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ABSTRACT 

Self-cleaving ribozymes are a naturally occurring class of catalytically active 

RNA molecules which cleave their own phosphate backbone. In nature, self-cleaving 

ribozymes are best known for their role in processing concatamers of viral genomes into 

monomers during viral replication in some RNA viruses, but to a lesser degree have also 

been implicated in mRNA regulation and processing in bacteria and eukaryotes. In 

addition to their biological relevance, these RNA enzymes have been harnessed as 

important biomolecular tools with a variety of applications in fields such as 

bioengineering. Self-cleaving ribozymes are relatively small and easy to generate in the 

lab using common molecular biology approaches, and have therefore been accessible and 

well exploited model systems used to interrogate RNA sequence-structure-function 

relationships. Furthermore, self-cleaving ribozymes are also being implemented as parts 

in the development of various biomolecular tools such as biosensors and gene regulatory 

elements. While much progress has been made in these areas, there are still challenges 

associated with the performance and implementation of such tools.  

The work contained in this dissertation aims to address several of these challenges 

and improve the ribozyme toolbox in several diverse areas. Chapter one provides an 

introduction to pertinent background information for this dissertation. Chapter two aims 

to improve the ribozyme toolbox by providing and analyzing new high-throughput 

sequence-structure-function data sets on five different self-cleaving ribozymes, and 

identifying how trends in epistasis relate to distinct structural elements. Chapter three 



 

x 

uses such high-throughput data to train machine learning models that accurately predict 

the historically difficult to predict functional effects of higher order mutations in 

functional RNA’s. Finally, in chapter four, I developed a biologically relevant platform to 

study the real time performance and kinetics of self-cleaving ribozyme-based gene 

regulatory elements directly at the site of transcription in mammalian cells. 
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CHAPTER ONE: DISSERTATION INTRODUCTION 

Ribozymes are widespread and naturally occurring catalytic RNA molecules 

which have diverse applications in fields such as bioengineering, origins of life and 

evolution, and structural biology. Various types of ribozymes exist in nature, where they 

play important roles in the regulation and processing of genetic information. With the 

exception of the ribosome, naturally occurring ribozymes catalyze site specific cleavage 

and/or ligation of RNA phosphodiester backbones in processes such as splicing, viral 

genome processing, tRNA maturation, and gene regulation. While ongoing research 

continues to uncover new ribozymes and their biological functions, the work contained 

herein will focus on harnessing small self-cleaving ribozymes as tools in molecular 

biology. In this chapter, I will provide some foundational background information on the 

discovery and distribution of self-cleaving ribozymes, trends in their structure and 

catalysis, and demonstrate their utility as a model system to interrogate RNA structure 

and function. In addition, I will highlight some relevant ways that ribozymes have been 

utilized in bioengineering.  

Discovery and Distribution of Self-Cleaving Ribozymes 

Small self-cleaving ribozymes were first discovered in the viral genomes of plant 

pathogens in the 1980’s, but have since been found to be widely distributed throughout 

all domains of life (Buzayan et al., 1986; Perreault et al., 2011; Prody et al., 1986; Roth et 

al., 2014; Webb et al., 2009). The self-cleavage activity of these early discovered 

ribozymes facilitates the production of genomic monomers from the multimeric 



2 

 

concatamers that are produced during the replication of circular viral genomes (rolling 

circle replication). Shortly after the identification of the aforementioned hammerhead and 

hairpin ribozymes in the tobacco ringspot virus, a self-cleaving ribozyme was discovered 

in the RNA genome of the human hepatitis delta virus (HDV), a satellite virus to the 

hepatitis b virus, where it is also responsible for the cleavage of multimeric copies of the 

viral genome into individual monomers (Sharmeen et al., 1988). Efforts to identify the 

existence of self-cleaving ribozymes in the human genome employed in vitro selection of 

150 basepair genomic fragments for those that exhibited cleavage activity. These efforts 

identified an HDV like ribozyme located in an intron of the cytoplasmic polyadenylation 

binding protein 3 (CPEB3), which has since been found to be highly conserved in 

mammals (Bendixsen et al., 2021; Salehi-Ashtiani et al., 2006, p. 3). Recently, 

bioinformatic approaches have been used to identify other novel classes of self-cleaving 

ribozymes (Roth et al., 2014; Salehi-Ashtiani et al., 2006; Weinberg et al., 2015).  

Unlike protein enzymes whose sequence and structure are fairly conserved across 

domains of life, most classes of ribozymes exhibit structural conservation but lack 

sequence conservation. Therefore, bioinformatic approaches aimed at identifying both 

novel and known ribozymes in genomic databases have employed searching for structural 

motifs and sequence co-variation rather than for ribozyme sequences. This approach has 

been relatively fruitful, and has added several classes of small self-cleaving ribozymes to 

the growing list of known naturally occurring self-cleaving ribozymes (i.e. twister, 

hatchet, pistol, twister sister) (Roth et al., 2014; Weinberg et al., 2015). Additionally, 

bioinformatics approaches have realized the widespread distribution of both HDV and 

hammerhead ribozyme motifs in the genomes of diverse organisms spanning across all 
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domains of life (Hammann et al., 2012; Perreault et al., 2011; Webb et al., 2009; Webb & 

Lupták, 2011). The widespread distribution and biological importance of naturally 

occurring ribozymes has led to decades of research aimed at understanding RNA 

structure and catalysis, and the adoption of self-cleaving ribozymes as tools for various 

applications in bioengineering.  

Structure and Catalysis of Self-Cleaving Ribozymes 

 
Figure 1.1 Structures of self-cleaving ribozymes used in this work  
A) Primary (truncated), secondary, and tertiary structure of an HDV ribozyme. 

RNA primary sequence forms secondary structural elements such as basepaired helical 
regions and pseudoknots, which fold into a 3D tertiary structure composed of interactions 

such as helical stacking and tertiary contacts. B) Secondary structure of a CPEB3 
ribozyme, C) a hammerhead ribozyme, D) a harpin ribozyme, and E) a twister ribozyme. 

 

The self-cleaving activity of ribozymes is facilitated by the adaptation of a 

catalytically active secondary and tertiary structure which is dictated by the RNA 

sequence of the ribozyme (Figure 1). The secondary structure of RNA molecules is based 
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on the ability of the RNA polymer to fold back on itself enabling anti-parallel base 

pairing interactions that form helical elements within a single molecule. Additionally, 

single stranded regions belonging to stem loops can participate in base-pairing 

interactions with other regions of the RNA molecule forming a structural element 

referred to as a pseudoknot. The tertiary conformation of RNA molecules is composed of 

coaxial stacking of helical regions, and tertiary contacts between non-basepaired regions 

of the RNA molecule driven by molecular interactions such as hydrogen bonding, base 

stacking, and the binding of metal ions, commonly Mg2+ (Butcher & Pyle, 2011; Jimenez 

et al., 2015). The adoption of a catalytically active folded state of ribozymes facilitates 

the formation of an active site that orients nucleotides or co-factors in such a way that 

they can catalyze a site-specific transesterification reaction, leading to the cleavage of its 

own phosphodiester backbone.  

 
Figure 1.2 Catalytic mechanism of self-cleaving ribozymes 

The mechanism of ribozyme self-cleavage proceeds through a trans-esterification 

reaction that is catalyzed by a concerted general acid-base mechanism. In this 

mechanism, a general base deprotonates the 2’ OH belonging to the ribose of the 

nucleophilic nucleotide, and a transesterification reaction proceeds, yielding a 2’-3’ 
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cyclic phosphate on the upstream nucleotide, and an oxyanion on the 5’ leaving group. A 

general acid then protonates the leaving group (Figure 2) (Chen et al., 2010; Fedor, 2000; 

Jimenez et al., 2015; Martick et al., 2008).  

The ribozymes used in this dissertation 

The work contained in this dissertation utilized five self-cleaving ribozymes -

hammerhead, hairpin, HDV, CPEB3, and twister. While these self-cleaving ribozymes 

share the common catalytic mechanism described above, each achieves self-catalysis by 

folding into distinct three-dimensional RNA structures dictated by their unique 

sequences. This leads to interesting questions about sequence, structure, and function 

relationships that will be explored in the following chapters. Here, I will briefly 

summarize core features of the structure and catalysis of the ribozymes utilized in this 

work.  

Perhaps the ribozyme whose structure and catalytic activity has been most well 

characterized is the hammerhead ribozyme. There are several naturally occurring 

permutations of the hammerhead ribozyme, referred to as type I, II, and III. The 

secondary structure contains three helical regions - stems I, II, and III, and are named 

according to which stem is the closing stem. The tertiary architecture features coaxial 

stacking between stems II and III, with a CUGA uridine turn orienting stem I in 

proximity to stem II, forming a tertiary contact that is important for efficient catalysis of 

the self-cleavage reaction. The three stems are branching from a 15 nucleotide catalytic 

core, where two guanines participate as a general acid and base. For the type III construct 

used in the research contained in this dissertation, G25 and G29 act as a general acid and 

base, respectively. The ionized N1 on G29 deprotonates the 2’OH of C-1, activating it as 
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a nucleophile that can attack the adjacent scissile phosphate, and the 2’OH belonging to 

the ribose of G25 acts as a general acid, protonating the leaving group (Doudna, 1995; 

Martick et al., 2008; Scott et al., 2013).  

The hairpin ribozyme that was discovered in the minus strand of the same tobacco 

ringspot virus as the hammerhead ribozyme also has several structural variants that have 

been characterized.  Common features of the hairpin secondary structure are four helical 

regions, and two internal loop domains, loops A and B. In naturally occurring hairpin 

ribozymes, the four helices are connected via a four-way junction, whereas minimal 

hairpin structures that are frequently used in biochemical and structural analyses contain 

two stem loop domains connected via a two-way helical junction. In these minimal 

constructs, like the one utilized in the research contained herein, each of the two stem 

loop domains are bisected by the internal loops A and B, resulting in four total helical 

regions (Müller et al., 2012). Crystallographic, NMR, and mutational studies have 

elucidated critical non-Watson-Crick interactions both within loop A and loop B, and 

between the two loops. Hydrogen bonds between bases, as well as ribose-base hydrogen 

bonding interactions result in an intimate docking between loops A and B, which is 

critical in forming the active site of the ribozyme (Butcher et al., 1999; Cai & Tinoco, 

1996; Fedor, 2000). Based on analogous structures, in the construct used in this study, a 

guanine at position 29 residing within loop A acts as a general base, whereas an adenine 

at position 59 within loop B acts as a general acid (Müller et al., 2012; Rupert & Ferré-

D’Amaré, 2001).  

The similarly structured HDV and CPEB3 ribozymes fold into a double nested 

pseudoknot conformation. The ribozymes contain five helical regions, (P1-P4, plus an 
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additional pseudoknotted helical region, P1.1), with two coaxial stacks, where P1 and 

P1.1 stack on P4, and P2 stacks on P3. A single stranded region, J1/2 connects P1 and P2, 

and a second single stranded region, J4/2 connects P4 and P2. The active site of these 

ribozymes is located in the junction between P1, P1.1, and P3. Unlike hammerhead and 

hairpin discussed above where nucleobases act as both the general acid and base, HDV 

and CPEB3 both utilize a Mg2+ ion as a general base that activates the 2’-hydroxyl of the 

nucleotide upstream from the cleavage site. A cytosine at position 75 and 57 (for HDV, 

and CPEB3, respectively) located in the single stranded J4/2 region acts as a general acid, 

donating a proton to stabilize the leaving group (Chen et al., 2010; Skilandat et al., 2016).  

There are several permutations of the twister ribozyme that occur in nature (Eiler 

et al., 2014; Roth et al., 2014). The construct utilized in this work contains three stem 

regions (P1, P2, and P3), which are separated by two internal loops (L1 and L2). The 

stem loop to P4 forms two pseudoknotted tertiary contacts of opposite polarity with the 

two internal loops (L1 and L2).  There is coaxial stacking between P1, T1, P2, and T2, 

with a helical twist between P1 and T1. The active site of the ribozyme is near the center 

of the ribozyme, along the major groove of the T1-P2 helix. Other variations of the 

twister ribozyme have two additional stem regions, P3, and P5, which branch out from 

L2, forming a four way junction (Liu et al., 2014). In the proposed mechanism for the 

twister ribozyme used in this work, G39 acts as the general base, deprotonating the 2’-

hydroxyl of the nucleophilic oxygen. The N3 of the ribose of A1 is proposed to act as the 

general acid, donating a proton to the 5’ oxyanion leaving group (Wilson et al., 2016).   
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Self-Cleaving Ribozyme Insights and Applications 

Self-cleaving ribozymes have been exploited as model systems to understand 

RNA structure and catalysis, and as tools for diverse applications in synthetic biology and 

engineering. Their small size and ease of generation via in vitro transcription using only 

basic molecular biology laboratory equipment makes self-cleaving ribozymes an 

accessible biomolecular system. As such, decades of research revolving around 

ribozymes has provided foundational insight into the structure and catalysis of RNA, and 

diverse and creative applications have emerged ranging from the development of 

ribozyme-based biosensors, synthetic genetic circuits and regulatory elements, with 

applications in medicine and biofuel production (Breaker, 2002; Ogawa & Maeda, 2008; 

Yokobayashi, 2019b). This section of the introduction will provide a brief background to 

highlight the utility of adopting self-cleaving ribozymes as model systems to gain insight 

into general RNA structure and biochemistry, as well as some ribozyme applications 

relevant to the work contained in this dissertation.  

Lessons in RNA biochemistry and structural biology  

Small self-cleaving ribozymes were among some of the first RNA’s whose 

structure was determined via X-ray crystallography, providing foundational examples of 

conserved RNA motifs and revealing many principles of RNA folding, ligand biding, and 

catalysis. Compared to proteins, RNA has unique challenges associated with 

crystallization. Electrostatic repulsion due to the repetitive negative charges located on 

their phosphate backbones interferes with crystal packing, and compared to the globular 

architecture in proteins, RNA tends to form more elongated structures that pack loosely 

into crystals. In addition, RNA molecules show structural dynamics that frequently 
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results in misfolding, yielding non-homogenous samples (Holbrook & Kim, 1997; Ke & 

Doudna, 2004). These challenges discouraged initial efforts to crystallize large structured 

RNA’s and RNA-protein complexes, making small self-cleaving ribozymes an 

approachable and accessible model to gain insight into features of RNA structure. 

Furthermore, they provided a platform for the development and refinement of 

methodology that has led to our ability to crystallize and resolve the structures of more 

complex RNA’s (Ferré-D’Amaré, 2010, p. 1; Ferré-D’Amaré et al., 1998; Ferré-

D’Amaré & Doudna, 2000).  In addition to providing a foundational model system for 

RNA crystallization strategies and structure determination, self-cleaving ribozymes are 

being utilized as model systems to understand structural, functional, and evolutionary 

implications of sequence variation resulting from mutations, as well as in efforts to 

predict RNA structure computationally (Andronescu et al., 2005; Bendixsen et al., 2017, 

2019; Miao et al., 2020) 

Investigating self-cleaving ribozymes provided foundational insights into RNA 

catalysis. The mechanism that RNA ribozymes employ to catalyze the cleavage of 

phosphodiester bonds was historically controversial. Magnesium (Mg2+) ions play 

promiscuous and fundamental roles in the formation and stability of RNA structures, 

therefore most ribozymes exhibit a magnesium dependence (Misra & Draper, 1998). This 

magnesium dependence understandably contributed to the prevailing view that RNA 

ribozymes are metalloenzymes (Dahm et al., 1993; Dahm & Uhlenbeck, 1991; Pontius et 

al., 1997; Pyle, 1993).  Additionally, RNA biochemistry was influenced by the lessons 

gained from protein biochemistry. In protein enzymes, amino acids that play analogous 

roles in general acid-base catalysis have functional groups whose pKa’s result in acidic or 
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basic properties in the neutral environments they function in. The pKa’s of the functional 

groups present in the nucleobases of RNA molecules indicated they should not carry a 

charge at neutral pH, and were therefore initially dismissed as potential participants in 

catalysis. Crystallization of the hammerhead ribozyme enabled the first atomic resolution 

view of RNA active sites (Doudna, 1995), and subsequent research confirmed that most 

ribozymes use general acid-base catalysis (Han & Burke, 2005; Martick et al., 2008). 

