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ABSTRACT

Estimating snow mechanical properties – such as elastic modulus, stiffness, and

strength – is important for understanding how effectively a vehicle can travel over

snow-covered terrain. Vehicle instrumentation data and observations of the snowpack

are valuable for improving the estimates of winter vehicle performance. Combining

in-situ and remotely-sensed snow observations, driver input, and vehicle performance

sensors requires several techniques of data integration. I explored correlations be-

tween measurements spanning from millimeter to meter scales, beginning with the

SnowMicroPenetrometer (SMP) and instruments applied to snow that were designed

for measuring the load bearing capacity and the compressive and shear strengths of

roads and soils. The spatial distribution of snow’s mechanical properties is still largely

unknown. From this initial work, I determined that snow density remains a useful

proxy for snowpack strength. To measure snow density, I applied multi-sensor elec-

tromagnetic methods. Using spatially distributed snowpack, terrain, and vegetation

information developed in the subsequent chapters, I developed an over-snow vehicle

performance model. To measure the vehicle performance, I joined driver and vehicle

data in the coined Normalized Difference Mobility Index (NDMI). Then, I applied

regression methods to distribute NDMI from spatial snow, terrain, and vegetation

properties. Mobility prediction is useful for the strategic advancement of warfighting

in cold regions.
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The security of water resources is climatologically inequitable and water stress

causes international conflict. Water resources derived from snow are essential for

modern societies in climates where snow is the predominant source of precipitation,

such as the western United States. Snow water equivalent (SWE) is a critical pa-

rameter for yearly water supply forecasting and can be calculated by multiplying the

snow depth by the snow density. In this work, I combined high-spatial resolution

light detection and ranging (LiDAR) measured snow depths with ground-penetrating

radar (GPR) measurements of two-way travel-time (TWT) to solve for snow density.

Then using LiDAR derived terrain and vegetation features as predictors in a multi-

ple linear regression, the density observations are distributed across the SnowEx 2020

study area at Grand Mesa, Colorado. The modeled density resolved detailed patterns

that agree with the known interactions of snow with wind, terrain, and vegetation.

The integration of radar and LiDAR sensors shows promise as a technique for esti-

mating SWE across entire river basins and evaluating observational- or physics-based

snow-density models. Accurate estimation of SWE is a means of water security.

In our changing climate, snow and ice mass are being permanently lost from the

cryosphere. Mass balance is an indicator of the (in)stability of glaciers and ice sheets.

Surface mass balance (SMB) may be estimated by multiplying the thickness of any

annual snowpack layer by its density. Though, unlike applications in seasonal snow-

pack, the ages of annual firn layers are unknown. To estimate SMB, I modeled the firn

depth, density, and age using empirical and numerical approaches. The annual SMB

history shows cyclical patterns representing the combination of atmospheric, oceanic,

and anthropogenic climate forcing, which may serve as evaluation or assimilation data

in climate model retrievals of SMB.
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The advancements made using the SMP, multi-channel GPR arrays, and airborne

LiDAR and radar within this dissertation have made it possible to spatially estimate

the snow depth, density, and water equivalent in seasonal snow, glaciers, and ice

sheets. Open access, process automation, repeatability, and accuracy were key design

parameters of the analyses and algorithms developed within this work. The many

different campaigns, objectives, and outcomes composing this research documented

the successes and limitations of multi-sensor estimation techniques for a broad range

of cryosphere applications.

x



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxvi

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 SNOWMICROPENETROMETER APPLICATIONS FOR WINTER VEHI-

CLE MOBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Field Campaign and Data Acquisition . . . . . . . . . . . . . . . . . 11

1.2.1 Study-site Background . . . . . . . . . . . . . . . . . . . . . . 11

xi



1.2.2 SnowMicroPenetrometer . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Rammsonde Penetrometer . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Shear Vane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.5 Light Weight Deflectometer . . . . . . . . . . . . . . . . . . . 20

1.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 SMP Automated Signal Processing . . . . . . . . . . . . . . . 21

1.3.2 SMP Data Inversion for Snow Microstructural

and Micromechanical Properties . . . . . . . . . . . . . . . . . 25

1.3.3 Instrument Observation Correlation Analysis . . . . . . . . . . 35

1.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.1 Rammsonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5 Shear Vane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Light Weight Deflectometer . . . . . . . . . . . . . . . . . . . . . . . 45

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 RECONSTRUCTIONOF HISTORICAL SURFACEMASS BALANCE 1984−

2017 FROM GREENTRACS MULTI-OFFSET GROUND-PENETRATING

RADAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Greenland Traverse for Accumulation and Climate Studies . . . . . . 55

2.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.2 Field Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Review of Multi-offset Radar . . . . . . . . . . . . . . . . . . . 62

2.3.2 Spatial Correlation of Surface Snow Density . . . . . . . . . . 65

xii



2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 SPATIALLY DISTRIBUTED SNOWWATER EQUIVALENT FROMGROUND-

BASED AND AIRBORNE SENSOR INTEGRATION AT GRAND MESA,

COLORADO, USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.2 GPR Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 86

3.2.3 GPR Data Processing . . . . . . . . . . . . . . . . . . . . . . 87

3.2.4 Snow Observations . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.5 Spatial Correlation of Snow Depth, Travel-time, and Bulk Density 92

3.2.6 Modeling Spatial Density . . . . . . . . . . . . . . . . . . . . . 92

3.2.7 GPR Snow Depth . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.1 LiDAR and GPR Snow Depth . . . . . . . . . . . . . . . . . . 94

3.3.2 LiDAR-GPR Measured Density . . . . . . . . . . . . . . . . . 96

3.3.3 Spatial Correlation of LiDAR Snow Depth GPR Travel-Time

and Measured Density . . . . . . . . . . . . . . . . . . . . . . 98

3.3.4 Multiple Linear Regression Modeled Density . . . . . . . . . . 99

3.3.5 Spatially Distributed Snow Water Equivalent . . . . . . . . . 101

3.3.6 Evaluation of Measured-Modeled SWE . . . . . . . . . . . . . 103

3.3.7 Contributions to SWE Uncertainty . . . . . . . . . . . . . . . 104

xiii



3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 EXTENTIONS AND CASE STUDIES . . . . . . . . . . . . . . . . . . . 113

4.1 Firn and Radiostratigraphy Modeling using the 1D Kinematic Wave

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Sorge’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.2 1D Kinematic Wave Equation . . . . . . . . . . . . . . . . . . 116

4.1.3 Numerical Solution of the Kinematic Wave Equation . . . . . 117

4.1.4 Application of the Kinematic Wave Firn Model to GTC15 . . 118

4.2 Ice Sheet Surface Property Retrieval and Automatic Firn Layer Tracing

from Airborne Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.1 Automatic Layer Tracing . . . . . . . . . . . . . . . . . . . . . 122

4.2.2 Radar Backscatter Inversion for Surface Properties . . . . . . 126

4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3 Quantifying Firn Depth and Density in the Percolation Zone of Wolver-

ine Glacier, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.1 Multi-offset Coherence Analysis . . . . . . . . . . . . . . . . . 134

4.3.2 Firn Density Estimation . . . . . . . . . . . . . . . . . . . . . 134

4.3.3 Evaluation with Firn Cores . . . . . . . . . . . . . . . . . . . 140

4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4 Ground-penetrating Radar Experiments at Camp Arenales, Chile . . 141

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.2 Common Midpoint Gather Analysis . . . . . . . . . . . . . . . 142

4.4.3 Common Offset Gather Analysis . . . . . . . . . . . . . . . . . 148

xiv



4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Over-snow Vehicle Mobility Index

Assessment and Prediction . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5.1 Small Unit Support Vehicle . . . . . . . . . . . . . . . . . . . 154

4.5.2 Normalized Difference Mobility Index . . . . . . . . . . . . . . 156

4.5.3 Mobility Prediction using Snow, Terrain, and

Vegetation Features . . . . . . . . . . . . . . . . . . . . . . . . 158

4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A RECONSTRUCTION OF HISTORICAL SURFACEMASS BALANCE 1984−

2017 FROM GREENTRACS MULTI-OFFSET GROUND-PENETRATING

RADAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.1 Travel-time Horizon Interpretation . . . . . . . . . . . . . . . . . . . 199

A.2 Horizon Velocity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2.1 Critically Refracted Waves . . . . . . . . . . . . . . . . . . . . 202

A.3 Parameter Estimation: Depth, Density, and SMB . . . . . . . . . . . 204

A.4 Parameter Uncertainty: Monte Carlo Bootstrapping and Error Prop-

agation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.5 Parameterizing the MxRadar - Herron & Langway (1980) Model . . . 209

xv



A.6 Structure-oriented Filtering in the Wheeler Domain . . . . . . . . . . 212

A.7 Depth Imaging for Model Updates . . . . . . . . . . . . . . . . . . . . 214

B SPATIALLY DISTRIBUTED SNOWWATER EQUIVALENT FROMGROUND-

BASED AND AIRBORNE SENSOR INTEGRATION AT GRAND MESA,

COLORADO, USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.1 Evaluation of GPR TWTs . . . . . . . . . . . . . . . . . . . . . . . . 222

B.2 Evaluation of GPR and LiDAR Inferred Density . . . . . . . . . . . . 223

B.2.1 Error Reduciton . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.3 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 225

B.3.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 225

B.3.2 Snow Pit Density as Training Data . . . . . . . . . . . . . . . 227

B.4 Predictor Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

B.5 Evaluaiton of Depth, Density, and SWE in Forested and Unforested

Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.6 Wind Speed and Direction Observations . . . . . . . . . . . . . . . . 234

xvi



LIST OF TABLES

A.1 HL parameters fromMxRadar (MxHL), GreenTrACS Core 15 (GTC15),

and Nelder & Mead (1965) optimization (NM) are compared. Uncer-

tainties in the GTC15 and MxHL parameterizations are expressed at

1σ. Accuracy is reported for the modeled age (ϕτ ) and density (ϕρ)

as the rms error and jointly as the normalized summed rms error ϕ. . 211

B.1 The MLR parameters were evaluated with cross-validation of 1000

Monte Carlo simulations to assess the model sensitivity. Cross-validation

used 90 % training data (β90), 10 % test data, and was repeated with

10 % training data (β10), 90 % test data. The parameter values and

their standard deviations (σbeta) estimated via Monte Carlo simulation

are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.2 The regression coefficients for the model trained on 96 snow pit ob-

servations. Parameter uncertainties were developed from Monte Carlo

Simulation with 90 % random sampling. . . . . . . . . . . . . . . . . 229

xvii



LIST OF FIGURES

1.1 Satellite imagery of the NATC facility at the West Yellowstone airport

during snow-off conditions. Waypoints plotted indicate the locations

studied during the field campaign. . . . . . . . . . . . . . . . . . . . . 13

1.2 The SMP mounted on a sled at the West Yellowstone airfield during

the NATC campaign. The SMP was developed and designed by Dr.

Martin Schneebeli ( SLF) and Dr. Jerome Johnson (CRREL) in the

mid-1990s. The pictured sled was designed and built by Dr. Matthew

Sturm (CRREL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Example SMP hardness profiles acquired in the three important snow

conditions: a) virgin snow, b) snow trafficked by multiple vehicles, and

c) a tire rut. SMP force profiles are shown after signal processing. The

signal processing algorithm automatically identifies the snow surface,

indicated by the red X. NIR photographs d), e), and f) correspond

to a), b), and c), respectively. NIR photography reveals the snow

stratigraphy in the virgin snow, and lack there of in the driven snow.

The SMP is capable of identifying snow layers not obvious to the eye

or to manual measurements. . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 CRREL’s Dr. Sally Shoop using the ram to measure the hardness of

a vehicle belly drag after a coast-down test at NATC. . . . . . . . . . 19

xviii



1.5 A C4-type SMP trace through virgin snow a) before and b) after the

snow-surface detection and drift correction. The depth axes of each

plot is not corrected and is later reconfigured to place the snow surface

at 0 mm depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 The three microstructural parameters L, f , and δ are estimated via

the Monte Carlo data inversion. The objective of the data inversion is

to use the summed signal (F ) as measured by the SMP to invert for

the basic microstructural parameters (L, f , δ). . . . . . . . . . . . . . 28

1.7 The boxplots of the SMP noise floor for increasing window lengths. . 33

1.8 The drift-corrected SMP trace, as in Figure 1.5, tested at force thresh-

olds that distinguished null-rupture events. Data segments that did

not experience any detectable ruptures of snow elements are shown in

red. I recommend the 0.0195 N threshold in c) because the air signal

is correctly identified and C3 error type is minimized. . . . . . . . . . 34

1.9 The boxplot summary of SMP and Rammsonde data that yield signif-

icant correlation (p ≤ 0.05). The red crosses are outliers. . . . . . . . 39

1.10 Statistically significant correlations between SMP microphysical pa-

rameters and the ram. The marker style identifies the site location,

and the color represents the snow type. . . . . . . . . . . . . . . . . . 40

1.11 Results of the correlation between the ram hardness index and the

SMP microphysical parameters. . . . . . . . . . . . . . . . . . . . . . 41

1.12 Statistically significant correlations between SMP microphysical pa-

rameters and the shear-vane measurements (p ≤ 0.1). The boxplot

summarizes the shear-vane measurements from 11 test locations. . . . 43

xix



1.13 Results of the correlation between shear-vane stress and the SMP mi-

crophysical parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.14 Results for the effective linear elastic property of groomed snow roads

at NATC. Locations with negative slope or p-value < 0.05 were ex-

cluded from the correlation analysis. . . . . . . . . . . . . . . . . . . 46

1.15 Results of the correlation analysis between E∗ and the SMP micro-

physical parameters. No significant correlation was found. . . . . . . 47

2.1 GreenTrACS firn cores (GTCs) are numbered 1−16. Ground-penetrating

radar surveys were conducted along spur traverses and the main route

that links the GTCs. We developed our radar processing and anal-

yses at GTC15 Spur West (lower left inset). The 2000 m asl con-

tour envelopes the western spurs. Surface elevation was acquired from

Morlighem (2017) and Porter et al. (2018). . . . . . . . . . . . . . . 56

2.2 Topographic profile of GreenTrACS Core 15 Spur West. The topo-

graphic undulation near Pit 15 W is responsible for increases and de-

creases in accumulation. The initial 15 km, up to the point of maxi-

mum elevation of the profile, are directed into the predominant wind,

making this a leeward slope. The predominant wind blows approx-

imately orthogonal across the next 30 km of the GTC15 Spur west

traverse and is 21.5◦ oblique to the final 33 km of GTC15 Spur West. 58

xx



2.3 The MxRadar streamer array has three transmitting (Tx) and three

receiving (Rx) antennas, which form nine independent offsets that were

linearly spaced from 1.33 − 12 m apart. We simultaneously acquired

nine continuous radargrams (one for each constant offset) and then

binned the source-receiver pairs into common-midpoint (CMP) gathers. 59

2.4 This offset gather is represented by radargrams recorded at offsets 4, 8,

and 12m along the initial 45 km of GTC15 SpurWest, and is annotated

to convey the waveforms used in our analysis and the concepts of nor-

mal moveout (NMO) and linear moveout (LMO). Consider the traces

at zero distance for each offset as a CMP gather. The air wave and

surface wave arrivals are modeled by a linear expression of travel-time

as a function of offset (Eq. (A.1)). The air wave is the first to arrive

and expresses a more shallow slope (faster velocity) than the surface

wave which is impeded while traveling through the snow. The anno-

tated reflection expresses nonlinear moveout which is approximated by

NMO (Eq. (A.2)). The surface-wave (LMO) and reflection (NMO) an-

notated in this diagram are used to estimate the surface snow density,

average snow density, and depth of the fall 2014 isochronous reflection

horizon (IRH). The age of the horizon was determined at GTC15 and

allowed us to estimate the 2015− 2017 SMB (see Appendix A.3), and

in turn, is used to parameterize the HL model (see Appendix A.5). . . 64

xxi



2.5 The MxRadar inversion parameter distributions along GTC15 Spur

West. The LMO and NMO densities were independently estimated

and strongly correlate (R2 = 0.67, p = 0). The MxHL model is param-

eterized by the average of the LMO and NMO densities, the 2015−2017

average SMB, and MERRA (1979− 2012) average 2 m temperature. . 67

2.6 We calculated experimental variograms of the LMO estimated snow

density along the three azimuths of GTC 15 Spur West using lag sep-

arations up to 15 km. Plotted in log-log space, the linearity of each

variogram slope indicates that spatial correlation among the three az-

imuths exists up to ∼ 2 km distance. Correlation beyond this distance

is difficult to assess given the limited azimuths and lag separations

possible for GTC 15 Spur West. However, predominant wind direction

appears to have a control on the correlation length, as evidenced by

the ⪆ 6 km range of the 157◦ transect variogram (in the direction of

the predominant wind) and shorter, ∼ 2 km and ∼ 3 km ranges of

the 246.5◦ transect (orthogonal to the predominant wind) and 40.5◦

transect (oblique to the predominant wind), respectively. . . . . . . . 68

2.7 Conventional GPR processing was applied to each of the nine constant

offset radargrams. We then performed NMO correction to project each

constant offset image to zero offset. We stacked the NMO corrected

radargrams together to synthesize one conventional GPR travel-time

image. The travel-time image remains quite noisy, and it is difficult to

interpret due to the discontinuities along the reflection horizons. . . . 69

xxii



2.8 The travel-time image (Fig. 2.7) is first transformed into the strati-

graphic age domain, known as the Wheeler (1958) domain. Then

we applied structure-oriented filtering to the Wheeler domain image

and converted into the depth domain. The depth section, taken from

GTC15 Spur West, has remarkable continuity along the reflection hori-

zons, which allows us to interpret IRHs to ∼ 22.5 m depth. The undu-

lation in the firn stratigraphy is caused by spatial variability in snow

accumulation. It is necessary to interpret along steeply varying undu-

lations like these to evaluate high resolution (< 5 km) regional climate

model simulations of SMB. However, without the structure-oriented

filter we would be unable to track the reflection horizons along the

undulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.9 The GTC15 and MxHL historical SMB for Jan. 1984 – Jan. 2017.

Uncertainty in GTC15 SMB (±σ) was estimated following Graeter

et al. (2018). Uncertainties in the MxHL 1984− 2017 SMB (±σ) were

propagated by Monte Carlo simulations of firn models generated from

the parameter distributions of snow density, 2015 − 2017 SMB, and

MERRA temperature. We applied ±31 days uncertainty to the mea-

sured ages of isochrones within the simulations. . . . . . . . . . . . . 70

xxiii



3.1 Study area map of the snow pit locations, GPR transects, and Li-

DAR boundary. These data were acquired during the NASA SnowEx

2020 Intensive Observation Period at Grand Mesa, Colorado (Hiemstra

et al., 2021) Land cover classification data were accessed from the 2016

National Land Cover Database (Homer et al., 2020). Slope hillshade

data were accessed from the USGS 3D Elevation Program (Lukas &

Baez, 2021). Cartographic boundary files were accessed from the Cen-

sus Bureau’s MAF/TIGER geographic database (Bureau, 2020). The

geographic coordinate projection of these maps is UTM Zone 12 N;

EPSG code 32612. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 A 900 m transect presenting the a) HH and b) HV GPR profiles and c)

the coherence of these radargrams calculated using Equations 3.1 and

3.2. The automatically determined TWTs are illustrated in magenta. 89

3.3 One meter resolution snow depths from the February 1, 2020 flight.

The mean snow depth of this domain is 92.4 cm with a standard devi-

ation of 18.4 cm. The western half of the domain is relatively unforested

area, while the eastern half of the domain is characterized by stands of

dense forest (see Figure 3.1). . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 The example GPR image and automatic travel-time picks (magenta) in

Figure 3.2 have been converted to depth using the MLR modeled densi-

ties for wave speed conversion. The LiDAR snow depths are overlaid in

white. In this example the correlation between LiDAR measurements

and GPR snow depth estimates is R = 0.91 and the RMSE is 5 cm. . 96

xxiv



3.5 Average snow density was measured by combining LiDAR snow depths

with GPR TWTs. Average density measured in the 96 snow pits within

the LiDAR boundary are overlaid as larger makers. Forested areas and

reservoirs are masked in grey. . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Generalized relative semi-variograms in a) unforested and b) forested

areas for LiDAR snow depth, GPR TWT, and average density mea-

sured along the GPR transects. Experimental variograms were fit with

an exponential model to determine the variogram parameters. The

larger makers represent the nugget, sill, and correlation length esti-

mated by Monte Carlo subsampling. Generally, variability is lower

and the length scale of variability is larger in the unforested areas than

in the forests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Average snow density estimated by Multiple Linear Regression. Den-

sity is higher in the wind affected, unforested terrain, and lower in tree

protected areas. Snow drifting appears to cause large bedform density

anomalies with the windward side of having higher density than the

leeward side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 Snow water equivalent was distributed spatially by combining the MLR

modeled density with the LiDAR snow depths. Forests and wind

soured areas tend to have less SWE, where the perimeters of forest

stands have greater SWE. The stippled texture is the result of low-

stature vegetation (Hveg < 0.5) and boulders, which acts to reduce

snow depth and to a lesser effect decrease the snow density. . . . . . . 102

xxv



3.9 a) Snow density, b) snow depth, and c) snow water equivalent are

compared to the observations of the 96 snow pits that are within the

4.5 km × 3.5 km domain. Red markers are outlying locations where

the absolute difference between observed and modeled density exceeds

50 kg/m3 (twice the RMSE). The red trend line and statistics use all

96 data points, while the black trend line and statistics exclude the

outliers. The accuracy of the estimated SWE is primarily controlled

by the LiDAR snow depths, and these snow properties are rather in-

sensitive to locations with density outliers. . . . . . . . . . . . . . . 104

3.10 Uncertainty in snow water equivalent estimated by summing in quadra-

ture relative uncertainty in snow depth and average snow density fol-

lowing Raleigh & Small (2017). The spatial distribution of uncertainty

tends to be greatest in the shallower and lower density snow underneath

tree canopies and least in the deepest snow caught in drifts around the

perimeters of forest stands. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 The solution of the kinematic wave equation at one year intervals for

the boundary condition a(x) = SMBGTC15 and uniform advection

u(x) = 5 m/a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 A synthetic GTC15 radargram generated from isochrones of the kine-

matic wave equation. Realistic noise was added to the image. . . . . . 120

4.3 The unprocessed Snow Radar image is grainy and rather difficult to

interpret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 The Snow Radar image after surface oriented filtering has smooth and

continuous reflection horizons and reveals layering at greater depths. . 125

xxvi



4.5 The coherence of the GTC 15 Snow Radar image obviates many promi-

nent and continuous firn layers. . . . . . . . . . . . . . . . . . . . . . 127

4.6 The prominent stratigraphic horizons (magenta) were automatically

traces by the binarized coherence method. . . . . . . . . . . . . . . . 128

4.7 Snow surface density for the GreenTrACS Core 15 Spur West transect

estimated from the surface echo of the Snow Radar. . . . . . . . . . . 132

4.8 An overview map of Wolverine Glacier displaying the locations of core

sites C and EC and the multi-offset GPR transect. Imagery and in-

situ density data are available from the U.S. Geological Survey (McNeil

et al., 2019; Baker et al., 2018) . . . . . . . . . . . . . . . . . . . . . . 135

4.9 A depth interpretation of the winter snow mass and percolated firn for

the transect moving up-glacier. Higher onWolverine the the snow accu-

mulation increases the firn depth where it develops prominent layering

to ∼ 15 m depth. The firn appears to undergo rapid densification,

and it reaches pore close off density at ∼ 25 m depth. The snow firn

boundary was interpreted from a radar reflection horizon, while the firn

to ice transition depth was determined by extracting the 830 kg/m3

contour from the dry-firn density model. . . . . . . . . . . . . . . . . 136

4.10 Velocity spectra were computed from the example CMP gather. The

stacking velocity function was estimated by an exponential model that

was fit to the velocity spectra via coherence-weighted least-squares. . 138

4.11 Stacking velocity was estimated by spectral velocity analysis. The

interval velocities were estimated by Dix inversion. Velocity hetero-

geneity follows the stratigraphy development of higher elevation firn. . 139

xxvii



4.12 Firn density was estimated from the interval velocity model by the

Complex Refractive Index Method (Equation 4.27). The density for

unsaturated firn with liquid water content of 0.5 % was calculated for

comparison with dry firn density. The snow surface was moist to wet

during the afternoon data acquisition. . . . . . . . . . . . . . . . . . . 139

4.13 a) Firn density measured at core sites C and EC was estimated with

an exponential model. Measured firn density and the b) dry firn and

c) wet firn density estimated by radar velocity inversion. . . . . . . . 140

4.14 A Google Earth image showing the location of the LQ-Base, LQ1, and

LQ2 sites at Arenales, Chile. . . . . . . . . . . . . . . . . . . . . . . . 142

4.15 The three phase CRIM model represents the electromagnetic velocity

as a function of snow density and percent LWC. . . . . . . . . . . . . 144

4.16 The red Xs indicate the picked radar energy. Earlier picks are the direct

airwave with moveout velocity ∼ 0.3 m/ns, later picks are reflected

energy that is far enough away from the direct energy (in time) to

conduct velocity analysis. The NMO velocity of this arrival is 0.168±

0.01 m/ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.17 A later reflection from t0 ∼ 32 ns likely originates from a soil layer

boundary as the NMO velocity measured from the red picks is 0.08±

0.003 m/ns. The depth of this layer is 1.29 ± 0.06 m below the snow

surface or 1.17± 0.06 m below the ground surface. . . . . . . . . . . . 146

xxviii



4.18 The 900 MHz CMP gather from LQ2 was acquired with a sample in-

terval of 0.5 ns which gives a nyquist frequency of 1000 MHz. The

CMP gather appears rough due to trace interpolation. The data main-

tained enough coherency for analysis but with reduced accuracy due to

discontinuity in the faint direct wave and along the reflection horizons. 147

4.19 900 MHz GPR antenna mounted on the Mercedes Unimog U 4000.

The GPR was operated from the vehicle. Distances were marked in

the GPR trace header every 50 m using a GPS odometer. Changes in

the ground surface were also marked. . . . . . . . . . . . . . . . . . . 149

4.20 a) A section of the radargram after signal processing. A faint reflection

from the thin snow cover (∼ 6 ns) is a precursor to the strong ground

reflection (∼ 8 ns). b) The maximum normalized L2 norm of each trace

has a lower frequency signal over the shrubland and higher frequency

(noisy) characteristic across the (presumed) puddled gravel road. c)

the variance of b) computed in a moving window of 251 traces is used

as an edge detector, where the spikes indicate changes in terrain. The

black Xs on the axis are the 50 m fiducial marks, and the magenta Xs

are double marks indicating a change in the terrain type. The spikes

in c) align with the magenta marks within a small relative positioning

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.21 An east-west transect at LQ2 with 900 MHz antennas. The ground

reflection is the brightest horizon of the image. The ground dips from

∼ 5 ns to ∼ 15 ns over the first 100 m of the transect then remains at

∼ 15 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xxix



4.22 The same transect as Figure 4.21 at 1600 MHz with co-polarized an-

tennas. The radar energy was attenuated at the higher frequency due

to snow LWC. The ground reflection is not apparent in the image. . . 152

4.23 The same transect as Figure 4.22 with cross-polarized 1600 MHz an-

tennas. The ground reflection is faint though visible (compare with

Figure 4.21), where it is not visible with co-polar antennas, pretty

curious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.24 The BV-206 small unit support vehicle (SUSV) on Grand Mesa, Col-

orado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.25 The SUSV test circuit (black) begins and ends on Land’s End Loop

trail (red). The stripe crossing the trail is the start/finish line (white).

The circuit direction is counter-clockwise. . . . . . . . . . . . . . . . . 155

4.26 Normalized Difference Mobility Index was calculated from normalized

vehicle speed and throttle position data. . . . . . . . . . . . . . . . . 157

4.27 Snow surface a) depth and b) density, and c) total depth and d) bulk

density were estimated from a radar CMP via linear regression with

bootstrapping. The surface density distribution was randomly sampled

to replace the density values along Land’s End Loop (Figure 4.28) . . 159

4.28 The density modeled in Chapter 3.3.4 was augmented with the surface

snow density measured on the snowmobile trail. Vegetated areas are

shown with stippling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.29 NDMI distributed using Multiple Linear Regression with first order

feature interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.30 NDMI distributed using bagged decision tree regression. . . . . . . . 163

xxx



A.1 The workflow for our measured-modeled historical SMB reconstruc-

tion. Colors correspond to the section reference where the concept is

detailed. For example, the gradient colors of Snow Parameter Estima-

tion indicate that concept spans sections A.3 and A.4. . . . . . . . . 199

A.2 The raypath of a critically refracted wave traveling through a homoge-

neous snowpack. The wave is reflected at a layer boundary in the firn

and is refracted upon exiting the snow surface. . . . . . . . . . . . . . 202

A.3 Equation A.23 is represented as slices through the GTC15 parameter-

ization. Viewing the 3D objective function this way shows the model

sensitivity to the parameters. The MxHL parameters are evaluated

against the GTC15 parameterization with 1σ uncertainties. These data

are summarized in Table A.1. . . . . . . . . . . . . . . . . . . . . . . 211

A.4 The age-travel-time model was calculated from pseudo velocities. Con-

tours of this image are isochronous travel-time horizons. January 1,

2010, 2005, and 2000 are labeled for reference. We used the age-travel-

time model to flatten the radar traces, by converting the time domain

image into the age domain (Fig. A.5). . . . . . . . . . . . . . . . . . . 215

xxxi



A.5 Using the initial age model, the Wheeler domain radargram has mi-

nor remnant undulations. Because the rows of the Wheeler image are

isochronous, the undulations that deviate from row-wise horizontal are

the model residual. If the age model was correct the radar reflections

would be entirely horizontal (Fig. A.7). By interpreting five horizons of

this image, we interpolated the model residual (Fig. A.6) and applied

these perturbations to update the age model such that it is accurate

in a relative sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A.6 Perturbations in the travel-time domain are calculated by picking IRHs

in Fig. A.5. When applied, the Wheeler domain image is reflattened

(Fig. A.7), which ensures that the age model is accurate in a rela-

tive sense. We rely on ages measured from the firn core for absolute

accuracy in the age model. . . . . . . . . . . . . . . . . . . . . . . . 217

A.7 After interpreting five horizons of Fig. A.5, calculating the model resid-

ual (Fig. A.6), and applying the perturbations to the age-travel-time

model (Fig. A.4), we re-flattened the Wheeler image. The radar ampli-

tudes are now approximately horizontal, indicating that the updated

age model is accurate according to the IRH theory. . . . . . . . . . . 218

A.8 Flattening the traces improves their predictability by linear modeling.

