneh et al., 2013; Sun et al., 2019). However, an undercatch term

(Pbias) for the Butte snotel (381) was used in the precipitation inference method, but

the value was small (< 1mm), and only two-years out of the thirty examined appeared

to show snow-water equivalent values greater than concurrent accumulated precipi-

tation. The overestimation of the number of wet days is well known in both regional

and global climate modeling (Maraun et al., 2010; Chen et al., 2021). However it is

difficult to determine the extent of the potential drizzle bias given the relatively low

resolution (daily; 2.54 mm) of Snotel gauges (Figure 3.3)). Additional experiments

may consider indirect data sources (soil moisture, remote sensing of cloud proper-

ties) to better understand modeling drizzle days in regions covered by Snotel, which

account for 10% of annual WRF precipitation. Users of dynamical downscaled pre-

cipitation may consider bias correcting by removing low-precipitation days (Maraun

et al., 2010). An analysis of streamflow responses, following Lundquist et al. (2009),

could potentially isolate short periods of summer precipitation missed by the gauge

networks but captured by WRF (or lack thereof).
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3.4.2 Addressing Climate and Data Non Stationarities

The step-change in PRISM basin-mean precipitation underscores the fact that

caution must be taken when analyzing precipitation trends from gridded datasets,

as inclusion of different stations can induce spurious trends. Analyzing the annual

East River mean precipitation from PRISM from 1987-2020 shows a negative trend

with p=.06, R2=.33, which likely reflects the addition of the Taylor Snotel site. The

fact that PRISM more closely matches the WRF and inferred precipitation data

(two independent estimates) in the last decade, after the addition of a nearby gauge,

lends more confidence to the WRF modelled precipitation in the early parts of the

simulation. That being said, WRF still typically underestimate precipitation at the

Schofield snotel site (737; Figure 3.2), so the low-bias may carry over to adjacent re-

gions including within the East. Lastly, the WRF boundary conditions changed from

CFSR to CFSRv2 after 2011. After all, precipitation from regional climate models

are ultimately dependent on the boundary conditions (Goergen & Kollet, 2021), so

changes in data assimilation and methodologies may influence the character of the

boundary conditions and the resuts. For these reasons, the impacts of anthropogenic

climate change are not directly quantified in this work and require a more careful

treatment to isolate signals from other effects. The Rockies are experiencing warm-

ing trends across seasons (Rangwala & Miller, 2012) and declining Spring snowpacks

primarily driven by temperature (Mote et al., 2005). Future studies may interrogate

the climate change signals in the dataset.
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3.4.3 Interpreting Streamflow Inferred Precipitation Estimates

Sensitivity to Evapotranspiration

High resolution snow Lidar SWE information offers significant utility, in conjunc-

tion with streamflow, for reconstructing basin mean precipitation inputs. Henn et al.

(2016) likewise used ASO data in a joint-inference method in the Tuolumne river

watershed. They found that that doing so reduced the dependence of inferred pre-

cipitation on hydrologic model structure, compared with inferring precipitation from

streamflow alone. That being said, uncertainties in soil parameters, PET forcing, and

water limitation relationships in the PET/ET relationships do limit the conclusions

drawn from the precipitation inference approach. ET is directly related to inferred

precipitation by the hydrologic mass-budget equation, Q = P −ET − dS
dt
, so holding

Q and dS
dt

constant implies that higher annual inferred precipitation requires higher

annual ET. In the bucket model formulation used here, ET is a function of PET

forcing and the soil moisture content, given by

ET = PET ∗ min(SMT1, SM
max
T1 )

SMmax
T1

(3.6)

where SMmax
T1 is the field capacity given by fracten ∗ SMmax

1 (soil moisture in

the top bucket multiplied by the time-invariant fraction held in tension). During the

long-term hydrologic parameter inference, the fracten parameter consistently con-

verged towards the limit of 1 (a lower-ET solution). It is important to note that

the model log-likelihood is evaluated using the timeseries of streamflow, not the sea-

sonal sum. Consequently the timing of ET is implicitly considered, as it impacts

the daily partitioning of soil water into storage/streamflow. Additional sensitivity
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experiments show that higher ET solutions (lower fracten) tended to smooth spring

and early summer streamflow peaks excessively compared to observations, suggesting

some confidence in the ET solution. Ryken et al. (2021) deployed eddy-covariance

towers in riparian zones in the East river, and reported annual ET values between

450-550 mm per year. This is interpreted as an upper-limit of basin wide ET, as

the flux tower is located in a well-watered riparian corridor. The posterior ET solu-

tions from the inference method are the same magnitude, and between 350-450mm

for the same time period. The relationship between critical zone properties (soil

depths, water potentials), evapotranspiration measurements/estimates, and inferred

orographic precipitation underscores the interdisciplinary nature required to better

constrain precipitation inputs in mountain watersheds

Comparisons with Other Precipitation Inference Studies

This application of a precipitation-from-streamflow inference approach also differs

from the (Henn et al., 2015) study in one key aspect. PRISM precipitation was found

to be lower than the total volume of streamflow (violating basic mass balance con-

siderations), whereas in this study the estimated streamflow is less than the PRISM

estimate. Another major assumption is that parameters in the precipitation distribut-

ing functions are constant for each season. Future efforts may infer precipitation error

parameters for individual storm events such as in Le Moine et al. (2015) and Koskela

et al. (2012). Future efforts could apply precipitation-inference methods in addition

with dynamical downscaling and precipitation gauge data to produce regionaal scale

precipitation reanalyses following the methods presented here, especially for basins

where lidar-based snow products are available.
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Moreover, while this study demonstrated that airborne snow lidar products can be

incorporated into an inference strategy to evaluate orographic preciption, the poten-

tial applications are vast. This study only used one-dimensional SWE versus elevation

information as part of the Bayesian inference framework (Figure 3.8) to calibrate the

OPG parameter in Equation 3.2.3. In cold, high elevation areas above the rain-snow

transition zone, the snow water equivalent largely depends on the antecendent pre-

cipitation, with other processes secondary redistribution/loss processes superimposed

on it. Cursory analysis shows that the patterns of SWE from the ASO data (Figure

3.8.A) more closely match the relative precipitation enhancement from WRF, where

the largest values of precipitation/snow are on the windward side of the watershed.

Future work will examine this relationship in greater detail.

3.5 Summary and Conclusions

This paper examined 34 years of dynamically downscaled precipitation produced

by the Weather Research and Forecasting (WRF) model. Precipitation is com-

pared against Snotel observations, three different precipitation products (PRISM,

Livneh, and Newman), and basin-mean precipitation inferred from a Bayesian infer-

ence method that uses streamflow and high resolution snow-water equivalent data

(ASO). The primary goal is to better characterize precipiation biases and error char-

acteristics. We find that:

• Averaged across 24 Snotel stations, WRF has a .246% percent bias (σ=13.63%)

during the cold season and a 10.37% (σ=12.79%) percent bias during the warm

season,

• 10% of WRF annual accumulated precipitation is during ”drizzle” days (<100
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mm), and which is difficult to validate because of Snotel gauge resolutions.

Users may consider bias correcting for drizzle during summer months

• PRISM/Livneh/Newman show generally similar patterns and disagree with

WRF on the order of +/- 20% per year. The largest disagreements are at

the highest elevations with the fewest observations.

• PRISM basin-mean precipitation becomes closer to the WRF and streamflow-

inferred precipitation estimate following the addition of the Upper Taylor Snotel

site in the adjacent basin.

• WRF patterns of precipitation more closely match the snow lidar datasets than

PRISM for the two available years, with more enhancement on the windward

(western) ridge of the watershed boundary.