This demonstrates that adopting small self-cleaving ribozymes as model systems to study 

catalytic RNA can provide foundational knowledge on RNA structure and function.   

Self-cleaving ribozymes have been used as parts in the development of biosensors 

In addition to providing a model system for understanding RNA structure and 

catalysis, ribozymes have been used to develop biosensors. RNA is capable of forming 

dynamic structures which can be modulated by the presence of other biomolecules and/or 

small molecules. Additionally, RNA has the potential for specific molecular recognition, 

and in vitro selections from randomized pools of RNA have generated a variety of RNA 

sequences called aptamers, which are capable of selectively binding to various 

compounds (Blind & Blank, 2015; Darmostuk et al., 2015). The potential for structural 

dynamics paired with the inherent enzymatic activity of ribozymes made them an 

attractive candidate for the development of allosteric biomolecular switches (Soukup & 

Breaker, 1999). Allostery in self-cleaving ribozymes is commonly achieved via the 

addition of aptamer domains in such a way that binding of the aptamer’s ligand alters the 

overall conformation, and thus cleavage activity of the ribozyme. In this way, molecular 

recognition can be detected via the cleavage state of the ribozyme.  Parallel and 

combined efforts utilizing rational design, in vitro selection, and computational design 
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has yielded a variety of allosteric ribozymes that respond to and detect various 

metabolites (Breaker, 2002; Frauendorf & Jäschke, 2001; Koizumi et al., 1999; 

Kuwabara et al., 2000; Penchovsky, 2014). Such ribozyme-based biosensors have diverse 

applications in areas such as clinical diagnostics and intracellular metabolite detection.  

Applications of ribozymes in gene regulation and genetic circuit design  

Another area that ribozymes have been successfully employed as tools in 

synthetic biology is in the development of gene regulatory elements called riboswitches. 

Advances in gene editing technology such as CRISPR-Cas9 have enabled the 

modification and engineering of biological systems with applications ranging from 

biofuel and drug production, to personalized gene therapies. However, gene regulatory 

technology lags behind gene editing technology, and there is a need for the development 

of robust and orthogonal avenues to externally control the expression of transgenes. To 

this end, synthetic RNA riboswitch-based gene regulation has become an attractive 

platform for the realization of protein-independent control over gene expression.  

Riboswitches are naturally occurring metabolite responsive RNA regulatory 

elements that are typically located in the 5’ or 3’ untranslated regions of mRNA. They 

contain an aptamer domain that is capable of specifically binding to a ligand. Binding of 

the ligand causes a conformational shift that permeates through an adjacent expression 

platform in the riboswitch, which alters gene expression (Serganov & Patel, 2007; Zhang 

et al., 2010). There are various expression platforms, thus mechanisms that riboswitches 

implement in order to achieve alterations to gene expression. Common naturally 

occurring expression platforms fluctuate between structural conformations that either 

sequester or expose ribosomal binding sites, or shine-delgarno sequences. In addition, 



12 

 

there are expression platforms where binding of the ligand causes a shifts between the 

presence of terminator and anti-terminator stems, or blocking of splice sites (Chang et al., 

2012; Etzel & Mörl, 2017). Synthetic riboswitches have been developed using self-

cleaving ribozyme expression platforms, and are commonly referred to as aptazymes.  In 

this type of riboswitch, binding of the ligand causes a shift between a catalytically active 

and inactive conformation, or vice versa. Cleavage of the mRNA transcript disrupts 

mRNA processing and translation, resulting in a decrease in gene expression, whereas 

absence of self-cleavage allows downstream processing and translation to proceed largely 

uninhibited (Zhong et al., 2016).  

Synthetic aptazyme based riboswitches are largely developed using similar 

rationale and approaches as aptazyme based biosensors which were discussed above. 

However, allosteric aptazmes selected in vitro often fail to recapitulate their activity in 

cellular environments, and so successful efforts have largely shifted to in vivo selection 

strategies (Desai & Gallivan, 2004; Michener & Smolke, 2012; Wieland et al., 2012). 

These efforts have yielded a plethora of synthetic riboswitches based on self-cleaving 

ribozymes that respond to a variety of ligands and utilize various strategies to alter gene 

regulation. Such synthetic riboswitches have been implemented in the external control of 

gene expression in bacteria, yeast, and mammalian cells (Ogawa & Maeda, 2008; Stifel et 

al., 2019; Townshend et al., 2015; Yokobayashi, 2019b; Zhong et al., 2016).  

Improving the Ribozyme Toolbox 

Through decades of culminating research surrounding ribozyme structure, 

catalysis, biological function, and synthetic biology applications exciting new directions 

and corresponding challenges have emerged. Here, I will introduce recent advancements, 
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current challenges, and how this dissertation work contributes to the improvement of self-

cleaving ribozyme applications.  

Chapter two contributes valuable sequence-structure-function data sets  

 Advances in nucleic acid synthesis and next generation sequencing has opened 

doors for in depth exploration of the functional effects resulting from sequence variation 

within self-cleaving ribozymes. It is now possible to synthesize large mutagenized DNA 

libraries of small self-cleaving ribozymes, transcribe the libraries into RNA in-vitro, and 

measure the functional effects via next-generation sequencing. Efforts in this area have 

aimed at utilizing self-cleaving ribozymes as a model to understand the relationships 

between RNA sequence, structure, and function – with emphases in RNA evolution and 

innovation of function, as well as in the development and improvement of ribozymes 

with potential in various bioengineering applications (Andreasson et al., 2020; Bendixsen 

et al., 2019; Hayden, 2016; Kobori & Yokobayashi, 2016; Yokobayashi, 2019a).  

Chapter two of this dissertation harnesses high-throughput analysis of self-

cleaving ribozyme activity and trends in epistasis to elucidate structural information, and 

provides comprehensive double mutant data sets for exploitation in the development and 

refinement of computational approaches aimed at predicting the structural and functional 

effects of mutations to RNA.  To do this, I comprehensively analyzed the self-cleavage 

activity of all possible single and double mutations to the hammerhead, hairpin, HDV, 

CPEB3, and twister ribozymes. The data is presented as heatmaps of relative activity and 

epistasis, and we show that features in the data correspond with known structural 

features, and identify trends in epistatic relationships in the context of common RNA 

structural elements. Furthermore, we openly share the resulting data for future use in the 
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development and training of computational pipelines with long-term goals aimed at in 

situ prediction of RNA structure and function. The exploration, analysis, and sharing of 

these complete double mutant cycle data sets improves the ribozyme toolbox by 

providing open access and foundational data that can be easily exploited in a variety of 

applications.  

Chapter three pairs high-throughput experimental activity data with machine learning to 

predict the effects of higher order mutations 

Efforts to harness self-cleaving ribozymes as tools such as in biosensors and 

riboswitches that are discussed above often rely on introducing changes to a RNA 

sequence in order to find a RNA molecule with the new desired function. However, the 

rational design of such functional molecules remains challenging because the effects of 

introducing multiple mutations to an RNA molecule are difficult to predict due to 

significant pairwise and higher-order epistasis that is observed in an RNA molecule. 

Recently, success in predicting the 3D structure of an RNA molecule, and even the 

functional effects of changes to an RNA sequence in ribozyme based gene regulatory 

elements has been facilitated by the use of machine learning approaches (Calonaci et al., 

2020; Groher et al., 2019; Schmidt & Smolke, 2021). However, previous approaches 

have relied on crystallographic structural data, chemical probing data, thermodynamic 

calculations, and other types of data that are not often available for an RNA sequence of 

interest. Therefore, new types of easy to obtain training data containing information about 

the functional effects of mutations is expected to facilitate the use of machine learning to 

aid rational design of dynamic and functional RNA molecules.   
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Chapter three demonstrates the feasibility of such approach by using high-

throughput self-cleavage activity data of mutants to a CPEB3 ribozyme to accurately 

predict the functional effects of higher-order mutations. Two different machine learning 

architectures (LSTM and Random Forest) were implemented, and their performance was 

compared. In addition, we explored the effects of incrementally increasing or reducing 

the type and size of our data sets on the accuracy of our predictions. The work presented 

in this chapter provides foundational proof of concept evidence that this type of high-

throughput data can in fact be used alone as training data to successfully predict the 

effects of higher-order mutants of a self-cleaving ribozyme. Additionally, it provides 

important guiding insight into the amount and types of data necessary to achieve 

acceptably accurate predictions. This is expected to be a foundational paper in this newly 

emerging application of high-throughput sequencing data of RNA ribozyme reactions.   

Chapter four develops a live-cell platform to measure co-transcriptional synthetic 

aptazyme kinetics  

Despite the exciting potential and existence of many synthetic ribozyme-based 

riboswitches, there have been challenges associated with utilizing these gene regulatory 

tools in real-world applications. One major obstacle has been that many of the available 

constructs exhibit high background expression and apparent ‘leakiness’ of gene 

expression when the switch should be in the off state. Furthermore, insufficient dynamic 

ranges in response to the ligand are common, and a more robust activation or repression 

of gene expression is still desired. Finally, synthetic riboswitches often fail to recapitulate 

performance when ported to an organism different from where they were selected to 

perform, even within the same domain (i.e. from one bacterial species to another, or yeast 
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to mammalian). The added complexity of co-transcriptional mRNA processing (such as 

splicing, capping, and polyadenylation) present in higher order organisms likely 

contributes to these observed decreases in performance. Slow progress has been made in 

addressing these challenges, in large part because riboswitch performance is typically 

measured via bulk protein expression measurements. This approach loses important co-

transcriptional kinetic and mechanistic insight that undoubtedly has a major impact on the 

performance of synthetic riboswitches. In order to improve synthetic riboswitch 

performance, it is important to fully understand ‘how’ and ‘when’ self-cleavage activity 

maximally influences changes in gene expression, and to elucidate such differences 

between aptazymes with suboptimal dynamic range and basal levels with those that 

exhibit superior function.   

The goal of the research in chapter four is to developed a platform to measure the 

real-time performance and cleavage kinetics of synthetic aptazyme riboswitches in live 

human cells. To achieve this, I generated several human cell lines (293T, human 

embryonic kidney) that will enable the real-time single molecule measurements of 

mRNA transcripts that contain synthetic riboswitch constructs. The mRNA transcripts are 

fluorescently labeled to allow fluorescent detection. Each cell line contains a unique 

variant of an aptazyme based on the hammerhead ribozyme coupled to a theophylline 

aptamer. The riboswitch variants were selected for in yeast, and exhibit variation in both 

their basal expression levels as well as their dynamic range of influence over protein 

expression in response to their ligand, theophylline. This will allow us to identify key 

differences in cleavage kinetics that contribute to both basal level expression and 

dynamic ranges of performance, guiding ongoing efforts to design and select improved 
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synthetic riboswitches. Therefore, this work will aid in the improvement of synthetic 

ribozyme-based gene regulatory tools by providing an avenue to remove the black box 

surrounding gene regulatory mechanisms and kinetics associated with bulk protein read-

out of synthetic riboswitch performance.   

Taken together, this dissertation contributes to the improvement of the ribozyme 

toolbox by providing comprehensive sequence-structure-function data sets on five 

distinct self-cleaving ribozymes, and by providing a platform to measure synthetic 

riboswitch performance in live cells. Together, these efforts will contribute to our ability 

to computationally predict the structural and functional effects of mutations to RNA in 

general, as well as provide a platform to gain guiding insight to improve the performance 

of ribozyme-based tools in bioengineering. The work contained herein lays a necessary 

foundation that will undoubtedly lead to grander realizations of machine learning 

facilitated prediction of RNA structure and function, and the improvement and 

implementation of synthetic regulatory RNA in applications ranging from biofuel 

production, environmental remediation, and personalized medicine.   
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Abstract 

Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their 

own phosphodiester backbones. These ribozymes are found in all domains of life and are 

also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes 

are also an important model of sequence to function relationships for RNA because their 

small size simplifies synthesis of genetic variants and self-cleaving activity is an 

accessible readout of the functional consequence of the mutation. Here we used a high-

throughput experimental approach to determine the relative activity for every possible 

single and double mutant of five self-cleaving ribozymes. From this data, we 

comprehensively identified non-additive effects between pairs of mutations (epistasis) for 

all five ribozymes. We analyzed how changes in activity and trends in epistasis map to 
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the ribozyme structures. The variety of structures studied provided opportunities to 

observe several examples of common structural elements, and the data was collected 

under identical experimental conditions to enable direct comparison. Heat-map based 

visualization of the data revealed patterns indicating structural features of the ribozymes 

including paired regions, unpaired loops, non-canonical structures and tertiary structural 

contacts. The data also revealed signatures of functionally critical nucleotides involved in 

catalysis. The results demonstrate that the data sets provide structural information similar 

to chemical or enzymatic probing experiments, but with additional quantitative functional 

information. The large-scale data sets can be used for models predicting structure and 

function and for efforts to engineer self-cleaving ribozymes. 

Introduction 

Challenges with predicting the functional effects of changing an RNA sequence 

continues to limit the study and design of RNA molecules. Recently, machine learning 

approaches have made considerable advancements in predicting an RNA structure from a 

sequence. However, these approaches rely heavily on crystal structures of RNA 

molecules and sequence conservation of homologs, both of which are limited for RNA 

molecules compared to proteins (Calonaci et al., 2020; Townshend et al., 2021). In 

addition, describing an RNA molecule as a single structure can be inaccurate, and 

regulatory elements such as riboswitches demonstrate the importance of an ensemble of 

structures for an RNA function. It is unclear that predictions based on individual 

structures alone will be able to predict functional effects of mutations with the precision 

needed for many biotechnical and synthetic biology applications, or to predict disease-

associated mutations in RNA molecules (Halvorsen et al., 2010). This suggests that new 
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experimental data types might be important for understanding, designing, and 

manipulating the transcriptome. 

Self-cleaving ribozymes provide a useful model to study sequence-structure-

function relationships in RNA molecules. Self-cleaving ribozymes are catalytic RNA 

molecules that cleave their own phosphodiester backbone. They were first discovered in 

viruses and viroids, but numerous families of self-cleaving ribozymes have since been 

discovered in all domains of life (Prody et al., 1986). The CPEB3 ribozyme, for example, 

was discovered in the human genome and found to be highly conserved in mammals 

(Bendixsen et al., 2021, p. 3; Salehi-Ashtiani et al., 2006). Other self-cleaving ribozymes, 

such as the hammerhead and twister ribozymes, are found broadly distributed across 

eukaryotic and prokaryotic genomes (Perreault et al., 2011; Roth et al., 2014). The 

biological roles of ribozymes in different genomes and different genetic contexts remain 

an active area of investigation (Jimenez et al., 2015). In addition to being widespread 

across the tree of life, self-cleaving ribozymes have also been used for several 

bioengineering applications (Liang et al., 2011; Peng et al., 2021; Wei and Smolke, 2015; 

Zhong et al., 2016). For example, self-cleaving ribozymes are being combined with 

aptamers to develop synthetic gene regulatory devices, which have biotechnical and 

biomedical applications where ligand dependent control of gene expression is desired 

(Kobori et al., 2017, 2015; Stifel et al., 2019; Townshend et al., 2015).  

