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ABSTRACT 

Droughts generally refer to lack of sufficient water to supply specific needs, and  

has several categories including meteorological, hydrologic, agricultural and 

socioeconomic droughts [22]. Drought is triggered by the lack of or reduced precipitation, 

but other factors including low soil moisture, groundwater depletion, insufficient 

snowpack, reduced surface storage, increased evaporation, and contaminated surface water 

also contribute to various drought categories [12, 27].  

Droughts impact many functional aspects of a community including agricultural 

production, recreation, access to clean drinking water, and the health of local ecosystems. 

Arid and semi-arid regions such as Idaho are specifically vulnerable to drought [12].  

According to the Idaho State Department of Agriculture, agriculture makes up 

approximately 18% of the state’s total economic output, and hence drought is a major 

concern in Idaho. As of October 12th, 2021, >90% of Idaho was in a severe, extreme, or 

exceptional drought according to the U.S. Drought Monitor [32]. This drought was 

specifically impactful for Idahoans, since a reasonable amount of snowpack and dam 

storage in the spring convinced local farmers to fully cultivate their farms and they 

struggled to irrigate their crops later in the season.  

I focused this research on a multivariate analysis of the 2021 Boise drought in the 

context of natural-built systems. I considered two natural storages: (1) snowpack and (2) 

atmospheric storage, i.e., spring precipitation, as well as the built storage facilities like 

reservoirs, specifically the three dams on tributaries flowing into the Boise River 
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watershed. I obtained historical (1982-2021) data for the Boise River watershed in terms 

of snow water  

equivalent and total dam storage on April 1st for each of the years studied, as well as  spring 

precipitation, which collectively supports irrigation of agriculture in the Treasure Valley 

[4, 6]. Both univariate and multivariate frequency analyses were conducted to obtain a 

nuanced understanding of the drivers of the 2021 Boise drought. This provides important 

insights for the future conditions of drought initiation and evolution in the region in a 

warming climate.  

 By utilizing univariate analysis, I noted that snow water equivalent, or SWE, 

stayed within the range of historical average at more than 30 percent occurrence 

probability. This gave way to a somewhat “normal” snowpack for the year of 2021. 

Similarly, cumulative dam storage for Arrow Rock Dam, Anderson Ranch Dam, and Lucky 

Peak Dam had a combined occurrence probability of 60 percent for that year, meaning it 

was more than 60% of years in the observation record. Spring precipitation, however, was 

strikingly low in the Boise River watershed. In fact, it was close to the record low (ranked 

second lowest in the period of observation), with less than a 10 percent occurrence 

probability for the area. Multivariate analysis revealed new information about combined 

effects of natural and built storages that collectively supply water to stakeholders in the 

Boise River basin. In terms of joint distribution of SWE-dam storage puts 2021 in the lower 

end of the bivariate distribution, but it was exceeded by 5 other years. In terms of natural 

storage (SWE-spring precipitation), 2021 claimed the worst rank on record. Combining 

precipitation and dam storage, 2021 was ranked second worst year (after 2002) in the 
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bivariate distribution. In a trivariate analysis and in a strict AND scenario, 2021 was ranked 

the worst drought year on record when a combined effect of  

natural and built storage are considered. This means that there was no year on record with 

a worse condition in terms of ALL of the three water storages considered herein. My 

analysis revealed that while natural storages (snow and particularly spring precipitation) 

were low in 2021, built storage buffered some of the impacts of drought in the Treasure 

Valley, Idaho. Further analysis using climate projections showed that while spring 

precipitation in a moderate emission scenario may marginally increase, this is expected to 

reduce in a high emission scenario. This means that under a high emission scenario, 

droughts similar to that of 2021 may increase in Treasure Valley, combined with increasing 

evaporative demand as temperature increases, are expected to occur more frequently and 

can result in adverse societal impacts. Finding root causes of severe water shortages is 

crucial for the further understanding of droughts in the Treasure Valley area. Policymakers 

can use this information to implement detailed plans for the community and to avoid cases 

like the sudden, dangerously low water levels experienced in 2021 and plan more 

effectively for the future.   
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

Droughts are felt all around the world. In a warming climate, and with an increase 

of natural disasters and increasing population and urbanization, droughts are more and 

more impactful to the different communities in countless locations. Drought is generally 

defined as a prolonged dry period when there is below the normal range water in the natural 

climate cycle. Similarly, drought is a “condition” that results when average rainfall for an 

area drops below normal conditions for a long time [2]. 

This research is focused on the Boise River watershed area located in the western 

part of the United States, and studies the 2021 drought that adversely impacted this region. 

The Boise River watershed is located mainly in Ada and Canyon Counties, and also covers 

parts of Boise, Gem, Elmore, and Malheur Counties [7]. This area of the Treasure Valley 

in southwestern Idaho is sitting on the Idaho batholith subdivision of the Northern Rocky 

Mountains and the Malheur-Boise Basin section of the high lava plains subprovince of the 

Columbia Intermontane Province [7]. The topography is very mixed with lava plains, basalt 

domes, cinder cones, and the deep canyon of the Snake River [7]. The slopes of the area 

vary from low to moderate, nearly level on the plain and the river valley, to very steep in 

Canyon County and the mountain areas [19]. Elevation ranges from around 2,300 feet at 

the confluence of Boise River with the Snake River, to around 5,800 feet at the Boise Front 

and around 10,000 feet at the Sawtooth Mountain Range headwaters of the Boise River 

[19]. 
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To understand the development of the Boise area, I will first discuss some 

background of human settlement in this region. British trappers were the first on record to 

enter the area around the years 1830, then abandoned it around the 1850s [7].  However in 

the 1860s, gold was discovered and a huge “gold rush” fever arose, bringing more people 

and commerce to the area. In the year 1863, the U.S Army built Fort Boise on the northeast 

side of present-day Boise [7]. In the next year, 1864, Idaho became a state. For the 

following years, the area grew exponentially, in part because of its location on the Oregon 

Trail.  Also, being so close to Owyhee County, where mines were sprouting left and right, 

caused an additional rise in population. In the year 1869, the prison was built, and the Old 

Oregon Short Line Railroad “reached” Boise and more people moved to the area. In 1977, 

the population in Idaho was 139,400, and 99,771 of the population was in the Treasure 

Valley area [7]. 

The Treasure Valley has cold, but not severe, winters. During the summer, days are 

hot and nights are cool. The annual precipitation in the area ranges from eight inches along 

the Snake River to around 24 inches in the mountains [13]. The average annual 

precipitation in most of the area is around 10 to 12 inches [13]. The Treasure Valley 

receives 33% of this precipitation in April through September, which includes the growing 

season. The maximum amount of rain in a 24 hour period ever recorded is around 1.9 

inches in Boise on June 12, 1958 [7]. The Treasure Valley experiences around 15 

thunderstorms per year, many of them occurring during the summer months [7]. Snowfall 

around the area usually averages around 23 inches per season [7]. Historically, the largest 

amount of snow recorded in one day was seven inches [19]. Most of the area experiences 

“northwesterly” winds, but sometimes “southwesterly” winds are present during the winter 
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and spring months [9]. Heavy air masses “drain” down from the Boise Front into the Boise 

River Canyon during winter [9]. 

Farming has been key for the economy of the Treasure Valley, where the 

production of vegetables and grains has been part of the key for success for the area. Range 

cattle and sheep are part of the farming and economy of the area. Due to the Reclamation 

Act in the year of 1902, many farming activities were favored and exploited in the Treasure 

Valley, giving way for the need of more water and the construction of canals, irrigation 

control structures, and reservoirs [2]. The main water supply for the area is the Boise River 

that drains about 27,000 square miles of mountainous terrain by the north and east of the 

Treasure Valley [7]. The main reservoirs for the area are Lucky Peak, Anderson Ranch, 

and Arrowrock Dams. Arrowrock Dam was built in 1915 by the Army Corps of Engineers 

primarily for flood control and irrigation storage. Anderson Ranch and Lucky Peak Dams 

were completed in the 1950s and were aimed to produce hydropower and support 

agriculture [4]. In the following years, in coordination with other dams, the storage capacity 

for irrigation was improved. There are currently about 15 irrigation districts in this area. 

About 1,200,000 acre-feet of water is diverted annually for irrigation and this number is 

increasing annually due to the exponential growth and demand of the Treasure Valley [9]. 

In order to study the hydrological needs and potential hazards, areas have to be 

classified and addressed based on their local characteristics and needs.  In the field of 

hydrological engineering, the hydrologic unit hierarchy is indicated by the number of digits 

in groups of two within the HUC code.  The Boise River watershed is in the HUC 8, which 

is defined as the “subbasin level,” analogous to “medium-sized river basins” [13]. The 
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HUC 8 subbasin contains 880,800 acres that includes the Treasure Valley of southwest 

Idaho [19].  

This area features a rapidly developing urban community. Approximately 52% of 

the subbasin is in Ada County, 34% is in Canyon County, 5% is in Elmore County, 4% is 

in Gem county, 3% is in Payette County, and 2% is in Boise County [19].  This basin is 

76% privately owned, and 24% of the watershed is public land [19]. About 67% of the 

basin is in shrubland, rangeland, grass, pasture, or hayland [19]. Approximately 24% is 

cropland and the remainder is forest, water, wetlands, developed or barren elevations 

ranging from 6,994 feet in the northeast portion of the HUC, to 2,180 feet at the basin outlet 

on the west [19].  
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Figure 1.1 Boise River Watershed, and Surrounding Counties. Courtesy of ID 

NRCS 

 

Figure 1.1 is a general map of the Boise River watershed. It provides a visual for 

the location of the counties that are part of the Boise River watershed, which can be seen 

by the red line that goes through Boise County, Elmore County, Ada County, Canyon 

County, Payette County and Gem County.  Figure 1.2 below shows a range of elevations  

that encompass the Boise River watershed. 
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Figure 1.2 Boise River watershed Elevation Map. Courtesy of ID NRCS 

 

The Boise River watershed has two basic types of ownerships: public and private.  