Future studies may consider other moments of the precipitation distribution from

this dataset, such as extreme events or drought-duration, in addition to other hydro-

climactic variables (temperature, wind fields, radiation).
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FigureFiles/Figure1_WRF_DomainMap.png

Figure 3.1: WRF Model domains (left) and East River watershed (right).
Outer nest is 3km dx/dy and the inner domain is 1km dx/dy. Triangles
show the locations of Snotel sites examined in this study
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FigureFiles/Figure2_WRF_Snotel_Error_Matrix2.png

Figure 3.2: Error characteristics of 24 Snotel sites compared against corre-
sponding WRF grid-cells, 1987-2020. A) One-week rolling mean timeseries
of average Snotel (orange) precipitation compared against WRF (blue) B)
Annual precipitation percent error (Snotel as reference) for each site, C)
Average timing of water delivery (%) as a function of day of water-year
for WRF (blue) and Snotel (orange), D) Correlations between one-week
accumulated precipitation WRF/Snotel for Warm season (bottom) and
Cool season (Top), D) Average precipitation percent errors by season
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FigureFiles/Figure3_WRF_Snotel_WetDryRate.png

Figure 3.3: A) Percentage of days with precipitation (”wet”) for Snotel
stations and corresponding WRF grid-cell, for thresholds of daily precip-
itation greater than 2.54 mm (.1 inches) and 0 mm respectively, for Cold
(Oct. - April) and Warm (April-Oct.) seasons. B) Contribution to cumu-
lative precipitation by daily precipitation rate (mm/day) for WRF (solid)
and Snotel (dashed) stations. Blue/Orange lines are the mean of all sta-
tions for WRF/Snotel respectively.
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FigureFiles/Figure4_RegionalPrecip.png

Figure 3.4: Digonal: Spatial averages of 1987-2010 precipitation for WRF,
PRISM, Newman, and Livneh datasets for the entirety of the inner WRF
model grid (300x300km). Lower off-diagnoals are the difference between
respective datasets (row-column). Upper diagonals are the same, but show
the percent-difference ([column-row]/row).
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FigureFiles/Figure5_EastMaps.png

Figure 3.5: East River Annual Precipitation by Water Year, 1987-2020 for
WRF and PRISM, Livenh, and Newman precipitation products
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FigureFiles/Figure6_WshedAvgPrecip.png

Figure 3.6: Average Cold-Season (October-April), Warm-Season (April-
October), and average annual precipitation enhancement factors (Equation
??) for WRF and PRISM
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FigureFiles/Figure7_BucketConcept.png

Figure 3.7: Precipitation inference model. A) Meteorological forcing
structure. Precipitation/temperature increase/decrease with elevation
and typical snow/melt fluxes are illustrated. B) Hydrologic model struc-
ture. Rain and Snowmelt (Qin) and Potential Evapotranspiration (PET)
are model forcings. State variables are the soil moisture in the top and
bottom bucket respectively (SM1, SM2). Model fluxes are baseflow (Qb),
percolation, Q12, overland flow (Qd), and bucket overflow (QbO). C) Qd and
Qb are convolved with a routing function to produce streamflow (D).
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FigureFiles/Figure8_ASO-SnotelCalibration.png

Figure 3.8: Left: The Airborne Snow Observatory SWE maps over the
East River employed in this study. Center: Basin-average elevation versus
average SWE for ASO and calibrated Snow-17 at ASO-flight dates. Right:
Timeseries of calibrated Snow-17 by elevation band (n=100).
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FigureFiles/Figure9_InferredPrecip.png

Figure 3.9: Evaluating precipitation-from-streamflow Bayesian inference
method. A) WRF and PRISM Basin mean precipitation compared against
posterior precipitation (violinplots). Residuals between PRISM/WRF and
inferred are plotted (right y-axis). Cumulative observed streamflow plot-
ted for reference (grey boxes). B: Observed streamflow and posterior
streamflow solution with 1σ confidence interval (grey shading). C: Distri-
butions of posterior forcing parameter values, inferred from each year D:
Distributions of annual error metrics. Kling Gupta Efficiency and Root
Mean Square Error.
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FigureFiles/Figure10_PrismSnotelDifferences.png

Figure 3.10: East River annual mean PRISM mean precipitation compared
against the three closest Snotel sites, Schofield (737; North of East), Up-
per Taylor (1141; East of East), and Butte (381; within East). Pre/Post
2010 mean difference between Butte and PRISM-mean are plotted with
standard errors.
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FigureFiles/FigureX_PrecipLapseRates.png

Figure 3.11: Average annual precipitation versus elevation for WRF and
PRISM, for the entire WRF domain (top) and the East River Watershed
(bottom). Rolling means (solid lines) are shown in addition to OPG lines
(Equation 3.1)
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Configuration Options Outer/Inner Nest
Version 3.8.1
Vertical Levels 50, 50
W-E Dimension 340, 349
N-S Dimension 290, 328
DX 3 km,1 km
DY 3 km,1 km
Output Timestep hourly
Model Physics Option

LBCs (CFSR;CFSRv2) Saha et al. (2010)
Convection Parameterization None
Microphysics Thompson Thompson et al. (2008a)
LSM Noah MP Niu et al. (2011)
Surface Layer Monin-Obukhov (Option 2)
PBL Mellor-Yamada-Janjic (Eta/NMM) PBL
LW Radiataion Community Atmosphere Model
SW Radiation Community Atmosphere Model

Table 3.1: Weather Research and Forecasting (WRF) parameters used in
this study.

Fluxes Description Functional Form
Q12 Percolation ku ∗ (SM1/SM

max
1 )c

Qb Baseflow ks ∗ (SM2/SM
max
2 )n

QbO Bucket Overflow Qbo,i = MAX[0, (SMi − SMmax
i )]

Qd Overland Flow Qin ∗ Ac
Ac = MAX[0, 1− (1− SM1/Sm

max
1 )β]

ET Evapotranspiration ET1 = PET ∗ (MIN[SM1, SMT1]/SM
max
T1

ET2 = (PET − ET1) ∗MIN[SM2, SMT2)/SM
max
T2 ]

Table 3.2: Functional Forms for Bucket Hydrologic Model Fluxes
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Parameter Description Prior Range

sm1max unsaturated zone max storage uniform fixed
sm2max saturated zone max storage uniform 10.-1000.
ks percolation rate uniform 10.-10000.
ku baseflow rate uniform 10.-10000.
n baseflow exp. uniform .001-3.
β saturated area exp. uniform 1.0-10.
c percolation exp. uniform 1.0-20.
fracten field capacity fraction uniform 0.1-.95
opg Equation 3.1 uniform .001-.005
m Equation 3.1 uniform .1 - 10
ζ Equation 3.1 uniform .1 - 10
γ Equation 3.1 uniform .1 - 10
t-lapse temperature lapse rate normal -.004,.001
t-bias temperature bias uniform -2., 2.

Table 3.3: Model parameter prior values and probability distribution used
in the precipitation inference method. Ranges refer to the min/max of
the uniform distribution or the mean/standard deviation of the normal
distribution.
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The WRF data used in this study covering the East river watershed is publicly

available here: https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1845448.
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CHAPTER 4:

OROGRAPHIC PRECIPITATION

SENSITIVITY TO MICROPHYSICAL

PARAMETERIZATIONS: HYDROLOGIC

EVALUATIONS WITH SNOW LIDAR

DATASETS



Abstract

Cloud microphysical process representation is an important facet of numerical weather

prediction, as cloud processes control distributions and rates of precipitation. The

heterogeneity of ice crystal habits and phase change processes are particularly difficult

to represent, and parameterization assumptions can impact both precipitation rates

and the phases of hydrometeors reaching the surface. This has important implications

for the accumulation, storage, and release of water in seasonal snow that is relied on

by millions in the Western US, and billions globally. In this study, we design and con-

duct experiments with the Weather Research and Forecasting (WRF v.4.2.1) model

using three different microphysics schemes, including a new scheme (Jensen) that in-

cludes 3 ice species and higher-order moments for ice-shape parameters. Simulations

are conducted for two winter seasons (2018 and 2019) in a Colorado Rocky Mountain

domain centered on the East River watershed. The precipitation efficiency of each

microphysics scheme is quantified and compared using a drying-ratio mass budget

approach. Precipitation outputs from each scheme are used to force a snow/land

process model (Noah-MP) so that peak snow accumulations can be compared against

high-resolution lidar products. We find that microphysical parameterization choice

can significantly alter modeled precipitation, on the order of +/-10% of winter-season

totals. All schemes produced snowpacks with high correlations with lidar products:

RMSEs between 25-37% for snow depth and 19-51% snow water equivalent compared

against ASO lidar maps. From this, we find that snow lidar data can be used not

only as a non-traditional benchmark to test model precipitation accumulation fidelity,
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but also a test of microphysical parameterizations when combined with distributed

land/snow models. Better coupling between microphysical schemes, particularly those

that predict snow densities and shapes, with snow models could potentially reduce

uncertainties in snow densities. This study demonstrates that intensive field mea-

surement campaigns are needed to better constrain microphysical parameterizations

in mountain environments.
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4.1 Introduction

Precipitation in mountains is highly variable in space and time, under-sampled by

weather stations and radar, and challenging to model or estimate (Lundquist et al.,

2019). In mid-latitude regions, mountain precipitation often falls as snow, gradu-

ally accumulating as snowpacks that act as natural reservoirs supporting ecosystems

and human systems across the watersheds into which they drain and beyond (Sturm

et al., 2017; Siirila-Woodburn et al., 2021). The streamflow from snowmelt depends

not only on the antecedent snow-volume, but also spatial location of snow accumula-

tion throughout the watershed (Luce et al., 1998). The variability of snow accumu-

lation occurs at a range of process scales spanning individual hillslopes to synoptic

scales (Clark et al., 2011). significant component of snow accumulation variability

is caused by orographic precipitation enhancement, which results from a variety of

dynamic mechanisms including stable upslope ascent from mechanical uplift, release

of potential instabilities, lee-side convergence, seeder-feeder processes, and convection

triggered by differential heating associated with changes in slope and aspect (Roe,

2005; Houze, 2012; Stoelinga et al., 2013; Kirshbaum et al., 2018). Convection permit-

ting atmospheric models (Prein et al., 2015) have shown skill in capturing orographic

precipitation variability caused by these effects and realistically modelling orographic

precipitation variability (Ikeda et al., 2010; Rasmussen et al., 2011; Gutmann et al.,

2012; He et al., 2019; Rudisill et al., 2021). Consequently, numerical weather model

precipitation outputs are increasingly used as reliable precipitation estimates and in-

puts for studies investigating the mountainous hydrologic cycle and water resource

management (Lundquist et al., 2019).

