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ABSTRACT

This dissertation presents a systematic approach to obtain robust statistical inference

schemes in unreliable networks. Statistical inference offers mechanisms for deducing

the statistical properties of unknown parameters from the data. In Wireless Sensor

Networks (WSNs), sensor outputs are transmitted across a wireless communication

network to the fusion center (FC) for final decision-making. The sensor data are not

always reliable. Some factors may cause anomaly in network operations, such as mal-

function, corruption, or compromised due to some unknown source of contamination

or adversarial attacks.

Two standard component failure models are adopted in this study to describe the

system vulnerability: the probabilistic and static models. In probabilistic models, we

consider a widely known ε−contamination model, where each node has ε probability

of malfunctioning or being compromised. In contrast, the static model assumes there

is up to a certain number of malfunctioning nodes. It is assumed that the decision

center/network operator is aware of the presence of anomaly nodes and can adjust the

operation rule to counter the impact of the anomaly. The anomaly node is assumed

to know that the network operator is taking some defensive actions to improve its

performance. Considering both the decision center (network operator) and compro-

mised (anomalous) nodes and their possible actions, the problem is formulated as

a two-player zero-sum game. Under this setting, we attempt to discover the worst

vii



possible failure models and best possible operating strategies.

First, the effect of sensor unreliability on detection performance is investigated,

and robust detection schemes are proposed. The aim is to design robust detectors

when some observation nodes malfunction. The detection problem is relatively well

known under the probabilistic model in simple binary hypotheses testing with known

saddle-point solutions. The detection problem is investigated under the mini-max

framework for the static settings as no such saddle point solutions are shown to exist

under these settings.

In the robust estimation, results in estimation theory are presented to measure

system robustness and performance. The estimation theory covers probabilistic and

static component failure models. Besides the standard approaches of robust estima-

tion under the frequentist settings where the interesting parameters are fixed but

unknown, the estimation problem under the Bayes settings is considered where the

prior probability distribution is known. After first establishing the general framework,

comprehensive results on the particular case of a single node network are presented

under the probabilistic settings. Based on the insights from the single node network,

we investigate the robust estimation problem for the general network for both failure

models. A few robust localization methods are presented as an extension of robust

estimation theory at the end.
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CHAPTER 1:

INTRODUCTION

1.1 Wireless Sensor Networks (WSNs)

Recent advances in wireless communications and electronics have enabled the devel-

opment of low-cost, low-power, multifunctional sensors that are small in size and can

communicate within a short distance. A sensor network consists of sensing, data pro-

cessing, and communicating components and can accomplish various tasks, including

environment monitoring, surveillance, target localization, tracking, and many more

[1, 2, 3, 4]. WSNs are widely employed in many applications such as military appli-

cations, environmental monitoring, cyber-physical systems, healthcare, diagnostics of

complex systems, and so on. It has been the focus of multiple disciplinary research

in the past several decades [5, 6, 7, 8, 9, 10, 11].

1.2 Applications of WSNs

Statistical inference in WSNs is a field of study that attempts to determine or estimate

a state of nature based on observations regarding that state. It includes detecting

phenomena, estimating parameters, or measuring some physical properties of the en-

vironment, where sensors are densely deployed to the region of interest [1, 4]. Many

WSNs have a dedicated Fusion Center (FC) with more potent computational capabil-

ity than other sensing nodes because of data processing requirements. The traditional
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inference problem occurs when all the observations are available at an FC, and will

be referred to as centralized inference. A key attribute of centralized inference is

that the decision procedure is only applied once for a given set of observations at the

FC. Due to the bandwidth and power constraints, sensor data are often needed to be

compressed or preporcessed prior to communication, and the FC only have access to

received data. This is commonly known as decentralized inference or, in some cases,

distributed inference [3].

The problems of inference share much in common with many centralized statistical

inference and learning problems such as signal detection and estimation, dimension

reduction, and feature extraction [8, 15]. But unlike centralized inference, an essential

attribute of decentralized inference is that decision-making typically occurs at mul-

tiple locations and layers, where these so-called local decisions are fused at a central

FC to make the final decision [12, 13, 14]. The multitude of decision locations and

layers introduces coupling among the various decision processes, which dramatically

increases complexity regarding the system design and optimization.

We summarize a few applications of WSNs.

1. Environmental monitoring: Temperature monitoring, flood detection, and geo-

physical research [16, 17, 18]. For example, forest fire detection, where many

sensors are densely deployed to a forest to sense weather conditions, including

temperature, rain, and relative humidity.

2. Health-related applications: Tracking patients’ physiological conditions, move-

ments, and behaviors. For this purpose, patients usually wear different types

of wireless sensors to collect data on body conditions [19]. For real-time appli-

cations such as monitoring of patients, sensors transmit to the FC securely in
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real-time. For offline decision-making, such as future medical diagnostics, and

drug administration in hospitals, sensors collect data for a long time and then

securely transmit the data to the FC.

3. Autonomous transportation: Radar networks potentially provide highly accu-

rate object detection and localization (range, velocity, and angle) [20, 21]. Thus,

they are being increasingly integrated into commercial vehicles as sensors for

environmental perception in future (semi) autonomous driver assistance oper-

ational modes. In particular, side-looking radars are widely used to support

lane change, or keeping assist, blind spot detection, and rear cross-traffic alert.

For these applications, a high-resolution radar image by using distributed radar

module is key to effective separation of close objects, detection of the spatial

extension of traffic participants, and enhanced object recognition [22, 23, 24].

4. Military applications: In the military, the rapid deployment, self-organization,

and fault tolerance characteristics of sensor networks make them a very promis-

ing sensing technique for military command, control, communications, comput-

ing, intelligence, surveillance, and targeting systems, for example, battlefield

surveillance and reconnaissance of opposing forces. WSNs also can be deployed

to detect, localize and track targets. Moreover, they can be used to assess

damage conditions, monitoring equipment, and ammunition [25].

5. A cyber-physical system: WSNs play an important role in sensing and providing

information for such systems including smart grids and nuclear power plants

[26, 27]. The sensor nodes in such systems are deeply intertwined physical and

software components, each operating on different spatial and temporal scales,
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exhibiting multiple and distinct behavioral modalities [28]. For smart grids,

many sensors are distributed for monitoring long-range power transmission lines

to improve transmission efficiency, reliability, and sustainability [29, 30].

1.3 Robustness issues in WSNs

Many problems encountered in engineering practice rely on some assumptions well

justified in many situations. This enables a simple derivation of optimal processing.

Nominal optimality, however, is useless if it was derived under nominal assumptions

that do not hold in practice.

Suppose a signal processing scheme, say a detector for a signal with a known wave-

form in additive noise, is designed to give optimum performance for noise possessing

a specific statistical description, i.e., noise as a Gaussian process [31]. The critical

question is, how sensitive is the performance of such an optimum scheme to deviations

in the system for which the scheme is designed? Unfortunately, it turns out that in

many cases, such nominally optimum designed schemes can suffer a drastic degrada-

tion in performance even for minor deviations from nominal assumptions. This basic

observation motivates the search for robust inference techniques, that is, techniques

with good performance under any nominal conditions and acceptable performance

under other than the nominal conditions.

Sensor nodes in WSNs consist of sensing, data processing, and communicating

components. However, like other complex networked systems, the functionality and

performance of a WSN may be affected when it is not operated under nominal ideal

conditions [32]. Various reasons may cause the deviations, such as sensor malfunc-

tion, sensor drifts, and compromised sensors. The unreliable nodes may be degraded

naturally or exposed to vulnerability such as cybersecurity attacks. If left untreated,
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such unreliable nodes may cause significant damage to the WSNs inference perfor-

mance. Unfortunately, not many attempts have been made to study the performance

degradation of WSNs and design a robust network to counter such vulnerabilities

[31, 33, 34].

1.4 Contribution and Overview of the

Dissertation

This dissertation focuses on robust inference approaches to WSNs when the network

is unreliable. The overall system performance depends significantly on the knowledge

of the malfunctioning nodes, the behavior of nominal systems, and the inference

schemes. The more information about the malfunctioning nodes in WSNs, the better

system performance it can achieve. Based on the possible abnormal actions of sensor

node and action of network operator of WSNs, we model the inference problem in

theoretical game settings. We consider the case where the network operator or FC is

aware of the presence of anomaly nodes and can adjust the decision rule to counter

the impact of unknown malicious nodes. The adversarial nodes are assumed to know

that the FC would take some actions to improve its robustness.

The systematic approaches are provided for robust detection and estimation in

WSNs. In order to achieve this, first, the measure of the overall performance of a

scheme is specified with a wide range of all possible allowable actions. One such

measure that has been widely used and leads to valuable results in many situations

is the worst-case performance over a wide range of actions of compromised nodes. If

its worst-case performance is good, we may say that a given inference in WSNs is

robust. The mini-max robust schemes performance is usually not far below that of
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nominally optimal schemes when the system is under nominal operation.

The rest of this dissertation is organized as follows

� Chapter 2: Background and fundamental concepts- In this chapter, key concepts

such as fundamental concepts of robust detection and robust estimation. In

addition, two models to describe the component or node reliability of WSNs are

presented. Finally, statistical inference in WSNs is formulated under theoretical

game settings.

� Chapter 3: Robust detection- In this chapter, the main contributions of robust

detection in WSNs are summarized as follows:

– For detection problems, the main focus is on binary detection, or binary

hypotheses testing. That is, among H0 and H1 hypotheses, the aim is to

design robust detectors when some observation nodes are malfunctioning.

– The detection problem is investigated under the mini-max framework for

the static settings as no such saddle point solutions are shown to exist.

– Two robust detectors, namely Clipped Log-Likelihood Ratio Detector (CLLRD)

and α−Trimmed Sum Detector, are proposed. The performance of these

detectors using a mini-max game theoretical framework is studied.

– Applications of these detectors for normally distributed observations and

distributed MIMO radars are analyzed. The closed-form solutions of the

performance of these two detectors are derived. It is shown that these

detectors provide some guaranteed performance despite a fixed number of

extreme outliers in the observation, as validated by numerical simulations.
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� Chapter 4: Robust estimation- In this chapter, results in robust estimation are

presented under both the probabilistic and static models. The main contribu-

tions are summarized as follows:

– Estimation problem is first presented under the frequentist setting where

the unknown is a scalar parameter. The max-mini solutions that make the

observation partially uninformative and sometimes even completely unin-

formative are derived. Specifically, the sufficient and necessary condition is

derived for the estimator to be completely uninformative about unknown

parameters.

– Next, the estimation problem is considered under the Bayes settings where

the prior probability distribution of a parameter is known, we obtain the

saddle point solution for a single-node network under the probabilistic

unreliability model. Based on the result of a single node, a robust estimator

for the multi-node networks is proposed under both probabilistic and static

models.

� Chapter 5: Robust regression- In this chapter, robust algorithms are proposed

for target localization. The main contributions are:

– Results in target localization through regression are presented. The robust

regression problem is formulated into an equivalent weighted least square

regression where weights are based on the robust cost.

– A method to improve the localization accuracy is proposed by introducing

a small set of secured sensors, potentially by spending more resources on

those sensors, especially in a potentially hostile environment. By doing so,
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we might be able to improve the signal quality and integrity for a small

set of sensors and, consequently, reduce the target localization deviations.

� Chapter 6: All presented works are concluded in this chapter and discuss future

research directions related to robust inference are discussed.
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CHAPTER 2:

BACKGROUND AND BASIC CONCEPTS

Statistical inference in WSNs includes detection, estimation, and tracking. They all

assume some knowledge of the states of nature, and the uncertainty of the environ-

ment, and typically define these statistically. One of the main differences between

detection and estimation is the phenomenon to be inferred by sensors. In detection,

the phenomenon observed by sensors is discrete, e.g., binary hypothesis testing, where

one aims to decide between two potential hypotheses, Hε(H1, H0). In estimation, the

phenomenon is often a parameter in a continuous set [15].

2.1 Robust Detection

Detection is widely used for both military and civilian applications, including dis-

tributed array radars intruder detection, anomaly detection, and intelligent trans-

portation systems where the infrastructure sensors detect pedestrians, vehicles, and

other anomaly events [35, 36, 37]. As one of the essential aspects of inference, de-

tection is often the initial goal of a pattern recognition system and aims at detecting

signals or events as accurately as possible [14]. For example, a WSN of N sensors are

densely deployed in forests to observe the temperatures, and through communication

channels, these nodes send the compressed data to the FC, where the final decision is

made about whether there is forest fire or not [38]. For WSNs, detecting the presence
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of an event is often the priority of all the other tasks including estimation, tracking,

and learning [7].

“A robust detection refers to the determination of events with a guaranteed level of

detection performance despite the uncertainties on the underlying statistical models”

[32]. Often, a detector is designed to give the best possible performance for a specific

statistical model, e.g., to detect the presence of a signal with a known waveform in

additive noise with known distribution. However, such idealized settings are seldom

met in practical applications. Besides the usual uncertainty regarding signals and

noises, there is always a chance of drifting observations from the ideal conditions for

various reasons, such as sensor malfunction, sensor drifts, and compromised sensors

due to cyberattacks etc. In many cases, nominally optimal detection schemes can

suffer a drastic degradation in performance even for minor deviations from nominal

assumptions [39]. This motivates the search for robust detectors with good perfor-

mance under nominal conditions and acceptable performance under conditions other

than the nominal one.
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2.1.1 Distributed Detection in WSNs

Figure 2.1: Detection in a parallel WSN.

Fig 2.1 shows the structure of a parallel network detection problem where local sensors

sense the data X. Sensor i sends compressed or uncompressed data Xi, (i = 1...N)

to the outputs transmitted across a channel. Ultimately, the FC makes the decision

based on the received data. When communication links are of high capacity and/or
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the latency requirements of the decision making are low, the local sensors send all the

data without compression. The optimum detector is the Likelihood Ratios (LR) [43].

This requires that all the observations of the sensors be independent, and available at

the FC. Owing to this assumption, the optimum detector at FC is a likelihood ratio

at nominal conditions

Λ(X) =
N∑
i=1

px|H1(Xi | H1)

px|H0(Xi | H0)

>H1

<H0

η. (2.1)

Suppose Λ(X) is unbounded as a function of X. In that case, a single observation

can heavily influence the detection. In WSNs, a single unreliable sensor node can,

therefore, completely override the weight of a possibly large number of other reliable

sensor nodes in the choice between H0 and H1. Various factors may cause such unre-

liability. For example, the sensor malfunctions when statistical mismatches between

the actual distribution and the model assumptions exist. It can also be corrupted or

compromised due to the natural degradation of nodes and some unknown source of

contamination or adversarial attacks. To counter such undesirable detection sensitiv-

ity due to unreliable sensor nodes. It can also be corrupted or compromised due to

the natural degradation of nodes and/or some unknown source of contamination or

adversarial attacks.

To counter such undesirable sensitivity due to unreliable sensor nodes, we consider

a bounded modification (clipping) Λ̃(X) of the function Λ(X) corresponding to the
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assumed nominal model.

Λ̃(X) =


τ2 Λ(X) > τ2

Λ(X) τ1 ≤ Λ(X) ≤ τ2

τ1 Λ(X) < τ1

,

where τ1 and τ2 are constants. One can expect that clipping would degrade the detec-

tion performance when WSNs nodes operate ideal nominal conditions. On the other

hand, the boundedness builds robustness against the influence of spurious nodes. The

range [τ1, τ2] controls the trade-off between the degree of robustness and performance

degradation under nominal operation.