We applied the fx-deconvolution algorithm (Gulunay, 1986) to suppress

the random noise that contaminates the linearly predictable signal. . 219

xxxii



A.9 We interpreted 16 IRHs of Fig. 2.8 to measure their relative age at

depth. We calculated the residual between our interpreted ages and the

ages measured from GTC15 and interpolated this grid of perturbations

in the depth domain. We applied these perturbations to the age-depth

model which was used to calculate the SMB time-series. Applying this

set of perturbations makes the relative age-depth model accurate in an

absolute sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.1 The histogram of the difference in TWT at the 870 intersections of the

gridded GPR transects has a mean of 0.0 ns and RMSE = 0.9 ns. . 222

B.2 Perturbations of up to ±1 ns and ±15 cm were added to the mean

values, 8 ns TWT and 96 cm depth. The density was evaluated then

subtracted from 295 kg/m3 to measure the density perturbation. The

error bars represent the reported LiDAR error and the RMSE of the

GPR TWT cross-overs. Combined errors of ±150 kg/m3 can be ex-

pected from this method, with the GPR TWT contributing about 30 %

greater error than the LiDAR snow depth. . . . . . . . . . . . . . . . 224

B.3 The average snow density estimated by MLR, which was trained on

snow pit density observations (N =96) and distributed by LiDAR spa-

tial predictors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

xxxiii



B.4 a) Snow density that was estimated by MLR trained on snow pit den-

sity observations, b) snow depth measured by LiDAR, and c) snow

water equivalent estimated by multiplying the modeled density and

measured depth are compared to the observations of the 96 snow pits

that are within the 4.5 km × 3.5 km domain. Red markers are outlying

locations where the absolute difference between observed and modeled

density exceeds 50 kg/m3. The red trend line and statistics use all 96

data points, while the black trend line and statistics exclude the outliers.228

B.5 The relative importance of the LiDAR derived predictors: ρ0 intercept

density, Hs snow depth, aspctHs aspect of snow depth, sxHs slope of

snow depth, ∂yHs north component of snow depth gradient, ∂xHs east

component of snow depth gradient, Zs the snow surface elevation and

derivatives, Zg the ground elevation and derivatives, Hveg vegetation

height, and Sveg the distance to vegetation with height greater than

0.5 m. The predictor importance for a) the model trained on joint

LiDAR and GPR data and b) the model trained on snow pit density

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.6 Evaluation of d) density, e) depth, and f) SWE in unforested areas,

and g) density, h) depth, and i) SWE in the forest. Red markers are

outlying locations where the absolute difference between observed and

modeled density exceeds 50 kg/m3. . . . . . . . . . . . . . . . . . . . 233

xxxiv



B.7 Wind rose plots from hourly GMSP weather station observations for

October 20, 2019 through February 12, 2020. The west-southwest wind

direction prevails with the greatest number of observations and the

maximum measured wind speed. . . . . . . . . . . . . . . . . . . . . . 235

xxxv



LIST OF ABBREVIATIONS

Hs Snow depth

Hveg Vegetation height

Sveg Proximity to vegitation

Zg Bare earth elevation

Zs Snow-covered earth elevation

∂xHs east component of snow depth gra-

dient

∂xZg east component of bare earth eleva-

tion gradient

∂xZs east component of snow surface ele-

vation gradient

∂yHs north component of snow depth gra-

dient

∂yZg north component of bare earth ele-

vation gradient

∂yZs north component of snow surface el-

evation gradient

aspectHs aspect of snow depth

aspectZg aspect of bare earth elevation

aspectZs aspect of snow surface elevation

sxHs slope of snow depth

sxZg slope of bare earth elevation

sxZs slope of snow surface elevation

1D One-dimensional

2D Two-dimensional

AAV Assault Amphibious Vehicle

APC Armored Personnel Carrier

ASO Airborne Snow Observatory

BAEM Boreal Aspects of Ensured Ma-

neuver

C Center

CD Coast Down

CMP Common Midpoint Gather

CO Common Offset Gather

CRIM Complex Refractive Index

Method

CRREL Cold Regions Research and En-

xxxvi



gineering Laboratory

DGPS Differential Global Positioning

System

EM Electromagnetic

ERDC Engineer Research and Develop-

ment Center

F-K Frequency-Wavenumber

GEN3ENS Ensemble of the Third Gen-

eration Reanalysis Models

GIS Geogrphic Information System

GMSP Grand Mesa Skyway Study Plot

GPR Ground-Penetrating Radar

GPS Global Positioning System

GreenTrACS Greenland Traverse for

Accumulation and Climate Stud-

ies

GrIS Greenland Ice Sheet

GTC15 GreenTrACS Core 15

H Horizontal Polarization

HH Horizontal-Horizontal Polarization

HiCARS High Capability Airborne

Radar Sounder

HK Homodyned-K type distribution

HL Herron and Langway Model

HMMWV High Mobility Multipurpose

Wheeled Vehicle

HV Horizontal-Vertical Polarization

IMU Interitial Measurement Unit

IOP Intensive Observation Period

IQR Interquartile Range

IRH Isochonous Refleciton Horizon

LiDAR Light Detection and Ranging

LMO Linear Moveout

LVSR Logistics Vehicle System Replace-

ment

LWC Liquid Water Content

LWD Lightweight Deflectometer

M3C2 Multiscale Model to Model Cloud

Compare

MAE Mean Absolute Error

ME Mean Error

MERRA Modern-Era Retrospective

analysis for Research and Appli-

cations

MLR Multiple Linear Regression

MOBLP Mobility Loop

xxxvii



MTVR Medium Tactical Vehicle Re-

placement

MxHL MxRadar - Herron and Langway

Model

MxRadar Multi-channel, Multi-offset,

Radar

N North

NATC Nevada Automotive Test Center

NDMI Normalized Difference Mobility

Index

NIR Near-Infrared

NMO Normal Moveout

OIB Operation IceBridge

PCA Principle Component Analysis

QC Quality Control

RAFTER Remote Assessment of Infras-

tructure for Ensured Maneuver

RMSD root-mean-square difference

RMSE root-mean-square error

RWY Runway

S South

SLF Operation IceBridge

SMB Surface Mass Balance

SMP SnowMicroPenetrometer

SUSV Small Unit Support Vehicle

SWE Snow Water Equivalent

TWT Two-Way Travel-time

TXY Taxiway

V Vertical Polarization

xxxviii



1

INTRODUCTION

Snow exists very close to the temperature at which it melts or sublimates, and

because of this, snow undergoes rapid and complex metamorphism. Snow accumu-

lated, metamorphosed, and ablated under various meteorological forcings affect its

persistence and nature on the ground. Snow metamorphism may construct or de-

struct bonds between grains, and these processes occur differently in wet and dry

snow. Dry snow metamorphism is driven by temperature gradients. When the gra-

dient is large enough (> 0.1◦C/cm) vapor migrates along the gradient moving mass

from one grain to the next forming weak and transient bonds. When the temperature

gradient is small, snow forms into rounded and well bonded grains. Depending on the

liquid water volume in the snow pack, wet snow metamorphism may form cohesive

or cohesionless bonds. In environments where snowpacks do not completely ablate,

multiple years of accumulated snow compacts due to overburden pressure and forms

the sintered bonds of firn. When the pore space of firn becomes impermeable, glacial

ice is formed.

The strength of bonds on the microscale gives rise to the cohesive properties of

snow at the macroscale. Snow macro-mechanical properties – such as elastic modulus,

stiffness, and strength – in effect, govern vehicle performance by supporting compres-

sive and shear forces. Vehicle instrumentation data and mechanical observations of

the snowpack can thereby improve the estimates of winter vehicle performance in
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a modeled framework. Combining in-situ and remotely-sensed snow observations,

driver input, and vehicle performance sensors requires several techniques of data in-

tegration, which I explored later in this dissertation. In-situ measurements of snow

mechanics are difficult to make, and are often inferred from geophysical data inversion.

The SnowMicroPenetrometer (SMP) measures the force required to penetrate the

snow with very high depth resolution. The SMP is driven through the snow at a

constant rate causing linear elastic strain, and is capable of measuring the individual

rupture forces of snow gain bonds and micro-mechanical properties via data inversion.

I found correlations between the SMP measurements and instruments applied to snow

that were designed for measuring the load bearing capacity and the compressive and

shear strengths of roads and soils. In place of direct observations of snowpack mechan-

ics, I determined that snow density remains a useful surrogate for snowpack strength.

Using spatially distributed snowpack, terrain, and vegetation information developed

in the subsequent chapters, as an extension of this work, I developed an over-snow

vehicle performance model. The Normalized Difference Mobility Index (NDMI) joins

driver and vehicle data to characterize over-snow vehicle performance. Using the

spatial snow, terrain, and vegetation properties as predictor varibles, NDMI was dis-

tributed throughout the area of interest. The strategic advancement of warfighting

in cold regions relies on the accurate foresight of mobility logistics. The application

of mobility prediction directly supports military campaigns.

The security of water resources is climatologically inequitable, and the future of

water security is at risk. Changes to the supply and demand of water requires storage

and distribution strategies that better meet the legal, economic, political, cultural,

and social needs of water users. Rivers and basins form international boundaries and
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require the cooperation of various nation’s stakeholders for fair resource distribution.

Stresses to water supply are hence a cause of international conflict, and conversely,

water surpluses can be exchanged as peace.

Water resources derived from snow are essential for modern societies in climates

where snow is the predominant source of precipitation, such as the western United

States. Snow water equivalent (SWE) is a critical parameter for yearly water sup-

ply forecasting and can be calculated by multiplying the snow depth by the snow

density. Depth and density are highly valued hydrological properties of snow, as the

estimation of depth and density are then a means to water security. Remote sensing

advancements made it possible to measure snow depth at basin-wide scales, but snow

density has remained challenging to measure over large spatial extents.

Radar techniques are the most prevalent for remotely sensing snow density be-

cause of the relationships existing between dielectric permittivity (a main constituent

of electromagnetic wave propagation) and snow density. In media with low con-

ductivity, such as snow, electromagnetic (EM) wave propagation speed is controlled

by the dielectric permittivity. At ground-penetrating radar frequencies, snowpacks

may be simplified as layered homogeneous porous solids with an ice matrix and pore

space containing a mixture of air and water. Applying this snowpack concept, the

measurement of the EM wave speed yields the dielectric permittivity; and thereby

depth, density, and SWE. With information about the propagation velocity of the

snow, such as density measured in a snow pit, GPR two-way travel-time (TWT) can

directly estimate the snow depth. Conversely if snow depth is known, TWT can

directly solve for snow density. Or, by applying a ray-path function of TWT ver-

sus antenna separation (offset), the velocity, and thereby snow depth and density,
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can be estimated. I developed fundamentals and applications of GPR by deploying

various multi-channel configurations and developing signal processing and data inver-

sion algorithms to accurately measure the snow depth, density, and water equivalent

in polar firn and seasonal snow cover. Wave speed estimation relies on interpreting

TWT from radargrams, which is a laborious process that requires expert knowledge of

radar theory and digital signal filtering. Over the course of the campaigns analyzed,

thousands of kilometers of multi-channel radar data were collected. I automated the

signal processing and manual picking of travel-times using scripted workflows and

multi-channel coherence methods. Drawing from geostatistical analysis, I gained in-

sights to the wind, terrain, and vegetation interactions that affect snow density and

showed that TWT exhibits spatial variability similar to that of SWE.

In our changing climate, snow and ice mass are being permanently lost from the

cryosphere. Mass balance is an indicator of the (in)stability of glaciers and ice sheets,

measured as the sum of surface mass inputs and losses (surface mass balance) and dis-

charged mass. Surface mass balance may be estimated by multiplying the thickness

of any annual snowpack layer by its density. Though, unlike applications in sea-

sonal snowpack, knowing which depths constitute the annual layers is non-trivial. In

perennial snowpacks (firn) of glaciers, firn accumulates like sediment in ocean basins,

forming depositional stratigraphic horizons in isochronous layers. Stratigraphic lay-

ering augments a tree-ring like temporal component to the firn that is embedded in

the radargram. In the second chapter, I used the snow accumulation and density esti-

mated by multi-channel GPR wave speed analysis. I modeled the firn depth, density,

and age using empirical and numerical approaches. Leveraging the age-depth model,

I designed a radar signal process that filters along horizons of continuous stratigraphic
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age. This innovation enabled the interpretation of deeper and older layers, and esti-

mates of multidecadal and annual surface mass balance spanning 1984−2017, within

the high elevation dry-snow accumulation zone of Greenland. The annual surface-

mass balance history shows cyclical patterns representing the combination of atmo-

spheric, oceanic, and anthropogenic climate forcing. I examined wind and terrain

features thought to control spatial snow density patterns, and found greater length

scales of variability in the direction of the prevailing wind than in the orthogonal

direction. Quantified surface density and spatial variability of snow density is use-

ful for initializing firn compaction models used in remote sensing and climate model

retrievals of surface mass balance.

In the third chapter, I combined high-spatial resolution light detection and rang-

ing (LiDAR) measured snow depths with ground-based radar measurements of TWT

to solve for snow density. Then using LiDAR derived terrain and vegetation features

as predictors in a multiple linear regression, the density observations were distributed

across the SnowEx 2020 study area at Grand Mesa, Colorado. The modeled den-

sity resolved detailed patterns that agree with the known interactions of snow with

wind, terrain, and vegetation. The integration of radar and LiDAR sensors shows

promise as a technique for estimating SWE across entire river basins and evaluating

observational- or physics-based snow-density models. Accurate estimation of water

equivalent is a means of water security, and the technique of combining LiDAR and

GPR information results in SWE estimates within 10 % uncertainty.
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Overall, the advancements made within this dissertation increased our under-

standing of the spatial snow distribution and the operational utility of the SMP,

multi-channel GPR, and airborne radar and LiDAR in glacial and seasonal snow

environments. The measurements and modeled outcomes of snow depth and den-

sity using multi-sensor techniques feeds back directly into vehicle mobility modeling,

surface mass balance, and annual SWE estimation.
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CHAPTER 1:

SNOWMICROPENETROMETER

APPLICATIONS FOR WINTER VEHICLE

MOBILITY



8

Abstract

The U.S. Army Cold Regions Research and Engineering Laboratory provides tech-

nical support to military forces, one area being vehicle mobility modeling over snow.

Many factors control vehicle performance, including the vehicle specifications and

the land surface conditions. However, estimating snow macromechanical properties

– such as elastic modulus, stiffness, and strength – is critical for understanding how

effectively a vehicle will travel over snow-covered terrain. Vehicle instrumentation

data and observations of the snow pack are necessary to improve the estimates of

winter vehicle performance. Currently, snow depth and bulk snow density alone drive

the available mobility performance index.

This research deployed a SnowMicroPenetrometer (SMP) to measure hard, vehicle-

compacted snow and groomed snow roads. Microstructural and micromechanical

properties derived from the SMP data analysis were correlated to the Rammsonde

penetrometer hardness, an established snow instrument, and to the shear-strength

test vane and Light Weight Deflectometer (LWD), which are common in soil and

aggregate layer assurance methods in road construction. Correlating these tools re-

quires a new theo-ry for inverting SMP signals for micromechanical properties that

relaxes the assumption of low-density snow. Additionally, a scaling law appropri-ate

to this type of hard snow is required to relate the SMP observations of the microscale

and the macroscale properties.
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1.1 Introduction

1.1.1 Background

The U.S. Engineer Research and Development Center (ERDC) Military Engi-

neering Program on Remote Assessment of Infrastructure for Ensured Maneuver

(RAFTER) Boreal Aspects of Ensured Maneuver (BAEM) identifies the need for

modeling over-snow vehicle performance, as many factors related to vehicle setup and

land surface condition contribute to vehicle efficiency. Accurately estimating snow

macromechanical characteristics – such as elastic modulus, stiffness, and strength – is

critical for understanding how effectively a vehicle will travel over snow-covered ter-

rain. Vehicle instrumentation data (inertial measurement units and vehicle telemetry)

and observations of the snowpack (both satellite and ground-based) are necessary to

improve the modeled estimates of winter vehicle performance. Currently, performance

index is driven by snow depth and bulk snow density alone.

The snow characterization research effort deployed a SnowMicroPenetrometer

(SMP) that was jointly developed by the ERDC Cold Regions Research and Engineer-

ing Laboratory (CRREL) and the Swiss Federal Institute for Snow and Avalanche

Research (SLF) two decades ago (Schneebeli & Johnson, 1998). Our study used a

SMP with a force sensor range of 0 − 500 N to measure hard, vehicle-compacted

snow and processed or groomed snow roads. Median values of the high-resolution

snow structural profiles from the SMP are correlated to Rammsonde, shear strength

test vane, and LWD values over the depth range of each independent in-situ measure-

ment. We understand the value of the SMP as a tool for future mobility studies in

different snow types through statistically significant correlation, but also understand
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a lack of correlation as deficiencies of the SMP hardware, the penetration theory used,

and the micro-to-macro scaling laws.

Winter vehicle mobility studies by CRREL have evaluated vehicle setup and snow

condition (Shoop et al., 2014); however, the SMP has not previously been applied to

a mobility study. This work is the first winter vehicle mobility study to examine the

usefulness of the SMP for research on military vehicle efficiency.

1.1.2 Objectives

The overarching objective of this research is to improve vehicle mobility modeling

by incorporating additional snow physics. Characterizing the snow mechanical prop-

erties and their impact on vehicle mobility is challenging and requires varied field

instruments and specialists with a wide range of expertise. This chapter overviews

four instruments used to characterize snow for the BAEM project – the SMP, Ramm-

sonde (ram), shear vane, and LWD (Sections 1.2.2 – 1.2.5) – and assesses required

load-cell ranges of the SMP for its application to hard, vehicle-compacted snow.

Within this chapter, I correlated the microphysical parameters estimated from SMP

measurements to those from a suite of instruments designed or tested to measure

snow mechanical properties. The work derived from this study aims to bridge micro-

to-macro snow physics with the ultimate intent to infer snow structure from satellite

imagery for use as initial and boundary conditions for vehicle mobility models.

1.1.3 Approach

The field site chosen for this study was the Nevada Automotive Test Center

(NATC) in West Yellowstone, Montana. NATC leases the West Yellowstone Air-

port property from the Montana Department of Transportation Aeronautics Division

for winter testing. During the winter, the airport is closed to air traffic, with the
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exception of emergency rescue helicopters. NATC maintains the site and the various

test vehicles during the winter months. Our study, the NATC campaign, accomplishes

the objectives through the following tasks:

• Perform vehicle tests in various snow-surface conditions at the NATC test site,

West Yellowstone, Montana.

• Sample the snow within hours after vehicle tests with the suite of instruments.

This includes manual measurements of snow depth, density, hardness, shear

strength, deflection, dielectric permittivity, and near-infrared (NIR) photogra-

phy.

• Develop automated signal processing for SMP analysis and solve for the snow

microstructural properties, applying the method of Marshall & Johnson (2009).

• Apply statistical regression analysis to draw correlations between the measure-

ments of the ram, shear vane, LWD, and the microphysical parameters derived

from the SMP.

Our approach is limited by the abilities of the various instruments to measure

particular snow types. The SMP exhibited difficulty penetrating groomed snow roads,

the ram and shear vane exhibited difficulty measuring soft or virgin snow, and the

LWD requires groomed snow.

1.2 Field Campaign and Data Acquisition

1.2.1 Study-site Background

During late January 2018, NATC operated Marine Corps vehicles in several snow

conditions (processed snow road, ice lane, trafficked snow, and virgin snow) using
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various performance setups (tire pressure configurations, differential configurations,

towed/pulling/load carrying) to conduct mobility performance tests (traction, drag-

bar, and coast down). During a coast-down test, the test vehicle is accelerated to

a constant velocity on tarmac or groomed road before entering a virgin snow-pack,

roughly 50 cm deep, through which the vehicle rolls to a stop. Beside coast-down tests,

the other tests were simple vehicle passes through virgin or rutted snow. The CRREL

and Boise State University snow characterization team measured the snowpack using

a suite of instruments with the objective of recording the snow conditions before and

after alteration by the military vehicles. In all test scenarios, measurements were

taken in the resulting tracks and area between the tracks, where the undercarriage of

the vehicle resulted in a belly drag that compacted the snow to a lesser degree.

This chapter discusses the results from data acquired using the SMP, ram, shear

vane, and LWD (Sections 1.2.2 – 1.2.5). Figure 1.1 identifies the acquisition locations

for each day of the NATC campaign. Throughout the data analysis, this chapter

uses the following nomenclature: date (XX), cardinal location (north (N), south (S),

and center (C), snow type/location (runway (RWY), taxiway (TXY), mobility loop

(MOBLP), and virgin snow (VS)), and vehicle name (e.g. Medium Tactical Vehicle

Replacement (MTVR) and Logistics Vehicle System Replacement (LVSR)), and test

type (e.g. coast down (CD)) when applicable or unique.
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Figure 1.1: Satellite imagery of the NATC facility at the West Yellowstone airport
during snow-off conditions. Waypoints plotted indicate the locations studied during
the field campaign.



14

1.2.2 SnowMicroPenetrometer

The SMP (Figure 1.2) is a mechanically driven sonde penetrometer capable of

measuring the hardness of the snowpack through high-resolution sampling of pen-

etration force (F ) versus displacement (d), as the snow deforms in multiple modes

(tension, compression, and shear). This instrument samples the penetration force 250

times per millimeter and drives through the snowpack at a rate of 20 mm/s. This

corresponds to a strain rate above 10−3, such that the snow behaves in a nearly linear

elastic manner with brittle failure (Shapiro et al., 1997). Thus, in theory, the SMP is

capable of measuring the individual ruptures of snow-grain bonds that are in contact

with the penetrometer tip. The SMP was initially designed to operate in light alpine

snowpacks and to be sensitive to structural weaknesses within the snowpack, at pen-

etrations forces of approximately 0.01 N , for understanding and assessing avalanche

hazard (Schneebeli & Johnson, 1998).

The standard SMP load cell is sensitive to a range of forces between 0 and 42 N

(Pielmeier, 2003). For the NATC campaign, the SMP was equipped with a higher

capacity load cell that enables the SMP to measure forces up to 500 N . The hard-

packed snow conditions created by and for the vehicle testing demand the increased

dynamic range of the load cell, which has previously been used for hard wind-packed

snow in the Arctic and Antarctic. The increased dynamic range comes at a cost

in force resolution and noise floor, as the analog-to-digital converter used for both

the low and high ranges is currently the same and the noise level is higher for the

larger-range force sensor.

The SMP outputs a binary format data file (.pnt) that is unpacked using Python

or MATLAB code. The Python code, SnowMicroPyn, was developed by SLF and is
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Figure 1.2: The SMP mounted on a sled at the West Yellowstone airfield during the
NATC campaign. The SMP was developed and designed by Dr. Martin Schneebeli
( SLF) and Dr. Jerome Johnson (CRREL) in the mid-1990s. The pictured sled was
designed and built by Dr. Matthew Sturm (CRREL).

used primarily for extracting a Global Positioning System (GPS) location from the

data header file. Within this chapter I developed MATLAB scripts that automate

the signal processing and apply the inversion code of Marshall & Johnson (2009) for

estimation of the micromechanical and microstructural snow properties.

The SMP can acquire high-resolution force resistance profiles rapidly and with

little-to-no strenuous effort in the field. The SMP was mounted in a sled with two

runners and an open floor. The SMP sled was indexed with five positions separated

by 20 cm to allow for five acquisitions per sled location. After the five positions

were acquired, the sled was advanced. This configuration allowed for transport of the

SMP across the snow without disturbing the snow beneath the penetrometer. The

SMP was operated from a battery powered console with an integrated GPS and data

logger. The SMP had a maximum penetration depth of 61 cm, and the operator may



16

optionally define the depth of penetration for the profile. When the selected depth is

reached or if the SMP is unable to penetrate (hard snow or the ground), the probe is

automatically reversed. SMP profiles are individually stored in binary .pnt files on a

removable secure digital card.

Data was acquired in a series of transects crossing perpendicular to the vehicle

tracks. The typical transect would begin in the virgin snow; advance across the

tire rut, the belly drag, and the second tire rut; and conclude in the virgin snow

on the opposite side of the vehicle path. This resulted in five SMP test positions,

each with five SMP measurements that were 20 cm apart in each snow condition.

Figure 1.3 presents the SMP penetration-force profiles after signal processing (Section

1.3). The snow surface is automatically picked within the signal processing algorithm

and is identified by a red X. An air gap exists between the SMP and the snow

surface. In virgin snow, this distance is approximately 10 cm. When the SMP is

suspended above a tire rut, this distance is greater, as shown in Figure 1.3c. NIR

photographs corroborate the stratigraphic layers seen in the SMP profile through

virgin snow. However, the stratigraphy is destroyed in trafficked snow and is not

clearly visible in the NIR spectrum. The SMP is capable of resolving stratigraphic

layers present in trafficked snow by measuring the snow penetration force with greater

vertical resolution and sensitivity.
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Figure 1.3: Example SMP hardness profiles acquired in the three important snow
conditions: a) virgin snow, b) snow trafficked by multiple vehicles, and c) a tire rut.
SMP force profiles are shown after signal processing. The signal processing algorithm
automatically identifies the snow surface, indicated by the red X. NIR photographs
d), e), and f) correspond to a), b), and c), respectively. NIR photography reveals the
snow stratigraphy in the virgin snow, and lack there of in the driven snow. The SMP is
capable of identifying snow layers not obvious to the eye or to manual measurements.
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1.2.3 Rammsonde Penetrometer

The ram penetrometer is one of the early hardness penetrometers (Bader, 1954a)

and is the standard instrument for determining snow hardness in the field. The

value of ram hardness indicates the resistance of individual snow layers to vertical

penetration (Abele, 1963). The ram (Figure 1.4) has the capability of retrieving a

hardness measurement at the snow surface and within stratigraphic intervals of the

snow, though measurements of ram hardness are typically reported as a bulk value

over the measurement profile. Snow microstructural properties cannot be estimated

from bulk measurements of ram hardness. Abele (1963) developed the correlation

between unconfined compressive strength of processed snow and ram hardness and

conveyed the underlying theory and mechanics of the tool.

The snow characterization team manually tabulated in the field the data acquired

by the ram. The ram hardness index

R =
WHn

zn
+W +Q (1.1)

is formulated from the hammer weight (W ), the drop height (H), the weight of the

penetrometer (Q), the penetration depth per the number of hammer blows (zn), and

the number of hammer blows applied to achieve an interval of penetration (n). Abele

(1963) provides an overview of the instrument design and the basis for Equation 1.1.

The ram team sampled each test location carefully as to not disturb the snow for

its measurement or the measurements of the other instruments in the field. Ram

hardness profiles were recorded in the virgin snow, belly drags, and tire ruts for

comparison with the SMP profiles.
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Figure 1.4: CRREL’s Dr. Sally Shoop using the ram to measure the hardness of a
vehicle belly drag after a coast-down test at NATC.
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1.2.4 Shear Vane

The team measured surface shear strength by using a Geonor H-60 handheld vane

tester (henceforth shear vane). The shear vane has an orthogonal, cross-shaped blade.

The standard vane blade and length come in three sizes, and the size is chosen based

on the snow strength. Custom vane sizes are also sometimes used. The vane is inserted

into the snow to a depth covering the entire vane, and then a steady rotational force

is applied until the snow shears. The maximum shear force is recorded as kilopascals.

The shear-strength values for each site are the average of three measurements. ASTM

D2573–18 (ASTM International, 2018) details the use of the shear vane in soils.

The shear-vane measurements were recorded at the snow surface of pits together

with temperature, density, and snow height. Virgin and soft belly-drag snow provided

insufficient strength for measurement with this tool with the exceptions of measure-

ments made in vehicle belly drags on 30 January at the North mobility loop entrance

and 31 January at the South runway, limiting the number of observations for this

study. The field scientist manually recorded the maximum shear stress applied by

this instrument. Shear-vane measurements were repeated several times at each snow

pit to estimate the shear-strength distribution.

1.2.5 Light Weight Deflectometer

The LWDmeasures the ground deflection when an impact load is applied to a plate

that has a geophone at its center. The LWD is conventionally used for quality control

and assurance of soil and aggregate layers in road construction. Using the LWD on

snow surfaces is a new application for the device (Wieder et al., 2019). As the applied

load increases, the deflection will increase for a linear, elastic material. Snow in many

circumstances does not behave as a linear elastic material (Shapiro et al., 1997);
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however, at the high strain rates used in this study, a linear elastic approximation

is reasonable. On 25 January 2018, the snow characterization team deployed the

LWD on groomed snow surfaces over paved asphalt at high strain rate. Under these

conditions, the snow was thought to be a rigid body and to behave elastically. Various

geophone configurations were tested, yet only the central geophone recorded useable

waveforms for analyses (Wieder et al., 2019).

SMP profiles were collected coincident with LWD tests on the processed snow

road in ruts and unaltered surfaces. This shallow and hard snow proved difficult to

penetrate with the SMP and damaged the instrument hardware. We examined a

reduced sample of data in this study to compare the LWD and SMP and found no

significant correlation between these instruments (Section 1.6).

1.3 Data Analysis

The snow characterization team acquired 383 SMP penetration-force profiles dur-

ing the NATC campaign. The binary data files were read and processed repeatedly

as a batch. Section 1.3.1 describes the Python and MATLAB codes that perform the

signal processing. Section 1.3.2 outlines the data inversion and microphysical snow

properties. Section 1.3.3 details the correlation analysis between the SMP-derived

microphysical snow properties and the additional instruments.

1.3.1 SMP Automated Signal Processing

Preprocessing

Signal preprocessing begins within the Python script provided by SLF for georef-

erencing the SMP trace with longitude and latitude coordinates with approximately

3 m accuracy. This information is exported as a .txt file that is read into the signal
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processing code. The open-source Python code is used for this task only, and the

following routines take place in MATLAB. The binary .pnt file is read into memory

and written to a structure that contains the metadata and the SMP signal. GPS

locations are then joined to the data structure.

Prior to spinning up the signal processing routine, we reviewed each raw SMP trace

for quality control. The classification strategy in Lutz et al. (2009) and Pielmeier &

Marshall (2009) was used to identify traces that have no error (C1), exhibit a linear

trend and/or an offset in the trace (C2), exibit dampened signal microvariance (seg-

ments of the trace that have lower variance than the normal air signal) (C3), and

traces that exhibits errors of types C2 and C3 (C4). Trends and offsets are corrected

if the C2 error is observable in the air signal (Figure 1.5). Data that experiences C3

errors are prevalent in low-strength, virgin snow because of the reduction in resolution

of the 500 N load cell. Snow element ruptures cannot be detected in data segments

suffering from C3 errors (Figure 1.8). The quality control classifications are supple-

mental metadata that enable automation for drift correction and the snow-surface

identification.

Snow Surface Identification and Depth Correction

The processing routine first identifies the snow surface. A duplicate, temporary

trace is smoothed with a 0.25 mm moving window average (62 samples). Smoothing

aides in preventing false surface detection. The variance of the smoothed trace is then

calculated within a 1 mm moving window. The program then extracts a segment of

the trace while the penetrometer tip is driving through the air and calculates the

mean variance of this segment. We establish a threshold variance of 49σ2 relative to

the mean variance of the extracted air signal. Once this threshold is exceeded, the
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program identifies the snow surface. Because the SMP trace begins recording as the

penetrometer moves initially through the air gap, the depth profile is shifted by the

distance to the automatically detected snow surface, such that negative depths are in

the air and positive depths are distances below the snow surface.

Signal Drift Correction

After repeated use, especially in wet conditions, moisture may migrate behind the

penetrometer tip and degrade the SMP signal (Lutz et al., 2009); infrequently, the

malfunction introduces a linear drift to the recorded SMP trace. Because the overall

drift within the signal may be approximated by a linear function, a corrected force

signal within the snow can be estimated by examining the signal as the tip is driven

through the air. A least-squares fit is applied to the data above the snow surface to

estimate the drift function. The drift function is then subtracted from the raw SMP

trace, correcting the data. The raw trace shown in Figure 1.5 is type C4, as a linear

trend and static offset is observable in the air signal and segments of the trace exhibit

damped signal microvariance. Figure 1.5 demonstrates the result of the automated

signal processing before and after snow-surface identification and drift correction.
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Figure 1.5: A C4-type SMP trace through virgin snow a) before and b) after the snow-
surface detection and drift correction. The depth axes of each plot is not corrected and
is later reconfigured to place the snow surface at 0 mm depth.
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1.3.2 SMP Data Inversion for Snow Microstructural

and Micromechanical Properties

Underlying Theory and Assumptions

The microstructure of snow controls its compressive, tensile, and shear strength

(e.g. Shapiro et al., 1997; Marshall, 2005) and is thereby important for understanding

the mobility of vehicles through snow-covered terrain. A physics-based theory on snow

penetration through lower-density snow was first developed by (Johnson & Schnee-

beli, 1999). The snow penetration theory models microstructural snow elements as

a cellular solid ice matrix. Each element is assumed to have a constant dimension

(L) that is related to the number of measured ruptures per millimeter (Marshall &

Johnson, 2009). The snow element ruptures at a rupture force (f) after some deflec-

tion length (δ) that is less than L. Snow deforming as a linear elastic material due

to penetration may be defined by these basic microstructural parameters (L, f , δ)

from the recorded failure of individual snow elements (Johnson & Schneebeli, 1999;

Marshall & Johnson, 2009). Figure 1.6 depicts the individual snow element ruptures

that are modeled by elastic events and are represented by the basic micro-structural

parameters L, f , and δ.

This assumption is valid in low-density snow behaving as a foam where the com-

paction of snow elements is understood to be negligible. In the higher density regime

(400 − 600 kg/m3), snow behaves as a porous solid, and interelement compaction

has an effect on the rupture of snow elements (Marshall & Johnson, 2009), which is

not accounted for in this theory. A rapid transition in the mechanical properties of

dry snow exists in the density range 550 − 570 kg/m3 as snow reaches the limit of
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densification caused by grain packing; further densification must occur by changes

to the bonds interconnecting grains (Anderson & Benson, 1963). We applied the

penetration theory developed for low-density snow to the NATC study, though snow

densities for vehicle-driven snow and groomed snow roads are reported in the porous

solid regime (Shoop et al., 2016). Beyond the scope of this report, we recommend

developing additional physical theory to account for intergranular effects on rupture

force caused by the closeness of grain packing and the development of grain bonding

in addition to accounting for compaction of grains and bonds.

The penetrometer tip is cone-shaped with a half angle of θ. Forces measured in

the vertical direction (Fz) are the sum of the normal and frictional forces

Fz = Fn sin θ + Fµ cos θ = Fn(1 + µ cot θ) sin θ , (1.2)

where Fn is the force normal to the penetrometer tip, Fµ is the frictional force tan-

gential to the penetrometer tip, and µ is the coefficient of friction. In the following

analysis the vertical displacement and total force are first transformed to distances

and forces that are normal to the tip. The displacement in the normal direction is

d = dz sec θ , (1.3)

and the force normal to the penetrometer tip is found by inverting Equation 1.2

Fn =
Fz

(1 + µ cot θ) sin θ
. (1.4)
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Monte Carlo Data Inversion Scheme

Johnson & Schneebeli (1999) initially developed a Monte Carlo inversion strat-

egy that synthesized SMP penetration-force profiles by the summation of randomly

distributed elements with testable values for L, f , and δ. Their results agreed well

with measurements made in zirconia foam and indicated that the underlying theory

is correct in low-density snow. Marshall & Johnson (2009) made significant improve-

ments to the original inversion strategy by accounting for errors in the recovery of

the microstructural parameters, especially when L < 1 mm. These micromechanical

and microstructural parameters were shown to be predictive of snow slope stability

(Pielmeier & Marshall, 2009; Lutz et al., 2009).