The testing of mutational effects in ribozyme sequences has been accelerated by 

high-throughput experimental approaches. Most self-cleaving ribozymes are fairly small 

(<200 nt) and genetic variants can be made by chemical synthesis of a single DNA 

oligonucleotide that is then used as a template for in vitro transcription. The self-cleavage 
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activity of the ribozyme requires a precise three-dimensional structure, and therefore 

activity can be used as a sensitive indirect readout of native structure. Mutations that 

disrupt the native structure are detected as reduced activity compared to the unmutated 

“wild-type” ribozyme. Several methods have been developed to enable the detection of 

ribozyme function by high-throughput sequencing of biochemical reactions (Bendixsen et 

al., 2019; Hayden, 2016; Kobori and Yokobayashi, 2016; Shen et al., 2021). For self-

cleaving ribozymes, each read from the data reports both the mutations and whether or 

not that molecule was reacted (cleaved) or unreacted (uncleaved). Therefore, high-

throughput sequencing allows numerous genetic variants to be pooled together and still 

observed hundreds to thousands of times in the data. This provides confidence in the 

fraction cleaved for each genetic variant in a given experiment, and genetic variants are 

compared to determine relative activity. Importantly, the data is internally controlled 

because both reacted and unreacted molecules are observed, which controls for 

differences in their abundance due to synthesis steps (chemical DNA synthesis, 

transcription, reverse-transcription, PCR).  

A common approach to confirm structural interactions in RNA and proteins is 

through analysis of pairs of mutations (Dutheil et al., 2010; Olson et al., 2014). In this 

context, it can be useful to calculate pairwise epistasis, which measures deviations in the 

mutational effects of double mutants relative to the effects of each individual mutation 

(assuming an additive model of mutational effects). For example, in the case of a base-

pair, each single mutation would disrupt the base-pairing interaction, destabilizing the 

catalytically active RNA structure and reducing activity. However, if two mutants 

together restore a base-pair, the relative activity of the double mutant would have much 
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higher activity than expected from the additive effects of the individual mutations 

(positive epistasis). In contrast to paired nucleotides, double mutants at non-paired 

nucleotides tend to have a more reduced activity than expected from each individual 

mutation (negative epistasis) (Bendixsen et al., 2017; Li et al., 2016). In the case of two 

mutations that create a different base pair (i.e. G-C to A-U), it is known that the stacking 

with neighboring base pairs is also structurally important, and some base pair 

substitutions will not be equivalent in a given structural context. This creates a range of 

possible epistatic effects even for two mutations at paired nucleotide positions. In 

addition, some non-canonical base interactions within tertiary contacts may also show 

epistasis even when they do not involve Watson-Crick or GU wobble base pairing 

interactions. Nevertheless, the propensity for positive epistasis between physically 

interacting nucleotides suggests that a comprehensive evaluation of pairwise mutational 

effects should contain considerable structural information.  

Here, we report comprehensive analysis of mutational effects for all single and 

double mutants for five different self-cleaving ribozymes. Relative activity effects of all 

single and double mutations were determined by high-throughput sequencing of co-

transcriptional self-cleavage reactions, and this data was used to calculate epistasis 

between pairs of mutations. The ribozymes studied include a mammalian CPEB3 

ribozyme, a Hepatitis Delta Virus (HDV) ribozyme, a twister ribozyme from Oryza 

sativa, a hairpin ribozyme derived from the satellite RNA from tobacco ringspot virus, 

and a hammerhead ribozyme (Bendixsen et al., 2021; Burke and Greathouse, 2005; 

Chadalavada et al., 2007; Liu et al., 2014; Müller et al., 2012). For each reference 

ribozyme, a single DNA oligo template library was synthesized with 97% wild-type 
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nucleotides at each position, and 1% of each of the three other nucleotides. This 

mutagenesis strategy was expected to produce all possible single and double mutants, as 

well as a random sampling of combinations of three or more mutations. The mutagenized 

templates were transcribed in vitro, all under identical conditions, where active 

ribozymes had the opportunity to self-cleave co-transcriptionally. All ribozyme 

constructs studied cleave near the 5’-end of the RNA, and a template switching reverse 

transcription protocol was used to append a common primer binding site to both cleaved 

and uncleaved molecules. Subsequently, low cycle PCR was used to add indexed 

Illumina adapters for high-throughput sequencing. Each mutagenized ribozyme template 

was transcribed separately and in triplicate, and amplified with unique indexes so that all 

replicates could be pooled and sequenced together on an Illumina sequencer. The 

sequencing data was then used to count the number of times each unique sequence was 

observed as cleaved or uncleaved, and this data was used to calculate the fraction 

cleaved. The fraction cleaved of single and double mutants was normalized to the 

unmutated reference sequence to determine relative activity. The relative activity values 

of the single and double mutants were used to calculate all possible pairwise epistatic 

interactions in all five ribozymes. We mapped epistasis values to each ribozyme structure 

to evaluate correlations between structural elements and patterns of pairwise epistasis 

values. The results indicated that structural features of the ribozymes are revealed in the 

data, suggesting that these data sets will be useful for developing models for predicting 

sequence-structure-function relationships in RNA molecules.  
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Results and Discussion 

Evaluation of read depth and mutational coverage 

The accuracy of our relative activity measurements depends on the number of 

reads we observe that map to each unique ribozyme sequence (read depth). Each 

reference ribozyme has a different nucleotide length resulting in different numbers of 

possible single and double mutants. In addition, the pooling of experimental replicates for 

sequencing does not result in equal mixtures of each replicate. In order to determine read 

depth, we mapped reads to the reference sequences and counted the number of reads that 

matched each ribozyme, while allowing for 1 or 2 mutations. We observed every single 

and double mutant for all ribozymes in each replicate, indicating 100% coverage of these 

mutant classes for all of our data sets. The distributions of observations for each single 

and double mutant of each ribozyme are shown in Supplementary Figure 1. The HDV 

data showed the lowest depth, possibly because it is a larger ribozyme (87 nt), and fewer 

reads mapped to the single and double mutants (Table 1). Nevertheless, from this analysis 

we conclude that the data contains complete coverage of all single and double mutants 

and ample read depth for all five ribozymes.  

Epistatic effects in paired nucleotide positions show stability-dependent signatures 

In order to evaluate how the effects of mutations mapped to the ribozyme 

structures, we plotted the relative activity values as heat maps (Figures 1-5). We then 

used this data to calculate epistasis between pairs of mutations. We first inspected 

nucleotide positions known to be involved in base-paired regions of the secondary 

structure of each ribozyme. In this heatmap layout, many paired regions showed an anti-

diagonal line of high activity double mutant variants with strong positive epistasis 
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(Figures 1-5, insets). In addition, pairs of mutations off the anti-diagonal tended to show 

negative or non-positive epistasis. Pseudoknot elements that involve Watson-Crick base 

pairs also showed this pattern, including the single base pair T1 element in CPEB3  

(Figure 1) and the two base pair T1 element in HDV (Figure 2). The layout of mutations 

in the heatmap places paired nucleotide positions along the anti-diagonal and 

compensatory double mutants that change one Watson-Crick base pair to another are 

found on this anti-diagonal. Individual mutations that break a base pair will often reduce 

ribozyme activity, but the activity can be restored by a second compensatory mutation 

resulting in positive epistasis. In contrast, double mutants off-diagonal usually disrupt 

two base pairs (unless they result in a GU wobble base pair). It is expected that breaking 

two base pairs in the same paired region would be more deleterious to ribozyme activity 

than breaking one base pair, but it appears that two non-compensatory mutations in the 

same paired region are more deleterious than expected from an additive assumption, and 

frequently create negative epistasis off-diagonal within paired regions.  

To quantify the observed difference in epistasis between nucleotide positions that 

form a base pair and two that do not, we plotted the distribution of epistasis values for 

double mutants on and off the anti-diagonal within the paired regions of each ribozyme. 

Statistical analysis indicated that the distributions were significantly different (p<0.001, 

Mann-Whitney U-test), and the epistasis values between paired nucleotide positions (on-

diagonal) were consistently more positive than two mutations in positions that are not 

directly base paired (off-diagonal). This analysis was consistent for every individual 

paired region in each ribozyme (Figures 1-5, panel C). This pattern of epistasis in paired 
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regions demonstrates the utility of comprehensive double-mutant activity data for 

identifying base paired regions in RNA structures.  

It is interesting to note that the magnitude of the difference in the distributions of 

epistasis values for double mutants at paired and non-paired positions was different for 

different paired regions (Supplementary Figure 2). Specifically, short paired elements 

with fewer base pairs seemed to show large differences in the distributions of epistatic 

effects for paired and unpaired positions, while longer paired elements showed small 

differences in these distributions. For example, the short P3 (3 bp) in CPEB3 and HDV, 

and T1 (4 bp) in the twister ribozyme showed very large differences between the 

distributions of epistasis values at paired versus non-paired positions. These small regions 

are highly sensitive to mutations, and most pairs of mutations within this region result in 

almost no detectable activity except when they create a different Watson-Crick base pair 

(Figures 1-5). These structural elements have positive epistasis along the anti-diagonal, 

and negative epistasis off diagonal, resulting in large differences between the 

distributions of epistasis (Supplementary Figure 2). In contrast, the P4 stem in HDV has 

the most base pairs of any paired region in this data set (14), and losing one of these base 

pairs was not deleterious to riboyzme activity in our experiments (Figure 2). Because the 

single mutations had little effects on the self-cleavage activity, a compensatory mutation 

restoring a base pair did not result in positive epistasis (Figure 2). Futher, only weak 

negative epistasis is observed off-diagonal indicating that the loss of two base pairs in P4 

was somewhat tollerated compared to shorter paired regions. The distributions for 

epistatis for paired and unpaired positions in P4 of HDV show only a small difference 

(Supplementary Figure 2). Together, the differences between epistasis in short and long 
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base paired regions suggests that the thermodynamic stability of each paired region is 

important for the observed activity differences contributing to epistasis, which might 

ultimately affect the utility of this data for identifying paired regions in RNA structures.  

In order to quantify the influence of thermodynamic stability on epistasis in 

different paired regions, we calculated the minimum free energy for each paired region 

and compared mutational effects. We split each paired region into two separate RNA 

sequences that contained only the base paired nucleotides and used nearest neighbor rules 

to calculate the minimum free energy of their interaction (NUPACK). This approach 

neglects thermodynamic contributions from terminal loops, but allowed for a consistent 

approach to compare internal and terminal paired regions. We found a significant 

negative correlation between the median deleterious effects of single mutations and the 

minimum free energy of the paired regions (Supplementary Figure 3). This analysis 

indicates that more stable structural elements may be harder to identify from epistatic 

effects. However, it is possible that more stable elements would show stronger epistasis 

under different experimental conditions, such as different temperatures or magnesium 

concentrations (Peri et al., 2022). 

Catalytic residues do not have any high-activity mutants, and do not exhibit epistasis 

Self-cleaving ribozymes often utilize a concerted acid base catalysis mechanism 

where specific nucleobases act as proton donors (acid) or acceptors (base) (Jimenez et al., 

2015), and mutations at these positions abolish activity. Analyzing the effects of 

individual mutations will not distinguish catalytic nucleotides from structurally important 

nucleotides. Comprehensive pairwise mutations, on the other hand, can potentially 

distinguish between structurally important nucleotides involved in paired regions that 
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show positive epistasis from compensatory effects. The catalytic cytosines of the CPEB3 

(C57) and HDV (C75) act as proton donors due to perturbed pKa values (Nakano, 2000; 

Skilandat et al., 2016). For the twister ribozyme (Figure 3) the guanosine at position G39 

acts as a general base, and the adenosine at position A1 acts as a general acid (Wilson et 

al., 2016). The catalytic nucleotides for the Hammerhead ribozyme (Figure 5) are the 

Guanosines located at positions G25 and G39 (Scott et al., 2013). The hairpin ribozyme 

(Figure 4) contains catalytic nucleotides at positions G29 and A59 (Wilson, 2006). In the 

relative activity heat maps, the columns and rows associated with these nucleotides result 

in low activity values (Figures 1-5, Supplementary Figure 4). It is important to note that 

because there is complete coverage of all double mutants in this data set, we can be 

certain that there are no possible compensatory mutations. These results show how 

catalytic residues can be identified in the comprehensive pairwise mutagenesis data.  

Unpaired nucleotides show tertiary structure dependent mutational effects.  

Mutations to nucleotides found in terminal loops that are not involved in tertiary 

structure elements showed high relative activity for most single and double mutants, and 

essentially no epistasis. This is not surprising if these loops reside on the periphery of the 

ribozyme and are not involved in structural contacts with other nucleotides. This is the 

case for L4 of the CPEB3 and HDV ribozymes (Figure 1, Figure 2), and L1 and L3 of the 

hairpin ribozyme (Figure 4). Two mutations within these loops do not reduce activity, 

and mutations in these loops do not rescue other deleterious mutations such as those that 

break a base pair (Figures 1, 2, and 4).  

The internal loops (LA and LB) of the hairpin ribozyme are structurally important 

(Figure 4). Interactions between nucleotides within LB include six non-Watson-Crick 
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base pairing interactions that are important for the formation of an active ribozyme 

structure (Fedor, 2000). Several non-canonical base-base and sugar-base hydrogen bonds 

between nucleotides within LA are also important for the formation of the active site 

(Fedor, 2000; Wilson, 2006). Docking between LA and LB is necessary for the formation 

of a catalytically active ribozyme and is facilitated by a Watson-Crick base pair between 

G1 and C46 in the version of the ribozyme used here (Rupert and Ferré-D’Amaré, 2001). 

In contrast to terminal loop regions, most single mutations within LA and LB resulted in 

low self-cleavage activity in our data (Figure 4). In addition, the double mutants within 

and between loop A and loop B show several instances of strong positive epistasis 

(Figure 4, Insets), and the distributions of epistasis within and between these loops are 

significantly different than the terminal loops that are not structurally important (Figure 

4D). This positive epistasis indicates that many of the important structural contacts can be 

facilitated by other specific pairs of nucleotides. For example, the double mutant G1C 

and C46G shows strong epistasis suggesting that swapping a C-G base pair for the G-C 

base pair can restore activity by facilitating docking between the two loops. Several 

double mutants at positions that form non-canonical interactions in LB show positive 

epistasis. For example, mutation A41G shows positive epistasis when the interacting 

nucleotide C65 is mutated to a G or U. The non-canonical base pair G42:A64 shows 

positive epistasis for the mutations G42U A64G. The non-canonical A45:A59 interaction 

shows positive epistasis for several pairs of mutations (A45U A59C, A45C A59C, A45G 

A59U). Finally, the non-canonical base pair A47:G57 in LB, and C3:A28 in LA, both 

show positive epistasis for double mutants that result in an AU base pair. This analysis 

indicates that important structural contacts can be achieved with several different 
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nucleotide combinations. The difference between terminal loops and loops with structural 

importance highlights how activity-based data can help identify non-canonical structures 

that are challenging to predict computationally, and that might be difficult to identify by 

other common approaches, such as chemical probing experiments (Walter et al., 2000).  

Another example of structurally important unpaired regions can be found in the 

CUGA uridine turn (U-turn) motif in the hammerhead ribozyme (Figure 5). This CUGA 

turn forms the catalytic pocket and positions a catalytic cytosine (-1C) at the cleavage site 

(Doudna, 1995). A crystal structure of the sTRSV ribozyme showed a base pair between 

the nucleotides corresponding to C20 and G25 in the ribozyme construct used for our 

experiments (Chi et al., 2008). These two nucleotides showed strong positive epistasis for 

the mutations C20G and G25C, which substitutes a G:C base pair for the original C:G 

base pair. All other single and double mutants in this region showed low activity, and no 

instances of strong positive epistasis within or between this motif (Figure 5). The low 

activity resulting from mutations in this region confirms the functional importance of this 

motif, and indicates that this motif cannot be easily formed or rescued by sequences with 

up to two mutational differences, except for the G:C base pair swap. 