The trimming method is another conservative approach to counter the unreliable

nodes. It is based on the rank order Λ1(X1) ≤ Λ2(X2) ≤ ...ΛN(XN) of likelihood

ratios of sensor observations. The influence of the compromised nodes is eliminated

after removing some biggest and smallest of log-likelihood ratios. Similar to clipping

on log-likelihood ratio, trimming increases robustness against outlier nodes at the cost

of performance degradation when the network operates under nominal conditions. In

Chapter 3, the detection problem under the mini-max framework is investigated by

using clipping and trimming.

2.2 Robust Estimation

Suppose the detection function in WSNs determines the presence of an object, a sig-

nal, or an event. In that case, more complicated tasks such as estimation and tracking

can be performed. For instance, if an intelligent transportation system detects a vehi-

cle, the following task would be estimating how fast the vehicle is moving and where



14

it is moving. Aiming to estimate the values of a group of parameters based on a

network of sensors, centralized and distributed estimation has been an important and

active research area over the past several decades [40, 41, 42].

2.2.1 Distributed Estimation in WSNs

Figure 2.2: Estimation in a parallel WSN.
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Similar to the detection setting, sensors observe and send the processed data to the

FC through a channel as shown in Fig 2.2.

For example, consider the scalar estimation problem,

Xi = θ +Wi, i = 1, ...., N,

where θ is the true random unknown variable and Wi is the random noise with the

probability distribution fw. The goal is to obtain θ̂, an estimate of θ from the obser-

vations. The estimation accuracy is often measured by a cost function C(θ, θ̂). For

example, for i.i.d. observations with the Gaussian observation noise, the Maximum

Likelihood (ML) estimate of θ

θ̂ = argmax
θ

N∑
i=1

log fX(Xi | θ),

is the sample mean, θ̂ = 1
N

∑N
i=1Xi, which is also optimal least square estimate (LSE).

However, it is common in practice that the noise process is non-Gaussian [31] or may

contain outliers [33, 34]. The estimation performance would be degraded significantly.

To improve the estimation performance under such unreliable conditions, the robust

estimator is proposed in Chapter 4. The trade-off is analyzed between the robustness

against the node failures and performance under the nominal conditions.

2.3 System Reliability Models

For any WSNs, its performance depends on the reliability of its components. A

reliability model describes the vulnerability of one or a group of nodes. Two standard

failure models are adopted in this study to describe the WSNs system vulnerability.
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2.3.1 Probabilistic Model

When the network nodes operate independently, the failure of one node is unlikely

related to the others, and node reliability can be modeled independently. In such

cases, we consider a probabilistic model such that the node i has a probability of εi

being malfunctioning, independent of other nodes,

P (s = 1) =
N∏
i=1

εsii (1− εi)
1−Si .

In this model, a node ( e.g., transmitter, receiver or data link) has an εi probability

of malfunctioning or being compromised. We further consider the i.i.d. case where

εi=ε. For instance, ε = 0.1 means each node has a 0.1 probability of being compro-

mised. This model is also known as ε−contamination model proposed by Huber for

robust inference theory [43]. For estimation of a parameter θ, we assume a nominal

distribution Pθ and an outlier distribution Q where each observation follows a mixture

distribution.

P̃θ = (1− ε)Pθ + εQ. (2.2)

Under this model, data are drawn from equation (2.2) where each entry has a proba-

bility of ε to be contaminated by some arbitrary distribution Q. Given observations

from equation (2.2), the objective is to infer θ robustly against Q.

2.3.2 Static Model

While ε−contamination is widely used for modeling, this model may not be a good

fit for some scenarios. For example, where either the value of ε is hard to know in

a prior or when such probabilities are not independent among observations. There-
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fore, the binomial distribution of outliers in the ε−contamination model is seldom

met. Instead, we often consider redundancy designs in handling up to a few outliers.

Therefore, we also consider a static model which assumes there is up to a certain

number of malfunction nodes in the system.

Under the static setting, it is assumed that there are K outliers each from un-

known pdf q(Xi) ∈ Q and nominal N −K observations, each with known probability

density function p(Xi) ∈ Pθ, respectively. It gives intuitive results with good inter-

operability to describe and model the severeness of anomaly. The system design goal

is to provide robustness against such failure scenarios, and also provide good perfor-

mance when the system is normal. Let ΩK be the set of all subsets of K nodes, the

probability of the observation s = [s1, s2, ..., sN ] is given by

P (XK |θ) =
∑

AK∈ΩK

P (AK)
N∏
i=1

q(Xi)Ii∈AK
(Si=1)p(Xi)Ii/∈AK

(Si=0), (2.3)

where P (AK) is probability of the subset nodes AK being compromised, usually

depends on the system architecture. When P (AK) is not specified, one might either

consider a mini-max approach where the design goal is to minimize the impact of the

worst possible K subset or assigning a uniform distribution on P (AK) = 1/

 N

K

 ,

where each node is equally likely to be malfunctioning.

Both can capture some system failure scenarios, and they are equivalent in one

extreme case. ε = 0 means none of nodes fail ε = 1 means all nodes fail. Designs for

one model may be used for the other. We would like to point out that the probabilistic

setting is different from static settings in system robustness, where one assumes up

to a fixed number of the node being compromised. For instance, for a MIMO radar
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with number of the transmitter M=10, with ε = 0.1 is not the same as 1 out of 10

nodes is controlled by the attacker, as in the former case, the attacker might end up

controlling 0 transmitter or all 10 transmitters, with specific probabilities. However,

the probabilistic and static settings are almost equivalent in an asymptotic sense when

ε is fixed and M → ∞ for fixed number of receiver.

2.4 Problem Formulation for Statistical

Inference

The inference problems in a WSN with unreliable nodes is investigated under the

game-theoretical settings. Specifically, a network of nodes in a zero-sum game is

considered with 2 players with single stage. The goal is to infer the underlying

status of θ = [θ1, θ2, · · · , θL] drawn from p (θ) distribution. The node status s =

[S1, S2, · · · , SN ] , Sn ∈ {0, 1} is a binary random vector and fixed throughout the

duration of the game. Sn = 0 denotes a nominal and Sn = 1 denotes an abnormal

node state. Node observations x = [X1, X2, · · · , XN ]
T are conditionally independent

given by the node status s and the underlying status θ such that

px (x|s, θ) =
N∏

n=1

pXn (Xn|Sn, θ) .

Framed as a “personalized” attacker, Player 1 denotes the anomaly states the system

experiences. Under the zero-sum game settings, Player 1 “attempts” to make the

inference performance as bad as possible. As Player 1′s counterpart, Player 2 is

the “personalized” system operator/designer who attempts to optimize the system

performance under the potential anomaly caused by Player 1.
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When Sn = 0, the nth node functions normally with a known pdf pXn (xn|sn = 0, θ).

When Sn = 1, the node n malfunctions, and its observation distribution follows

pXn (xn|Sn = 1, θ), which is “picked”/”designed” by Player 1. Player 1 also has some

additional private information about θ through its observation Xp1, obtained either

through own observations or in some privacy/cybersecurity settings where Player 1

is the target itself and knows θ perfectly. Similarly, it is assumed that Player 2 has

some additional private information about θ via its observation Xp2 which is made

available through his own secured observation nodes.

The system vulnerability to malfunctioning is described by the distribution of

ps (s). Such information is assumed to be known to both players. The system operator

Player 2 aims to design the best strategy to infer θ̂ = θ̂ (x) from x. As a zero-sum

game, the payoff to Player 1 is the inference performance d
(
θ, θ̂
)
and the payoff to

Player 2 is −d
(
θ, θ̂
)
.

Table 2.1: A two player, zero-sum game.

Player Knowledge Strategy Payoff

1 Xp1, {pXn (xn|Sn = 0, θ)} , ps (s) {pXn (xn|Sn = 1, θ)} E
(
d
(
θ, θ̂
))

2 Xp2, {pXn (xn|Sn = 0, θ)} , ps (s) θ̂ (x) −E
(
d
(
θ, θ̂
))

2.4.1 Three Game Solutions

Under the settings in table 2.1, depending on the availability of any additional knowl-

edge, the game can be briefly categorized into three types and seek three solutions.

1. Max-mini: In the game between two players, Player 2 is assumed to know Player

1′s strategy {pXn (xnl|Sn = 1, θ)}, and can use it to design θ̂. Therefore, the best

Player 1 can do is to maximize the minimal E
(
d
(
θ, θ̂
))

through his choice of
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{pXn (xn|Sn = 1, θ)}.

2. Mini-max: In this case, Player 1 is assumed to know Player 2’s strategy θ̂ (x),

and use such knowledge to design {pXn (xn|Sn = 1, θ)} to maximize the E
(
d
(
θ, θ̂
))

.

From Player 2′s perspective, the designing of θ̂ (x) is a Mini-max approach.

3. Equilibrium (if existing): In this case, neither player knows about the other’s

strategy and the goal is to determine an equilibrium solution between two play-

ers
(
{pXn (xn|Sn = 1, θ)} , θ̂ (x)

)
, if existing, such that neither player can gain

by deviating from his strategy. We also refer to such equilibrium solutions

as saddle-point solutions as no player can unilaterally increase his payoff by

choosing a different strategy.

2.4.2 Performance Metrics

One critical part of the problem formulation is the choice of payoff function d
(
θ, θ̂
)
.

Depending on the inference settings, there are three most widely used performance

measures among the popular choices of payoff d
(
θ, θ̂
)
:

1. Probability of error: Probability of error Pe is a popular choice for detection

problems under Bayes settings when θ is the set of hypotheses to be tested by:

d
(
θ, θ̂
)
= Pr

(
θ ̸= θ̂

)

In most cases, more general linear cost functions can be reformulated and nor-

malized to the Pe via a new set of prior probabilities. For binary hypotheses

testing, the Neyman-Pearson criterion, which seeks to maximize the probability

of detection under a probability of false constraint, is also of critical importance.
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This can be considered in the current formulation via the additional constraints.

2. Mean Square Error (MSE): MSE is widely used for parameter estimation.

Specifically, when θ is the set of continuous parameters to be estimated, the

performance of the estimation is given by

d
(
θ, θ̂
)
= E

(∥∥∥θ − θ̂
∥∥∥2
2

)
,

where ∥·∥2 is the second order vector norm. A potential extension Frobenius

Norm can be used when θ is a matrix.

3. Mutual information: Although it is not monotonically correlated to the in-

ference performance, due to its generality and versatility, mutual information

I (θ;x) is often used to measure the information contained in x about θ. To

be consistent with the MSE and probability of error, we can use the negative

mutual information as the distance measure

d
(
θ, θ̂
)
= −I (θ;x) .

As the calculations of d
(
θ, θ̂
)
requires the complete distribution information,

this metric is most suitable applicable to the Maxi-mini settings where Player

2 knows {pXn (xn|Sn = 1, θ)}.
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CHAPTER 3:

ROBUST DETECTION

For detection problems, we consider binary detection or hypotheses testing problems.

That is, among H0 and H1 hypotheses, we aim to design robust detectors when some

of the observation nodes are malfunctioning, as in Fig 3.1. As the detection problem

is relatively well known under the probabilistic model in simple binary hypotheses

testing with a known saddle-point solution [39, 44], the focus is given on the static

setting, where there is a fixed number of malfunctioning nodes. The detection problem

under the mini-max framework is considered for the static settings as no such saddle-

point solutions are shown to exist. Most of the results are under the single-stage

settings where the detection game is only played once, and the adversary is not

concerned by revealing the malfunctioning node identity.

This chapter is organized in the following manner. First, the target detection

model and problem statement are outlined. In section-3.2, two robust detectors are

introduced: Huber’s Clipped Log-likelihood Ratio Detector and α−Trimmed Sum

Detector. These detectors are analyzed and evaluated in two different cases: one

is target detection with normally distributed observations and the other is target

detection in a distributed MIMO radar in section-3.3, and section-3.4, respectively.

The Effectiveness of these robust detectors is evaluated and compared through Monte

Carlo simulations in section-3.5.
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3.1 Problem Statement

Figure 3.1: Robust Detection Framework.
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Let (Ω,A) be a measurable space. The observation X ∼ [X1, X2, ......., XN ] are

assumed to be independent and identically distributed (i.i.d.), and each observa-

tion is assumed to be equally likely to be compromised. Consider the binary hy-

potheses testing problem H0 vs H1, where there are K outliers with unknown pdf

q(Xi/H1) ∈ Q(H1) and q(Xi/H0) ∈ Q(H0), and the remainder N − K observa-

tions follow nominal distributions, each with known pdf p(Xi/H1) ∈ P (Xi/H1) and

p(Xi/H0) ∈ P (Xi/H0), respectively. The overall detection problem is

H1 : p(X/H1) =
∑
SϵΩK

Pr(S)

jK∏
j=j1

q(Xj/H1)

jN−K∏
j=j1

p(Xj/H1)

H0 : p(X/H0) =
∑
SϵΩK

Pr(S)

jK∏
j=j1

q(Xj/H0)

jN−K∏
j=j1

p(Xj/H0),

(3.1)

where Pr(S) is the probability of the set S of observations with cardinality K to be

the outliers and ΩK = {j1, ..., jK | 1 ≤ j1 < j2..., < jK ≤ N} is the set of all possible

subset with size K.

3.2 Robust Detectors

3.2.1 Clipped Log-Likelihood Ratio Detector CLLRD

The Huber’s detector is considered first, which is basically a truncated log-likelihood

ratio, l(Xi) = ln
(

p1(Xi)
p0(Xi)

)
with two threshold τ1 ≥ τ0 such that

λ(Xi) =


τ1 li(Xi) ≥ τ1

li(Xi) τ0 < l(Xi) < τ1

τ0 li(Xi) ≤ τ0

. (3.2)
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The test statistic is the sum of clipped log likelihood ratios

TT (X) =
N∑
i=1

(λi(Xi)) ,

and the threshold is set to η, then the detection rule can be expressed as

TT (X)>
H1

<H0
η, (3.3)

where η is the threshold. The resulting probability of detection Pd and probability of

false alarm Pf are given by

Pf = Pr {TT (X) > η | H0}

Pd = Pr {TT (X) > η | H1} .
(3.4)

Since the distribution of λ(Xi) contains a point mass, randomization might be needed

for a better detection performance.

Obviously, the detection performance is the worst when TT (X) is statistically

as small as possible under H1 and is as big as possible under H0. As such, when

Q(H1) = Q(H0) = Ω, that is, the outlier distribution can be arbitrary, the optimal

outlier q0(Xi/H1) is to put all the probability mass at the set
{
XI

i | li(Xi) ≤ τ0
}
and

q0(Xi/H0) is to put all the probability mass at the set
{
XU

i | li(Xi) ≥ τ1
}
. Under

this worst possible scenario, the test statistic becomes

TT (X) =


∑N−K

i=1 λ(Xi) +Kτ0 : H1∑N−K
i=1 λ(Xi) +Kτ1 : H0.