The Marshall & Johnson (2009) data inversion was used to solve for the snow

microstructural parameters. Figure 1.6 depicts the basic strategy of the Monte Carlo

inversion, where individual snow elements with testable parameters L, f , and δ, are

randomly distributed. The summed contribution of the individual elements repro-

duces the raw penetration-force profile of the SMP when the parameters are accu-

rately chosen, provided that the linear elastic penetration theory is valid. For clarity

on the implementation and improvements made to the SMP data inversion, refer to

Marshall & Johnson (2009).
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Figure 1.6: The three microstructural parameters L, f , and δ are estimated via the
Monte Carlo data inversion. The objective of the data inversion is to use the summed
signal (F ) as measured by the SMP to invert for the basic microstructural parameters
(L, f , δ).
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Microstructural Parameters

Following the Monte Carlo inversion the microstructural parameters L, f , and δ,

are the building blocks for additional measures of snow microstructure and microme-

chanics. The structural element length is estimated as

L =
3

√
VT

N
, (1.5)

where N is the number of estimated ruptures caused by the deformation of a cylin-

drical volume of snow VT = Az. A = πr2 is the area of the penetrometer tip base,

and z is the depth of penetration. The rupture force

f =

∑N
i=1 fi
N

, (1.6)

is the average rupture force over a distance in which N ruptures occured, and fi is the

difference in force between the N local maximum and adjacent minimum ruptures.

The deflection at rupture

δ =
Fmz∑N
i=1 fi

, (1.7)

depends on the mean total force (Equation 1.10), the penetration distance (z), and

the sum of the individual ruptures (Marshall & Johnson, 2009).

Derived Snow Microstructural Parameters

Microstructural parameters are derived from penetration force (F ), the elemen-

tal microstructural parameters (L,f , and δ), the window length (calculation interval),

and instrument specifications (cone length and maximum radius). Johnson & Schnee-

beli (1999) assumed that microstructure element locations follow a uniform random
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distribution. The probability that any element is in contact with the penetrometer

may then be estimated as

Pc1 =
δ

L
, (1.8)

or,

Pc2 =
Ne

Na

, (1.9)

where Ne is the number of microstructural elements engaged with the penetrometer

tip, and Na = As

L2 is the number of available elements given the surface area, As, of

the cone tip and characteristic length L.

Because the mechanical behavior of the elements is linear elastic, by the mean

value theorem, the average contribution of any engaged element is f/2 (Marshall &

Johnson, 2009). The mean penetration force normal to the tip follows from the above

equations as

Fm =
f

2
Ne =

f

2
NaPc =

f

2

(
A

L2

)(
δ

L

)
=

fAδ

L3
, (1.10)

while the median penetration force may be estimated from the cumulative distribution

function of the penetration force

Fmed = median(F ) . (1.11)

Snow density is estimated from the median penetration force using an empirical re-

lationship

ρ = 55.6(ln(Fmed)) + 317.4 , (1.12)



31

(Pielmeier, 2003). The textural index

TI = 1.45 +
5.72σF

Fm

, (1.13)

is an empirical formula related to the grain size, which depends on the mean penetra-

tion force and σF , the standard deviation of the penetration force (Schneebeli et al.,

1999).

Using Monte Carlo simulation to model the occurance of multiple simultaneous

ruptures in the SMP signal, Marshall & Johnson (2009) developed a technique for

estimting the true number of ruptures

NT =
Asz

L3
. (1.14)

The true number of ruptures is substituted into Equations 1.6 and 1.7 to calculate

the mean rupture force and the deflection at rupture. For a given depth window dz

the mean number of measured ruptures is calculated as

Nm =
Nt

dz
. (1.15)

Derived Micromechanical Properties

The three fundamental microstructural parameters L, f , and δ, are difficult to in-

terpret from an engineering perspective. These parameters are formulated to estimate

the coefficient of elasticity

k =
f

δ
, (1.16)



32

the microscale elastic modulus

E =
k

L
, (1.17)

and the microscale strength

σ =
f

L2
, (1.18)

which are useful for engineering applications (Johnson & Schneebeli, 1999).

Inversion Parameters and Force Resolution

The inversion process occurs within a moving window of the SMP force trace. A

10 mm window size and 1 mm calculation interval was chosen for fast and accurate

computation with adequate depth resolution. Force resolution is and the minimum

force distinguishable from the signal noise floor are important for detecting and in-

verting for individual ruptures. A threshold for the noise floor must be established

prior to data inversion. Because of the use of the higher-range SMP force sensor,

the noise floor was increased and the force resolution was decreased compared to the

42 N force sensor, resulting in type C3 errors. This becomes problematic for distin-

guishing rupture signals in soft virgin snow and vehicle belly drags. The instrument

noise floor was estimated by examining the signal above the snow surface for all SMP

profiles recorded at any particular study site. The signal range was calculated within

eight moving windows of increasing size (from 1 sample to 250 samples). Figure 1.7

displays the boxplots of these events as a summary.

The microphysical properties were inverted for using the median threshold value

for each window size. The force sampling discretization of the SMP used in this

study is 0.0065 N . This allows for a few possible threshold selections (0, 0.0065,

0.013, 0.0195, 0.026, or 0.0325 N). The coarse force discretization is problematic for
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Figure 1.7: The boxplots of the SMP noise floor for increasing window lengths.

soft snow where the rupture force becomes enveloped by the noise floor, as this creates

type C3 error. Figure 1.8 depicts the drift-corrected SMP trace from the virgin snow

at the various force thresholds. Type C3 errors are observed in data segments shown

in red.

The 0.013 N threshold is the lowest value that detected the absence of element

rupture, albeit false identification within the snowpack. The 0.0195 N threshold

correctly distinguishes the noise floor in the air gap and the snow signal at greater

rupture forces. The greater thresholds correctly distinguish the two melt-refreeze

crusts within the virgin snow. This serves as a check on the lower error bound of this

method for a vehicle mobility study that has large penetration-force requirements.

From the results of Figure 1.8, I selected the 0.0195 N threshold for the data inversion.

The 0.0195 N threshold exceeds the previously accepted value of 0.014 N by nearly

an entire force discretization. Given the current development of SMP hardware, it is

challenging to resolve element ruptures within very soft snow. Future work will aim to

design a high-resolution penetrometer with a larger dynamic range to allow accurate

characterization of both very soft virgin snow and very hard vehicle-compacted snow

or groomed snow surfaces.
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Figure 1.8: The drift-corrected SMP trace, as in Figure 1.5, tested at force thresholds
that distinguished null-rupture events. Data segments that did not experience any
detectable ruptures of snow elements are shown in red. I recommend the 0.0195 N
threshold in c) because the air signal is correctly identified and C3 error type is mini-
mized.
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1.3.3 Instrument Observation Correlation Analysis

Theory of Linear Correlation

The linear correlation coefficient was applied to the NATC data to draw mean-

ingful relationships between the SMP microphysical parameters and the macroscale

snow instruments. The linear correlation coefficient seeks to justify the existence of a

physical relationship between two variables by testing whether the variations in the

observed values of variable xi are correlated with the variations in the observed values

of variable xj (Bevington & Robinson, 2003). Statistical correlation does not alone

prove a physical relationship, but it is a powerful data-exploration step. Equation

1.19 calculates the linear correlation coefficient from an experimental data set

Rij =
s2ij
sisj

, (1.19)

where Rij is the linear correlation coefficient between any two variables (xi, xj), s
2
ij

is their covariance, si is the sample standard deviation of xi, and sj is the sample

standard deviation of xj.

Values of R range from 0 to ±1 with 0 indicating no correlation and 1 indicating

perfect correlation. However, the correlation coefficient does not solely indicate the

goodness of correlation. Here, R is compared to the probability distribution for the

parent population, which is completely uncorrelated (Bevington & Robinson, 2003).

Equation 1.20 is the probability

Pc(R;N) = 2

∫ 1

|R|
pR(R; v)dr , (1.20)

that a random sample of N data points drawn from the uncorrelated parent distribu-
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tion would yield an experimental linear correlation coefficient greater than or equal

to the observed magnitude of R (Bevington & Robinson, 2003). Where

pR(R; v) =
1√
π

Γ[(v + 1)/2]

Γ(v/2)

(
1−R2

)(v−2)/2
, (1.21)

is the probability that any random sample of uncorrelated experimental data points

would yield an experimental linear correlation coefficient equal to Rij, and where Γ

is the Gamma function and v = N − 2 is the number of degrees of freedom for an

experimental sample on N data points.

Correlations are deemed significant if the probability value derived from Equation

1.20 is less than or equal to the desired level of statistical significance. Pc ≤ 0.05

determined test significance for the ram hardness study; however, Pc ≤ 0.1 determined

test significance for the shear vane and LWD correlations. The larger rejection region

was used for the shear vane and LWD studies because fewer sampled data are available

for the analysis of these instruments.

Application of Linear Correlation

Each of the 16 microphysical parameters of the SMP data inversion and the addi-

tional raw penetration force enabled 17 independent variables to be correlated with

the ram hardness measurements, shear-stress measurements from the shear vane, and

elastic modulus estimates from the LWD. The data are reduced to the median for

each measurement at a test location. The instruments were compared on equivalent

measurement depths as follows. The ram median hardness value for the entire snow

penetration was correlated with the equivalent penetration depths for median values

of the SMP microphysical parameters. The shear vane was inserted 50 mm into the

snowpack, and only the upper 50 mm of the SMP profile, corresponding to the same
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50 mm depth interval, were considered in the correlation. The median values for the

entire SMP profile through approximately 10 cm of the groomed snow-road surfaces

were used for correlation with the LWD, as this was the estimated snow depth that

controlled the deformation caused during the LWD test.

For this analysis, the dynamic range of the measured data is important. Sample

sizes used in the correlation analysis depend on the number of test locations where

the experiment was conducted and the range of snow conditions observed. The ram

gives the most prevalent data set (N = 24) as this instrument could perform in all

three snow conditions, providing one median data point for each, and was tested at

eight locations. The shear vane was limited to hardened snow that could support

shear load (N = 11). These data are composed of vehicle ruts of nine test points

and vehicle belly drags from two test points. The LWD experiment is the most

limited in population size (N = 5), as this experiment could be conducted only on

processed snow roads where the SMP had difficulty penetrating. Section 1.6 provides

additional information regarding snow conditions and test-point usefulness for the

LWD at NATC.

1.4 Results and Discussion

1.4.1 Rammsonde

Ram and SMP profiles were gathered from the colocated test points and were

classified into three snow conditions: virgin snow, vehicle belly drag, and tire ruts.

Correlation analysis was conducted using the median values from each snow type at

a particular location. Abele (1963) correlated ram hardness with unconfined com-

pressive strength. Because ram hardness measured at NATC was typically too low,
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this correlation does not yield physically meaningful results for this study. Of the

17 possible correlations, 4 are statistically significant: rupture force (f), mean pene-

tration force (Fm), density (ρ), and strength (σ) (p ≤ 0.05). Figure 1.9 summarizes

the data that provide significant correlation results. Figure 1.10 provides the scatter

plots resulting in significant correlations, and Figure 1.11 provides the overview of all

correlations.

The NATC data express the trend that rupture force, penetration force, density,

strength, and ram hardness increase when the snow was deformed by the vehicles.

However, judging this trend using the notched boxplots, it is not statistically sig-

nificant, as the notches overlap in many cases (Figure 1.9). This indicates that the

range of parameters, rather than the median values, may be more predictive of the

snow type (virgin snow, belly, or rut). The confidence interval of these relationships

is quantified using correlation analysis.
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Figure 1.10: Statistically significant correlations between SMP microphysical parame-
ters and the ram. The marker style identifies the site location, and the color represents
the snow type.
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1.5 Shear Vane

The shear-vane study was limited to only 11 sites, significantly reducing the power

of the correlation analysis. Additionally, the shear-vane response is variable and spans

the entire range of recordable shear strengths (from a minimum of 0 to the maximum

of 130 kPa). The data summary in the boxplot of Figure 1.12 indicates that sites of

similar snow condition have uncorrelated instrument response. The smaller sample

population will inherently reduce the confidence value of the result, so we chose a

significance level of p ≤ 0.1 for this analysis. Of the 17 microphysical parameters, 3

had statistically significant correlations: NT , Na, and Nm (Figure 1.12). The inverse

relationship shows that a snowpack stronger in shear will experience fewer ruptures

when it fails under an applied stress. Figure 1.13 provides the overview of all tested

correlations.
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1.6 Light Weight Deflectometer

The LWD was colocated with SMP measurements on the groomed runway and

taxiway at NATC. These tests occupied 10 locations on the fresh snow road surfaces

and within vehicle ruts (notated in Figures 1.14 and 1.15 by RR and LR for right

rut and left rut, respectively). Correlation analysis was applied to determine if the

snow at these locations behaves in a linear elastic manner. The effective elastic

modulus E∗ is derived from the linear slope of the deflection measured at the central

geophone and the stress applied to the snow column. To create a distribution of

effective elastic modulus, the bootstrapping method was applied to the least-squares

regression (Efron & Tibshirani, 1986). Two samples were removed at random from

the correlation analysis, and the linear slope was refit. This procedure was replicated

250 times for each site location. Figure 1.14 displays the results of the correlation

analysis. The median value of the E∗ distribution was chosen to represent the site

condition. Locations that have a negative slope or p ≤ 0.05 were removed from the

analysis.

The correlation analysis was repeated between the LWD E∗ and the SMP micro-

physical parameters. No significant correlation was found between these measure-

ments. Figure 1.15 presents the findings of the correlation analysis. This indicates

that there is a scaling between the microscale mechanical properties that the SMP

measures and the macroscale properties measured by the LWD, which is not well

understood. A new theory for inverting SMP signals for micromechanical properties,

which relaxes the assumption of low-density snow, and a scaling law appropriate to

this type of hard snow are required to relate the SMP observations at the microscale

and the macroscale properties measured by the LWD.
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1.7 Conclusion

The 2018 winter testing at NATC allowed evaluation of the SMP for more com-

pacted snow and comparison of the SMP with more traditional snow characterization

instruments, specifically the Rammsonde penetrometer, shear vane, and the LWD.

We developed an automated signal processing routine for the SMP signal by joining

the preprocessing and classification strategy of Lutz et al. (2009) with the inversion

methods of Marshall & Johnson (2009). Measured ruptures are sensitive to the force

discretization during signal analog-to-digital conversion and during the inversion pro-

cess. We find it is more robust to study rupture force than penetration force because

the magnitude of the rupture is not dependent on the absolute penetration force, so

this parameter does not suffer from errors caused by instrument drifting. Type C3

errors cannot be remedied by signal processing and must be accepted as a limitation

of the hardware; future efforts will focus on penetrometer development with a larger

dynamic range and higher force resolution. Other methods of analysis were trialed,

including using the maximum value and normalizing each site by the median prior

to correlation analysis. However, the median value correlation provided the strongest

results. The significant correlation between ram hardness and SMP strength coin-

cides with prior findings (Abele, 1963), though the strength reported by the SMP

is a multimode strength rather than unconfined compressive strength. This serves

as a check on the methods being developed in a lower range of snow strengths and

densities (approximately 100− 450 kg/m3).

Shear-vane measurements were restricted to locations with compacted snow, pri-

marily vehicle ruts, with two exceptions of measurements made in vehicle belly drags

on 30 January at the North mobility loop entrance and 31 January at the South run-
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way. The snow was strong enough to support these measurements because the mo-

bility loop snow was compacted by many vehicle passes – becoming strongly sintered

– and a daytime warming period late in the week was met with very cold overnight

temperatures, which created a melt-freeze cycle that formed strongly bonded snow.

The small range of testable snow conditions for the shear vane limited the study and

likely resulted in weakened correlations. Several centimeters of fresh snow fell during

the study, leaving a soft surface layer atop the groomed surface. For the LWD ex-

periment, the vehicle compaction (rutting) provided the additional stiffening to the

snow road necessary for linear elastic behavior, because repeated LWD impacts in

soft snow nonlinearly decrease the deflection of the central geophone. Insignificant

correlation results likely arise from the small sample size (N = 5) and the similar

snow conditions at the LWD test locations.

The SMP has not previously been applied to vehicle-driven snow. Processed snow

roads and snow after deformation by vehicles exhibit high density and strengths that

exceed the capability of the current SMP design. By using a 500N force sensor in

the SMP, a larger dynamic range of snow conditions was measured at the expense of

force resolution. Even with this higher range sensor, there were many snow condi-

tions relevant to this study that were too hard for the SMP. To further improve the

capability of the SMP for vehicle studies, a more powerful tool that can drive through

very hard snow at a constant rate, minimizes type C2 errors, and uses a larger bit

analog-to-digital converter to remediate type C3 errors should be developed to bet-

ter resolve penetration forces in hard snow. Anchoring to a vehicle, similar to the

LWD, is likely required. Advancements to the instrumentation should also be met

with advancements to the penetration theory. Accounting for snow ruptures influ-
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enced by interlocking snow elements away from the penetrometer tip can improve the

application of the SMP. Accurate and large spatial scale measurement of the snow

microphysics can serve as initial and boundary conditions for snow models and be a

map for the analysis of remote-sensing imagery for vehicle mobility.
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CHAPTER 2:

RECONSTRUCTION OF HISTORICAL

SURFACE MASS BALANCE 1984− 2017 FROM

GREENTRACS MULTI-OFFSET

GROUND-PENETRATING RADAR
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Abstract

We present continuous estimates of snow and firn density, layer depth, and accu-

mulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our

method uses the electromagnetic velocity, estimated from waveform travel-times mea-

sured at common-midpoints between sources and receivers. Previously, common-

midpoint radar experiments on ice sheets have been limited to point observations.

We completed radar velocity analysis in the upper ∼ 2 m to estimate the surface

and average snow density of the Greenland Ice Sheet. We parameterized the Herron

& Langway (1980) firn density and age model using the radar-derived snow density,

radar-derived surface mass balance (2015 − 2017), and reanalysis-derived tempera-

ture data. We applied structure-oriented filtering to the radar image along constant

age horizons and increased the depth at which horizons could be reliably interpreted.

We reconstructed the historical instantaneous surface mass balance, which we aver-

aged into annual and multidecadal products along a 78 km traverse for the period

1984− 2017. We found good agreement between our physically constrained parame-

terization and a firn core collected from the dry snow accumulation zone, and gained

insights into the spatial correlation of surface snow density.

2.1 Introduction

The Greenland Ice Sheet (GrIS) expresses high variability in ice loss, and hence

sea level rise, due to the regional scale variability in the processes governing mass

balance (Lenaerts et al., 2019). Surface mass balance (SMB) contributes just over half

(∼ 52%) of GrIS mass loss, but ice sheet wide SMB simulated from regional climate

models maintains ∼ 25% uncertainty (Shepherd et al., 2020). Efforts to improve SMB
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simulation (e.g. Fettweis et al., 2017) are limited by the scarcity of observations, which

are required to evaluate the model performance (e.g Noël et al., 2016). Traditionally,

SMB measurements are made at the point scale during infrequent field efforts, through

the laborious process of excavating snow pits or drilling firn cores. The sparseness of

snow pit observations on the GrIS limits the testable correlation lengths and tends to

debilitate spatial correlation analysis. Consequentially, surface density measurements

have shown no spatial correlation over length scales of tens to hundreds of kilometers

(Fausto et al., 2018). Due to the unknown variability of density and SMB, point

measurements used to parameterize a firn model (e.g. Zwally & Li, 2002) must be

extrapolated to regional scales cautiously. In space-borne altimetry retrievals of GrIS

mass balance, the uncertainty in modeled corrections for snow densification required

to convert a measured change in ice sheet volume to a change in mass causes ∼ 16%

uncertainty (Shepherd et al., 2020).

Ground-penetrating radar (GPR) surveys are capable of imaging layers of accu-

mulated snow (e.g. Vaughan et al., 1999). However, conventional, single-offset GPR

analysis requires an independent measurement of firn density to estimate the ac-

cumulation (Navarro & Eisen, 2009). Point SMB measurements often provide the

required density information to extrapolate the density profile along the track of

the radar sounding (e.g. Hawley et al., 2014; Overly et al., 2016). Yet, relying on

sparse firn cores to extrapolate density over tens to hundreds of kilometers may bias

the derived accumulation estimates. For example, ice lenses sampled in a firn core

increase the average density and can be incorrectly extrapolated over tens of kilo-

meters, as these features are uncorrelated over tens of meters (Brown et al., 2011).

For the period 1971 − 2016, greater than 10% bias to the SMB is possible, when
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firn cores are not available for extrapolation (Lewis et al., 2019). Inaccuracies are

greater in southern Greenland, which is experiencing increasing near-surface firn den-

sification as a result of atmospheric warming (Graeter et al., 2018), than in central

Greenland. Parameterization of snow and firn densification continues to improve (e.g.

Meyer et al., 2020); yet, evolving the firn using full energy balance modeling remains

operationally challenging and is limited spatially by the unknown heterogeneities of

surface snow density, accumulation, and melt (Vandecrux et al., 2018). Surface snow

density parameterizations formulated around temperature and wind speed (e.g van

Kampenhout et al., 2017), are arguably less preferable than density measurements

because of uncertainties in estimating wind speed and modeling the unknown length

scale variability that exists in the GrIS snow (Fausto et al., 2018).

Radar retrievals of snow density are an appealing alternative to in situ observa-

tions of snow and firn because the methods are nondestructive and rapidly acquire

vast amounts of data. However, few methods for continuously mapping snow and firn

density exist (e.g. Grima et al., 2014b) due to the complexities of data inversion. In

this work we present the analysis of multi-channel, multi-offset, radar (MxRadar) im-

agery along a 78 km traverse in the GrIS dry snow accumulation zone to demonstrate

the capability of this method, which has the advantage of ascertaining snow and firn

density, and depth, and thereby SMB, independently. Of the previous studies ap-

plying GPR velocity analysis, none have performed continuous estimates throughout

tens of kilometers distance (e.g. Bradford et al., 2009). We based our MxRadar work-

flow on the analysis of the radar surface wave, which exhibits linear moveout (LMO),

and the fall 2014 isochronous reflection horizon (IRH) to estimate the surface snow

density, column average density, horizon depth, and 2015−2017 SMB. We then input
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our data into the Herron & Langway (1980) firn density and age model. We use the

firn model to further enhance the MxRadar imagery and extend the historical period

of the SMB reconstruction to 1984− 2017 with instantaneous (∼ 14 days) temporal

intervals. We compare the resulting SMB against a firn core and quantify the length of

spatial correlation that exists in surface snow density. We quantify the bias reduction

in SMB derived using the measured-modeled, MxRadar–Herron & Langway (1980)

method. Then we provide a discussion of the results, limitations and advantages of

the method, and future directions. We developed our analysis within the interior re-

gion of Greenland where there was significant spatial variation in accumulation, but

little melt, to develop confidence in this type of radar retrieval for density and SMB.

2.2 Greenland Traverse for Accumulation and

Climate Studies

The Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) is

a multi-disciplinary study of recent SMB changes in the West Central percolation

and dry snow accumulation zones of the GrIS. During the Spring of 2016 and 2017

we traveled a total of 4436 km by snowmobile from Raven/DYE-2 to Summit Sta-

tion along the elevation contour straddling the percolation zone, and along West-East

“spurs” perpendicular to the elevation contours. Throughout the expedition we col-

lected 16 shallow (22− 32 m) firn cores and dug 42 snow pits; 16 pits were coincident

with the cores and the 26 others were dug at the ends of the spurs (Fig. 2.1 and

Fig. 2.2). Our GreenTrACS field seasons occurred prior to the on-set of melt to re-

duce the complexity of radar data inversion. The cores and the coincident snow pits

were sampled for density, isotopic chemistry, dust, and trace elements to define annual
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layer depths for measuring SMB (e.g. Graeter et al., 2018; Lewis et al., 2019). As firn

cores are strategically located point measurements, GPR imagery is often leveraged

to spatially extend the record of firn stratigraphy between core sites for accumulation

studies (e.g. Spikes et al., 2004; Miège et al., 2013). We operated a suite of radar

instruments spanning the frequency range 0.4 − 18 GHz; the focus of this study is

the MxRadar.

Figure 2.1: GreenTrACS firn cores (GTCs) are numbered 1− 16. Ground-penetrating
radar surveys were conducted along spur traverses and the main route that links the
GTCs. We developed our radar processing and analyses at GTC15 Spur West (lower
left inset). The 2000 m asl contour envelopes the western spurs. Surface elevation was
acquired from Morlighem (2017) and Porter et al. (2018).

2.2.1 Study Area

GreenTrACS Core 15 (GTC15) is the second most northern core site of the Green-

TrACS campaign (47.197◦W , 73.593◦N) and is ∼ 2600m above sea level. GTC15 had

an average annual temperature of −25.7±1.0 ◦C (Modern-Era Retrospective analysis

for Research and Applications (MERRA), 1979-2012), and an average annual SMB

of 0.306± 0.021 m w.e. a−1 (1969-2016). The site experiences little to no melt, mea-
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sured as the average melt feature percentage determined by normalizing each year’s

ice layer water equivalent by the annual water equivalent and then averaging (0.47%,

1969-2016).

GTC15 Spur West is a triangular, clockwise circuit that departs from and returns

to GTC15 (Fig. 2.1 inset). The first of three transects is 15 km in length, bearing

157◦, and begins at GTC15. The second transect is 30 km in length at 246.5◦ which

ends at Pit 15 W. The final transect is 33 km in length from Pit 15 W to GTC15 and

bearing 40.5◦. The GrIS surface of GTC15 Spur West was wind-affected snow with

sastrugi ⪅ 25 cm in height. We estimated the average meteorological wind direction

of 152◦ using monthly 10 m zonal and meridional wind speeds from the ensemble

of the third generation reanalysis models (GEN3ENS) for the period 1979 − 2012

(Birkel, 2018). The average wind direction is approximately parallel to the first

transect of GTC15 Spur West, approximately orthogonal to the second transect, and

21.5◦ oblique to the third transect. The cyclicity in the topographic profile (Fig. 2.2)

results from our return to GTC15 along a path oblique to the path approaching Pit 15

W. The SMB changes significantly across the ⪅ 5 km wide trough between distances

40 − 50 km. But, we do not observe preferential windward and leeward affects to

the accumulation pattern here, because the orientation of the transects crossing this

topographic trough are approximately orthogonal to the average wind direction. We

selected this particular spur to develop our processing and analyses because of the

apparent interplay between the surface elevation, SMB, and heterogeneous layering

observed in the radar imagery. Yet, we have foregone any topographic corrections in

the radar processing.
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Figure 2.2: Topographic profile of GreenTrACS Core 15 Spur West. The topographic
undulation near Pit 15 W is responsible for increases and decreases in accumulation.
The initial 15 km, up to the point of maximum elevation of the profile, are directed
into the predominant wind, making this a leeward slope. The predominant wind blows
approximately orthogonal across the next 30 km of the GTC15 Spur west traverse and
is 21.5◦ oblique to the final 33 km of GTC15 Spur West.
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2.2.2 Field Methods

The MxRadar is a Sensors & Software 500 MHz GPR deployed with a multi-

channel adapter in a multi-offset configuration using three transmitting and three

receiving antennas (Fig. 2.3). During data acquisition, the transmitting and receiving

channels were multiplexed to form nine radargrams which have independent antenna

separations (offsets). The antennas were co-polarized, perpendicular to the direction

of travel, and all are specified at 500 MHz with greater than two octave bandwidth.

However, dependent on the antenna pairing, the actual central frequency and band-

width varied on the order of tens of MHz. Our methods and analysis are tailored to

produce meaningful data for the evaluation and improvement of snow cover and firn

models and regional climate and reanalysis modeling of SMB.

Figure 2.3: The MxRadar streamer array has three transmitting (Tx) and
three receiving (Rx) antennas, which form nine independent offsets that
were linearly spaced from 1.33 − 12 m apart. We simultaneously acquired
nine continuous radargrams (one for each constant offset) and then binned
the source-receiver pairs into common-midpoint (CMP) gathers.

2.3 Analysis Methods

We review multi-offset GPR methods for SMB calculations in Section 2.3.1 to

clarify the advantages of the multi-offset technique that are also important for inter-

preting the results. We provide much of the methodological detail in the Appendix

A. Here, we touch on the methodology to simplify our strategy for reconstructing the
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historical SMB for the period 1984 − 2017 along GTC15 Spur West. We considered

SMB rather than the accumulation rate because of unaccounted mass lost to subli-

mation and ablation. SMB is conventionally measured using GPR by interpreting a

select few IRHs using a constant age interval and applying the average normalized

firn density over this interval (e.g. Lewis et al., 2019). Instead, we relied on the mod-

els of density and age, which were discretized in depth at a comparable resolution

to the GPR data, and generated a SMB model with instantaneous (∼ 14 day) tem-

poral intervals (Appendix A.3). We averaged annual SMB from many realizations

of the instantaneous SMB model in a Monte Carlo simulation to assess uncertainty

(Appendix A.4). We estimated the multidecadal average SMB, invoking the central

limit theorem, by repeatedly drawing from 10 of the 33 annual SMB distributions at

random and averaging.

To parameterize the firn model, we first completed conventional signal process-

ing on the nine radargrams, which consisted of a two octave bandpass filter around

500 MHz, amplitude gain corrections for wavefront spreading, coherent noise re-

moval (background subtraction), and random noise removal (smoothing). Then we

interpreted the air wave, surface wave, and a shallow reflection (Fig. 2.4) on each of

the nine images using a semi-automatic picking algorithm (Appendix A.1). We in-

verted the travel-times of the surface wave and the shallow reflection (Section 2.3.1)

to estimate the average electromagnetic (EM) propagation velocity and depth of the

dry snow and firn in a least-squares approach (Appendix A.2), which used random

resampling of the data to estimate uncertainties (Appendix A.4). We then applied

a petrophysical model (Wharton et al., 1980) which relates the EM velocity of dry

snow and firn to its density (Appendix A.3).
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Our measured-model approach relied on the Herron & Langway (1980) empirical

firn density and age model, hereafter HL, which requires three input parameters:

average snow density, average annual accumulation, and 10 m firn temperature. We

parameterized the HL model with the MxRadar snow density, MxRadar SMB (2015−

2017), and MERRA 2 m air temperature as a proxy for firn temperature (Loewe,

1970), to model the stratigraphic age and density of the firn. We assessed the firn

model accuracy and sensitivity to parameterization to illustrate the accuracy of the

MxRadar-HL (MxHL) firn density (Appendix A.5). We justified tuning the age model

to improve our estimates of SMB in a process that jointly updated the age-depth and

SMB models according to the radiostratigraphy.

The age model allowed us to convert the time domain radar image into the strati-

graphic age domain, known as the Wheeler (1958) domain. In principle, the firn

structure can be estimated by the age model because the statrigraphy was deposited

in isochronous layers. The imaged firn structure can be flattened by converting the

time domain GPR image into the Wheeler domain because the rows of the Wheeler

image maintain a constant age. We ensured the relative structure of the age model

by picking five horizons of the Wheeler transformed radiostragraphy with an average

epoch of 5.3 ± 2.7 years (the latest being the 1991 horizon) and perturbing the age

model with the interpolated residuals to re-flatten the Wheeler image. We developed

a structure-oriented noise-suppression filter which operates along the radar reflection

horizons in the Wheeler domain to eliminate remnant noise after conventional GPR

signal processing (Appendix A.6). This innovative signal processing technique allowed

SMB estimates to depths at which previously the stratigraphy was uninterpretable

due to the low signal-to-noise ratio. We then converted the filtered radargram from
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the Wheeler domain into the depth domain and interpreted 16 IRHs with an average

epoch of 2.1 ± 1.7 years dating back to 1984. We calculated the error between the

GTC15 geochemically determined age-depth scale and the 16 picked IRHs and inter-

polated a second grid of perturbations which we applied as a final update to the age

model. We calculated the instantaneous SMB by taking a numerical derivative of the

age-depth model

(
dz

da

)
and multiplying it by the MxHL density model (Eq. (A.20)).

2.3.1 Review of Multi-offset Radar

Common-midpoint (CMP) radar surveys are practiced in glaciology to estimate

the EM wave speed of the ice, air, and/or water mixture (e.g. Eisen et al., 2002). The

wave speed is related to firn density and liquid water content using a dielectric mixture

formula for a two or three phase relationship (e.g. Looyenga, 1965; Wharton et al.,

1980). In most studies, the CMP survey is treated as a point measurement of the

firn vertical density profile, which is less laborious than extracting a core, but offers

less vertical resolution and accuracy. Prior to GreenTrACS, CMP experiments on ice

sheets were limited to point observations. We synthesized continuous CMP data by

towing a streamer of nine antenna pairs that were linearly spaced from 1.33 − 12 m

apart (Fig. 2.3). While the antenna pairs in this deployment did not have a common

midpoint, we rebinned the constant offset radargrams for each pair independently,

such that the analysis was performed on offset gathers with common midpoints.

