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ABSTRACT

Transformer-based Language Models (LMs), learn contextual meanings for words

using a huge amount of unlabeled text data. These models show outstanding perfor-

mance on various Natural Language Processing (NLP) tasks. However, what the LMs

learn is far from what the meaning is for humans, partly due to the fact that humans

can differentiate between concrete and abstract words, but language models make no

distinction. Concrete words are words that have a physical representation in the world

such as “chair”, while abstract words are ideas such as “democracy”. The process of

learning word meanings starts from early childhood when children acquire their first

language. Children learn their first language through interacting with the physical

world by using simple referring expressions. They do not need many examples to

learn from, and they learn concrete words first from interacting with their physical

world and abstract words later, yet language models are not capable of referring to

objects or learning concrete aspects of words.

In this thesis, I derived motivation from the way children acquire language and

combined a concrete representation of certain words into LMs while leveraging its

existing training regime. My methodology involves using referring expressions to

visual objects as a way of linking the visual world representations (images) with text.

This takes place by extracting word-level visual embeddings for concrete words from

images, while extracting word-level contextual embeddings for abstract words from
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text and then using them to train language models. In order to enable the model

to differentiate between concrete and abstract words, I use a dataset that gives an

indication of the level of concreteness for words to determine how information about

each word was applied during training.

The work presented in this thesis is evaluated using a standard language under-

standing benchmark by analyzing the effect of using the proposed training regime

on the language model and comparing its performance with traditional language

models trained on large corpus data. In the final analysis, the results demonstrate

that using referring expressions as the input text to train language models yields

better performance on some language understanding tasks than using traditional,

corpus-based text. However, the proposed approach cannot affirm that adding visual

knowledge and/or concreteness distinction knowledge enriches LMs.
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1

CHAPTER 1:

INTRODUCTION

Transformer-based language models (LMs), like the BERT model (Devlin et al.,

2019), have drastically changed the field of NLP. These models are very powerful in

that they follow a pre-training/fine-tuning approach. They pre-train on large-sized

unlabeled text data and can then be fine-tuned on smaller task-specific text data,

using the pre-trained knowledge of word contextual meanings. For example, the

BERT language model is pre-trained on the whole English Wikipedia and the Brown

corpus, then it can be applied to at least a dozen NLP tasks such as sentiment analysis,

natural language inference, text classification and paraphrasing tasks. Results show

that BERT works significantly better than prior models, even the task-specific models.

The BERT model is pre-trained on large amounts of text, using the regime given

sentences with randomly masked (i.e., hidden) words, guessing the words that were

masked, and given an input sentence guessing the sentence that follows. After the

pre-training step, the model learns a degree of syntactic and semantic relations of

words encoded as embeddings, which is further used for downstream tasks.

However, being trained only on textual data, these models assume that all the

words are abstract, which is different from how humans learn and understand natural

languages. Humans begin by learning concrete words, which are words that have

physical representation in the world such as dark, light, red and chair ; later on, they
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learn abstract words which are ideas that cannot be observed in the physical world

such as freedom, grace and democracy. Since LMs learn only from text, they are

unaware of the concrete meaning of words and incapable of connecting a word that

should have a concrete meaning to the objects in the world that it derives its meaning.

The question remains, “Are these LMs useful in all cases where language is used?”.

Rogers et al. (2021) make the observation that, despite their successes, there is a lot

of hype surrounding them, including claims that language models learn to encode

deep semantic meaning and “understand” language. Furthermore, Liang et al. (2021)

make another observation that the meaning of a word is different when it is learned

from images or text. This implies that in order to have language models that form a

holistic understanding of human languages, they need to learn from both the text and

physical world representations (i.e., images, sounds, videos, emotions). Moreover, I

think it is important to take inspiration from how children learn a language, which

is nowhere near how LMs are trained. According to child development literature,

children start learning the language before being exposed to text. They are able

to learn with small amounts of experience with the physical world as the child’s

development is multi-modal in nature (Smith & Gasser, 2005). Additionally, they

learn concrete words first from interacting with their physical world, and then they

learn more abstract words as they get older (Borghi et al., 2019). Also, children do

not need massive text data to learn a language as they use referring expressions,

which are sentences used to refer to objects in the physical world, such as: “The blue

ball” and “The Lady with the white dress”. Notably, the task of learning a language

using referring expressions, is considered a critical developmental phase in language

learning for children (McCune, 2008).
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The aim of this work is to explore an area where LMs can be improved, using

the motivation derived from the way children acquire languages. The proposed

approach adds a concrete representation of certain words to the ELECTRA LM

(Clark et al., 2020), while leveraging its existing training regime; hence, the model

acquires knowledge of the physical world, which narrows the gap in understanding

word meanings between LMs and humans. Moreover, this work opens the door for

using a smaller number of text examples to train LMs, which can be utilized within

applications that have a minimal amount of data and the interaction with the physical

world is needed. For example, the robotics applications where large LMs (like BERT)

cannot be used due to their limitations (i.e., trained on text-only using a huge training

dataset).

In the next section, I explain the research question and hypothesis that bridges

these gaps. For the following chapter, “Background and Related Work”, I provide

additional detailed background on language models, specifically BERT, ELECTRA

and WAC models. Additionally, I illustrate the data used to approach the research

question, and the metrics used to evaluate the proposed approach. In the “Related

Work” section, the contributions that tackled the same or close area of interest are

explored. Furthermore, in the “Method” chapter I explain the model architecture,

the data pre-processing steps, the training regime, and the experiments performed

throughout this thesis to answer the research question. Lastly, in the “Evaluation”

chapter, the results, analysis, limitations and the final contribution of this work are

presented and discussed.
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1.1 Thesis Statement

Can we move towards emulating the settings in which children learn their language

to enrich language models? On a more technical level, if language models are given

knowledge of the physical world, with a distinction between concrete and abstract

words and a dataset that is similar to a child development-inspired dataset; will it

help with better model performance with less amount of pre-training data?

I hypothesize that using a training approach that closely mimics children’s learn-

ing methodology (i.e., I give the language model access to a representation of the

visual, concrete world) and using a child-development inspired dataset (i.e., resolving

referring expressions to visual objects)— with a distinction between concrete and

abstract words, will arrive —to some degree— at better results sooner than using

the traditional training approach with comparable data size (measured in Bytes). By

sooner I mean that a smaller amount of text data would give us better performance

when compared to a traditional language model, pre-trained using abstract knowledge

(i.e., text) alone.

These questions are approached by performing a set of experiments and analyzing

its results in depth using the methodology and tools illustrated in the next chapters.
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CHAPTER 2:

BACKGROUND AND RELATED WORK

Overall, many contributions have been made to improve the natural language

understanding task using language models. Starting from representing words in a

form that can be processed and manipulated by different models, which is known

as word embeddings. Other contributions are more concerned with capturing the

distributional meaning of words; preliminary work concentrated on extracting textual

semantics to understand the natural language. This task has been drastically im-

proved by the transformers architecture through self-attention (Vaswani et al., 2017).

Such models as ELMO (Peters et al., 2018) and GPT (Radford & Narasimhan, 2018),

are both based on the transformer architecture and are both pre-trained on massive

amounts of text data. These models can be further extended to be used on more

specific tasks, with some modifications. The ELMO model captures the context of a

word from both directions (left to right and right to left) via independent networks

and concatenates them to get a loose overall representation of the context, and after

pre-training, the model can be applied to further NLU tasks by using pre-defined

different architectures than what it is pre-trained on. Alternatively, the GPT model

is unidirectional (left to right). But unlike the ELMO model, the GPT model can be

fine-tuned on NLU tasks with minor modifications to the architecture.

In the following sub-sections, I explain more about the cornerstones that my work
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is based on; BERT model, ELECTRA model, WAC model, RefCOCO dataset,VisDial

dataset and the newly developed ELECTRA + WAC model. Lastly, I explain the

metric I use to evaluate my work, which is the GLUE Benchmark.