(3.5)



26

The corresponding minimum guaranteed detection performance can be analyzed by

evaluating equation (3.5) with the distribution of the sum of clipped log-likelihood

ratios. When N and K are sufficiently large, some approximated asymptotic results

can be obtained by employing large deviation analysis such as the central limit the-

orem (CLT). For example, let uj and vj be the mean and variance of λ(Xi) under

Hj with perspective nominal distributions, j = 0, 1, respectively. By CLT, it can be

shown that

Pf ≃ Q

{
η −Kτ1 − (N −K)u0√

(N −K)v0

}

Pd ≃ Q

{
η −Kτ0 − (N −K)u1√

(N −K)v1

}
,

(3.6)

where Q (.) is the complementary distribution function of a standard normal random

variable. The thresholds τ1 and τ0 can be tuned based on equation (3.6). Alterna-

tively, one may adopt the thresholds by Huber’s test with the corresponding ϵ = K/N .

Although, this problem is easier to solve, this set of thresholds are not guaranteed to

be optimal.

3.2.2 Trimmed Sum Detector

Trimmed means, which are less affected by outliers, often provide a better estimation

of the location of the bulk of the observations than the mean. Inspired by such robust

estimation, a detector as an α-trimmed sum on log-likelihood ratios is considered.

Without loss of generality, assume l1(X1) ≤ l2(X2) ≤ ...lN(XN). The α-trimmed

sum on log likelihood ratios is the sum of log likelihood ratios after removing the
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largest K1 ≥ K and the smallest K1 values, and used as a test statistic.

Tα(X) =

N−K1∑
i=K1+1

li(Xi). (3.7)

When Q(H1) = Q(H0) = Ω, the worst possible outlier q0(Xi/H1) is to put all the

probability mass at the lower end XI
i = arg inf (li(Xi)) and q0(Xi/H0) is to put all

the probability mass at the upper end XS
i = arg sup (li(Xi)). As a result, Tα(X)

becomes the sum of the lowest ranked N − 2K1 log likelihood ratio values out of

N −K1 nominal observations under H1, and the sum of the highest ranked N − 2K

log likelihood ratio values out of N −K1 nominal observations under H0. Next, these

two robust detectors are evaluated and analyzed.

3.3 Detection in Normally Distributed

Observations

Let us first consider a detection problem where the observation X ∼ [X1, X2, ..., XN ]

are normally distributed such that

Xi ∼


N(µ, σ2) : H1

N(−µ, σ2) : H0

, µ > 0.

We consider the case where K out of N observations are compromised. Due to the

symmetry of this problem, it can be shown that the threshold is symmetric such that
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τ1 = −τ0 = τ as in [43], and

Tc(X) =


∑N−K

i=1 λ(Xi)−Kτ : H1∑N−K
i=1 λ(Xi) +Kτ : H0

The respective pdfs under either hypothesis are given by

f (λ(Xi) | H1) = Q

(
τ − µ

σ

)
δ(Xi − τ) + ϕ(Xi − µ)IXiϵ[−τ,τ ] +Q

(
τ + µ

σ

)
δ(Xi + τ)

f (λ(Xi) | H0) = Q

(
τ + µ

σ

)
δ(Xi − τ) + ϕ(Xi − µ)IXiϵ[−τ,τ ] +Q

(
τ − µ

σ

)
δ(X + τ),

(3.8)

where δ(.) is used to denote the probability mass function. For N = 3, K = 1, the

probability of detection Pd and false alarm Pf given by

Pd = Pr {λ (X1) + λ (X2) > η + τ | H1}

Pf = Pr {λ (X1) + λ (X2) > η − τ | H0} .

For 3 observations, the closed-form solution for Pd and Pf can be calculated using

convolution sum as in appendix B. However, for larger N, it is difficult to get dis-

tribution of Tc(X), so asymptotic result of Pd and Pf is approximated by equation

(3.8), and can be expressed as

Pd ≃ Q

{
Q−1(Pf )− 2

d(τ)√
(N −K)v1(τ)

}
, (3.9)

where d(τ) = (N − K)u1(τ) − Kτ , u1(τ)) and v1(τ) are the mean and variance of

λ (Xi/H1). For any given Pf , the threshold τ ∗ = argmaxτ (d(τ)) that maximizes Pd
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is the one that maximizes d(τ)√
(N−K)v1(τ)

respectively.

Similarly, in order to analyze the performance of α−Trimmed Sum Detector, we

need the distribution of sum of ranked log likelihood ratios. A closed form solution is

possible for small N and K. For example, consider 1 out of 3 observations is contam-

inated, the α−trimmed sum on log likelihood ratios is the median of log likelihood

ratio after removing the biggest and smallest and used as test statistics

Tα(X) = median {Y1,Y2,Y3}>
H1

<H0
η,

Tα(X) is statistically as small as possible under H1 and as large as possible under H0.

Extreme outliers would be to send −∞ under H1 and ∞ under H0,

Tα(X) =


min {X1, X2} : H1

max {X1, X2} : H0.

The detection performance is

Pf = 1−
[
1−Q

(
η + µ

σ

)]2
,

Pd =

[
Q

(
η − µ

σ

)]2 (3.10)

3.3.1 Performance analysis

The detection performance depends on N , K, and signal quality under nominal con-

ditions. From equation (3.6), for any given Pf , it can find thresholds τ0, τ1 that

maximize Pd. For a fixed N , a greater K results in worse detection performance.

There exists a K0 such that when K ≥ K0, the detector can not provide any mean-
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ingful results, i.e. Pd ≤ Pf . In such case, we denote β0 = f(K0, N) to be the break

down point. It indicates the maximal fraction of outliers in the observations that a

detector can handle without breaking down and is used to characterize the quantita-

tive robustness of a detector.

From equation (3.9), the detector is meaningful if d(τ) > 0. For the particular

N and K, the break down point is reached if d(τ) = 0, i.e. Pd ≤ Pf . Therefore, if

u1(τ) ≤ K
N−K

τ , then the detector can not provide any meaningful result. As a result,

the breakdown point K0 can be maximized by maximizing u1(τ)
τ

. For a particular

N and K, we want to find minimum break down µ such that d(τ) > 0. At τ = 0,

d(0) = 0. If there exist τ such that d(τ) > 0. Hence,

∂d(τ)

∂τ
|τ=0> 0 =

∂u1(τ)

∂τ
|τ=0 −

K

N −K
> 0,

where, ∂u1(τ)
∂τ

|τ=0= Q
(
−µ

σ

)
− Q

(
µ
σ

)
. The minimum breaking down point µ, above

which the detector works properly for given N and K can be obtained by solving

Q
(
−µ

σ

)
−Q

(
µ
σ

)
= β

1−β
, where β = K

N
.

For α−Trimmed Sum Detector, the breakdown happens when the sum of ranked

log likelihood ratio underH0 is statistically greater than that underH1. A closed-form

solution is possible for small N and K. For example, consider 1 out of 3 observation

is contaminated, detection performance is derived in equation(3.10). If Pd ≤ Pf , then

α−Trimmed Sum Detector is useless. The minimum breaking down signal-to-noise

ration (SNR), u0 for the above detector to work properly can be obtained by solving

Pd = Pf at η = 0 and yielding.

u0 = Q−1

(
1− 1√

2

)
.
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For larger N , the distribution of order sum does not appear to have a closed form

expression for normal distribution, and the analyses of breakdown points are currently

unavailable.

3.4 Target Detection in Distributed MIMO radar

Since its introduction in the early 2000s, MIMO radar has quickly become an impor-

tant and active radar research arena. MIMO radar is based on the idea of employing

multiple antennas to transmit multiple waveforms and multiple antennas to receive

echoes reflected by targets [45, 46, 47, 48, 49, 50]. With greater design flexibility in

the choice of transmit waveforms, the placement of transmitting and receiving an-

tennas, as well as the design of receiver processing algorithms, MIMO radars can

potentially exhibit significantly improved performance characteristic relative to con-

ventional radars [51, 52].

While enjoying a great potential in system performance gain, MIMO radar posts

some challenges in system design and implementation. Compared with traditional

radar systems, MIMO radars are often more complicated and require a high degree

of synchronization among all their components [45]. Furthermore, when the receivers

are distributed, the data collected by different receivers have to be transmitted to

FC, where all the receiver data are jointly processed to make a final decision. These

synchronization and data transmission tasks must be carried out via a communication

network connecting the transmitters, receivers, and the FC.

Like many complex network systems, the functionality and performance of a

MIMO radar are likely to be affected when the radar is not operated under the ideal

nominal conditions. Unlike monostatic radar systems, MIMO radars are more vulner-

able to malicious cybersecurity attacks due to the distributed setting and stringent
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system synchronization and data communications requirements. One failed compo-

nent may affect many other components. For example, if one transmitter is unreliable,

the radar signal at all receivers will be affected. If left untreated, this uncertainty

may cause great damage to MIMO radar system performance. There are some results

available to incorporate the statistical model mismatches by robust transmitter and

receivers designs [53, 54], detect and monitor the sensor drifting [55, 56] and sensor

fault [57, 58]. Unfortunately, only a few attempts have been made to study the per-

formance degradation and robust system in the presence of severe degradations, such

as cybersecurity attacks in MIMO radars. This chapter also addresses a challenge in

distributed MIMO radars target detection under unreliable networks.

Let us now consider a target detection problem in a spatially distributed MIMO

radar, similar to the one proposed and studied in [51]. The radar consists of well-

spaced M transmitters, N receivers, and one fusion center which receives the signals

from the receivers and makes the final decision. Similar to the signal model in [39, 59],

the scope of the problem is restricted under the following conditions.

1. The transmitter waveform S = [S1, S2, ..., SM ] is a set of narrow band signals,

where Sm of size L × 1 is the waveform of mth transmitter and L > M is the

number of time samples. The waveform are normalized and orthogonal.

2. The background is clutter-free and target is stationary. At the nth receiver, the

sampled echo is given by

Xn = SGn +Wn,

where Xn is an L × 1 sampled signal, Gn = [G1n, ...., GMn] is the gain vector

where Gmn = rmnσmn is the product of the path gain from mth transmitter
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reflected at the target to nth with corresponding Radar Cross Section (RCS))

σmn, andWn = [W1n,W2n, ...,WLn] represents the observation noise.

3. The receiver noiseWln are normalized independently and identically distributed

(i.i.d.) complex Gaussian noise such that Wln ∼ CN (0 , 1 )

4. The path gains are assumed to be identical for all paths and the target is

assumed to consists of a large number of scatters, as a result σmn ∼ CN (0 , γ),

where γ is known as signal-to-noise ratio.
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Figure 3.2: Detection in Distributed MIMO Radar.
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For the detection problem under the aforementioned assumptions, the sufficient statis-

tics is Y = [Y T
1 , Y

T
2 , ..., Y

T
N ] such that

Ymn = S∗
mXn ∼


CN (0 , γ + 1 ) : H1

CN (0 , 1 ) : H0

. (3.11)

The optimal detector at fusion center under nominal condition is a non coherent

detector [51] such that

T (X) =
M∑

m=1

N∑
n=1

∥Ymn∥2

For centralized detection, since Ymn follows a complex Gaussian distribution, ∥Ymn∥2
1+γ

∼

χ2MN under H1, and ∥Ymn∥2 ∼ χ2MN under H0, where χ2MN is chi-square distribu-

tion with 2MN degrees of freedom.

The functionality and performance of distributed MIMO radar my be affected

when radar is not operated under ideal nominal conditions. The detector perfor-

mance in probabilistic setting is studied in [39]. As one receiver receives signals

emanating from all M transmitters, one needs to jointly consider all data from all

receive-transmit pairs, i.e.

M∑
m=1

N∑
n=1

∥Ymn∥2 =

(
M∑

m=1

∥Ym2∥2 , ..,
M∑

m=1

∥YmN∥2
)
. (3.12)

Here, the case where K out of N receivers are unreliable is considered.

Tc(X) =


∑N−K

i=1 λ (YMi) +Kτ0 H1∑N−K
i=1 λ (YMi) +Kτ1 H0

, (3.13)
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where YMi =
∑M

m=1 ∥Ymi∥2 and λ (YMi) is a clipped log likelihood ratio

λ (YMi) =


τ1 YMi ≥ τ1

YMi τ0 < YMi < τ1

τ0 YMi ≤ τ0.

(3.14)

As a result, the pdf under H0 and pdf under H1 are given by

p (λ(YMi) | H0) = 1− Fχ2(τ1, 2M)δ (YMi − τ1) + fχ2(YMi, 2M)IYMiε[τ0,τ1]

+ fχ2(YMi, 2M)δ (YMi − τ0) ,

(3.15)

and

p (λ(YMi) | H1) = 1− Fχ2(
τ1

1 + γ
, 2M)δ (YMi − τ1)+

fχ2(YMi, 2M)[1 + γ]IYMiε[τ0,τ1] + Fχ2(
τ0

1 + γ
, 2M)

δ (YMi − τ0) .

(3.16)

For smaller values of N , consider the case with N = 3, K = 1, the Pd and Pf are

Pd = Pr {λ (YM1) + λ (YM2) > η − τ0 | H1} ,

Pf = Pr {λ (YM1) + λ (YM2) > η − τ1 | H0} .
(3.17)

For a sufficiently large MN , the approximated asymptotic result of Pd and Pf is

possible by equation (3.6). For any given Pf , the thresholds τ0, τ1 that maximize Pd

is

τ ∗0 , τ
∗
1 = argmin

τ0,τ1
Q

(
Q−1(Pf )

√
v0
v1

+ Φ

)
, (3.18)
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where Φ = K(τ1−τ0)+(N−K)(u0−u1)√
(N−K)v1

).

Similarly, for the α−Trimmed Sum Detector, the distribution of the sum of ranked

log-likelihood ratios is needed. A closed-form solution is possible for small N and K.

For example, consider 1 out of 3 observations is contaminated. The α−trimmed sum

on the log-likelihood ratios is the median of the log-likelihood ratio after removing

the biggest and smallest values. If Y3 is compromised, the test statistic is

Tα(X) = median {Y1,Y2,Y3} >H1

<H0
η. (3.19)

Tα(X) is as small as possible under H1 and as large as possible under H0. When the

compromised observation is −∞ under H1 and ∞ under H0,

Tα(X) =


min {Y1, Y2} : H1

max {Y1, Y2} : H0,

(3.20)

then,

Pf = 1− [Fχ2(η, 2M)]2 ,

Pd =

[
1− Fχ2

a
(

η

1 + γ
, 2M)

]2
.

(3.21)

For larger N , from equation (3.12), allMN entries of the test statistic Ymn are needed

to make the final decision. Assuming all MN data are carried in MN independent

parallel (virtual or real) channels and the attacker can modify the data content Ymn

arbitrarily according to some designed distributions (strategies). The attacker may
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degrade the MIMO radar detection performance by falsifying the data in the com-

promised communication link to send false information to the FC. The analysis of

communication link attack can be treated as a receiver attack in a virtual single-

input multiple-output (SIMO) radar with 1 transmitter and MN receivers. In this

case, each distribution
∑M

m=1

∑N
n=1 ∥Ymn∥2 = (Y1, Y2, ..., YN) follows the exponential

distribution. In such cases, we can obtain the exact closed-form solution of the order

statistic and is derived in appendix A.