Interpreting the Near-surface Waves

Numerous geophysical methods exist for velocity analyses of CMP data gath-

ers. Analyses of reflection data can be divided into two fundamental categories by

the question, “Does the analysis assume normal moveout?” Normal moveout (NMO)

is the reflection travel-time dependence on offset that arises from a homogeneously-
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layered and planar subsurface structure (within the distance of the maximum antenna

offset) that exhibits small vertical velocity heterogeneity (Al-Chalabi, 1974). Previous

studies avoided classical NMO analysis, instead using less automated, more computa-

tionally expensive methods that favored accuracy (Bradford et al., 2009; Brown et al.,

2012, 2017). Many caveats of NMO velocity analysis and sources of error in the radar

common-midpoint analysis are discussed in Barrett et al. (2007). We demonstrate

that NMO analysis of the snow and shallow firn yields a satisfactory result for data

with low noise (see Appendix A.5), as ice sheet stratigraphy in the high elevation ac-

cumulation zone is close to homogeneous and planar at the length scale of the radar

streamer array.

Linear moveout (LMO) is the one-way travel-time dependence on offset of radar

waves traveling directly from the transmitter through the air over the ice sheet and

through the snow under the ice sheet surface to the receiver antenna. We assumed

that the air wave expresses the linear moveout velocity c ≈ 0.2998 m/ns to calibrate

the timing of the multi-channel system (Appendix A.2). To analyze the surface wave,

we assumed that the shallow, surficial snow is also planar and homogeneous at the

scale of the maximum offset. We identified the air wave, surface wave, and a near

surface reflection and their respective moveout behavior in Fig. 2.4. The travel-times

of these waves were interpreted using a horizon tracking algorithm (see Appendix

A.1). The linear methods for LMO and NMO velocity analysis are described in

Appendix A.2 and the methods for estimating the surficial and average snow density

and depth of the fall 2014 IRH are discussed in Appendix A.3. We quantified the

uncertainty of the density, depth, age, and SMB used to parameterize the HL model

in Appendix A.4.
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Figure 2.4: This offset gather is represented by radargrams recorded at offsets 4, 8,
and 12 m along the initial 45 km of GTC15 Spur West, and is annotated to convey the
waveforms used in our analysis and the concepts of normal moveout (NMO) and linear
moveout (LMO). Consider the traces at zero distance for each offset as a CMP gather.
The air wave and surface wave arrivals are modeled by a linear expression of travel-time
as a function of offset (Eq. (A.1)). The air wave is the first to arrive and expresses
a more shallow slope (faster velocity) than the surface wave which is impeded while
traveling through the snow. The annotated reflection expresses nonlinear moveout
which is approximated by NMO (Eq. (A.2)). The surface-wave (LMO) and reflection
(NMO) annotated in this diagram are used to estimate the surface snow density, average
snow density, and depth of the fall 2014 isochronous reflection horizon (IRH). The age
of the horizon was determined at GTC15 and allowed us to estimate the 2015 − 2017
SMB (see Appendix A.3), and in turn, is used to parameterize the HL model (see
Appendix A.5).
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Critically Refracted Waves

Lateral energy travels on direct raypaths from transmitter to receiver, but also

on raypaths that are critically refracted at the free-surface. An upgoing reflected

wave can become critically refracted along the air/snow interface upon exiting the

snow surface. These refracted waves appear in Fig. 2.4 as multiple air wave arrivals

succeeding the initial air wave. In Appendix A.2.1 we provide a discussion of the crit-

ically refracted wave phenomena with an accompanying snowpack model and exercise

to support and demonstrate the critically refracted raypath.

2.3.2 Spatial Correlation of Surface Snow Density

The LMO and NMO estimated snow densities are independent measurements of

the snow density above the interpreted radar horizon. The GPR surface wave main-

tains a fairly consistent depth level (∼ 0.5 m, Eq. (A.17)), but the NMO reflection

horizon does not. To mitigate the effects of depth on the correlation we extracted

the rows of the MxHL density model corresponding to the average depth of the LMO

(0.5 m) and NMO (1.92 m) horizons interpreted for velocity analysis (Fig. 2.4). We

used Pearson (1907) correlation to determine the relationship between the density at

0.5 m depth and the density at 1.92 m depth. Additionally, we conducted variogram

analysis (Matheron, 1963) on the LMO estimated snow density for each of the three

transects of GTC15 Spur West. We determined the length scale over which there

is consistent spatial correlation of the surface snow density across all three transects

as the distance where the three experimental variograms diverge. We understand

this divergence point as the experimental range of the variogram with the shortest

length scale of correlation. We determined the experimental range of the remaining

two variograms at a the second divergence point and as a significant slope break or
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change in concavity/convexity.

2.4 Results

The multi-offset radar travel-time inversion determined the GrIS surface snow den-

sity and average snow density without manual observations (Fig. 2.5). We estimated

the 2015 − 2017 SMB from the MxRadar-derived snow depth and density using the

GTC15 age of the near-surface IRH (Fig. 2.5). The LMO and NMO densities were

independently estimated and strongly correlate (R2 = 0.67, p = 0). Spatial patterns

in the LMO derived snow density are consistent for three azimuths up to 2 km lag

distance (Fig. 2.6). The multidecadal average 10 m wind direction from GEN3ENS

(1979− 2012) along GTC15 Spur West is approximately 152◦. With information on

the predominant wind direction, a closer look at Fig. 2.6 reveals directionality in the

spatial pattern of surface snow density. The range of the variogram for the 157◦ tran-

sect (in the direction of the predominant wind) is ⪆ 6 km, the range of the 246.5◦

transect (orthogonal to the predominant wind) is ∼ 2 km, and the range of the 40.5◦

transect (oblique to the predominant wind) is ∼ 3 km.

By combining the radar-derived density and SMB with MERRA 2 m temperature

we accurately parameterized the HL firn density and age model. For depths up to

∼ 22.5 m the mean absolute error between GTC15 densities and MxHL densities is

9.6 kg/m3, with a bias of ⪅ 1 kg/m3, and rms error of 12.2 kg/m3. We find that

extrapolating the GTC15 densities along GTC15 Spur West introduces an insignif-

icant (on the order of 1%) bias to the SMB of −0.004 m w.e. a−1 and rms error

of 0.005 m w.e. a−1. The MxHL firn model permitted radar imaging in the depth

and stratigraphic age domains. In Fig. 2.7 and Fig. 2.8, we illustrate our structure-

oriented filter along GTC15 Spur West between 35−55 km distance, where the largest
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Figure 2.5: The MxRadar inversion parameter distributions along GTC15 Spur West.
The LMO and NMO densities were independently estimated and strongly correlate
(R2 = 0.67, p = 0). The MxHL model is parameterized by the average of the LMO and
NMO densities, the 2015 − 2017 average SMB, and MERRA (1979 − 2012) average 2 m
temperature.

heterogeneity in firn stratigraphy occurs. After applying structure-oriented filtering,

we were able to interpret significantly more IRHs and refine the age-depth model to

an accuracy of ±31 days (see Appendix A.4).

We reconstructed the temporal SMB history from Jan. 1984 to Jan. 2017 and

compare our result to the GTC15 firn core derived SMB in Fig. 2.9. The MxHL SMB

history has a mean absolute error of 0.038 m w.e. a−1, a bias of 0.004 m w.e. a−1, and

an rms error of 0.047 m w.e. a−1. Uncertainty in the SMB measured from GTC15

was calculated following Graeter et al. (2018). Average uncertainty in annual SMB

is 0.036 m w.e. a−1 and 0.044 m w.e. a−1 for MxHL and GTC15, respectively. The

mean thickness of an annual layer for the period 1984− 2017 is 57.9 cm as measured

at GTC15. The mean absolute error in the thickness of an annual layer estimated

by MxHL is 7.8 cm, which contributes 0.039 m w.e. a−1 (13%) error in the SMB

reconstruction on average. Density inaccuracies in the SMB reconstruction result in
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Figure 2.6: We calculated experimental variograms of the LMO estimated snow density
along the three azimuths of GTC 15 Spur West using lag separations up to 15 km.
Plotted in log-log space, the linearity of each variogram slope indicates that spatial
correlation among the three azimuths exists up to ∼ 2 km distance. Correlation beyond
this distance is difficult to assess given the limited azimuths and lag separations possible
for GTC 15 Spur West. However, predominant wind direction appears to have a
control on the correlation length, as evidenced by the ⪆ 6 km range of the 157◦ transect
variogram (in the direction of the predominant wind) and shorter, ∼ 2 km and ∼ 3 km
ranges of the 246.5◦ transect (orthogonal to the predominant wind) and 40.5◦ transect
(oblique to the predominant wind), respectively.

a 0.004 m w.e. a−1 (1.3%) error on average. The MxHL 1984 − 2017 multidecadal

average SMB is 0.297 ± 0.016 m w.e. a−1 and is a good estimator of the GTC15

1984 − 2017 multidecadal average SMB (0.301 ± 0.025 m w.e. a−1). At GTC15

the 2015 − 2017 average SMB is within the uncertainty bounds of the multidecadal

averages spanning 1969−2017, the oldest period spanned by the core, and 1984−2017

the period spanned by the MxRadar imagery.



69

Figure 2.7: Conventional GPR processing was applied to each of the nine constant
offset radargrams. We then performed NMO correction to project each constant offset
image to zero offset. We stacked the NMO corrected radargrams together to synthesize
one conventional GPR travel-time image. The travel-time image remains quite noisy,
and it is difficult to interpret due to the discontinuities along the reflection horizons.

Figure 2.8: The travel-time image (Fig. 2.7) is first transformed into the stratigraphic
age domain, known as the Wheeler (1958) domain. Then we applied structure-oriented
filtering to the Wheeler domain image and converted into the depth domain. The depth
section, taken from GTC15 Spur West, has remarkable continuity along the reflection
horizons, which allows us to interpret IRHs to ∼ 22.5 m depth. The undulation in the
firn stratigraphy is caused by spatial variability in snow accumulation. It is necessary
to interpret along steeply varying undulations like these to evaluate high resolution
(< 5 km) regional climate model simulations of SMB. However, without the structure-
oriented filter we would be unable to track the reflection horizons along the undulations.
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Figure 2.9: The GTC15 and MxHL historical SMB for Jan. 1984 – Jan. 2017. Uncer-
tainty in GTC15 SMB (±σ) was estimated following Graeter et al. (2018). Uncertainties
in the MxHL 1984−2017 SMB (±σ) were propagated by Monte Carlo simulations of firn
models generated from the parameter distributions of snow density, 2015 − 2017 SMB,
and MERRA temperature. We applied ±31 days uncertainty to the measured ages of
isochrones within the simulations.

2.5 Discussion

We independently assessed the four sources of uncertainty in the MxHL SMB

(depth, density, temperature, and age) and then propagated these uncertainties through

the MxHL model by Monte Carlo simulation to estimate the SMB mean and standard

deviation for each year of 1984 − 2017. On average, the difference between GTC15

and MxHL SMB is small enough to accept the MxHL measured-modeled densities

in place of extrapolating the measured firn core density along GTC15 Spur West.

Extrapolated densities are likely to be much less accurate farther from core sites and

in the percolation zone, due to increased near-surface pore space reduction caused

by melt water infiltration (Harper et al., 2012). We also expect the accuracy of the
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HL density model to break down at elevations within the percolation zone (Brown

et al., 2012). Annual fluctuations in density, and density excursions due to warming

events, are not captured in the HL model. Using the MxRadar, we have the ability to

measure the density profile in the percolation zone with additional layer picking for

near-surface velocity analysis, but the NMO approach is sensitive only to the average

density of intervals in between the layer picks (Dix, 1955) and is susceptible to errors

due to subsurface velocity heterogeneities and data noise (Al-Chalabi, 1974).

In the upper ∼ 2 m of the firn column we replaced modeled densities with a

linear fit between the two radar measurements of snow and firn density using the

surface wave and the reflection from the fall 2014 IRH. This reduced the near-surface

bias present in the HL density profile and we found strong correlation between the

densities of these independent radar measurements. The richness of the MxRadar

data stream permits geostatistical analysis at the sub-kilometer scale. We found that

local (on the order of 1 km neighborhood) processes control the GrIS dry snow den-

sity. The similarity in spatial patterns of radar estimated surface snow density, up to

∼ 2 km lag distance, contrasts with the findings that no correlation exists between

surface snow density, latitude, longitude, or elevation (Fausto et al., 2018), which is

likely due to the limited observations of snow density at the < 1 km and < 10 km

scales within the Surface Mass Balance and Snow Depth on Sea Ice Working Group

dataset (Montgomery et al., 2018). Our variogram analysis was tested to 15 km lag

separations along three azimuths: 157◦, 246.5◦, and 40.5◦. In the direction of the

prevailing wind, we found ⪆ 6 km correlation distance with diminishing correlation

length for transects increasingly orthogonal to the prevailing wind. We found that

the SMB decreased with increasing slope on the leeward, 157◦, transect, which cor-
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roborated the findings of Arcone et al. (2005). We did not find trends in SMB with

slopes of the 246.5◦, and 40.5◦ transects, as these transects were approximately or-

thogonal and 21.5◦ oblique to the predominant wind direction, respectively. Future

application of this method to the 4000 + km traverse will allow the exploration of

surface density variations at much larger scales and at additional orientations relative

to the prevailing winds.

The 2014 − 2017 SMB appears to be overestimated by MxHL, though the near-

surface radar velocity analysis was focused on this range. We support the radar

findings here with the understanding that firn samples recovered from these depths are

susceptible to in situ losses due to their unconsolidated nature. The radar retrieval

has a sample footprint of approximately ∼ 25 m (twice the length of the antenna

array) and is nondestructive, while the borehole diameter is ∼ 8cm and samples only

one point in space. It is also likely that the age model is less accurate nearest the

ice sheet surface due to core sample loss; however, we sacrifice greater accuracy in

the radar domain because of the limitations in our ability to interpret depth image.

The fall 2014 horizon was the latest IRH measured in our analysis. Picking annual

reflection horizons later than 2014, near the model boundary, created steep gradients

in the numerical derivative required to estimate the SMB which yielded erroneous

values.

We see evidence of the 2012 melt event (Nghiem et al., 2012) in the filtered depth

image (Fig. 2.8). At three meters depth, the top of the reflection sequence represents

January 2013, and at four meters depth, the bottom of the sequence is January 2011.

This IRH sequence expresses fading and discontinuity that, we hypothesize, is the

result of 2012 melt water infiltration. Measured at GTC15, the 2011 annual layer has
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a melt feature percentage of 7.9%. However, melt water induced firn densification

does not explain the inaccuracy in 2010 MxHL SMB, as 2010 recorded 0% melt

feature percentage at GTC15. The MxHL density model is accurate within the 2010

annual layer, rather our estimate of the 2010 annual layer thickness is 22 cm thinner

than measured at GTC15. This is the second largest error in annual layer thickness,

only behind the 2015 layer which was estimated to be 24 cm thicker than measured

at GTC15 because of the aforementioned issues in estimating SMB near the model

boundary. The degraded image quality of the 2011 − 2013 IRH sequence inhibited

our ability to interpret the age sequence accurately enough to define the annual layer

thicknesses for 2011 and 2012. Instead, we relied on interpolation to approximate

the thickness of these horizons. The leading source of error in the historical SMB

reconstruction are inaccuracies in the age model that result from limitations in our

ability to interpret the radar image, even after applying the structure-oriented filter.

The multidecadal average SMB for the period 1984−2017 at GTC15 has remained

nearly constant. Yet, sinusoidal variability in SMB on the decadal time scale is ap-

parent in the MxHL historical SMB reconstruction and is confirmed by GTC15 SMB.

Decadal variability in the MxHL reconstruction would not be observable without the

application of structure-oriented filtering and interpretation that permitted an accu-

rate instantaneous SMB model. For GPR imagery expressing small or gradual SMB

variability it may be sufficient to apply the structure-oriented filter in the Wheeler

domain without the steps of interpretation, age model corrections, and image re-

flattening (Appendix A.6). The snow density estimation component is unique to the

multi-offset radar and integral in our ability to parameterize the HL model. However,

the structure-oriented filtering can be applied to any GPR imagery of isochronous
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firn, provided a stratigraphic age model in the radar travel-time domain is used as a

proxy for the firn structure.

Along GTC15 Spur West, we expect the largest errors due to firn advection to

occur across the studied undulations (Fig. 2.7 and Fig. 2.8), where the SMB gradient is

largest and oscillating. The two undulations here represent the same feature observed

on outbound and inbound traverses, and serve as a demonstration of the repeatability

of the methods. In regions where the spatial gradient in SMB is dynamic or ice sheet

surface velocities are large, the advection of firn mass decreases the accuracy of radar

estimated SMB. On Pine Island Glacier, with ice surface velocities on the order of

10 − 103 m a−1, strain corrections applied to the accumulation model amounted to

a 1% correction to the 1986 − 2014 average SMB (Konrad et al., 2019). Ice surface

velocities along GTC15 Spur West are on the order of 10 m a−1 (Joughin et al., 2018),

and therefore we accept a contribution of error that is an order of magnitude less than

the uncertainty, by not applying corrections for the SMB due to advection.

2.6 Conclusions

GreenTrACS conducted the first multi-offset GPR traverse on the Greenland Ice

Sheet, covering a total distance of 4436 km. We examined a 78 km section of the

GreenTrACS 2017 traverse (GTC15 Spur West) to develop the methodology for multi-

offset GPR wave velocity, imaging, and uncertainty analyses to accurately quantify

the surface snow density, average snow density, firn density, instantaneous SMB,

annual SMB, and multidecadal average SMB for the period 1984 − 2017. Using

travel-time inversion of the radar waveforms, we continuously mapped Greenland

snow density without manual observations of the snow. We found consistent spatial

correlation of near-surface density for separations up to 2 km distance and evidence to
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support the prevailing wind direction as a source of correlation up to 6 km distance.

We found significant correlation (R2 = 0.67, p = 0) between near-surface snow density

and average snow density of the upper 2 m. We demonstrated the use of the Herron

& Langway (1980) model that was parameterized by the radar-derived snow density,

radar-derived SMB (2015−2017), and MERRA 2 m air temperature, to estimate firn

density and age. Our measured-modeled firn density in the dry snow accumulation

zone accurately represents the firn core but can be performed continuously along a

traverse in the field without destructive measurements.

GreenTrACS Core 15 Spur West presented an interesting challenge because of

spatial SMB variability that is enhanced by the surface topography. In the dry

snow zone, the topographic effect induces undulations in the firn stratigraphy which

steepen with depth, due to the persistence of increased accumulation. Folds in the firn

stratigraphy are difficult to image clearly with conventional GPR processing methods.

Using seismic interpretation methods, we facilitated structure-oriented filtering by

utilizing the firn age model to determine the firn structure. In doing so, we furthered

the application of the IRH theory, which is integral in SMB analyses conducted with

radar imagery. This innovation enabled our interpretation of deeper (from 16.60 ±

0.04 m to 20.15 ± 0.04 m at GTC15) and older (from 1991 ± 31 days to 1984 ±

31 days) layers and permitted tuning the age model to a degree of accuracy which

allowed us to derive instantaneous estimates of SMB which we averaged annually and

multidecadally. Future work will include application of this methodology to the entire

4000 + km GreenTrACS traverse, with independent evaluation at the 16 core sites.

To reduce the labor in interpreting the radar imagery of future work, it would be

advantageous to model the firn age-structure using the kinematic wave equation (Ng



76

& King, 2011) to capture the advection process imprinted on the radiostratigraphy

without having to interpret the Wheeler domain radargram. We picked horizons

in the Wheeler domain as a necessary step in applying the structure-oriented filter

to the GTC15 Spur West radargram. This interpretive process could be avoided

by generating the relative age using the kinematic wave equation. Yet, this model

requires an independent estimate of firn density and accumulation to satify the initial

and boundary conditions. Deep learning techniques have been recently applied to

seismic imaging that automate structure-oriented filtering and horizon interpretation

problems. By generating synthetic seismograms from numerical structural models as

training data (Wu et al., 2020), relative stratigraphic age models have been recovered

from real seismic data and used for automated isochrone horizon interpretation (Geng

et al., 2020). The kinematic wave firn model could serve as a basis for generating

synthetic radargrams to be used in a deep learning application for historical SMB

reconstruction.
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CHAPTER 3:

SPATIALLY DISTRIBUTED SNOW WATER

EQUIVALENT FROM GROUND-BASED AND

AIRBORNE SENSOR INTEGRATION AT

GRAND MESA, COLORADO, USA
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Abstract

During the Intensive Observation Period of the NASA SnowEx 2020 campaign

at Grand Mesa, Colorado, snow pit, depth probe, ground-based radar, and airborne

light detection and ranging (LiDAR) observations of the snowpack were acquired.

We developed a method for automatically determining two-way travel-time (TWT)

of the 1 GHz ground-penetrating radar (GPR) reflection off the ground surface be-

neath the snow cover by maximizing the coherence between co- and cross-polarized

GPR channels. We validated the accuracy of the travel-time picks at radar transect

cross-over locations (N = 870, R = 0.78, RMSE = 0.9 ns). Combining radar travel-

times with LiDAR derived snow depths yielded snow density and correlation length

scale estimates along the GPR tracks. To extend this result, we developed a Multiple

Linear Regression model that, once trained using LiDAR–GPR derived snow den-

sity, predicted the column average snow density within the LiDAR domain without

dependence on GPR travel-times. LiDAR-based snow depths agree with those esti-

mated from GPR TWTs using the modeled density (R = 0.74, RMSE = 11 cm). The

modeled density shows spatial variability related to the interactions of wind, terrain,

and vegetation. Densities in wind affected areas are greater than downwind areas

that are protected by forest stands. Using the modeled densities and the LiDAR

measured snow depths, we distributed the snow water equivalent (SWE) across the

entire domain, and found good agreement with the pit measured SWE (N = 96, R =

0.78, RMSE = 41 mm).
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3.1 Introduction

Snowpacks act as a natural reservoir of water vital to modern societies where

supply is primarily derived from seasonal snow. In the western United States, over

50 % of the total runoff originates as snowmelt (Li et al., 2017). The total availability

and timing of snowmelt is critical to the performance of water management systems

and the security of water resources, as existing reservoirs were designed based on

historical levels of snowpack storage (Barnett et al., 2005). Anthropogenic climate

change has contributed to the declining western U.S. snowpack over the past 50+ years

(Pierce et al., 2008, e.g), and by the end of the 21st century, snow water equivalent

(SWE) in the western U.S. is projected to decline by ∼ 50± 10 % (Siirila-Woodburn

et al., 2021). As global temperatures rise, the western U.S. is expected to become

increasingly warmer and drier with greater interannual variability in precipitation

(Masson-Delmotte et al., 2021). The observed change in climate is causing an earlier

onset of spring snowmelt with earlier peak flows and diminished summertime flows

(Masson-Delmotte et al., 2021). Unprecedented storm events, such as atmospheric

rivers (Zhu & Newell, 1994), and rain-on-snow events (McCabe et al., 2007) increase

the stress on water management systems. Additional, unanticipated inflow from

midwinter storm run-off can cause the failure of reservoir systems, as was the case with

the 2017 Oroville Dam spillway failure (Koskinas et al., 2019), and inflict casualty

and hardship to communities downstream. Changes to the supply and demand of

snow derived water will require storage and distribution strategies that better meet

the legal, economic, political, cultural, and social needs of water users (Huss et al.,

2017).

In response to declining snowpacks (Mote et al., 2018) and the increased demand
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on water resources (e.g. Achhami et al., 2018) in the western U.S., attention has

been given to measuring, modeling, and developing new techniques for SWE esti-

mates (e.g. Lettenmaier et al., 2015). The objective of NASA’s snow experiment

(SnowEx) campaign is to test a suite of remote sensing instruments, which measure

SWE, and can be deployed on a satellite platform for global monitoring (Marshall

et al., 2019). Accurate space-borne snow depth estimates have been achieved from

passive microwave sensors (Tedesco et al., 2010), Sentinel-1 radar returns (Lievens

et al., 2019, 2022), WorldView stereo digital surface models (McGrath et al., 2019),

and light detection and ranging (Hu et al., 2021, LiDAR; ) aboard ICESat-2 (Abdalati

et al., 2010). Optical techniques have the ability to measure snow depth directly, by

differencing repeated acquisitions during periods with and without snow cover (e.g.

Deems et al., 2013), whereas microwave techniques raise questions about signal pen-

etration, depolarization, and backscattering. Because of the advantages of greater

spatial resolution and flexible scheduling to target acquisitions during periods of in-

terest, airborne LiDAR has become a prime candidate for estimating snow depth and

is being flown operationally for integration with hydrologic modeling at the catchment

scale (Hedrick et al., 2018). Regardless of choice in snow depth retrieval, an estimate

of snow density is required to convert snow depths to SWE, and bulk density often

provides the greatest source of uncertainty in SWE estimates, especially in deeper

snow (Raleigh & Small, 2017).

Snow density is typically measured in a time consuming and spatially limited

manner by excavating and weighing snow samples of a known volume from a snow

pit or snow core. Because snow depth varies in space more significantly than density

(e.g. Elder et al., 1991; Sturm et al., 2010) and depth measurements may be collected
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more rapidly, throughout a campaign, density is observed far less frequently (e.g.

Elder et al., 1998; Rovansek et al., 1993). As a result, snow sampling strategies

tend to be too coarse to examine the 100 – 101 m scale spatial variability of snow

density (e.g. Fassnacht et al., 2010). A recent campaign in Arizona collected nearly

1000 density measurements at 10 – 20 m intervals to capture the range of processes

(i.e. elevation, slope, aspect, and forest attributes) that influence snow densification,

and from these observations bulk snow density was distributed using artificial neural

networks (Broxton et al., 2019).

Often, empirical models provide the means to spatially distribute density in SWE

estimates. Linear regression models developed using snow depth alone are often

unsuccessful because the snow load only has a linear effect on bulk density, while grain-

bond characteristics can have an exponential effect (Sturm & Holmgren, 1998). The

accuracy varies among linear snow density models that are parameterized by features

such as net radiation, elevation, slope, curvature, and snow depth, as the success of

such approaches is dependent on the time of year and snow climate (e.g. Elder et al.,

1998; López-Moreno et al., 2013). Successful regression models parameterized by

snow depth have been split up into elevation and month of year classes (Jonas et al.,

2009) or day of year and snow cover classification (Sturm et al., 2010) to account

for the effects snow depth and snow aging have on density. Over the timescale of

days to weeks, densification processes of freshly accumulated snow result in negative

correlation between snow depth and density, while over the timescale of months or

longer, depth and density tend to be positively correlated (McCreight & Small, 2014).

By differentiating between the short and long timescales of densification, McCreight

& Small (2014) developed a linear density model capable of accurate daily density
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estimates for converting depth to SWE at distributed measurement stations. Sets of

linear models based on snow depth and climate predictors using snow telemetry data

from the western U.S., Canada, and Alaska showed improvements in accuracy when

compared to previous models (Hill et al., 2019).

Snow density can also be estimated with process-based snow models, which may

account for changes in bulk snow density due to new snowfall, metamorphism, and

compaction. The representations of snow densification ranges in complexity, with

some models utilizing more simple time-dependent compaction curves and other

models representing snow compaction dynamically as a function of snow viscosity

and overburden pressure. Essery et al. (2013) found that the dynamic models offer

more consistent and accurate characterization of snowpack. However, there has been

a range of performance in snow density simulation, even for a single physics-based

model. For example, Snobal (Marks et al., 1992) yielded low errors (mean absolute

difference of 24 kg/m3) in a study of the California Sierra Nevada (Painter et al.,

2016) but higher errors (root-mean-square error up to 142 kg/m3) in a study of the

Canadian Rockies (Lv & Pomeroy, 2020). Egli et al. (2009) found similar capabili-

ties in estimating snow density with physics-based models and empirical models at

a point location in Switzerland. In contrast, Raleigh & Small (2017) found that the

choice of snow density model (empirical or physical) produced differences in spatial

distributions and basin mean estimates of snow density in California.

Despite numerous techniques for modeling snow density, there are a limited num-

ber of studies on how models characterize spatial variations in snow density and the

underlying processes related to density variations; because few techniques exist for

continuous spatial measurement of snow density to validate modeled estimates. Radar
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techniques are the most prevalent for remotely sensing snow density, because of the

relationships existing between dielectric permittivity (a main constituent of electro-

magnetic wave propagation) and snow density (e.g. Matzler, 1996). Passive microwave

emission measurements combined with radiative transfer modeling is an established

theoretical basis for retrieving snow density and ground permittivity (Schwank et al.,

2015). Though this technique has been proven experimentally at the plot scale (Lem-

metyinen et al., 2016), initializing the ground temperature and roughness remains

challenging for satellite application. Ground-penetrating radar (GPR) is typically a

ground-based method that records the amplitude and travel-time of a series of echoes

from short-pulse electromagnetic waves as an image in range-time and position co-

ordinates. With information about the propagation velocity of the snow, GPR can

estimate the snow depth, or by exploiting a ray path function of travel-time ver-

sus antenna separation (offset) the velocity can be estimated, and thereby the snow

depth and density. Interpreting GPR transect imagery is a laborious process that

requires expert knowledge of digital signal filtering and manual picking of travel-

times. Though complex, multi-offset GPR has continuously measured snow depth

and density along transects of hundreds of meters in alpine mountains (Griessinger

et al., 2018) to tens of kilometers in Greenland (Meehan et al., 2021). Drone-based

aerial photogrammetry combined with GPR measurements has measured snow den-

sity along transects, which were interpolated across the study-plot scale (Yildiz et al.,

2021). Airborne radar surface echo analysis has measured snow and firn density at

the regional scale in Antarctica (Grima et al., 2014c). Indeed, radar derived snow

observations require calibration and validation, which vexingly, remains limited due

to the challenges of in-situ observation.
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Our work addresses the need for high accuracy, distributed density measurements

to improve parameterizations of snow densification processes and reduce model uncer-

tainty. To do this, we inferred hundreds of thousands of measurements of the electro-

magnetic propagation velocity in snow by combining LiDAR measured snow depth

and GPR measured two-way travel-times (TWT). Then via a two-phase dielectric

mixture model, we converted velocity to dry-snow density (Section 2.4.3). Using var-

iogram analysis, we determined the spatial correlation length of LiDAR snow depth,

GPR TWT, the resulting bulk density, and SWE at Grand Mesa (Section 2.5). We

then used the density inferred along the GPR transects to train a Multiple Linear Re-

gression (MLR) model that distributed density within a 4.5 by 3.5 km domain using

terrain and vegetation predictors derived solely from the LiDAR data (Section 2.6).

These data and the rich validation data acquired during the NASA SnowEx 2020

Intensive Observation Period (IOP) at Grand Mesa, Colorado, provide the means

to assess the accuracy of the LiDAR snow depths, the LiDAR–GPR measured snow

density, the distributed density, and the SWE we derived therefrom (Section 3). In

addition, we present a novel method to automate the post-processing and TWT inter-

pretation (layer picking) through accurate and objective ground reflection detection

(Sections 3.2.2 and 3.2.3). This advance opens the possibility for the operational use

of GPR, by eliminating the time-consuming steps of data post-processing and manual

interpretation of radar images.
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3.2 Methods

3.2.1 Study Area

Grand Mesa, Colorado, is a high-elevation subalpine plateau with an average

elevation of ∼ 3, 200 m and an area of ∼ 1, 300 km2. Grand Mesa has a cold and dry

continental snow climate, low relief, and varying vegetation cover from shrub steppe

and subalpine meadow to dense conifer forest. These factors, along with the close

proximity to a major airport make Grand Mesa an ideal study area for evaluating

airborne snow remote-sensing techniques.

The Grand Mesa IOP spanned 27 January – 12 February, 2020. During that time,

154 snow pits were excavated and nearly 38,000 in-situ snow depth measurements were

collected. The snow pits were distributed in forested and unforested areas along the

swaths of the three airborne remote-sensing campaign flight lines (Figure 3.1). A

conventional L-band GPR was pulled by ski in forested areas of central Grand Mesa

and into unforested areas on the forest perimeters during 30 January – 1 February

and 5 February. A multi-polarization L-band GPR was pulled by snowmobile in the

unforested areas of the central and south regions of western Grand Mesa on 28 and

29 January, and 4 February, 2020. The snowmobile was driven along the edges of

the many forested stands in the survey domain, but did not travel through densely

treed areas. Throughout this week, we acquired 144 km of quasi-gridded snowmobile-

driven radar transects, and 16 km of skied spiral transects in the forest that were

occupied by coincident depth measurements. We used a 4.5 km by 3.5 km portion of

the LiDAR acquisition to bound the GPR transects (Figure 3.1). The GPR transects

acquired beyond the LiDAR boundary were omitted from our analysis. The different
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GPR systems and data acquisition strategies are recounted in Section 3.2.2 and the

data processing and TWT interpretation methods are detailed in Section 3.2.3.

Figure 3.1: Study area map of the snow pit locations, GPR transects, and LiDAR
boundary. These data were acquired during the NASA SnowEx 2020 Intensive Obser-
vation Period at Grand Mesa, Colorado (Hiemstra et al., 2021) Land cover classification
data were accessed from the 2016 National Land Cover Database (Homer et al., 2020).
Slope hillshade data were accessed from the USGS 3D Elevation Program (Lukas &
Baez, 2021). Cartographic boundary files were accessed from the Census Bureau’s
MAF/TIGER geographic database (Bureau, 2020). The geographic coordinate projec-
tion of these maps is UTM Zone 12 N; EPSG code 32612.