Tertiary interactions between loops in the hammerhead ribozyme provide another 

example of structurally important loop regions. Type III hammerhead ribozymes, like the 

one used in this study, contain tertiary interactions between nucleotides in the loops of P1 

and P2 that are implicated in structural organization of the catalytic core. A crystal 

structure of this loop-loop interaction showed a network of interhelical non-canonical 

base pairs and stacks, with several nucleobases in stem-loop I interacting with more than 

one nucleobase in stem-loop II (Chi et al., 2008; Martick and Scott, 2006). However, 
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there are numerous different loop sequences in naturally occurring hammerhead 

ribozymes indicating that this loop-loop interaction can be formed by a variety of 

different sequences (Burke and Greathouse, 2005; Perreault et al., 2011). We therefore 

anticipated that the we would observe a significant level of positive epistasis between 

these two loops for double mutations that were capable of maintaining these tertiary 

interactions. Surprisingly, however, we found that most individual and double mutations 

do not reduce activity (Figure 5), and double mutants do not show positive epistasis 

(Supplementary Figure 5). This indicates that the multiple interactions between the loops 

compensate for mutations that break a single interaction. It is interesting to note that the 

mutational robustness of these loops has been exploited in bioengineering applications, 

where insertion of an aptamer into one of the loops and randomization of the other 

allowed for the selection of synthetic riboswitches (Townshend et al., 2015). The 

identification of robust structural elements though high-throughput mutational data could 

be useful for identifying better targets for aptamer integration in other ribozymes. 

Epistasis plots are an informative approach to visualizing high-throughput activity data. 

Previous studies have reported comprehensive pairwise mutagenesis of ribozymes 

that provide interesting opportunities for comparison to the data presented here. For 

example, all pairwise mutations in a 42-nucleotide region of the same twister ribozyme 

were previously reported (Kobori and Yokobayashi, 2016). Compared to our 

experiments, these previous experiments used a later transcriptional time point (2h) and 

lower magnesium concentration (6mM). They did not calculate epistasis, and reported the 

Relative Activity of all double mutants using heatmaps similar to the figures presented 

here. The results were highly similar, and the authors were able to identify paired regions 
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in the data. The similarity between the results illustrates the reliability of this sequencing-

based approach, which is promising for future data sharing and meta-analysis efforts. In 

another prior work, all pairwise mutations in the glmS ribozyme were analyzed using a 

custom-built fluorescent RNA array (Andreasson et al., 2020). The power of this 

approach is that they were able to monitor self-cleavage over short and long time scales, 

which enables differentiating both very slow and very fast self-cleaving variants. While 

the authors did not calculate pairwise epistasis, they reported relative activity heatmaps 

and also “rescue effects” when the activity of a double mutant is sufficiently higher than 

the activity of a single mutant. This rescue analysis is very similar to positive epistasis, 

but only takes into account one mutation at a time. This analysis was also able to identify 

many of the know base-pair interactions and some tertiary contacts in the glmS ribozyme. 

In addition, they were able to observe some minor secondary structure rearrangement, 

where mutations in some nucleotides were able to rescue neighboring nucleotides by 

shifting the base-pairing slightly. The pairwise epistasis analysis presented here adds an 

additional approach to extract information from such high-throughput sequencing-based 

analysis of self-cleaving ribozymes. Unlike the rescue analysis, which can only identify 

positive interactions, the ability to detect negative epistatic interactions may help further 

identify structurally important regions for RNA sequence design and engineering efforts.  

Conclusion 

We have determined the relative activity for all single and double mutants of five 

self-cleaving ribozymes and use this data to calculate epistasis for all possible pairs of 

nucleotides. The data was collected under identical co-transcriptional conditions, 

facilitating direct comparison of the data sets. The data revealed signatures of structural 
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elements including paired regions and non-canonical structures. In addition, the 

comprehensiveness of the double mutants enabled identification of catalytic residues. 

Recently, there has been significant progress towards predicting RNA structures from 

sequence using machine learning approaches. The machine learning models are typically 

trained on structural biology data from x-ray crystallography, chemical probing 

(SHAPE), and natural sequence conservation. Self-cleaving ribozymes have been central 

to this effort. Our approach is similar to SHAPE in that it can be obtained with common 

lab equipment and commercially available reagents. The activity data presented provides 

information similar to natural sequence conservation, except that it provides quantitative 

effects of mutations, not just frequency. We hope that the activity-based data presented 

here will provide information not present in these other training data sets and help 

advance computational predictions. 

Materials and Methods 

Mutational library design and preparation of self-cleaving ribozymes 

Single-stranded DNA molecules used as templates for in vitro transcription were 

synthesized with 97% of the base of the reference sequence and 1% of the three other 

remaining bases at each position (Keck Oligo Synthesis Resource, Yale). The ssDNA 

library was made double stranded to allow for T7 transcription via low cycle PCR using 

Taq DNA polymerase. 

Co-transcriptional self-cleavage assay 

The co-transcriptional self-cleavage reactions were carried out in triplicate by 

combining 20 μL 10X T7 transcription buffer (500 μL 1M Tris pH 7.5, 50 μL 1M DTT, 

20 μL 1M Spermidine, 150 μL 1M MgCl2, 280 μL RNase Free water), 4 μL rNTP 
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(25mM, NEB, Ipswich, Ma), 8 μL T7 RNA Polymerase-Plus enzyme mix (1,600 U, 

Invitrogen, Waltham, Ma), 160 μL nuclease free water, and 8 μL of double stranded 

DNA template (4 pmol, 0.5 μM PCR product) at 37°C for 30 minutes. The transcription 

and co-transcription self-cleavage reactions were quenched by adding 60 uL of 50 mM 

EDTA. The resulting RNA was purified and concentrated using Direct-zol RNA 

MicroPrep Kit with TRI-Reagent (Zymo Research, Irvine, Ca), and eluted in 7μL 

nuclease free water. Concentrations were determined via absorbance at 260 nm 

(ThermoFisher NanoDrop, Waltham, Ma), and normalized to 5μM. Reverse transcription 

reactions used 5 picomoles RNA and 20 picomoles of reverse transcription primer in a 

volume of 10 μL. RNA and primer were heated to 72 °C for 3 mins and cooled on ice. 

Reverse transcription was initiated by adding 4 μL SMARTScribe 5x First-Strand Buffer 

(TaKaRa, San Jose, Ca ), 2 μL dNTP (10 mM), 2 μL DTT (20 mM), 2 μL phased 

template switching oligo mix (10 μM), and 2 μL SMARTScribe Reverse Transcriptase 

(200 units, TaKaRa) (Bendixsen et al., 2020). The mixture was incubated at 42 °C for 90 

mins and the reaction was stopped by heating to 72 °C for 15 mins. The resulting cDNA 

was purified on a silica-based column (DCC-5, Zymo Research) and eluted into 7 μL 

water. Illumina adapter sequences and indexes were added using high-fidelity PCR. A 

unique index combination was assigned to each ribozyme and for each replicate. The 

PCR reaction contained 3 μL purified cDNA, 12.5 μL KAPA HiFi HotStart ReadyMix 

(2X, KAPA Biosystems, Wilmington, Ma), 2.5 μL forward, 2.5 μL reverse primer 

(Illumina Nextera Index Kit) and 5 μL water. Several cycles of PCR were examined 

using gel electrophoresis and a PCR cycle was chosen that was still in logarithmic 

amplification, prior to saturation. Each PCR cycle consisted of 98 °C for 10 s, 63 °C for 
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30 s and 72 °C for 30 s. PCR DNA was purified on silica-based columns (DCC-5, Zymo 

Research) and eluted in 22.5 μL water. The final product was then verified using gel 

electrophoresis. 

High-throughput sequencing 

The indexed PCR products for all replicates were pooled together at equimolar 

concentrations based off of absorbance at 260 nm. Paired end sequencing reads were 

obtained for the pooled libraries using an Illumina HiSeq 4000 (Genomics and Cell 

Characterization Core Facility, University of Oregon).  

Sequencing data analysis 

Paired-end sequencing reads were joined using FLASh, allowing ‘outies’ due to 

overlapping reads. The joined sequencing reads were analyzed using custom Julia scripts 

that implement a sequence- length sliding window to screen for double mutant variants of 

a reference ribozyme. Nucleotide identities for each mutant were identified and then 

counted as either cleaved or uncleaved based on the presence or absence of the 5’-

cleavage product sequence. The relative activity (RA) was calculated as previously 

described (Kobori and Yokobayashi, 2016). Briefly, a fraction cleaved (FC) was 

calculated for each genotype in each replicate as FC= Nclv/(Nclv + Nunclv). This value was 

normalized to the reference/wild type fraction cleaved as RA = FC/FCwt. The RA values 

were averaged across the three replicates and then plotted as a heatmap. Epistasis 

interactions for each double mutant (i, j) were quantified as previously described 

(Bendixsen et al., 2017), where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝜀𝜀) =  log (𝑖𝑖,𝑗𝑗)
log(𝑖𝑖)log (𝑗𝑗)

 . In order to eliminate false 

positive detection of epistasis interactions, values were filtered to eliminate instances 

where the difference between the double and any of the single mutants was less than 1-3σ 
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of the overall distribution of differences between the single and double mutant relative 

activities. Values greater than 1 indicate positive epistasis, and values less than zero 

indicate negative epistasis. Mann-Whitney U test was used to determine the probability 

that epistasis or activity values of different structural elements were from the same 

distribution. 

Correlation of thermodynamic stability of paired regions and observed mutational effects. 

Each base paired region was split into two separate RNA sequences containing only the 

nucleotides involved in base pairing, omitting nucleotides belonging to stem loops. 

Complex formation between each pair of strands at was analyzed in Nupack using Serrra 

and Turner RNA energy parameters in order to obtain minimum free energy values for 

each paired region (37°C, [1μM]).  Using custom Julia scripts, the median relative 

activity for single mutations to each paired region was plotted as a function of the 

calculated free energy and a Pearson correlation coefficient was calculated.  
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Figure 2.1. Effects of mutations and pairwise epistasis in a CPEB3 ribozyme.   
A) Relative activity heatmap depicting all possible pairwise effects of mutations on the cleavage 

activity of a mammalian CPEB3 ribozyme. Base-paired regions P1, P2, P3, P4, and T1 are highlighted 
and color coordinated along the axes, and surrounded by black squares within the heatmap. Pairwise 
epistasis interactions observed for each paired regions are each shown as expanded insets for easy 

identification of the specific epistatic effects measured for each pair of mutations. Instances of positive 
epistasis are shaded blue, and negative epistasis is shaded red, with higher color intensity indicating a 
greater magnitude of epistasis. Catalytic residues are indicated by stars along the axes. B) Secondary 
structure of the CPEB3 ribozyme used in this study. Each nucleotide is shaded to indicate the average 

relative cleavage activity of all single mutations at that position. C) Histogram showing the 
distributions of epistasis in the paired regions of CPEB3. The distribution for double mutants within a 
paired region that are not involved in a base-pair is shown in grey, and the distribution for nucleotides 

involved in a base-pair is shown in blue. 
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Figure 2.2. Comprehensive pairwise epistasis landscape for a HDV self-cleaving 

ribozyme.  
A) Relative activity heatmap depicting all possible pairwise effects of mutations on the 

cleavage activity of an HDV ribozyme. Base-paired regions P1, P2, P3, P4, and T1 are highlighted 
and color coordinated along the axes, and surrounded by black squares within the heatmap. Pairwise 
epistasis interactions observed for each paired regions are each shown as expanded insets for easy 

identification of the specific epistatic effects measured for each pair of mutations. Instances of 
positive epistasis are shaded blue, and negative epistasis is shaded red, with higher color intensity 

indicating a greater magnitude of epistasis.  Catalytic residues are indicated by stars along the axes. B) 
Secondary structure of the HDV ribozyme used in this study. Each nucleotide is shaded to indicate the 

average relative cleavage activity of all single mutations at that position. C) Histogram showing the 
distributions of epistasis in the paired regions of HDV. The distribution for double mutants within a 

paired region that are not involved in a base-pair is shown in grey, and the distribution for nucleotides 
involved in a base-pair is shown in blue. 
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Figure 2.3. Comprehensive pairwise epistasis landscape for a twister self-cleaving 
ribozyme. 

A) Relative activity heatmap depicting all possible pairwise effects of mutations on the cleavage 
activity of a twister ribozyme. Base-paired regions P2, P4, T1, and T2 are highlighted and color 

coordinated along the axes, and surrounded by black squares within the heatmap. Pairwise epistasis 
interactions observed for each paired region are each shown as expanded insets for easy identification 
of the specific epistatic effects measured for each pair of mutations. Instances of positive epistasis are 

shaded blue, and negative epistasis is shaded red, with higher color intensity indicating a greater 
magnitude of epistasis.  Catalytic residues are indicated by stars along the axes. B) Secondary 

structure of the twister ribozyme used in this study. Each nucleotide is shaded to indicate the average 
relative cleavage activity of all single mutations at that position. C) Histogram showing the 

distributions of epistasis in the paired regions of twister. The distribution for double mutants within a 
paired region that are not involved in a base-pair is shown in grey, and the distribution for nucleotides 

involved in a base-pair is shown in blue. 
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Figure 2.4. Comprehensive pairwise epistasis landscape for a hairpin self-cleaving 
ribozyme. 

A) Relative activity heatmap depicting all possible pairwise effects of mutations on the cleavage activity 
of a hairpin ribozyme. Base-paired regions P1, P2, and P3 are highlighted and color coordinated along 
the axes, and surrounded by black squares within the heatmap. Pairwise epistasis interactions observed 
for each paired region are each shown as expanded insets for easy identification of the specific epistatic 
effects measured for each pair of mutations. Instances of positive epistasis are shaded blue, and negative 
epistasis is shaded red, with higher color intensity indicating a greater magnitude of epistasis. Catalytic 

residues are indicated by stars along the axes. B) Secondary structure of the hairpin ribozyme used in this 
study. Each nucleotide is shaded to indicate the average relative cleavage activity of all single mutations 
at that position. C) Histogram showing the distributions of epistasis in the paired regions of hairpin. The 

distribution for double mutants within a paired region that are not involved in a base-pair is shown in 
grey, and the distribution for nucleotides involved in a base-pair is shown in blue. D) Violin plots 

showing the distributions of epistasis in all terminal stem loops across all five ribozymes, and epistasis 
observed within loop A, loop B, and between loop A and loop B in the hairpin ribozyme. 
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Figure 2.5. Comprehensive pairwise epistasis landscape for a hammerhead self-

cleaving ribozyme. 
A) Relative activity heatmap depicting all possible pairwise effects of mutations on the cleavage 

activity of a hammerhead ribozyme. Base-paired regions P1, and P2 are highlighted and color 
coordinated along the axes, and surrounded by black squares within the heatmap. Pairwise epistasis 

interactions observed for each paired region are each shown as expanded insets for easy identification 
of the specific epistatic effects measured for each pair of mutations. Instances of positive epistasis are 

shaded blue, and negative epistasis is shaded red, with higher color intensity indicating a greater 
magnitude of epistasis. Catalytic residues are indicated by stars along the axes. B) Secondary structure 

of the hammerhead ribozyme used in this study. Each nucleotide is shaded to indicate the average 
relative cleavage activity of all single mutations at that position. C) Histogram showing the 

distributions of epistasis in the paired regions of hammerhead. The distribution for double mutants 
within a paired region that are not involved in a base-pair is shown in grey, and the distribution for 

nucleotides involved in a base-pair is shown in blue. 
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Table 2.1 Summary of the lengths of each self-cleaving ribozyme used in this 
study, and the number of single and double mutants whose cleavage activity was 
analyzed.    