From equation (3.18), the detection performance depends onM,N,K, and thresh-

olds τ0, and τ1. The detector is meaningful if Pd > Pf . For the particular M,N,K,

the breakdown point is reached if Pd ≤ Pf . Due to the asymmetry of this problem, it

is very difficult to derive the breakdown point exactly therefore, it can used equation

(3.4) to analyze the breakdown point.

For the α−Trimmed Sum Detector, the breakdown point happens when the sum

of ranked log likelihood ratios under H0 is statistically greater than that under H1.

For example, consider 1 out of 3 observations is contaminated, the detection perfor-

mance is derived in equation (3.21). If Pd ≤ Pf , then the α−Trimmed Sum Detector

is useless. The minimum breakdown signal-to-noise ratio (SNR), γ0 for the above

detector to work properly can be obtained by solving Pd = Pf , which yields

γ0 =
F−1
χ2 (

√
1− Pd, 2M)

F−1
χ2
a
(1−

√
Pd, 2M)

− 1.

For large N , it does admit a closed-form solution for target detection in distributed

MIMO radar case and is evaluated using appendix (B.1).
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3.5 Simulation and Validation

In this section, some numerical simulation results of CLLRD and α−Trimmed Sum

Detector, obtained by Monte-Carlo simulation are presented in the presence of worst

possible adversary in term of Receiver Operating Characteristic curves (ROC). In

order to prepare for worst possible scenario, it is assumed that first K compromised

observations are very small numbers under H1, and large numbers under H0. The

attacker employs an independent and identical attack strategy at each compromised

component.
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Figure 3.3: ROC curves at N = 3, K = 1, γ = 0 dB for normally distributed
observation.
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Figure 3.4: ROC curves at N = 3, M = 10, K = 1, γ = 0 dB for MIMO
radar.

Fig 3.3 and Fig 3.4 show the performance of CLLRD and α−Trimmed Sum De-

tector for N = 3, M = 10, K = 1, and SNR(γ) = 0 dB. The test statistics

Tc(X) ∈ [−3τ, 3τ ] for the worst case outlier are considered and evaluated. If the

fusion center is aware of the attacking strategy but the detector designer does not

want to change the CLLRD, then the detection is based on equation(3.5). Under H0,

the test statistics Tc(X) ∈ [−τ, 3τ ] and under H1, the test statistics Tc(X) ∈ [−3τ, τ ].

When η = τ + ε for any ε > 0, Pd = 0, but Pf > 0 as shown in the region from
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(0, 0) to A, and when η = τ − ε, Pd < 1, but Pf = 1 as shown in region D to E in

Fig 3.3. The resulting offsets in Pf and Pd due to the small N can be corrected by

randomization in between (0, 0) to B and C to E as shown in Fig 3.3. It is observed

that the α−Trimmed Sum Detector performs better for a few number of observations

while the CLLRD performs better with the larger number of observations. These

results show that neither detector is mini-max optimally.

Figure 3.5: ROC curves at N = 20, K = 3, γ = −3 dB for normally dis-
tributed observation.

Fig 3.5 shows the performance CLLRD and α−trimmed sum detector at N = 20,
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K = 3, γ = −3 dB for normally distributed observation. Here we also consider the

CLLRD in static case by using threshold proposed by Huber [44] for least favorable

distribution in probabilistic setting. The CLLRD with threshold obtained by equation

(3.9) and that proposed by Huber’s performs almost same.

Figure 3.6: ROC curves at N = 10,M = 1, K = 1, γ = 0 dB for MIMO
radar.

In the case of MIMO radar, computation of threshold for truncated likelihood

ratio is obtained by solving equation (3.18). As their performance is almost similar

with Huber’s thresholds, we use it to simulate CLLRD for simplicity and comparative

performance with α−trimmed sum detector is as shown in Fig 3.6 for N = 10,M = 1,
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K = 1, γ = 0 dB.

The α−Trimmed Sum Detector is simpler to design and performs better at smaller

value of N and K. The CLLRD performs better for larger N .

Figure 3.7: ROC curves at N = 20, K = 3, γ = −4 dB for normally dis-
tributed observation with different outliers.

Fig 3.7 shows the performance at various levels of compromised observations. We

design our detector with the case where there are K = 3 outliers in observations.

In case 1 observation and 2 observations are compromised, the performance are as

shown in ROC curves. The gap in performance curves for CLLRD with no observation

compromised, 1 observation compromised and 2 observations compromised in a static
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setting with K = 3 show the prices that have to pay for detection performance due

to robustness.
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CHAPTER 4:

ROBUST ESTIMATION

This chapter presents the robust estimation theory under the probabilistic and static

models. Besides the standard approaches of robust estimation under the frequen-

tist settings where the parameters of interest are fixed but unknown, the estimation

problem is mostly considered under the Bayes settings, where the prior probability

distribution of the parameter is known. First, we establish the framework, and present

the comprehensive result in the case of a single node network under the probabilis-

tic setting. The estimation problem is then investigated for the general multi-node

framework based on the insights shed by the single node network.

4.1 Problem formulation

Consider an estimation problem with N sensors where the ith sensor observations

is Xi, i = 1, 2, · · · , N . Under the nominal operating conditions, Xi is conditionally

independent from other sensors and follows the model

pi (Xi|θ, θa) , (4.1)

where θ ∈ Θ is the parameter of interest, θa ∈ Θa is the auxiliary parameter, and

pi (Xi|θ, θa) is the conditional probability density function. When the sensors are
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unreliable, we assume that with εi > 0 probability Xi may follow a different model

qi (Xi|θ, θa), the overall sensor observation model becomes

p̃ (Xi = xi|θ, θa) = (1− εi) pi (Xi = xi|θ, θa) + εiqi (Xi = xi|θ, θa) . (4.2)

The performance departure from the nominal settings is due to the uncertainty εi

and the observation model qi. We first analyze the impact of εi and assume qi can be

completely known. This assumption is roughly valid where the sensors operate under

binary models, and the chance of switching to the abnormally model is εi.

To estimate g (θ), a known function of θ, the goal of the estimation problem is

to form ĝ (θ) based on the data x = [X1, · · ·XN ]
T . Let Qi be the set of all possi-

ble qi and F =
{
f |θ̂ = f (X1,X2, · · · , XN)

}
be the set of all possible estimates, and

d ((g (θ) , ĝ (θ))) ≥ 0 or C (ĝ) = E (d (g (θ) , ĝ (θ))) when the prior of θ known, is the

estimation cost function. In many applications, g (θ) = θ is the parameter itself. The

performance change is due to the uncertainty εi and the new observation model qi.
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Figure 4.1: Robust Estimation Framework

This problem can be formulated as a two-player zero-sum game: the qi ∈ Q choice

maker as Player 1, the estimator θ̂ ∈ F as Player 2, and the estimation error C as

the reward to the Player 1 and the negative of error as the reward to Player 2. We

assume that pi, the pdf under the nominal condition, and N , the sensor network size,
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are known to both players. Usually, the estimator can arbitrarily choose its estimate.

However, the choices of qi depend on the knowledge of Player 1 about θ, θa.

In practice, there are situations where either Player 1 or Player 2 has private in-

formation about the parameter θ. Player 1 may have a prior knowledge in terms of a

prior distribution ρ (θ, θa), e.g., Player 1 is the target itself in radar detection. Such

information helps Player 1 design a proper strategy to optimize performance. Player

2 may have its observations, which are inaccessible to Player 2. For example, some

secured sensor observations are typically unknown to the malfunctioning nodes in a

parallel network setting.

While it is safe to say that the consistent estimation of g (θ) at Player 2 is al-

most always impossible due to the uncertainty in the observation model, a necessary

analysis is warranted to quantify the exact impact due to the node unreliability.

Depending on Player 1′s information, we can categorize such knowledge into three

categories: complete, partial, and none.

1. Complete: In this case, Player 1 has a complete knowledge of θ, θa, or equiva-

lently, ρ (θ, θa) degrades into a point mass function at the true θ and θa. The

choice of Qi = Ω which is the set of all possible distributions.

2. Partial: In this case, Player 1 has some knowledge of θ, θa andQi = {q|q = q (Xi, ρ)}

is the set of Xi distribution.

3. None: In this case, Player 1 doesn’t have any knowledge of θ, θa, and Qi =

{q|q = q (Xi)} is the set of any Xi distribution that is independent of the pa-

rameters
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4.2 Estimation in Frequencist Setting

In this section, we investigate robust estimation under the frequentist settings where

the parameters of interest are fixed but unknown.

4.2.1 Complete Informative

For the complete information case where θ and θa are known to Player 1, he can

choose a qi which minimizes the information carried by Xi. This is essentially a

mini-max approach. In particular, if there exists a qi such that for a pair of θ1 ̸=

θ2, p̃ (Xi|θ1, θa) = p̃ (Xi|θ2, θa), i.e., the conditional observation distributions are the

same. Then, a consistent estimation will not be possible since one cannot gain any

information from the observation to distinguish between θ1 and θ2.

Theorem 4.2.1 Under the complete informative case where the unreliable sensor can

choose any arbitrary distribution, the sufficient and necessary condition for observa-

tion Xi being completely uninformative about θ is

ε ≥ ε0 (Θ) = 1− 1∫
supθ∈Θ pi (Xi|θ, θa) dXi

(4.3)

Proof: Under the ε−contamination model, this condition is equivalent to

(1− εi) pi (Xi|θ1, θa) + εiqi (Xi|θ1, θa) = (1− εi) pi (Xi|θ2, θa) + εiqi (Xi|θ2, θa)

= p̃ (Xi|θa)
(4.4)
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When qi can be picked arbitrarily, notice that

p̃ (Xi|θa) ≥ max {(1− εi) pi (Xi|θ2, θa) , (1− εi) pi (Xi|θ1, θa)} ,

a necessary and sufficient conditional for condition (4.4) observation model to be

satisfied is

∫
max {(1− εi) pi (Xi|θ2, θa) , (1− εi) pi (Xi|θ1, θa)} dXi ≤ 1

or equivalently,

ε ≥ ε0 (θ1, θ2) = 1− 1∫
max {pi (Xi|θ2, θa) , pi (Xi|θ1, θa)} dXi

= 1− 1∫
1
2
{pi (Xi|θ2, θa) + pi (Xi|θ1, θa) + |p (Xi|θ2, θa)− pi (Xi|θ1, θa)|} dXi

= 1− 1

1 + 1
2
d (pi (Xi|θ2, θa) , pi (Xi|θ1, θa))

=
d (pi (Xi|θ2, θa) , pi (Xi|θ1, θa))

2 + d (pi (Xi|θ2, θa) , pi (Xi|θ1, θa))
,

(4.5)

where d (p (x) , q (x)) =
∫
|p (x)− q (x)| dx is the first order distance between to two

pdfs. More over, if ε is big enough such that for the mixed distribution function can

be made the same for all θ, i.e.,

p̃ (Xi|θ, θa) = (1− εi) pi (Xi|θ, θa) + εiqi (Xi|θ, θa) = p̃ (Xi|θa) , (4.6)

and the resulting observation distribution is independent of θ, then the observation

Xi is completely uninformative about θ. The corresponding distribution qi is given
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by

qi (Xi|θ, θa) =
1

εi
(p̃ (Xi|θa)− (1− εi) pi (Xi|θ, θa)) . (4.7)

Example 1 : Binomial Random Variables

Under the nominal case, let Xi be an independent and identically distributed (i.i.d.)

Bernoulli random variables with a success probability θ, i.e., pi (Xi = 1|θ) = θ, and

εi = ε. Θ = (θl, θu), 0 ≤ θl < θu ≤ 1, there is no auxiliary random variable. In order

to make Xi completely uninformative, one needs p̃ (Xi|θ) = (1− ε)

p (Xi|θ) + εq (Xi|θ) be a constant, which can be met when

ε ≥ ε0 =
p (Xi = 1|θu)− p (Xi = 1|θl)
1 + p (Xi|θu)− p (Xi|θl)

=
θu − θl

1 + θu − θl

q (Xi|θ) =
1− ε0
ε

(p (Xi = 1|θu)− p (Xi = 1|θ)) + ε− ε0
ε

p (Xi = 1|θ)

=
1− ε0
ε

(p (Xi = 1|θu)− p (Xi = 1|θ)) + ε− ε0
ε

p (Xi = 1|θ) .

This results in

p̃ (Xi = 1|θ) = (1− ε) p (Xi = 1|θ) + εq (Xi = 1|θ) = (1− ε0) θu,

and Xi becomes completely uninformative. Fig 4.2 shows the minimal required ε0 for

varies θu when the lower limit θl = 0.1. The narrower θ range is, the easier the ob-

servation becomes completely uninformative. When ε < ε0, complete uninformative

becomes unachievable since p̃ (Xi = 1|θl) < p̃ (Xi = 1|θu) regardless the choice of q.

However, partial uninformative is still well within reach. This can be achieved by a

“stair-case” approach with the division of the range of θ into K intervals such that

θl = θ1 < θ1 < θ2 · · · < θK+1 = θu, which results in a constant p̃ (Xi = 1|θ) = pk for
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Figure 4.2: Minimal ε0 to achieve complete uninformative when θl = 0.1.

any θ ∈ (θk, θk+1) , k = 1, 2, · · · , K. This requires that ε ≥ max (ε0 (1) , · · · , ε0 (K)),

where ε (k) = θk+1−θk
1+θk+1−θk

. When the intervals are evenly spaced, θk+1−θk = 1
K
(θu − θl)

and the minimal required ε0 = ε0 (k) =
θu−θl

K+θu−θl
which can be made arbitrary small

by increasing K. In this case, the best one can learn is which interval θ lies, increasing

number of sensors will not be able to further reduce any uncertainty and provide any

further information.

For single sensor scenarios, the optimal MSE and optimal estimate can be derived

when the observation is unreliable. Under the nominal settings, ϵ = 0, the estimate

θ̂ = E[θ|U ] = 2
3
.MSE=

∫ 1

0

{
θ(θ − 2

3
)2 + (1− θ)(θ − 1

3
)2
}
dθ = 1

18
. Under complete
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unreliable,ε is 1, MSE=
∫ 1

0

{
(θ − 1

2
)2
}
dθ = 1

12
. Hence the error is in between 1

12
to

1
18

when the observation is unreliable. The Player 1 strategy q to maximize the error

would be to send

q =


1 θ < 1

2

0 θ ≥ 1
2

Example 2: Location Estimation in Gaussian Observation Noise

Under the nominal case, let Xi be i.i.d. Gaussian random variables with mean θ and

variance σ2, i.e., pi (Xi = x|θ) = 1√
2πσ2

exp
(
− (x−θ)2

2σ2

)
, and εi = ε. Θ = (θl, θu) ,−∞ < θl < θu < ∞, there is no auxiliary

random value.

In this case, for any −θu < θ1 < θ2 < θu,

∫
max {pi (Xi|θ2, θa) , pi (Xi|θ1, θa)} dXi = 2Φ

(
θ2 − θ1
2σ

)
, (4.8)

where Φ (x) =
∫ t

−∞
1√
2π

exp
(
− t2

2

)
dt is the standard Gaussian commutative distribu-

tion function. Therefore, as long as

ε ≥ ε0 (θ1, θ2) = 1− 1

2Φ
(
θ2−θ1
2σ

) ,
then one can make θ1 and θ2 indistinguishable based on Xi.