3.2.2 GPR Data Acquisition

Two GPR instruments were operated during the first week of the Grand Mesa

IOP. In the forested areas, by ski we pulled a conventional L-band GPR within a

sled that was equipped with a Differential Global Positioning System (DGPS) re-

ceiver. Whereas, in unforested areas, we deployed a multichannel L-band (1 GHz)

GPR configured with one transmitting antenna and two receiving antennas that were
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oriented parallel (H) and orthogonal (V) to the transmitter (H). The transmit and

receive antennas were separated by 25 cm. Using this GPR configuration we simul-

taneously acquired the radar imagery in co- and cross-polarizations (HH & HV). The

multi-polarization GPR array was fastened within a sled and towed behind a snow-

mobile at approximately 3 m/s. The DGPS receiver was located on the snowmobile

5 m away from the GPR array, so we applied a geometric correction to relocate the

coordinate positions to the antenna midpoint of each channel.

The GPR systems were operated continuously, collecting approximately 30 traces

per second, given the duration of the time window (30 ns), the sample interval

(0.1 ns), and the number of stacks acquired (2). Due to differences in the traversed

speed, the spatial interval of the GPR traces collected via snowmobile is approxi-

mately 10 ± 1 cm, while the interval for traces collected by ski is 5 ± 1 cm. We

used piecewise cubic Hermite interpolating polynomials (Kahaner et al., 1989) to fix

a geolocation to every acquired trace, as the GPS acquisition rate was 1 Hz. We

estimated the accuracy of the georeferencing at 70 cm, which is on the order of the

GPR footprint. This estimate follows from adding the horizontal dilution of precision

(50 cm) and uncertainty in the sled location (50 cm) in quadrature.

3.2.3 GPR Data Processing

We expected the rough ground surface to depolarize the L-Band radar signal and

proposed the coherence between the co- and cross-polarized channels as a filter that

illuminates the ground reflections and removes the planar reflections of the snow

stratigraphy. We paired the co- and cross-polarization radargrams into shot gathers,

which are the bins of traces that share the same transmitter location. The automatic

travel-time pick is determined by maximizing the coherence between the co- and
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cross-polarization shot gathers. We applied the unnormalized cross-correlation sum

as our measure of coherence,

C(t) =
1

2

N∑
j=1


[

M∑
i=1

Si,t

]2
−

M∑
i=1

S2
i,t

 , (3.1)

which is half of the summed difference between the energy of the stacked traces and

the energy of the input traces (Neidell & Taner, 1971). The calculation in Equation

3.1 is performed in a sliding window (length N = 11) that is evaluated at every

sample (t) of the GPR signal (Si,t) for channels i (M = 2). The HH-HV coherence

(CHH−HV ) at each shot location is then normalized between zero and one by dividing

by the maximum coherence of the trace

CHH−HV =
C

max(C)
. (3.2)

Because the GPR channels have an offset of 25 cm (one wavelength), the incident

waves are approximately normal to the reflection horizon and the two channels sum

coherently.

We determined the TWT from the ground surface beneath the snow cover, by

selecting the travel-time with the maximum coherence of each trace. Because the

maximum coherence occurs at the center of the two nanosecond wavelet (Booth et al.,

2010), we subtracted one nanosecond from the automatic pick to estimate the first

break of the reflection. We then applied a median filter to remove outliers and re-

viewed the automatic picks for any systematic errors. Manual inspection revealed

that less than 1 % of the automatic picks required correction. To illustrate this, au-

tomated picks are overlaid on the radargrams from a 900 m long transect in Figure
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Figure 3.2: A 900 m transect presenting the a) HH and b) HV GPR profiles and c) the
coherence of these radargrams calculated using Equations 3.1 and 3.2. The automati-
cally determined TWTs are illustrated in magenta.

3.2. The resulting TWT data produced from this method and used in this study are

available through the National Snow and Ice Data Center (Meehan, 2021b).

3.2.4 Snow Observations

In-Situ Measurements

Snow pits were measured in great detail for the snow depth, density, water equiv-

alent, temperature, wetness, liquid water content, grain size, and stratigraphy (Vuy-

ovich et al., 2021). Snow density was measured in the snow pits every 10 cm from the

snow surface to the ground using a 1000 cm3 wedge sampler, resulting in a continuous

density profile. Per protocol, each density measurement was sampled once more in an

adjacent column and if the difference between these samples exceeded 10 %, a third
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time. The bulk density at each of the snow pits was then calculated by averaging

all measurements for each snow pit. The average density sampled from each of the

columns shows high repeatability with a mean absolute difference of 2.5 %. Using

the same sampling strategy, the dielectric permittivity was measured using resonant

frequency capacitor. Liquid water content was estimated by combining the density

and dielectric permittivity in an empirical formula, and showed that the snowpack re-

mained dry throughout the IOP (Webb et al., 2021). Snow depth measurements were

collected using geolocated probes along spiral transects which were centered around

pits (Hiemstra et al., 2020).

LiDAR Snow Depth

Snow depth was estimated from repeated airborne LiDAR point cloud surface el-

evations of snow-free and snow-covered terrain using the Multiscale Model to Model

Cloud Compare (M3C2) method (Lague et al., 2013). The M3C2 method operates

directly on point cloud data, computes the local distance between two point clouds

at a scale that is appropriate for the surface roughness, and estimates a confidence

interval for each distance measurement. The Airborne Snow Observatory (ASO) per-

formed the snow-free acquisition on September 26, 2016 (Painter et al., 2016; Painter

& Bormann, 2020), and Quantum Spatial, Inc. acquired a time-series of snow-covered

surface elevations during the IOP. We selected the February 1, 2020, flight to mini-

mize temporal collection differences with the GPR and resulting errors due to snow

redistribution and compaction. We removed vegetation following methods in (Štroner

et al., 2021) and transformed the 2016 snow-free vertical datum into NAVD88/Geoid

12B (the same as 2020 snow-on) using NOAA VDatum 4.3 software (NOAA, 2021).

Then, we applied the M3C2 method as computed in (Hojatimalekshah et al., 2021)
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to estimate snow depth. The relative accuracy of the snow depth measurement was

estimated at 7 cm, based on the maximum standard deviation of the M3C2 method.

After computing the snow depth, the 3 m ASO bare-earth and vegetation data prod-

ucts were resampled to the 1 m resolution of the snow-covered SnowEx 2020 LiDAR

acquisitions and the coordinate system was transformed from UTM zone 13 N to

UTM zone 12 N.

LiDAR-GPR Inferred Density

We combined the LiDAR snow depths with the GPR TWTs to measure the av-

erage snow density at the co-located points. To co-register the LiDAR coordinates

within a 1 m radius of the GPR TWTs we applied a k-d tree searcher (Bentley, 1975).

We then used the median values of the TWTs within a 1 m radius of these coordi-

nates to interpolate to the LiDAR grid. The average electromagnetic wave speed of

the snowpack was estimated using

vs = 2
zs

TWT
, (3.3)

for each of the coincident LiDAR snow depths (zs) and GPR two-way travel-times

(TWT). We then related the electromagnetic wave speed to the dry snow density

using the Complex Refractive Index Method (Wharton et al., 1980, CRIM;)

ρs = ρi

(
1− va (vi − vs)

vs (vi − va)

)
. (3.4)

The CRIM equation relies on the known wave speeds of the pore-space (va = 0.3 m/s)

and ice matrix (vi = 0.169 m/ns), the measured bulk wave speed of the snowpack

(va; Equation 3.3), and the density of ice (ρi = 917 kg/m3) to determine the dry
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snow density (ρs ; Equation 3.4).

3.2.5 Spatial Correlation of Snow Depth, Travel-time, and

Bulk Density

We examined the differences in snow properties between forested and unforested

areas using generalized relative semi-variograms (Isaaks & Srivastava, 1989). The

generalized relative semi-variogram describes the percentage of variability relative to

the mean as a function of separation distance between observations. To estimate

the spatial variability of the snow depth, TWT, density, and the resulting SWE of

the 1 m gridded data along the radar transects, the experimental variograms were

first calculated in 1 m bins up to a 250 m lag, and then fit using exponential models

to estimate the range, sill, and nugget parameters (e.g. Cressie, 1985). From the

exponential model we multiplied the estimated range parameter by three to estimate

the correlation length, the distance where the variogram reaches 95 % of the sill.

We created 250 realizations of the experimental variogram calculation and model fit

for each variable using 10 % random subsampling to assess the mean and standard

deviation of the variogram parameters (Efron & Tibshirani, 1986).

3.2.6 Modeling Spatial Density

To distribute the spatial observations of average snow density to areas without

GPR observations, we applied MLR (Andrews, 1974, Supporting Information 1.3).

We examined the 4.5 km×3.5 km area of the LiDAR domain, which closely bounded

the extent of the GPR survey. A set of normalized predictor variables were developed

using the elevations of four LiDAR rasters: bare earth elevation (Zg), snow-covered

elevation (Zs), snow depth (Hs), and vegetation height (Hveg); the aspect, slope, x and

y derivatives of the elevation rasters (excluding Hveg); and the distance to the nearest
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vegetation ≥ 0.5 m (Sveg). For denoising, the elevation, vegetation height, and snow

depth rasters were median filtered in a 5 m×5 m window, and the derivatives of these

rasters (slope, aspect, ∂x, and ∂y) were median filtered within a 25 m×25 m window.

The MLR coefficients are applied to the predictor variables of the LiDAR rasters to

estimate the LiDAR–GPR measured average snow density (the response variable).

Once the coefficients are trained, the model distributes the average snow density

throughout the LiDAR domain. For greater detail on the parameter estimation and

predictor importance see Appendix B.3 and B.4. We also trained a set of MLR

coefficients using the snow density observations of 96 snow pits located within the

LiDAR study area, as the response variable, and the LiDAR predictors to distribute

density (Appendix B.3.2).

3.2.7 GPR Snow Depth

The process of measuring snow depth using GPR travel-times requires an estimate

of the wave speed, which we developed from the dry-snow density (Section 3.2.4). It

would be circular to measure the snow depth with the GPR using the estimated the

wave speed directly from the LiDAR snow depths and GPR TWTs, as in Equation

3.3. Instead, we rely on the modeled spatial snow density for wave speed conversion to

alleviate this circularity. The GPR traces were converted to depth using the modeled

wave speed by applying a 1D interpolation (Margrave & Lamoureux, 2019). We

also converted the automatic TWT picks to depth using the modeled wave speed by

rearranging Equation 3.3 and solving for zs.
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3.3 Results

3.3.1 LiDAR and GPR Snow Depth

The LiDAR snow depths show a trend increasing from west to east with deeper

snow around the perimeter of treed areas and shallow snow on the ground beneath

tree canopies (Figure 3.3). This pattern is consistent with previous snow depth dis-

tribution studies of Grand Mesa (e.g. McGrath et al., 2019). The mean snow depth

for the entire domain is 92.4 cm with a standard deviation of 18.4 cm. In unforested

areas (Hveg < 0.5 m), the mean snow depth is 96.4 ± 14.8 cm, while in the forest

(Hveg ≥ 0.5 m), the mean snow depth is 79.4 ± 22.5 cm. The in-situ snow depth

observations compare well with the LiDAR snow depths (R = 0.78, RMSE = 11 cm,

ME = 0 cm).

We found good agreement among the LiDAR snow depth measurements and the

snow depths estimated from the GPR TWTs and the MLR snow density used for

wave speed and depth conversion. Over the GPR transects, the correlation between

the LiDAR measured snow depths and the GPR estimated snow depths is R = 0.74

with a RMSE of 11 cm and a bias of 0 cm. If we used the densities directly estimated

from the LiDAR snow depth and GPR TWT, we found a similar result (R = 0.75,

RMSE = 10 cm). For comparison, if the mean density of all snow pits measured

during the Grand Mesa IOP (277 kg/m3) were used for the wave speed conversion the

correlation between the measured and the estimated snow depths slightly decreases

to R = 0.72 and the RMSE is unchanged (11 cm). We also trained the MLR using

the average density measured in the snow pits within the LiDAR domain to distribute

the density. Using the densities modeled from the snow pit data and repeating this
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Figure 3.3: One meter resolution snow depths from the February 1, 2020 flight. The
mean snow depth of this domain is 92.4 cm with a standard deviation of 18.4 cm. The
western half of the domain is relatively unforested area, while the eastern half of the
domain is characterized by stands of dense forest (see Figure 3.1).

exercise, we observed similar accuracy (R = 0.74, RMSE = 11 cm, ME = 0 cm).

The comparison between the LiDAR and GPR estimated snow depths in Figure 3.4

shows exceptionally strong correlation (R = 0.91, RMSE = 5 cm). However, the

overall accuracy of the spatial registration between the LiDAR and GPR varies on

the order of a few meters. We found that errors in the registration of these data

are the leading source of error in the densities measured therefrom. Our process of

removing outlier density measurements (Appendix B.2.1) alleviates errors caused by

spatial misalignments.
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Figure 3.4: The example GPR image and automatic travel-time picks (magenta) in
Figure 3.2 have been converted to depth using the MLR modeled densities for wave
speed conversion. The LiDAR snow depths are overlaid in white. In this example the
correlation between LiDAR measurements and GPR snow depth estimates is R = 0.91
and the RMSE is 5 cm.

3.3.2 LiDAR-GPR Measured Density

The increase in correlation between LiDAR and GPR snow depths, albeit slight,

when using the measured spatial density, rather than the snow pit mean, indicates

that the GPR transects observed real spatial variability in average snow density.

The mean bulk density measured along the GPR transects is 271 ± 36 kg/m3. The

spatial patterns of the LiDAR–GPR measured average snow density appear bimodal,

where the density measured in the western half of the domain is greater than the tree

protected eastern half (Figure 3.5). The mean bulk density measured in snow pits

within 500 m of the radar transects is 274±24 kg/m3. The distributions have similar

means and variance, as assessed by the Z-test score of 0.1. The median densities

within 12.5 m radius of the snow pits are correlated with the snow pit densities

(N = 37, R = 0.44, RMSE = 29 kg/m3).
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Figure 3.5: Average snow density was measured by combining LiDAR snow depths
with GPR TWTs. Average density measured in the 96 snow pits within the LiDAR
boundary are overlaid as larger makers. Forested areas and reservoirs are masked in
grey.
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3.3.3 Spatial Correlation of LiDAR Snow Depth GPR Travel-Time

and Measured Density

The generalized relative semi-variogram allows us to examine the expected per-

centage variability between observations for a given distance separation. We observed

differences in the length scales of variability among depth, density, SWE, and TWT

between forested and unforested areas of Grand Mesa (Figure 3.6). In the unforested

areas the correlation length of snow depth is 71 ± 2 m, density is 96 ± 1 m SWE is

102± 1 m, and TWT is 105± 2 m. Adjacent measurement variability is 9± 0 % of

mean depth, 2 ± 0 % of mean density, 14 ± 0 % of mean SWE, and 14 ± 0 % mean

TWT. Maximum variability estimated as the sill of the variogram is 26±0 % of mean

depth, 18±0 % of mean density, 34±0 % of mean SWE, and 26±0 % of mean TWT.

Correlation length scales in forested areas for depth (17± 2 m), density (75± 2 m),

SWE (70± 9 m), and TWT (64± 6 m), are all less than observed in the unforested

areas. The relative variability in depth is 10 ± 2 % for adjacent observations and

51 ± 2 % maximum variability. Variability in SWE is 32 ± 1 % between adjacent

observations and 46 ± 1 % at maximum. TWT similarly has 31 ± 1 % variability

among adjacent observations and 45 ± 1 % at maximum. The relative variability in

density, however, is lower with adjacent measurements having 1± 0 % and maximum

variability of 13±0 % or average. This finding is consistent with density observations

having approximately 2.5 % variability on average. For context, the median distance

between snow pits is 146 m, which indicates that average snow pit observations are

independent of each other and are unable to resolve spatial patterns.
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Figure 3.6: Generalized relative semi-variograms in a) unforested and b) forested areas
for LiDAR snow depth, GPR TWT, and average density measured along the GPR
transects. Experimental variograms were fit with an exponential model to determine
the variogram parameters. The larger makers represent the nugget, sill, and correlation
length estimated by Monte Carlo subsampling. Generally, variability is lower and the
length scale of variability is larger in the unforested areas than in the forests.

3.3.4 Multiple Linear Regression Modeled Density

The modeled densities in Figure 3.7 display striking spatial patterns. A large-scale

gradient in density, which decreases from west to east, shows higher snow density in

the unforested areas than in areas that are protected from the wind by trees. A

mix of wind processes are evident in bedform density anomalies such as snow waves,

barchans, and dunes which show realistic heterogeneity. The distribution patterns of

snow density agree with the prevailing west-southwest wind direction and vegetation

(University of Utah, 2022, Appendix 3.2.6). In unforested areas, the model densities

have a mean and standard deviation of 273±23 kg/m3, while in the forested areas the

density is lower on average at 257± 22 kg/m3. Compared to the densities measured

along GPR transects in both the forested and unforested areas, the modeled densities

have the correlation R = 0.64 and RMSE = 28 kg/m3.
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Figure 3.7: Average snow density estimated by Multiple Linear Regression. Density is
higher in the wind affected, unforested terrain, and lower in tree protected areas. Snow
drifting appears to cause large bedform density anomalies with the windward side of
having higher density than the leeward side.
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3.3.5 Spatially Distributed Snow Water Equivalent

SWE was distributed within the 4.5 km× 3.5 km domain by combining the MLR

estimated snow density with the LiDAR snow depths (Figure 3.8). The average

and standard deviation of SWE throughout the domain is 248 ± 52 mm, where un-

forested areas have greater SWE (262 ± 40 mm) and forested areas have less SWE

(204 ± 61 mm). Decreased SWE and increased variability within forest stands cor-

roborates previous work on wind-terrain-vegetation characterization of Grand Mesa

(Webb et al., 2020). Minimum SWE was found in the southwest corner of the do-

main and in dense forests. SWE is greatest around the perimeter of forested areas

and in the northwest quadrant. Greater snow depths and lower densities in the north-

eastern quadrant indicate that the prevailing wind redistributes snow to the forested

areas. The effects of wind transport and densification in western half of the domain

reduces the snow depth while increasing the bulk density. Wind redistribution is also

evidenced by snow drifts which tend to have less SWE on the windward side and

increased SWE on the leeward side. Stippling patterns are the effect of low-stature

vegetation (Hveg < 0.5 m) and boulders, which tend to reduce snow depth and to a

lesser degree reduce the modeled average density. The bimodal nature of the modeled

snow density and greater snow depth between forested areas homogenizes the SWE

distribution.
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Figure 3.8: Snow water equivalent was distributed spatially by combining the MLR
modeled density with the LiDAR snow depths. Forests and wind soured areas tend to
have less SWE, where the perimeters of forest stands have greater SWE. The stippled
texture is the result of low-stature vegetation (Hveg < 0.5) and boulders, which acts to
reduce snow depth and to a lesser effect decrease the snow density.
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3.3.6 Evaluation of Measured-Modeled SWE

We compared the MLR-estimated average snow density, LiDAR snow depth, and

SWE to observations at all snow pits within the 4.5 km × 3.5 km domain. Of

these 96 snow pits, we identified 10 outliers where the absolute difference between

observed and modeled density exceeds 50 kg/m3 (twice the RMSE). We present

the evaluation with and without these outlying observations for comparison (Fig-

ure 3.9). The correlation significantly improves between observed and modeled den-

sity from R = 0.19 (RMSE = 25 kg/m3) to R = 0.4, though the RMSE slightly

increased (RMSE = 26 kg/m3). Snow depth and SWE are strongly correlated

to the observations and are relatively insensitive to the removal of outlying data.

SWE has a correlation of R = 0.74 (RMSE = 39 mm) that slightly improves to

R = 0.78 (RMSE = 41 mm) when outlier snow pits are removed. The statis-

tics for snow depth are also nearly unchanged by removing the observed outliers

(R = 0.77, RMSE = 12 cm). Comparative plots and statistics for these snow

properties explicitly in the forest and unforested areas is provided in Appendix B.5.
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Figure 3.9: a) Snow density, b) snow depth, and c) snow water equivalent are compared
to the observations of the 96 snow pits that are within the 4.5 km×3.5 km domain. Red
markers are outlying locations where the absolute difference between observed and
modeled density exceeds 50 kg/m3 (twice the RMSE). The red trend line and statistics
use all 96 data points, while the black trend line and statistics exclude the outliers.
The accuracy of the estimated SWE is primarily controlled by the LiDAR snow depths,
and these snow properties are rather insensitive to locations with density outliers.

3.3.7 Contributions to SWE Uncertainty

We found that snow depth contributes greater variability to the estimated SWE

than the MLR modeled density and that the variability of snow depth increased in

forests while density did not. Within the forest stands, the coefficient of variation

(CV; the standard deviation divided by the mean) for snow depth is 0.28, approxi-

mately three times greater than that of the distributed density, 0.09. In the unforested

areas the CV for snow depth, 0.15, is nearly twice that of the distributed density, 0.08.

The errors between LiDAR measured and evaluated snow depth are correlated

with the LiDAR measured snow depth (R = −0.39), and the errors between MLR

estimated and snow pit measured density are correlated with modeled density (R =

0.58), but the errors among snow depth and density are uncorrelated with negligible
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Figure 3.10: Uncertainty in snow water equivalent estimated by summing in quadrature
relative uncertainty in snow depth and average snow density following Raleigh & Small
(2017). The spatial distribution of uncertainty tends to be greatest in the shallower
and lower density snow underneath tree canopies and least in the deepest snow caught
in drifts around the perimeters of forest stands.

covariance. Using simple linear regression, we modeled the errors as a function of

LiDAR measured snow depth or MLR modeled density. By summing the relative

error terms in quadrature, we estimated the SWE uncertainty to first order (Raleigh

& Small, 2017). The distributed relative SWE uncertainty is presented in Figure 3.10

and is uncorrelated with SWE. The median SWE uncertainty is 8 %, which breaks

down to 13 % median uncertainty in the forest and 7 % median SWE uncertainty

in the unforested areas. The median contribution of SWE uncertainty due to snow

depth is 4 % and the median contribution due to density uncertainty is 5.5 %, showing

that density is a slightly larger source of SWE uncertainty than depth.
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3.4 Discussion

This work advances the utility of GPR for seasonal snow applications, by suc-

cessfully estimating bulk snow density and SWE through the integration of remotely

sensed LiDAR and GPR observations. Grand Mesa is a good site for testing our

approach of combining LiDAR and GPR for SWE retrieval, yet presents many chal-

lenges for GPR analysis because of the abrupt discontinuities along reflection horizons

due to vegetation and boulders on the ground surface. By exploring effects of depo-

larization on L-Band GPR signals, we developed a new, automated GPR processing

workflow that accurately identifies the ground surface beneath the snow-cover. This

advance encourages the collection of large GPR data sets and removes the subjectiv-

ity involved in the GPR post-processing and interpretation, by alleviating the labor

of manually interpreting radargrams through an objective function.

Sensitivity analysis showed how measurement errors propagate into the LiDAR–GPR

measured snow density (Appendix B.2). We found that measurement errors on the

order of 10 cm for LiDAR and 1 ns for GPR may translate into errors in the den-

sity measurement of 150 kg/m3 or greater. The error in the LiDAR—GPR density

measurements was reduced from approximately 150 kg/m3 to 30 kg/m3 by median

filtering and interpolating through outliers (Appendix B.2.1). In some locations the

registration may be nearly exact between the two instruments, and the resulting error

will be low (e.g. Figure 3.4). We found by cross-correlating the GPR and co-located

LiDAR snow depth transects, that misalignments of approximately 1− 5 m are pos-

sible. While the signal of each instrument is coherent, the leading source of error in

our density measurement is spatial misalignments (potentially sourced from geoloca-

tion inaccuracies, point cloud to raster processing, and coordinate transformations)



107

that are on the scale of the 1 m resolution data products. To evaluate how spatial

misalignment impacts the training data, predictor data, and the MLR model out-

put, and to estimate the uncertainties introduced from integrating the cross-platform

sensor data, we created multiple sets of training data by effectively perturbing where

LiDAR—GPR transects are aligned via cross-correlation lagging, and introduced com-

mon practice mistakes in the sensor integration, such as mixing the geographic coordi-

nate system of the data between NAD83 and WGS84. We found that perturbing the

sensor integration introduces less than 1 kg/m3 error in the modeled density on aver-

age (up to 2 % in forest stands), that outlier filtering is robust to sensor integration

errors, and this error is small in effect to the overall SWE uncertainty.

An effort of our work characterized the measurement uncertainties and the re-

sulting SWE uncertainty, in pursuit of the goal for 10 % uncertainty in global SWE

estimation (National Academies of Sciences Engineering and Medicine, 2018). Based

on the evaluation of the remotely sensed or modeled snow properties with in-situ

measurements, we used simple linear regression to model uncertainties spanning both

forested and unforested areas. The uncertainty in LiDAR snow depth varies spatially

and is dependent on landscape characteristics such as slope and vegetation (Deems

et al., 2013). However, our evaluation of snow depth in forested and unforested areas

did not suggest that LiDAR snow depth errors were greater beneath the tree canopy.

The choice of uncertainties propagated through the SWE uncertainty analysis (Sec-

tion 3.3.7) dictates which factor, depth or density, will have the greater contribution

to the overall SWE uncertainty. For the midwinter Grand Mesa snowpack, we found

that the importance of uncertainties in density and depth are site and sub-seasonally

dependent. Uncertainty in midwinter SWE tends to reduce at peak SWE, where
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snow depth and density are greater. Our findings are within the remarkably difficult

to achieve 10 % goal, and point to the success and accuracy of the joint LiDAR—GPR

methodology for SWE retrieval.

We tested the model sensitivity to training and learned how much data is required

for accurate density estimation. Using approximately 3,000 TWTs (1 % of the total)

from random subsets, we obtained density models that are statistically identical to

those generated from the larger data set (Appendix B.3.1). Though random sampling

is not a practical method for GPR data acquisition and analysis, this exercise showed

that the amount of GPR information required to train the model parameters is not as

important as collecting data in a variety of landscape and snow-cover characteristics.

The large GPR grid in unforested areas captured the high degree of spatial hetero-

geneity and improved LiDAR spatial predictor importance, while GPR acquired in

forests added necessary data for estimating sub-canopy snow density.

Additionally, we used the 96 snow pits within the study area as training data to

distribute density (Appendix B.3.2). The distance between snow pit observations is

on the order of the length scale of variability for snow density, as estimated from the

variogram analysis. The model trained on sparse snow pit observations has lessened

predictive capability, and is about as useful as the average density of the snow pits for

estimating SWE. We found that densities estimated from GPR TWTs and LiDAR

snow depths are preferred because of the spatial continuity and areal coverage. Snow

pits are an invaluable source of calibration and validation observations, but are time

intensive to sample on large scales. For example, a team of two can fully sample a

SnowEx pit in two hours, which for the approximately 100 snow pits in the study

area, amounts to ∼ 400 hours of labor (excluding the time to quality control (QC),
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curate the snow pit logs, and travel to and from the field site). The 160 km of GPR

data used in this work required approximately 20 hours to collect and an additional

20 hours to QC TWTs, which amounts to ∼ 40 hours, or roughly a 90 % reduction

in field labor.

The density measurements inferred from GPR profiles additionally allowed us to

quantify the spatial length scales of density variability, whereas the distance between

snow pits makes these observations independent of each other. Using variogram anal-

ysis, we determined that measurements of density up to ∼ 100 m apart in unforested

areas and ∼ 75 m apart in forests are correlated. These findings significantly differ

from a previous variogram analysis that found correlation lengths for snow density of

less than 10 m (Yildiz et al., 2021). However, the relatively small size of the study

area (200 m in largest dimension) may not support spatial analysis of snow distri-

bution on the 102 m scale. And it may be, that we have identified an additional

longer, lower spatial frequency scaling of snow density. Our analysis of the corre-

lation length of LiDAR snow depths generally agrees with scale-breaks identified in

previous studies within forested and unforested areas (Deems et al., 2006; Marshall

et al., 2006; Trujillo et al., 2009). Corollary to SWE, two-way travel-time in dry snow

depends both on snow depth and density. We found that TWT and SWE consistently

exhibited similar correlation lengths and variability of adjacent observations in the

forested and unforested areas. This finding supports TWT as an informer of spatial

SWE variability, however, in unforested areas SWE has greater maximum variability

than TWT. Snow density exhibited greater variability and longer correlation length

in the unforested areas than in the forests, which indicates that wind exposure in-

creases the variability and conversely the close proximity to vegetation which shelters
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the snow, tends to reduce spatial density variability.

The LiDAR predictors were inspired by theory of wind-terrain-vegetation interac-

tions governing snow distribution, though to keep the model design innate to LiDAR

information we did not involve wind data for predictors such as maximum upwind

slope (Winstral et al., 2002). Of those tested, we identified the most important Li-

DAR features used to distribute density by regressing all combinations of the 18

predictor variables, evaluating against testing subsets, and ranking their appearance

in the top 1 % of models (Appendix B.4). The slope of bare earth elevation, the

slope of the snow depth, vegetation height, and proximity to vegetation > 0.5 m are

the leading predictors in both, the model trained on LiDAR—GPR density, and the

model trained on snow pit observations. We used a “kitchen-sink” approach to the

regression modeling presented, but found comparable accuracy in models using fewer

parameters. Elder et al. (1998) used a simpler, three feature (net radiation, slope, and

elevation, with an intercept) MLR model that was trained on density observations of

five snow pits and averages of five snow core transects to predict basin-wide average

density and SWE. Recently, a similar study used a snow core sampling strategy to

represent unique classes of basin-wide physiography, acquiring ∼ 1000 observations,

and used MLR and binary-classification tree models to distribute density from ele-

vation and incoming radiation (Wetlaufer et al., 2016). The dependence of density

on net solar radiation may explain the good performance of these models, whereas

terrain parameters such as slope and aspect indirectly relate to radiation. The mean

and narrow standard deviation of density values observed during the Grand Mesa IOP

(273 ± 24 kg/m3) explains how the MLR modeled densities showed good accuracy

(RMSE = 25 kg/m3) but weak correlation with the observations.
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The MLR coefficients developed from a LiDAR and GPR snapshot of Grand Mesa

will likely have weak predictive capability at other field sites. It may be necessary

to recalibrate the model using GPR or another instrument to measure radar travel-

time such as airborne frequency modulated continuous waveform radar (e.g. Yan

et al., 2017). The expense of acquiring airborne remote sensing data is a crux of

the technique, and it may not be feasible to fly entire catchments across the breadth

of snow climates. Less expensive techniques for estimating SWE distribution, such

as drone-based structure from motion combined with GPR (e.g. Yildiz et al., 2021),

and in-situ measurement campaigns combined with regression (e.g. Wetlaufer et al.,

2016) or machine learning (e.g. Broxton et al., 2019) models should be utilized where

appropriate. However, high resolution elevation and snow depth data significantly

improves modeled spatial heterogeneity in snow density.

3.5 Conclusion

We developed an innovative approach for combining GPR travel-times and air-

borne LiDAR snow depths to estimate spatially distributed average snow density and

SWE at one-meter resolution across a ∼ 16 km2 area. Our automatic and objec-

tive technique for interpreting radargrams makes a significant contribution for GPR

users and data end-users, as we have enabled a fast data product with minimal post-

processing labor. The continuous density measurements inferred from combining the

GPR and LiDAR data allowed us to estimate the snow density and SWE variabil-

ity as a function of distance between observations . We observed shorter correlation

lengths for depth, density, SWE, and TWT in forest stands than in unforested areas.

Relative density variability is least among these snow properties, and conversely to

depth, SWE, and TWT, density variability is slightly less in forested areas than in
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unforested areas. We find that wind exposure has a control on the average density

and variability, and in agreement with prior studies, found that forests tend to shelter

the snow pack from wind redistribution and densification. We showed that the length

scales of variability between SWE and GPR TWT are similar in both forested and

unforested areas. Corollary to the basis in dry snow, that depth and density for-

mulate TWT and SWE, the agreement in spatial variability among TWT and SWE

indicates that TWT is a better informer of SWE than either depth or density inde-

pendently. Distributed SWE uncertainty tends to be greatest in the shallower and

lower density snow beneath tree canopies, where measured variability is also greater.

Snow density remains a larger contributor to SWE uncertainty than depth, however,

on average SWE uncertainty was less than 10 %. High-resolution LiDAR information

combined with TWT observations to estimate and distribute density shows promise

for accurately estimating catchment-wide SWE.
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CHAPTER 4:

EXTENTIONS AND CASE STUDIES
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4.1 Firn and Radiostratigraphy Modeling using

the 1D Kinematic Wave Equation

Modeling the age-depth structure of firn is advantageous for signal processing

(Appendix A.6) and necessary for the forward computation of SMB (Appendix A.3).