Ribozyme Name Hairpin Hammerhead CPEB3 HDV Twister 

Ribozyme 
Length 

71 45 69 87 48 

Possible single 
mutants 

213 135 207 261 144 

Possible double 
mutants 

22,365 8,910 21,114 33,669 10,152 

Total mapped 
reads 

5,067,216 8,054,498 9,238,603 3,316,380 7,762,863 

Overall fraction 
cleaved 

0.23 0.19 0.68 0.60 0.31 
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Supplementary Materials 

 
Supplementary Figure 2.1. Histogram of the distributions of read counts (read 
depth) for the single and double mutants matching to each ribozyme analyzed in 

this study (HDV, CPEB3, hammerhead, hairpin, twister). 
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Supplementary Figure 2.2. Distributions for epistasis values seen on and off anti-
diagonal in the epistasis heatmaps. The distributions of epistasis values along the 

anti-diagonal corresponding to double mutations between nucleotides involved in a 
Watson-Crick base-pair are shown in blue, and the epistasis values seen off diagonal 

are shown in gray. 
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Supplementary Figure 2.3. Relationship between the Gibbs free energy (ΔG) of 

each base paired region belonging to the hairpin, hammerhead, CPEB3, HDV, and 
twister ribozymes, and the median relative activity of all single mutants within each 

base paired region (Pearson Correlation = -0.53). 
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Supplementary Figure 2.4. Distributions of relative self-cleavage activity observed 
for sequences containing mutations to the catalytic nucleotides in the CPEB3, HDV, 

twister, hairpin, and hammerhead ribozymes. 
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Supplementary Figure 2.5. Distribution of pairwise epistasis observed between the 

loops of P1 and P2 in the hammerhead ribozyme. 
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Supplementary Table 2.1. Oligonucleotides used in this study. 

Name Sequence Notes 

HDV template  GAACCGGACCGAAGCCCGATTTGGATCCG
GCGAACCGGATCGATGGGTCCCATTCGC
CATTACCGAGGGGACGGTCCCCTCGGA
ATGTTGCCCAGCCGGCGCCAGCGAGGA
GGCTGGGACCATGCCGGCCATCAGGCC
TATAGTGAGTCGTATTAGCCG 

DNA template for in-
vitro transcriptions. 
Bolded nucleotides 
indicate positions 
synthesized using 
doped 
phosphoramidites (3% 
mutation rate)  

CPEB3 template  GAACCGGACCGAAGCCCGATTTGGATCCG
GCGAACCGGATCGAACAGCAGAATTCGC
AGATTCACCAGAATCTGACAGGGGCTG
CGACGTGAACGCTTCTGCTGTGGCCCC
CGAATGGTCCTTTTCCTATAGTGAGTCGT
ATTAGCCG 

DNA template for in-
vitro transcriptions. 
Bolded nucleotides 
indicate positions 
synthesized using 
doped 
phosphoramidites (3% 
mutation rate) 

Twister template GAACCGGACCGAAGCCCGATTTGGATCCG
GCGAACCGGATCGACCGCCCCCTCCACT
TTTATCCGGGCTTGGGACCGGCATTGG
CAGTGTTAGGCGGCCCTTTTCCTATAGTG
AGTCGTATTAGCCG 

DNA template for in-
vitro transcriptions. 
Bolded nucleotides 
indicate positions 
synthesized using 
doped 
phosphoramidites (3% 
mutation rate) 

Hairpin template GAACCGGACCGAAGCCCGATTTGGATCCG
GCGAACCGGATCGATACCAGGTAATATA
CCACAACGTGTGTTTCTCTGGTTCACTT
CTCTCTTTCACGCGCACGTGAAAGAGG
ACTGTCATTTTCCTATAGTGAGTCGTATTA
GCCG 

DNA template for in-
vitro transcriptions. 
Bolded nucleotides 
indicate positions 
synthesized using 
doped 
phosphoramidites (3% 
mutation rate) 

HH template GAACCGGACCGAAGCCCGATTTGGATCCG
GCGAACCGGATCGACTGTTTCGTCCTCA
CGGACTCATCAGACCGGAAAGCACATC
CGGTGACAGTTTTCCTATAGTGAGTCGTA
TTAGCCG 

DNA template for in-
vitro transcriptions. 
Bolded nucleotides 
indicate positions 
synthesized using 
doped 
phosphoramidites (3% 
mutation rate) 

T7 top strand CGGCTAATACGACTCACTATAG PCR primer 
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RT primer TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAG CATGCATGC rGrGrG 

PCR/RT primer 

TSO1 TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAG GCATGCATGCATGCATGC rGrGrG 

Phased template 
switching oligo 1 

TSO2 TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAG TGCATGCATGCATGC rGrGrG 

Phased template 
switching oligo2 

TSO3 TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAG ATGCATGCATGC rGrGrG 

Phased template 
switching oligo 3 

TSO4 TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAG CATGCATGC rGrGrG 

Phased template 
switching oligo 4 
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Abstract 

Ribozymes are RNA molecules that catalyze biochemical reactions. Self-cleaving 

ribozymes are a common naturally occurring class of ribozymes that catalyze site-

specific cleavage of their own phosphodiester backbone. In addition to their natural 

functions, self-cleaving ribozymes have been used to engineer control of gene expression 

because they can be designed to alter RNA processing and stability. However, the 
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rational design of ribozyme activity remains challenging, and many ribozyme-based 

systems are engineered or improved by random mutagenesis and selection (in vitro 

evolution). Improving a ribozyme-based system often requires several mutations to 

achieve the desired function, but extensive pairwise and higher-order epistasis prevent a 

simple prediction of the effect of multiple mutations that is needed for rational design. 

Recently, high-throughput sequencing-based approaches have produced data sets on the 

effects of numerous mutations in different ribozymes (RNA fitness landscapes). Here we 

used such high-throughput experimental data from variants of the CPEB3 self-cleaving 

ribozyme to train a predictive model through machine learning approaches. We trained 

models using either a random forest or long short-term memory (LSTM) recurrent neural 

network approach. We found that models trained on a comprehensive set of pairwise 

mutant data could predict active sequences at higher mutational distances, but the 

correlation between predicted and experimentally observed self-cleavage activity 

decreased with increasing mutational distance. Adding sequences with increasingly 

higher numbers of mutations to the training data improved the correlation at increasing 

mutational distances. Systematically reducing the size of the training data set suggests 

that a wide distribution of ribozyme activity may be the key to accurate predictions. 

Because the model predictions are based only on sequence and activity data, the results 

demonstrate that this machine learning approach allows readily obtainable experimental 

data to be used for RNA design efforts even for RNA molecules with unknown 

structures. The accurate prediction of RNA functions will enable a more comprehensive 

understanding of RNA fitness landscapes for studying evolution and for guiding RNA-

based engineering efforts. 
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Introduction 

RNA enzymes, or ribozymes, are structured RNA molecules that catalyze 

biochemical reactions. One well-studied class of ribozymes are the small self-cleaving 

ribozymes that catalyze site specific cleavage of phosphate bonds in their own RNA 

backbone (Ferré-D’Amaré and Scott, 2010). These self-cleaving ribozymes are found in 

all domains of life, and their biological roles are still being investigated (Jimenez et al., 

2015). In addition to their natural functions, these ribozymes have been used as the basis 

for engineering biological systems. For example, several small ribozymes (hammerhead, 

twister, pistol and HDV) have been used as genetically encoded gene regulatory elements 

by combining them with RNA aptamer and embedding them into untranslated regions of 

genes (Groher and Suess, 2014; Dykstra et al., 2022). This approach continues to gain 

attention because of the central importance of controlling gene expression and the simple 

design and build cycles of these small RNA elements. Nevertheless, ribozymes often 

need optimization for sequence dependent and cell specific effects. This can be achieved 

by modifying the sequence of the ribozymes, but this often requires multiple mutational 

changes and the vast sequence space requires extensive trial and error. Given this large 

sequence space, even the most high-throughput approaches can only find the optimal 

solutions present in the sequences that can be explored experimentally, which is a 

fraction of the total possible sequences. The engineering of ribozyme-based systems 

could benefit from accurate prediction of the effects of multiple mutations in order to 

narrow the search space towards optimal collections of sequences.  

One way to think of the ribozyme optimization problem is in terms of fitness 

landscapes. Molecular fitness landscapes of protein and RNA molecules are studied by 
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measuring the effects of numerous mutations on the function of a given reference 

molecule (Athavale et al., 2014; Blanco et al., 2019). Recently, the fitness landscapes of 

RNA molecules have been studied experimentally by synthesizing large numbers of 

sequences and using high-throughput sequencing to evaluate the relative activity of the 

RNA in vitro, or the growth effect of the RNA in a cellular system, both of which are 

termed “RNA fitness” (Kobori and Yokobayashi, 2016; Li et al., 2016; Pressman et al., 

2019). The goal of in vitro evolution is often to find the highest peak in the landscape, or 

one of many high peaks, by introducing random mutations and selecting for improved 

activity. However, the RNA fitness landscapes that have been experimentally studied so 

far have revealed rugged topographies with peaks of high relative activity and adjacent 

valleys of low activity. Landscape ruggedness is an impediment to finding desired 

sequences through in vitro evolution approaches (Ferretti et al., 2018). Epistasis, defined 

as the non-additive effects of mutations, is the cause of ruggedness in fitness landscapes, 

and epistasis has been used to quantify the ruggedness of fitness landscapes (Szendro et 

al., 2013). More frequent and more extreme epistasis indicates that a landscape is more 

rugged. Importantly, more epistasis also means that the effect of combining multiple 

mutations is challenging to predict even if the effects of each individual mutation are 

known. In addition, experimental fitness landscapes can only study a limited number of 

sequences, except for very small RNA molecules (Pressman et al., 2019). It is often not 

possible to know if the process of in vitro evolution discovered a sequence that is 

globally optimal, or just a local optimum. For these reasons, it has become a goal to 

accurately predict the activity of sequences in order to streamline RNA evolution 
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experiments and to study fitness landscapes in a more comprehensive manner (Groher et 

al., 2019; Schmidt and Smolke, 2021). 

Here, we use high-throughput experimental data of mutational variants of a self-

cleaving ribozyme to train a model for predicting the effect of higher-order combinations 

of three or more mutations. The ribozyme used in this study is the CPEB3 ribozyme 

(Figure 1A). This ribozyme is highly conserved in the genomes of mammals, where it is 

found in an intron of the CPEB3 gene (Salehi-Ashtiani et al., 2006). For training 

purposes, we generated a new data set that includes all possible individual and pairs of 

mutations to the reference CPEB3 ribozyme sequence (Figure 1B). These mutations were 

made by randomization of the CPEB3 ribozyme sequence with a 3% per nucleotide 

mutation rate during chemical synthesis of the DNA template. We reasoned that given the 

extensive amount of pairwise epistasis in RNA (Bendixsen et al., 2017), this data set 

might be sufficient for predicting higher-order mutants. In addition, we used a second, 

previously published data set that included 27,647 sequences comprised of random 

permutations of mutations found in mammals that include up to 13 mutational differences 

from the same reference ribozyme (Bendixsen et al., 2021). This second data set not only 

contains higher-order mutational combinations, but also a broad range of self-cleaving 

activity (Figure 1D). In both data sets, the relative activity of each sequence was 

determined by the deep sequencing of co-transcriptional self-cleavage data, as previously 

described. Briefly, the mutated DNA template was transcribed in vitro with T7 RNA 

polymerase. The transcripts were prepared for Illumina sequencing by reverse 

transcription and PCR. Relative activity was determined as the fraction cleaved, defined 
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by the fraction of sequencing reads that mapped to a specific sequence variant in the 

shorter, cleaved form relative to the total number of reads for that sequence variant.  

We set the goal of being able to predict the activity of the higher-order mutants in 

the phylogenetically derived fitness landscape (Figure 1D). In addition, we wanted to 

guide future experiments aimed at producing additional data for training models of 

ribozyme-based systems. The number of possible sequences increases exponentially with 

the number of variable nucleotide positions. In addition, the probability of finding active 

ribozymes at higher mutational distances becomes increasingly unlikely. Experiments 

aimed at training predictive models will need to choose realistic numbers of sequences 

that can have the highest impact on model performance. We therefore evaluated the effect 

of adding to the training data sequences with increasing mutational distances from the 

wild-type sequence as well as the effect of reducing the number of sequences in the 

training data. The results of these experiments were expected to be useful in guiding the 

choice of which sequence variants, and how many, to analyze experimentally in order to 

produce effective training data sets. 

Results 

We first evaluated our new training data set that contained all single and double-

mutants of the CPEB3 ribozyme. We found that the data did in fact contain full coverage 

of the possible 207 single mutants and the 21,114 double mutants. While the number of 

reads that mapped to each of these sequences varied, we found that, on average, 170 

reads mapped to each double mutant, and ~18,000 reads mapped to each single mutant 

(Supplemental Figure 1). This read depth was sufficient for the determination of the 

fraction cleaved for all single and double mutants (Figure 1B). Mapping the fraction 
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cleaved to base paired structural elements showed expected patterns of activity caused by 

compensatory base pairs. Mutations that break a base pair typically showed low activity, 

but a second mutation that restored the base pair showed high activity. To further 

evaluate this data, we calculated the non-additive pairwise epistasis in this data set 

(Figure 1C). Together, this analysis indicated that this data set contained a wide range of 

ribozyme activity and the effects of all pairwise intramolecular epistatic interactions. 

In order to determine the training potential of the comprehensive double-mutant 

data, we first trained models using only the fraction cleaved data for sequences with two 

or fewer mutations including the wild-type reference sequence. We then tested the 

models’ performance in predicting the fraction cleaved for sequences with increasing 

numbers of mutations. We trained two models with two approaches (see Materials and 

Methods). The first approach used a Random Forest regressor. In the second approach, 

we added a Long Short-Term Memory (LSTM) recurrent neural network to extract 

hidden features from the data. We then fed the hidden features with associated fraction 

cleaved to a Random Forest regressor. We will refer to this approach as “LSTM”. We 

found that models trained on 2 or fewer mutations with Random Forest outperformed 

LSTM at predicting the activity of sequences with five or fewer mutations (Figure 2 A-

C), but LSTM performed better when predicting the activity of sequences with six or 

more mutations relative to the wild-type (Figure 2 D-I). However, both approaches 

showed a decrease in the correlation between predicted and observed when challenged to 

predict the activity of sequences with higher numbers of mutations, and both resulted in 

relatively low correlation (Pearson r < 0.7) for sequences with seven or more mutations 

when trained only on this double mutant data (Figure 2 and Supplementary Table 2). We 
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concluded that models trained on simple random mutagenesis containing all double 

mutants can be useful for predicting lower mutational distances, but we anticipated that 

additional data might improve the ability to predict the effect of higher numbers of 

mutations. 

To determine the effect of adding higher-order mutants to the training data, we 

divided the phylogenetic derived sequence data by mutational distance and re-trained 

models with increasing orders of mutations in the training set. As expected, adding 

higher-order mutants improved the predicted to observed correlation at higher mutational 

distances (Figure 3 and Supplemental Figures 2-14). Interestingly, we found that the 

Random Forest approach outperformed the LSTM approach when sequences with more 

mutations were included in the training data. This is especially apparent for predicting the 

activity of sequences with 8-10 mutations. The Random Forrest approach resulted in 

models with high correlation between predicted and observed for all mutational distances 

when trained with data from sequences with four or more mutations (Figure 3 A-C). For 

both approaches, the largest improvements in the correlations occurred when sequences 

with 3 mutations (relative to wild-type) were added to the data. Subsequently appending 

additional sequences with greater numbers of mutations had diminishing improvements 

on the correlation. We note that all the testing data was set aside prior to training and 

identical testing data was used for all models. The results demonstrate that adding higher 

order mutants to the training data improves the Pearson correlation of sequences at higher 

distances in this data set. It is important to note that the phylogenetically derived data has 

different numbers of sequences for each class of mutations (Table 1), and sequences with 

higher numbers of mutations in our data show mostly low activity (Supplementary Figure 
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15). This helps interpret the effect of sequentially adding higher-order mutant sequences 

to the training data. It is also important to note that the phylogenetic derived sequences 

only contain mutations at thirteen different positions. The higher order sequences in this 

data are therefore combinations of the lower order sequences. For example, a sequence 

with six mutations can be constructed by combining two sequences with three mutations, 

both of which would be in the “3 mutations” training data. Our model is therefore 

predicting the effects of combining sets of mutations, and adding precise sets of lower 

order mutations that re-occur in higher order mutations clearly improves the correlations 

between prediction and experimental observation in our data. 