Notice that supθ(θl,θu)
∈ pi (Xi|θ) is flat at 1

σ
√
2π

for Xi ∈ (θl, θu) and a standard

Gaussian centered at θl or θu at either side, we have
∫
supθ∈Θ pi (Xi|θ) dXi =

θu−θl
σ
√
2π

+1
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and therefore to achieve complete uninformative, the minimum sufficient ε0 is

ε0 = 1− 1
θu−θl
σ
√
2π

+ 1
=

θu − θl

θu − θl + σ
√
2π
. (4.9)

Notice that ε0 = 1 when θl = −∞ and θu = ∞, i.e., the complete uninformative is

not achievable, if the nodes are at least somewhat reliable.

Figure 4.3: Minimal ε0 to achieve complete uninformative.

Fig 4.3 depicts the minimal required ε0 for complete uninformative as a function

of range θu = −θl where σ2 = 1. As also seen in equation (4.9) Gaussian Complete

uninformative, ε0 increases and approaches to 1, when θu increases and approaches
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∞.

4.2.2 No Informative Case

In this case, player 1 doesn’t have any knowledge of θ, θa, Qi = {q|q = q (Xi)} is the

set of any Xi distribution that is independent of the parameters Xi is pure noise.

Example: Binomial Random Variables

Consider the binary information under the attack with transition probability ρ0 and

ρ1. Received data will be completely useless when

γ(θ) = p̃ (Xi = 1|θ) = (1− ε) p (Xi = 1|θ)+

εq (Xi = 1|θ) (1− ε) θ

= (1− ε) θ + ε(1− ρ1) + εθ(1− ρ0),

is least informative. The information contained in the received bit I(θ, γ(θ)) =[
(δ(γ(θ))2

γ(θ)(1−γ(θ)

]
= (1−ε(ρ1+ρ0))2

γ(θ)(1−γ(θ))
is monotonic decreasing function so the I(θ, γ(θ)) will

be the least informative at ρ0 = ρ1 = 1. Hence flipping of the binary information is

the best attacking strategy when Player 1 does not have any knowledge of θ.

For single sensor observation, when Player 1 does not have any information about the

parameter θ, the best way to maximize the MSE is to flip the information with some

probability ρ = ρ1 = ρ0. Under the non-informative case,

MSE =

∫ 1

0

{θ(1− ρε) + (1− θ)(ερ)} (θ − θ̂)2dθ,

and it is maximum when ρ = 1. The optimal estimate θ̂ can be obtained by mini-

mizing MSE
(

∂MSE

∂θ̂
= 0
)
, i.e, θ̂ = 2−ε

3
.
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4.2.3 Simulation Results for The Frequentist Setting

Here, some results based on our derivations are presented for a complete informative

and non-informative scenario. Fig 4.4 shows the plot between optimal θ and sensor

unreliability parameter ε. It shows that the estimation result becomes useless for

lower unreliable parameter ε when attacker knows the information about θ compared

to the case when the attacker does not have any information about it.

Figure 4.4: Estimation under sensor unreliability for one sensor.
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Figure 4.5: MSE comparison: complete and no informative case for single
sensor observation.

The MSE with respect to optimal estimate θ is as shown in Fig 4.5 at particular

sensor unreliability (ε = 0.1). At the worst case, i.e. θ1 = 0.5, MSE= 1
12

is same

for both complete and non informative case. The complete informative situation is

always better than non informative for all optimal estimate other than the case when

θ1 = 0.5. The difference between MSE for this two cases is increases as estimate θ

increases from 1
2
to 2

3
.
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4.3 Bayes Estimation

In this section, we investigate the estimation problem in a system with unreliable

nodes under a game theoretical setting. Specifically, a network of nodes is considered

in a zero-sum game framework for Bayesian estimation. The saddle-point solution is

obtained for a single-node network. It is extended for the multi-node network and

obtains strong robustness with a minor performance degradation under the nominal

conditions.

Let us first consider the single node case under the Bayesian settings to min-

imize the MSE E |g (θ)− ĝ (θ)|22 where N = 1, the parameter of interest g (θ) ∈

(θl, θu),−∞ ≤ θl < θu ≤ ∞ is real, and p (θ) is assumed to be known with no point

mass, q (x|θ) ∈ Qθ is an unknown pdf belongs to a set of possible distribution Qθ.

Obviously N = 1 is too simple network, it can provide some insights to the research

problem and serve as a baseline performance benchmark for the multi-node case by

treating the entire set of nodes as one “super” node.

This problem can be formulated as a two-player zero-sum game: the q ∈ Q choice

maker as Player 1, the estimator θ̂ ∈ F as Player 2, and the estimation error C as

the reward to Player 1 and the negative of the error as the reward to Player 2. It

is assumed that p, the pdf under the nominal condition, is known. Usually, the es-

timator can arbitrarily choose its estimate f . However, the choices of Qi depend on

the knowledge of player 1 about θ. We seek a mini-max estimator that minimizes the

cost under the worst case. Our main result shows that the clipped Bayesian estima-

tor can obtain a unique mini-max estimator for any strategy. Furthermore, the least

favorable Player 1 strategy is unique.
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4.3.1 Min-Max Solution

Our goal is to design an estimator ĝm (θ) under the MSE criterion such that

ĝm (θ) = inf
ĝ

sup
q∈Qθ

E (d (g (θ) , ĝ (θ)))

= inf
ĝ

sup
q∈Qθ

E (g (θ)− ĝ (θ))22 .

(4.10)

For ease of presentation, in the following, we drop (θ) and use g and ĝ respectively.

Notice that

E (d (g, ĝ)) = EθEX (g − ĝ (x))2

= (1− ϵ)EθEp (g − ĝ (x))2 + ϵEθEq (g − ĝ (x))2 .

We first notice that the estimate ĝ (x) must be bounded such that −∞ < ηl ≤ ĝ (x) ≤

ηu < ∞. Otherwise, one can make the MSE arbitrarily large by letting q (x|θ) be a

degraded point mass at the point x where ĝ (x) = ∞.

Due to the convexity of the cost function (g − ĝ (x))2, the second part of the cost

EθEq (g − ĝ (x))2 is maximized by choosing q that results in extreme values of ĝ (x).

In this particular MSE case, the worst possible q is such that θ̂ (x) is either at extreme

values such that ĝ (x) = ηl with probability 1 when g (θ) ≥ ηl+ηu
2

, or ĝ (x) = ηu when

g (θ) < ηl+ηu
2

. The resulting error due to the node unreliability is

d (ηl, ηu) = Eθ

[
I

(
g (θ) <

ηl + ηu
2

)
(g (θ)− ηu)

2

]
+Eθ

[
I

(
g (θ) ≥ ηl + ηu

2

)
(g (θ)− ηl)

2

]
,

(4.11)
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where I (x) is the identity function. Notice that

EθEp (g (θ)− ĝ (x))2 =Eθ

(
g2
)
− Ep0

(
Eθ|p0 (g|x)

)2
+ Ep0

(
ĝ (x)− Eθ|p0 (g|x)

)2
,

(4.12)

where Eθ (g (θ))−Ep0

(
Eθ|p0 (g|x)

)2
, independent of ĝ, is the minimum MSE (MMSE)

under the nominal setting, where ε = 0.

To minimize equation (4.12), the optimal choice of ĝm (x1; ηl, ηu) given the range

(ηl,ηu) is a simple “clipped” estimator which caps the well-known MMSE from both

above and below such that

ĝm (x; ηl, ηu) =


ηl Eθ|p (g (θ) |x) < ηl

Eθ|p (g (θ) |x) ηl ≤ Eθ|p (g (θ) |x) ≤ ηu

ηu Eθ|p (g (θ) |x) > ηu

, (4.13)

with the resulting “extra” MSE Ep

(
ĝ (x)− Eθ|p (g|x)

)2
given by

Ep

(
ĝm (x; ηl, ηu)− Eθ|p (g|x)

)2
= Ep

{(
ηu − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≥ ηu

)}
+

Ep

{(
ηl − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≤ ηl

)}
.
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When the estimator ĝ (θ) is bounded in (ηl, ηu), the mini-max MSE is

E (g − ĝm (x; ηl, ηu))
2 =

(1− ε)Ep

{(
ηu − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≥ ηu

)}
+ (1− ε)Ep

{(
ηl − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≥ ηl

)}
+ εd (ηl, ηu) ,

(4.14)

achieved by ĝm in equation (4.13). One can further optimize parameters ηu, ηl, and

the optimal θ̂m can be obtained by minimizing equation (4.14).

When the system is completely normal, such clipping of the estimation by ηu and

ηl certainly degrades the estimation performance by an extra

MSE = Ep

{(
ηu − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≥ ηu

)}
+Ep

{(
ηl − Eθ|p (g|x)

)2
I
(
Eθ|p (g|x) ≤ ηl

)}
.

However, it is often a relatively small price to pay to obtain strong robustness when

the system is indeed malfunctioning.

4.3.2 Saddle-Point Solution

Next, we show that for any ε, there exists a suitable (ηu, ηl) such that the estimator

equation (4.13) is actually a saddle-point solution or Nash Equilibrium. It can be

proven by finding a distribution q∗ (x|θ) such that the resulting MMSE estimator

ĝ (θ)MMSE = E (g (θ) |x) admits the form in equation (4.13). We show that this max-

min solution is the same as the min-max solution. Hence, both Player’s strategies

form a saddle-point solution or Nash Equilibrium.
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Let us define

Xl =
{
x|Eθ|p (g|x) < ηl

}
Xu =

{
x|Eθ|p (g|x) > ηu

}
Θu =

{
θ|g ≥ ηl + ηu

2

}
Θl =

{
θ|g < ηl + ηu

2

}
.

(4.15)

From the optimal attacking strategy, we know that the optimal q puts all the proba-

bility mass in Xl (respectively Xu) when θ ∈ Θu (respectively θ ∈ Θl), or equivalently,

∫
Xl

q (x|θ) dx = 1, θ ∈ Θu∫
Xu

q (x|θ) dx = 1, θ ∈ Θl.

(4.16)

When x1 ∈ Xl, under the mixture model (4.2)

ĝMMSE (x) = E (g (θ) |x)

=

∫
θ

g (θ) p (θ|x) dθ

=

∫
Θ

g (θ)
p (x|θ)
p (x)

p (θ) dθ

= ηl.

Hence,

∫
Θ

g (θ) p (x|θ) p (θ) dθ = (1− ε) ηl

∫
Θ

p0 (x|θ) p (θ) dθ + εηl

∫
Θ

q (x|θ) p (θ) dθ

= (1− ε) ηlp0 (x) + εηlq (x) .
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Therefore we have

q (x)

[∫
Θ
gq (x|θ) dθ
q (x)

− ηl

]
=

1− ε

ε
p (x)

[
ηl −

∫
Θ
θp (x|θ) dθ
p (x)

]
.

That is

q (x) =
1− ε

ε
p (x)

ηl − Ep (g|x)
Eq (g|x)− ηl

, x ∈ Xl, (4.17)

where Ep (g|x) =
∫
Θ gp(x|θ)dθ

p(x)
is the conditional mean under the nominal distribution

Eq (g|x) =
∫
Θ gq∗(x|θ)dθ

q∗(x)
is the conditional mean under the contaminating distribution

q. Recall the condition equation (4.16), for q (x|θ) to be a valid pdf, we have

∫
Xl

q (x) dx =

∫
Xl

∫
Θu

q (x|θ) p (θ) dθdx

=

∫
Θu

p (θ) dθ = Pr

(
g (θ) >

ηl + ηu
2

)
.

(4.18)

A similar condition can be obtained for x ∈ Xu.

We can now summarize the overall conditions for q (x|θ) or equivalently q (x) for

the saddle point solution as follows:



q (x) =



1−ε
ε
p (x) ηl−Ep(g|x)

Eq(g|x)−ηl
x ∈ Xl

0 x ∈ Xl ∪ Xu

1−ε
ε
p (x) ηu−Ep(g|x)

Eq(g|x)−ηu
x ∈ Xu

1−ε
ε

∫
Xl
p (x) ηl−Ep(g|x)

Eq(g|x)−ηl
dx = Pr

(
g (θ) > ηl+ηu

2

)
1−ε
ε

∫
Xu
p (x) ηu−Ep(g|x)

Eq1 (g|x)−ηu
dx = Pr

(
g (θ) < ηl+ηu

2

)
.

(4.19)
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This set of equations also defines the conditions on the triplet (ε, ηl, ηu) for the saddle-

point solutions. The values of ηl and ηu cannot be chosen arbitrarily, and often they

are unique. In terms of q (x|θ), there are many possible solutions of so long as equation

(4.19) is satisfied. Since this is the MMSE of the q∗ (x|θ) which also admits the mini-

max condition (4.13), this solution is a saddle point solution, or Nash Equilibrium.

Next, we present a simple solution of such q∗s (·) by dropping the condition of q∗s (x|θ)

on θ such that q∗s (x|θ) = q∗s (x) is semi-independent of θ. With this simplification, we

have

Eq∗s (g|x) = E (g|θ ∈ Θu) = ηsu, x ∈ Xl, (4.20)

and

Eq∗s (g|x) = E (g|θ ∈ Θl) = ηsl, x ∈ Xu. (4.21)

Recall the condition 4.19, and taking the integration of x over Xl and Xu, we have

ε =

∫
Xu
p (x) ηu−Ep(g|x)

ηsl−ηu
dx

Pr
(
g (θ) < ηl+ηu

2

)
+
∫
Xu
p (x) ηu−Ep(g|x)

ηsl−ηu
dx

=

∫
Xu
p (x) ηu−Ep(g|x)

ηsl−ηu
dx

Pr
(
g (θ) > ηl+ηu

2

)
+
∫
Xl
p (x) ηl−Ep(g|x)

ηsu−ηl
dx

=

∫
Xu
p (x) ηu−Ep(g|x)

ηsl−ηu
dx+

∫
Xl
p (x) ηl−Ep(g|x)

ηsu−ηl
dx

1 +
∫
Xu
p (x) ηu−Ep(g|x)

ηsl−ηu
dx+

∫
Xl
p (x) ηl−Ep(g|x)

ηsu−ηl
dx
.

(4.22)

4.3.3 Saddle Point Solution Under the No Information Sce-

nario

The previous derivation is based on the assumption that the malfunctioning node has

the complete knowledge of θ, and thus can choose any arbitrary distribution q1 (x1|θ).
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Next, we consider the case where the node only knows about its own observation

X1, and all he can do is to modify it to another value Z1 based on the conditional

distribution p (Z1|x1). This puts a considerable constraints on the possible q1 (x1|θ).

Nevertheless, if we allow p (z1|x1) to be arbitrarily, we have can have a similar result.