2.1 BERT

The Bidirectional Encoder Representations from Transformers (BERT) model

(Devlin et al., 2019) is a revolutionary model that elevated performance while us-

ing the transfer learning approach in language models. This was achieved through

pre-training on a large text dataset, then fine-tuning on various downstream tasks.

Remarkably, the BERT model outperformed task-specific models and other transfer

learning models like GPT. One main point of strength of the BERT model is using

a bidirectional pre-training approach instead of left-to-right or right-to-left attention

approaches. As a result, it captures word representations (i.e., the meaning of words)

from both left-to-right and right-to-left contexts.

2.1.1 Input Representation

The input representation for the BERT model is designed to support the model

with pre-training and fine-tuning tasks. The input embeddings consist of three layers

summed together, as shown in Figure 2.1. The first layer is the token embeddings

layer. A token is the smallest building block for a sequence. As a sentence consists

of consequent textual words, a sequence is consequent tokens; a word in a sentence is

converted to one or more tokens. For example, the word “painting” can be tokenized

into “paint” and “##ing” tokens, the “##” special token that precedes the “ing”

part of the word “painting” denotes a token that is not extracted from the beginning

of a word. All tokens are added to a list of tokens, which is usually referred to by

the BERT Vocabs. There are special tokens used by the BERT model. Such tokens



7

as: the [CLS] token; placed at the beginning of sentences, the [SEP] token; used to

separate two sentences or at the end of the sentence —based on the pre-training or

fine-tuning task—, the [MASK] token; which masks an input token, and the [UNk]

token; which is given to any unknown word that might appear in the training dataset,

although it is not recommended to deal with unknown tokens by using the [UNK]

token; instead, unknown tokens should be added to the BERT Vocabs list of tokens.

The second embedding layer is the segment embeddings layer. This layer differ-

entiates between sentences in the same sequence, as tokens within the same sentence

have the same segment embeddings vector, while tokens from different sentences have

different values for the segment embeddings vector.

The third embeddings layer is the position embeddings layer, which carries the

information about the position of a token within the input sequence. The information

encoded within this layer is crucial to the BERT model’s pre-training, as the self-

attention architecture in BERT is indifferent of the position of tokens within the

context (Vaswani et al., 2017). Consequently, if such information is not added as an

input to the model, it cannot retrieve it during the pre-training process. Furthermore,

the model cannot learn the structure of the language. The total input representation

to the BERT model is the sum of all three embeddings layers.

The WordPiece Tokenizer

The WordPiece tokenizer (Wu et al., 2016) is the tokenizer used to create the

BERT Vocabs list of tokens. It is a sub-word tokenization algorithm that is used

to divide words into sub-words (tokens). This tokenizer takes a textual dataset as

input and returns a list of common tokens as output. The WordPiece tokenizer starts

at the letter level as a token, then combines tokens together if they appear more



8

than a pre-defined threshold number of times. Hence, it creates the most common

sequences of tokens as separate tokens. A token at the start of the word is used

without any special characters ahead of it. However, a token that is not the first part

of the word is preceded by the “##” string. A word can be converted to a single or

several tokens. The BERT Vocabs list has 30,522 tokens, with the first 1000 tokens

as [unused] tokens, which can further be replaced with user-defined tokens if a user

wants to add more tokens that are not in the original vocab file.

2.1.2 Pre-training Data

The BERT model is pre-trained on corpus text data extracted from two sources:

The book corpus dataset (Zhu et al., 2015), and the English Wikipedia (the long

contiguous sentences only), with a total of 3.3M words. These datasets are extremely

large, and they are extracted from different sources which enriches the coverage of

this dataset, and adds a more broad perspective for a large number of topics.

2.1.3 Pre-training Tasks

The BERT model pre-train using two tasks: The Masked Language Model (MLM)

task and the Next Sentence Prediction (NSP) task. Both work towards enriching

different parts of the model which is illustrated next.

Masked Language Model(MLM)

This task is responsible for the bidirectional training in the BERT model. The

way it works is that a certain percentage (15%) of the input sequence tokens are

masked, and the model is pre-trained to predict the true identity of the masked

tokens. The MLM task has the following settings: for 15% of the input sequence of

tokens, only 80% of this percentage is replaced with the [MASK] token, 10% of the
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time it is replaced with a random token and 10% is kept the same. This is to adapt

the model to work with different fine-tuning tasks, as the [MASK] token is not used

in fine-tuning tasks (predicting the identity of masked tokens is not a common NLU

task). According to the ablation studies presented in the BERT paper (Devlin et al.,

2019), this task is the key source of the high-performance BERT accomplished over

prior literature.

Next Sentence Prediction(NSP)

The NSP task aims to improve performance for sentence-based fine-tuning tasks

such as Question Answering (QA) and sentence entailment, etc. In this task, for a

sentence in input, another sentence is drawn randomly from the whole dataset and

the model task is to recognize if the next sentence is either [isNEXT] or [notNext].

According to the ablation studies done by Devlin et al. (2019), this task improves the

model performance from 87.9 to 88.5 (BERT-base) on the GLUE benchmark.

2.1.4 BERT Drawbacks

The BERT model proved significant improvement using the GLUE benchmark,

such as the similarity between sentences, grammatically correct sentences, sentiment

(positive, negative, or neutral), etc. However, the model is data hungry and it is

a large-sized model; the BERT-base is 110M parameters and BERT-large is 340M

parameters. Additionally, the model is constrained by 15% of tokens to calculate the

loss; hence, it needs to be trained on a huge-size dataset for a large number of epochs

to converge, which requires powerful hardware resources and long pre-training time.

According to those limitations, I choose to use the ELECTRA model to approach the

research question, as it is a smaller, yet powerful, descendant of BERT.
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Figure 2.1: BERT Input Representation, Adapted from BERT (Devlin
et al., 2019). It shows the three embeddings layers for an example sequence
which consist of two sentences with the [SEP] special token in between.

2.2 ELECTRA

The Efficiently Learning an Encoder that Classifies Token Replacements Ac-

curately (ELECTRA) model was introduced by Clark et al. (2020) with a novel

pre-training task that made the model outperform the previous state-of-art BERT

model. The pre-training task used by the ELECTRA model is the Replaced Token

Detection (RDT) task. This task solves the drawbacks of the MLM task used in the

BERT model, such as: all input tokens contribute to the loss calculation for the model

vs. only 15% of them within the MLM task, and it solves the inconsistency of the

appearance of the masked token [MASK] in pre-training task but not in fine-tuning

downstream tasks. Consequently, these modifications yield higher performance than

the BERT model with the same size or even larger-size models. These results were

reported using the GLUE (Wang et al., 2019) and the SQuAD (Rajpurkar et al.,

2016a) metrics.

In the RTD task, the masked tokens [MASK] are replaced with randomly sampled

tokens from the input, then the model is trained to predict if each token is real or

fake. Hence, the ELECTRA model neither needs a massive size of text data for



11

pre-training (as it makes use of all the input tokens, not just 15% of them), nor a

large number of training steps. Moreover, the NSP task, which is used in the BERT

model pre-training, is not used in the ELECTRA model pre-training, as the portion

of the performance improvement resulting from this task is unremarkable (Devlin

et al., 2019).

The input representation to the ELECTRA model is structured the same way as

in the BERT model. However, the model architecture is different, as the architecture

for the ELECTRA model consists of Generator and Discriminator models. The

Generator is a trained MLM model, which masks the input tokens randomly and

predicts the correct identity of that token from a pool of possible tokens. On the

other hand, the Discriminator is trained by replacing the masked input tokens with

other tokens sampled by the generator, and the Discriminator model is trained to

predict if each token within the input sequence is true or fake. The ELECTRA

model’s architecture and an example of the RTD task is illustrated in Figure 2.2.