The large majority is considered private land, and approximately 24% is public land, 

concentrated mostly in the southeast region [19].  Figure 1.3 shows a map of the private 

and public ownership of the Boise River watershed with the descriptions mentioned above. 
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Figure 1.3 Boise River Watershed Ownership. Courtesy of ID NRCS 

 

The Boise River watershed has a variety of land cover. Table 1.1 below shows a 

physical description. This includes land use, irrigated lands/cultivated cropland, and land 

cover.  
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Table 1.1 Boise River Watershed Physical Description. Courtesy of ID NRCS 

                                                             

 

The Boise River watershed is key for the crop production and overall 

socioeconomic health of the region. As shown in Figure 1.4, a large part of the total 

acreage is used for grass pasture/hay lands, row crop, and grain crop. These activities 

need an immense amount of water.  
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Figure 1.4 Boise River Watershed Land Use. Courtesy of ID NRCS 

 

A sufficient amount of water is key to produce crops, and is expected every year. 

However, years like 2021 that develop a deficit of water, takes a huge toll on these types 

of activies. Various factors, like lack of rain, play a key role in these water deficiencies. 

Figure 1.5 shows that average precipitation for the Boise River watershed is below 14 

inches annually.        
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Figure 1.5 Boise River Watershed Annual Precipitation. Courtesy of ID NRCS 

 

Water availability in the Boise River watershed, as any other, is dependent on 

general trends of climate change and variability. Natural cycles of climate variability do 

not always have a uniform predictable trajectory; they act as a stochastic “envelope” of 

conditions that produce various patterns. For example, El Nino conditions in the Pacific 

Northwest occur every two to seven years and last about 18 months [8]. During El Nino, 
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an upper layer of warm water in the Western Pacific flows eastward instead of its normal 

westerly direction [14]. This causes earlier snowmelt and warmer, drier summer patterns 

[14], thus increasing drought risk around the Pacific Northwest, and in this case, around 

the Boise area. Likewise, the dry weather and warm temperatures increase 

evapotranspiration, subsequently inducing water deficit [33]. Figure 1.6 below shows some 

of the common concerns in the Boise River watershed that include crop production, 

irrigation, livestock grazing, etc. 

These areas are marked by numbers and represent areas that share similar 

characteristics related to resources, problems, or treatment needs.  Below, Table 3, can be 

used in conjunction with Figure 1.6 to see the many resource concerts each area shares 

along these delineations of the Boise River watershed. The information from Figure 1.6 

shows, in conjunction with that from Table 2, natural features and common concerns.  This 

plays an important role when dealing with natural deficits like lack of precipitation, lack 

of snowpack or even heat waves.  Cases like the 2021 Boise drought prompt the need for 

research and study of all these factors. 
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Figure 1.6 Boise River Watershed Resources Concerns CRA. (Should be used in 

conjunction with Table 2 below) Courtesy of ID NRCS 

 
 

Table 1.2 Boise River Watershed (Common Resource Areas) CRA Description. 
Courtesy of ID NRCS 

 



13 

 

Important factors for drought in the Boise area include lower than normal 

precipitation and warm temperatures, which collectively  accelerate the release of stored 

water in the soil into the surrounding air, thus accelerating the drying of soil, and reducing 

the water available in the soil for plants. The Boise area is in an arid to semiarid set of 

conditions which accentuates and accelerated drying of soils in the area [2]. In addition, 

the anthropogenic systems in place are adding extra variables for drought components, both 

exacerbating and attenuating water shortage, that are difficult to quantify due to the many 

drivers and contributors. These factors make the study of droughts very important for the 

preparedness for future droughts. In addition, knowing the many variables from human 

inputs, hydrological, economic, and social factors, among others, is key to developing 

strategies to face the challenges of future droughts.  

Drought research is very important given it helps scientists and engineers to further 

understand what causes it, the areas it has occurred in the past, and those areas it is likely 

to occur in the future, its consequences, and how it can be mitigated. One of the regions 

where drought has frequently occurred over the last few decades is the western part of the 

United States, which has also experienced various other disasters, such as wildfires, storms 

and floods. According to data from the National Center for Environmental Information, the 

years from 1980 to 1990 had an average of 2.9 drought events per year, and this has been 

increasing every decade [25]. From 2017 to 2021 alone, the country experienced a total of 

eight drought events, with a total cost of $742 billion [22]. Since these events in many 

cases are unpredictable, and even when predictable they are very impactful, mitigation 

plans have to be conceived in order to prevent excessive damage to communities.  
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 Figure 1.7 Ada County Drought Status as of 2022. Courtesy of Drought.gov   

 

Although 2022 has so far been more promising in terms of precipitation and 

outlook, there continue to be concerns that indicate that the western part of the United 

States continues to be affected by drought through the year 2022. For example Figure 1.7 

shows Ada County which is a big part of the Treasure Valley still affected by drought. The 

data by U.S. Drought Monitor shows that the western part of the country continues to lack 

snow-packed areas, and the water availability in such areas is also reduced, which impacts 

the overall availability of water in the region [32].  

Li et al (2017) observes that in the western United States, the areas that once had a 

lot of snow have seen a reduction in terms of landmass [17]. This implies that the 

hydrological cycle taking place in these areas has changed and as a result available water 

diminished, specifically in summer months that demand is highest. It is, therefore, 

important to point out that as extreme weather conditions continue to be encountered, the 

cause, which is a complicated “envelope” of variables, should be monitored at detail levels. 

These variables include temperature variance, snow (specially in the mountainous area), 

precipitation and reservoir levels.  

From the data provided by the Western Region Climate Center, it is evident that 

the western part of the country continues to experience high temperatures, which are 
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interconnected with the snow levels in the region [11]. Harpold et al (2017) argues that 

lack of snow, or snow drought, has brought difficulties in water management in the western 

part of the country [11]. During snow drought, the inflows to reservoirs reduce, and they 

collect much less water, which may not be enough during the summer. With all these trends 

in climate behavior, research that is specialized in nuanced understanding of the collection 

of meteorological and climate variables that govern water availability is evermore 

important and necessary.  Therefore, studies like this are important for the preparedness 

and awareness of locations prone to natural disasters like drought. In mountainous 

watersheds of the western US, snowpack and dam reservoirs collectively provide a natural-

built system of water storage that support water provision to stakeholders during dry 

summer months. Irrigated agriculture is the largest consumer of water in the western US, 

and across the globe, that depend on this system of water storage [24]. Farmers decide on 

how much to cultivate in the spring based on available snowpack and dam storage, but 

frequency and magnitude of irrigation not only depends on the extent of cultivated land but 

also on atmospheric moisture or lack thereof during the growing season. In other words, if 

spring precipitation provides moisture to the cultivated land, farmers would depend less on 

irrigation and vice versa. This irrigation demand also depends on air temperature. In this 

thesis, I studied the 2021 drought in the Treasure Valley, Idaho, by considering snowpack, 

dam storage and spring precipitation.  
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1.1.1 Snowpack 

In the Rocky Mountains of the western US, runoff from winter snowpack provides 

60% to 80% of water supply to 70 million people that live downstream [24]. Snowpack is 

measured in terms of snow water equivalent (SWE) which is a critical variable for the 

western US given that it determines whether or not there is enough water for the people 

and ecosystems that critically depend on it.  However, due to stochastic weather conditions, 

and climate change, it is important to note that SWE is fast becoming lower and lower as 

more precipitation is coming down as rain rather than snow, and snowpack melts earlier 

due to warming temperatures [23]. This in consequence affects the amount of water deficit 

for a certain area. This snow drought trickles down to a deficit of water budget each year. 

It is important to know that SWE is an integral part of the hydrological cycle [26]. It 

indicates, therefore, that when the SWE is below normal quantities, is missing or simply 

not available at normal rates, the hydrological cycle would likely experience interruptions. 

For instance, when the inadequate supply of solid water -as in snow- changes into liquid 

water, a water shortage would logically be experienced in dry-warm summer months.  

Rad et al (2021) argues that when “snow is lacking, this influences the reservoir 

operation, flood risk management, recreation, navigation, and river ecology” [26]. It is 

important to note from this reference that snow influences many things, and its 

unavailability induces various disruptions, from economic to social aspects of life. Harpold 

et al. (2017) in the article titled Defining Snow Drought and Why It Matters, illustrates that 

snow drought is a serious concern because projections show that lack of it would lead to 

longer drought periods in the future [11]. The hydrological cycle is the process in which 

water moves from the land and ocean surface to the atmosphere and back in the form of 
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precipitation [22]. Precipitation amounts are much higher in the mountains compared to 

the surrounding lowlands, given the orographic effect [22]. Precipitation in the mountains 

falls mostly as snow, which stores water for the dry summer months in which snow melts 

and provides water for the dry-hot lower elevations. Earlier melt or lower snowpack levels 

mean lack of water availability in summer months. It is therefore important to understand 

that without the solid water (snow), which is a very crucial aspect of this process, water 

would not only be severely lacking in the future, but drought periods would increase in 

length, especially compared to current situations and periods [15].  

Climate variability also impacts snowpack. Climate variability is the long-term 

shifts and patterns in climatic conditions. Mazurkiewicz et al. (2011) observed that in areas 

where snow is not available, there are more severe weather conditions [21]. In such places, 

dry seasons are typically much drier and experience lower rainfall. The importance of SWE 

is, therefore, made clear in terms of how it influences not just the hydrological cycle, but 

also the weather condition that a given area would experience, which is key to 

understanding how drought creeps in slowly and with signs like low SWE. 