To see that, we rewrite the MSE in terms of X1, Z1 and utilizing the fact that

θ → X1 → Z1 → ĝ (θ) = ĝ (Z1) forms a Markov chain (under the nominal condition,

Z1 = X1) such that

E |g (θ)− ĝ (θ)|22 = E
(
g2 (θ)− 2g (θ) ĝ (Z1) + ĝ2 (θ)

)
= E

(
g2 (θ)

)
+ E

(
−2g (θ) ĝ (θ) + ĝ2 (θ)

)
= E

(
g2 (θ)

)
+ EθX1Z1

(
−2g (θ) ĝ (θ) + ĝ2 (θ)

)
= E

(
g2 (θ)

)
+ EX1Z1Eθ|X1

(
−2g (θ) ĝ (θ) + ĝ2 (θ)

)
= E

(
g2 (θ)

)
+ EX1Z1

(
−2Eθ|X1g (θ) ĝ (θ) + ĝ2 (θ)

)
= E

(
g2 (θ)

)
+ EX1EZ1|X1

(
−2g̃ (X1) ĝ (Z1) + ĝ2 (Z1)

)
= E

(
g2 (θ)

)
− EX1

(
g̃2 (X1)

)
+ EX1 (g̃ (X1)− ĝ (Z1))

2 ,

where g̃ (X1) = Eθ|X1g (θ) is the conditional mean of g (θ) given X1. Notice that

E (g2 (θ))− EX1 (g̃
2 (X1)) is a constant independent of the choice of estimate ĝ (Z1),

the optimization problem is equivalent to estimate g̃ (X1) based on the observation

Z1. Therefore, the problem of partial information can be treated in a similar fashion

by incorporating the partial information into g̃ (X1).

To sum up, the estimation problem for a single node network with “no informa-

tion” becomes a particular case of the “complete information,” where the parameter

X1 is observed directly to estimate g̃ (X1), a function of X1, subject to a potential
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node malfunction that changes X1 to a different value Z1.

4.3.4 Probabilistic Setting: Location Estimation in Gaussian

Observation Noise

This section presents the scalar parameter estimation problem in Gaussian noise

when an adversary may control the observation. The prior distribution p (θ) is also

assumed to be Gaussian distributed. For this specific observation model, we derive

the breakdown point and efficiency of our proposed robust estimator. The efficiency

measures the performance loss due to the clipping compared to the nominal case.

Location estimation in a single node

Suppose θ ∈ N (0, 1) is a normalized standard Gaussian random variable. Under the

nominal condition with 1− ε probability, node 1 observes a noisy data with variance

σ2, i.e. X1 = θ +W1 where W1 ∼ N (0, σ2); and with ε probability, X1 is replaced

by another value generated from an unknown distribution q (x|θ). The goal is to

estimate θ that achieves the minimal possible MSE.

Under the nominal condition, X1 ∼ N (0, 1 + σ2), the a posterior distribution

θ|X1 ∼ N
(

1
1+σ2X1,

σ2

1+σ2

)
. The MMSE estimator θ̂MMSE = Ep1 (θ|X1) = 1

1+σ2X1

under the nominal condition is well known with the resulting MSE σ2

1+σ2 . Under the

node uncertainty, a robust estimator clips θ̂MMSE from both above and below at

(ηl, ηu). Due to the symmetry of this problem, we let −ηl = ηu = η ≥ 0 and try to
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determine the optimal threshold η. That is,

θ̂ (η) =


−η 1

1+σ2X1 < −η

1
1+σ2X1 −η ≤ 1

1+σ2X1 ≤ η

η 1
1+σ2X1 > η.

(4.23)

In this case, we have

Xl =
(
−∞,−

(
1 + σ2

)
η
)

Xu =
(
−∞,

(
1 + σ2

)
η
)

×l = (−∞, 0)Θu = (0,∞) ,

and equation (4.21) become

ηsl = E (θ|θ ∈ Θl) = −
√

2

π

= −ηsu
∫ ∞

(1+σ2)η

p1 (x1)
η − 1

1+σ2x1

−
√

2
π
− η

dx1

=
1

√
1 + σ2

(√
2
π
+ η
)ϕ(η√1 + σ2

)
− η

√
1 + σ2Q

(
η
√
1 + σ2

)

where ϕ (x) = 1√
2π
e−x2/2σ2

is the pdf and Q (x) are the complementary distribution

function of a standard Gaussian random variable, respectively. With Pr
(
g (θ) > ηl+ηu

2

)
=

Pr (θ > 0) = 1
2
= Pr

(
g (θ) < ηl+ηu

2

)
, the relationship between ε and the optimal η is
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given by equation (4.22)

ε =

∫∞
(1+σ2)η

p1 (x1)
η− 1

1+σ2 x1

−
√

2
π
−η
dx1

1
2
+
∫∞
(1+σ2)η

p1 (x1)
η− 1

1+σ2 x1

−
√

2
π
−η
dx1

=
2ϕ
(
η
√
1 + σ2

)
− η

√
1 + σ2Q

(
η
√
1 + σ2

)
√
1 + σ2

(√
2
π
+ η
)
+ 2ϕ

(
η
√
1 + σ2

)
− η

√
1 + σ2Q

(
η
√
1 + σ2

) ,
(4.24)

which can be used to determine the optimal η for a given ε.

When the optimal threshold is η = 0, the robust estimate is always 0, the mean

based on the prior distribution p (θ), and the observation is completely disregarded

due to the node uncertainty. The corresponding breaking down point ε∗0 becomes

ε∗0 =
1

1 +
√
1 + σ2

, (4.25)

that is, when the node uncertainty ε ≥ ε∗0 = 1
1+

√
1+σ2 , the node observation is too

ambiguous to be used to form a meaningful estimation and becomes useless. On the

other sides, η = ∞ when ε = 0, the clipped estimator reduces to the nominal setting.

The MSE under the nominal condition for θ̂ (η) in equation (4.24) is

MSEN (η) =
σ2

1 + σ2
+

2

1 + σ2

[(
η2
(
1 + σ2

)
+ 1
) (
η
√
1 + σ2

)
− η

√
1 + σ2ϕ

(
η
√
1 + σ2

)]
.

Clearly, 2
1+σ2

[
(η2 (1 + σ2) + 1)

(
η
√
1 + σ2

)
− η

√
1 + σ2ϕ

(
η
√
1 + σ2

)]
, monotonic de-

creasing with η, is the performance degradation due to the clipping. The efficiency

of the clipped estimator can be measured by the relative performance between the



70

clipped estimator and the MMSE estimator such that

eN (η) =
1−MSEN (η)

1−MSEN (∞)

=1− 2
[(
η2
(
1 + σ2

)
+ 1
) (
η
√
1 + σ2

)
− η

√
1 + σ2ϕ

(
η
√
1 + σ2

)]
.

The worst possible MSE when the node is malfunctioning is

MSEM (η) = p (θ < 0)E
[
(η − θ)2 | θ < 0

]
] + p (θ ≤ 0)E

[
(η + θ)2 | θ > 0

]
]

= η2 + 1 +
4η√
2π
,

is a monotonic increasing function of η, and the overall estimation performance

MSEP (η) = (1− ε)MSEN (η) + εMSEM (η) ,

achieves the minimum value at the optimal η from equation (4.24).

Location estimation in multi nodes

Extending the results of the single-node to multiple-node networks is not straightfor-

ward. To make some progress on this front, the performance of the clipped estimator

is investigated for the location estimation problem in multiple-node networks.

The noisy observations X ∼ [X1, X2, ......., XN ] collected by N nodes. The MMSE

estimator under nominal condition when noise in observations is i.i.d. Gaussian noise

W ∼ N (0, σ2) is

θ̂ = E (θ/x) =
1

1 + σ2/N

∑N
i=1Xi

N
. (4.26)
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MMSE estimmator under nominal condition gives all observations the same weight.

However, our intuition suggests that we weigh the observation Xi, i = 1, ..., N , in

equation (4.26) such that we give more weight to data that is close to the measurement

model as compared to the one that is unlikely to occur for unreliable network. For

the case of N > 1, an intuitive estimator is

θ̂ =
1

1 + σ2/N

∑N
i=1 Yi
N

, (4.27)

where Yi = f (Xi, η), is the clipped observation of Xi.

4.3.5 Static Setting: Location Estimation in Gaussian Ob-

servation Noise

There are K outliers each from unknown pdf q(Xi/θ) ∈ Q(θ) and nominal N −

K observations with each known pdf p(Xi/θ) ∈ P (Xi/θ) respectively. The overall

estimation problem is

g(X/θ) =

jK∏
j=j1

q(Xj/θ)

jN−K∏
j=j1

p(Xj/θ), (4.28)

where ΩK = {j1, ..., jK | 1 ≤ j1 < j2..., < jK ≤ N} is the set of all possible subset with

size K.

For the quadratic loss, d(θ, θ̂) = (θ̂ − θ)2 estimation error is

C =

∞∫
−∞

dθ

∞∫
−∞

d(θ, θ̂)pθ,X(θ,X)dX. (4.29)
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Consider the clipped estimator defined in section-4.3.4 as θ̂ = E (θ/x) = 1
1+σ2/N

∑N
i=1 Yi

N
.

Due to the symmetry

Yi =


Xi −τ < Xi < τ

τ Xi > τ

−τ −τ < Xi

.

The optimal adversary strategy q(Xi/θ) is the one that makes f(X) minimum as

much as possible for θ > 0 and as large as possible for θ < 0 to make C statistically

large. When Q(θ) = Ω, the optimal outlier q0(Xi/θ) is to put all the probability mass

at the set
{
XI

i | Xi ≤ −τ
}
for θ > 0 and to put all the probability mass at the set{

XU
i | li(Xi) ≥ τ

}
for θ < 0. As a result, MSE is

MSE(θ, θ̂) = E

((
E(θ̂ | θ)− θ

)2
+ var(θ̂ | θ)

)
,

where

E(θ̂ | θ) =


(

(N−K)
N

)
E(Yi | θ)− Kτ

N
θ > 0(

(N−K)
N

)
E(Yi | θ) + Kτ

N
θ < 0,

and

E(Yi | θ) = τQ

(
τ − θ

σw

)
− τQ

(
τ + θ

σw

)
+ σw

[
ϕ

(
−τ − θ

σw

)
− ϕ

(
τ − θ

σw

)]
+ θZ.
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As a result,

var(θ̂ | θ) = τ 2Q

(
τ − θ

σw

)
+ τ 2Q

(
τ + θ

σw

)
+ σ2

w

[(
−τ − θ

σw

)
ϕ

(
−τ − θ

σw

)
−
(
τ − θ

σw

)
ϕ

(
τ − θ

σw

)
+ Z

]
= 2θσw

[
ϕ

(
−τ − θ

σw

)
− ϕ

(
τ − θ

σw

)]
+ θ2Z

where Z =
[
Q
(

−τ−θ
σw

)
−Q

(
τ−θ
σw

)]
. With the prior ϕ(θ), the MSE can be expressed

as

MSE(θ, θ̂) =

∞∫
−∞

((
E(θ̂ | θ)− θ

)2
+ var(θ̂ | θ)

)
ϕ(θ)dθ.

For a given K and N , the value of threshold, τ that minimizes MSE can be obtained

solving ∂MSE(θ,θ̂)(τ,K,N)
∂τ

= 0.

4.3.6 Simulation and Validation

In this section we present the simulation results for location estimation form single

and multiple Gaussian observations. Given the estimator equation (4.23), the most

damage for the malfunctioning node to do is to send an observation which results in

Yi = −η when θ > 0 and η when θ ≤ 0.
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Figure 4.6: Performance of Robust estimator at ε = 0.1 and ε = 0.2 for
single node.

Fig 4.6 shows MSE vs. η, for the with different unreliability ε for the single node

case. As expected, a higher ε results in a worse estimation performance for the same

η. However, the optimal η are pretty close to each other under these two ε’s. That

is, a suitable choice of η is able to provide a reasonable good performance for a wide

range of vulnerable systems. Fig 4.7 shows the validation result based on the deriva-

tion in section (4.3.5) for static model at N = 20 and K = 3 for prior as standard

normal distribution.
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Figure 4.7: MSE of clipped estimator at N = 20, K = 3 for prior pθ(θ) ∼
N(0, 1) and W ∼ N(0, 1).
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Figure 4.8: Estimation performance as a function of η at ε = 0.2 for multi
nodes.

As the number of observations N increases for a fixed ε, the estimation perfor-

mance improves as shown in Fig 4.8. Further, the optimal robust threshold η increases

as N increases. This means that even as the percentage of malfunctioning nodes re-

mains the same, more nodes enable the designer to relax the constraints on each

sensor. As a result, the efficiency of the estimator at the optimal η also improves as

N increases. The clipped estimator is about 81.08% and 91.35% under the nominal

settings, for N = 5 and 15, respectively. This means that as the estimation perfor-

mance is also lower-bounded by the node uncertainty ϵ, and there are still merits in
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having a larger N ; one can obtain a robust design that performs not only closer to

the performance bound but also performs better under the nominal conditions when

all nodes are normal.

We consider the probabilistic case where each node has a ε chance of malfunc-

tioning and the static case where K out of N nodes are malfunctioning. These two

cases are relatively comparable for ε = K
N
. The simulation result plotted in Fig 4.9

shows that the performance of static setting K
N
, is better than its corresponding prob-

abilistic counterpart ε. In a static setting, there is a fixed number of compromised

nodes whereas, in a probabilistic setting a node is compromised with probability ε,

hence total compromised node is a random number, which may end with all nodes

compromised or none of the nodes in under compromised.
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Figure 4.9: Trade off between η, and N for fixed ε/(K).

Trade off between η, ϵ/(K) and N :

Fig 4.9 shows MSE vs. η, as N increases for the same ε. As the number of obser-

vation increases, for the fixed ε/(K) the performance increases. The optimal robust

thresholds increases, as N increases, which includes more number of observations.

Table 4.1: Efficiency of robust estimator.

N K ε Efficiency(Static) Efficiency(Probabilistic)

5 1 0.2 88.04% 81.08%
15 3 0.2 94.38% 91.35%



79

To investigate the robustness of the choice of threshold η when the system vulner-

ability ε or K
N

is unknown, we calculate the estimation performance with respect to

η for N = 10, ε = K
N

= 0.1 and 0.2 respectively, as shown in Fig 4.10. A higher ε or

K results in a worse estimation performance for the same η. However, the optimal η

are close to each other under these two ε. That is, a suitable choice of η can provide

reasonably good performance for a wide range of vulnerable systems.

Figure 4.10: Estimation performance as a function of η, for N = 10, ε =
K
N

= 0.1, 0.2 respectively.
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CHAPTER 5:

ROBUST LOCALIZATION

In this chapter, results in robust localization through linear regression are presented.

The target localization in a distributed co-located radar system is considered by op-

timizing a robust cost function. In particular, a statistical tool is developed that

may be stable to adversarial measurement and provide a more accurate target loca-

tion. The algorithm does not compromise much accuracy, even without outliers. In

particular, we consider the following settings.

1. The robust regression problem is formulated into its equivalent weighted least

square regression where the weights are based on the considered robust cost.

2. To improve the localization accuracy of robust localization, a small set of se-

cured sensors is presented, potentially by spending more resources on those

sensors, especially in a potentially hostile environment. By doing so, we might

be able to improve the signal quality and integrity for a small set of sensors

and, consequently, reduce the target localization errors.

5.1 Introduction

Accurate target localization is an important task in various applications such as wire-

less communication, and surveillance. Broadly speaking, there are two main cate-
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gories of localization techniques, those that involve range estimation, and those that

do not [60]. Target localization in radar is often range based schemes [61, 62, 63] which

involves estimation of target location based on distance between the targets and the

transmitters, and receivers. Depending on the applications, range information can be

obtained using Time of Arrival (TOA) [64], Time Delay of Arrival (TDOA) [65], or

a combination of the two [66].