Since the ELECTRA-base model outperforms the BERT-base model, a smaller

size was presented in the ELECTRA paper called ELECTRA-small. The way they

downsized the model is by reducing the embedding layer’s size; from 256 to 128, the

number of hidden layers; from 768 to 256 and the batch size from 256 to 128, while

increasing the learning rate, the number of training steps and the max seq length

parameter; from 512 to 128. The size variations of ELECTRA-large, ELECTRA-base

and ELECTRA-small are summarized in Table 2.1. Compared to the BERT model,

ELECTRA is smaller in size, uses less data for pre-training and outperforms BERT

for all GLUE language understanding fine-tuning tasks, which is the main reason I

choose to work with ELECTRA for my approach.
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Figure 2.2: The Generator-Discriminator architecture of the ELECTRA
model, with an example of the RDT task in pre-training. This figure is
Adapted from (Clark et al., 2020)

Hyperparameter Small Base Large
Number of layers 12 12 24

Hidden Size 256 768 1024
Attention heads 4 12 16

Attention head size 64 64 64
Embedding Size 128 768 1024
Generator Size 1/4 1/3 1/4
Mask percent 15 15 25

Learning Rate Decay Linear Linear Linear
Warmup steps 10000 10000 10000
Batch Size 128 256 2048

Learning Rate 5e-4 2e-4 2e-4
Train Steps (ELECTRA) 1.45M/1M 1M/766K 464K/400K

Table 2.1: Variations of the ELECTRA model with different model sizes.
The parameters are reported in the ELECTRA paper(Clark et al., 2020).
I use this table as a reference to reduce the ELECTRA model size, in order
to adapt it to work with the small data size.

2.3 Words-As-Classifiers (WAC)

As opposed to text-based Language Models like ELECTRA and BERT, which can

only learn the textual semantics of words, the Words-As-Classifiers (WAC) model

(Schlangen et al., 2016) can capture the concrete meanings of words. The WAC
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model is a lightweight visual semantics model that is used to create a classifier for

each word from the input text. In contrast to language models, it is trained on visual

features extracted from images. From the definition, the dataset needed to train the

WAC model consists of both words and images that co-occur with these words (i.e.,

referring expressions made to objects in the images). Furthermore, the trained word

classifiers encode the visual meaning of words. The parameters of the word classifiers

can be used as visual word-level embeddings.

2.3.1 Model Architecture

The WAC model consists of two main sub-models. The first one is used to extract

visual features from images, and it follows a transfer-learning scheme; the model is

pre-trained on a visual dataset (images) and further can be adapted to be used on a

similar task using a different visual dataset. An example of this is the CLIP ViT-B/32

model (Radford et al., 2021), which is a conventional neural network pre-trained on

images from the ImageNet dataset (Russakovsky et al., 2015). The CLIP model

extracts visual features from an image creating a feature vector of size 512. The

second sub-model is a binary classification model that uses the visual features vectors

—extracted from input images using the CLIP model— as input to train a binary

classifier for each word from the input text data. This classifier can be a Logistic

Regression, a Multi-Layer Perceptron (MLP) or a Decision Tree model.

2.3.2 Data

As previously mentioned, the data used to train the WAC model consists of both

images and text. The input text is tokenized into words, and the images are converted

to visual feature vectors. Furthermore, those vectors are used as positive and negative

examples to train each word’s WAC classifier. The Image-Text data used to train the
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WAC model can be “coupled” or “non-coupled” data. The coupled data consists

of images and text that are associated together from the same source, for example:

images with text descriptions, images with text captions and images with referring

expressions. On the other hand, the text and images of the non-coupled data are

collected from different sources, for example: collecting images for certain words

using Google search; those images are gathered from different sources. As for the

work done in this thesis, both the RefCOCO and VisDial datasets are adapted as

sources of coupled Image-Text data, as illustrated in sections 2.5 and 2.6.

2.3.3 Training WAC

The procedure to train the WAC model follows a number of steps. The first

step is text tokenization, where each sentence from the input text is tokenized into

a set of words. The next one is the visual features extraction step, in which all

the input images are transformed into vectors. In this step, the visual features are

extracted from images using the pre-trained CLIP ViT-B/32 model that transforms

the image into a feature vector of size 512. Hereafter, a classifier model for each

word is trained using the previously-created feature vectors; those vectors work as

positive and negative examples based on whether an image (represented by a feature

vector) is associated with a word or not. For example, the word “zebra” occurs in

referring expressions to images that include a zebra, so those images are used as

positive examples of the word “zebra”. However, all other images are considered

negative examples for the same word “zebra”, as the word “zebra” did not appear to

describe those images. The binary classification model I use is the logistic regression

with parameters (random state= 123, penalty=l2, C= 1000). Finally, I extract the

coefficients of the trained classifiers for words as vectors of size 513, which captures



15

the visual meaning of each word. Additionally, I concatenate it with another vector

of size 7, that holds information about the relative position of images 1. The final

vector size is 520, which I use as a visual word-level embeddings for words.

2.3.4 Drawbacks

Although the WAC model captures the multi-modal meaning of words (visual

meaning) as opposed to the text-based LMs, it does not capture syntactic or textual

semantics for words. Hence, a word’s meaning is independent of the context or its

position in a sentence.

2.4 ELECTRA + WAC

To overcome some of the transformer-based language model limitations and ex-

tend their knowledge to multi-modal representations, Kennington (2021) presented

a new model that combines the ELECTRA model with the WAC model to form a

visual-textual semantics model, that can be pre-trained on textual and visual data

altogether. This model uses the WAC model to create visual embeddings for a set

of words, and the ELECTRA model to extract the contextual embeddings from the

input text. In the following sub-sections, I explain the model and its pre-training

regime.

2.4.1 Model Architecture

The key element in this model is the embedding layer of the conventional ELEC-

TRA model, which is the layer that ties the Generator and Discriminator models,

1The positional vector can only be calculated in case of using the RefCOCO dataset, as the
text is referring to only an object within the image (sub-image), which has x-y dimensions and area.
However, the text in the VisDial dataset refers to the objects within the whole image not just a single
object within the image, and consequently, there is no sub-image to calculate its relative position
and area within the original image (The vector is zeros). I highlight this as a difference/limitation
between the RefCOCO and VisDial dataset in Section 2.6.
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where they share the words (tokens) embeddings. The ELECTRA+WAC model

replaces the word embeddings with the WAC visual-semantics embeddings while

pre-training the Discriminator model and freezing the embedding layer weights for

a number of pre-training epochs. Hence, the model is able to learn both the visual

and textual embeddings together. The architecture of this model consists of the

ELECTRA-small model with the same settings shown in Table 2.1. The parameters of

the WAC model used are: the CLIP’s ViT-B32 model as the visual feature extraction

model, and the logistic regression model (C=0.25, and max iterations =1000) as the

binary classifier. The model’s architecture is illustrated in Figure 2.3.

2.4.2 Data

Distinctly, the data used to train this model is a combination of text and images.

The text data is the OpenWebText dataset (Gokaslan & Cohen, 2019), which is a

corpus-based dataset of size 40GB (the same data used to pre-train the ELECTRA

model (Clark et al., 2020)). Alternatively, the data used to train the WAC classifiers

is a non-coupled data of 27,152 words adapted from the BERT Vocabs list, with

100 images per word, collected using an automated Google search. However, the

remaining words from the BERT Vocabs list 2have a visual word embeddings vector

of zeros.

2.4.3 Model Pre-Training

The first step in pre-training the ELECTRA+WAC model is to fully train the

WAC model to create a classifier for each word (of the 27,152 words). Subsequently,

pre-training an ELECTRA-small model while swapping the contextual word embed-

dings (generated by ELECTRA) with the WAC embeddings for the same words,

2The BERT Vocabs list has approximately 30K words.
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and “Freezing” the weights of the embeddings layer. Hence, the model does not

overpower the WAC embeddings, giving the model a chance to learn and maintain the

visual embeddings driven by the WAC model. The freezing operation is a technique

applied during pre-training the ELECTRA model, by enforcing the embeddings layer

to have fixed word embeddings and relying on that while pre-training the Generator

and Discriminator models, which enables the ELECTRA model to learn the injected

visual embeddings without the contextual embeddings overpowering them.