1.1.2 Dam Storage  

Mediterranean and continental climates, such as those in the western US, are 

associated with dry summers and wet winters, so there is a temporal mismatch between 

water availability and demand. Dams enabled humans to store water when it is abundant 

and use it when natural flow is low but demand is high. Reservoirs are a key item when it 

comes to storage of water, and at the same time, mitigation of drought, which is a serious 

problem today. The importance of a dam is evident in many aspects, which include how 
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the water is stored in a reservoir, regulation of the natural flow, ecosystem rearrangement, 

and supply the demand of downstream stakeholders, among others.  

It is, therefore, important to note that a dam can preserve water when it is abundant 

and release it when the demand is high. But at the same time, dams can make it hard for 

those who are found downstream to get adequate water when there is competition for water 

especially in international contentious watersheds [26]. From the study authored by Lopez-

Moreno et al (2009), that focused on Portugal and Spain shared reservoirs, it is suggested 

that reservoirs have reduced the severity and the magnitude of the drought in the upper 

basin [18]. Reservoirs are used to consolidate water, and ensure areas that have been 

experiencing drought, no longer experience the same situation. For example from 1940 to 

1969, Spain, which is found upstream of the Tagus River, had previously experienced a 

high frequency of drought, but that pattern changed immediately when the dam was built 

[18].  

The example of the Tagus River demonstrates that dams have been among the ways 

that droughts can be mitigated and their severity reduced. During the 1943 through 1969 

period, droughts were longer and more intense in the upstream (Spanish) sector of the 

Tagus River than in the downstream sector (Portugal) [18]. In contrast, from 1970 onward 

and after the construction of the dam, the Portuguese section has experienced more severe 

droughts than the Spain section, in terms of drought duration and magnitude [18].   

For the most part everyone agrees that anthropogenic systems most benefited from 

the construction of dams; and in the case of drought, reservoirs are key in the preparedness 

for the future droughts. This research focuses on this last point mainly.  Reservoirs make a 

human built system that aids communities to manage the potential flood risk and maintains 
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a downstream water flow when upstream flows reduce in summer. In the case of the 

Treasure Valley reservoirs play an important role for the farming community. Reservoirs 

provide a constant source of water for the Treasure Valley growing season. For this reason 

farmers will benefit with the research work found in this study which can aid future farming 

decisions and inform dam storage policies. It is pertinent to add that dams in the Treasure 

Valley are also helpful in producing energy just like many reservoirs around the world. For 

this reason reservoirs in the Treasure Valley share many characteristics and uses like many 

around the world. With this in mind reservoirs are key to every community they serve. 

 
Figure 1.8 A closed irrigation gate on the Boise River. Courtesy T. Oppie 

 

Reservoirs are also important, given that in snow-packed areas like the Treasure 

Valley, consumers can use reservoirs to harvest water when snow melt generates much 

more water than farmers need in the spring, which would then be used for various purposes 
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in dry summer months.  Farming in the Boise area began around the 1860s and the 

Reclamation Act of 1902 gave way for many farmers to own water rights which in turn led 

to the construction of reservoirs like Arrow Rock Reservoir, which initially was aimed 

primarily to serve irrigation water storage needs. This action led to the exponential growth 

of the Treasure Valley. As more water was needed, more reservoirs and Anderson Ranch 

reservoir and Lucky Peak reservoirs were built [7]. 

Figure 1.9 depicts the 2021 water year reservoir levels for Lucky Peak Dam and 

how that compares to the normal range. The year 2021 features a below 30 year normal at 

733 KAF. The year 2021 had an overall storage deficit compared to long term normal with 

values around 650 to 750 KAF. 

 
Figure 1.9 Lucky Peak Dam 2021 water year. Courtesy NCRS 
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1.1.3 Precipitation 

Due to the variability of weather prediction, droughts, like the one experienced in 

Boise in 2021, are difficult to predict, mainly due to the stochastic weather behavior that 

has changed dramatically in the past century.  Many rain events are more intense and, in 

some cases, can cause significant damage to the crops to the point of killing the entire 

product [14]. 

Rainfall has on one hand increased its intensity, but on the other hand, has 

experienced longer periods between rainfall events [14]. Based on these facts, farmers must 

make important decisions to maximize their crop productions.  Some crops require a longer 

growing season and more water to mature, some crops require less. Since nowadays 

weather is more unpredictable, many farmers do not want to risk their crops and sometimes 

even skip growing seasons altogether.  Some farmers may choose to just grow smaller 

amounts and, consequently, don’t maximize their production. Many of them lose their crop 

production for the year, setting themselves up for possible economic disasters in the future. 

Drylands, like this area near Boise, are in a specific category where rainfall usually 

falls in a heterogeneous pattern [14]. In the study titled Consequences of Dryland Maize 

Planting Decisions Under Increased Seasonal Rainfall Variability by Krell et al., the 

authors argue that there is a need to cultivate specific crops of interest for areas that receive 

highly variable rainfall to maximize food stability [14]. There are many efforts to 

understand the issue, but unfortunately many have linked the stochastic rainfall dynamics 

to the probability of crop failure, rather than aiming to find a solution.  

The National Weather Service issued the following statement in May 2021 

regarding Boise's drought conditions: 
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“Below normal spring precipitation and the early loss of snowpack have led to 

expanding drought conditions across Idaho. The latest seasonal drought outlook (May 20, 

2021-August 31, 2021) indicates that drought will persist in areas already being impacted 

by drought, and drought development is likely across the rest of Idaho [30].” 

Regarding the lack of precipitation in 2021, John Roldan, Boise’s strategic water 

manager had this to say, “We are taking this very seriously and we are starting to do some 

long-term planning to address these concerns" [30]. Along with most of Idaho, Boise is 

feeling the effects of the dryness. Most of Ada County was considered abnormally dry 

while the rest of the state was in a moderate drought. "We are in the desert, droughts are 

normal," Roldan said. "They happen. It's a cyclical process but with climate change, we 

are seeing this happen more frequently and it's projected to be in drought conditions for 

longer periods of time" [30]. 

Roldan said people can expect to see local ordinances regarding water conservation 

if Boise experiences another drought year. "We are reviewing our ordinances right now 

and looking at ways to have smarter development if you are in an area that doesn't have 

surface water supply from an irrigation district," he explained. "We also have irrigation 

districts and canal companies that provide residents with surface irrigation water, and we 

encourage that to be used whenever possible and preserve our groundwater for droughts 

like this." According to Roldan, 70% of Boise's water comes from underground and 30% 

comes from the Boise River. In Meridian, the single source is groundwater. While the city 

is producing water at a sustainable rate, Meridian's Public Information Officer, Stephany 

Galbreaith, said increased demand, drought conditions, or changes in the water supply 

could create possible shortages [31].  
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Due to the stochasticity of natural systems, precipitation is one of the hardest 

meteorological variables to predict specifically with month to annual lead times. In 

addition, the amount of precipitation the Treasure Valley has observed has increased in 

intensity, but the dry period between rainfall events has been increasing which makes it 

even more important to understand how drought starts and evolves.  Precipitation is the 

most important source of water in the environment and is a key element of the hydrological 

cycle. Precipitation in the northwest of the United States is important for the replenishment 

of the natural aquifers and river streams. The Treasure Valley, due to its location, presents 

some challenges when getting a large amount of precipitation. One of the reasons is that 

Treasure Valley is surrounded by mountains that capture the moisture originated from the 

Pacific Ocean [34]. 

Precipitation in the Treasure Valley typically ranges between 11 and 12 inches 

annually, and its data collection is important for the assessment of drought severity [19].  

However, in some years, this average falls dramatically, consequently paving the way for 

an early stage of drought [19]. Precipitation in this area was falling below normal during 

the spring season and was not replenished for the remainder of the year to the typical 

average. As seen in Figure 1.9 below, average precipitation received in Ada County varies 

considerably each year. 
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Figure 1.10 Average Precipitation for Ada County (May 1900 - April 2022) 

 

1.2 Natural-Built Systems 

Natural-built systems include all the elements of the system that work in 

conjunction to worsen or attenuate drought, including natural aspects like snowpack, 

precipitation and the human-built components including dams, which are constructed to 

help mitigate drought. Perhaps one of the most important human built systems is the 

reservoir. Reservoirs allow human civilizations to grow exponentially. For example, during 

droughts, some of the stored water is released to maintain ecological flow as well as to 

meet basic water requirements. However, in some cases, having this false sense that 

“everything is ok”, allows for bigger disasters. One example of this effect is the Levee 

effect that can be seen in the case of Hurricane Katrina. Frequent, small flooding events 

went unnoticed for many years, and only the most extreme one – Hurricane Katrina -- was 

able to cause immense damage to the city of New Orleans. People seemed to have forgotten 

about flooding in the area due to being used to the levees protecting them, but when the 
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levee system failed the adverse impact was exponentially larger. For these reasons dams 

need a comprehensive understanding of their pros and cons when it comes to drought and 

flooding. 

Some pros, for instance, are provided in the study by Lee et al (2009) that argued 

that dams help in reducing floods, especially in the anthropocene when changing climate 

conditions have caused floods in various parts of the world [16]. During flooding, dams 

would help accumulate the excess water that would be used during the time when drought 

comes. In snow packed areas, floods may also occur, and arguably the best way to deal 

with this is by constructing dams, which collect water, so that it can be used during dry 

seasons. Barnett et al. (2005), in the article titled Potential impacts of a warming climate 

on water availability in snow-dominated regions, argued that the warmer climate reduces 

water availability as this reduces the availability of snow [3]. In such areas, the best thing 

that can be done is to ensure that dams are constructed since this would not only help in 

collecting water, but also in preventing any economic and social challenges that may be 

faced due to lack of water.  