However, the predicted precipitation fields from atmospheric models exhibit errors
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from a wide range of sources. For example, they are highly sensitive to the under-

tested assumptions in microphysical parameterizations (Liu et al., 2011; Minder &

Kingsmill, 2013; Rhoades et al., 2018). The problem is exacerbated in complex ter-

rain where the location of falling precipitation upwind/downwind of an orographic

barrier can have important hydrologic ramifications (Pavelsky et al., 2012). Diagnos-

ing errors in modeled precipitation includes evaluating the spatial characteristics of

modeled orographic precipitation, and this necessarily includes some level of evalua-

tion of microphysical scheme performance. Unfortunately, the lack of comprehensive

precipitation observations in complex terrain (Lundquist et al., 2019) creates an ill-

posed process model development and diagnostic premise: modeled precipitation is

highly sensitive to model structural and parameterization choices, but those choices

are not easily evaluated with observations. Commonly used gridded precipitation

datasets are highly uncertain in locations far away from observations (Henn et al.,

2018), but these datasets are still commonly used as reference ”truth” when evaluat-

ing atmospheric model fidelity.

At the same time, airborne Light Detection and Ranging (LiDAR) scanning has

increasingly been used in recent years to monitor watershed scale montane snowpacks

and provides high spatial resolution (<<1 km) maps of snow depth (Painter et al.,

2016). Snow depths are measured using airborne LiDAR by first mapping the snow-

free land surface. Subsequent flights during the snow season record snow-top heights,

which are differenced from the bare-ground elevation to compute snowheight. The

accuracy for snow-height measurements in flat terrain is ±8 centimeters for a 1 meter

swath (Deems et al., 2013; Painter et al., 2016). LiDAR snow depths can then be

combined with model-derived snow density estimates to produce spatial maps of snow
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water equivalent (SWE). Densities can be modelled using energy balance modeling

(Hedrick et al., 2018), and generally vary less than snow depths (Sturm et al., 2010).

Therefore, the measurements of snow depth at a watershed scale can inform direct es-

timates of SWE at the spatial resolution of the snow density estimates. Nevertheless,

while the horizontal and vertical spatial resolution is high, LiDAR flights represent

only a single snapshot of the state of the snowpack. Still, when measured near the

peak of the accumulation season, SWE is a measure of the antecedent accumulation

season processes, which are dominated by frozen-phase precipitation, that produced

that observed snowpack state. Previous studies have leveraged the strong relation-

ship between precipitation processes and measured snowpack by using LiDAR derived

snow accumulation patterns to scale precipitation forcings for use in hydrologic mod-

eling (Vögeli et al., 2016; Pflug et al., 2021), and to examine precipitation-elevation

gradients (Kirchner et al., 2014).

The goal of this study is to develop a framework for evaluating the land-atmosphere

fluxes and fates of cold-season precipitation, from moisture delivery to snowpack de-

velopment. This is accomplished by evaluating the sensitivities of simulated precip-

itation in the Weather Research and Forecasting (WRF) model (Skamarock et al.,

2008) to three different representations of ice-phase hydrometeors in microphysics

schemes of varying complexity across two water years (WY2018-2019) covering Col-

orado’s East River watershed (ERW; 750 km2). We evaluate the Morrison et al.

(2005), Thompson et al. (2008b), and recently developed Ice-Spheroids Habit Model

with Aspect-ratio EvoLution (ISHMAEL) Jensen et al. (2017) schemes.

We focus our analysis on the ERW, which is a high elevation (2500-3500 masl),

representative alpine basin and the location of numerous critical zone, snow, and
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hydrologic studies (Hubbard et al., 2018) in addition to being the location of a newly-

deployed atmospheric observatory supported by the U.S. Department of Energy’s

Atmospheric Radiation Measurement (ARM) program called the Surface Atmosphere

Integrated Field Laboratory (SAIL) campaign (Feldman et al., 2021). The Airborne

Snow Observatory (Painter et al., 2016) provides a LiDAR based snow depth and

SWE product for WY2018-2019 covering the ERW. Consequently, this watershed

is an ideal testbed for examining microphysical, precipitation, and snow processes,

and model products will serve as guidance for hypothesis testing of ongoing field

observation campaigns.

In this paper, we evaluate how information contained in limited, discrete measure-

ments of the spatial distribution of the snowpack depth and SWE constrains precip-

itation processes in the ERW. We do so by undertaking a series of model sensitivity

tests by comparing modeled fields to the range of hydrometeorological information

collected in the ERW including from ASO. We evaluate precipitation sensitivity in

several ways. First, we use a mass-balance, “drying ratio” approach to evaluate the

precipitation efficiency of each scheme (Eidhammer et al., 2018). Model biases are

evaluated against three NRCS Snotel (Serreze et al., 1999) locations within and in the

vicinity of the ERW. Finally, we develop model experiments to examine patterns of

precipitation accumulation against ASO snow LiDAR data captured near peak accu-

mulation, and conclude with implications of these findings for developing multivariate

observational constraints of precipitation microphysical processes.
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4.2 Methods

4.2.1 Significance of Microphysical Processes

Mountains cause disturbances in the atmosphere which promote precipitation

through a variety of dynamical mechanisms, including up-slope ascent from mechan-

ical uplift, release of potential instabilities, lee-side convergence, seeder-feeder pro-

cesses, and convection triggered by differential heating of mountain slopes and aspects

(Roe, 2005; Houze, 2012; Kirshbaum et al., 2018). Regardless of specific precipitation

processes, orographic uplift produces airmasses of enhanced cloud condensate over

certain regions of high-altitude, complex terrain. How, if, and where those cloud

condensates ultimately reach the surface as precipitation depends on cloud micro-

physical processes governing hydrometeor (i.e., rain, snow, graupel, etc.) growth and

sedimentation (Roe, 2005). Moist processes can also influence the dynamics through

latent heat release (Jiang, 2003) as can radiative processes.

It has been repeatedly shown that the representation of microphysical processes

in regional through global atmospheric models can have a significant impact on oro-

graphic precipitation (Liu et al., 2011; Rhoades et al., 2018). Modifying hydrometeor

fall speeds alone can influence the enhancement of precipitation upwind/downwind

of orographic barriers (Pavelsky et al., 2012). Figure 4.1 illustrates an idealized

depiction of some of the most prominent cloud microphysical processes that con-

trol distributions of orographic precipitation. The rates of primary heterogeneous

ice nucleation/droplet formation, timescales and efficiency of conversion from non-

precipitation species (cloud ice/water) to precipitating species, precipitating hydrom-

eteor fall speeds (a function of hydrometeor shape/drag coefficients), and feedbacks
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between microphysics and the dynamics (through latent heating and radiation) can

all conceivably influence the spatiotemporal distribution of precipitation within a par-

ticular mountain watershed. (Minder & Kingsmill, 2013), for instance, found that the

simulated snow-line near mountain ranges is sensitive to cooling rates from melting

hydrometeors in the Sierra.

Microphysical Parameterizations

Fundamentally, the microphysical parameterizations in atmospheric models at-

tempt to describe this removal of atmospheric water from a given model grid-cell

based on kinematic and thermodynamic conditions (Morrison et al., 2020). Parame-

terization methods in operational models typically use “bulk” approaches, where the

hydrometeor mixing ratio (mass per mass of dry air), number concentrations (parti-

cles per unit volume), and other hydrometeor properties are predicted for a limited

number of species (graupel, rain, cloud-water, etc).

In this study we test the Thompson (Thompson et al. (2008b); hereafter MP08),

Morrison (Morrison et al. (2005); hereafter MP10) and ISHMAEL (Jensen et al.