2.4.4 Evaluation

The authors of the ELECTRA+WAC model reported their results using the

MRPC, the CoLA and the WNLI tasks from the GLUE benchmark. Both the CoLA

and WNLI scores matched the ELECTRA-small model scores. However, the MRPC

score was slightly increased by 0.062 and 0.024 for F1 and accuracy respectively.

These results state that the new ELECTRA+WAC model can learn visual-textual

semantics, and when fine-tuned on pure language understanding tasks (like the GLUE

tasks), its performance is equivalent or slightly higher than the ELECTRA-small

model (trained only on text). The results from this work imply that using visual rep-

resentations to train abstract language models, can enhance — or at least equalize—

the model performance when measured using pure language understanding tasks (i.e.,

GLUE tasks). Furthermore, I am inspired to test the current hypothesis using this

model, to explore the outcome of using the proposed approach in enhancing the

abstract language models and its effect on pure language understanding tasks (i.e.,

GLUE tasks).

2.4.5 Drawbacks

Although the ELECTRA+WAC model learns the syntactic representations of the
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English language, it utilizes the WAC visual embeddings for 27,152 words of the

BERT Vocabs to pre-train the ELECTRA-small language model, which is a rough

assumption that all the words have concrete meanings (all the words have WAC

visual embeddings). Moreover, this assumption is as extreme as the one implied

by text-based LMS, like the ELECTRA-small model, that all words are abstract (all

word meanings are learned solely from text). Nonetheless, the human language is rich

in both concrete and abstract meanings, and adding this distinction to LMs would

—according to my hypothesis— enrich LMs and narrow the gap between machine and

human understanding of the human language. Another drawback of this model is the

usage of non-coupled data to train the WAC model. Additionally, the images used to

extract the visual meaning of words are collected using an automated Google search,

as opposed to other datasets that are collected using human subjects. I overcome

those drawbacks using the methodology proposed in the next chapter.

2.5 RefCOCO Dataset

In order to address the research question, a dataset that is representative of the

way children acquire language is used, as according to McCune (2008), children first

acquire language via referring expressions; such as the text in the RefCOCO dataset.

The RefCOCO consists of 19,994 images from Microsoft COCO (MS-COCO) images

(Lin et al., 2014), that includes 50,000 objects with 142,209 referring expressions

describing these objects. The RefCOCO dataset was created by using the MS-COCO

dataset and the ReferitGame (Kazemzadeh et al., 2014) to add human-generated

referring expressions to the objects within images. In this two-player game, the first

player is given an image with a segmented target object and is asked to write an

expression referring to this object. On the contrary, the second player only has access
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Figure 2.3: A visual illustration of the ELECTRA+WAC model, adapted
from (Kennington, 2021). In this figure, a feature vector is extracted from
the kite object using the CLIP pre-trained model. Next, a classifier for
the word “kite” is created, and concatenated with the Lancaster norms
vector for the same word. Finally, the WAC embeddings vector becomes
the representation of the word “kite”, and ELECTRA–small is pre-trained
using this embeddings vector.

to the image and referring expressions, and is asked to choose the object corresponding

to them. If the players do their job correctly, they receive points and swap roles,

otherwise, they start a new turn. In the RefCOCO dataset, there are no restrictions

on the type of language used in the referring expressions, which can have positional

words such as “right” and “left” 3. The RefCOCO+ is another variation of this

3The positional words are dealt with in the WAC model by adding positional information to the
visual features, as a vector of 7 digits; this information includes the relative x-y coordinates of the
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dataset that does not allow any positional information in referring expressions and

mainly concentrates on the appearance-based description. I use the RefCOCO dataset

while incorporating the positional information with the WAC embeddings. Examples

for the two datasets are shown in Figure 2.4a and Figure 2.4b. The RefCOCO

dataset has its Train, Validation and Test splits for ease of development. The length

of referring expressions tends to be short (in terms of words). For example, the

average length of referring expressions extracted from the RefCOCO (Split= Train)

dataset is 3.4 words, which is different from the average length of sentences from a

corpus dataset (as the OpenWebText (Gokaslan & Cohen, 2019)). Another difference

between the two types of text data is the size, as the size of RefCOCO (Split= Train)

and OpenWebText is 2.6MB and 40GB, respectively.

visual objects within the image, and the area of the object.
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(a) An Example of RefCOCO
dataset. The referring expressions
refer to the woman in white as the
object or sub-image of the original
image. It is noted that this dataset
has positional words as “right”.

(b) An Example from RefCOCO+
dataset. The referring expressions
refer to an object within the original
image, which is the man in yellow
short. This dataset does not have
positional words.

Figure 2.4: The RefCOCO and RefCOCO+ dataset examples, adapted
from (Yu et al., 2016).

2.6 VisDial Dataset

Due to the small text size of the RefCOCO, a similar dataset is added to leverage

the total size of the text data used in this work. The VisDial dataset (Das et al., 2017)

is visually-grounded dialog data based on images from the MS-COCO dataset. This

VisDial v0.9 dataset consists of approximately 1.2M dialogs based on 120k images,

and each dialog consists of 10 rounds of questions/answers. This dataset is collected

using two main human individuals: the “Questioner” and “Answerer”, both share

the caption of the image but only the “Answerer” can see the image. The game
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starts when the “Questioner” asks a question — with a total of 10 questions — to the

“Answerer” to identify the components/features of the image, as the dialog between

them describes the whole image’s content. An example of this approach is depicted

in Figure 2.5. The dataset also has pre-defined data splits (Train and Validation)

to ease the development. I only use the answers portion of dialogs from this dataset

with the exception of the yes/no answers as it does not hold any visual information

nor contextual information (single word sentence). The average answer length in this

dataset is 2.9 words as reported in (Das et al., 2017), which is again far smaller than

a normal corpus dataset (like OpenWebText).

Although adding this dataset to the RefCOCO dataset increases the data size

needed by the data-hungry transformer LM, there are some differences between

both datasets, such as: first, in the RefCOCO dataset the referring expressions

describe a single object from the image, while in the VisDial dataset, dialog reflects

information about the whole image (with multiple objects). The second difference is

that the answers from the VisDial dataset are not necessarily referring to expressions.

However, they describe objects within the source images.
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(a) A “Questioner” Interface. (b) An “Answerer” Interface.

(c) A dialogue example in VisDial
dataset.

Figure 2.5: The VisDial data collection procedure example, adapted from
(Das et al., 2017).

2.7 GLUE

The goal of this thesis is to evaluate the effect of the proposed training regime

(explained in chapter “Method“) on enhancing the traditional language models, by

using language understanding tasks. The General Language Understanding Evalu-

ation (GLUE) (Wang et al., 2019) benchmark is widely used to evaluate models on

a collection of sentences/sentence-pair NLU tasks, using pre-defined metrics for each

task. The GLUE benchmark has nine NLU tasks; each task has its train and test
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datasets that vary in size, and each task is measured by a pre-defined metric. Those

tasks belongs to one of three categories: single-sentence, similarity and paraphrasing

and natural language inference. All tasks and metrics are summarized in Table 2.2.

These tasks are all classification tasks except for the STS-B which is a regression task.

All nine tasks are illustrated next.

CoLA

The Corpus of Linguistic Acceptability (CoLA), this task is a single-sentence clas-

sification task; the data consists of sentences of annotated acceptable/non-acceptable

grammatical English examples, that are extracted from books and journals. The

result is reported using Mathew’s correlation.

SST-2

The Stanford Sentiment Treebank (SST-2) is a binary sentiment inferences (posi-

tive/negative) task, where the sentences are extracted from movie reviews annotated

by human subjects. The data is balanced and the result is reported with the accuracy

metric.