Research findings have shown that dam storage is helpful in food production 

processes in various parts of the world. The study by Ganguly and Cahill (2020) argues 

that close to 95% of disasters in the world today are related to either availability of water, 

or lack of it [10]. When there is a severe lack of water, disasters such as drought would 

occur, and when there is more than what is needed, events such as floods would occur. This 

clearly demonstrates how important it is to have the built environment, which can regulate 

water by making sure that when it is available in plenty, it is stored for the period when it 

would not be available.  
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Sudden, large amounts of precipitation can lead to flooding, but by having dams, 

downstream communities can lower the possibility of disasters like floods. According to 

Ganguly and Cahill (2020), “in the period from 1995 to 2015, floods impacted 2.3 billion 

people world-wide, killed 157,000, and resulted in US $662 billion in damage, while the 

corresponding figures for droughts were 1.1 billion, 22,000 and US $100 billion” [10]. This 

is a huge impact, which can be controlled. Dams can be used as crucial cornerstones to 

help promote quality living by making sure that humanity does not experience flooding or 

lack water.  

Both natural storages of water (precipitation, snowpack) and bult storages (dams), 

have a very significant combined role to play in the coexistence with humanity. Without 

either of the two, people would suffer, which is an indication that society needs to leverage 

both natural and built storages to avoid drought and flooding consequences, especially as 

ever-increasing changes in climate bring more severe impacts. Natural-built systems 

should be managed in conjunction to make sure that the weather conditions do not severely 

affect humanity. 

1.3 Drought Categories and  Indexes 

Drought is often described as a temporary situation, when the water demand of a 

hydrological system, which may be an ecosystem or an anthropogenic system, exceeds the 

water availability [22]. Differences in hydrological, meteorological, and socio-economic 

variables, as well as the stochastic nature of water demands in specific regions around the 

world, have become an obstacle to having a unified and precise definition of drought. Thus, 

when defining droughts, it is important to distinguish between conceptual and operational 

definitions.  
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Conceptual definitions are those stated in relative terms. For example, a conceptual 

definition could be something like, “drought is a long, dry period”.  Whereas, operational 

definitions attempt to identify the onset, severity, and termination of drought periods. 

Generally, operationally defined droughts can be used to analyze drought frequency, 

severity, and duration for a given return period. It is pertinent, then, to learn the 

classifications of drought. 

Meteorological drought is defined as a lack of precipitation, over a region, for a 

period of time. Cumulative precipitation data is commonly used for meteorological drought 

analysis.    Hydrological drought refers to water storages and fluxes falling below long-

term averages.  Note that hydrological drought is not merely controlled by precipitation 

and geology is also one of the factors influencing hydrological drought. Agricultural 

drought usually refers to a period with lower than normal soil moisture that can cause crop 

failure. Several drought indices, which are based on a combination of precipitation, 

temperature, and soil moisture, have also been derived to study agricultural drought. 

Socioeconomic drought is associated with the failure of water resource systems to meet 

water demands, and thus, associating droughts with supply and demand [30].  

Frequency, severity and duration of droughts are being impacted by human 

activities. Things like production of greenhouse gasses, fertilizers, water pollution, 

deforestation, and over-drilling of our aquifers, lead to a deficit, and lack of replenishing 

of natural goods [22]. These amount to the different components of drought (climatic, 

environmental, agricultural, etc). The hydrological component might be the most important 

factor in arid and semi-arid regions, given the high dependency of many activities, like 

food production, economy, hydropower generation, and urban supply, among others.  
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To more effectively understand droughts, many indices have become popular, 

many of which have been derived in recent decades.  A drought index is a prime variable 

for assessing the effect of a drought. Drought parameters that are incorporated in these 

indices include intensity, duration, severity, and spatial extent.  It could be argued that the 

monthly time scale is the most appropriate for monitoring the effects of a drought in 

situations related to agriculture water supply and groundwater abstractions [14]. Some of 

the most common drought indices are Standardized Precipitation Index (SPI),  Palmer 

Drought Severity Index (PDSI), Rainfall Abnormality Index (RAI), Keetch–Byram 

Drought Index (KBDI), and Crop Moisture Index (CMI). 

These indices have been widely used all over the world, and in the case of Boise, 

Idaho, some of these are key to determining Boise’s top climate hazards. In the following 

figure, we can see the drought severity for the week of August 17, 2021 based on the 

operational drought categories of the US Drought Monitor for the contiguous US [32].  
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Figure 1.11 1Example of Drought Severity based on the US Drought Monitor 
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CHAPTER TWO: BOISE DROUGHT 2021 ANALYSIS  

2.1 Introduction 

 This chapter focuses on multivariate analysis of the 2021 Boise drought in the 

context of human and natural systems. To that end, this section analyzes the collected data 

from the Boise River watershed, and discusses the impacts in the Treasure Valley, Idaho, 

that directly depends on the Boise River as its main water source.  Specifically, this section 

discusses the three main variables that govern drought onset, evolution, and termination in 

mountainous watersheds, such as the Boise River watershed, in the context of natural-

human systems, namely precipitation, snow storage and dam storage. Importantly, this 

section analyzes historical time series of each of these variables, and views each variable 

individually in the historical context, and also assesses them in multivariate (bi- and tri- 

variate) contexts. This analysis helps shed light on the main driver of the 2021 drought in 

the Treasure Valley, Idaho, and can inform future drought mitigation plans. Finally, this 

chapter provides a ranger of future projections of climatic variables, specifically 

precipitation, to describe expected future drought conditions.  

2.2 Drought in the US 

Drought is a natural phenomenon and is not only constrained to a certain region, 

like the Treasure Valley. Even the wettest places of the Earth, such as the Amazon 

Rainforest, also observe episodic periods of drought, which facilitate other extremes such 

as the recent years’ extreme wildfires in the Amazon [30]. The same applies to the United 

States of America, which possesses a wide range of climates, from cold and wet in Alaska, 
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to dry and hot in southern California, and humid and hot in Florida. The US expectedly can 

oscillate between wet to dry conditions. Figure 2.1 shows an average Palmer Drought 

Severity Index (PDSI) in the continental US (lower 48 states; aka CONUS), attesting to 

this oscillation (22). PDSI is a measure of water balance, incorporating the impacts of 

precipitation and temperature on potential water availability. Note that Figure 2.1 presents 

average PDSI for the entire CONUS, and while the average CONUS’ PDSI can point to 

being wet (positive values), specific places can be dry (negative PDSI). 

 Figure 2.1 shows that PDSI values fluctuate between “wet years” (in the mid 1980s 

and 1990s) and “dry years” (from approximately 1930 to 1940) (25). This type of 

information helps to analyze drought impacts, and prepare for the cascading disasters that 

follow drought, such as rather short-term impacts being manifested in wildfires, mid-term 

impacts such as food insecurity, and long-term impacts such as vegetation type conversions 

(e.g., from forest to shrublands). Various regional, state, federal and international agencies 

collect observed meteorological variables that are needed for drought analysis and 

prediction. In the US, the National Oceanic and Atmospheric Administration (NOAA) is 

in charge of observing detailed hourly, daily, monthly, and yearly meteorological data (e.g., 

precipitation and temperature) that can easily be accessed. NOAA also provides a variety 

of meteorological forecasts, ranging from short-term (1-14 days), subseasonal (monthly), 

to seasonal (season to year) scales [25].  
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Figure 2.1 USA Land Drought Averages 

 

2.3 Drought in the Boise River Watershed: Data Collection  

For the purpose of this research climatic data was downloaded from 

www.climateengine.com from the years 1982 to 2021, daily snow water equivalent (SWE) 

data was downloaded from the Natural Resource Conservation Service of the US 

Department of Agriculture for the SNOTEL sites in the Boise River Basin, and daily dam 

storage data for Arrowrock, Anderson Ranch, and Lucky Peak dams was acquired from the 

US Bureau of Reclamation [4]. It is noteworthy that ClimateEngine is a wrapper for a 

variety of data sources, such as PRISM, which can be used to subset (both spatially and 

temporally) the data from the original source for final usage. Here, I extracted monthly 

precipitation data from PRISM through ClimateEngine [6]. Also I used April 1st dam 

storage and SWE as built and natural water storage, respectively, in the watershed, and 
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used April-May-June precipitation as atmospheric storage (natural). All these storage 

compartments determine water availability for the stakeholders (e.g. farmers) in each year. 

Note that farmers use dam storage and snow storage in spring to make decisions for the 

extent of cultivated land in each year, while spring precipitation is yet not certain at the 

time of this decision. This information was analyzed with software like Excel and 

MATLAB to perform the univariate and trivariate probability analyses. 

The study period of 1982-2021 (40 years) was selected as the common timeline 

during which data for all variables were available. While the precipitation and dam storage 

data were relatively clean and straightforward to work with, the SWE data needed some 

preprocessing. In some cases, SWE values for April 1st were not available, in which case, 

I linearly interpolated between the preceding and succeeding days to derive April 1st SWE. 

Note that I selected the SNOTEL sites used in this study based on their long-term data 

availability. 

2.4. Drought in the Boise River Watershed: Methods 

Many studies in the past have come to a conclusion that a single drought index is 

not the most effective way to describe or determine all the related aspects of droughts. 

Different aspects should be considered in order to extend drought indicators to provide a 

more comprehensive assessment of this natural hazard, such as the moisture of the soil, the 

precipitation, snow water equivalent, and water storage level. For the purpose of this paper, 

I considered the precipitation, SWE, and the available dam storage in the three dams that 

feed into the Boise River, from the Anderson Ranch, Arrowrock, and Lucky Peak dams. 