(2017); hereafter MP55) microphysical schemes (Table 4.2.1). Each treats ice phase

hydrometeors and growth processes in different ways. The MP10 and MP08 both

use 5 separate hydrometeor categories: cloud liquid, cloud ice, snow, graupel, and

rain and predict mixing ratios for each. MP10 predicts the number concentration for

ice, rain, snow and graupel, whereas MP08 only predicts the number concentration

for rain. In MP10, all hydrometeors are assumed to be spherical, with mass-density

relationships given by m(D) = π/6ρsD
3. MP08 is similar but describes snowflakes as

approximately planar, with mass-diameter relationships given by m(D) = 0.069D2.
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Scheme Abbreviation Reference

Thompson MP08 (Thompson et al., 2008b)
Morrison MP10 (Morrison et al., 2005)
Ishmael MP55 (Jensen et al., 2017)

Table 4.1: WRF v4.1.2 Microphysics options examined in this study.

The most sophisticated scheme tested is the MP55 scheme which forecasts higher-

order moments of hydrometeor species beyond mixing ratios and number concentra-

tions at the expense of a higher computational cost. The MP55 scheme uses three ice

categories in place of snow/graupel categories and models the evolution of snowflakes

as oblate spheroids with two evolving axes ai and ci, such that the particle mass is

given by m(a, c) = ρi
4
3
πa2i ci. Here, ai is half the major axis for plate-like crystals and

half the minor axis for column-like crystals, and ci is half the minor axis for plate-

like crystals and half the major axis for column-like crystals. Consequently, MP55

explicity models both columnar and dendritic ice-habits (characterized by different

ai/ci ratios), and the temperature dependent nucleation of each of these forms. It

is important to note that the growth processes (e.g., collection, vapor deposition)

depend on the particle aspect ratio. Although we highlight some of the differences

across the three microphysics schemes, there are a variety of other differences between

the schemes, and a full accounting is beyond the scope of the present study.

4.2.2 Weather Research and Forecasting (WRF)Model Configuration

This study uses the WRF model (Skamarock et al., 2008). WRF solves the com-

pressible, non-hydrostatic Euler equations using a third order Runge-Kutta timestep-

ping method. For practical reasons, two different WRF versions are used. Both

simulations use a two-way nested domains. The Thompson (MP08) simulations use

WRF v3.8.1, whereas the MP10 and MP55 simulations use WRF v.4.1.0. This differ-
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ence in WRF versions is because the MP08 simulation had already been generated for

another study, however we do not expect the differences in WRF model versioning

to significantly influence our results. Table 4.2.1 lists WRF subgrid-scale parame-

terizations used in this study. Lateral boundary and initial conditions for the WRF

simulations are provided by the Climate Forecast System Reanalysis Version 2 (CS-

FRv2; (Niu et al., 2011)). CFSRv2 has a 0.5◦ horizontal resolution (∼55 km), and

lateral boundary conditions are provided every 6 hours. Two nested domains are

used, a ∼3km outer (230x349 grid cells) and a ∼1km inner grid (349x391 grid cells).

A two-week spin-up period is used prior to the October 1 start date for each model

run. Outputs from WRF are used to run an “offline” (not coupled with WRF), higher

resolution (250m dx/dy) Noah-MP land surface model. The version of Noah-MP used

for the offline simulations come from (Gochis et al., 2018).

In this study, WRF is run for WY2018-2019 (March 31 and April 7th, respec-

tively). These water years fortuitously represent an extreme wet and an extreme dry

year. The WRF meteorological outputs are then used to force a high-resolution (250m

dx/dy) offline land model (Noah-MP; Niu et al. (2011)), providing peak SWE and

snow depth accumulations that are comparable to the spatial resolutions provided by

the ASO LiDAR-derived snow product.

4.2.3 Metrics to Quantify Precipitation and Snowpack Fidelity

The efficiency of each microphysical scheme is evaluated using the drying ratio

method (Eidhammer et al., 2018). The drying ratio is the precipitation flux nor-

malized by flux of the time-integrated integrated vapor transport, the components of

which are given by:
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Fu,x = −1

g
∗

PTop∫
P0

∫
x

∫
t

qUdPdxdt (4.1)

Fv,y = −1

g
∗

PTop∫
P0

∫
y

∫
t

qVdPdydt (4.2)

Where P is atmospheric pressure, U and V are meridional/zonal winds, and q is

the water vapor mixing ratio (kg/kg). The drying ratio is then given by:

DR =
P

F
(4.3)

Where F = Fv,y + Fu,x and P is the precipitation mass in kilograms. The drying

ratio calculation makes several assumptions, following (Eidhammer et al., 2018). Con-

densed hydrometeors (cloud water, rain, snow, etc) are not included in q as the overall

contribution is small. The drying ratio is a useful metric for comparing precipitation

derived from an regional climate model, since internal variability can potentially lead

to important shifts in storm tracks and moisture delivery. Drying ratios also help to

elucidate the mechanisms that lead to higher and lower snow accumulation in different

WYs. Variations in annual precipitation/snow could be the result of 1) variations in

the efficiency of precipitation generating processes alone, or 2) constant precipitation

efficiency but variations in the incoming moisture flux.

Several different metrics are applied to better compare the Noah-MP model versus

ASO LiDAR datasets. Two primary quantities are assessed: the spatial locations of

snow accumulation within the watershed, and the total watershed storage of snow.

To assess spatial pattern similarity, we use an objective function described in (?).
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That work’s spatial efficiency metric is denoted as SPAEF and is given by:

SPAEF =
√

(1− γ)2 + (1− β)2 + (1− α)2 (4.4)

Where γ is the histogram mismatch, given by:

γ =

∑n
i=1min(Ki, Ji)∑n

i=1Ki

(4.5)

and

β =
σA

µA

/
σB

µB

(4.6)

and α = ρ(A,B), and where ρ is the Pearson correlation coefficient. The histogram-

matching is performed on the Z-transformed data. Consequently, the SPAEF is de-

signed to be a measure of spatial similarity between two datasets A and B that is

insensitive to biases in those datasets. The Pearson correlation is given by:

ρ =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(4.7)

Where x and y are Noah-MP and ASO LiDAR fields (SWE or snow depth),

respectively.

In addition to the SPAEF and the Pearson correlation, we evaluate the total

watershed snow storage (TWSS) bias, given by:

TWSSbias =
1

n

n∑
i=1

xi −
1

n

n∑
i=1

yi (4.8)

Finally, we compute the percent root mean square error (pRMSE), given by:
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pRMSE =

∑
(xi − yi)

2∑
yi

∗ 100. (4.9)

This is done because the errors at individual grid points can be expressed so that

they are normalized by the magnitude of the snow (SWE or snow depth) for that

water year.

4.2.4 Snowpack Modeling and ASO LiDAR Data Processing

Snowpack spatial variability, at the peak of the accumulation season, is shaped

by a combination of 1) precipitation variability, 2) slope scale preferential deposition,

3) secondary redistribution (blowing snow), and 4) melt/sublimation/loss processes

(Mott et al., 2018). Avalanches also redistribute snow on steep slopes greater than

30◦. In order to use ASO LiDAR snow data to evaluate precipitation variability,

secondary redeposition and loss processes must be taken into account. The effects of

2) and 3) are mitigated in part by resampling ASO LiDAR data from 50m to 1km.

Figure 4.2 shows the effects of bi-linearly resampling snow depth data from 50m to

1km; wind redistribution are clearly present on the windward/leeward sides of ridges

and are generally on the order of 50-250 meters in length. Resampling data to 1km

largely smooths out these features. Process 4) is accounted for by running an energy

balance model, specifically Noah-MP (Niu et al., 2011), to account for the evolution

of falling snow as it metamorphoses on the ground.

The ERW is a high elevation, continental basin with cold temperatures, so we

hypothesize that both rain and melt prior to peak SWE are relatively minimal basin-

wide. This hypothesis is confirmed by analyzing SNOTEL data in the watershed, as

the April 1 SWE is within +/- 2% of the accumulated precipitation from October

1 for the two years examined, and average two-meter surface air temperatures are
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-4.5◦C at the SNOTEL locations for the same time period. Nevertheless, to better

account for sub-kilometer scale, terrain related melt processes, Noah-MP is run at

a 250 meter resolution using the resampled digital elevation model distributed by

ASO. The hourly WRF output variables are then bi-linearly interpolated to the 250

meter regular latitude longitude grid of ASO. Then, shortwave radiation, tempera-

ture, pressure, and specific humidity are adjusted to account for terrain differences

between the native WRF elevation grid and the higher-resolution ASO distributed

grid. Temperatures (via the constant dry adiabatic lapse rate) and pressures (by the

hydrostatic relationship) are adjusted to match the updated digital elevation model.