MRPC

In the Microsoft Paraphrase Corpus (MRPC), the data consists of a pair of

automatically-extracted sentences that is annotated by human subjects, whether this

pair of sentences have the same meaning or not. This data is imbalanced so it is

measured using both accuracy and F1 score metrics.
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QQP

The Quora Question Pairs dataset (QQP) consists of question pairs collected from

the Quora community, and the task is to determine if a pair is semantically equivalent

or not. This is also imbalanced data; hence, it is reported using accuracy and F1 score

metrics.

STS-B

The Semantic Textual Similarity Benchmark (STS-B) consists of sentence pairs

that are collected from different sources, such as: news headlines, video captions and

image captions. This is a regression task to report the similarity of each pair with a

score that ranges from 0.0 to 5.0, with 5 as high similarity and 0 as no similarity.

MNLI

The Multi-Genre Natural Language Inference corpus (MNLI) (Williams et al.,

2018) is a crowd-sourced collection of sentence pairs with textual entailment annota-

tions. This data consists of a premise and a hypothesis sentence pairs, and the task is

to predict if the premise entails the hypothesis, contradicts the hypothesis, or neither

(neutral). The premise sentences are gathered from ten different sources, including

transcribed speech, fiction, and government reports.

QNLI

The Question Answering Language Inference (QNLI) task is based on the Stan-

ford Question Answering dataset (Rajpurkar et al., 2016b). This dataset consists

of question-paragraph pairs, where one of the sentences in the paragraph contains



26

the answer to the corresponding question (written by an annotator). However,

it is converted to question-sentence pairs where sentences are extracted from the

corresponding paragraph. The task is to determine whether the context sentence

contains the answer to the question or not.

RTE

The Recognizing Textual Entailment (RTE) dataset is extracted from a series of

annual textual entailment challenges, where the data from RTE1, RTE2, and RTE3

are combined to form the final dataset. The task is an entailment task for two

sentences, and the result is reported using the accuracy metric.

WNLI

The Winograd Natural Language Inference task is based on the Winograd Schema

Challenge (Levesque et al., 2012), which is a reading comprehension challenge in which

a model’s task is to read a sentence with a pronoun and select the referent of that

pronoun from a list of choices. This task reports the accuracy metric.

2.8 Related Work

The high performance of the BERT model led many scholars to study and direct

their research to solve its limitations, such as: the need for a large size of data, the

need for highly-efficient hardware resources, and the large pre-training time needed by

the model to converge, not to mention the fact that it does not capture any physical

meanings for words. This resulted in several approaches developed by scholars to

solve one or more of these limitations for better and more feasible language models.
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Corpus Train Test Task Metrics Domain
Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews

Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA

Inference Tasks
MNLI 393k 20k NLI matched/mismatched acc. misc.
QNLI 105k 5.4k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

Table 2.2: A summary of the GLUE language understanding tasks. The
tasks are divided by the task category into single-sentence tasks, similarity
and paraphrase tasks, and Inference tasks. The table shows the different
sizes of training and evaluation datasets for each task. The table also
illustrates the source of the dataset and metrics used to measure each
task. The highlighted metrics are the ones I report in my evaluation.

Some of these contributions attempt to optimize BERT’s size by minimizing its

parameters, such as the TinyBERT model (Jiao et al., 2020), which uses the knowl-

edge distillation technique to transfer knowledge from a larger to a smaller model

referred to as “Teacher” and “Student” models, respectively. In this contribution, the

BERT model is used as a teacher to create the TinyBERT model. The distillation is

used in both the pre-training and fine-tuning steps of the new model. This model’s

performance is outperformed by the ELECTRA model, measured using the GLUE

benchmark. Other contributions were developed to automatically optimize the model

as in the auto TinyBERT model (Yin et al., 2021). In the context of enabling LMs

to be multi-modal, other contributions worked towards combining text with visual

semantics of words to form a holistic knowledge of language semantics. Those models

can be used in tasks such as: visual dialog, visual question answering (VQR) and
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text-image retrieval. Some of these models are based on the BERT model with minor

changes in architecture to accommodate the addition of the visual data, such as the

VilBERT model (Lu et al., 2019) which is a two-stream model for text and vision

with a co-attention layer connecting both at the end. This model is pre-trained on

the conceptual captions dataset (Sharma et al., 2018) of 3.3 million images. However,

this dataset represents a weakly-connected image to text data where the text is

automatically collected from the HTML “alt-text” for images. The drawbacks of

this model are: the text and visual features are learned independently, the size of

the model exceeds the BERT model size, and the architecture combines a pre-trained

BERT model for text features with a CNN-based model (ResNet) for extracting the

visual features of the images. Another BERT-based model is the LXMERT model

(Tan & Bansal, 2019), which is also based on the transformer’s architecture. The

VilBERT model consists of three encoder models for the multi-modality, one for

the visual object features, another for the language semantics and the third one is

for combining both. This model implements extra pre-training tasks (other than

the MLM and NSP) to accommodate the addition of visual input (images). The

drawback of this model is that it is a large-size model that is trained on five aggregated

data sources (data hungry). Another BERT descendant model is the PixelBERT

(Huang et al., 2020), which is an end-to-end model trained with both visual and

sentence semantics to map image pixels to text. The model has two encoder models

to manipulate visual and textual data, and their outputs are concatenated to form the

final representation. The vision encoder is based on a CNN backbone that randomly

samples pixels from the whole image and removes the urge to use a dataset with

bounding boxes for objects. Both the visual genome and MS-COCO dataset (101K



29

and 106K Images, respectively) were used to pre-train this model, and it is pre-trained

on both the MLM and Image-Text Matching (ITM) tasks. Another model (Xu et al.,

2021) Implemented the encoder/decoder architecture as End-to-End vision language

pre-training is (reference) which used MS-COCO and the same pixel-level features

extraction as pixelBERT without the random pixel masking that the latter is trained

through, this model can be fine-tuned to more tasks such as object detection and

caption generation. The training of such a model is very time-consuming as visual

and textual pre-training gets pre-trained together and the total loss is dependent on

all of its components.

Other contributions used visual semantics to specifically improve visual dialog

tasks by using multi-modal dialog models as the work done by Murahari et al. (2020),

which extended the VilBERTmodel’s architecture and the general pre-training dataset

(Conceptual Captions) with a task-related dataset ( VQA dataset), then it was

fine-tuned on Visual dialog datasets. Additionally, a recent contribution in this field

is the Maria model (Liang et al., 2021), which has a dialog-specific architecture that

extends BERT with a parallel visual transformer model to extract text and visual

features. This model also requires huge data as it is trained on both MS-COCO and

OpenImages datasets.

All of those contributions rely on using a massive amount of image-text data,

where the text portion is a rich corpus and they all made the assumption that all

the words are both abstract and concrete to the same degree and their meanings are

learned from both sources together, which I overcome with my proposed approach.
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CHAPTER 3:

METHOD

3.1 Overview

In order to approach the research question, I extend the ELECTRA+WAC model,

as it is a light model that makes use of both visual and contextual embeddings.

However, due to the text data limitations (previously discussed), I make some modi-

fications to the model’s parameters (without changing the architecture). I also apply

other modifications in the pre-training regime to incorporate adding concreteness

knowledge to this model. I explain the details of the data pre-processing step, the

modifications applied to the model’s architecture and the procedures applied to cover

all aspects of the research question.