However, numerical modeling of firn evolution is also applied in the inverse computa-

tion of SMB (e.g. Ng & King, 2011). The kinematic wave equation is time reversible,

a property that is leveraged in the upwinding and downwinding scheme applied for

the numerical solution (Section 4.1.3). Time reversal may also be applicable for data

inversion. For example a reflection horizon interpreted in depth may be propagated

back to the surface. Age models have been extracted from real seismic images using a

convolution neural network that was trained on synthetic seismic images (Geng et al.,

2020). Horizon interpretation is then automated by extracting the isochrones of the

age-depth model. I generated realistic radar images using the kinematic wave model,

as the initial step in extracting age-depth information from real data (Section 4.1.4).

4.1.1 Sorge’s Law

In cold, dry, continental firn, such as that of Greenland’s interior, under a constant

rate of snow accumulation, the density (ρ) of snow at a given depth (z) does not

change with time (Bader, 1954b). Meaning, firn density is given by a function of

depth

ρ = f(z) , (4.1)
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and the load of snow above a given depth is the density integrated with respect to

depth

σ(z) =

∫ z

0

f(z)dz . (4.2)

The snow load σ(z) was accumulated over some time. Given the SMB, the time

required for a snow parcel to submerge to any depth can be solved as

t(z) =
σ(z)

SMB
(4.3)

The vertical submergence velocity of a parcel of snow follows from differentiating

Equation 4.3 with respect to time

v(z) =
SMB

ρ(z)
. (4.4)

This result drives the isochronal nature of the firn stratigraphy, and explains how

variability in SMB creates rising and plunging horizons in the radiostratigraphy.

In result of Sorge’s Law, the spatial variability of dry-firn density occurs over

scales of 101 − 102 km (Chapter 2.4), and even the largest observed variability in

annual SMB has only a slight effect on the firn density variability. For example,

along GTC15 Spur West, the mean absolute deviation in SMB is ∼ 3 %, yet over

the 22.5 m range in depth the MAD in density is just 0.6 %. The maximum SMB

variability measured along GTC15 is ∼ 20 %; however, the variability in firn density

between these locations is just ∼ 1 %.

“Sorge’s Law is applicable whenever the annual climatic cycle in the accumulation

zone does not appreciably change in the course of as many years as are under con-

sideration. The second major premise is that snow melting be insignificant,” (Bader,
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1954b). At GTC15 I found the temporal mean absolute deviation in annual SMB

for the period 1984 − 2017 to be 17 %. Though this temporal variability in SMB is

significant climatically, by averaging over all space and depth we found that Sorge’s

Law holds for our application of the 1D kinematic wave equation as a firn model.

4.1.2 1D Kinematic Wave Equation

The kinematic wave equation is an approximation of the dynamic wave equation

that is developed from the unsteady continuity equation and the equation of mo-

tion (Miller, 1984). Dynamic wave models are widely used in hydrology to simulate

channelized or surface water flow. A firn system conceptually works as mass flow

over an unconfined surface. Namely, hydrologic input propagates a wave. Input mass

is submerged vertically into the glacier and advected away towards glacier termini.

For a glacier mass balance application it is practical to develop the kinematic wave

equation from the perspective of mass conservation

ρ(x, z)
∂z

∂t
+

∂

∂x

(
u(x)

∫ z

0

ρ(x, ζ)dζ
)

= ρ0(x)a(x) , (4.5)

where u(x) is the 1D advection velocity, ζ is an integration variable, and ρ0(x) is

the surface density (Ng & King, 2011). Under the assumption of steady state SMB

forcing, Sorge’s law holds and the submergence velocity is applied via the density

terms in Equations 4.5 and 4.9 – 4.12. Using a change of variable

f(x, t) =

∫ z

0

ρ(ζ)
ρ0

dζ , (4.6)

the mass-conservation equation takes the form
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∂f

∂t
+

∂(uf)

∂x
= a(x) , (4.7)

and yields the Saint Venant kinematic wave equation

∂z

∂t
+ u(x)

∂z

∂x
= a(x) , (4.8)

which expresses the firn isochrone depth z as an hyperbolic partial differential equa-

tion that is forced by the net annual SMB, a(x).

4.1.3 Numerical Solution of the Kinematic Wave Equation

Upwinding schemes are suited for numerical solution of the kinematic wave equa-

tion. However, Ng & King (2011) solved Equation 4.8 analytically using the method

of characteristics, which is capable of solving the system in the event of a kinematic

shockwave (Miller, 1984). I have implemented a second order accurate back and forth

(upwinding and downwinding) error compensation and correction scheme (Selle et al.,

2008). The algorithm begins with a first order accurate forward Euler step

zn+1
i = (1− ∆t

∆x
)zni + uiρn

i ρ
0
i

∆t

∆x
zni−1 +∆t

ai
ρn
i

, (4.9)

where the super script notation represents the time step and the subscript notation

represents the spatial step. ∆t the time step increment and ∆x the spatial step

increment were chosen such that ∆t < ∆x
max(u(x))

to meet the Courant-Friedrichs-

Lewy stability condition. To estimate the prediction error a backward Euler step is

computed from the prediction
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ẑni = (1− ∆t

∆x
)ẑn+1

i + uiρn+1
i ρ0

i

∆t

∆x
ẑn+1
i+1 −∆t

ai

ρn+1
i

, (4.10)

and the prediction error is calculated and applied to the data

z̃ni = zni − (ẑni − zni ) /2 . (4.11)

By taking a forward step ahead with the error corrected data, the method achieves

second order accuracy in the solution of the kinematic wave equation

zn+1
i = (1− ∆t

∆x
)z̃ni + uiρn

i ρ
0
i

∆t

∆x
z̃ni−1 +∆t

ai
ρn
i

. (4.12)

4.1.4 Application of the Kinematic Wave Firn Model to GTC15

I computed the depth of the propagating kinematic wave at 6 hour time steps for

30 years along GTC 15 Spur West. The multi-offset MxHL method for ice sheet firn

characterization provided the boundary values a(x) and submergence factors ρ(x, z)

necessary for the model. In Figure 4.1, I demonstrate these isochrones at one year

intervals, having used a constant and gradual advection velocity of 5 m/yr. Ideally,

remotely sensed, surface velocity data can prescribe u(x) in a 1D model. U and V

velocity components can project the resultant velocity vector along a radar transect.

In reality, the demonstrated cross section from 35− 55 km along GTC15 Spur W is

comprised of one transect that is with the flow on heading 246.5◦ from 15 km to 45 km,

where it begins the next transect on heading 40.5◦ against the flow from 45 km to

78 km. It becomes no longer care free to orient the radargram downstream and run the

model without spatially continuous accumulation and density. However, a dynamic
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Figure 4.1: The solution of the kinematic wave equation at one year intervals for the
boundary condition a(x) = SMBGTC15 and uniform advection u(x) = 5 m/a
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wave model, which allows waves to propagate at two wave celerities, c = v+
√
gy and

c = v −√
gy, would yet become unstable at this vertex due to numerical dispersion

effects (Miller, 1984). An approach to spatially modeling the density information (e.g.

Chapter 3) would be immediately useful in this model which relies on empirically

estimated ρ(z), or one that evolves the firn density numerically.

Generating Synthetic Radargrams using the Isochrone Model

I generated a synthetic GTC15 radargram from Figure 4.1. To do so, I assigned

each isochrone a random reflection coefficient between −1 and 1, attenuated the

reflectivity assuming spherical divergence, and convovled the spike series with a 500

MHz Ricker wavelet. To model realistic noise, the synthetic radargram was convloved

with a gaussian white noise matrix and was then added the clean radargram at 50 %

noise level. Compare Figure 4.2 to Figure 2.7.

Figure 4.2: A synthetic GTC15 radargram generated from isochrones of the kinematic
wave equation. Realistic noise was added to the image.
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4.2 Ice Sheet Surface Property Retrieval and

Automatic Firn Layer Tracing from Airborne

Radar

Operation IceBridge (OIB) was a decade long NASA mission from 2009-2019 that

used airborne remote-sensing instruments to observe the Antarctic and Greenlandic

ice sheets, glaciers, and sea ice. With a suite of instruments (including photogram-

metry, LiDAR, and Radar) OIB served as an observational bridge during the time

period between the unscheduled decommissioning of the ICEsat-1 space-borne LiDAR

platform and the launch of ICEsat-2. See Table 1 in Rodriguez-Morales et al. (2014)

for a description of the suite of OIB radar instruments. The OIB ultra-wideband

microwave radar developed by Panzer et al. (2013), known as the “Snow Radar”,

has the capability to resolve snow cover overlying sea ice and annual stratigraphic

horizons within ice sheet firn with fine (∼ 5 cm) resolution. However, interpreting,

or tracing snow and firn layers, in the radargrams is a major crux of data analysis for

radar derived estimates of snow accumulation. Drawing from the structure oriented

filter developed in Chapter 2, I developed a surface oriented filter that improves the

continuity of the radiostratigraphy. To automate the tracing of these layers, again, I

applied the multi-channel coherence method developed in Chapter 3.

On the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS)

within the dry-snow and percolation zones of Western Greenland, we deployed a

multi-channel ground-penetrating radar and developed a methodology to continuously

characterize the snow and firn density and accumulation (Chapter 2). Hundreds of

kilometers of the multi-channel radar traverse were colocated with OIB flights. The
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the GPR derived quantification of snow and firn density and accumulation was used as

evaluation for the surface density retrieval described here. The snow density, depth,

and accumulation measured by the MxRadar (Figure 2.5) was colocated with an OIB

flight line acqiured on April 10, 2017 (Paden et al., 2014). Within this extension, I

applied the small perturbation analytical backscatter model (Engman & Wang, 1987)

to estimate the surface snow density from OIB Snow Radar surface reflection data.

I demonstrate this backscatter inversion process, and the automatic layer tracing,

along a 35 km transect that is colocated with GreenTrACS Core 15 Spur West.

4.2.1 Automatic Layer Tracing

Identifying the stratigraphic horizons within the firn is the first step towards

estimating surface mass balance from radargrams. However, manual horizon inter-

pretation is not feasible for the volume of data acquired over the decade long mission.

To hurdle this crux, I developed an automated method for tracing the ∼ 15 most

prominent reflection horizons in the shallow firn. This method draws from the the

structure oriented filter and multi-channel coherence techniques described in Chap-

ters 2 and 3 and applies binary classification to extract the continuous horizons from

the radargram.

Surface Oriented Filter

Demonstrated in Appendix A.6, the stratigraphic age model was applied in a

structure oriented filter which significantly improved the radar image quality. How-

ever, empirical (Appendix A.5) and numerical (Section 4.1) firn age-depth models

require a posteriori knowledge of the accumulation rate and snow or firn density for

initialization. Instead, the shallow ∼ 20 m penetration depths of the Snow Radar,

make the application of a surface elevation oriented filter possible. Omitting pro-
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cesses of firn advection and compaction, shallow stratigraphic undulations caused by

the accumulating snow approximately follow the surface topography. Stratigraphic

layers older than ∼ 50 years and layering in regions of glaciers where surface velocities

are large will likely not abide by this approximation and will not be resolved by this

filter. The only requirement of the surface oriented filter are automatically detected

surface TWT picks. The layering of the radargram is flattened to the travel-time axis

by linear interpolation which applies the perturbations needed to shift each TWT to a

chosen TWT datum. A smoothing kernel is then applied to the travel-time flattened

image, and then the radargram is unflattened by reversing the 1D interpolation pro-

cess. Figure 4.3 displays the unprocessed radargram acquired on April 10, 2017 along

the 15− 45 km distance of GTC15 Spur West. The radargram was surface oriented,

filtered, and converted to elevation assuming a constant density of 500 kg/m3 for the

firn (Figure 4.4).

Horizon Extraction from Binary Classification of Amplitude

Coherence

Smooth radargrams are nice to look at, but are not too useful until the radios-

tratigraphy is interpreted. To automate the horizon interpretation I first applied

Equation 3.1 to calculate the coherence metric among the radar traces within 25 m

a radius window (Figure 4.5). Because many annual layers are present in the shallow

firn, the solution to tracing of these layers is not as trivial as choosing the maximum

coherence of each radar trace as demonstrated in Chapter 3. To trace many layers,

the coherence image was binarized by a setting a threshold of 0.1. A low coherence

threshold may be applied, because binary regions that do not continuously span the

entire 5 km long data file were removed. Using this binary classification scheme the
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indices of the most prominent and continuous reflection horizons are extracted from

the radargram. The coherence along each continuous reflection horizon is then max-

imized to determine the travel-time pick (see Chapter 3.2.3). The travel-time picks

were converted to elevation and are displayed in Figure 4.6.

4.2.2 Radar Backscatter Inversion for Surface Properties

Radar reflections from natural surfaces may be analyzed using theoretical models

of the energy scattering process, by regarding the backscattered electric field as a sum-

mation of the coherent and incoherent fields (Campbell & Shepard, 2003). A specular

reflection, having all reflected fields constructing in phase, produces a coherent electric

field Pc = A0e
jφ0 . Natural surfaces, such as snow, are often rough and scatter fields in

random directions with an undetermined phase. Small variations in surface elevation,

for example, give rise to the incoherent component Pn =
∑N

i=1 Aie
jφi . Where A is

the amplitude and φ is the phase, the coherent and incoherent fields sum

E = A0e
jφ0 +

N∑
i=1

Aie
jφi , (4.13)

to produce the electric field measured by a receiving antenna in the far-field. Fre-

quency modulated continuous waveform airborne radar sounders are processed with

a matched-filter to perform pulse compression (Legarsky et al., 2001). Interference

between the coherent and incoherent reflections cause the amplitude of the matched

filter output to fluctuate. The amplitude variation from a large number of scatterers

follows a homodyned-K type distribution (HK distribution) if a dominant scatterer,

such as the snow surface, and random scatterers (surface roughness) are illuminated

by the radar (Drumheller & Lew, 2002). The HK probability distribution
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PHK(A | a, s, µ) = A

∫ ∞

0

ω × J0(ωa)× J0(ωA)×
(
1 +

ω2s2

2µ

)−µ

dω , (4.14)

where PHKc = a2, PHKn = 2s2, µ is an indicator of the scattered population, ω is an

integration variable, and J0 is the zeroth order Bessel function of the first kind, does

not have a closed form and must be approximated numerically (Grima et al., 2014a).

To estimate the HK distribution parameters, I optimized the fit between the calibrated

and normalized surface reflection amplitudes using the Nelder & Mead (1965) method

from several random initializations and used the median of the parameter estimates

to reduce the effect of local minima.

Radiometric Corrections

The surface amplitude data must first be corrected for variations in amplitude

caused by variations in the aircraft altitude. The nominal elevation for OIB data

acquisition is h0 = 500 m, where h is the aircraft range above the surface estimated

from the TWT as h = c TWT
2

. I applied a range correction of the form Gm = d,

where d is a vector of uncorrected surface reflection amplitudes and

G =


1 (h0 − h1)

4

...
...

1 (h0 − hm)
4

 (4.15)



130

is the design matrix containing the surface range perturbations. Where m = G−1d,

the radiometric correction is then applied as

d̂ = d−Gm (4.16)

Small Perturbation Model

The power of a radar echo in a charge-free environment that is measured in the

far-field can be expressed by the coherent and incoherent components as

Pc = r2e−(2kσh)
2

, (4.17)

and

Pn =
1

πh2

∫∫
A0

σ0ds , (4.18)

(Ulaby et al., 1982). Where

r =
(1−

√
ε)

(1 +
√
ε)

, (4.19)

is the Fresnel reflection coefficient at vertical incidence, ε is the dielectric permittivity

representative of the reflecting surface to a depth of approximately one wavelength,

k = 2π/λ is the wavenumber, σh is the roughness height, A0 is the area of the radar

footprint, σ0 is the backscattering coefficient described by the chosen model. For a

natural surface with Gaussian scattering, Grima et al. (2012) derived the backscatter

coefficient for the small perturbation model

σ0 = 4k4r2σ2
hl

2e−(kl sin θ)2 . (4.20)
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The small perturbation model is valid for surfaces with roughness heights and corre-

lation lengths that are smaller than the wavelength (Engman & Wang, 1987). This

theoretical basis is likely exceeded given the 5 cm wavelength of the Snow Radar and

possible surface roughness heights of 25 cm or greater. Nevertheless, I found the small

perturbation model capable of retrieving surface snow density using the Snow Radar.

Integrating Equation 4.18 over a circular footprint gives,

Pn = 4k2r2σ2
h

(
1− e−(

Dlk
2h )

2)
, (4.21)

where the band-limited footprint D = 2
√

hc/∆f is bounded by the compressed-pulse

width 1/∆f for the bandwidth ∆f (Grima et al., 2012). The power ratio of Equations

4.17 and 4.21

Pc

Pn

=
e−(2kσh)

2

4k2r2σ2
h

(
1− e−(

Dlk
2h )

2) (4.22)

is independent of the Fresnel reflection coefficient. The surface roughness height can

then be estimated by solving for the root of the fixed point problem

Pc

Pn

=
PHKc

PHKn

(4.23)

using the analytically and empirically derived coherent and incoherent power as a

function of σh. Along the GTC15 transect σh was estimated as 2.5 cm. The reflection

coefficient can then be directly solved for by substituting σh into Equation 4.17

r =

√
αPHKc

e−(2kσh)
2 . (4.24)
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Figure 4.7: Snow surface density for the GreenTrACS Core 15 Spur West transect
estimated from the surface echo of the Snow Radar.

An important calibration constant α must be included to reference the coherent power

of the radar signal to a known dielectric medium. Subsequently, ε can be solved as

a fixed point problem following Equation 4.19. Once the snow surface dielectric

permittivity is known, a dielectric mixture model (Equation A.19) was applied to

estimate the snow density of the uppermost 5 cm (Figure 4.7). This retrieval was

estimated every 250 m in overlapping bins 500 m across for spatially continuous

estimates.

4.2.3 Conclusions

Operation IceBridge provided a vast source of information of the cryosphere from

many remote sensing platforms. Too much of this of these data are unused, in part be-

cause of the labor and subjectivity involved in data processing and analysis. Drawing

from structure oriented filtering and multi-channel coherence methods, I automated

the post-processing and interpretation of Snow Radar imagery from the Greenland

Ice Sheet. Extending beyond problems in stratigraphic interpretation, I applied a

well-known radar backscattering model to invert for the surface properties. The sur-

face roughness was estimated at half of the 5 cm wavelength. This result supports

the application of the small perturbation model for surface density retrieval from

the Snow Radar. Surface density information, when used to parameterize a firn age

and density model, can be joined with the automatic horizon interpretation to fully
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characterize the surface mass balance.

4.3 Quantifying Firn Depth and Density in the

Percolation Zone of Wolverine Glacier, Alaska

Measuring and modeling firn processes and surface mass balance on mountain

glaciers is challenging because of snow process variation related to climate and oro-

graphic effects. Mountain glaciers receive large amounts snow accumulation and melt,

which alters the snowpack evolution to firn. Within the percolation zone of a glacier

firn experiences densification and mass losses due to surface meltwater infiltration

and runoff. Meltwater infiltration forms vertical drainage features, ice lenses, and

layers of ice refrozen within the firn. The wetting front may erase the isochronous

stratigraphic layering and increase the densification to glacial ice through enhanced

pore space reduction by grain rounding and refreezing. Simpler densification models

based on Sorge’s Law are not adapted to firn undergoing wet densification (Bader,

1954b). Recent generations of firn models which account for melt-driven densifica-

tion and runoff (e.g. Reeh, 2008) are a large advance for mass balance modeling of

percolation zones.

Multi-offset radar is capable of measuring the depth, density, wetness, and stratig-

raphy of firn, via velocity analyses which depend on the interpreted travel-times of

reflection horizons. Radar inversion within the percolation zone is challenged by the

firn structural heterogeneity and the unknown inclusion of liquid water. The work-

load for interpreting radargrams increases with the number of channels, and neces-

sitates a methodology for velocity modeling minimal manual effort. From Wolverine

Glacier, Alaska (Figure 4.8), I estimated firn properties along a ∼ 2 km multi-offset
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GPR transect moving up-glacier with the elevation gradient (Figure 4.9). Applying

multi-channel coherence methods, horizon interpretation and velocity analysis were

automated to estimate the firn depth and density structure.

4.3.1 Multi-offset Coherence Analysis

Normal moveout velocity analysis from multi-channel coherence was developed as

a form of common midpoint (CMP) velocity analysis more than 50 years ago (Taner

& Koehler, 1969). This technique first estimates t(x), the travel-time measured at a

receiving antenna with offset x, for zero-offset travel-time (t0) and stacking velocity

(VNMO) combinations that satisfy the normal moveout equation

t(x) = t0 +

√
x2

V 2
NMO

. (4.25)

The normal moveout travel-time follows along a hyperbolic trajectory. A grid search

over travel-time and velocity, estimates the possible NMO travel-time hyperbolas for

stacking the CMP gather. The coherence (Equation 3.1) is then computed from the

amplitudes along the possible trajectories at each offset. A local maximum coher-

ence occurs when the energy of the traces sum coherently and indicates a possible

(t0, vNMO) solution. These “bull’s eyes” are often manually interpreted to derive the

stacking velocity function. Using nonlinear optimization, I developed an automated

stacking velocity function that shows sensitivity to the heterogeneous velocity struc-

ture of the firn.

4.3.2 Firn Density Estimation

Stacking velocity analysis measures the average velocity from the surface to a

given depth. Classically, I applied Dix (1955) inversion to estimate the interval ve-
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Figure 4.8: An overview map of Wolverine Glacier displaying the locations of core sites
C and EC and the multi-offset GPR transect. Imagery and in-situ density data are
available from the U.S. Geological Survey (McNeil et al., 2019; Baker et al., 2018)
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Figure 4.9: A depth interpretation of the winter snow mass and percolated firn for the
transect moving up-glacier. Higher on Wolverine the the snow accumulation increases
the firn depth where it develops prominent layering to ∼ 15 m depth. The firn appears
to undergo rapid densification, and it reaches pore close off density at ∼ 25 m depth.
The snow firn boundary was interpreted from a radar reflection horizon, while the firn
to ice transition depth was determined by extracting the 830 kg/m3 contour from the
dry-firn density model.
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locity model. However, stacking velocity functions that are not well approximated

are susceptible to errors when converted to interval estimates. Reflection coherence

analysis may contain additional apparent spectral velocity modes caused by coherent,

yet out of phase energy. To derive a smooth and monotonic velocity function, the

stacking velocity was modeled as an exponential function

v(t) = a+ bect (4.26)

that was fit using coherence-weighted nonlinear least-squares optimization (Figure

4.10). Here, the parameters a ≈ vice and b ≈ vsnow represent the average velocities

of ice and snow. Common midpoints gathers with originally 1 m along track reso-

lution were averaged with neighboring CMPs within a 5 m radius. The coherence

was computed and fit for each stacked CMP gather along the transect to estimate

the stacking velocity model (Figure 4.11). Because the instantaneous velocity is es-

sentially the derivative of the stacking velocity model, an exponential model is good

choice for a stacking velocity model, as the derivative of an exponential function is

also exponential. Additionally, firn density can be modeled accurately by an expo-

nential function (Hubbard et al., 2013). Interval velocities show spatial heterogeneity

that follows the stratigraphic boundaries created by snow and firn. Firn density was

estimated by converting the interval velocities using the Complex Refractive Index

Method (Figure 4.12). The snow in the afternoon of May 13, was moist to wet. For

comparison between dry firn and partially saturated firn, a LWC of 0.5 % was applied

to the density inversion.
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Figure 4.10: Velocity spectra were computed from the example CMP gather. The
stacking velocity function was estimated by an exponential model that was fit to the
velocity spectra via coherence-weighted least-squares.
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Figure 4.11: Stacking velocity was estimated by spectral velocity analysis. The interval
velocities were estimated by Dix inversion. Velocity heterogeneity follows the stratig-
raphy development of higher elevation firn.

Figure 4.12: Firn density was estimated from the interval velocity model by the Com-
plex Refractive Index Method (Equation 4.27). The density for unsaturated firn with
liquid water content of 0.5 % was calculated for comparison with dry firn density. The
snow surface was moist to wet during the afternoon data acquisition.
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Figure 4.13: a) Firn density measured at core sites C and EC was estimated with an
exponential model. Measured firn density and the b) dry firn and c) wet firn density
estimated by radar velocity inversion.

4.3.3 Evaluation with Firn Cores

In-situ data was acquired at Core C during the 2021 winter mass balance cam-

paign, however, the most recent publicly available firn core data collected at both

sites is from May 2016 (Baker et al., 2018). The density measured in Core C is

65 ± 11 kg/m3 greater than Core EC on average for a given depth, suggesting that

compared to EC the lower elevation and SMB of Core C tends to increase the firn

density. Firn density profiles from Cores C and EC are estimated by an exponential

function (Figure 4.13a) and are also compared to the wave speed inversion estimated

dry-firn (Figure 4.13b) and wet-firn density (Figure 4.13c).

4.3.4 Conclusion

The automated spectral velocity analysis for firn density retrieval eliminated the

need for tedious and subjective travel-time picking. The density models estimated

from this analysis show spatial variability that is intuitive and reveals the density

transition between more shallow and deeper firn zones of Wolverine Glacier. Snow

density is greater and the firn column is thinner (∼ 20 m) at lower elevations. The
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firn is thicker at higher elevations, where the densification rate is less, and reaches

pore close off at ∼ 25 m. Stratigraphic layering in the percolation zone appears to

be more strongly related to density than in the dry snow accumulation zone where

density tends to remain independent of the stratigraphy.

4.4 Ground-penetrating Radar Experiments at

Camp Arenales, Chile

Abstract

Ground-penetrating radar (GPR) was acquired during the July and August 2019

Arenales, Chile vehicle mobility campaign. Two GPR frequencies (900 and1600MHz)

were operated using three acquisition strategies: common midpoint gathers (CMP),

vehicle mounted, and sled pulled. The experiments were performed in shallow (sim10 cm)

and deep (∼ 150 cm) snow that was fully saturated with rain and meltwater. Radar

velocities from CMP gathers, along with an estimate of snow density, are used to esti-

mate the snow liquid water content. Vehicle mounted GPR recordings were analyzed

for detecting changes in ground surface conditions. The sled pulled GPR acquisitions

were acquired in on wet snow using both frequencies and polarizations. Interestingly,

cross-polar the 1600 MHz data was able to image the ground beneath the wet snow,

though the ground reflection does not appear in the co-polarized data.

4.4.1 Overview

The study site, Camp Arenales, Chile, has test locations at lower elevation, (LQ1

and LQBase) which exhibit wet, shallow, ephemeral, snow and bare soil and gravel,

and at higher elevation (LQ2) which had deep saturated snow cover on top of hilly

shrubland. CMP gathers were conducted at low elevation sites with thin snow cover
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Figure 4.14: A Google Earth image showing the location of the LQ-Base, LQ1, and
LQ2 sites at Arenales, Chile.

and high elevation sites with deep snow cover. Two test vehicles were used in the

mobility study: The Mercedes Unimog U 4000 and the John Deere 850J Dozer.

Vehicle mounted GPR experiments were conducted at the LQ1 and LQBase locations.

The GPR was pulled in a sled on the snow surface at LQ2 test locations (see Figure

4.14).

4.4.2 Common Midpoint Gather Analysis

A common midpoint (CMP) gather is a measurement of the radar travel-time as

a function of antenna separation, or offset. The signal processing for CMP gathers

involves De-WOW filtering, bandpass filtering, and amplitude gain. A reflection mea-

sured on a multi-offset CMP gather exhibits normal moveout (NMO) in the presence

of a homogenously-layered and planar subsurface structure that exhibits small verti-

cal velocity heterogeneity (Al-Chalabi, 1974). The NMO equation approximates the

non-linear travel time of reflected radar arrivals. The linearized form of NMO (Equa-
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tion A.2) known as the x2 − t2 method (Green, 1938), is cast into a linear system

to solve for t0, the reflection travel-time at zero offset, and VNMO the average radar

velocity by method of least-squares. Snow depth is estimated from the measured

velocity as in Equation A.18. The least-squares estimate of wave speed is re-solved

many times using randomly sampled sub-sets of 50% of the available CMP data. This

method, known as bootstrapping (Efron & Tibshirani, 1986), creates a distribution

with a mean and standard deviation for each parameter (t0, VNMO, zNMO, and LWC)

which is used as the measure of uncertainty.

Volumetric liquid water content of the snow can be measured using the radar

velocity and an estimate of the snow density. I applied a three-phase dielectric mixture

model of the form

LWC =

√
ks + fi −

√
kifi − 1√

kw − 1
(4.27)

to estimate the percent liquid water content (LWC), where ks =
(

c
VNMO

)2
is the

relative dielectric permittivity of wet snow, fi =
ρ

s

ρ
i
is the volumetric fraction of ice

for snow density ρs = 250 kg/m3 ice density ρi = 917 kg/m3, ki = 3.15 the relative

dielectric permittivity of ice, and kw = 80.1 the relative dielectric permittivity of

water (Annan et al., 1994).

Figure 4.15 presents the radar velocity as a function of dry snow density and LWC

using the three phase complex refractive index method (CRIM). Because the relative

dielectric permittivity of freshwater is approximately 25 times greater than that of ice,

a small volumetric contribution of water has a large effect on the radar wave speed. In

turn, it can be seen in Figure 4.15 that a significant change in density ( ±25 kg/m3)

has a less significant effect on the estimated LWC for a measured velocity.
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Figure 4.15: The three phase CRIM model represents the electromagnetic velocity as
a function of snow density and percent LWC.

CMP Analysis of Shallow Wet Snow

The CMP gather (Figure 4.16) was picked manually using an algorithm that

snaps the picks to the nearest trough of the radar wave. The initial energy of the

direct airwave arrival is picked first. These picks are fit using linear regression to

estimate the intercept time, or the experimental time at which the radar wave was

transmitted (Appendix A.2). Time zero correction is a necessary step in NMO velocity

analysis. This correction also applies backshifting, or layman’s deconvolution, such

that the trough, rather than the zero crossing, is set as the wavelet phase of the

earliest returned energy. The thin snow cover is challenging to analyze because of

interference between the direct, surface-coupled wave and the reflected wave from

the snow ground interface that masks the initial reflected energy. The wavelet phase

picked in the NMO velocity analysis is a later arrival with the same moveout behavior



145

Figure 4.16: The red Xs indicate the picked radar energy. Earlier picks are the direct
airwave with moveout velocity ∼ 0.3 m/ns, later picks are reflected energy that is far
enough away from the direct energy (in time) to conduct velocity analysis. The NMO
velocity of this arrival is 0.168± 0.01 m/ns.

as the masked reflection.

The velocity estimated from the ground reflection is 0.168 ± 0.01 m/ns which

yields a LWC of 7.2 ± 1.3% . Velocity calculated from this arrival will be accurate,

but snow depth is overestimated because t0 was measured on the later wavelet phase;

reiterating, because the initial reflected energy is contaminated by the surface wave

energy due to thin snow cover that is less than the ∼ 18 cm radar wavelength. The

appropriate t0 of the reflected wave is ∼ 1.5 ns for a snowpack approximately 13 cm

deep. The picked reflection plotted in red Xs yields a snow depth of 31.3 ± 2.4 cm.

To correct this depth, I subtracted one wavelength from the overestimate because

the next cycle of the wavelet was used in the analysis. This yields a snow depth of

11.7± 2.4 cm, which is consistent with measurements of snow depth at LQ1.

A second reflection is apparent in the LQ1 CMP gather (Figure 4.17). The NMO

velocity measured from this reflection is 0.08± 0.003 m/ns, which suggests that this

reflection originates in the subsurface – likely from a layer in the saturated soil. The
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Figure 4.17: A later reflection from t0 ∼ 32 ns likely originates from a soil layer boundary
as the NMO velocity measured from the red picks is 0.08±0.003 m/ns. The depth of this
layer is 1.29± 0.06 m below the snow surface or 1.17± 0.06 m below the ground surface.

depth of this soil layer is 1.29±0.06 m below the snow surface or 1.17±0.06 m below

the ground surface.

CMP Analysis of Deep Wet Snow

On July 30, 2019, CMP measurements were acquired using the 900 MHz and

1600 MHz systems near the LQ2 snow pit, which had an average snow density of

378 kg/m3 and depth of 1.66 m. Because the snow was deep and very wet, the time-

window of the CMP gathers was increased. This changed reduced the sample interval

of the system. We estimated LWC of 3.65 ± .35% and snow depth of 1.82 ± 0.04 m

from the 900 MHz CMP gather (Figure 4.18). The 1600 MHz gather was unusable

largely due to frequency and offset dependent attenuation in the wet snow.
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Figure 4.18: The 900 MHz CMP gather from LQ2 was acquired with a sample interval
of 0.5 ns which gives a nyquist frequency of 1000 MHz. The CMP gather appears
rough due to trace interpolation. The data maintained enough coherency for analysis
but with reduced accuracy due to discontinuity in the faint direct wave and along the
reflection horizons.
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4.4.3 Common Offset Gather Analysis

GPR images are typically recorded with one transmitting antenna and one receiv-

ing antenna that are separated by a fixed distance, known as a common offset (CO)

gather. Opposed to a multi-offset CMP gather, which is an image of one point in

space, common offset gathers are a scanning profile along some path. CO gathers

were acquired by mounting the GPR to the Unimog and Deere Dozer and driving the

vehicles on cross country circuits that crossed various terrain/ground surface types at

LQ1. The GPR was also placed inside a sled and pulled over the deep snow at LQ2.