Specific humidity is downscaled by assuming that the relative humidity is conserved

between the downscaled forcings and original the WRF data, and specific humidity is

adjusted to match the corrected air temperature. The WRF downwelling shortwave

radiation is converted to terrain-normal shortwave radiation using terrain-geometry

and solar angle relationships (Dingman, 2015), using the slope and aspect from the

high resolution DEM. Terrain shadowing is not accounted for. Longwave radiation

and winds are not adjusted, though corrections for terrain effects on shortwave and

longwave radiation could improve the simulations and could be pursued in future

work. Some studies have further downscaled wind-fields using empirical terrain rela-

tionships (Liston & Elder, 2006) or physically-based solvers (Reynolds et al., 2021).

Since Noah-MP does not simulate wind redistribution, the benefits of more finely

resolved wind fields are likely small (though wind velocities do control rates of la-

tent/sensible heating). The code to perform the forcing corrections is available on

GitHub (https://github.com/bsu-wrudisill/wrf ERriv mphys aso).
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4.3 Results

4.3.1 Precipitation Evaluated at SNOTEL Locations

Three NRCS SNOTEL sites are compared against timeseries of precipitation

and two-meter surface air temperature from each WRF microphysical scheme. The

Schofield, Butte, and Taylor are located to the North, in the Center, and to the East

of the ERW, respectively, and are each located approximately 20 km away away from

each other (Figure 4.7). The spatial scales of orographic precipitation variability is

apparent from looking at the SNOTEL data alone, as the Schofield station receives

almost twice the precipitation of the Butte site, and each site receives almost double

the precipitation in 2019 compared to the previous year ( 1200 mm versus 650 mm

at Schofield, for example).

There are several consistent patterns with respect to precipitation accumulations

and microphysical scheme. MP55 consistently produces the most precipitation (across

all sites and both years), and MP08 generally has the least precipitation (all but the

Taylor in 2019). Most notably, perhaps, is that MP08 has a significant dry-bias

during the second half of December, 2017 compared to both SNOTEL sites and the

other MP options. No such prolonged dry-bias is present in the following water year.

Two-meter surface air temperatures are also compared against SNOTEL locations.

The WRF simulated two-meter air temperatures are systematically cold biased by

approximately 3◦C across microphysical schemes.

The total accumulated precipitation during the study period, across the ERW

(not shown) has a relative standard deviation of 10.0% for water year 2018 and a

3.0% for water year 2019. The differences in precipitation volumes can be expressed
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as the efficiency of dynamical/microphysical processes for converting the incoming

water vapor flux into precipitation. The drying ratio (DR) is computed on a 145 by

180 grid cell box surrounding the East river watershed. Figure 4.4 shows the DR

averaged over October 1 to April 1 for each scheme and each WY. MP55 consistently

has the highest DR, with almost double the DR values from WY2018 to WY2019.

4.3.2 Vertical Profiles

In order to examine the height-dependent creation/fate of hydrometeor species,

the time and space averaged distributions of each mixing ratio predicted for each

scheme are presented (Figure 4.5). The averaging box is the same 145 by 180 grid

cell box surrounding the ERW used to compute the DRs. Snow (MP10, MP08) and

”ICE1” (Mp55) have the highest mixing ratios, with peaks between 4-5 km a.s.l.

Graupel, Rain (MP08, MP10) and ICE1, ICE2 (MP55) have much lower mixing

ratios than Snow/ICE1.

In order to better understand some of the atmospheric dynamics and precipitation

generating mechanisms, the temporally averaged (October 1 to April 1) cross section

views of microphysical quantities, cross-sectional winds (U and W components), and

vertical velocities show the different locations of ice-phase hydrometeor creation and

fate, in addition to illuminating some of the precipitation relevant dynamics (Figure

4.6). The ice-phases are lumped together snow and graupel for MP8 and MP10,

the three ice species (called QICE, QICE2 and QICE3 in the model code) in MP55.

QICE1 is the primary ice category present in MP55 (not shown). For all cases, the

highest densities form a plume above of the western watershed boundary, concentrated

near the surface and decaying with height. MP55 has the highest densities across

microphysical schemes, with a region of 3.0 g/kg during water year 2018. There is a
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consistent negative vertical velocity component on the lee-side of the western ridge.

Upstream of the ridge, there is a consistent low-level jet, characterized by a reversal

in the zonal wind direction (green dots; Figure 4.6).

4.3.3 Modeled SWE and Snow Depth - Comparisons Against

ASO LiDAR

Figure 4.8 shows the results of comparing snow depth and SWE between ASO

LiDAR products and each Noah-MP model with the three different forcing regions

(MP08, MP10, MP55). Notably, the ASO LiDAR derived snow depths are converted

to densities using the average snow density from the three Noah-MP model runs.

Ultimately, the differences in model snow density is quite small between the three

Noah-MP runs (not shown). Each model is aggregated to a 1km resolution. The

northwest region of the watershed collects the most snow. The under representation

of snowfall during 2018 for MP08 (Figure 4.3) is also apparent when compared against

ASO LiDAR data. Even at a 1km resolution, ASO has a more variable pattern of

snow accumulation and higher maxima than any of the WRF-forced Noah-MP cases

for both WYs. The differences between MP08 and MP10 are fairly small during 2019.

For both 2018 and 2019, MP08 has the highest Pearson’s correlation coefficient for

both SWE and snow depth. MP10 has the highest SPAEF for both years. Still all

models have a good spatial correlation with the ASO LiDAR derived SWE, with a

minimum of 0.90 for MP55 in 2018 and maximum of 0.94 in 2018 for SWE.

Table 4.5 shows summary statistics of the SWE and snow depth comparisons.

Measures of mass-balance are better for the microphysical schemes with higher-order

treatments of ice species (MP10, MP55). The lowest pRMSE is 18.9% for SWE and

35% for snow depth for MP55 in 2019. The TWSS-Bias% is always lower than the
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pRMSE, as it does not express the average grid-cell by grid-cell error but rather the

differences in the total storage. The TWSS-Biases are the lowest in 2019, when all

schemes have less than 6.5% for both snow depth and SWE. The TWSS-Biases are

higher during the low-snow year.

The trend between elevation and snow accumulation illustrates some additional

important differences between the ASO LiDAR data and WRF simulated products

(Figure 4.9). In each case, there is relatively little modelled melt except for the lowest

elevations (not shown). The average ASO-SWE increase with elevation follows a linear

pattern when a 200-grid cell rolling-mean window is applied, which approximately

flattens out above approximately 3500 m. The snow depths (not shown) show the

same leveling-off, so this is a function of a decrease in depths, not just an artifact

of modeled densities. The slope of the SWE versus elevation line is higher for water

year 2019 and parallels the 0.63 millimeters of SWE per meter of elevation, whereas

2018 more closely parallels the 0.50 mm/m line. The Noah-MP model SWE shows

no such leveling out with elevation. The slopes of the Noah-MP curves are less-steep

than the ASO LiDAR data and shows the greatest spread during 2018. The variance

of the ASO LiDAR data increases with the magnitude, which is not found in the

WRF/Noah-MP modeled SWE.

4.4 Discussion

This is the first study, to our knowledge, that has used airborne LiDAR derived

snow products, with exhaustive spatial coverage but limited temporal coverage, to

evaluate the representation of cloud microphysical processes in numerical weather

models. Other studies have used snow LiDAR data to evaluate snow accumulation

processes in various ways. (Kirchner et al., 2014) evaluated both PRISM (Daly et al.,
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2008) precipitation gradients and optical satellite imagery based SWE reconstructions

against analyzed snow depths measured by airborne LiDAR near peak SWE accumu-

lation for a basin in California. The tapering-off of the snow depth/SWE with eleva-

tion relationship (Figure 4.9) was also observed in that study. This could be caused

by a combination of 1) enhanced sublimation at windier, unsheltered high-elevation

regions 2) preferential deposition processes by low-level wind fields interacting with

ridges (Lehning et al., 2008) or 3) larger-scale orographic precipitation dynamics.

Even though there are gross mismatches between the temporal scales of cloud

microphysical processes and the snapshots of the snowpack collected by ASO LiDar,

we show through a careful intercomparison of WRF simulations with different mi-

crophysics schemes over the ERW and ASO snow products, that modeling of the

total accumulation of snowpack during the winter in high-altitude complex terrain

must consider, and perhaps even focus on, ensuring a competent representation of

cloud microphysics. To be clear, there are many other snow processes that must

be understood to explain the elevation patterns of snow accumulation the snowpack

(Figure 4.9) including high-elevation snow deposition, redistribution, and sublimation

processes. Additionally, we should note that all Noah-MP models had higher SWE

and snow depth values at the lowest elevations (less than 3000m), which could be

caused by a combination of underestimation of densification processes, too much pre-

cipitation in valley bottoms, or not enough melt or sublimation loss prior to the ASO

LiDAR acquisition dates. Vegetation densities also change with elevation (Figure

4.7) which may influence the aforementioned snow processes through snow-canopy

interactions.