This research mostly focused on the probabilities and the exceedance probabilities 

of three factors of interest, and their joint behavior. These factors are the precipitation the 
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Boise River watershed received, the available SWE within the Boise River watershed, and 

the available water stored in the three dams in the Boise River watershed. 

The total water storage of the three dams on April 1st of every year during the 

period of analysis was collected from the Bureau of Reclamation website [4]. SNOTEL 

data was used for the SWE time series data across the Boise River watershed for the period 

of analysis and was collected from the Natural Resources Conservation Service National 

Water and Climate Center website [24]. Additionally, the total precipitation data for the 

Boise River watershed was collected for the months of April, May and June during the 

period of analysis. PRISM daily precipitation data was collected from the Climate Engine 

website [6]. 

April 1st was chosen as the date for data collection for both dam storage and SWE 

because it was deemed that data from this date would be a representative measure of the 

available SWE and dam storage that was left over from the previous year in addition to 

what was collected and accumulated during the winter and early spring months. The 

precipitation data was collected for the months of April, May, and June and then aggregated 

to provide a total value of the spring precipitation for the Boise River watershed. These 

three values were used to run a frequency analysis in order to find the joint probability of 

a drought occurring which in turn was used to calculate the exceedance probability of the 

drought event and ultimately calculate the return period of the drought experienced in 2021 

by the Boise River watershed. 

  All of the analyses were implemented using Microsoft Excel and 

MATLAB software. The precipitation, Pr, snow water equivalent, SWE and 
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available dam storage, S, are the three intercorrelated drought 

characteristics that were used in the multivariate probability distribution 

calculations which merge these random variables into a joint probability 

distribution, X. The univariate ranks (worst is ranked 1) and probabilities 

(P(SWE≤sw e), P (P r≤pr), P(S≤s)) are first calculated based on the 

historical values and then compared to the joint probability, X = 

P(SWE≤sw e, P r≤pr, S≤s). 

A high occurrence probability in the case of these three variables is associated with 

a common value which indicates a low probability of that variable contributing to the 

likelihood of a drought. A high exceedance probability, however, indicates a rare event 

which, in this case, is associated with a higher likelihood of a drought occurring. For the 

purpose of this study we considered a low occurrence probability or high exceedance 

probability in the joint probability distribution to be an indication of drought occurrence. 

The return period of the drought was then calculated using Equation 1: 

                          T=1/𝑃𝑃                (1) 

where T is the return period and P is the occurrence probability. In case 

of univariate drought, P refers to the probability of each variable (e.g., 

P(SWE≤sw e) , P (P r≤pr) and P (S≤s) ). In bivariate case, this 
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probability is defined as P(SWE≤sw e ∧ Pr≤pr), P (SW E≤sw e ∧ S≤s), 

P(Pr≤pr ∧ S≤s). In a trivariate case, probability is defined as 

P(SWE≤sw e ∧ Pr≤pr ∧ S≤s). N ote that w e use probability in this 

study to calculate return period level, as opposed to the traditional use of 

exceedance probability to calculate return period level of floods. This is 

because a worse flood is the one with higher value, and exceedance 

probability refers to a phenomenon that is worse than what was observed. 

In case of drought, it is the other way around, meaning that a lower 

precipitation, for example, refers to a worse drought. 

2.5 Drought in the Boise River Watershed: Results 

Cumulative SWE data for April 1st for the Boise River watershed can be seen in 

Figure 2.2, below. This figure enables assessing the 2021 SWE storage on April 1st in the 

context of historical snow storage. Snow water equivalent (SWE) data was used as a 

measure of the spring snow storage in the Boise River watershed and SWE measurements 

on April 1 were used as a representative value of the available spring snowpack. SNOTEL 

SWE data was collected from the Natural Resources Conservation Service National Water 

and Climate Center website for April 1 for the period of 1982-2021 for seven sites within 

the Boise River watershed [6, 24]. These seven SNOTEL stations and their characteristics 

were enlisted in Table 2.1. The SWE data for the seven stations used were added together 

to get a cumulative SWE value for each year in the analysis period. As shown in Figure 
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2.2, the 2021 spring SWE storage was at more than 30th percentile of the long-term record, 

making this year a rather normal year in terms of snow storage, although being below 

average. The shaded red band shows the region that falls below the spring SWE value of 

2021, which expectedly includes many years such as 2005, 2010 and 2015.   

 

 
Figure 2.2 Annual April 1st Values of Cumulative Snow Water Equivalent 

(SWE) at Seven SNOTEL Sites in the Boise River Watershed  
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Table 2.1 Seven SNOTEL Stations Used for SWE Analysis in this study and 
Their Characteristics 

SNOTEL 
SITE 

STATE SITE # COUNTY ELEVATIO
N  

(Ft) 

REPORTING 
SINCE 

Atlanta 
Summit 

ID 306 Elmore 7550 1978-10-01 

Dollarhide 
Summit 

ID 450 Blaine 8420 1979-10-01 

Graham 
Guard Sta. 

ID 496 Elmore 5690 1978-10-01 

Jackson 
Peak 

ID 550 Boise 7070 1979-10-01 

Mores 
Creek 

Summit 

ID 637 Boise 6100 1978-09-30 

Trinity 
Mtn. 

ID 830 Elmore 7770 1978-10-01 

Vienna 
Mine 

ID 845 Blaine 8960 1978-10-01 

 

Figure 2.3 shows the SWE characteristics at Atlanta Summit SNOTEL station. The 

2021 SWE values are below the median in this station which is represented by the green 

line for this site station. Similar information for  Dollarhide Summit Station, Graham Guard 

Station, Jackson Peak Station, Mores Creek Summit Station, Trinity Mountain Station, and 

Vienna Mine Station are shown in Figures 2.4 to 2.9. 
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Figure 2.3 Atlanta Summit SNOTEL Station; Max, Median and Min. 2010 to 

2022 

 

 
Figure 2.4 Dollarhide Summit SNOTEL Station: Max, Median and Min. 2010 to 

2022 
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Figure 2.5 Graham Guard  SNOTEL Station: Max, Median and Min. 2010 to 

2022 

 

 
Figure 2.6 Jackson Peak SNOTEL Station: Max, Median and Min. 2010 to 2022 
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Figure 2.7 Mores Creek Summit SNOTEL Station: Max, Median and Min. 2010 

to 2022 

 

 
Figure 2.8 Trinity Mtn. SNOTEL Station: Max, Median and Min. 2010 to 2022 
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Figure 2.9 Vienna Mine SNOTEL Station; Max, Median and Min. 2010 to 2022 

 

As supplemental information to understand how SNOTEL stations collect data, 

Figure 2.10 shows the Graham Guard SNOTEL station, which includes a ground truth 

marker, wind sensor, temperature sensor, snow depth sensor, solar radiation sensor, snow 

pillow, radio antena, equipment shelter that includes a data logger, and precipitation gauge. 

Furthermore, and as supplemental information, Figure 2.11 shows historical maximum 

SWE from 1980 to 2020.  
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Figure 2.10 Photo of Graham Guard SNOTEL Station. Courtesy of USDA 

 

 
Figure 2.11 Historical Season SWE Peaks for Trinity Mountain Station 1980-2022 
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Figure 2.12 illustrates historical dam storage values in the Boise area, collected on 

the first day of April in each year. Storage values from all three dams that feed into the 

Boise River come from Arrowrock Dam, Anderson Ranch Dam, and Lucky Peak Dam. 

The colored band represents values within the 60th percentile occurrence probability, 

including values for the focus value for the 2021 reservoir storage of the Boise River 

watershed.  All of the dots represent each year’s reservoir storage levels. The values for the 

three dams were used to determine the cumulative available water storage for the Boise 

River watershed from 1982 to 2021, and were collected from the Bureau of Reclamation 

website [4].  The 2021 storage value was 606,167.92 acre-ft which corresponds to an 

occurrence probability of 61%, or a 39% exceedance probability. These values are not the 

lowest in the period from 1982 to 2021. These values are in some way indicative of the 

reservoir storage values, but are not as low as drought predictions might initially suggest. 

With such a high occurrence probability, it is unlikely that dam storage was solely the main 

contributing factor of the 2021 drought.  The values of reservoir storage for the Boise River 

watershed in the period of 1995 to 2000 were below 300,000 acre-ft, which, for the period 

of 1982 to 2021, were the lowest.   
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Figure 2.12 April 1st Cumulative Dam Storage in the Boise River Watershed 

 

Figure 2.13 presents atmospheric storage values, i.e., spring precipitation, for the 

period of 1982 to 2021.  Atmospheric storage values for Boise, Idaho usually range 

between 11 and 12 inches annually [7].  PRISM daily precipitation data was collected by 

entering relevant regions and variables in the Climate Engine website relating to the Boise 

area [6].  In order to collect precipitation data for the Boise River watershed, data for April, 

May, and June for each of the 40 years was averaged from the three sub-catchments which 

contribute to the Boise River. These sub-catchments include the Boise Mores, South Fork 

Boise, and Lower Boise catchments. 
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From the collected precipitation data, I isolated the precipitation measured in the 

months of April, May, and June for the period of analysis to determine an average of spring 

precipitation. Visual analysis of the historical precipitation data is presented in Figure 2.13. 

The value seen in the year of 2021 indicates an occurrence probability that is about 5% 

(95% exceedance probability). Historically, 2002 was the only year with a lower spring 

precipitation than 2021. This indicates a rarity potential for this kind of value for the Boise 

River watershed area. 

 
Figure 2.13 Spring (April-May-June) Precipitation in the Boise River Watershed 

 



47 

 

The data presented in Figure 2.14, below, shows the daily precipitation amounts in 

2021. The spring season usually brings heavy precipitation to the Treasure Valley (i.e., 

high atmospheric storage; also see Figure 2.15), however the year 2021 was too low in the 

spring precipitation. 