Vehicle Mounted GPR

The 900 MHz GPR antenna was mounted to the Unimog (Figure 4.19) and

Dozer for cross country tests. The vehicles maneuvered across wet shrubland with

a thin, ephemeral snow cover and gravel roads that were puddled. The GPR was

operated from the cab of the Unimog by CRREL staff. For the Unimog tests, a

handheld GPS was used to track the distance along the cross country circuit and a

fiducial mark was recorded every 50 m by the GPR operator. The fiducial mark is

necessary for estimating the positioning of the GPR traces when GPS information is

not concurrently recorded with the GPR. A double mark was recorded as the radar

passed over changes in surface type (e.g. snow/ no snow, shrubland/gravel, and water

puddles). The GPR was not actively monitored during testing with the John Deere

Dozer, because the dozer had seating for only one occupant. As a result, GPR data

acquired with the dozer does not have fiducial marks and is not presented within this

report, because the surface change detection methodology developed here relies on

the human classification of surface change for comparison.
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Figure 4.19: 900 MHz GPR antenna mounted on the Mercedes Unimog U 4000. The
GPR was operated from the vehicle. Distances were marked in the GPR trace header
every 50 m using a GPS odometer. Changes in the ground surface were also marked.

Terrain Change Detection

I tested the ability of GPR to detect changes in surface reflectivity associated

with changes in the terrain. This analysis uses the standard GPR signal processing

workflow and post-processing algorithms. The signal processing workflow is as fol-

lows: trace residual median filter, 2-octive bandpass filter, time zero correction using

the Modified Energy Ratio (Wong et al., 2009), principle component analysis deci-

sion based eigenimage filtering, geometric spreading correction by t2 scaling, trace

smoothing, and manual trace removal of stationary traces. The radargram was then

processed for terrain characterization by taking the L2 norm of each trace, and then

calculating the variance in a moving window.

The processed radargram (Figure 4.20a) is a 200 m section of the Unimog cross

country test that experienced changes in terrain. The black Xs on the axes are the

50 m fiducial marks, and the magenta Xs are double marks indicating a change in

the terrain type. The type of terrain at a given position is unknown; presumably, the

shubland terrain extends from 0.4 to 0.53 and 0.57 to 0.6, and the puddled gravel
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Figure 4.20: a) A section of the radargram after signal processing. A faint reflection
from the thin snow cover (∼ 6 ns) is a precursor to the strong ground reflection (∼ 8 ns).
b) The maximum normalized L2 norm of each trace has a lower frequency signal over the
shrubland and higher frequency (noisy) characteristic across the (presumed) puddled
gravel road. c) the variance of b) computed in a moving window of 251 traces is used
as an edge detector, where the spikes indicate changes in terrain. The black Xs on the
axis are the 50 m fiducial marks, and the magenta Xs are double marks indicating a
change in the terrain type. The spikes in c) align with the magenta marks within a
small relative positioning error.
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road is the segment from 0.53 to 0.57. The L2 norm of each trace was calculated

then normalized by the maximum value (Figure 4.20b). This section contained the

maximum trace norm at 565 m distance. Then the variance of normalized trace

L2 is calculated in a moving window of 251 traces (Figure 4.20c). The spikes in

variance align with the magenta Xs to an acceptable positioning error on the order

of meters. This fairly simple method demonstrates the usefulness of GPR for terrain

change detection, that has the potential for land surface characterization in real-time

applications.

Amplitude Phenomenon via Frequency and Polarization

Modulation in Wet Snow

Common offset GPR experiments were conducted at LQ2 on July 29, 2019, with

900 MHz and 1600 MHz antennas. The antennas were placed in a sled and were

pulled by foot on top of the snowpack. The co-polarized 900 MHz antennas were

able to penetrate the deep and wet snowpack, imaging the reflection off of the ground

surface (Figure 4.21). The same transect was repeated with the 1600 MHz antennas,

but the co-polarized signal was unable to penetrate through the wet snow, as the

image is incoherent with no obvious reflection from the snow ground interface (Figure

4.22). Experiments using cross-polarized antennas were conducted at 1600 MHz.

Although the ground reflection is not as obvious as in Figure 4.21, it can be seen

with cross-polarized antennas (Figure 4.23) where it is not distinguishable using co-

polarized antennas (Figure 4.22). This phenomenon of L-band radar polarization can

be explored for its potential in quantifying LWC, and in its potential for wet snow

terrain detection and navigation.
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Figure 4.21: An east-west transect at LQ2 with 900 MHz antennas. The ground
reflection is the brightest horizon of the image. The ground dips from ∼ 5 ns to ∼ 15 ns
over the first 100 m of the transect then remains at ∼ 15 ns.

Figure 4.22: The same transect as Figure 4.21 at 1600 MHz with co-polarized antennas.
The radar energy was attenuated at the higher frequency due to snow LWC. The ground
reflection is not apparent in the image.

Figure 4.23: The same transect as Figure 4.22 with cross-polarized 1600 MHz antennas.
The ground reflection is faint though visible (compare with Figure 4.21), where it is
not visible with co-polar antennas, pretty curious.
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4.4.4 Conclusion

Various ground-penetrating radar methods were tested in wet, ephemeral snow

upon various terrains and in deep, wet snow, overlying hilly shrubland at Camp Are-

nales, Chile. Common midpoint gathers were used to determine the electromagnetic

velocity of the radar signal traveling through wet snow. The velocity estimate was

combined with an estimate of snow density from nearby snow pits to estimate LWC.

Snow LWC was greater in the thin slushy snow (7.17±1.33%) than in the deeper snow

at higher elevation (3.65 ± 0.35%). Vehicle testing on cross country circuits showed

that GPR can detect changes in the terrain using the magnitude and variance of

the signal reflected from the ground surface in an automated way. Experiments us-

ing co- and cross-polarized 1600 MHz antennas show that in wet snow conditions

where attenuation dominates, cross-polarized antennas outperform the conventional

co-polarized radar acquisition.

4.5 Over-snow Vehicle Mobility Index

Assessment and Prediction

During the SnowEx 2020 Grand Mesa Intensive Observation Period (IOP) a small

unit support vehicle (SUSV) was performance tested. I developed a vehicle mobil-

ity performance index, coined the Normalized Difference Mobility Index (NDMI), by

joining vehicle speed and driver throttle position using a difference-sum ratio. The

SUSV performed best on the groomed snowmobile trails and showed reduced perfor-

mance off-trail. The measured NDMI was distributed spatially by trialing both MLR

and decision tree regression models that were trained on the SWE, depth, density,

and LiDAR terrain and vegetation features developed in Chapter 3. I demonstrate
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Figure 4.24: The BV-206 small unit support vehicle (SUSV) on Grand Mesa, Colorado.

methods for integrating vehicle and environmental data to predict SUSV mobility

within a ∼ 2 km2 area of the Grand Mesa study area.

4.5.1 Small Unit Support Vehicle

An over-snow vehicle has the capability to travel cross-country over snow-covered

terrain, where normal wheeled (HMMWV) and tracked vehicles (AAV and APC)

cannot go. The SUSV is a Swedish made, BV-206, over-snow vehicle (Figure 4.24).

The SUSV has two cabins joined by an articulating drive-shaft that independently

drives the four, 62 cm wide rubber tracks. The SUSV has very low ground pressure

(12 kPa), and weighs 4340 kg with a carrying capacity of 2000 kg, or 17 personnel.

This vehicle is amphibious and can be transported by a helicopter sling load. These

advantages make the SUSV strategical for over-snow campaign advancement (Marine

Corps, 1988).

Vehicle Instrumentation

The SUSV was equipped with a vehicle data acquisition system that contained a

built in Inertial Measurement Unit (IMU) which measured linear accelerations in x, y



155

Figure 4.25: The SUSV test circuit (black) begins and ends on Land’s End Loop trail
(red). The stripe crossing the trail is the start/finish line (white). The circuit direction
is counter-clockwise.

and z, as well as roll, pitch, and yaw. A GPS anntena attached the roof of the SUSV

provided location and vehicle speed data. The vehicle data system also recorded

driver inputs: steering angle, throttle position, and brake position. Wheel speed

sensors equipped to the SUSV were damaged during testing and provided no usable

data. Over packed snow roads, the SUSV can travel upwards of 30 kph. However,

speeds exceeding this maximum were jarring to the instrumentation over whoops and

bumps on the Land’s End Loop snowmobile trail.

Vehicle Test

On January 31, 2020, the SUSV was tested on a counter-clockwise circuit begin-

ning and ending on Land’s End Loop trail (Figure 4.25). The SUSV drove along the

groomed trail and cross-country in virgin snow in a quasi figure-eight. During this

test the vehicle reached a top speed of 18 kph and maximum throttle position of 65%.
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4.5.2 Normalized Difference Mobility Index

Prior to calculating NDMI, the vehicle speed

V̂ =
V

maxV
− minV

maxV
, (4.28)

was normalized using 30 kph as the maximum speed. Throttle position (τ ) is recorded

as a percentage of wide open. Vehicle speed and throttle position data were then

integrated using the band ratio parameter (Rouse Jr. et al., 1974). The normalized

difference mobility index

NDMI =
V̂ − τ
V̂ + τ

(4.29)

rewards greater speed and reduced throttle. Wider throttle position penalizes the

mobility index. Larger τ indicates mobility inefficiency in situations under reduced

traction where throttle is applied to gain or maintain speed. At top speeds, when

throttle position is reduced the NDMI approaches the maximum value near one. The

NDMI for the example SUSV performance test is shown in Figure 4.26. Values ⪆ 0

indicate satisfactory vehicle mobility. This initial result is confirmation, as the NDMI

distinguishes the snowmobile trail from the virgin snow. On the higher density and

sintered snowmobile trail the NDMI is positive valued, while in lower density and less

cohesive snow the NDMI drops below 0.
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Figure 4.26: Normalized Difference Mobility Index was calculated from normalized
vehicle speed and throttle position data.
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4.5.3 Mobility Prediction using Snow, Terrain, and

Vegetation Features

In Chapter 3 multiple linear regression of LiDAR features was applied to spatially

distribute the average snow density that was measured from GPR TWT and LiDAR

snow depth observations. In this extension, I applied MLR with first order interac-

tions and bagged decision trees to spatially distribute the NDMI measured on the

SUSV test course. Principal component analysis (PCA) was applied within the re-

gression to reduce the parameter space to a set of orthogonal vectors, which together

explain of 99.5 % of the data variance. Ten-fold cross-validation was applied to limit

over-training.

Data Augmentation

Snow – SWE, density, and depth – terrain – elevation, slope, and aspect, of the

snow surface and ground – and vegetation – height and proximity – features were

established as predictors of NDMI. These predictor data were augmented or processed

in the following ways prior to model training.

Snow Density The estimated spatial snow density (Figure 3.7) does not capture

the unnatural density of the snowmobile trail. These data were augmented with

the surface density of the snowmobile trail that was estimated from a CMP gather

(Meehan, 2021a). The raster coordinates of Land’s End Loop were located using a

k-d tree searcher within 5 m buffer around the coordinates of the trail provided in

the SnowEx 2020 GIS data (Hiemstra et al., 2021). Along this path the modeled

densities were replaced by random draws from the the surface density distribution

(Figure 4.27b). The augmented density raster is shown in Figure 4.28
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Figure 4.27: Snow surface a) depth and b) density, and c) total depth and d) bulk
density were estimated from a radar CMP via linear regression with bootstrapping.
The surface density distribution was randomly sampled to replace the density values
along Land’s End Loop (Figure 4.28)

Figure 4.28: The density modeled in Chapter 3.3.4 was augmented with the surface
snow density measured on the snowmobile trail. Vegetated areas are shown with stip-
pling.
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Snow Depth The LiDAR flight occurred on 1 February, 2020, the day following

the SUSV testing. On average the SUSV sunk about 30 cm into the virgin snow, and

thus, the SUSV left an imprint on the LiDAR estimated snow depth. As to not bias

the predictor data, the LiDAR depth raster was touched up along the SUSV test trail.

The pixels within a 2.5 m and a 5 m buffer of the SUSV test circuit were found using

a k-d tree searcher. The surrounding pixels of the 5 m buffer that do not intersect

with the 2.5 m buffer were used to estimate the local uncompacted snow depth on

the SUSV cicuit. For each pixel within the 2.5 m buffer the mean snow depth from

the nearest pixels of the 5 m buffer were assigned.

Sinkage The sinkage depth, represents the height which undisturbed snow must

compact before a vehicle can apply tractable forces allowing for forward motion

(Shapiro et al., 1997). As a parameter of the predictive modeling, the expected

sinkage depth (z) of the SUSV was calculated

z = h

(
1−

(
ρo

ρf

))
, (4.30)

following Shapiro et al. (1997), where h is the LiDAR measured snow depth, ρo is

the initial rasterized bulk snow density, estimated from MLR (Chapter 3.2.6), and ρf

is the final snow density, assumed to be 500 kg/m3 after vehicle compaction. This

sinkage model was developed for shallow snow, where the compacted snow makes

contact with the ground. However, the estimated sinkage agreed with the sinkage

of ∼ 30 cm observed in the field, showing the applicability of this method in deeper

snowpacks.
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NDMI The k-d tree searcher was applied to grid the SUSV data to the 1 m× 1 m

spatial data (Chapter 3.2.4), by extracting the nearest pixels within a 1 m buffer and

calculating the median. The SUSV was tested in unforested terrain, which has little

information about the effect of vegetation on mobility. The assumption was made

that if the distance between trees was less than 5 m the mobility would be poor. The

NDMI training data were augmented with randomly sampled pixels within forests

(Vprox < 5 m). The NDMI value assigned to the vegetated pixels was drawn randomly

from a normal distribution with mean of −0.9 and standard deviation of 0.1. The

number of vegetated pixels approximately equalled the number of unvegetated pixels.

Northness The 0 − 360◦ aspect data (A◦) were normalized to a northness index

(N̂) by the transformation

N̂ =
abs(A◦ − 180)

180
(4.31)

Normalization The snow, terrain, and vegetation features (β) were centered around

the median value then normalized by the interquartile range (IQR).

β̂ =
β −median β

IQR β
(4.32)

All predictors, excluding northness, and vegetation height, were normalized by Equa-

tion 4.32.
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4.5.4 Results

Multiple Linear Regression NDMI predicted using the MLR with first order

feature interactions achieved an R2 = 0.8 and RMSE = 0.18. The MLR model (Figure

4.29) informs highest mobility index on the groomed trail, and good performance in

average depth snow of average density. Low NDMI is predicted in deep snow drifts

and heavily vegetated areas.

Bagged Decision Trees The bagged decision tree estimated NDMI (Figure 4.30)

more clearly delineates Land’s End Loop with the greatest performance index. Similar

to the MLR results, areas with average snow depth are preferred to deep snow drifts.

Heavily vegetated areas are more clearly identified by the lowest NDMI values. The

bagged decision tree model has R2 = 0.94 and RMSE = 0.1
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Figure 4.29: NDMI distributed using Multiple Linear Regression with first order fea-
ture interactions.

Figure 4.30: NDMI distributed using bagged decision tree regression.
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4.5.5 Conclusion

Vehicle mobility maps are useful for decision making in over-snow operations.

Snow, terrain, and vegetation affect vehicle performance, however, due to the spatial

variability of these factors, vehicle performance is challenging to quantify and predict.

To characterize vehicle performance, the Small Unit Support Vehicle was tested over

virgin snow and groomed snowmobile trail on Grand Mesa, Colorado. The Normalized

Difference Mobility Index was contrived as a simple indicator of SUSV performance,

by joining vehicle speed and throttle position data. The NDMI was measured along a

test course which traversed on- and off-trail. Snow, terrain, and vegetation informa-

tion acquired via ground-based radar and LiDAR remote sensing observations were

developed into a set of NDMI predictors. Using multiple linear regression and deci-

sion tree methods NDMI was predicted with a high degree of accuracy throughout

a ∼ 2 km2 study area. A NDMI value of 0 ± 0.1 indicates average vehicle mobility,

values greater than 0.1 represent terrain where vehicle efficiency is above average, and

values less than −0.1 represent terrain where vehicle efficiency is below average.
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SUMMARY

Quantifying snow properties at various spatial and temporal scales requires the

analysis and data integration of multiple sensors and modeled estimates. Various

types of snow were assessed by comparing micromechanical property estimates with

macro-scale measurements of hardness, elastic modulus, and shear strength. Spatial

estimates of firn depth and density were achieved through multi-sensor radar velocity

analyses. Multi-polarization radar travel-time information was integrated with air-

borne LiDAR seasonal snow depth information to estimate density. Regression-based

prediction distributed snow properties and over-snow vehicle performance where Li-

DAR information was available. The algorithms developed to infer snow properties

are primary to this dissertation, however these methodological advancements were

used to accomplish scientific outcomes on kilometer scales – be that water equivalent

estimation or vehicle mobility performance.

Snow and firn depth and density are physical properties necessary for estimating

SWE and SMB. To quantify spatial variability in these properties, I applied various

algorithms for multi-offset GPR inversion (horizon velocity analysis, spectral velocity

analysis). Density and depth information along radar transects initialized empirical

and numerical firn models for estimates at depths greater than the maximum offset

of the array, due to limitations of the normal moveout approximation. Additionally, I

joined remotely-sensed snow depth with ground-based TWT that was detected from
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multi-polarization coherence to infer the average snow density. Using this information

as the response variable in regression predicted from LiDAR features, I estimated

spatially continuous snowpack density with depth invariability. Given these advances

in large scale multi-offset GPR analysis, it may be possible to extrapolate density-

depth information from surface elevation and accumulation inputs.

In seasonal snow, the age component of annual water equivalent estimation is triv-

ial. For SMB quantification, the age of firn layers must be measured from chemistry

and dust analysis of cores. Firn models parameterized by radar depth and density

may also provide the firn age as a function of depth. I used both empirical and

numerical simulations of firn age for the purposes of SMB estimation and signal pro-

cessing, however the modeled ages were still calibrated to known measurements to

accurately estimate annual SMB. Radar derived estimates require in-situ observations

for evaluating the estimated density. As the spatial extent of radar estimated snow

and firn properties increases, so does the need for in-situ observations. However, I

have shown with examples from studies located in Greenland, Colorado, and Alaska,

that the radar inversion processes yield meaningful results that are sensitive to the

spatial variability of snow properties. Seasonal SWE, and annual SMB was estimated

within 10 % uncertainty, on average. Wave-like propagation phenomena, similar to

the kinematic wave propagation of firn isochrones, is apparent in the Wolverine glacier

density model. In-situ observations cannot be made at the spatial resolutions required

for validating the radar retrieved signal. This is a vexing problem, however, using

geostatistical methods I have estimated the length scales of variability for snow den-

sity, in addition to depth and SWE. These results suggest the maximum separation

distance between observations to resolve the spatial patterns. For seasonal snow on
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Grand Mesa, Colorado this distance is ⪅ 100 m. While on the Greenland Ice Sheet,

densification processes happen over scales ⪆ 1000 m. These novel findings revealed

the relationships between snow density and wind, terrain, and vegetation.

Coherence attributes remain a vital tool for geophysical interpretation, and are

at the core of the radar process automation within this dissertation. In Chapter 2,

I developed a semi-automatic horizon tracking algorithm which predicts subsequent

picks by maximizing the stacked amplitude. This algorithm was applied in the horizon

velocity analysis for estimating the 2015 − 2017 SMB. Multi-offset coherence within

spectral velocity analyses automated the interpretation and inversion on Wolverine

Glacier. Firn layers were automatically traced from OIB Snow Radar imagery us-

ing binarized classification of the coherence among adjacent traces (Chapter 4.2.1).

This technique was newly applied to calculate the multi-polarization coherence for

automatic ground surface detection beneath seasonal snow cover (Chapter 3). Cross

polarization was shown useful in illuminating the ground reflection in wet snow. The

presence of liquid water within the pore space of snow confounds radar velocity anal-

ysis for density estimation. Currently, an estimate of dry-snow density is required for

estimating LWC. The prospect for multiple polarization inversion for LWC estimation

needs further exploration.

Spatial variability in the mechanical properties of snow remains largely unknown.

This knowledge gap is in part due to the current capabilities of instrumentation and

limitations in the theory used for data inversion. Distributing mechanical properties

spatially also needs investigation. Cone penetrometers measure the combined forces

normal and tangential to the cone tip. However, vertical penetration is insensitive

to lateral shear forces, which are important for understanding the snow deformation
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under traction loads. Several tools used for measuring roads and soil were tested for

relationships with micro-mechanical properties estimated by the SMP. The Ramm-

sonde penetrometer hardness index was found to be correlated with the rupture force,

penetration force, strength, and density estimated by the SMP. Shear force measured

by the shear vane at mechanical failure was found to be correlated with the number

of microstructural elements engaged with the penetrometer tip. To measure snow

response to shear loads, a bevameter design is possible solution under development.

Without direct measurements of mechanical snow properties, inferences and spatial

estimation processes remain challenging. From these experiments I decided that the

path toward vehicle mobility modeling would involve snow depth and density as a

surrogate for the unknown mechanical properties.

The normalized vehicle mobility index related driver and vehicle data to the terrain

trafficked by the over-snow vehicle. This performance index achieved an important

step in mobility data integration and was regressed against the snow, terrain, and

vegetation properties developed in Chapter 3 for spatial mobility prediction. This

prediction framework can be expanded to include snow mechanical properties. The

NDMI value for an over-snow vehicle indicates efficiency of mobility, which is valu-

able information for planning logistical needs over long campaigns. SUSV tracks

were identified in airborne LiDAR snow depths, which has implications for tactical

reconnaissance. Over-snow vehicles are fully capable of traversing almost any snow

condition, but it is clear in measurements and mobility prediction that prepared snow

surfaces offer the greatest performance.



169

The derived snow, firn, and mobility property estimates may be assimilated into

numerically modeled processes. Measurements and estimates, which capture the large

scale processes and variability of snow properties at high spatial resolution, were engi-

neered to serve as evaluation data. Importantly, estimated snow properties also rely

on observations for calibration and validation. The conundrum of estimated accu-

racy was answered through uncertainty analyses that flow through the data process

to the outcome. Process automation, repeatability, and accuracy were key design

parameters for any of the algorithms developed within this work. The many different

campaigns, objectives, and outcomes of this research in multi-sensor analysis doc-

umented the successes and limitations of inversion techniques for a broad range of

sensors and cryosphere applications.
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López-Moreno, J. I., Fassnacht, S. R., Heath, J. T., Musselman, K. N., Revuelto, J.,

Latron, J., Morán-Tejeda, E., & Jonas, T. 2013. Small scale spatial variability of

snow density and depth over complex alpine terrain: Implications for estimating

snow water equivalent. Advances in Water Resources, 55, 40–52.

Lukas, Vicki, & Baez, Vanessa. 2021. 3D Elevation Program—Federal best practices:

U.S. Geological Survey Fact Sheet 2020–3062.

Lutz, Eric, Birkeland, Karl, & Marshall, Hans Peter. 2009. Quantifying changes in

weak layer microstructure associated with artificial load changes. Cold Regions

Science and Technology, 59(2-3), 202–209.

Lv, Zhibang, & Pomeroy, John W. 2020. Assimilating snow observations to snow

interception process simulations. Hydrological Processes, 34(10), 2229–2246.

Margrave, Gary F., & Lamoureux, Michael P. 2019. Numerical Methods of Exploration

Seismology. Cambridge University Press.

Marine Corps, United States. 1988. Commander’s Guide to Cold Weather Operations.

Fleet Marine Force Reference Publication, 7(24), 252.

Marks, Danny, Dozier, Jeff, & Davis, Robert E. 1992. Climate and energy exchange

at the snow surface in the Alpine Region of the Sierra Nevada: 1. Meteorological

measurements and monitoring. Water Resources Research, 28(11), 3029–3042.



183

Marshall, Hans-Peter. 2005. Snowpack spatial variability: Towards understanding

its effect on remote sensing measurements and snow slope stability. Ph.D. thesis,

University of Colorado.

Marshall, Hans-Peter, & Johnson, Jerome B. 2009. Accurate inversion of high-

resolution snow penetrometer signals for microstructural and micromechanical

properties. Journal of Geophysical Research, 114(F4), F04016.

Marshall, Hans Peter, Koh, Gary, Sturm, Matthew, Johnson, J. B., Demuth, Mike,

Landry, Chris, Deems, Jeffrey S., & Gleason, J. A. 2006. Spatial variability of the

snowpack: Experiences with measurements at a wide range of length scales with

several different high precision instruments. Proceedings ISSW 2006. International

Snow Science Workshop, Telluride CO, U.S.A., 1-6 October 2006, 359–364.

Marshall, H.P., Vuyovich, Carrie, Hiemstra, Chris, Brucker, Ludo, Elder, Kelly,

Deems, Jeff, Newlin, Jerry, Bales, Roger, Nolin, Anne, & Trujillo, Ernesto. 2019.

NASA SnowEx 2020 Experiment Plan. 1–100.

Masson-Delmotte, Valérie, Zhai, Panmao, Anna, Pirani, Connors, Sarah, Péan,
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We introduced the methodological concepts of our radar measured and modeled

approach for reconstructing historical SMB in Section 2.3. Within Appendix A, we

provide the core computations used and give more insight into the methods of veloc-

ity analysis, parameter estimation, imaging, and interpretation. The flow diagram

(Fig. A.1) works through the MxHL process to show not only the radar processing

steps, but also the interconnectivity between the radar measured information and the

HL firn model.

We introduce our methods for interpreting the radar imagery (Appendix A.1)

and conducting horizon velocity analysis (Appendix A.2). We use the radar wave

velocity information for snow parameter estimation (see sections A.3 and A.4), and

use these results to parameterize the MxHL model in Section A.5. We then extend the

capabilities of the firn age and density models to enable our structure-oriented filter

(see section A.6) and refine our estimate of SMB using relative age model updates in

the stratigraphic age domain (Wheeler, 1958) and absolute age model updates in the

depth domain (see section A.7).
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Figure A.1: The workflow for our measured-modeled historical SMB reconstruction.
Colors correspond to the section reference where the concept is detailed. For example,
the gradient colors of Snow Parameter Estimation indicate that concept spans sections
A.3 and A.4.

A.1 Travel-time Horizon Interpretation

We developed a phase and amplitude tracking, semi-automatic picking algorithm

to measure the travel-times of radar wavefield events. The picker is semi-automatic

in that an initial pick on the horizon seeds the automatic tracking. Similar to picking

algorithms described by Dorn (1998), our seeded picker transforms a window of the

radargram surrounding the horizon of interest into radial distance and dip angle

coordinates (r, θ) and stacks the windowed image along the θ direction. The algorithm

determines the optimal direction by maximizing stacked amplitude. The subsequent
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automatic pick is predicted along the linear path of maximum stack 5 traces ahead

– which is the approximate length of the radar array. Then the windowed polar

transformation and prediction is repeated automatically. Travel-time picks between

predictions are interpolated using a distance-weighted scheme. The program has the

capability to toggle manual selection or re-seed the pick if the algorithm goes awry.

We picked the direct air wave, the direct surface wave, and the reflected wave from the

fall 2014 layer on each of the nine radargrams for velocity analysis. These early-time

events exhibit low noise with a travel-time standard deviation of 0.2 ns (1 sample).

Using this layer picker, we also picked five age-horizons (see section A.6) and 16

depth-horizons (see section A.7) to update the age model for SMB calculation.

A.2 Horizon Velocity Analysis

Direct (air-coupled and surface-coupled) wave arrival times are approximated the

linear travel-time equation known as linear moveout (LMO)

t = t0 +
x

VLMO

, (A.1)

where t is the measured one-way travel time and x is the antenna offset, with intercept

time (t0) and velocity (VLMO) representing unknown parameters. Reflected radar

waves exhibit non-linear travel-times as a function of offset that are approximated by

NMO. The x2 − t2 method (Green, 1938) linearizes the NMO equation

t2 = t20 +
x2

V 2
NMO

. (A.2)

where t is now the measured two-way travel time and VNMO is the NMO velocity or

stacking velocity.
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Prior to velocity analysis of the surface wave and reflection, we calibrated the

timing of each radar channel. Channel consistent travel-time overheads are caused

within the Sensors & Software multi-channel adapter by variations in the path lengths

of the circuitry and cables. During the instrument calibration process we apply

corrections (on the order of nanoseconds) to the time sampling of each channel by

picking the air-wave arrival times (Fig. 2.4) and solving Eq. (A.1) for the set of

perturbations that let t0 = 0 and VLMO = 0.2998 m/ns, the velocity of EM waves in

free-space.

We applied linear regression for near-surface velocity analyses using the picked,

one-way travel-times of direct wave arrivals traveling laterally through the shallow

snow and the two-way travel-times of reflected arrivals from the fall 2014 horizon. To

cast each system of equations into a matrix-vector product, the velocity parameter is

linearized by its reciprocal, called slowness, as S = 1
V
. The linear system of equations

has the form Gm = d for the vector d containing the recorded travel-times for

the respective moveout events. Equations (A.3) and (A.4) are the monomial basis

functions used for linear regression of LMO and NMO events. Equations (A.5) and

(A.6) are the model parameters and equations (A.7) and (A.8) are the respective

data. The least squares solution for m = G−1d is optionally solved in either L2 or L1

norm. We used the L2 solution which was estimated by QR factorization (Businger

& Golub, 1965). Advantages and convergence criteria of the L1 solution are discussed

in Aster et al. (2019).
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GLMO =

1 x1
...

...
1 xm

 (A.3)

GNMO =

1 x2
1

...
...

1 x2
m

 (A.4)

mLMO =

 t0

SLMO

 (A.5)

mNMO =

 t20

S2
NMO

 (A.6)

dLMO =

 t1...
tm

 (A.7)

dNMO =

 t
2
1
...
t2m

 (A.8)

A.2.1 Critically Refracted Waves

A snowpack model with a critically refracted raypath is sketched in Fig. A.2. The

following exercise calculates the travel-time of the wave following the hypothesized

path.

Figure A.2: The raypath of a critically refracted wave traveling through a
homogeneous snowpack. The wave is reflected at a layer boundary in the
firn and is refracted upon exiting the snow surface.

The snowpack is homogeneous with a thickness (h) and EM velocity (Vs). A half-

space of air (Va) is modeled above the snow surface. The transmitter and receiver

antennas are on the snow surface and are separated by some offset (x). In a ho-

mogeneous medium at a reflecting interface, the reflection angle (θr) is equal to the
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incidence angle (θi). Except for the case of total reflection, incoming radiation is also

refracted (transmitted) at the layer interface. When a wave is traveling from a slower

medium to a faster medium, according to Snell’s Law

sin θ1
sin θ2

=
V1

V2

, (A.9)

there is an angle of incidence that causes a critical refraction, known as the critical

angle (θc). Critically refracted energy is refracted at 90◦ and travels along the interface

boundary within the faster medium. By setting θ2 = 90◦,

sin θc
sin 90

=
V1

V2

, (A.10)

θc = sin−1

(
V1

V2

)
, (A.11)

θc is solved.

In Fig. A.2, θi = θr = θc. A critical refraction occurs along the free-surface

boundary when this equality is satisfied. The critical distance (xc) can be solved,

xc = h · tan θc , (A.12)

when θc and h are known. The refraction path length

lc = x− xc , (A.13)

and the NMO reflection path length 2lr, where
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lr =

√(xc

2

)2
+ h2 , (A.14)

are summed to calculate the refracted raypath length

l = 2lr + lc . (A.15)

The travel-time

tc =
2lr
Vs

+
lc
Va

, (A.16)

from Tx to Rx is calculated for any offset beyond xc.

Travel-times calculated from this model can be used to identify the refracted waves

in Fig. 2.4. Residual travel-time corrections are not applied to Fig. 2.4. Add these

approximate travel-time corrections to the data gather when comparing the modeled

travel-times: (4 m) ∼ 1 ns, (8 m) ∼ 1.5 ns, (12 m) ∼ 3 ns. For reference, 0.5 wavelet

cycles is ∼ 0.5 ns.

A.3 Parameter Estimation: Depth, Density, and

SMB

The wave propagating along the ice sheet surface is estimated to respond to snow

depths no greater than the wavelength

zLMO =
VLMO

f
, (A.17)

calculated from the nominal radar frequency (f ≈ 500 MHz) and snow velocity

(VLMO). Eq. (A.17) was developed on Occam’s razor. This simple approximation for
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the penetration of the surface coupled wave was found to be consistent with the depth

and average density measured at GTC15 and Pit 15 W. The depth of the reflection

horizon for a subsurface propagating wave

zNMO =
VNMO · t0

2
, (A.18)

is estimated assuming that the NMO approximation is valid, meaning that VNMO is

approximately equal to the average velocity above the horizon.

The complex refractive index method (CRIM) equation relates a mixture of known

dielectric properties to an estimated effective bulk property (Wharton et al., 1980).