3.2 Data Pre-processing

One of the essential parts of this work is choosing the data that will help me explore

my hypothesis. Recall that the hypothesis implies imitating the approach children

learn their first language when exposed to the physical world. I break down the

hypothesis into the following factors: using visual representations of the world, using

the input text as referring expressions (as it is how children first learn the language),

and differentiating between abstract and concrete words, with each learned from the

corresponding source (concrete words are learned from the visual data and abstract
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words are learned from the contextual data). Having all of this in mind, I use data

that would best help me in illustrating my ideas and performing experiments with

minimal limitations. The data I use can be divided into two sub-categories that

have two different roles: the first is the referring expression data, which consists of

simple sentences that are accompanied by a physical scene defining them, for example:

“horse with pink girl riding on it”, “girl on a skateboard”, and “chocolate sprinkle

donut”. The second sub-category of data I use is to provide a mean of distinction

between concrete vs. abstract words. This type of data associates a numeric score

to words; this score defines how concrete/abstract is a word (from the perspective

of human subjects). For example: according to the dataset, the word “blue” has a

higher concreteness score than the word ‘bravery”, which means that it is recognized

as more concrete. This type of data I further refer to as concreteness distinction

knowledge data. In this section I introduce the data I use, the limitations of the data

and the pre-processing steps applied.

3.2.1 Referring Expressions Image-Text dataset

The first type of data I use is the referring expressions that refer to objects in a

visual scenery. For this purpose, I use both the RefCOCO (Schlangen et al., 2016) and

Visdial (Das et al., 2017) datasets. Both of those datasets have text that describes

images, and the images are adapted from the MS-COCO dataset (Lin et al., 2014),

and both datasets have pre-defined splits of the data (Train, Validation and Test).

This type of data is used in two ways: the text portion of the data is used as input text

to pre-train the ELECTRA model and get textual embeddings for words. Moreover,

the Image-Text coupled data is used to train the WAC model and extract visual

embeddings for words that build up the referring expressions.
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Throughout experiments, I split the text portion of the data into three sizes that

grow ascendingly (measured in Bytes), which are Size1; has text from RefCOCO

(Split = Train), Size2; has text from RefCOCO(Split = TrainTestValidation)1 and

Size3; has text from Size2 combined with text from VisDial(Split= TrainValidation)2.

As shown in Table 3.1, Size1 consists of 120,624 sentences with a size of 2.14 MB,

and Size2 consists of 142,210 sentences of size 2.54 MB, whereas Size3 consists of

1,018,950 sentences of size 16.9 MB. Notably, all three sizes are comparably small

to the textual data size used by the ELECTRA model3. The reason I use different

sizes in the current approach is to study the effect of the pre-training data size on the

model performance and to enhance the reliability of the results, as I expect to notice

a rule that interprets my results across different data sizes.

From the Refcoco dataset, I extract the referring expressions that describe different

objects within a visual context (an image). Moreover, the VisDial dataset is processed

by extracting the answers and separating them with a newline (same as with the

RefCOCO dataset). Answers with only “Yes“ and “No“ are omitted because the

minimum sentence length for an example used in pre-training ELECTRA is two (no

context to learn from).

Although both datasets are based upon the same visual source (Images from MS-

COCO dataset), the text extracted from both datasets is slightly different. The

text in RefCOCO refers to a single object in an image that has multiple objects.

Consequently, the text refers to a sub-image of the original image, whereas in the

1The RefCOCO(Split = TrainTestValidation) is the size of the text in the Train, Test and
Validation splits combined, which are all the textual referring expressions within the RefCOCO
dataset.

2The VisDial(Split = TrainValidation) is the size of the text in the Train and Validation splits
combined.

3ELECTRA is trained on 40 GB of the OpenWebText dataset.
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VisDial dataset, the dialogue corresponds to the whole image. This difference affects

the subsequent extraction of visual embeddings using the WAC model. The other

difference results from the way both datasets were created. Although both are created

from human interaction, the settings were different and for different tasks, which is

illustrated in Sections 2.5 and 2.6.

.

Data Size1 Size2 Size3
Data Size(Sentences) 120,624 142,210 1,018,950
Data Size(Bytes) 2.14 MB 2.54 MB 16.9 MB

Mean Sentence Length(words) 3.496 3.505 4.08
Words with WAC Visual Embeddings 9,350 10,328 11,265

Table 3.1: The different data sizes used through this work.

3.2.2 Concreteness Distinction Data

The second type of data utilized in this work is the concreteness distinction data,

which allows the model to identify concrete/abstract words. Consequently, the model

does not assume that all words are concrete as in the WAC and the ELECTRA+WAC

models, nor all are abstract as in ELECTRA models. In addition, through the

following procedures, I set multiple threshold values for concreteness, with each

threshold value defining a different list of concrete words. These threshold values

range from the assumption that all words are concrete to the assumption that all

words are abstract. Furthermore, a model corresponding to each threshold value is

pre-trained. For this type of data, two different, yet correlated, datasets are used.

These datasets are The Concreteness Score dataset (Brysbaert et al., 2014) and the

Age of Acquisition dataset (Kuperman et al., 2012).
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The Concreteness Score Dataset

The Concreteness Score dataset (Brysbaert et al., 2014) has 40,000 words; each

word is given multiple scores from different human subjects (28 people). As shown

in Figure 3.1, the average score (decimal number) per word ranges from 1 to 5, with

1 being abstract and 5 being concrete. Figure 3.2a depicts the distribution of the

average score per word for this dataset. I set concreteness threshold values for this

dataset from 1 to 5 with a step of 1.

Figure 3.1: The concreteness score values and their concreteness level.
The color purple represents abstract, and the salmon color is for concrete.
For analysis, less concrete notation is used rather than more abstract; thus,
the 3 threshold’s color is light salmon.
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(a) Distribution of the average score for words
in the Concreteness Score dataset.

(b) Distribution of the intersection of words
from the Concreteness Score dataset and Re-
fCOCO (split=Train).

Figure 3.2: The sub-plots present the distribution for the avg. score per
word in the Concreteness Score dataset. Sub-plot(a) shows the distri-
bution for the original dataset, while sub-plot(b) shows the distribution
for the intersection of the Concreteness Score dataset with RefCOCO
(Split=Train). This distribution is clearly more concrete as words with
avg. concreteness score of 4 and 5 are more than words of 1 and 2, and the
mean slightly increase. However, the intersection excludes the majority of
words from the Concreteness Score dataset, as the total number of words
is reduced from 40,000 to 3832 words.
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The Age of Acquisition (AoA) Dataset

The AoA dataset (Kuperman et al., 2012) is used to provide the concreteness

distinction knowledge. This dataset contains average ratings for the age of acquisition

of over 30,000 English words, approximating the average age at which these words are

learned, ranging from 1.58 to 25 years. The distribution for the ages is depicted in

Figure 3.4a. Figure 3.5 demonstrates the positive correlation between the AoA and

Concreteness Score datasets, which serves as evidence that the final results are not

random. Borghi et al. (2019) have demonstrated that children learn concrete words

before abstract words, which means that words learned at younger ages tend to be

concrete, whereas words learned at older ages tend to be abstract. Hence, I make the

assumption that this dataset can be used as an indication of the concreteness of a

word.

The procedures implemented in this thesis use various threshold values, from

age=2 to age=11 with a step of 1, representing the transition from concrete to abstract

ages, respectively, as demonstrated in Figure 3.3. This subset of the ages is selected

because, according to the correlation in Figure 3.5, the age=11 corresponds to a

concreteness score below 3 (leaning towards abstract), and age=2 corresponds to a

concreteness score of 4 (concrete), as well as the gray area of concreteness knowledge

(between concrete abstract points). Furthermore, in Figure 3.4b, the intersection

of the AoA and the RefCOCO dataset denotes that ages over 11 and below 2 have

minor occurrences in the RefCOCO referring expressions, which confirms the previous

insight.
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Figure 3.3: Age values from the AoA dataset and their concreteness level.
The color purple represents abstract, and the salmon color is for concrete.
In this analysis, less concrete notation is used rather than more abstract
notation. Thus, the 8,9 and 10 threshold’s color is light salmon (not light
purple).

(a) Distribution for avg. age of acquisition for
words in the AoA dataset.

(b) Distribution for the avg. age of acquisition
for words that intersects with words in the Re-
fCOCO (split=Train) dataset.