 

Monthly Boise River Watershed Precipitation 

 
Figure 2.14 2021 Boise River Watershed Daily Precipitation  

 

 
Figure 2.15. Historical weather in Boise, Idaho. Courtesy of Weatherspark 
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I now turn my attention to analysis of the 2021 Boise drought drivers in a bivariate 

context. Figure 2.16, below, shows a bivariate analysis SWE and dam storage for 2021 and 

how that compares to the historical record.  In this graph, the region with a worse bivariate 

condition compared to 2021 is shaded with a red color. Here, worse is defined with an 

“AND” scenario [28], in which both SWE and dam storage should have lower values 

compared to that of 2021 (i.e., P(SWE<SWE_2021 ∧ Dam Storage<Dam Storage_2021)).. 

The year of 2021 is located in the lower left quarter of the graph, marking itself low in 

comparison with other years in the 40 years studied. In fact, there are only six other years 

that fall below 2021 in terms of bivariate SWE and dam storage levels.  This puts 2021 at 

the 18th percentile for combined SWE and dam storage values. 

Overall, SWE and reservoir storage seem connected and go hand-in-hand. Wet 

years provide a higher storage in each of these two components. However, dam storage is 

controllable by humans, while snow storage is not, and farmers may decide to bank their 

share of a year’s water share for a future year. This brings a level of resilience to the farmers 

that if a future year’s water provision is low, they can use their banked water. This 

happened in 2021, when farmers used the majority of their banked water from previous 

years to compensate for the low streamflows in the Boise River induced by a dry spring. 

However, the downside is that if several dry years occur successively, farmers may run out 

of banked storages.  
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Figure 2.16 Boise River Watershed: SWE vs April 1st Dam Storage 

 

Figure 2.17, below, displays a historical record of bivariate SWE and spring 

precipitation for the Boise River watershed, and clearly shows the year 2021 alone on the 

bottom left corner. Indeed, 2021 is the worst on record in terms of combined precipitation 

and SWE occurrences in the 40 year period studied. This is extremely significant in terms 

of finding the root causes of the 2021 drought. This chart helps explain why the 2021 

drought turned out to be so acute. Farmers decide the extent of cultivated land in late winter 

and early spring, when spring precipitation data is uncertain, and they do so mainly based 

on dam and snowpack storages. Hence, droughts that are triggered by low spring 
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precipitation can have a double whammy effect, if farmers cultivate their land to the full 

extent, since it will cause low water availability combined with high water demand. 

These two variables (SWE and spring precipitation) shown in Figure 2.16, 

combined, carried a huge impact on the resulting drought. The SWE, although pretty low, 

was itself not at an alarming level. However, combined with precipitation, resulted in a 

very impactful driver for the drought. An important takeaway for farmers, in terms of future 

preparedness, would be to look more closely at the monitoring SNOTEL stations in 

combination with predicted precipitation levels. The National Oceanic and Atmospheric 

Administration provides short-term (less than 10 days or so) to mid-term (seasonal) 

prediction of precipitation and temperature. This would give farmers a better understanding 

of "what's coming" for the remainder of the growing/maturing season. It is noteworthy that 

precipitation predictions at the seasonal scale are very uncertain, and mostly qualitative.  It 

might even be helpful to create an app, free to all, that could use this multivariate analysis 

in a way that's beneficial to farmers and water resource engineers. 

 

 

 



51 

 

 
Figure 2.17 Boise River Watershed: SWE vs Spring Precipitation 

 

Figure 2.18 signifies the occurrence and historic place of 2021 in terms of combined 

spring precipitation and dam storage values.  As can be seen in Figure 2.18, below, only 

the year 2002 had a lower level than 2021 in the 40 years studied. Even if the year starts 

off with average dam storage levels, if there is not sufficient spring precipitation, then the 
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stored water will get consumed at a faster rate without replenishment. In 2021, farmers 

took their allotted, as well as their banked, water for their crops, leaving reservoirs at low 

levels, and this resulted in the irrigation supply being cut off one whole month earlier than 

normal.  This 30 day water deficit is a clear indication of the 2021 severe drought in Boise 

River watershed. 

 
Figure 2.18 Boise River Watershed: Spring Precipitation Vs April 1st Dam 

Storage 
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A univariate analysis of drought proves to be insufficient when looking at the 2021 

Boise drought, as well as many other cases shown in the literature. Specifically, if dam 

storage levels were used in isolation, 2021 would not be in bad shape. In fact, the year 

started in a good status with more than normal storage. The fact that lack of precipitation 

caused large withdrawal of water from dams, and their subsequent dropdown to lower than 

normal levels, is key in giving way to a massive drought in Boise in 2021. In other words, 

a  60% occurrence probably for the reservoir storage (Arrowrock, Anderson Ranch, and 

Lucky Peak combined) for the year 2021 in the Boise area alone is not a reason to sound 

the alarm of a possible drought. However, when combined with the lack of precipitation, 

the picture becomes more clear.  Boise was using the same amount of water without 

replenishing its water “bank”.  Looking at the many drivers is crucial for the ability to 

monitor and analyze droughts. For this reason, a trivariate analysis was performed in this 

research.  

A trivariate analysis was proven to be a useful tool in order to determine how the 

precipitation, SWE, and dam storage levels resulted in the 2021 drought.  Figure 2.19, 

below, can be read easily if it was imagined as the inside corner of a simple cardboard 

box. The left edge of the “bottom” wall of the box would indicate SWE, ranging from 

lowest to highest in terms of left and right.  On the right edge of that same “bottom,” the 

dam storage levels are measured; again, leftward values are lowest, and right hand values 

are highest. Finally, the “back” wall of the box indicates precipitation, indicating values 

with the lower side of the wall as smaller values and the higher end of the wall with 

higher values. Once this can be imagined, then the dots can be visualized in a 3D sense.  

With this in mind, the orange marker, indicating the year 2021, can be visualized as 
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indicating a low SWE and precipitation values, yet slightly above the median for dam 

storage levels. 

As can be seen in Figure 2.19, 2021 was indeed located toward the lower section 

of the “box corner”, placing 2021 in the worst case scenario in a trivariate space in the 

historical record. This means that there was no other year on record that had lower dam 

storage AND lower SWE and lower spring precipitation than 2021. As stated before, the 

two variables of precipitation and SWE had the highest impact on the drought occurrence 

and severity. They together failed to replenish reservoir levels, and ultimately led to lack 

of water for farmers' crops.  In addition to the SWE levels being low, a warm El Nino 

springtime caused snow to melt off at a faster rate than normal, resulting in very little 

snowpack being available for the rest of the season, when it would normally be used. 

Figure 2.18 depicts the status of SWE, dam storage, and spring precipitation for a 

period of 40 years, ranging from 1982 to 2021. The resulting combined graphical 

representation gives a detailed analysis of the overall reach of these three variables. The 

purple markers demonstrate the 1980s through the mid-90s, the green markers represent 

mid-90s to early 2000’s, and lastly the yellow markers represent the 2010 to 2021 years. 

The 2021 value of the dam storage was reasonable and while the SWE value was on the 

low side, it was still within a reasonable range from normal.  However, the precipitation 

that the Boise River watershed received in 2021 was significantly lower than usual, with 

an occurrence probability of only 5%. In this case, because the dam storage was not outside 

of its usual range, we can infer that the driving factor of the 2021 drought in the Boise 

River watershed was the low precipitation received and, to a lesser extent, the moderately 

low SWE value.  
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Through analysis of the historical values, it is evident that low precipitation is not 

always the driving factor that leads to drought. In 1987, the available dam storage was high 

(with an occurrence probability of 81%), and the precipitation received by the Boise River 

watershed was moderately low (with an occurrence probability of 25%). In the same year, 

the available SWE was very low (with an occurrence probability of 6%). In this case, the 

very low value of SWE is likely one driving factor that caused the drought in combination 

with the low precipitation. In 2006, both the precipitation and available SWE were fairly 

high (with occurrence probabilities of 64% and 86% respectively), but the available dam 

storage that year was very low (with an occurrence probability of only 7%). In 2006, the 

extremely low dam storage was the driving factor that led to the drought [20]. 

From the analysis of the historical data, it is clear that if one out of the three factors 

goes awry in the available dam storage, SWE, and precipitation, there is a good chance that 

a drought will ensue. However, if two (or more) of the factors have below average values, 

it becomes highly likely that it will result in a drought. Closer monitoring of these factors 

can provide a good indication of whether a drought is about to occur. In the case of Boise 

in 2021, the drought was outpacing the needs of the community. According to a local news 

outlet, KTVB, many sectors like farming and homes had their irrigation water cut off early, 

with the reason being the severe lack of water in the reservoirs to meet the demands of the 

residents and farmers [1].  

Based on this research, the trivariate analysis represents a more realistic description 

of whether or not a drought will be observed, and if it does occur, how it will progress and 

terminate.  The severe 2021 Boise drought was difficult to predict since it was mainly 

driven by precipitation, which is difficult to predict. Monitoring and prediction efforts need 
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to be strengthened if we want to be prepared for the next major drought year. By looking 

at the historical data and extrapolating into the future, we can make educated assumptions 

of potential drought years. 