More tightly coupling the land surface model and microphysical schemes may
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improve the study in a number of ways. The current version of Noah-MP does

not accept solid/liquid precipitation phases as input, and instead uses a partitioning

scheme from (Jordan, 1991). Surface air temperature based methods do not always

account for the range of microphysical processes, such as cooling from latent heat

release near the surface, that can lead to solid accumulations at a wider range of

temperatures. This might be a major limitation in another watershed with lower

elevations/warmer temperatures, but for each scheme tested a small percentage of the

precipitation fell as rain, regardless of partitioning method. Even after bias correcting

the two meter surface air temperature uniformly across the domain for the -3◦C bias

compared against SNOTEL data (Figure 4.3) only the modeled SWE in the lowest

elevations of the watershed were significantly impacted. Consequently, performance

of the different microphysical schemes with respect to rain-snow transition zones is

untested and could be an area of future research. Another interesting product of

this research is the large modeled drying ratio for WY2019. (Eidhammer et al., 2018)

reports lower ratios more similar to that of WY2018, also for a region in Colorado, but

for individual storm events as opposed to an entire season. Some of the differences are

attributable to different WRF configurations and regions used to compute the drying

ratio. This investigation shows the increase in efficiency is largely responsible for the

higher precipitation in 2019 compared to 2018, as opposed to an increase in water

vapor flux. Drying ratios as high as 0.5 have been reported for the Andes (Smith &

Evans, 2007).

Better coupling between the microphysics scheme and snow model in Noah-MP

could also improve simulated snow densities. Density depends on snow metamor-

phosis and compaction due to overburden. Densification due to overburden follows
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Sun et al. (1999) and the energy dependent metamorphosis components follow (An-

derson, 1976). The snow depths assume an initial density of 10% for new snowfall

after which densification processes initiate (Niu et al., 2011). A path for potentially

improving snowpack depth, density, and SWE could be to modify the Jensen (MP55)

or Thompson (MP08) schemes and the Noah-MP code so that prognostic densities

of snow and/or graupel are used by the land surface model. The Morrison scheme

(MP10) does not treat snow or graupel density as a prognositc variable and the quan-

tities are fixed at 100 and 500 kg/m3 respectively, so better coupling MP10 would

be of less utility. Moreover, coupling advanced schemes such as MP55 that explic-

itly model hydrometeor shapes with snow process models may have utility for snow

remote sensing applications.

Whether or not energetic forcings, such as shortwave and longwave radiation and

sensible and latent heat fluxes, that contribute to melt/densification are well repre-

sented at a kilometer scale is a significant source of uncertainty in this study. For

instance, three dimensional longwave radiation effects from complex terrain are not

considered by WRF and can be significant (Feldman et al., 2021). With that said,

the observed cold-bias in WRF has been observed in other climate models (Rhoades

et al., 2018) and may potentially be related to longwave radiation processes, too-

stable boundary layers over snow surfaces inhibiting heat exchanges (Slater et al.,

2001), and/or other compensating biases (e.g., cloud cover). However, given the

overall cold surface air temperatures in the ERW, sensitivity tests showed that cor-

recting for biases had relatively little effect on simulated peak SWE, particularly for

WY2019. Temperatures at SNOTEL stations have also been shown to have quality

control and calibration issues (Oyler et al., 2015) that may or may not be accounted
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for here. Therefore, we caution to the hydrometeorological community that a more

rigorous scrutiny of the temperature fields provided by WRF simulations in com-

plex terrain is needed. For instance, comparing model outputs with ASO LiDAR

snow datasets during the ablation season was not performed for this study, but could

be another avenue to decompose simulated biases in temperature and radiation and

identify systemic structural issues in models.

A number of other studies have examined orographic precipitation sensitivity to

microphysical parameterizations in the WRF model. Hughes et al. (2020) found

that single moment microphysics (WSM6) schemes were wetter than double-moment

(Thompson/Morrison) when evaluated over a single WY in the Sierra Nevada (WY

2008), and that precipitation accumulation was more sensitive to microphysical pa-

rameterization choice than to lateral boundary conditions for convection-permitting

WRF simulations in the Sierra Nevada. Liu et al. (2011) examined a similar domain

and tested both MP10 and MP08 for one, six month period, and found that both per-

formed similarly, though MP08 had slightly less precipitation. Our simulation also

produced very little graupel from either MP08 or MP10 (Figure 4.5). Transitions

from snow to graupel categories can introduce artificially abrupt transitions in parti-

cle properties (such as density and fall speed) and avoiding this is among the reasons

that MP55 chose to explicitly predict particle shapes rather than a graupel category

(Jensen et al., 2018). Consequently a simulation with more graupel might show more

spatial variability in precipitation between the microphysics schemes. Finally, while

three schemes are tested in this study, each contains a range of parameters that each

have an uncertainty space that has been under-explored. Idealized simulations show

that perturbing individual parameters within individual microphysics schemes can
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have a similar impact to using an entirely different microphysics scheme (Morales

et al., 2019). Future studies may consider producing an ensemble of simulations that

sample across a plausible range of these parameter values, informed by new observa-

tional campaigns focused on mountain precipitation (Feldman et al., 2021).

4.5 Conclusions

High-altitude complex terrain is undergoing profound changes which are setting

the stage for much-reduced snowpack in the coming years and decades. The details of

the snowfall that produces this snowpack are central to understanding the potential

for changes in precipitation amount and phase. Nowhere is this more apparent than

in the Upper Colorado River Basin, which is dramatically stressed due to both long-

term trends (Milly & Dunne, 2020) and recent extreme drought. Since the ERW

represents a focused area of observations and research, collocated data and models of

the ERW provide the opportunity to develop new tests of uncertain model processes.

This work focuses on one such test, and considers cloud microphysics because they

are under-constrained, are very difficult to observe directly, and strongly influence

the spatiotemporal distribution of precipitation.

This study used a high resolution ASO LiDAR snow dataset to evaluate precip-

itation and snowpack fidelity for three different microphysical schemes implemented

in the WRF model in the ERW across both a high precipitation (2019) and low

precipitation (2018) cool-season (October 1 - April 1). Model results suggest the

magnitudes of precipitation between the years were more controlled by precipita-

tion efficiencies (higher/lower drying ratios) compared to changes in water vapor flux

with the higher-moment microphysical schemes (MP10 and MP55) simulating higher

drying ratios. All microphysical schemes were able to capture the bulk precipitation
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magnitude evaluated at three NRCS SNOTEL sites, with an average bias of 10 ±16%.

Watershed total accumulated precipitation had a 10.0% relative standard deviation

among schemes for water year 2018 and a 3.0% relative standard deviation for 2019.

The MP55 scheme had the highest drying ratio and better matched both SNOTEL

and ASO LiDAR observations for the high-snow volume year, but overpredicted pre-

cipitation and snowpack for the dry-year (2018). Each microphysics scheme resulted

in the development of snowpacks with a high spatial correlation with ASO LiDAR

datasets at a ∼1km scale, but the MP08 had the highest Pearson’s correlation for

both years examined. Percent root mean square errors between the 1km ASO LiDAR

snow depth and WRF model products were on the order of 25-37%, and 51% (MP10

in 2018) and 18% (MP55 in 2019) for SWE.

This study found ASO LiDAR snow datasets can help evaluate microphysical

scheme fidelity and suggests that better coupling between microphysical schemes and

land-surface model schemes is needed. While this study used only two ASO LiDAR

flights, other studies with longer data coverages have shown repeatability of snow

patterns to scale precipitation inputs into hydrologic models (Vögeli et al., 2016;

Pflug et al., 2021). In the two ASO LiDAR flights used here, the locations of peak

accumulation are consistently on the northwestern ridge of the ERW (Figure 4.8)

which is on the windward side and the location of the strongest uplift (Figure 4.6),

suggesting that cloud microphysical representations and potentially coupling to land-

surface schemes may have enduring importance for simulating snowpack over longer

time-horizons.

The ability of any existing schemes to perform in out-of-sample conditions must

be demonstrated, however. There is a potential for field campaigns such as the Sur-
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face Atmosphere Integrated Field Laboratory (SAIL) for increasing ASO LiDAR data

collection. Such data can and should be used to further constrain specific model mi-

crophysical process representations to establish if one or more schemes produce con-

sistent results relative to observations across more hydroclimatological states than we

tested here. We have demonstrated here that snowpack surveys can constrain precip-

itation microphysics across two water years, but the question of whether snowpack

surveys consistently constrain microphysics remains to be demonstrated.