In order to inform future experiments for collecting training data, we next set out 

to determine the effect of decreasing the amount of data in the training sets. Starting from 

the 80% of data used as prior training data, we randomly sampled sequences from this 

data to create new training data sets with 60%, 40%, 20%, 10% and 1% of the total data. 

These subsampled data sets were used to train models using the random forest regressor. 

The same testing data was set aside for all models and used to compare the Pearson 

correlation coefficient of each model trained with decreasing amounts of data. As an 

illustrative example, we focused on a model trained with sequences with 5 or fewer 

mutations relative to wild-type used to predict the activity of sequences with 7 mutations 

(Figure 4 and Supplementary Table 1). We chose this example because it achieved very 

high correlation (Pearson  r = 0.99) when trained with 80% (25,733 unique sequences) of 

the data and therefore provided an opportunity to observe how rapidly the correlation 

decreased with less data. We found that the models trained on 5 or fewer mutations 

predicted with high correlation when as little as 40% (12,866) of the data was used for 
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training (Pearson r = 0.97). With only 20% (6,433) and 10% (3,217) of the data, the 

model still showed good prediction accuracy with a Pearson correlation r ≅ 0.9. 

Surprisingly, we still observed reasonably high correlation when including only 1% (322) 

of the training data, and this was reproducible over five different models trained with 

different random samples of the data (Pearson r = 0.81, stdev = 0.046, n = 5). Similar 

results were observed with other training and testing scenarios. To illustrate general 

trends, we have plotted the Pearson correlation for the same model trained on 5 or fewer 

mutations when predicting the activity of sequences with 6, 7, 8 or 9 mutations, and for a 

model trained on 9 or fewer mutations used to predict sequences with 5, 6, 7, or 8 

mutations (Figure 4). This analysis suggests that the total amount of training data is not 

critical for predicting the activity of sequences in our data set. When combined with the 

diminishing returns of adding more higher order mutations (Figure 3), this analysis 

emphasizes the importance of collecting appropriate experimental data sets for training 

that include ribozymes with more mutations that still maintain relatively high activity. 

However, given the low probability of finding higher-order sequences with higher 

activity, an iterative approach with several cycles of predicting and testing might be 

necessary to acquire such data. 

While the primary goal was to predict the relative activity of RNA sequences, we 

wondered if the models might also be useful for predicting structurally important 

nucleotides. To address this question, we analyzed the “feature importance” in several of 

our Random Forest models. Feature importance is a method to assign importance to 

specific input data. Because our data only uses sequence as input, the features in our data 

are specific nucleotides (A, G, C or U) at specific positions. We found that for the 
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Random Forest models, the most important feature all clustered around the active site of 

the ribozyme (Supplemental Figures 16 and 17). Further, the CPEB3 ribozyme uses metal 

ion catalysis and several of the most important features were nucleotides that have been 

observed coordinated to the active site magnesium ion in the CPEB3 ribozyme, or the 

analogous nucleotides in the structurally similar HDV ribozyme (Kapral et al., 2014; 

Skilandat et al., 2016). For example, for all the models trained with some higher order 

mutants, the most important feature was G1, which positions the cleaved phosphate bond 

in contact with the catalytic magnesium ion. The second most important feature was G25, 

which forms a wobble base pair with U20 (Lévesque et al., 2012), another important 

feature (top 4-6), and this nucleotide pair coordinates the active site magnesium ion 

through outer sphere contacts. The catalytic nucleotide C57 binds the same catalytic 

magnesium as the G25:U20 wobble pair, and had a high feature importance similar to 

U20. Most of the other important features are involved in base pairs that stack or interact 

with the metal ion coordinating bases. Interestingly, we found that nine of the ten most 

important features were identical for models trained with only single and double mutants 

or with increasing amounts of higher-order mutants. However, the G1 and G25 features 

became increasingly more important as sequences with higher mutational distance were 

added to the training data. This indicates that the higher-order mutants in the training data 

helped emphasize structurally critical nucleotides. We conclude that the machine learning 

models presented identified nucleotides involved in forming the active sites of the 

CPEB3 ribozyme. Because we did not use structural data to train our models, the results 

suggest that similar data could identify active sites in RNA molecules with unknown 

structures.  
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Discussion 

We have shown that a model trained on ribozyme activity data can accurately 

predict the self-cleavage activity of sequences with numerous mutations. This approach 

can be used to guide experiments based on a relatively small set of initial data. 

Importantly, the approach did not use structural information such as X-ray 

crystallography or cryo-EM, and used only sequence and activity data, which can be 

obtained with common molecular biology approaches (in vitro transcription, RT-PCR, 

and sequencing). In addition, the training data starts with small amounts of synthetic 

DNA. The comprehensive double mutant data and the phylogenetic derived data each 

started from a single DNA oligo synthesis that used doped phosphoramidites at the 

variable positions. Each data set was collected on a single lane of an Illumina sequencer. 

The approach presented in this paper is therefore accessible, rapid and inexpensive as 

compared to approaches that use structural data to train their models.  

Sequence conservation of naturally occurring RNA molecules has been another 

useful data type for training models to predict RNA structure from sequence (De 

Leonardis et al., 2015; Weinreb et al., 2016). This approach is based on the observation 

that nucleotide positions that form a base pair often show co-evolutionary patterns of 

sequence conservation. In some cases, this co-evolutionary data has been combined with 

thermodynamic predictions or structural data from chemical probing, such as SHAPE 

experiments (Calonaci et al., 2020). Numerous ribozymes, aptamers and aptazymes have 

been discovered through in vitro evolution experiments and conservation data is not 

available unless sequencing experiments were applied during the selection process. Our 

approach could be used to expand functional information of non-natural RNA molecules 
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which could then be used to guide structure prediction of these molecules in a way 

similar to how naturally occurring sequence conservation has been used. In addition, 

sequence conservation does not necessarily predict relative activity. For example, while 

the CPEB3 ribozyme is highly conserved in nature, not all of the sequence are equally 

proficient at catalyzing self-cleavage (Chadalavada et al., 2010; Bendixsen et al., 2021). 

Our approach using machine learning from experimentally derived data may prove useful 

for guiding experiments with non-natural RNA molecules discovered through in vitro 

selection or SELEX-like approaches. However, adopting this machine learning approach 

will require that each experimenter acquire specific data for their system necessary to 

train and test sequences with the functions they are investigating.  

With future work, it may be possible to produce more general models of ribozyme 

activity. For example, a model trained on data sets from several different self-cleaving 

ribozymes with different nucleotide lengths might learn to predict the activity of 

sequences of arbitrary length and sequence composition. In fact, recent advances in RNA 

structure prediction have used the crystal structures of several different self-cleaving 

ribozymes as training data to develop predictive modes that achieve near-atomic level 

resolution of arbitrary sequences (Townshend et al., 2021). Alternatively, models trained 

on ribozymes with different activities beyond self-cleavage might be able to classify 

sequences as ribozymes of various functions. There has been some success with 

generating general models for predicting protein functions. The latent features identified 

by deep generative models of protein sequences are being used to better understand the 

complex, higher-order amino acid interactions necessary to achieve a functional protein 

structure (Riesselman et al., 2018; Detlefsen et al., 2022). We hypothesize that latent 
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features could aid in the identification of generalized parameters that govern the epistatic 

interactions of higher-order mutants of RNA sequences as well. We hope that the 

accuracy and accessibility of the approach presented here will inspire others to carry out 

similar experiments and initiate the data sharing that will be needed to develop more 

general models, similar to what is being accomplished for protein functional predictions 

(Biswas et al., 2021). 

One challenge to our predictive models appears to be the low frequency of active 

sequences at higher mutational distances. In our phylogenetically derived data the vast 

majority of sequences have very low activity (Figure 1D), and the probability of finding 

sequence with high fraction cleaved decreases with the number of mutations relative to 

wild-type. As a consequence, models trained on lower-order mutant variants tend to 

overestimate the activity of sequences at higher mutational distances. It has been 

previously observed that experimental RNA fitness landscapes are dominated by negative 

epistasis, which means that mutations in combination tend to have lower fitness than 

would be expected from the additive effects of individual mutations (Bendixsen et al., 

2017). The overestimation of fraction cleaved at higher mutational distances suggests that 

our models have a difficult time learning to predict negative epistasis. It has been 

previously observed that mutations with “neutral” or “beneficial” effects on protein 

function often have destabilizing effects on protein structure (Soskine and Tawfik, 2010). 

We postulate that the same effect is causing negative epistasis in the RNA data. This 

suggests that additional information, such as measurements or estimates of 

thermodynamic stability of helices, might be necessary for increasing accuracy at even 

higher distances beyond those offered by this data set (Groher et al., 2019; Yamagami et 
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al., 2019). For example, we have recently demonstrated that our sequencing based 

approach to measuring ribozyme activity can be extended to include magnesium titrations 

in order to evaluate RNA folding/stability (Peri et al., 2022). In the future, combining 

structural and functional information might be the best approach to accurately design 

RNA molecules with desired functional properties. 

Materials and Methods 

Ribozyme activity data 

Ribozyme activity was determined as previously described (Bendixsen et al., 

2021). Briefly, DNA templates were synthesized with the promoter for T7 RNA 

polymerase to enable in vitro transcription. Templates were synthesized with mixtures of 

phosphoramidites at variable positions. For the comprehensive double-mutant data set, 

templates were synthesized with 97% wild-type nucleotides and 1% each of the other 

three nucleotides. For the phylogenetic derived data set, the template was synthesized 

with an equal mixture of the naturally occurring nucleotides that were found at 13 

positions that varied across 99 mammalian genomes. During in vitro transcription, RNA 

molecules self-cleaved at different rates. The reaction was stopped at 30 minutes, and the 

RNA was concentrated and reverse transcribed with a 5’-RACE protocol that appends a 

new primer site to the cDNA of both cleaved and uncleaved RNA (SMARTScribe, 

Takara). The cDNA was PCR amplified with primers that add the adaptors for Illumina 

sequencing. This procedure was done in triplicate with unique dual-indexes for each 

replicate. DNA was combined equimolar and sent for sequencing (GC3F, University of 

Oregon). Sequencing was performed on a single lane of a HiSeq 4000 using paired-end 

150 reads.  
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Ribozyme activity from sequence data 

FastQ sequencing data were analyzed using custom Julia and Python scripts. 

Briefly, the scripts identified the reverse transcription primer binding site at the 3’-end to 

determine nucleotide positions and then determined if the sequence was cleaved or 

uncleaved by the absence or presence of the 5’-upstream sequence. For the single and 

double mutants, all possible sequences were generated and stored in a list, and reads that 

matched the list elements were counted and cleaved or uncleaved was determined by the 

presence or absence of the 5’-upstream sequence. For the phylogenetically derived data, 

nucleotide identities were determined at the expected 13 variable positions by counting 

the string character position from the fixed regions. Sequencing reads were discarded if 

they contained unexpected mutations in the primer binding site, the uncleaved portion, or 

the ribozyme sequence. For each unique genotype in the library the number of cleaved 

and uncleaved sequences were counted and ribozyme activity (fraction cleaved) was 

calculated as fraction cleaved = countscleaved/(countscleaved + countsuncleaved). 

Machine Learning 

Random Forest regression uses an ensemble of decision trees to improve 

prediction accuracy. Each tree in the ensemble is created by partitioning the sequences 

within a sample into groups possessing little variation. Each sample is drawn with 

replacement and the resulting trees are aggregated into forests that best predict the 

cleavage rates of the sequences. The Random Forest regression was performed using the 

python package scikit-learn. Each sequence was transformed into a 69 by 4 one-hot 

encoding representation of the sequence. Each of the four possible nucleotides within the 

sequence was represented by a vector of length 4 possessing a uniquely located “1” 
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within the vector to signify the nucleotide’s identity. Each sequence in the training set 

was fit using scikit-learn’s RandomForestRegressor ensemble module. Feature 

importance was computed via a forest of randomized trees using the 

features_importances function in the module under default settings. Briefly, the relative 

importance of a feature was determined by the depth of the feature when it was used as a 

decision node in a tree. Features used at the top of the tree contribute to the final 

prediction decision of a larger fraction of the input samples. The expected fraction of the 

samples they contributed to was used as an estimate of the relative importance of the 

features. 

LSTM is a recurrent neural network commonly used for the predictive modeling 

of written text data, which has sequential dependencies. Here we used an LSTM to 

compute a set of hidden features given a set of nucleotide sequences. These hidden 

features are learned by the LSTM in a supervised way for the purpose of relating the 

nucleotide sequence to the corresponding ribozyme activity (fraction cleaved).  The 

LSTM network has an architecture where each cell C outputs the next state ht (1 ≤ t ≤ n) 

by taking in input from the previous state ht-1 and the embedding xt of the current 

nucleotide in the sequence. The output hn of the last cell of the LSTM is then used as 

input to a Random Forest regressor to predict the sequence functional activity rate. The 

LSTM model was built using PyTorch’s open-source machine learning framework. 

Sequences were trained using an LSTM layer with 32 hidden dimensions and a dropout 

rate of 0.2. Each sequence was embedded in a 69 by 4 tensor (where 4 is the size of the 

nucleotide embedding) and then batched in groups of 64 sequences for input to the 

model. The gradient descent was performed using PyTorch’s built-in Adam optimizer 
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and MSELoss criterion. Twenty-five training epochs were performed on each training 

set. 

Training and Test Data 

The data set containing the fraction cleaved data from the 27,647 phylogenetically 

derived sequences was binned based on the number of mutations relative to the wild-type 

ribozyme. For each bin, a portion of the data (20%) was chosen at random and set aside 

as test data. This resulted in test data sets that were also separated by the number of 

mutations relative to the wild-type sequence. Training data sets were created from the 

80% of data in each mutational bin that was not set aside for testing. Training data sets 

were created by combining bins at a given number of mutations to all the bins with lower 

numbers of mutations. Training data included 100% of the single and double mutant data. 

For reduced training sets were created by randomly sampling different numbers of 

sequences from the original full training data sets. 