Figure 3.4: Estimating the concreteness ages from the AoA dataset.
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Figure 3.5: Correlation between the AoA dataset and the Concreteness
Score dataset.

3.2.3 Concreteness Thresholds

Multiple concreteness thresholds are derived from both the AoA and the con-

creteness score datasets in order to examine the effect of adding the concreteness

distinction knowledge to model pre-training. These values vary between the two

extreme assumptions made by the ELECTRA and the WAC models, which assume

that all words have only contextual meanings (all words are abstract) and all the

words have visual meaning (all words are concrete), respectively.

Based on the threshold value and the source dataset (AoA or Concreteness Score),

a substantial subset of words are distinguished as concrete, whereas all other words

are abstract. This subset of concrete words varies according to different threshold

values. For the AoA dataset, concreteness decreases with increasing age; therefore,
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for a word to be concrete for a given threshold value, its average age must be less

than or equal to the threshold value. However, for the concreteness Score dataset,

a word is concrete for a particular threshold value if the average score for this word

is more than or equal to the threshold value. Using those previous rules, the model

can distinguish concrete words; hence, all other words are abstract. Furthermore,

this knowledge is used to select the appropriate source of embeddings for each word

within the text dataset. For concrete words, the embeddings are extracted from the

WAC embeddings, and the embeddings for the abstract words are extracted from

contextual ELECTRA embeddings. The result is mixed word embeddings derived

from the two textual and visual sources for a specific threshold value. This mixing

step is provided for all threshold values (15 threshold values from both datasets),

which leads to 15 different combinations of mixed word embeddings.

It is worth noting that words distinguished as concrete for some threshold values

are misleading. For instance, a word with an average score of 2.5 in the concreteness

score dataset, for a threshold value of 2, is considered concrete, while the 2.5 score is

not concrete according to the dataset definition. In order to eliminate this confusion,

three categories are set for the threshold values: The Al Abstract, the All Concrete,

and the True Concrete category. The All abstract category groups threshold values

for which all the words are assumed to be abstract, which means that the set of

concrete words — according to the threshold value— is empty (no or few words are

concrete). On the contrary, the All concrete category groups together all threshold

values that assume all words are concrete (no or few words are abstract). The final

category is the True Concrete category, which has threshold values that distinguish

actual concrete words —–according to humans’ perspective–— as concrete. For
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example: according to the concreteness score dataset, if the threshold value is 4,

then all words with an average score equal to or more than 4 are considered concrete,

which aligns with the assumption True Concrete. However, a threshold value of 1

from the same concreteness dataset is considered All Concrete, as it assumes all the

words with an average score equal to or more than 1 are concrete; which is all the

words in the dataset. On the contrary, the threshold of 5 is an All Abstract threshold,

as no words in the dataset have an average score of more than 5, so all the words

are abstract. The threshold values and categories are demonstrated in Figure 3.7 and

Figure 3.6.

According to the current hypothesis, the performance of models that corresponds

to one or multiple thresholds, leaning toward the True Concrete threshold category, is

expected to experience significantly higher values than other models of All Abstract

and All Concrete threshold categories. These threshold values represent the best

values where the model can learn visual embeddings from visual sources (WAC) and

contextual embeddings from text-based sources (ELECTRA-Xsmall). Furthermore,

models are given names which reflect the threshold value that provided the concrete-

ness distinction knowledge to their pre-training. For example: a model pre-trained

using the concreteness distinction knowledge of threshold= 2 from the AoA dataset

is called “mix AoA 2”. Consequently, these models inherit the same concreteness

category as the corresponding thresholds, therefore, the model mix concreteness 5 is

considered an All Abstract model (as threshold 5 of the concreteness score dataset is

an All Abstract threshold).
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Figure 3.6: The different thresholds from the concreteness Score
dataset, Each threshold value belongs to one of the threshold categories;
All Abstract, All Concrete, and True Concrete. The All Concrete thresh-
olds are the ones that have the largest set of words (they assume approx-
imately all the words are concrete.)

Figure 3.7: The different thresholds from the AoA dataset, each thresh-
old value belongs to one of the threshold categories; All Abstract,
All Concrete, and True Concrete. The All Concrete threshold are the
ones that have the largest set of words (they assume approximately all the
words are concrete).
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Intersection with

WAC WordsData

Size
Threshold

Concreteness Score

Words

WAC

Words Number Percentage

Size1 mix concreteness 1 39,738

9,350

3832 40.98%

mix concreteness 2 31,714 3608 38.59%

mix concreteness 3 18,308 3004 32.13%

mix concreteness 4 8996 1983 21.21%

mix concreteness 5 0 0 0.00%

Size2 mix concreteness 1 39,738

10,328

4059 39.30%

mix concreteness 2 31,714 3814 36.93%

mix concreteness 3 18,308 3172 30.71%

mix concreteness 4 8996 2096 20.29%

mix concreteness 5 0 0 0.00%

Size3 mix concreteness 1 39,738

11,265

5758 51.11%

mix concreteness 2 31,714 5315 47.18%

mix concreteness 3 18,308 4239 37.63%

mix concreteness 4 8996 2704 24.00%

mix concreteness 5 0 0 0.00%

Table 3.2: The number of words for each threshold value from the
Concreteness Score dataset, the number of words that has WAC visual
embeddings for each data size and the intersection — in number and
percentage — between the Concreteness Score dataset and the words
which have WAC visual embeddings, for all the three sizes of data (Size1,
Size2 and Size3).
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Intersection with

WAC WordsData

Size
Threshold

AoA Dataset

Words

WAC

Words Number Percentage

mix AoA 2 3.00 2.00 0.02%

mix AoA 3 48.00 42.00 0.45%

mix AoA 4 338.00 277.00 2.96%

mix AoA 5 994.00 724.00 7.74%

mix AoA 6 2,043.00 1,266.00 13.54%

mix AoA 7 3,497.00 1,800.00 19.25%

mix AoA 8 5,423.00 2,230.00 23.85%

mix AoA 9 8,067.00 2,598.00 27.79%

mix AoA 10 11,267.00 2,868.00 30.67%

Size1

mix AoA 11 14,956.00

9,350

3,016.00 32.26%

mix AoA 2 3.00 2.00 0.02%

mix AoA 3 48.00 42.00 0.41%

mix AoA 4 338.00 280.00 2.71%

mix AoA 5 994.00 741.00 7.17%

mix AoA 6 2,043.00 1,309.00 12.67%

mix AoA 7 3,497.00 1,867.00 18.08%

mix AoA 8 5,423.00 2,325.00 22.51%

mix AoA 9 8,067.00 2,722.00 26.36%

mix AoA 10 11,267.00 3,018.00 29.22%

Size2

mix AoA 11 14,956.00

10,328

3,189.00 30.88%
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mix AoA 2 3.00 2.00 0.02%

mix AoA 3 48.00 43.00 0.38%

mix AoA 4 338.00 303.00 2.69%

mix AoA 5 994.00 834.00 7.40%

mix AoA 6 2,043.00 1,550.00 13.76%

mix AoA 7 3,497.00 2,328.00 20.67%

mix AoA 8 5,423.00 3,019.00 26.80%

mix AoA 9 8,067.00 3,672.00 32.60%

mix AoA 10 11,267.00 4,159.00 36.92%

Size3

mix AoA 11 14,956.00

11,265

4,471.00 39.69%

Table 3.3: The number of words for each threshold value from the AoA
dataset, the number of words that have WAC visual embeddings for each
data size, and the intersection — in number and percentage — between
the AoA dataset and the words which have WAC visual embeddings, for
all the three sizes of data (Size1, Size2, and Size3).