Such a demonstration would serve integrated mountainous hydroclimate research

well: microphysical schemes that are of sufficient fidelity and complexity to the mi-

crophysical processes that produce precipitation amount and phase patterns will be

increasingly important over those longer horizons as changes in dynamics and ther-

modynamics force high-altitude mountainous watersheds.
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Parameterization Option Reference

Convection None

Microphysics Thompson (MP08) (Thompson et al., 2008b)

Morrison (MP10) (Morrison et al., 2005)

Ismael (MP55) (Jensen et al., 2017)

LSM Noah-MP (Niu et al., 2011)

Surface Layer Monin-Obukhov (Option 2)

PBL Mellor-Yamada-Janjic (Eta/NMM) PBL

LW Radiataion Community Atmosphere Model

SW Radiation Community Atmosphere Model

Table 4.2: Weather Research and Forecasting (WRF) subgrid-scale pa-
rameterizations used in this study.
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Spatial Mass Balance

Variable Year Model
ρ SPAEF pRMSE TWSS-Bias TWSS-Bias

(unitless) (unitless) % (mm; m) (%)

Snow Water
Equivalent

(mm)

2018

NoahMP-MP08 0.918 0.677 51.9 -50.687 -20.699

NoahMP-MP10 0.911 0.679 29.9 5.112 2.087

NoahMP-MP55 0.898 0.550 30.9 46.302 18.909

2019

NoahMP-MP08 0.936 0.628 21.7 -42.529 -6.286

NoahMP-MP10 0.923 0.629 21.9 -37.002 -5.469

NoahMP-MP55 0.917 0.620 18.9 21.154 3.127

Snow
Depth
(m)

2018

NoahMP-MP08 0.912 0.636 29.5 -0.104 -12.571

NoahMP-MP10 0.905 0.658 25.2 0.0348 4.205

NoahMP-MP55 0.896 0.539 30.0 0.159 19.27

2019

NoahMP-MP08 0.933 0.600 37.2 -0.113 -6.24

NoahMP-MP10 0.923 0.623 37.8 -0.111 -6.163

NoahMP-MP55 0.917 0.604 35.2 0.055 3.052

Table 4.3: Spatiotemporal and mass-balance error statistics for Noah-MP
models compared against the ASO LiDAR derived basin-wide snow depth
and Snow Water Equivalent (SWE) estimates. Bold values denote the best
performing scenario.
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FigureFiles/FigureX_mp_figure.png

Figure 4.1: Conceptual diagram illustrating microphysical rate controls on
orographic precipitation. Secondary controls on slope scale snow deposi-
tion/redeposition are also shown.
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FigureFiles/FigureX_ResolutionPlot.png

Figure 4.2: Airborne Snow Observatory (ASO) LiDAR derived snow
depths for April 7, 2019 at three different resolutions (50m, 500m, and
1km) using bilinear interpolation. The black box in the left hand figures
corresponds to the latitudinal and longitudinal extent of the figures on the
right.
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FigureFiles/FigureX_SnotelPrecipTempCompare.png

Figure 4.3: WRF total precipitation (ACCPRCP; bottom) and two meter
surface air temperature (Tair; top) compared against three NRCS SNO-
TEL sites, Butte (site number 380), Schofield (site number 737), and Tay-
lor (site number 1141), for water years 2018 (first row) and 2019 (second
row).
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FigureFiles/FigureX_DryRat.png

Figure 4.4: Drying Ratios (total precipitation normalized by incoming
water vapor flux) within the Upper Gunnison region computed for October
1 to April 1 for water years 2018 and 2019 across each WRF microphysics
scheme.
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FigureFiles/FigureX_MixingRatios.png

Figure 4.5: Spatiotemporal averaged mixing ratios for different hydrom-
eteor species estimated (if applicable) from the three WRF microphysics
schemes (mp08, mp10, and mp55) used in this study. The y-axis units are
kilometers above sea level.
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FigureFiles/FigureX_CrossSections.png

Figure 4.6: Cross sections of average directions of vertical windspeed
(red/blue shading; units of m/s), vertical and zonal flow (arrows; units of
m/s), and ice-phase hydrometeor concentrations (contours; units of g/kg
dry air). Green dots show the regions where the average meridional wind
speed reverses and is greater than 1 m/s). Average water year total pre-
cipitation (precip) are provided above each plot. Water year 2018 (2019)
is shown in the top (bottom) row.
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FigureFiles/FigureX_geog.png

Figure 4.7: Noah-MP static geographic data used for offline snow model-
ing. East River Watershed topography from the ASO LiDAR digital el-
evation model (DEM; upper left), terrain aspect (upper right), USGS 24
category vegetation classification type (bottom left), and MODIS satellite
derived green-vegetation fraction (Veg Frac; bottom right). NRCS SNO-
TEL locations (black dots) are overlain on each geographic dataset.
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FigureFiles/FigureX_swe_sd_map.png

Figure 4.8: SWE (top two rows) compared between ASO LiDAR and
Noah-MP modeled SWE for WY2018 and WY2019, evaluated near the
date of peak snow accumulation. Analogously, snow depth (SD; bottom
two rows) is shown.
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FigureFiles/FigureX_swe_elev.png

Figure 4.9: SWE versus elevation within the ERW. ASO LiDAR derived
SWE (left) is compared against the average Noah-MP SWE. Rolling-mean
curves for each Noah-MP simulation and ASO LiDAR data are shown.
Lines with four different SWE versus elevation slopes (purple lines) are
provided on each plot to better enable juxtaposition of datasets across
different water years.
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CHAPTER 5:

CONCLUSIONS

5.1 Synthesis and Discussion

In this dissertation, the regional climate models have been applied to two differ-

ent mountain watersheds. We found that regional climate models could reproduce

streamflows with reasonable skills using distributed hydrologic models (WRF-Hydro).

Precipitation during the ”cold-season” was well correlated with NRCS Snotel loca-

tions, and when coupled with hydrologic models could produce reasonable streamflows

compared against observations (Chapter 1). However, seasonal biases in precipitation

(evaluated against single-point observations) still led to biases in streamflow. More-

over, the skill of individual storm events is not always very high (such as 2018 in the

East River for the Thompson microphysics scheme). There is much more work that

can be done investigating the precipitation skill for some years versus others, and

the types of systems (in terms of wind speed/direction, precipitable water content,

upstream stability, etc.) that are well simulated versus poorly simulated. Still, a

persistent and unavoidable challenge is that it is simply very difficult to validate or

estimate precipitation in complex terrain (Lundquist et al., 2019). This is a challenge

for the Western US and even more of a challenge globally, in regions with even fewer

gauges or less data sharing infrastructure. To meet these challenges, I developed
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methods using streamflow and lidar remote-sensing to validate modelled precipita-

tion in the East River watershed. Precipitation from streamflow inverse methods

(”doing hydrology backwards”, Kirchner (2009)) poses some challenges, in particu-

lar with respect to getting the evapotranspiration forcing correct, but the general

approach shows promise for placing reasonable constraints on precipitation, partic-

ularly for data-poor regions. This chapter revealed a major challenge in regional

scale hydrologic science writ-large. While ET is fundamentally constrained by energy

limitations (Equation 1.15) and water availability between the ground surface and

rooting zone, there are in fact no well articulated theories for estimating regional

scale evaporation in complex terrain. The derivations of commonly applied theories

such as Penman-Montieth assumes flat terrain with homogeneous surface roughness

(Brutsaert, 2013), conditions which are not met in mountain terrain. Airborne snow

lidar datasets (Painter et al., 2016) offers immediate and clear benefits for studying

mountain hydrology. With some care in the analysis, distribued gradients of snow-

depth can be tied to orographic precipitation gradients and regions of enhancement

(Chapter 3). If/when lidar flights become more frequent, these methods could be

very useful for measuring distributions of snowfall in mountain terrain.

A few areas of concern with respect to model skill arose, namely biases in two

meter air temperatures that were observed in both regions. This has been reported

in other RCM studies (Rhoades et al., 2018). This could be a function of the model

configuration or challenges representing stable atmospheric surface layers over snow

surfaces. At the same time, it is well known that Snotel temperatures can suffer

from systematic biases (Oyler et al., 2015). This somewhat under-recognized fact

makes interpreting change signals at Snotel sites over time very difficult, in addition
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to validating temperatures from regional climate models. Fortunately, there are more

temperature observations in the Western united states than there are precipitation

buckets/snow pillows, in part because they are cheaper/easier to maintain. Future

work could evaluate WRF temperatures against observations from the MesoWest

(Horel et al., 2002) network. Datasets like PRISM provide air temperature maps, but

often use lapse-rates based on seasonally varying climatologies (similar to precipita-

tion; Daly et al. (2008)). Other snow modeling packages do something similar, such

as MicroMet (Liston & Elder, 2006). According to the theory, anthropogenic climate

change should increase warming rates of mountain environments disproportionately

(Mountain Research Initiative Edw Working Group et al., 2015), though observa-

tions confirming this phenomena have not been robustly observed. There is a clear

research gap related to projecting impacts of warming and air-temperature lapse rates

in mountain environments, and scrutinizing the abilities of regional climate models

to capture elevation dependent warming.