Like other networked systems, the functionality and performance of a radar sys-

tem may be affected when the radar is not operated under ideal nominal conditions.

For example, it has been observed [67] that a slight error in receiver locations can lead

to a significant error in target location estimate. In many situations, mainly when

a moving platform is involved, there may be random errors in transmitters/receivers

positions that would introduce bias in target locations. Another potential deviation

may happen if some of the transmitters and receivers are compromised by an adver-

sary. In hostile environments, an adversary may wish to prevent accurate localization

of the target and thus prevent the entire radar system from functioning properly.

The adversary may compromise some nodes and thereby gain access to inject false

TOA/TDOA to provide misleading information to the target that prevents accurate

target localization.

As a way to get a robust estimation of location in the presence of outliers, Least

Median Squares (LMS) has been proposed [68]. It uses several subsets of nodes to

identify candidate locations and then chooses the solution that minimizes the median

of the residues [69, 70]. It is robust for scenarios where less than 50% of the nodes

are malicious. This method shares similarities with the random sampling consensus

(RANSAC) algorithm [71].



82

5.1.1 Overview of this work

Robust localization problems for radar systems is considered where direct measure-

ments of the distance between transmitters and target are available trough TOA

measurements. The main idea behind this work is to minimize a robust cost function

using iterative approaches. The cost function is dynamically updated to remove the

outliers or reduce the effect of such inconsistent measurements arising from outliers.

In this study, multiple distributed collocated radar system is consider with single sta-

tionary target P0 at position β. Let N be the number of transmitters whose locations

are known. The estimate of distance between the transmitters Pi at xi, and target

P0 is denoted as {Di}1≤i≤N . In radar system, set of data points {di}1≤i≤N , may be

obtained through a nonlinear sensing system,

di ≈ Di(β), 1 ≤ i ≤ N, (5.1)

where β is the target location and D′
is are nonlinear maps the distances between

target and transmitters. Given set of noisy measurements, di

β̂ = argmin
β

N∑
i=1

h (di −Di(β)) , (5.2)

where, h(.) is cost function. Solving this nonlinear, non-convex function usually

involves some iterative searching techniques, such as gradient decent or Newton’s

method. Therefore, to avoid local minimum as much as possible, it is necessary to

rerun the algorithm using several initial starting points, and as a result the compu-

tation is relatively expensive. Another way to find target location is to convert the
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system of non linear equations [72] into linear forms and solving for β as a simple

linear least square problem. However, both non-linear and linear approaches are not

well suited in the presence of outliers to di values.

We consider the optimizing robust cost function by converting equation (5.2) into

a linear form. We are interested in the statistical linear regression problem b = Aβ+ϵ,

where b ∈ RN is the observation vector, A ∈ RN×p is the given design matrix, β∈ Rp

is the regression coefficient vector and ϵ ∈ RN is the noise. In the robust framework,

we assume that a proportion of the observations may be atypical data corresponding

to the outliers. These outliers might be due to excess noise, transmit sensors mal-

function, and compromised nodes, controlled by Player 1.

There may be two types of outliers with different objectives. The first kind of

adversarial outliers can compromise multiple nodes but have limited communication

and computational resources to coordinate among the different radar nodes. It is

referred to as a non-coordinated outlier. Player 1 is assumed to act independently at

each transmitter node and prevent accurate localization by perturbing the estimated

distance by TOA. Without loss of generality, it is assumed that each malfunctioning

node modifies by adding a value ci. Thus, the observation model is defined as

bi =


aTi β + ϵi + ci i ∈ outlier

aTi β + ϵi otherwise,

(5.3)

where ϵi is independent measurement noise and ci perturbation is introduced due

to Player 1. By nature, outliers are assumed to be distributed far away from the

predicted model. We model this perturbation as a high value of constant bias.

A second type of outliers can not only prevent the network from precisely locate the
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target, but also try to shift the location estimation to some desired position. We refer

these as coordinated outliers. This stronger outlier against the radar network may be

due to multiple compromised nodes to make a target location estimate its position at

βf , which is determined by adversary. In this outlier model, ci = aTi (βf − β∗), where

β∗ is the optimal target location. As a result, estimate of target location is forced

towards βf . Thus, the outlier model is define as

bi =


aTi β + ϵi + aTi (βf − β∗) iϵoutlier

aTi β + ϵi otherwise

(5.4)

5.1.2 Problem Formulation

A multiple distributed collocated radar system is considered with single stationary

target P0 at position β = [x, y]. Given set of noisy measurements, di in equation (5.2)

can be expressed as

di = ri + ni, i = 1, 2, ...., N,

where ri =
√

(x− xi)
2 + (y − yi)

2 is actual distance between ith transmitter and

target, ni is the measurment noise. Let the noise associated term 2rini = ϵi, the

above equation can be expressed in matrix form as

b = Aβ + ϵ,



85

where, A =


x1 y1 −0.5

: : :

xN yN −0.5

, β =


x

y

R2

 and b = 1
2


x21 + y21 − d21

:

x2N + y2N − d2N

, with
R2 = x2 + y2.

Given the set of noisy observations with outliers, it is possible to estimate β from

linear form (5.1.2) by minimizing empirical loss

β̂ = argmin
β

N∑
i=1

h(bi − aTi β), (5.5)

where h(.) is the cost function. Generally, a least square criterion is minimized where

h(.) is a square function. A large number of techniques for the minimization of equa-

tion (5.5) where robust cost functions such as L1 cost function, are employed and

use complex optimization strategy to minimize these cost function. In this work, we

propose simple optimization strategies that iteratively solve the weighted least square

cost function to find the robust solution. Thus, in addition of being robust, the pro-

posed techniques inherit the advantage in term of accuracy as least square approach.

This is achieved by iteratively minimizing the weighted least square function

β̂ = argmin
β

N∑
i=1

wi(bi − aTi β)
2, (5.6)

where wi is the scalar weight associated with cost function h(.) in equation (5.5).

5.2 Proposed Method for Robust Localization

The algorithm is developed to make make localization techniques robust to adversarial

corruption of measurement data. The M−estimator for β is that which maximizes
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the likelihood function is

n∏
i=1

f(ϵi) =
n∏

i=1

h(bi − aT
i β),

or equivalently, to maximize the log-likelihood function

n∑
i=1

ln (f(ϵi)) =
n∑

i=1

ln
(
h(bi − aT

i β)
)
, (5.7)

where h(u) is a suitable cost function, which can be Huber’s cost, truncated least

squares cost or any other robust cost function. Minimizing equation equation (5.7) to

find an estimate requires partial differentiation with respect to each of the parameters

in turn, resulting in a system of p equations;

n∑
i=1

ψ(bi − aT
i β)aij = 0, j = 1, 2, ..., p,

where ∂h(u)
∂u

= ψ(u). Let’s define the weight wi =
1
ui
ψ(ui) ∗ sign(ui). Then

n∑
i=1

ψ(bi − aT
i β)aij =

n∑
i=1

wi(bi − aT
i β)aij = 0,

and
n∑

i=1

wibiaij =
n∑

i=1

wia
T
i βaij, j = 1, 2, ..., p.
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Define weight matrix W = diag(wi) =



w1 0 ... 0

0 w2 ... 0

... 0 ... 0

0 0 ... wn


. The system of equa-

tions can be expressed as the penalization by weight at which the the greatest resid-

uals are penalized by relatively smaller weighting functions. Solution of the robust

regression is defined in equation (5.6)as

ATWAβ = ATWb,

hence the location estimate is

β̂ = (ATWA)−1ATWb. (5.8)

Therefore, this is very similar to the solution for the least squares estimator, but

introduces a weight matrix to reduce the influence of outliers. Hence optimization of

equation (5.5) is equivalent to optimization of equation (5.6).

Generally, two scalar weights exist for the robust cost family h(.), non-truncated

and truncated. The main advantage of using non-truncated weight such as the Hu-

ber cost is that global minimization is assured. However, the influence of outliers is

always present as they are never entirely discarded.

In the following, we propose two different truncated weight approaches. The first

one is regularized least square regression, which aims to assign the weight dynamically

based on the inverse of the absolute value of residue. The second is Least Trimmed

Square (LTS) with truncated weighting that keeps smaller residuals discarding sig-
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nificant residuals.

5.2.1 Regularized Robust Least-Squares Regression

Given a set of data points in design matrix A and the corresponding observation

vector b, the goal is to estimate a parameter vector β based on the robust regression

equation (5.7). Notice that the corrupted points are likely to suffer from the larger

residues, we define the weights to every residue as si =
1

|bi−aT
i β| and regularized the

weights as wi = min(si, δ), where δ > 0 is a lower bound for the weight. Now, the

robust regression can be solved using following two steps

1. Weighting: For the given model, assign weight to every residues as wi =

min
(

1
|bi−aT

i β| , δ
)

2. Solve the weighted least square problems, i.e. argminβ

∑n
i=1wi(bi − aT

i β)
2

with above weights to obtain next estimate as β =
[
ATWA

]−1
ATWb, where

W = diag(wi)

The intuition behind this procedure is that outliers in the measurements, such as the

points with more significant residuals should get down-weighted. If the regularized

parameter δ is too small, no data points get considerable weight due to aggressive

truncation. However, to converge to the actual β, the non-corrupted residues should

get a considerable weight; hence setting a small value of δ could not guarantee the

estimation converge towards the optimum β. If we always use the considerable value

of δ, and are unlucky enough to initialize the iterative method close to βf , the wrong

target location is introduced by Player 1 through coordinated outliers, then a set of

outliers get larger weights. In contrast, the nominal points initially get comparatively

smaller weights which will cause the algorithm to converge towards βf , instead of the
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actual local β.

The above limitations of Iteratively Reweighted Least Sqaures (IRLS) were well

explained in [70]. To remedy this, we can execute the algorithm in stages, with initial

stages employing aggressive truncation with a small value of δ and later stages suc-

cessively relaxing the truncation. At the convergence stage, the larger residuals are

weighted as close to the L1 norm and nominal nodes are weighted close to the L2 norm.

Algorithm 1 Regularized Weighted IRLS algorithm

1. Select initial estimate β(0), A, b, and regularized parameter δ, γ > 1.

2. Do:

(a) compute wt using

wt
i = min

(
1

| bi − aT
i β

t |
, δ

)
,W t = diag(wt

i)

(b) predict: β̂t+1 = (ATW tA)−1ATW tb

(c) update: δ = δ ∗ γ

(d) While
∥∥∥β̂t+1 − β̂t

∥∥∥ > error tolerance

3. Report the final estimate β̂t+1.

Successively relaxing the δ is that if we initialize unfortunately at βf , the nominal

points receive relatively smaller weights. However, when the δ is relaxed later, will

allow these nominal points to assign large weights. The algorithm hopefully converges

towards β∗.



90

5.2.2 Least Trimmed Regression

LTS is another robust regression that can be seen as an M−estimators but with a

truncating weight function. It keeps only the smaller residual values and discards the

others. Although this can not assure a global minimization, LTS approach is more

robust to outliers as it does not take them into account, provided they are correctly

discarded.

The classical LS estimate of β aim at solving

β̂LS = argmin
β

n∑
i=1

(ri(β))
2 = argmin

β

n∑
i=1

(bi − aTi β)
2. (5.9)

In the robust framework, we assume that a portion of the observations may be cor-

rupted, i.e., outliers. This results large residuals that can spoil the least square

estimator. LTS is a classical robust estimator that discards the largest residuals.

For the given β, let ri(β) for i = 1, ..., n be the ordered absolute residuals such that

| r(1) |≤| r(2) |, ... ≤| r(n) |. Let wi be the indicator for whether observation i is a good

observation or not. Then, it is easy to see that the least trimmed squares estimation

problem can be reformulated as the following problem

argmin
β,wi

n∑
i=1

wi(bi − aTi β)
2,

s.t,weT = k

wi = {0, 1}n

(5.10)
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This optimization is now performed jointly on β and the binary weight vector wϵ{0, 1}n.

Therefore

F (β, wi) = argmin
β,wi

{
(b− Aβ)TW (b− Aβ)

}
. (5.11)

Consequently, the LTS regression problem is a minimization problem in n + p real

variables. The objective function in equation (5.11) is continuously differentiable.

We can use the Kuhn-Tucker (KKT) conditions to characterize the local minimum.

The resulting system of equations and inequalities are nonlinear in its variable, which

means that it has to be solved iterativetly. For the fixed w, the global minimizer over

β is given by

β̂ = (ATWA)−1ATWb,

where W = diag(wi) is the diagonal weighting matrix. For a fixed β, the global

minimizer over w is the binary vector such that, for i = 1, 2, ..., n

wt
i =


1 | r(i) |≤| r(h) |

0 otherwise.

Ideally, when the squared residual (bi − aTi β) is larger, the corresponding weight

wi = 0. The integer constraints can be relaxed to linear constraints as follow

argmin
β,wi

n∑
i=1

wi(bi − aTi β)
2,

s.t,weT = k

0 ≤ wi ≤ 1.

(5.12)
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The equation (5.10) and (5.12) are equivalent. When we fix β, the optimization

problem in equation (5.12) is linear problem in w. Therefore, the optimal solution of

w must be achieved at an extreme point of the feasible set, for which wi can only be

either 0 or 1.

Algorithm 2 Least Trimmed Square algorithm

1. A ,b, number of non- outliers h, β̂0 (initialization)

2. Do:

(a) (a) compute wt using

wt
i =

{
1 | r(i) |≤| r(h) |
0 otherwise

(b) W t = diag(wt
i)

(c) predict: β̂t+1 = (ATW tA)−1ATW tb

3.
∥∥∥β̂t+1 − β̂t

∥∥∥ > error tolerance

4. Report the final estimate β̂t+1

5. output: β̂t

5.3 Localization Accuracy Improvement using

Anchor Nodes

Many existing robust methods assume the signal quality/uncertainty is the same

among different measurements. In practice, especially in a potentially hostile envi-

ronments, we might be able to improve the signal quality and integrity for a small set

of sensors by spending more resources on these devices. In such cases, the existence
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of such secured sensors can be employed to increase localization accuracy. That is,

let ST be secured out of N sensors where no chance to be controlled by Player 1.

We define such nodes as “anchor nodes”. For the sake of simplicity, the rest of node

S ∈ SC
T are assumed to be equally unreliable. As a result, we can trust the anchor

nodes observations more by assigning some larger weights on their observations. In

this preliminary study, we consider the estimate of β in this case by assigning trusted

weight, wT
i for S ∈ ST and rest, S ∈ SC

T by robust weights, wR
i . The robust location

estimate in the presence of anchor node is weighted-least square estimates

β(t) =
[
AW (t−1)A

]−1
AW (t−1)b, (5.13)

where A is the model matrix, with a
′
i as i

th row, and W (t−1) = diag
{
w

(t−1)
i

}
such

that if i ∈ ST , wi = wT
i , otherwise wi = wR

i for any of least trimmed method or

regularized robust least square method.
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Algorithm 3 Anchored sensor based robust localization

1. A, b, number of non- outliers h (for least trimmed), δ, γ > 0 (for regularized
robust), β̂0 (initialization)

2. Do:

(a) Compute wt

i. For least trimmed

wt
i =

{
1 | r(i) |≤| r(h) |
0 otherwise

ii. For regularized robust

wt
i = min

(
1

| bi − aT
i β

t |
, δ

)
(b) Predict β̂t+1 = (ATW tA)−1ATW tb, where

W t = diag(wt
i), w

t
i =

{
wtR

i i ∈ SR

wtT
i i ∈ ST

3. While
∥∥∥β̂t+1 − β̂t

∥∥∥ > error tolerance

4. Output: β̂t

5.4 Simulation Results

To test the performance of the above proposed localization algorithms, we assume

that Player 1 successfully gained the ability to modify the distance measurements for

a fraction of total transmitters arbitrarily. The adversary aims to drive the location

estimate as far away from the true location as possible. We consider a 10 transmitters

geometry with the coordinates [0, 0], [3
√
3, 3], [0, 6], [−3

√
3, 3], [−3

√
3,−3], [4, 4],
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[5, 5], [7,−5], [9, 6], [10,−60]. All results are averages of 10000 independent runs.