 

 
Figure 2.19 Trivariate Analysis: Precipitation, SWE, and Dam Storage (Years 

1982 - 2021) 
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Tables 2.2 and 2.3 present historical values of April 1st dam storage and SWE for 

each year, as well as spring precipitation for the Boise River watershed, as well as their 

associated univariate, bivariate and trivariate ranks (Table 2.2) and return periods (Tables 

2.3). In Table 2.2 rank 1 refers to the worst case, for example lowest spring precipitation 

on record. Ranking in a univariate case is quite simple and intuitive. For example, if a year 

observed the lowest precipitation on record, it is assigned a rank of 1. In a multivariate 

case, however, it is not as straightforward. For a year to get a rank of 2 for precipitation 

and SWE, for example, there needs to be another year that is worse both in terms of 

precipitation and SWE (i.e., lower precipitation and lower SWE). A similar definition 

applies to a trivariate ranking. Multivariate ranks are, therefore, not unique. As visible in 

Table 2.2, there are 9 years with a rank of 1 in the trivariate space. This is because there 

was no other year that could supersede these years in all three variables (worse precipitation 

AND worse SWE AND worse dam storage). There are statistical methods to break these 

non-uniqueness, which I will not pursue in this research due to time limitations. These 

ranks are then translated to exceedance probabilities (rank/(N+1) in which N is the number 

of observations, here 40), and are then translated to return period levels (RP = 1/exceedance 

probability, where RP stands for return period). Return period levels for univariate, 

bivariate, and trivariate cases are presented in Table 2.3. Note that here the maximum return 

period can be only 41 years since I am using an empirical approach to calculate return 

period levels. If I were to fit distributions (such as GEV for univariate cases), I would 

probably better sample the tails, which would have resulted in different (probably larger) 

return period levels for extreme cases. But that would introduce a level of uncertainty, for 

which reason I would refrain from it. I note that provided results are for understanding 
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purposes and operational planning needs to explore more robust statistical methods, such 

as more robust distribution tail analysis. 
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Table 2.2 Historical April 1st dam storage and SWE for each year, as well as 
spring precipitation for the Boise River Watershed and their uni, bi, and trivariate 
ranks (rank 1: worst) 
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Table 2.3 Historical April 1st dam storage and SWE for each year, as well as 
spring precipitation for the Boise River Watershed and their uni, bi, and trivariate 
return periods (year) 

 

 

The 2021 Boise drought was somewhat unpredictable, since it was mainly driven 

by a lack of spring precipitation. Predicting precipitation, SWE, and dam storage levels are 

key for the preparedness of areas prone to droughts. In the case of Boise, the results show 

a clear picture of the climate and variables which are changing.  
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2.6 Future Projection of Drought Likelihood in the Boise River Watershed 

Historical analysis of droughts provides invaluable information of the occurred 

disasters and provides a baseline for developing future management scenarios. Another 

tool that is available to scientists about what can be expected to happen in the future is 

General Circulation Models (a.k.a. Global Climate Models; GCM) that can project future 

climates given various emission and development scenarios. GCMs are numerical 

representations of elements that contribute to and control climate of the Earth, including 

Ocean, Atmosphere, Sea-Ice, and Land-Atmosphere interactions. One set of scenarios that 

drive GCM simulations is the RCP (representative concentration pathway) values. The 

RCP values reflect the amount of “Radiative Forcing” or climate forcing which 

differentiates the amount of sunlight absorbed and sunlight reflected into space [35]. This 

value takes into consideration many variables like economics, green gas emissions, fossil 

fuel rate of use, population, etc.  

Researchers have formulated a range of RCP values, with some of the most 

common including the RCP values of 4.5 and 8.5. The RCP of 8.5 typically refers to a 

“business as usual” scenario, which according to some scientific papers, is considered to 

be “the worst case scenario” [35], where as a whole, adequate actions are not taken to 

address some of the many changes occurring with the natural world due to human-induced 

greenhouse gasses emissions. In this scenario, things like coal consumption, polluting our 

water bodies, greenhouse gas emissions, and more, stay on a constant path of rising trend. 

RCP 4.5 refers to a scenario where many of the offenders, like the greenhouse gasses and 

coal combustion, are reduced greatly – although not as much as more aggressive scenarios 

like RCP 2.5. Implementations like carbon capturing, lower emissions, change in energy 
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systems, or even forest land expansion are adopted in RCP 4.5 [35]. Furthermore, various 

modeling groups across the globe developed models in an attempt to model the Earth’s 

climate. These models can use similar modules in their structure, but they generally differ 

in spatiotemporal scales of process representations in their structure, as well as the type of 

processes to include or exclude. Figures 2.20 and 2.21 present a multi-model ensemble of 

projected annual precipitation for Boise, Idaho, using models from Coupled Model 

Intercomparison Project, Phase 5 (CMIP5) unders scenarios RCP 8.5 and RCP 4.5 

scenarios, respectively. Under the high emission scenario (RCP 8.5; Figure 2.19), the 

annual precipitation in Boise, Idaho is expected to increase slightly (~1 inch increase) by 

the end of the century. This is mainly due to an increase in evaporation rates from the 

oceans as well as higher atmospheric capacity to hold water in a warmer climate, which 

results in an expected increase in severity of precipitation events. Importantly, a warming 

climate also changes the atmospheric circulation patterns that bring moisture to any 

location on Earth, resulting in the projected changes in annual precipitation in Boise, Idaho. 

Expected increase in annual precipitation in Boise, Idaho, under RCP 4.5 scenario, 

however, is much less notable. In fact, the increase in annual precipitation is marginal under 

a medium emission scenario (Figure 2.21).  
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Figure 2.20 Projected annual precipitation for Boise, Idaho, using CMIP5 models 

with an RCP 8.5 scenario. 

 

 
Figure 2.21 Projected annual precipitation for Boise, Idaho, using CMIP5 models 

with an RCP 4.5 scenario. 

 

Water availability, however, is not only governed by precipitation amounts. 

Temperature trends also help determine water availability in the future through controlling 
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the evaporation and transpiration amounts. Higher temperatures increase 

evapotranspiration and induce dryness on land. Under both medium (RCP 4.5) and high 

(RCP 8.5) emission scenarios, CMIP5 models project an increase in temperature in Boise, 

Idaho by the end of the century. However, the increase in annual Max Temperature under 

RCP 8.5 is roughly twice as much as that of RCP 4.5 (10 degF vs 5 degF increase in 2100 

compared to present day).   

 

 
Figure 2.22 Projected annual Max temperature for Boise, Idaho, using CMIP5 

models with an RCP 4.5 scenario. 
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Figure 2.23 Projected annual Max temperature for Boise, Idaho, using CMIP5 

models with an RCP 8.5 scenario. 

 

Marginal projected increase in precipitation can arguably be counteracted by 

significant increase in temperature and consequently evaporative demand to potentially 

increase drought severity by the end of the century in the Boise area, specifically under the 

high emission scenario (RCP 8.5). For example, projected streamflow changes in South 

Fork Payette River in Lowman, Idaho – that has similar climate, land cover and 

topographical characteristics to headwater streams of the Boise River – point to an increase 

in February through March streamflows (when streamflow is high and can potentially be 

at the flooding level), and a decrease in other months (when streamflow is low) compared 

to the historical record. This causes significant management challenges since streamflows 

cluster in wet months, and there likely will be a mismatch between the timing of water 

availability and demand.  
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Figure 2.24 Projected changes (2070-2099 compared to historical) in monthly 

streamflow in South Fork Payette River in Lowman, Idaho, using CMIP5 models 
with RCP 4.5 and RCP 8.5 scenarios. 

 

Importantly, spring precipitation that is arguably the main reason for the 2021 Boise 

drought is also expected to change in the future under various emission scenarios. Figures 

2.25 and 2.26 show trends in projected April through June precipitation in Boise, Idaho, 

under RCP 4.5 and RCP 8.5 scenarios, respectively, using four models randomly selected 

from the suite of CMIP5 models. Spring precipitation in Boise is expected to marginally 

increase under medium emission scenario (Figure 2.25), whereas it is projected to 

marginally decrease (3 of the 4 explored models) under a high emission scenario (Figure 

2.26). This finding is specifically alarming given a higher emission and warmer scenario, 

which increases water demand, is also projected to concur with lower spring precipitation. 

This setting (low water availability and high demand) is similar to what happened in 2021.  
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Figure 2.25 Trends in projected April-June Precipitation in Boise, Idaho under 

RCP 4.5 
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Figure 2.26 Trends in projected April-June Precipitation under RCP 8.5 
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CHAPTER THREE: DISCUSSION  

The 2021 drought proved to be very hard on farmers and their crops, leading to 

distress and crop failures. The combined effect of the main drivers analyzed in this study 

are key for understanding why the drought was so impactful to the farming community in 

the Treasure Valley area. After analyzing the possible causes, this study determined that 

the main factors that lead to the drought were low precipitation (main) and low snowpack 

(secondary), combined with “business as usual” practiced by water consumers, such as 

farmers, that induced high water demand. The combined effect from low precipitation and 

taking more water than actually available for the year (e.g., through using banked water in 

dams from previous years) intensified the effects of the drought. Reservoir levels were 

actually higher than normal in the early spring of 2021, which probably impacted the 

drought conditions negatively by giving the farmers a sense of security to cultivate their 

land to the fullest extent. But then when the inflow to the reservoirs dropped due to low 

spring precipitation, dams were not able to fully support the downstream water demand.. 

The drought was indeed unpredictable, but just like any issue, there are steps that can be 

taken for the readiness of the parties involved. In this case, Boise was not ready for the type 

of damage that the drought of 2021 caused to the crops. Many farmers lost money and 

gains.   

The Boise River watershed is located in the northwestern part of the United States, 

in the southwest corner of the state of Idaho. It covers most of Ada and Canyon Counties, 

and also parts of Gem, Boise, Payette, Elmore, and Malheur Counties. The main cities 
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which use the watershed include Idaho’s capital, Boise, as well as Nampa, Caldwell, and 

Eagle, and some smaller communities. Water is an important resource for these areas due 

to Idaho’s economy, which heavily relies on agriculture, and more specifically, crop 

production. 