We estimated the average snow density from the EM velocity by the CRIM equation

ρs = ρi

(
1− Va(Vi − Vs)

Vs(Vi − Va)

)
, (A.19)

letting the snow and firn pore space be unoccupied free space with the velocity Va =

0.2998 m/ns and the matrix to be composed of only ice with EM velocity Vi =

0.1689 m/ns, and density ρi = 917 kg/m3 (Ulaby et al., 1986). The quantities are

given the subscript a for air, i for ice, or s for snow and firn. Liquid water within

the firn layer was neither present within snow pits nor firn cores sampled during this

field study, and is therefore not considered in Eq. (A.19).

Surface mass balance is conventionally measured using GPR by interpreting a

select few IRHs using a constant age interval and applying the average normalized

snow and firn density over this interval (e.g. Lewis et al., 2019). Instead, we rely

on the models of density and age, which are discretized in depth at a comparable

resolution to the GPR data. We measured instantaneous SMB (ḃ), in meters of water
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equivalent per an infinitesimal time

ḃ =
ρs

ρw

dz

da
, (A.20)

as the product of the snow and firn density, normalized by the density of water

(ρw), and the submergence rate of stratigraphic isochrones

(
dz

da

)
in a Lagrangian

reference frame. The submergence rate is the continuous equivalent of interpreting

a few horizons with large age intervals. In practice, we approximated this derivative

using second-order accurate finite difference weights calculated from the Fornberg

(1988) algorithm, because the age-depth model is not discretized in regular intervals.

The median discrete interval of the age-depth model is 14 days with a minimum

interval of seven days and a maximum interval of 20 days. We found that the local

truncation error of the second-order accurate derivative was 5 × 10−5 m w.e. a−1,

which has a leading error term an order of magnitude less than what we consider to

be significant.

A.4 Parameter Uncertainty: Monte Carlo

Bootstrapping and Error Propagation

To ascertain the uncertainty in the radar inversion, we implemented a bootstrap-

ping algorithm by randomly sub-sampling the CMP travel-times from the LMO and

NMO horizons and re-solving the linear regression. In a roll-along fashion, travel-

time observations of five neighboring CMP gathers were binned and re-sampled by

removing two offsets at random and then randomly sampling one travel-time obser-

vation for each remaining offset in the bin. This algorithm creates many realizations

of the intercept time and snow velocity by the jackknife technique (Efron & Stein,
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1981). Realizations of depth and density were generated from the current realization

of m following Equations (A.17) – (A.19). The bootstrapped distribution M̂ was

generated from 1000 jackknifed realizations to establish uncertainty regions (Efron &

Tibshirani, 1986). A distribution was gathered for each parameter: intercept travel-

time, velocity, depth, and density. The mean of M̂ yields the expected value of the

parameter (m̂) with a standard deviation (σ̂). We developed uncertainty regions for

each bootstrapped distribution assuming the standard normal distribution

m̂± ẑ σ̂ , (A.21)

and assessed the z-score at ẑ = 1, which has the central interval of 1σ̂ (Efron &

Tibshirani, 1986). The jackknifed estimates of variance for snow density and depth

provide the means to estimate uncertainty in the 2015 − 2017 SMB. We estimated

the variance of SMB by the linear error propagation equation

σ̂2
ḃ
= σ̂2

zρ
2 + σ̂2

ρz
2 + 2σ̂ρzρz , (A.22)

where the covariance σ̂ρz was calculated from the parameter distributions. The result-

ing uncertainty measure is the standard interval developed from Eq. (A.21). The snow

parameters and uncertainties presented in Fig. 2.5 were smoothed using a Gaussian

kernal with a standard deviation of 250 m.

As we presented in Fig. 2.9, we propagated uncertainties in SMB by Monte

Carlo simulation, which incorporated the uncertainty in the age of dated isochrones

(σa = ±31 days) and the uncertainties in the snow parameters used to generate the

firn model (Appendix A.5). We estimated the ±31 day uncertainty by summing in
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quadrature the uncertainties in the firn core age (±18 days; Rupper et al. (2015)) and

the radar estimated depth that was mapped to the GTC15 age-depth scale (±25 days)

developed by Lewis et al. (2019). We delimited the annual SMB calculation between

January 1, 1984 and January 1, 2017, which are the complete years between the date

of the earliest layer picked and the date of data acquisition. We filtered the outlying

1% of the instantaneous SMB model and interpolated between neighboring values.

We quantified annual average SMB and its uncertainty using Monte Carlo simula-

tion, by generating 1000 randomly initialized density-depth models (Appendix A.5)

from the snow parameter distributions. Rather than randomly generating an age

model in this process, because we updated the age-depth model by interpreting IRHs

(Appendix A.6), we interpolated the age model to the depth axis that was defined

by the Monte Carlo realization of the density model. We calculated the numerical

derivative to estimate the instantaneous SMB (Eq. (A.20)), extracted the intervals

that composed each annual layer, and averaged the samples of instantaneous SMB

into one realization of annual SMB. After 1000 realizations were generated for each

of 33 years in the period 1984 − 2017, we calculated the multidecadal mean SMB

and variance using Monte Carlo resampling. Repeating for 1000 simulations, we ran-

domly sampled an annual SMB realization from 10 annual intervals and averaged. In

the following section, to clarify the capabilities of the radar analysis we ignore the

uncertainties in the firn core ages and demonstrate the radar inversion as the only

source of uncertainty in SMB when paramertizing the MxHL model.
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A.5 Parameterizing the MxRadar - Herron &

Langway (1980) Model

The Herron & Langway (1980, HL) model requires three parameters: mean snow

density, mean annual accumulation, and 10 m firn temperature. We use the snow

properties estimated by the radar inversion (Fig. 2.5) and MERRA reanalysis temper-

ature to parameterize the HL model in our measured-modeled, MxRadar-HL, frame-

work. We chose the density parameter as the average of the densities estimated by the

surface-wave (LMO) analysis and the reflected wave (NMO) analysis of the fall 2014

isochronous reflection horizon (IRH). We approximated the accumulation parameter

using the radar estimated SMB (Eq. (A.20)) that represented the average of the previ-

ous ∼ 2.5 years – as the IRH depth indicates the date November 30, 2014, established

by the firn core analysis, and the date of acquisition was June 13, 2017. Mean annual

2 m air temperature was calculated from MERRA (1979− 2012) data (Birkel, 2018)

and used as a proxy for 10 m firn temperature (Loewe, 1970). MERRA annual tem-

peratures at GTC15 over the period 1979−2012 show an increase of 0.06±0.01 ◦C a−1

with a mean of −25.7± 1.0 ◦C.

We evaluated the MxHL parameterization by comparing it to the GTC15 param-

etization (Fig. A.3) and an optimum set of parameters that were determined by

minimizing

ϕ =
RMS(τHL − τGTC15)

range(τGTC15)
+

RMS(ρHL − ρGTC15)

range(ρGTC15)
, (A.23)

using the Nelder & Mead (1965) method (NM) for nonlinear optimization. The ob-

jective function ϕ (Eq. (A.23)) measures the root-mean-squared error of the modeled
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(HL) and measured (GTC15) age (τ ) and density (ρ) as a percentage, normalized by

the range in the data for the entire depth of GTC15 (∼ 28.5 m). An objective func-

tion measured by either τ or ρ individually does not contain a unique global solution

upon minimization. We found that an appropriate fit to GTC15 τ or GTC15 ρ could

be achieved with a range of parameterizations, alluding to the non-uniqueness which

we regularized by minimizing ϕ as a function of both the age and density.

Average SMB, density, and 10 m bore hole temperature measured at GTC15

provided the true parameterization for the HL model. The age-depth scale (1969-

2017) was measured by analyzing seasonal oscillations of δ18O, major ions, and dust

observed in the firn core (Lewis et al., 2019). Annual SMB was measured by combining

the age-depth scale with the firn density (Lewis et al., 2019). We estimated the GTC15

mean annual SMB using Monte Carlo resampling to assess uncertainties (0.306 ±

0.021 m w.e. a−1). We chose the GTC15 density parameter (359± 36 kg/m3), which

is the “commonly reported average density over the first one or two meters of snow”

(Herron & Langway, 1980, p. 7), at the interval that had the minimum residual with

the optimum density. The central depth of the core interval nearest to the optimal

density is 1.22 ± 0.13 m. Uncertainties in the density parameter are assumed to

be within 10% of the measurement. We measured firn temperatures using borehole

thermistors at 6, 8, 10, 12, and 14 m depth. After the thermistor string reached

equilibrium, temperatures between 6 and 14 m depth closely agreed and we used

Monte Carlo resampling to estimate the 10 m firn temperature (−24.9± 0.2 ◦C).

The HL model parameterized by GTC15 data yielded ϕ = 6.4%, which is near

the optimum ϕ = 6.2%. The MxHL parameters obtained in the vicinity of GTC15

achieved an agreeably close fit with ϕ = 7.0%. Table A.1 summarizes the three
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HL model parameterizations and their accuracy. Figure A.3 displays the MxHL

parameters overlaid on slices of Eq. (A.23) through the GTC15 parameters.

We completed the radar analyses using the MxHL model after making the follow-

ing adjustments. We refined the density model using the LMO and NMO derived

densities and depths to estimate the snow density-depth gradient. Using a linear

model we replaced the upper one to two meters of the HL model with a piecewise

segment that was extrapolated to the surface and merged with the HL model at the

intersecting depth in the snow. We also refined the age model and improved the radar

image quality using structure-oriented filtering (see section A.6).

Figure A.3: Equation A.23 is represented as slices through the GTC15 parameteriza-
tion. Viewing the 3D objective function this way shows the model sensitivity to the
parameters. The MxHL parameters are evaluated against the GTC15 parameterization
with 1σ uncertainties. These data are summarized in Table A.1.

Table A.1: HL parameters from MxRadar (MxHL), GreenTrACS Core 15 (GTC15),
and Nelder & Mead (1965) optimization (NM) are compared. Uncertainties in the
GTC15 and MxHL parameterizations are expressed at 1σ. Accuracy is reported for
the modeled age (ϕτ ) and density (ϕρ) as the rms error and jointly as the normalized

summed rms error ϕ.

Parameters ḃ (m w.e. a−1) ρ (kg/m3) T (◦C) τ
RMSE

(a) ρ
RMSE

(kg/m3) ϕ (%)

MxHL 0.313± 0.009 367± 8 −25.7± 1.0 0.528 20.2 7.0
GTC15 0.306± 0.021 359± 36 −24.9± 0.2 0.40 20.0 6.4
NM 0.306 358 −23.1 0.350 19.0 6.2
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A.6 Structure-oriented Filtering in the Wheeler

Domain

Accumulated snow is deposited in isochronous layers that propagate slowly as the

firn stratigraphy evolves and are apparent in the radiostratigraphy (Arcone et al.,

2005; Ng & King, 2011). However, as demonstrated in this study, larger amplitude

stratigraphic undulations with wavelengths of ⪅ 5 km exhibit reduced coherence in

the GPR imaging, an effect that is worsened by increased surface roughness. As

described by Arcone et al. (2004), artificial fading in the GPR image along the limbs

of stratigraphic folds also interrupts the horizon continuity. The fading effect can be

seen in Fig. 2.8 as a discontinuity in the inflection point of a fold at 48 km distance and

∼ 11 m depth. It is important to accurately capture SMB variability at < 5 km for

evaluating downscaled surface mass balance models, but as we demonstrate, this effort

would be limited to only a few horizon selections here because of noise contamination

in the radar section.

Structure-oriented filtering techniques often determine the structure from the time

or depth image by localized eigenvalue decomposition of the image gradient tensor,

such as filters applying nonlinear anisotropic diffusion (Fehmers & Höcker, 2003).

We imposed the isochrone structure on the image, using the age model as a proxy

for the stratigraphic structure. We flattened the firn structure by converting the

time domain GPR image into coordinates of stratigraphic age, known as the Wheeler

(1958) domain. We then applied linear prediction filtering, because flattening the

traces improves their predictability by linear modeling. Conversion to stratigraphic

coordinates can be achieved using plane wave deconstruction filters to determine local
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slope fields from the image (Karimi & Fomel, 2015). But it is to our advantage to work

with the stratigraphic age because this information is necessary for SMB calculations.

We found our approach outperformed filters that determine the structure orientation

directly from the noisy image.

To implement the structure-oriented filter, we produced a noisy time domain radar

section from the multi-channel imagery (Fig. 2.7) by first transferring the measured-

modeled firn density to stacking velocity (VNMO) and then applying normal moveout

correction and offset stacking (Yilmaz, 2001). Provided that the radiostratigraphy in

depth mimics the firn layering and is isochronous (e.g. Spikes et al., 2004), we used

the HL age-depth model to estimate the firn structure orientation and age. To do so,

we first converted the age model from depth to travel-time (Fig. A.4) by a vertical

stretch (Margrave & Lamoureux, 2019) using the stacking velocity model. We created

a pseudo stacking velocity model (Vpseudo) with units of years per nanosecond by

dividing the age-travel-time model by the two-way travel times. Then we converted

the radar image from travel-time to the Wheeler domain by a vertical stretch using

Vpseudo (Fig. A.5). We oversampled in the Wheeler domain to prevent signal aliasing.

The age converted radargram has approximately flattened stratigraphy, such that any

row of the image is isochronous. If we knew the structure orientation perfectly, and

radar isochrones truly had the same age, the layers in the Wheeler domain would

be theoretically flat. By picking, we calculated the residual age of five IRHs with

an average epoch of 5.3 ± 2.7 years (the latest being the 1991 horizon) and used

1D shape preserving piecewise interpolation polynomials (Kahaner et al., 1989) to

create a grid of perturbations for the age-travel-time model (Fig. A.6). Perturbations

beyond the last picked horizon were set to zero. We applied the perturbations to the
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age model and re-flattened the image by stretching the traces to the updated age

model (Fig. A.7). Radar amplitudes are now approximately horizontal across each

row of the Wheeler domain image, indicating that the age-travel-time model fits the

firn structure and IRH theory.

We applied the fx-deconvolution noise suppression algorithm (Gulunay, 1986) to

the Wheeler domain radargram (Fig. A.8). Fx-deconvolution relies on autoregression

modeling of the GPR signal in the frequency domain to build the optimal complex

Wiener filter (Treitel, 1974). We applied the filter by averaging overlapping compu-

tations along the age axis to alleviate non-stationarity of the signal frequency. This

process can benefit any GPR imagery of polar firn, provided that an initial strati-

graphic age model, as a proxy for the structure, and methods to convert the image

domain are available. At GTC15 Spur West, due to the large spatial gradient in

SMB, it was necessary to determine the model residual and re-flatten the image be-

fore filtering. For GPR imagery expressing small or gradual SMB variability it may

be sufficient to apply the structure-oriented filter without residual corrections to the

Wheeler image.

A.7 Depth Imaging for Model Updates

We converted the updated age-travel-time model to depth using the stacking ve-

locity model and then we used the age-depth model to convert the Wheeler domain

image to depth. We applied a vertical stretch for each conversion operation (Mar-

grave & Lamoureux, 2019). Figure 2.8 reveals the smooth and continuous IRHs of

the depth image. The additional step of structure-oriented filtering extended the

interpretable isochrone record from 1991 to 1984 (which is only limited by the time-

window range of the radar acquisition). We picked 16 IRHs on the depth image with
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an average epoch of 2.1 ± 1.7 years. Over an equivalent depth range, this compares

to the seven IRHs at five year age resolution used by Lewis et al. (2019) to estimate

SMB along GTC15 Spur West. In the vicinity of GTC15 the residuals between the

GTC15 age-depth scale and the picked IRH ages were calculated. We created a sec-

ond set of age perturbations using 1D linear interpolation with linear extrapolation

to estimate perturbations beyond the deepest picked IRH (Fig. A.9), and we applied

these perturbations to update the age-depth model. We then used the updated age

model to calculate the instantaneous SMB.

Figure A.4: The age-travel-time model was calculated from pseudo velocities. Con-
tours of this image are isochronous travel-time horizons. January 1, 2010, 2005, and
2000 are labeled for reference. We used the age-travel-time model to flatten the
radar traces, by converting the time domain image into the age domain (Fig. A.5).
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Figure A.5: Using the initial age model, the Wheeler domain radargram has minor
remnant undulations. Because the rows of the Wheeler image are isochronous, the
undulations that deviate from row-wise horizontal are the model residual. If the age
model was correct the radar reflections would be entirely horizontal (Fig. A.7). By
interpreting five horizons of this image, we interpolated the model residual (Fig. A.6)
and applied these perturbations to update the age model such that it is accurate in
a relative sense.
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Figure A.6: Perturbations in the travel-time domain are calculated by picking IRHs
in Fig. A.5. When applied, the Wheeler domain image is reflattened (Fig. A.7), which
ensures that the age model is accurate in a relative sense. We rely on ages measured
from the firn core for absolute accuracy in the age model.
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Figure A.7: After interpreting five horizons of Fig. A.5, calculating the model
residual (Fig. A.6), and applying the perturbations to the age-travel-time model
(Fig. A.4), we re-flattened the Wheeler image. The radar amplitudes are now ap-
proximately horizontal, indicating that the updated age model is accurate according
to the IRH theory.
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Figure A.8: Flattening the traces improves their predictability by linear modeling. We
applied the fx-deconvolution algorithm (Gulunay, 1986) to suppress the random noise
that contaminates the linearly predictable signal.
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Figure A.9: We interpreted 16 IRHs of Fig. 2.8 to measure their relative age at depth.
We calculated the residual between our interpreted ages and the ages measured from
GTC15 and interpolated this grid of perturbations in the depth domain. We applied
these perturbations to the age-depth model which was used to calculate the SMB time-
series. Applying this set of perturbations makes the relative age-depth model accurate
in an absolute sense.
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APPENDIX B:

SPATIALLY DISTRIBUTED SNOW WATER

EQUIVALENT FROM GROUND-BASED AND

AIRBORNE SENSOR INTEGRATION AT

GRAND MESA, COLORADO, USA
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B.1 Evaluation of GPR TWTs

We evaluated the accuracy of the automatically determined travel-times at 870

intersections of the gridded GPR transects (Figure B.1). Travel-times from these

cross-over locations were initially collected within a 1 m radius and then split based

on the time interval separating the repeated passes. We chose an interval of 10

seconds to distinguish between the cross-over acquisitions. For each cross-over the

median TWT was selected. The correlation between the median GPR TWTs at the

cross-over locations is R = 0.8 with root-mean-square error (RMSE) of 0.9 ns and

mean error of 0.0 ns.

Figure B.1: The histogram of the difference in TWT at the 870 intersections of the
gridded GPR transects has a mean of 0.0 ns and RMSE = 0.9 ns.
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B.2 Evaluation of GPR and LiDAR Inferred

Density

We conducted a sensitivity analysis to evaluate how the errors in radar travel-time

and LiDAR snow depth affect the estimated snow density. This involved establishing

a level curve through the average snow values of the unforested area (mean density

295 kg/m3, mean TWT 8 ns, mean snow depth 96 cm) and applying perturbations

to these values to excite the density error (Figure B.2). Perturbations of up to ±1 ns

were added to the TWT and±15 cm were added to the depth. After the perturbations

were applied, to measure the density perturbations, the densities were evaluated and

the mean (295 kg/m3) was subtracted from this result. The error bars of Figure

B.2 represent the reported LiDAR error (7 cm) and the RMSE of the GPR TWT

cross-overs (0.9 ns). At the 1-sigma level, errors of approximately ±150 kg/m3 can

be expected from this method – where the GPR TWTs contribute a maximum error

in density that is roughly 30 % greater than that stemming from the errors in the

LiDAR measured snow depths.
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Figure B.2: Perturbations of up to ±1 ns and ±15 cm were added to the mean values, 8
ns TWT and 96 cm depth. The density was evaluated then subtracted from 295 kg/m3

to measure the density perturbation. The error bars represent the reported LiDAR
error and the RMSE of the GPR TWT cross-overs. Combined errors of ±150 kg/m3 can
be expected from this method, with the GPR TWT contributing about 30 % greater
error than the LiDAR snow depth.

B.2.1 Error Reduciton

The measurement errors in LiDAR elevations and GPR TWTs may translate to

errors in density that are larger than the range of densities observed in the snow

pits. To extract a meaningful density signal, we reduced the random error by filtering

outliers. We chose the interquartile range (IQR) of the LiDAR – GPR inferred den-

sities as the threshold for determining outliers, because the 25 % and 75 % quantiles

approximately agreed with the range of snow density observed in the snow pits. The
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outliers were uncorrelated spatially and temporally, as evidence that the errors are

random and can be treated with filtering. We applied a 2D median window with a

12.5 m radius (chosen to approximately match the resolution of the GPR grid nodes)

to smooth the densities within the IQR and interpolate those at the outlying locations.

Outlier filtering reduced the RMSE from roughly 150 kg/m3 to under 30 kg/m3.

B.3 Multiple Linear Regression

We applied multiple linear regression to predict the average snow density estimated

by the integration of snow depths and TWTs from the LiDAR and GPR data, using

terrain and vegetation features developed from LiDAR rasters as predictors. The

MLR model has the form

y = Xβ + ϵ , (B.1)

where y is the observed density along the GPR transects, X is a matrix with columns

containing the normalized LiDAR predictors at the coordinates along the GPR tran-

sects, β is the vector of the regression coefficients which we must estimate, and ϵ

represents the model residual. The process of model training is described in Section

B.3.1 and our method of determining the most important predictors follows in Section

B.4.

B.3.1 Parameter Estimation

From the method of least squares, the regression coefficients are estimated as

β = (XTX)−1XTy . (B.2)

Using cross-validation to assess the model accuracy and sensitivity, we estimated the

MLR model parameters. We trained the model with 1000 Monte Carlo simulations
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by randomly sampling 90 % of the density observations and testing on the remaining

10 %. Additionally, we repeated this process and randomly sampled only 10 % of

the data and tested on the remaining 90 %. In doing so, we created two sets of

parameters that robustly span the parameter space. The parameter estimates and

the bootstrapped estimates of the standard deviations (Efron & Tibshirani, 1986) for

the 90 % training (β90, σβ90) and the 10 % training (β10, σβ10) are presented in Table

B.1. Using these regression coefficients, Equation 1 is computed to distribute the

predicted densities. The modeled densities are insensitive to the training choice for

parameter estimation, as the RMSD between the two models is less than 1 kg/m3.

Table B.1: The MLR parameters were evaluated with cross-validation of 1000 Monte
Carlo simulations to assess the model sensitivity. Cross-validation used 90 % training
data (β90), 10 % test data, and was repeated with 10 % training data (β10), 90 % test
data. The parameter values and their standard deviations (σbeta) estimated via Monte
Carlo simulation are reported.

Predictor β90 σβ90 β10 σβ10

ρ0 277.27 0.03 277.30 0.25
Hs 0.48 0.03 0.48 0.27

aspectHs 0.08 0.04 0.06 0.34
slopeHs 3.27 0.02 3.25 0.24
∂yHs -0.56 0.02 -0.57 0.23
∂xHs -0.96 0.03 -0.95 0.28
Zs -43.23 2.56 -40.94 25.04

aspectZs -0.88 0.04 -0.89 0.40
slopeZs 2.71 0.05 2.67 0.55
∂yZs 5.98 0.16 5.97 1.59
∂xZs -0.20 0.17 -0.24 1.52
Zg 13.01 2.56 10.73 25.02

aspectZg 1.18 0.04 1.18 0.40
slopeZg -7.17 0.05 -7.16 0.52
∂yZg 11.25 0.16 11.27 1.58
∂xZg -10.86 0.18 -10.81 1.61
Hveg -0.87 0.01 -0.87 0.09
Sveg -4.94 0.03 -4.96 0.22
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B.3.2 Snow Pit Density as Training Data

We learned that bulk density measured from 96 snow pits could be modeled using

LiDAR spatial predictors that were extracted from a 3 m buffer around the pits, fol-

lowing the techniques outlined in Section B.3.1. The resulting regression coefficients

were trained using 90 % random subsampling for the Monte Carlo parameter esti-

mation. Because of the small sample size (N = 96) and sparseness, this model was

sensitive to the choice of percentage used in training and buffer size around the snow

pits. The density distributed from LiDAR predictors using the coefficients in Table

B.2 is presented in Figure B.3.

The density distributed by the snow-pit-trained MLR model has a mean and

standard deviation of 276±7 kg/m3. The modeled density is uncorrelated with snow

pit observations (R = 0.18), and exhibits accuracy (RMSE = 21 kg/m3) comparable

to densities derived from the LiDAR–GPR observations, due to the low variance.

When evaluated against SWE at the snow pits (Figure B.4), this model performed

about as well as the LiDAR–GPR trained model (R = 0.75, RMSE = 37 mm).
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Figure B.3: The average snow density estimated by MLR, which was trained on snow
pit density observations (N =96) and distributed by LiDAR spatial predictors.

Figure B.4: a) Snow density that was estimated by MLR trained on snow pit density
observations, b) snow depth measured by LiDAR, and c) snow water equivalent esti-
mated by multiplying the modeled density and measured depth are compared to the
observations of the 96 snow pits that are within the 4.5 km × 3.5 km domain. Red
markers are outlying locations where the absolute difference between observed and
modeled density exceeds 50 kg/m3. The red trend line and statistics use all 96 data
points, while the black trend line and statistics exclude the outliers.
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Table B.2: The regression coefficients for the model trained on 96 snow pit observa-
tions. Parameter uncertainties were developed from Monte Carlo Simulation with 90 %
random sampling.

Predictor βsnowpit σsnowpit

ρ0 275.14 0.25
Hs -0.27 0.28

aspectHs -3.55 0.38
slopeHs 4.87 0.28
∂yHs -0.14 0.20
∂xHs 2.06 0.37
Zs 92.05 10.61

aspectZs 4.21 0.27
slopeZs -9.10 0.58
∂yZs -2.80 1.05
∂xZs 1.05 1.30
Zg -89.98 10.59

aspectZg -2.12 0.19
slopeZg 10.79 0.54
∂yZg 1.18 1.05
∂xZg 1.65 1.50
Hveg 1.95 0.18
Sveg -0.74 0.06

B.4 Predictor Importance

We applied the “kitchen-sink” approach because the model that was trained us-

ing the LiDAR–GPR densities, which utilized every LiDAR predictor, exhibited the

largest correlation (R = 0.64) to the observations. The best performing model trained

on snow pit observations utilized only 12 parameters, however the 18 predictor model

scored in the top 0.25 %, showing there are many possible parameter combinations

that will yield equivalently high correlations. To assess the importance of the individ-

ual predictors, we assembled all combinations of 1 to 18 predictor models, solved the

regression for each combination, and cross-validated against a test set of the observed
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density. We considered optimal models as the top 1 % of outputs, and from these we

tracked which predictors composed any model. We identified the relative importance

of each predictor (Figure B.5), by summing the number of appearances for a given

predictor and dividing by the number of optimal models.
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Figure B.5: The relative importance of the LiDAR derived predictors: ρ0 intercept
density, Hs snow depth, aspctHs aspect of snow depth, sxHs slope of snow depth, ∂yHs
north component of snow depth gradient, ∂xHs east component of snow depth gradient,
Zs the snow surface elevation and derivatives, Zg the ground elevation and derivatives,
Hveg vegetation height, and Sveg the distance to vegetation with height greater than
0.5 m. The predictor importance for a) the model trained on joint LiDAR and GPR
data and b) the model trained on snow pit density measurements.
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B.5 Evaluaiton of Depth, Density, and SWE in

Forested and Unforested Areas

We evaluated the average snow density estimated from coefficients in Table B.1,

LiDAR snow depth, and SWE within the unforested and forested areas to characterize

the model performance. Of the 96 total snow pits in the 4.5 km x 3.5 km domain,

there are 79 located in unforested areas (Hveg < 0.5 m) and 17 located within the

forest (Hveg ≥ 0.5 m). Outlying density values were identified by absolute differences

exceeding 50 kg/m3 and are marked red (Figure B.6). The correlation scores and

RMSEs are presented with and without the influence of outlying data for summary.

With fewer observations in the forest, the statistics are notably less robust than in

the unforested domain.
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Figure B.6: Evaluation of d) density, e) depth, and f) SWE in unforested areas, and g)
density, h) depth, and i) SWE in the forest. Red markers are outlying locations where
the absolute difference between observed and modeled density exceeds 50 kg/m3.
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B.6 Wind Speed and Direction Observations

Hourly wind speed and direction data was downloaded from MesoWest for the

Grand Mesa Skyway Study Plot (GMSP) Remote Automated Weather Station (Uni-

versity of Utah, 2022), and is presented in Figure B.7 for 20 October, 2019 through 12

February, 2020 (the dates spanning first accumulated snowfall through the ending date

of the Grand Mesa IOP). Grand Mesa Skyway Study Plot (Longitude 108.06075◦W,

Latitude: 39.0593◦N, Elevation: 3240 m) is located on the northeastern rim of Grand

Mesa approximately 10 km east-northeast of our study domain. Winds out of the

west-southwest are most frequent and have the maximum speeds. Weather informa-

tion from the western end of Grand Mesa, would be more representative of our study

site, as GMSP is sheltered by the forests of eastern Grand Mesa. However, GMSP

is more representative than the next-nearby weather station, LSOS (Webb et al.,

2020), which is located on the northern slope of Grand Mesa and sheltered from the

prevailing west-southwest wind.
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Figure B.7: Wind rose plots from hourly GMSP weather station observations for Oc-
tober 20, 2019 through February 12, 2020. The west-southwest wind direction prevails
with the greatest number of observations and the maximum measured wind speed.


	Dedication
	Acknowledgments
	Abstract
	List of tables
	List of figures
	List of abbreviations
	Introduction
	SnowMicroPenetrometer Applications for Winter Vehicle Mobility
	Introduction
	Background
	Objectives
	Approach

	Field Campaign and Data Acquisition
	Study-site Background
	SnowMicroPenetrometer
	Rammsonde Penetrometer
	Shear Vane
	Light Weight Deflectometer

	Data Analysis
	SMP Automated Signal Processing
	SMP Data Inversion for Snow Microstructural and Micromechanical Properties
	Instrument Observation Correlation Analysis

	Results and Discussion
	Rammsonde

	Shear Vane
	Light Weight Deflectometer
	Conclusion

	Reconstruction of historical surface mass balance 1984-2017 from GreenTrACS multi-offset ground-penetrating radar
	Introduction
	Greenland Traverse for Accumulation and Climate Studies
	Study Area
	Field Methods

	Analysis Methods
	Review of Multi-offset Radar
	Spatial Correlation of Surface Snow Density

	Results
	Discussion
	Conclusions

	Spatially Distributed Snow Water Equivalent from Ground-based and Airborne Sensor Integration at Grand Mesa, Colorado, USA
	Introduction
	Methods
	Study Area
	GPR Data Acquisition
	GPR Data Processing
	Snow Observations
	Spatial Correlation of Snow Depth, Travel-time, and Bulk Density
	Modeling Spatial Density
	GPR Snow Depth

	Results
	LiDAR and GPR Snow Depth
	LiDAR-GPR Measured Density
	Spatial Correlation of LiDAR Snow Depth GPR Travel-Time and Measured Density
	Multiple Linear Regression Modeled Density
	Spatially Distributed Snow Water Equivalent
	Evaluation of Measured-Modeled SWE
	Contributions to SWE Uncertainty

	Discussion
	Conclusion

	Extentions and Case Studies
	Firn and Radiostratigraphy Modeling using the 1D Kinematic Wave Equation
	Sorge's Law
	1D Kinematic Wave Equation
	Numerical Solution of the Kinematic Wave Equation
	Application of the Kinematic Wave Firn Model to GTC15

	Ice Sheet Surface Property Retrieval and Automatic Firn Layer Tracing from Airborne Radar
	Automatic Layer Tracing
	Radar Backscatter Inversion for Surface Properties
	Conclusions

	Quantifying Firn Depth and Density in the Percolation Zone of Wolverine Glacier, Alaska
	Multi-offset Coherence Analysis
	Firn Density Estimation
	Evaluation with Firn Cores
	Conclusion

	Ground-penetrating Radar Experiments at Camp Arenales, Chile
	Overview
	Common Midpoint Gather Analysis
	Common Offset Gather Analysis
	Conclusion

	Over-snow Vehicle Mobility Index Assessment and Prediction
	Small Unit Support Vehicle
	Normalized Difference Mobility Index
	Mobility Prediction using Snow, Terrain, and Vegetation Features
	Results
	Conclusion


	Summary
	References
	Appendices
	Reconstruction of historical surface mass balance 1984-2017 from GreenTrACS multi-offset ground-penetrating radar
	Travel-time Horizon Interpretation
	Horizon Velocity Analysis
	Critically Refracted Waves

	Parameter Estimation: Depth, Density, and SMB
	Parameter Uncertainty: Monte Carlo Bootstrapping and Error Propagation
	Parameterizing the MxRadar - Herron1980 Model
	Structure-oriented Filtering in the Wheeler Domain
	Depth Imaging for Model Updates

	Spatially Distributed Snow Water Equivalent from Ground-based and Airborne Sensor Integration at Grand Mesa, Colorado, USA
	Evaluation of GPR TWTs
	Evaluation of GPR and LiDAR Inferred Density
	Error Reduciton

	Multiple Linear Regression
	Parameter Estimation
	Snow Pit Density as Training Data

	Predictor Importance
	Evaluaiton of Depth, Density, and SWE in Forested and Unforested Areas
	Wind Speed and Direction Observations