Data Availability 

Sequencing reads in FastQ format are available at ENA (PRJEB51631). Sequence 

and activity data and computer code is available at GitLab 

(https://gitlab.com/bsu/biocompute-public/ml-ribo-predict.git). 
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Figures 

 
Figure 3. 1. The CPEB3 ribozyme and data prediction challenge.  
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(A) Secondary structure diagram of the CPEB3 ribozyme. The white arrow indicates the 
site of self-cleavage. Nucleotide color indicates the average relative activity of the three 
possible point mutations at each position. (B) Heatmap representation of comprehensive 

single and double-mutant data. Each pixel in the heatmap shows the ribozyme activity for 
a specific double mutant indicated by the nucleotide positions on the top and right of the 
heatmap. Insets show base paired regions and specific mutations. Ribozyme activity is 

determined as the fraction of total reads that map to each sequence that are in the cleaved 
form (fraction cleaved) relative to the wildtype fraction cleaved. (C) Distribution of 

pairwise epistasis from double mutant data. Epistasis was calculated as ε = log10 
(WAB*Wwt / WA*WB), where Wwt is the fraction cleaved of the wild-type ribozyme, WA 

and WB are fraction cleaved of sequences with individual mutations and WAB is the 
fraction cleaved of the sequence with both individual mutations. (D) Higher mutational 
distance variants of the CPEB3 ribozyme represented as a fitness landscape. Ribozyme 

activity (fraction cleaved) is shown for 27,647 sequence variants derived from 
permutations of naturally occurring mutations. Each node represents a different sequence 
and the size and color of the node is scaled to the ribozyme activity. Edges connect nodes 
that differ by a single mutation. Sequences are binned into quintiles of ribozyme activity 

and the number of genotypes reports the number of sequences in each quintile. 
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Figure 3.2. Prediction accuracy of models trained on comprehensive individual 

and pairs of mutations. 
Scatter plots of Predicted (fraction cleaved from the models) and Observed (fraction 

cleaved from experiments). The models were trained on the experimentally determined 
fraction cleaved for the wild-type and all possible sequences with one mutation (207 
sequences) or two mutations (21,114 sequences). Pearson correlation coefficients r 
reported for the model trained by LSTM-RF (blue) and the Random Forest (orange) 

approach. The sequences are separated by the number of mutations relative to the wild-
type, as indicated by the title of each graph. 
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Figure 3.3. Improvement in prediction accuracy from increased mutational 

distances in the training data. 
Changes in Pearson r, R2, and mean squared error (MSE) of prediction-observed 

correlation (y-axis) with increasing numbers of max mutations within the training data (x-
axis). Training sets included all sequences up to and including the y-axis value. For each 

plot, colors indicate the numbers of mutations in sequences in the test data (see key). 
Insets show changes to the same prediction accuracy measurement with the 3-7 mutation 

training data, to allow more visual resolution. 
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Figure 3.4. Effects of reducing the number of sequences in the training data. 
Scatter plots of Predicted (fraction cleaved from the models) and Observed (fraction 
cleaved from experiments). Shown are the results for models trained with decreasing 

amounts of sequences with 5 or fewer mutations using the random forest approach and 
predicting the fraction cleaved of sequences with 7 mutations. The percent of the total 

sequences used in the training data is indicated in the title of each plot. Pearson 
correlation coefficients are indicated as insets. The results of training with 5 or fewer 

mutations (Train 5) on different test data sets (6-9) and 9 or fewer mutations (Test 9) on 
different train data sets (6-8) are also shown. 
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Table 3.1. Counts of sequences in training and testing data sets. 

No. of mutations Training Testing 

1 207 --- 

2 21114 --- 

3 414 104 

4 1240 310 

5 2650 662 

6 4162 1040 

7 4867 1217 

8 4241 1060 

9 2720 680 

10 1249 312 

11 389 97 

12 74 18 

13 6 2 
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Supplementary Figure 3.1. Histogram of CPEB3 variant counts for single (left) and 
double (right) mutants.  Mean, minimum and maximum values for each distribution 

are indicated. 
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Supplementary Figure 3.2. Three-mutation sequence activity predictions. 

Scatter plots comparing fraction cleaved values measured from experiments (observed) to 
those predicted by models (predict) trained by either random forest (blue) or the LSTM 
approach (orange). Each scatter plot shows the predictions from a different training data 
set. The training data contained sequences with up to the number of mutations in the title 

(Train N). For example, ‘Train 5’ indicates that the model was trained using data for 
sequences containing 1,2,3,4, and 5 mutations. The line indicates unity, not a fit to the 

data. 
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Supplementary Figure 3.3. Predicting the activity of sequences with four mutations 

(see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.4. Predicting the activity of sequences with five mutations. 

(see Supp. Fig. 3.2 for details). 

. 
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Supplementary Figure 3.5. Predicting the activity of sequences with six mutations 

(see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.6. Predicting the activity of sequences with seven 

mutations (see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.7. Predicting the activity of sequences with eight 

mutations (see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.8. Predicting the activity of sequences with nine mutations 

(see Supp. Fig. 3.2 for details). 

 

 

 



100 

 

 
Supplementary Figure 3.9. Predicting the activity of sequences with 10 mutations 

(see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.10. Predicting the activity of sequences with 11 mutations 

(see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.11. Predicting the activity of sequences with 12 mutations 

(see Supp. Fig. 3.2 for details). 
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Supplementary Figure 3.12. Line plots showing the mean square error (MSE) of 

predicted cleavage activity values obtained from random forest (blue) and LSTM 
with random forest (orange) machine learning models trained on data with 

incrementally increasing numbers of mutations shown along the x-axis. Each plot 
shows the MSE for predictions obtained for sequences containing the number of 

mutations indicated by the plot title. 
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Supplementary Figure 3.13. Line plots showing the Pearson correlation values of 
predicted cleavage activity obtained from random forest (blue) and LSTM with 

random forest (orange) machine learning models trained on data with incrementally 
increasing numbers of mutations shown along the x-axis. Each plot shows the 

Pearson correlation for predictions obtained for sequences containing the number of 
mutations indicated by the plot title. 
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Supplementary Figure 3.14 Line plots showing the R2 values of predicted cleavage 

activity obtained from random forest (blue) and LSTM with random forest (orange) 
machine learning models trained on data with incrementally increasing numbers of 
mutations shown along the x-axis. Each plot shows the R2 for predictions obtained 

for sequences containing the number of mutations indicated by the plot title. 
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Supplementary Figure 3.15. Violin plots showing the distribution of cleavage rates 

observed in the test data (orange) and the total data set for a given mutation (blue). 
The distributions are shown separately for each data set containing increasing 

numbers of mutations, from 3 to 12. 
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Supplementary Figure 3.16. Summary of important features extracted from random 

forest models. 
A-B) Bar graphs of feature importance when training with up to five mutations. Each 

feature represents a specific nucleotide at a specific location, as indicated by the X-axis 
label (position), and color (nucleotide identity). Positions 1-35 are shown in (A), and 

positions 36-69 are shown in (B). The height of the bar indicates the relative importance. 
C) Table ranking the top ten important features extracted from random forest models 

trained with increasing numbers of mutations. Nucleotides discussed in the main text are 
highlighted. 
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Supplementary Figure 3.17. Crystal structure of an HDV ribozyme (PDB 3NKB) 
showing the CPEB3 analogous positions representing the top ten important features 

identified in our random forest models. 
The feature importance depicted was extracted from the random forest model trained on 

CPEB3 data including up to 5 mutations. The nucleotides identified as the top ten 
important features are shaded in orange, the catalytic nucleotide is shaded green 

(C57/75), and the catalytic Mg2+ ion is depicted as a blue sphere. 
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Supplementary Table 3.1. Table comparing Pearson and Spearman correlation 
metrics for reduced training sets containing sequences with up to 5 mutations 
predicting sequences with 7 mutations. Both Pearson and Spearman correlations 
show similar, limited reductions in correlation as training set size is reduced. 

 

 

Supplementary Table 3.2. Table comparing Pearson and Spearman correlation 
metrics for training set containing sequences with up to 2 mutations predicting 
sequences with 3 to 11 mutations using the LSTM with Random Forest and the 
Random Forest models. Both Pearson and Spearman correlations show similar 
reductions in correlation as predictive distance grows. 
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Abstract 

Advances in gene editing technologies such as CRISPR-Cas9 now enable the 

precise modification of genetic material. However, the advancement of synthetic gene 

regulatory technologies is still needed to realize safe and effective implementation of 

genetic engineering practices. RNA riboswitches have emerged as promising candidates 

for such realization. Riboswitches are naturally occurring structured RNA elements found 

in the untranslated regions of some mRNA transcripts, where they exert metabolite 

responsive regulation of gene expression. Riboswitches are modular in structure, 

containing an aptamer domain that specifically binds to a metabolite, and a dynamically 

structured expression platform domain whose conformation is influenced by the bound or 

unbound state of the aptamer. Synthetic riboswitches, or aptazymes, have been developed 

with self-cleaving ribozymes as the expression platform module, and aptamers as the 

metabolite binding module. Previously developed aptazymes often exhibit undesired 
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basal gene expression when in the ‘off’ state, and a narrow dynamic range between gene 

activation or repression. Additionally, efforts to develop synthetic riboswitches in 

mammalian cells has compounded issues with their performance, and further research 

and development is needed before widespread implementation in real world applications. 

However, progress has been relatively slow, in part because the performance of 

riboswitches is generally inferred via bulk protein read outs, losing important kinetic and 

mechanistic insight into the self-cleavage activity of the aptazyme at the RNA level. 

Because mammalian mRNA transcription and processing are physically and kinetically 

coupled, the co-transcriptional kinetics of synthetic aptazyme riboswitches is 

undoubtedly of central importance to their performance.  Here, we developed a live-cell 

platform to observe aptazyme cleavage activity at the site of transcription. Several 

aptazymes and ribozyme controls were imbedded into the 3’-UTR of an established RNA 

reporter gene fluorescently labelled with phage coat proteins fused to GFP or mCherry. A 

clonal cell line expressing both GFP and mCherry fusion constructs was established using 

lentiviral transfection and colony isolation. Each reporter gene was integrated into the 

same chromosomal location using FRT/flp recombination, confirmed by sequencing, 

establishing several cells lines that can be directly compared. This platform will enable 

observation of synthetic riboswitch activity in mammalian cells, providing mechanistic 

details that will guide future efforts aimed at their improvement.  

Introduction 

Riboswitches are naturally occurring protein independent gene regulatory 

elements found in untranslated regions of some mRNA transcripts. Many distinct classes 

of these RNA based gene regulatory elements are widely distributed in bacteria, and 
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some classes have also been identified in the genomes of eukaryotic species (McCown et 

al., 2017). Riboswitches are generally composed of two domains, a metabolite sensing 

domain referred to as an aptamer, and an expression platform module. Aptamers form 

complex 3D structures capable of selectively binding and detecting the presence of 

intracellular metabolites such as coenzymes, nucleotide derivatives, signaling molecules, 

amino acids, and ions. The binding of the aptamer’s ligand induces a structural 

conformation change that permeates through the expression platform portion of the 

riboswitch, which alters gene expression (Serganov & Patel, 2012).  

Riboswitches modulate gene expression through several mechanisms. The most 

common mechanisms influence either transcription termination or translation initiation. 

In the case of transcription termination, binding of the ligand induces the switching 

between terminator and anti-terminator stems, which effectively terminates or promotes 

transcription. For translation initiation, ligand induced conformational changes lead to the 

sequestration or exposure of a ribosomal binding site. Other mechanisms are less 

common, such as altering splicing or RNA stability (Etzel & Mörl, 2017; Pavlova et al., 

2019; Roth & Breaker, 2009; Serganov & Nudler, 2013; Serganov & Patel, 2012). 

The several classes of naturally occurring riboswitches in the genomes of 

organisms have gained attention from synthetic biologists and bioengineers looking to 

develop tools to synthetically regulate gene expression. Advances in gene editing 

technologies now enable precise modification and engineering of biological systems with 

a variety of applications such as personalized medicine and gene therapy, metabolic 

engineering for the production of biofuels and medicines, and crop improvement 

(Barrangou & Doudna, 2016; Gupta & Shukla, 2017; Pickar-Oliver & Gersbach, 2019; 
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Shanmugam et al., 2020). However, in order to safely and effectively engineer desired 

metabolic pathways or modify genes in an individual organism, robust and orthogonal 

gene regulatory mechanisms are still needed.  

Riboswitches are promising candidates for synthetic gene regulatory platforms for 

several reasons. First, they are fairly modular in nature, and variation in expression 

platforms and aptamer domains presents opportunities to develop riboswitches that target 

a desired ligand, and affect gene regulation at desired process (e.g. transcription initiation 

or termination vs translation initiation). Importantly, in vitro selection experiments 

(SELEX) allows for the generation of new aptamer domains that can target virtually any 

desired ligand, enabling the development of orthogonal and external control over gene 

regulation (Dixon et al., 2010; Etzel & Mörl, 2017). Second, riboswitches present a 

protein-free avenue to directly regulate gene expression of the mRNA transcripts in 

which they reside, and do not depend on the expression of intermediate protein-based 

transcription factors. Because of this, riboswitches require a much smaller genetic 

footprint than protein transcription factors, with reduced potential for immunogenicity, 

and a decreased energetic burden on the cell (Yokobayashi, 2019). Finally, high-

throughput in vivo selection strategies allows for the selection and identification of 

synthetic candidate riboswitches which respond to a desired ligand and alter gene 

expression at the desired step (Desai & Gallivan, 2004; Townshend et al., 2015; Wieland 

et al., 2012).  

Several such efforts to develop synthetic riboswitches have utilized catalytically 

active RNA molecules that catalyze the cleavage of their own phosphodiester backbone, 

called self-cleaving ribozymes. Riboswitches developed using self-cleaving ribozymes as 
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an expression platform are referred to as aptazymes, as they are typically generated via 

the addition of an aptamer domain to a self-cleaving ribozyme (Etzel & Mörl, 2017; 

Yokobayashi, 2019). Aptazymes are thought to modulate gene expression by reducing 

the stability and subsequent processing and translation of mRNA transcripts upon self-

cleavage. Binding of the ligand by the aptamer domain can stabilize a catalytically active 

conformation, and the presence of the ligand would increase self-cleavage and reduce 

gene expression (“off switch”). Or the ligand could stabilize an inactive conformation, 

and the presence of the ligand would decrease self-cleavage and increase gene expression 

(“on switch”) (Zhong et al., 2016).  

While efforts by several research groups have successfully generated synthetic 

aptazyme based riboswitches in a variety of model organisms, improvement is still 

needed to realize widespread adoption in real world applications (Lee & Oh, 2015; 

Ogawa & Maeda, 2008; Townshend et al., 2015). One issue is that many previously 

developed aptazyme riboswitches exhibit undesired levels of background expression and 

apparent ‘leakiness’. Additionally, low activation ratios of only 2-4 fold are common, and 

a more robust change in gene expression is essential for their effective implementation 

(Etzel & Mörl, 2017). One of the major challenges in addressing these limitations lies in 

the fact that current methods for developing synthetic riboswitches is based on protein 

level detection. This approach only provides an indirect read-out of the synthetic 

riboswitch performance, and lacks important kinetic information at the RNA level where 

they function.   

Mammalian transcription and mRNA processing is complex, and involves the co-

transcriptional recruitment of multiple enzyme complexes that facilitate splicing, 
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capping, polyadenylation, and nuclear export of a nascent RNA transcript (Bentley, 2014; 

Komili & Silver, 2008). This is largely achieved via interactions with the C-terminal 

domain (CTD) of RNA polymerase II, where changes in phosphorylation patterns are 

associated with differential recruitment of appropriate mRNA processing enzymes 

(Heidemann et al., 2013; Phatnani & Greenleaf, 2006). Additionally, these highly 

coordinated and regulated processes are greatly influenced by the kinetics of 

transcription, and variation in alternative splicing and other processing steps such as 

transcript release have been shown to be influenced by alterations to such kinetics 

(Chauvier et al., 2017; Dujardin et al., 2013). Therefore, nuanced differences in the 

kinetics and timing of self-cleavage undoubtedly have a significant effect on the 

performance of the riboswitch. Therefore, in order to improve the regulatory potential of 

synthetic riboswitches, it is necessary to understand the kinetic differences that exist 

between riboswitches with high and low dynamic ranges, and between those that exhibit 

high levels of leakiness from those with acceptable basal levels of expression.  