As mentioned above, the drought was caused by several factors, one of which was 

low precipitation. But it was not simply “little rain”; this term is used to describe a wider 

span of time and types of precipitation.  The low precipitation was seen in the spring 

months, April, May, and June of 2021, which put 2021 as the second lowest spring 

precipitation in the historical record. These spring months are specifically critical to 

farmers, since this is the time when crops are typically planted and seedlings are in need of 

an adequate water supply.  Since an average amount of precipitation was not available in 

the spring, farmers had to start using canal water earlier than normal, which would later 

contribute to the low supply of water. 

Water stored and available for agriculture use include water levels in reservoirs as 

well as snowpack.  The reservoir levels were somewhat normal from the start of the 2021 

year, as well as in the spring of 2021, which indicates that the reservoir levels alone were 

not a contributing factor to the drought. The reservoir levels were seen at approximately 

the 60th percentile mark, which means it was slightly above to the median level. Indeed, 

24 years out of the 40 years recorded in this study observed lower dam storage than 2021.  

But the year of 2021 saw a relatively low combined snowpack and reservoir storage - in 

fact, sitting at the 17th percentile of historical record.  Snowpack, a natural source of water 

storage, was an important contributing factor to the 2021 drought. This is because 

snowpack levels were relatively low – at the 34th percentile, meaning that in the 40 year 
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period of analysis, 63% of years received higher amounts of snowpack than the year 2021. 

Low precipitation in 2020, especially in the form of snowfall during the late fall and winter 

months, created a lower than average amount of snowpack accumulation at the start of 

2021. This carried on into the spring months of 2021, which also saw low spring 

precipitation.  

This combination of somewhat low SWE and very low precipitation were a major 

driving force of the 2021 drought.  Together, their forces combined to create the sudden, 

sharp reduction in available water with detrimental effects. This can be thought of as money 

in a person’s possession. The SWE could be what the person has in the savings account (in 

this case, we’ll say he has saved $1,000), and the precipitation is what he receives from his 

paycheck (in this case, we’ll say he receives paychecks totalling $1,000 per month). If he 

is going to be spending $2,500 in the coming month, but only has $1,000 in savings and 

$1,000 from his paycheck, he will come up $500 short and will have to stop spending 

sooner than anticipated.  

The joint dam storage levels and precipitation were also strikingly low (2nd worst 

on record), driven by very low precipitation. The dam storage levels, at approximately the 

60th percentile, seemed to be at a normal level, but with the severe lack of spring 

precipitation and high agricultural water demand, the water ran out quickly.  This can be 

understood as a marathon runner’s experience; let's say that normally the runner carries a 

filled up 1 liter water bottle when she starts her marathon. Along the way, she is accustomed 

to grabbing drinks of water from volunteers along the path to keep herself hydrated. But in 

the current marathon she has just started, the organizers could not find enough volunteers 

to pass out water bottles to runners AND failed to notify participants. So the runner drinks 
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from her water bottle until it is empty, and finds herself thirsting for more but there seem 

to be hardly any volunteers.  The runner, as well as all the other participants, have to leave 

the race unfinished or face collapsing due to severe dehydration. This analogy shows the 

experience farmers faced in the 2021 drought. 

The results of this study matter because in the overall scheme of farming 

production, they can be used as a cautionary tale for future crop production. In addition, 

this study shows the three main drought drivers – precipitation, SWE, and reservoir levels 

–  have to be studied as a whole. They always go hand-in-hand in mountainous watersheds, 

and to ignore one will give an incomplete picture of drought, similar to what was 

experienced in 2021. The results of this study help find the main reason why irrigation was 

cut abruptly in 2021, leaving farmers unable to complete their watering season: there was 

not enough surplus water in the dams from the previous year that could offset the severe 

lack of spring precipitation and low SWE. Farmers and other communities can use this 

multivariate approach for future assessment of potential droughts.   

The limitations of this study include the fact that I only focused on three variables 

(SWE, precipitation, reservoir levels), but if more variables were to be included, then other 

factors could be identified (e.g., soil moisture, temperature, etc.).  The three factors studied 

here were selected because they seem to be most impactful and relevant to drought events 

in the Boise area, but upon further investigation, additional variables could be identified 

and predictions could be refined and improved. Another limitation in the study is the time 

period. I could have alternatively chosen a time period of 100 years to compare 2021 to a 

wider historical sample, but due to ever changing weather conditions, I identified 1982 

through 2021 as most relevant for this study. Furthermore, snowpack data do not extend 
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back to 100 years ago, and the Anderson Ranch dam was operationally available only since 

the 1950s. Similarly, when there are cases studying over 100 years of data, accuracy may 

sometimes be inconsistent or missing.  

Following this study, some practical actions that could be taken could be the 

implementation of pamphlets given to local farmers, showing an app that corresponds to 

the information gathered by this study. The app would go on explaining how multiple 

variables need to be considered when farmers are planning their growing season, and have 

a drought monitor gauge that gathers real time data from relevant websites to give farmers 

an instant multivariate analysis as to the drought outlook for the year. If the app users want 

more information about specific topics or details relating to the gauge’s indicator, there 

could be links to the databases used for the gauge’s reading, such as Idaho Drought 

Monitor, SNOTEL, drought.gov, and NRCS.usda.gov.  Another action to implement 

would be a government funded research project that includes more variables such as 

humidity, soil types, weather change, and a comprehensive analysis of water demand 

resulting from the recent years’ dramatic increase of human population in the Boise area.  
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CHAPTER FOUR: SUMMARY AND CONCLUSION 

The climate cycles are changing.  In many cases, many of the processes become 

more stochastic in nature.  The results of this paper led to a compilation of data and 

probability analysis that showed the possible reasons why Boise experienced a drought in 

the year 2021.  Drought predictions have become ever more difficult due to 

anthropogenically driven stochasticity and trends that are imposed on various processes 

that govern drought onset, evolution and termination [23].  Precipitation, streamflow, and 

snowmelt are no longer expected to be stationary, because the rate at which a lot of these 

variables are changing makes the issue more complex and harder to predict [23]. 

Furthermore, droughts are due to a complex combination of these factors, making it even 

harder to predict. One might wonder why these conditions are becoming more difficult to 

predict; perhaps the answer lies in human inputs. Things like greenhouse gas emissions 

that trap heat are a good example of human contribution to the strength of natural disasters 

like droughts. 

  We know that generally, resources are limited, and water is one of the most 

important resources for the economic development of a community.  However, the quantity 

of water a particular area will receive each year is becoming increasingly difficult to predict 

and plan for.  By looking at enough data, weather patterns can more accurately be predicted, 

such as amount and frequency of precipitation, and will hopefully assist in creating a fairly 

accurate water budget. More importantly, this information helps plan for drought and 

mitigate some of its negative impacts. 



75 

 

 Research questions that were considered for this study included: 

1. Where, historically, does the 2021 Boise drought rank in terms of snow, 

dam storage, and spring precipitation?  

2. Which driver contributed most to the multivariate drought of 2021 in the 

context of natural built systems? 

These questions helped to determine which routes of research were necessary for this 

study. Many residents and farmers felt shock among other things, and were left 

wondering, how the seemingly sudden drought could have happened.  

 Question 1 gave specific direction on where to look for more information. I knew 

that I would need to locate data on SWE, dam storage levels, and precipitation, so I 

scoured databases from government, local, and other environmental organizations. I 

pinpointed the specific data from the 1982 through 2021 time period and collected 

everything into charts and tables for further analysis. 

 After the undertaking of data collection, I was able to focus on Question 2. I 

compared historical numbers to individual data points, as univariate analyses, and in 

combinations, as bivariate analyses. Finally, I used data from all three variables in a 

trivariate analysis, which was very concise and conclusive to answering the research 

questions. 

This study found that spring precipitation values for 2021 were close to a historic 

low in the 40 years study period (ranked 2nd worst on record). In addition, SWE values 

were found at a slightly low value, but without being alarming. Since approximately one 

third of the years studied, such as 2002, 2005, and 2010, had lower SWE than 2021, this 

year was not a historical record by itself.  Lastly, the three reservoirs that regulate the Boise 
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River (Arrowrock, Anderson Ranch, and Lucky Peak dams) had slightly above average 

combined water levels. In comparison, most of the years from the 1990s through 2010 had 

values below 2021’s.   

After analyzing the bivariate analyses, the duo of spring precipitation and SWE 

showed 2021 as having the record low of the two combined. Another bivariate analysis 

was of spring precipitation and dam storage combined. This showed that only the year of 

2002 was lower than 2021, almost setting another record low, mainly due to the 

precipitation side of the equation. In addition, the combination of SWE and dam storage 

showed the values were on the lower end yet not record setting. When using the three 

bivariate analyses, this year was ranked as (1) lowest in spring precipitation-SWE, (2) 

second lowest in spring precipitation-dam storage, and (3) sixth lowest in SWE-dam 

storage.   

Finally, the trivariate analysis was conducted and showed that the historical drought 

was due mainly to the combined effect of low SWE and extremely low precipitation levels. 

When stacked against the 40 years, 2021 showed to be the worst in terms of a trivariate 

analysis, meaning there was no other year on record with worse spring precipitation AND 

SWE AND dam storage than those of 2021. This study also revealed that reservoir values 

are mainly indicative of an ever changing input and output situation, and the driver that 

contributed most to the 2021 drought was precipitation, and exacerbated by somewhat low 

SWE. 

 For future work on Boise droughts, I would recommend a frequent data collection 

and analysis on the three variables identified (precipitation, SWE, and dam storage 

levels), in combination with frequent updates given to water consumers, specifically 
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farmers. I would recommend an app to create this information flow, that could also give 

information on crop needs, in relation to plant species and their specific water 

requirements. In addition, I would recommend to city officials to modify water 

regulations to better protect the dramatically increasing urban population from sudden, 

unexpected water shortage. 
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