5.2 Technological Challenges and Opportunities

Many challenges currently faced by regional scale hydrologic/atmospheric sciences

were made apparent during this dissertation. A significant amount of time was spent

on the software side of the analysis – writing codes for managing data and interfac-

ing with HPC systems. These codes are shared on github (https://github.com/bsu-

wrudisill/WRF-Run). In many ways this type of workflow likely has not changed

in several decades, even though computational power and storage have increased.

Tools that break down barriers to using computationally intensive models will allow

future researchers more time to focus on the purely scientific aspects as opposed to

computational plumbing.
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5.2.1 Data Analysis and Visualization

The ability to produce Earth system model data has far outstripped the ability

to analyze that data, both from a computational perspective and a graphics library

perspective. There is practically an endless amount of quantities/fields to analyze

from regional climate model output, and unfortunately the tools for analysis are

severely lacking. Over 300TB of data was produced for Chapter 2, far more than

can be read into computer memory all at once. The python programming language

was used to make all of the graphics and statistical analyses in this dissertation.

The xarray package (Hoyer & Hamman, 2017) allows for out-of memory, distributed

computations, and without this functionality many of the analyses would have taken

much longer. While xarray is a great step forward for analysis, there are currently few

if any sufficient tools for producing high resolution, 3d graphics visualizations natively

in python/xarray software ecosystems. There are other tools (NCAR’s ”Vapor”) that

do this but it is challenging to work with large datasets. At the same time, there are

many open source 3-D graphics libraries (such as ”Blender”) that could conceivably

ported to work with Earth System model outputs.

5.2.2 Software Infrastructure

Over time, the software behind atmospheric models such as WRF may change and

improve. Compiling scientific model code (i.e, translating human code to machine

code) is a persistent challenge, including for WRF. Containerized programs such

as ”Docker” that are used for reproducible environments are not always suitable

for distributed memory applications or HPC systems. Scientific software managers

such as ”Spack” make some aspects of compilation easier (Gamblin et al., 2015).

Moreover, WRF, WRF-Hydro, and NoahMP are written in Fortran, the first version
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of which appeared in 1957 (https://fortran-lang.org/). While Fortran is perfectly

suited for the task for designing distributed memory, parallel applications, it can be

challenging/verbose to write, and can make modifying the code difficult. ”Modern”

Fortran standards allow for more modularized development, which can help make

code more readable and extensible. For example, at various points I have hoped

to incorporate a snow redistribution model into NoahMP following Liston & Elder

(2006) or Lehning et al. (2006), but was ultimately dissuaded by the time and effort

it would take to develop in Fortran. At the same time, writing a blowing snow mode

in python would be much quicker to write and debug, but the model run time would

be slower. Languages that attempt to offer the best of both compiled and dynamic

languages, such as Julia (Bezanson et al., 2012), have existed for over a decade and

are seemingly slow to catch on in the Earth/Hydrologic sciences, and legacy model

codes do not appear to be going anywhere.

5.3 The Future of Regional Climate Modeling of

Mountain Regions

The approaches used in this dissertation will likely continue in similar forms for

decades to come. Physically based models of atmospheric flows, clouds, and radia-

tion will be used to investigate hydrologic science questions. The resolutions of global

models will undoubtedly increase. Already, global scale non-hydrostatic 1km atmo-

spheric modeling studies have been performed using GPU-enabled software (Fuhrer

et al., 2017). It is likely that this will become the norm, so limited area dynamically

downscaling methods at the current resolution will be less useful. Even higher model

resolutions (sub kilometer) approaching the large eddy simulation ranges, could be-
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come more tractable for longer time periods. This might allow some of the low-level

terrain/wind effects that likely contribute to the observed distributions of snowpack,

such as preferential deposition, (Lehning et al., 2008), to be better simulated. Higher

resolutions may lead to more realistic snow accumulation patterns (Chapter 3) that

better match what is observed by airborne lidar. Immersed boundary methods, which

replace the traditional coordinate system in atmospheric models, can also potentially

improve the accuracy of wind field simulations (and potentially precipitation distri-

butions) in complex terrain (Lundquist et al., 2012)).

Machine-learning/Deep-learning methods have not been employed in this disserta-

tion, but the unrealized utility for Earth science disciplines is vast. Machine learning is

best though of as a method of modeling highly non-linear systems when sufficient data

is available. Machine learning models may offer solutions to many of the challenging

weather and climate problems, such as modeling cloud microphysics or other parame-

terized proceses (Rasp et al., 2018). Machine learning can also help post-process data

(such as the datasets produced in this dissertation) to identify features such as fronts

(Lagerquist et al., 2019). Machine learning methods can also be used as surrogate, or

meta-models, to aid in the calibration or application of highly parameterized models

(Razavi et al., 2012). Hydrologic processes in mountain watersheds are complex, and

highly connected between lithologic, geomorphic, biotic, and atmospheric processes.

Emergent constraints are currently a popular and albeit somewhat controversial ap-

proach for deriving simple relationships between earth-system states/processes (such

as snow-albedo feedbacks) from global climate model ensembles (Hall & Qu, 2006;

Williamson & Sansom, 2019). Emergent constraints simplify complex systems in a

way that can guide observations, and could potentially be applied to mountain hy-
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drologic systems.

5.4 Closing Remarks

I started an education in the hydrological sciences because of the time I spent

on the whitewater rivers of my native North Carolina. During my tenure at Boise

State, I discovered snow. And with it the joys of skiing fresh, cold powder in the

Boise, Payette, and Salmon river mountains. But as I’ve learned the ins and outs

of the backcountry, I’ve done so carrying a certain sadness, knowing that the winter

landscapes I have come to know will likely be fundamentally altered in the coming

decades. Of course the consequences of climate change is of course much larger than

their negative impacts on recreation, but envisioning the impacts on particular ski

slope or river-flow has brought everything sharply into focus. The work presented in

this dissertation addresses a small component of the greater efforts required to under-

stand, adapt, and hopefully overcome anthropogenic climate change in the Western

US and globe.
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Lehning, M, Löwe, H, Ryser, M, & Raderschall, N. 2008. Inhomogeneous precipitation

distribution and snow transport in steep terrain. Water Resour. Res., 44(7).

Lettenmaier, Dennis P, Alsdorf, Doug, Dozier, Jeff, Huffman, George J, Pan, Ming,

& Wood, Eric F. 2015. Inroads of remote sensing into hydrologic science during

the WRR era. Water Resour. Res., 51(9), 7309–7342.

Leung, L Ruby, & Qian, Yun. 2009. Atmospheric rivers induced heavy precipitation

and flooding in the western U.S. simulated by the WRF regional climate model.

Geophys. Res. Lett., 36(3).

Liston, Glen E, & Elder, Kelly. 2006. A Meteorological Distribution System for High-

Resolution Terrestrial Modeling (MicroMet). J. Hydrometeorol., 7(2), 217–234.

Liu, Changhai, Ikeda, Kyoko, Thompson, Gregory, Rasmussen, Roy, & Dudhia, Jimy.

2011. High-Resolution Simulations of Wintertime Precipitation in the Colorado

Headwaters Region: Sensitivity to Physics Parameterizations. Mon. Weather Rev.,

139(11), 3533–3553.



56

Liu, Changhai, Ikeda, Kyoko, Rasmussen, Roy, Barlage, Mike, Newman, Andrew J,

Prein, Andreas F, Chen, Fei, Chen, Liang, Clark, Martyn, Dai, Aiguo, Dudhia,

Jimy, Eidhammer, Trude, Gochis, David, Gutmann, Ethan, Kurkute, Sopan, Li,

Yanping, Thompson, Gregory, & Yates, David. 2017. Continental-scale convection-

permitting modeling of the current and future climate of North America. Clim.

Dyn., 49(1), 71–95.

Livneh, Ben, Rosenberg, Eric A, Lin, Chiyu, Nijssen, Bart, Mishra, Vimal, Andreadis,

Kostas M, Maurer, Edwin P, & Lettenmaier, Dennis P. 2013. A Long-Term Hydro-

logically Based Dataset of Land Surface Fluxes and States for the Conterminous

United States: Update and Extensions. J. Clim., 26(23), 9384–9392.
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