The following figures show the mean square errors of two robust methods discussed

in the above section with actual target location [x, y] = [1, 2] with all distance units

in km.

For regularized robust algorithms, the starting truncation parameter δ = 0.00001

in such way that the algorithm assigns comparatively smaller weights for outliers and

larger weights for nominal measurements.

Figure 5.1: Regularized regression under nominal condition.

Fig 5.1 shows the performance of regularized regression under the nominal condi-

tion. Here we set the location estimation by non-robust least square at the nominal



96

condition as the baseline for comparison for regularized regression both under nominal

and attack conditions. Under nominal conditions, there is at least −2.5dB perfor-

mance loss for the regularized regression compared with least square regression. It

is seen that the performance loss can be decreased by introducing the anchor node.

Here, we set transmitter 1 as the anchor node for this particular simulations and as-

signed larger weights for that node, e.g., w1 = 1 for the regularized robust regression.

Figure 5.2: Regularized regression under 1 out of 10 transmitter is com-
promised.

For the least trimmed localization, the simulation is preformed at trimmed rate

10% (1 out of 10 observations are compromised) for least trimmed regression. We set
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transmitter 1 as the anchor node and assigned arbitrary larger weight for that node.

In particular we assigned weight, w1 = 2.

Figure 5.3: Regularized regression under 1 out of 10 transmitter is com-
promised.

Fig 5.3 shows the performance of least trimmed regression under 1 out of 10

transmitters case. Even in such adverse conditions, it is possible to estimate the

location with a certain performance accuracy. It is seen that the presence of anchor

nodes can reduce performance loss.
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CHAPTER 6:

CONCLUSION

6.1 Summary

The main focus of this dissertation is robust inference, mainly detection and estima-

tion methods. To make some progress on the robust system design in WSNs, the

node venerability is quantified using both probabilistic and static models. The in-

ference problem is formulated as a two-player static zero-sum game under the game

theoretical framework. The zero-sum game is solved through robust inference theory,

and the mini-max solutions and their related inference performance are determined.

The proposed robust inference methods performed significantly better than nominal

ones under the compromised nodes.

In Chapter 3, two detectors were proposed under the static setting. A preliminary

analysis of these two detectors was conducted where some nodes in WSNs could be

compromised and provide false information. Through both numerical and theoretical

analysis for the case of target detection in a distributed MIMO radar, it was shown

that these detectors provide some level of guaranteed performance despite nodes ven-

erability.

In Chapter 4, both the Frequentist’s and Bayesian frameworks were investigated.

Main results were obtained under the complete information case where Player 1 knows
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the parameter of interest with some limited results under the no informative setting.

Under the frequentist framework, the max-mini solutions were derived that make

the observation partially uninformative and sometimes even complete uninformative.

This revealed the sensor network performance limits due to the nodes’ reliability.

The saddle point solution was obtained for a single-node network for the Bayesian

estimation where a prior distribution is known. The breaking down point that results

in complete uninformative was lower than the Frequentist’s one. In addition, the

no information case was shown to be a particular case of complete information and

solved. Inspired by the single-node closed-form solution, a robust estimator for the

multi-node networks was purposed and strong robustness was obtained with a minor

performance degradation under the nominal scenario.

In Chapter 5, robust algorithms were proposed for target localization. The hostile

environment was considered, where some observations in TOA measurements could

be compromised and provide false information. It was validated through numerical

simulations for target localization for distributed radars that these proposed algo-

rithms provide some guaranteed localization performance despite extreme outliers in

the observation.

6.2 Some Open Future Research Topics

We investigated robust detection and estimation in WSNs and extended our result for

a few practical applications for multi-static radars. Still, many other research topics

within this framework can also be investigated.

� An immediate research problem to be solved is to complete the estimation

problem for multi-node networks. One needs first to determine whether a saddle

point solution indeed exists or not. While we conjured that it does not work
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for general cases, it is critical to seek a definitive answer for some important

practical problems, e.g., localization in MIMO radars.

� As in the other inference tasks, more difficulty arises when one goes beyond

the single-stage game to consider the problem for multiple stages where Player

1’s overly aggressive may yield a more considerable gain at the beginning but

diminishing return at the latter stages. The strategy evolution during the dif-

ferent stages is challenging. It is relatively easy to analyze the performance for

specific strategies but somewhat complicated to solve for either the Max-mini or

Mini-max strategies. The existence of a saddle point solution is still unknown.

The inference problem becomes much more complicated and exciting when the

inference game is played for many stages. Often, Player 1 must seek a balance

between inserting false information and keeping the identity of the malfunc-

tioning node secret. Such trade-off depends mainly on the relative values of

current and future payoffs. While Player 1 can still cause significant perfor-

mance degradation in earlier stages by behaving aggressive in the beginning,

such abnormal behavior may be observed and explored by Player 2 to design

more targeted algorithms in the later stages to identify and limit the impact of

the malfunctioning nodes, and if possible, to use the information of those nodes.

� We proposed two robust target localization methods in unreliable nodes where

some of the measurements could get compromised and provide false informa-

tion. It was shown that the presence of anchor nodes could further reduce

the performance loss, and we verified it through numerical simulations. The

optimal trust in terms of weights for the anchor nodes for a given number of

compromised nodes needs to be explored.
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� Robust inference is yet to be explored. In statistical learning, one often relies

on a set of data samples to train a model to fit the data and consequently to use

the model for future applications. The application performance relies heavily

on the model’s accuracy. One common primitive in statistical learning is that

the collected data are i.i.d. according to the underlying model encountered

in practical applications. Therefore, the more data one collects, the better the

learned model’s accuracy, and consequently, the better the application performs.

However, the fundamental assumption that the collected data sample represents

the accurate application model is questionable in some cases. For example,

inconsistency may arise when the training samples are mislabeled, the dynamic

model has changed between the time of learning and application, the bias in

the sampling process, or the lack of sufficient training samples. The important

direction for further exploration would be to investigate the problems of the

mismatched training model in learning and decision making.
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APPENDIX A:

PDF OF SUM OF TWO CLIPPED NORMAL

DISTRIBUTION

In this section, we derive the PDF of sum of two clipped normal distribution. As the

PDF if clipped normal distribution is continuous distribution with two probability

mass at ends of clipped points, the clipped normal distribution can be expressed

in term of piece-wise expression as in. Therefore the sum of two clipped normal

distribution can be expressed as

f (λ(X) + λ(X) = t | H0) = f (λ(X)) ∗ f (λ(X))

= Q2

(
τ + µ

σ

)
δ (X − 2τ)

+ 2Q

(
τ + µ

σ

)
Q

(
τ − µ

σ

)
δ (X)

+ ϕ(X + µ)Q

(
τ + µ

σ

)
δ (X − τ)

+Q2

(
τ − µ

σ

)
δ (X + 2τ)

+ ϕ(X + µ) ∗ ϕ(X + µ),
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where

ϕ(X + µ) ∗ ϕ(X + µ) =

∫ ∞

−∞
fX(u)fX(v − u)du

=
1

2πσ4

∞∫
−∞

exp

(
−(u+ µ)2

2σ2

)
Iuϵ[−τ,τ ]

exp

(
−(v − u+ µ)2

2σ2

)
Iv−uϵ[−τ,τ ]du,

with Iuϵ[−τ,τ ] =


1 −τ ≤ u ≤ τ,

0 otherwise

is the indicator function.

Similarly, f (λ(X) + λ(X) = t | H1) can be evaluated.
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APPENDIX B:

SUM OF I.I.D. EXPONENTIAL RANDOM

VARIABLES

In this section, we derive the general form of a weighted sum of order statistics of

i.i.d. exponentially distributed random variables, and apply our results to obtain the

PDF of the testing statistics under either hypothesis H1 or H0, respectively. For

the exponential distribution, Y(1) ∼ Exp
(

1
N−K

)
, Y(i) − Y(i−1) ∼ Exp

(
1

N−K+1−i

)
and

Y(1), Y(i)−Y(i−1) for i = 2, 3, ..., N −K are independent [43, 61]. Define Z1 = Y(1) and

Zi = Y(i) − Y(i−1), therefore Z = AY,Y = A−1Z, where

A =



1 0 0 . . 0 0

−1 1 0 . . 0 0

0 −1 1 . . .0 0

. . . . . . .

0 0 . . . −1 1


. Let W = [W1,W2, ...,WN−K ], then WY =
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WA−1Z

X =
N−K∑
j=1

WjY(j) = [V1, V2, ..., VN−K ]



Z1

Z2

.

ZN−K


=

N−K∑
j=1

VjZj,

which is a sum of independent exponentially distributed random variables
(

1
Vj(N−K+1−i)

)
,

where V = WA−1. Using Laplace operator,

L (fX(X)) =
N−K∏
j=1

L(VjZj),

the exact distribution fX (X) can be obtained by using partial fraction and applying

the inverse Laplace transform. When Vj(N −K + 1 − i) are different, the resulting

pdf is a weighted sum of exponential distributions.

fX(X) = L−1

(
N−K∑
j=1

(
αj

s+ V
N−K−i+1

))
. (B.1)

Under H1, the smallest ordered sum is obtained byW1,W2, ...WK = 1, and the factors

WK+1,WK+2, ...,WN−K = 0. Similarly, under H0, the PDF of the largest ordered sum

can be obtained by W1,W2, ...WK = 0, and WK+1,WK+2, ...,WN−K = 1.
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APPENDIX C:

AN ALTERNATIVE DERIVATION OF SADDLE

POINT SOLUTION

Notice that given X1, p1, and q, the posterior probability of the status of node 1 being

malfunctioning is:

P (s = 1|X1 = x1) =
p (X1|s = 1)P (s = 1)

p (X1|s = 0)P (s = 0) + p (X1|s = 0)P (s = 0)

=
ϵq1 (x1)

(1− ϵ) p1 (x1) + ϵq1 (x1)

From the defination,

E (g|X1 = x1) = EsEθ|s (g|X1 = x1, s)

= P (s = 0|X1 = x1)Eθ|s (g|X1 = x1, 0)

+ P (s = 1|X1 = x1)Eθ|s (g|X1 = x1, 1)

= Eθ|s (g|x1, 0) + P (s = 1|x1)
[
Eθ|s (g|x1, 1)− Eθ|s (θ|x1, 0)

]
= Ep1 (g|x1) +

ϵq1 (x1)

(1− ϵ) p1 (x1) + ϵq1 (x1)
[Eq1 (g|x1)− Ep1 (g|x1)] .

Hence, q1 (x1) =
1−ϵ
ϵ
p1 (x)

ĝm−Ep1 (g|x1)

Eq1 (g|x1)−ĝm
.

Replacing θ̂m as in (4.13) and enforcing the domain condition on q1 (4.16), one gets
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the identical final expression (4.19).
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APPENDIX D:

ESTIMATION IN BINOMIAL RANDOM

VARIABLES (COMPLETE INFORMATIVE):

TWO SENSOR

For the 2 sensor binary observation, lets denote p(U = 11|θ) = θ11, p(U = 01|θ) = θ01,

p(U = 10|θ) = θ10, p(U = 00|θ) = θ00 with θ11 ≥ θ10 ≥ θ01 ≥ θ00. For this particular

condition, θ11 = 1 − θ00 and θ01 = θ10 and the sensor unreliability is same for both

sensor node, i.e. ϵ1 = ϵ2 = ϵ. In the worst case scenario, θ11 = θ10 = θ01 = θ00 = 1
2
,

decision would be discard all the observations. The attacker choice q to maximize the

error would be to send 
1 θ < 1

2

0 θ ≥ 1
2
.

Therefore the MSE can be expressed as

E(d(θ̂, θ)) =

∫ 1
2

0

Eu1,u2|θ(θ − θ̂(u1, u2))
2dθ +

∫ 1

1
2

Eu1,u2|θ(θ − θ̂(u1, u2))
2dθ

=

∫ 1
2

0

a2(θ11 − θ)2dθ +

∫ 1
2

0

(1− a)2(1− θ11 − θ)2dθ

+

∫ 1

1
2

a21(θ11 − θ)2dθ +

∫ 1

1
2

2a1(1− a1)(
1

2
− θ)2dθ +

∫ 1

1
2

(1− a1)
2(1− θ11 − θ)2dθ,
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where a = (1− ϵ)θ + ϵ and a1 = (1− ϵ)θ. The optimal estimate θ̂11 can be obtained

by minimizing MSE
(

∂E(d(θ̂,θ))
∂θ11

= 0
)
,i.e,

θ̂11 =
1

2
+

(2− 5ϵ)

14ϵ2 − 10ϵ+ 8

.
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APPENDIX E:

PERFORMANCE COMPARISON

BENCHMARK FOR NOMINAL AND UNDER

COMPROMISED CASE FOR TARGET

LOCALIZATION

Under nominal and compromised cases, we will derive the performance comparison

benchmark for above discussed robust localization algorithm. From eq:4.4

β̂ = (ATWA)−1ATWb = (ATWA)−1ATW (Ax+ ϵ)

Therefore error e =x̂− x = (ATWA)−1ATWϵ. The MSE is

E(eTe) = E(tr(eTe) = E
[
tr
(
ATWA)−1ATWϵϵTW TA(ATW TA)−1

)]
Under the nominal condition E(ϵϵT ) = σ2I,W = diag(w1, w2, ...wN). Therefore

MSE= σ2tr
(
ATWA)−1ATWW TA(ATW TA)−1

)
. One can optimize W to get mini-

mum MSE. When W=I, then MSE= tr(ATA)−1.

Under the model departure, the E(ϵϵT ) will change. For example if k out of N trans-

mitter are compromised by new distribution of error. Let us consider now ϵ1, ....., ϵN
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are still independent and node 1 is anchored but 1 out of N − 1 is compromised by

N(0, σ2
1), instead of σ2, then E(ϵ1ϵj) = σ2δ1j, E(ϵ

2
j) =

N−2
N−1

σ2 + 1
N−1

σ2
1, E(ϵiϵj) = 0,

hence

E(ϵϵT ) = diag

{
σ2, σ2 +

1

N − 1
(σ2

1 − σ2), ....,
1

N − 1
(σ2

1 − σ2)

}
= σ2I +

(σ2
1 − σ2)

N − 1
diag {0, 1, ..., 1} .

Inserting E(ϵϵT ) in eq:3-1 the MSE is the function of W which can be optimized for

minimum MSE.
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