In order to facilitate the analysis of synthetic riboswitch performance at the RNA 

level in mammalian cells, we developed several cell lines with chromosomally integrated 

fluorescent RNA reporters. To do this, we modified a previously developed human β-

globin reporter that enables the real time fluorescent visualization of nascent RNA 

(Coulon et al., 2014; Martin et al., 2013) to contain synthetic riboswitches in the 3’ 

untranslated region (UTR). When the reporter is transcribed into RNA, two distinct types 

of multimeric phage hairpins form in the first intron and final exon. The first intron 

contains RNA hairpins from the phage PP7 (Chao et al., 2008), and the final exon 

contains hairpins from the MS2 phage (Fusco et al., 2003). Once transcribed, the hairpins 
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are subsequently bound by fluorescently labeled  PP7-mCherry and MS2-GFP phage coat 

proteins, enabling the fluorescent visualization of nascent RNA transcripts. Fluorescent 

cross correlation analysis (FCCS) of the fluorescent signals emerging from the two color 

labeling system allows for the simultaneous single molecule measurements of RNA 

transcription elongation, co-transcriptional splicing, and transcript release kinetics 

(Coulon et al., 2014).  By modifying this reporter system to contain synthetic aptazyme 

based riboswitches in the 3’UTR, alterations to the kinetics of these processes can 

elucidate kinetic insight into self-cleavage activity of the riboswitches.  

We chose to integrate variants of hammerhead ribozyme based synthetic 

riboswitches that were previously selected for in yeast, and were shown to exhibit 

variation in both dynamic range and basal gene expression levels (Townshend et al., 

2015). Two unique variants of theophylline responsive hammerhead riboswitches were 

chosen for this work and are summarized in table 4.1. These constructs exhibit an 

increase in gene expression in response to theophylline. The first construct (11X Theo) 

was previously shown to exhibit an 11-fold increase in gene expression in the presence of 

theophylline. The second construct (9X Theo), was previously shown to exhibit a 9-fold 

increase in gene expression in the presence of theophylline, but had a lower basal level of 

expression in the absence of theophylline, indicating less ‘leakiness’ in the off state. In 

addition, several ribozyme constructs that do not exhibit changes in gene expression in 

response to theophylline were utilized as controls. These are referred to ‘graded’ 

ribozymes in this work because they spanned the dynamic range of the theophylline 

responsive riboswitches described above when placed in the 3’UTR of an mRNA 

transcript in yeast. These are also summarized in table 4.1.  
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Table 4.1. Summary of riboswitch constructs used 

Riboswitch Construct Smolke Naming Expression in yeast 

11X Theo Theo(A)-AAAGA 11X activation 

9X Theo Theo(A)-AAAAA 9X activation 

Gated High (GH) Grz_TGTT_GTGA High 

Gated Medium (GM) Grz_TACA_AGCT Medium 

Gated Low (GL)  Grz_TGTT_ATAA Low 

Gated Control (GC) sTRSVctl High 

 

The adapted β-globin reporters each containing a unique riboswitch or graded 

ribozyme variant were subsequently stably integrated into a single genomic location of 

293T-RexTM cell lines, allowing for the comparison of their activity independent of 

genomic location. This is important because epigenetic regulation and chromatin 

organization greatly influences the process of transcription (Felsenfeld et al., 1996; 

Shilatifard, 2006). Therefore, in order to assure that any observed perturbations to 

transcriptional kinetics in our system was attributed to the riboswitch construct, stable 

integration into a single genomic location was desired. Hence, we have developed a 

platform that will allow for the direct comparison of synthetic riboswitch activity at the 

site of transcription in live mammalian cells.   
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Results  

Stable integration of fluorescent coat proteins 

In order to minimize any variation in the fluorescent signals due to differential 

lentiviral integration of the fluorescent phage coat proteins, we first set out to isolate 

clonal populations of the 293T-RexTM cells after their transduction. The parent 293T-

RexTM  cell line with an empty FRT site was first co-transduced with both MS2-GFP and 

PP7-mCherry phage coat proteins by lentivirus. This resulted in a mixed population of 

cells where some contained only MS2-GFP, some contained only PP7-mCherry, and a 

desired subset contained both of the fluorescently labelled phage coat proteins. Initial 

efforts to isolate clonal populations that contained both fluorescent phage coat proteins 

were focused on utilizing fluorescence-activated cell sorting (FACS). However, multiple 

attempts failed to generate viable clonal populations. We determined that this cell line 

appeared to be sensitive to the cell sorting process, and also likely grew poorly in the 

absence of other cells. We then attempted to isolate single cells via the gentler process of 

serial dilution, and similarly found that growth was inhibited when only single cells were 

seeded onto a 96 well plate. After multiple attempts, we reasoned that we may be more 

successful at expanding clonal populations from isolated colonies rather than from single 

cells. To do this, we implemented colony picking guided by fluorescence microscopy. 

Cells were thinly seeded onto a 10 cm plate and allowed to grow into isolated colonies. 

Colonies expressing both phage coat proteins were carefully picked up from the plate 

using a pipette, and transferred to individual wells of a 96 well plate and allowed to 

expand. This approach was successful, and we were able to isolate a colony of empty 

293T-RexTM  cells expressing desired levels of both phage coat proteins to be used for 
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integration of our β-globin reporter constructs (Figure 4.1 A). In addition to being utilized 

to stably integrate the β-globin construct containing the select riboswitch constructs in 

this study, this cell line containing both phage coat protein and an empty FRT site is 

poised to easily allow for the integration of any future design iterations. 

Gibson assembly of aptazyme reporter plasmids 

We next set out to modify a developed human β-globin reporter system to contain 

the synthetic riboswitch constructs. Starting with the Flp-InTM system pcDNATM5/FRT 

expression vector plasmid containing the β-globin reporter with the PP7 hairpins located 

in intron 1, Gibson assembly was used to integrate the riboswitch constructs into the 

3’UTR, just before the poly A signal. Using primers that target the plasmid and flank the 

integration site, PCR was used to screen for plasmids that successfully integrated a 

riboswitch construct. Positively screened plasmids were sent for Sanger sequencing to 

further confirm that the riboswitch constructs were successfully integrated into the 

desired location in the 3’UTR of the β-globin reporter. 

After confirming the integration of our synthetic riboswitch constructs into the 

pcDNATM5/FRT expression vector containing the β-globin reporter, we then stably 

integrated the reporter constructs into the 293T-RexTM cells containing the phage coat 

proteins via site directed FLP-FRT recombination. Co-transfection of the cells with the 

pOG44 Flp recombinase expression vector and the pcDNATM5/FRT expression vector 

containing our reporter results in FRT site based integration of our reporter into a single 

genomic site. The pcDNATM5/FRT expression vector contains a hygromycin resistance 

gene that lacks a promoter and ATG initiation codon, and is therefore not expressed 

directly from the plasmid. Successful genomic integration into the FRT site in the 293T-
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RexTM cells brings an SV40 promotor and ATG initiation into proximity of the 

hygromycin resistance gene, enabling its expression. This allows for the selection of cells 

that successfully integrated our reporter system into their FRT site via treatment with 

Hygromycin B. The surviving cells were expanded, and successful integration of our 

reporter constructs was further validated by genomic DNA isolation and subsequent PCR 

screening using primers that amplify our β-globin reporter. The expanded and verified 

cell lines contain a stable integration of the β-globin reporter harboring unique variants of 

theophylline responsive hammerhead based synthetic riboswitches all at the same 

genomic location.  

Fluorescence imaging based confirmation of reporter integrations 

In order to verify that that resulting cell lines enabled fluorescent detection of 

transcription sites actively expressing our β-globin constructs, we implemented high-

resolution fluorescent microscopy. As an initial confirmation, we obtained images of the 

gated control cell line using the apotome 3 feature of the Zeiss axio observer microscope 

in both the GFP and mCherry channels. The images were overlayed and showed that the 

cells still expressed both MS2-GFP and PP7-mCherry fluorescent phage coat proteins. In 

addition, many cells showed sites of active transcription that were observed as singular 

sub-nuclear foci of high intensity fluorescent signal in both channels (Figure 4.1 B-C). 

From this we determined that these cells have stable integration of both the reporter 

construct and fluorescent phage coat proteins, and could be used to measure the kinetics 

of several co-transcriptional mRNA processing events. 
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Figure 4.1. Fluorescent microscopy images of select resulting cell lines 

A) Overlaying fluorescent image of 293T-RexTM cells containing an empty FRT site 
and stably integrated MS2-GFP and PP7-mCherry fluorescent phage coat 

proteins. B) Overlaying fluorescent image of the 293T-RexTM cells with stable 
integration of both phage proteins, and containing stable integration of the gated 
control β-globin reporter in the genomic FRT site. Select cells with active sites of 

transcription are boxed off and expanded in (C). 
 

Discussion 

The resulting cell lines provide a ready platform for the real time imaging and 

analysis of synthetic riboswitch activity in mammalian cells. The theophylline responsive 

hammerhead based synthetic riboswitch constructs chosen exhibit variation in both their 

dynamic ranges of control over gene expression, and their basal expression levels. This 

should allow for the direct comparison of the kinetics of their self-cleavage activity at the 

RNA level, providing insight into differences that may contribute to both leakiness in 

basal level expression as well as in achieving greater dynamic ranges in gene expression 

modulation. The graded ribozyme controls that do not exhibit changes in gene expression 
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in response to theophylline provide an internal metric to assess co-transcriptional self-

cleavage activity of our constructs in the context of their new cellular environment 

(human vs yeast). In addition to the cell lines that contain synthetic riboswitch constructs, 

the clonal 293T-RexTM cell line containing both PP7-mCherry and MS2-GFP fluorescent 

phage coat proteins is poised for the integration of future iterations to allow for the 

continued exploration and improvement of synthetic RNA regulatory elements.  

Taken together, this work provides an avenue to directly measure synthetic 

aptazyme based riboswitch self-cleavage kinetics directly at the site of transcription. This 

will provide a window into the single molecule self-cleavage activity of these RNA 

regulatory elements at the RNA level, effectively removing the black box associated with 

bulk protein read-outs. We expect that this approach will be a valuable avenue to gain 

guiding insight towards the improvement and successful implementation of synthetic 

riboswitches as widespread, effective, and robust RNA gene regulatory elements with 

broad applications in synthetic biology and engineering.  

Materials and Methods 

Cell line growth and maintenance  

293T-RexTM cells (InvitrogenTM) were obtained through ThermoFisher Scientific 

and maintained according to the manufacturers recommended conditions. Briefly, cells 

were grown in DMEM (Corning, 4.5g/L glucose, with L-glutamine and sodium 

pyruvate), supplemented with 10% fetal bovine serum, and 1X penicillin and 

streptomycin (Manufacturer info). The cells were maintained at 37°C with 5% CO2 and 

95% humidity.   
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Plasmids, DNA oligos, and cloning 

The plasmid containing the Tet inducible dual color β-globin reporter was 

obtained from collaborators, and is available through addgene (Plasmid #61762). The β-

globin reporter was modified to contain the PP7 hairpins in the first intron, and then 

cloned into the pcDNA™FRT⁄TO vector designed for use with the Flp-InTM T-RexTM 

system using restriction enzyme based cloning methods by previous members of our 

group. 

The synthetic hammerhead based riboswitch sequences were previously published 

(Townshend et al., 2015), and were ordered from IDT as Gblocks® Gene Fragments. 

Areas of homology targeting the 3’UTR of the β-globin reporter construct were appended 

to the riboswitch sequences via PCR using primers that bind to the riboswitch sequence 

and contain additional nucleotides homologous to the β-globin reporter. The resulting 

riboswitch sequences were cloned into the 3’UTR of the β-globin reporter contained in 

the pcDNA™FRT⁄TO vector using the NEBuilder® HiFi DNA Assembly cloning kit 

(E5520S, New England Biolabs®). The assembly reaction was transformed into NEB® 5-

alpha Competent E. coli, the resulting colonies were screened for riboswitch insertion via 

PCR, and the PCR products were sequence validated using Sanger sequencing (Elim 

Biopharmaceuticals Inc.). 

Lentiviral vectors containing the MS2-GFP (addgene plasmid ID # 61764) and 

PP7-mCherry (addgene plasmid ID # 61763) phage coat proteins under the control of a 

human ubiquitin promotor were previously developed (Coulon et al., 2014; Larson et al., 

2013), and were used in conjunction with the ViraPowerTM lentiviral packaging mix (Life 

Technologies). 

https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
https://www.neb.com/applications/cloning-and-synthetic-biology/dna-assembly-and-cloning/nebuilder-hifi-dna-assembly
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Stable Integration of fluorescent reporters 

Lentiviral particles containing the MS2-GFP and PP7-mCherry were separately 

prepared via co-transfection of HEK293T cells with the ViraPowerTM lentiviral 

packaging plasmids and the lentiviral vectors containing the respective fluorescently 

labeled phage coat proteins. Briefly, PEI/DNA complexes were formed at a 5:1 ratio in 

serum free DMEM via brief vortex and room temperature incubation, and then added 

dropwise to a tissue culture plate containing HEK293T cells at ~50% confluency. The 

media was replaced at 24 hours, and then collected at 72 hours to harvest the viral 

particles. The media containing the viral particles was filtered through a 100 μM cell 

strainer (VWR® Cell Strainers, Catalog #10199-658) to remove cellular debris, and then 

vacuum filtered through a 0.45 μM filter (VWR® Tube Top Vacuum Filters, Catalog 

#76012-772). The resulting mediums containing the purified viral particles were 

combined (MS2-PP7, and PP7-mCherry), and then immediately transferred to a 10 cm 

tissue culture plate containing 293T-RexTM cells at low confluency for transduction.  

Clonal cell isolation 

293T-RexTM cells with an empty FRT site that were transduced with both MS2-

GFP and PP7-mCherry phage coat proteins were expanded on a 10 cm plate until ~80% 

confluent. Cells were trypsinized, pelleted, and resuspended in 3 mL of complete 

DMEM. Cells were thinly seeded at a 1:300 dilution onto a new 10 cm plate containing 

10 mL of complete DMEM media. Cells were incubated at 37°C, 5% CO2, 95% humidity 

until small and distinct colonies formed. Using an EVOS fluorescent microscope, 

colonies expressing roughly equal levels of both GFP (EVOS GFP light cube, Ex 482/25 

nm, Em 524/24 nm) and mCherry (EVOS Invitrogen Texas Red light cube, Ex 585/29, 
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Em 628/32) were identified. The isolated colonies were carefully picked up off of the 

plate with a sterile pipette tip, and transferred to a single well of a 96 well plate 

containing 200 μL of complete DMEM and allowed to expand. Resulting colonies were 

qualitatively assessed for normal morphology, growth rates, and fluorescence, and a 

single colony was chosen for expansion and future integration of β-globin reporter 

containing the riboswitch constructs.  

Single genomic integration of riboswitch reporter  

Each riboswitch construct was stably integrated into a single genomic location in 

the clonal population of 293T-RexTM cells containing stably integrated PP7-mCherry and 

MS2-GFP coat proteins via Flp-In site specific recombination. Briefly, cells were co-

transfected with the pcDNA™FRT⁄TO vector containing the β-globin riboswitch 

reporter, and the pOG44 Flp-In recombinase expression vector using PEI transfection 

reagent as described above. After a 24-hour incubation, the media on the cells was 

replaced with selective medium (150 μg/mL Hygromycin B, DMEM, 10% FBS, 1X 

Pen/Strep). The cells were expanded under selective media, and stable integration was 

confirmed via genomic DNA purification and PCR screening for insertion of the β-globin 

reporter(s).  

Fluorescence imaging and transcription spot visualization 

Fluorescence images were obtained using a Zeiss Axio Observer microscope and 

the resolution was enhanced using the Apotome 3 feature. Images were consecutively 

obtained in both the GFP and mCherry channels using auto-expose settings and were 

subsequently overlayed. 
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