3.3 Model Architecture

The architecture used in this work is based on the architecture used in (Kenning-

ton, 2021) and illustrated in Figure 2.3. However, the architecture is extended and

modified to incorporate the small size of text data used and the addition of con-

creteness knowledge of the physical world to the model. The developed architecture

consists of a smaller version of the transformer-based model ELECTRA-small; which

I call ELECTRA-Xsmall, the WAC model to extract the visual embeddings for words

within the data, and the third part is a “Multiplexer” 4, which is responsible for

4The Multiplexer term is borrowed from logic circuits design, it is a logic circuit where the output
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choosing the embedding source to be either visual or textual based on whether the

word is considered concrete or abstract, determined by the concreteness threshold

value (as previously explained). The overall architecture is illustrated in this section,

and the input to each component is visually demonstrated in Figure 3.8.

3.3.1 WAC

The WAC model is one of the main components used in this work to create visual

embeddings for words using coupled Image-Text datasets (i.e., RefCOCO and Vis-

Dial). Furthermore, these visual embeddings are assigned only to words distinguished

as concrete (by the concreteness threshold). Originally, the WAC embeddings vectors

are of size 520, which I shrink to size 128 (the size of ELECTRA-small’s embedding

layer) using the Umap model (McInnes et al., 2018).

Some of the original WAC parameters are modified, such as the minimum number

of positive examples for a word to be considered to have a classifier model is changed

from 3 —as used in the previous literature— to 1, due to the small number of

words that overcome this constrain in the used dataset (approximately 3000 words in

RefCOCO (Split=Train)). This number will be further decreased when intersected

with the list of words in the concreteness distinction knowledge datasets. Thus, the

previous change is applied to Size1 and Size2 of the data and left as it is for Size3,

as it contains a large number of words, precisely 37,297 unique words, and with

the constrain, it is limited to 11,265 words. The total number of WAC word-level

embeddings is 9,350, 10,328, and 11,265 words for Size1, Size2, and Size3, respectively.

is equal to only one of the inputs, based on the value of another signal independent from the input.
In this work, I mimic the functionality of a Multiplexer to choose the source of the embeddings for
words in input text, determined by the threshold value.
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3.3.2 ELECTRA-Xsmall

In order to incorporate the small data used through my experiments, the size

of ELECTRA-small is reduced into an even smaller version that I call ELECTRA-

Xsmall. The ELECTRA-small model is trained on OpenWebText data of size 40

GB, while the text data from both RefCOCO and VisDial is only 16.9 MB. This

significant reduction in data size prevented the model from completing pre-training

using fewer examples for 100K epochs. This size reduction is implemented by fol-

lowing some of the approaches used in the ELECTRA paper to shrink ELECTRA-

large to ELECTRA-base and ELECTRA-small. Specifically, the batch size and

max seq length parameters are reduced to get the model to complete pre-training

for 100K epochs on Size1 (2.14 MB) of the text data. The new parameters are: batch

size = 10 and the max seq length = 85. All the other model parameters are the same

as ELECTRA-small, as depicted in Table 3.4.

3.3.3 Model Pre-Training

The ELECTRA-Xsmall model follows the pre-training and fine-tuning approach

same as the ELECTRA-small model. However, in the proposed architecture, depicted

in Figure 3.8, the ELECTRA-Xsmall +WAC is used with the addition of concreteness

knowledge to the model during pre-training.

The pre-training process goes through the following steps: First, train the WAC

classifiers for words in the input text (i.e., Referring Expressions), using the images

from the same dataset. Second, pre-train the ELECTRA-Xsmall model using the

exact input text (Referring Expressions), and extract the contextual embeddings for

5Sentences with sequence length less than the max seq length are padded with zeros (same as
in ELECTRA-small model), while the ones with sequence length more than the max seq length are
truncated.
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Hyperparameter Electra-small Electra-Xsmall
Number of layers 12 12

Hidden Size 256 256
Attention heads 4 4

Attention head size 64 64
Embedding Size 128 128
Generator Size 1/4 1/4
Mask percent 15 15
Warmup steps 10K 10K

Batch Size 128 10
max seq length 128 12

Train Steps (ELECTRA) 1.45M/1M 100K

Table 3.4: The change in parameters for the ELECTRA-Xsmall model
from the original ELECTRA-small model.

the words learned by the fully trained ELECTRA-Xsmall model. At this point,

there are two different sources for word embeddings, and its up to the concreteness

knowledge to decide which words are concrete hence their embeddings shall be the

WAC visual embeddings, while abstract words get assigned the contextual embed-

dings, which is referred to as mixing the embeddings, and this is the third step in the

pre-training process. This step I apply for all concreteness threshold (15 thresholds)

values. Finally, the ELECTRA-Xsmall is pre-trained using the corresponding mixed

embeddings for each threshold value. These new embeddings are embedded into the

embedding layer between the Generator and Discriminator in ELECTRA-Xsmall,

using the freezing approach followed by Kennington (2021) and illustrated in section

2.4.

Despite the model pre-training consisting of four simple steps, the current experi-

ments have lots of variations due to the multiple parameters I use to address different

parts of the current research question. These parameters include: first, the data size

that is either Size1, Size2, or Size3, which are all child-development-inspired datasets
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but of different sizes (as summarized in Table 3.1). Second, the data source is either

the proposed dataset (child-development inspired dataset) or a corpus dataset that is

typically used to train language models (i.e., OpenWebText dataset). Although using

the conventional corpus dataset is not part of the research question, it was included in

the experiments to provide a baseline to compare against the proposed model with the

sole difference of the data source. The third parameter is the concreteness threshold

value, which are 15 different threshold values, in addition to a single conventional

ELECTRA-Xsmall model pre-trained without adding any concreteness knowledge.

These variations result in running 96 models (3 text data sizes, 2 text data sources,

and 15 concreteness threshold values, and a conventional ELECTRA-Xsmall model).

An automated pipeline is created with different input parameters for each set of

experiments, and this procedure is illustrated in the next section.
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Figure 3.8: Model architecture using coupled text-images dataset to train
the WAC model for visual representations and ELECTRA-xsmall model
for textual representation. The decision upon which embeddings vector
per word is decided based on the concreteness threshold extracted from
the concreteness distinction knowledge datasets.

3.4 Procedures

According to the research hypotheses presented in this work, the effect of following

a child-development inspired approach is investigated to pre-train language models,

and it is hypothesized to improve the performance of LMs compared to the traditional

pre-training techniques that absolutely lack knowledge about the physical world and

are trained using the large, heavily-structured textual corpus dataset. Consequently,

a language model is pre-trained using child-development inspired dataset and with

knowledge about the physical world (visual embeddings for words) and the distinction

between concrete vs. abstract words. After pre-training the model, its performance
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is compared with the same model pre-trained on a different dataset (corpus), without

the addition of the concreteness distinction knowledge.

Three procedures are formulated as shown in Table 3.5. The first two pro-

cedures share the same settings except for the concreteness distinction knowledge

source, as procedure1 is applied using the Concreteness Score dataset and procedure2

is performed using the AoA dataset. For each concreteness threshold value, an

ELECTRA-Xsmall model is pre-trained with mixed word embeddings that correspond

to the concreteness threshold value. This step is repeated for each data size (Size1,

Size2, and Size3). Since both the AoA and Concreteness Score datasets positively

correlate together, the first and second procedures are considered as a mean of

affirmation to each other. Unlike the first two procedures, the input text used in the

third one is a corpus dataset (i.e., OpenWebText) as opposed to the child-development

inspired dataset, used in them. Additionally, the third procedure is carried out using

all concreteness thresholds from datasets of concreteness distinction knowledge while

using a corpus dataset with a comparable size for the three data sizes (Size1, Size2,

and Size3).

3.4.1 Procedure1

For this procedure, an ELECTRA-Xsmall is pre-trained on the three data sizes,

using the visual embeddings from the WAC model trained on the referring expressions

from the corresponding coupled Image-Text data for this size. Overall, 6 models per

size are created; hence, it ends up with 18 different models, each corresponding to 18

different (data size, concreteness score threshold/no threshold) combinations, which

is performed according to the method mentioned in Section 3.3.3.
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3.4.2 Procedure2

This procedure is a replica of the first procedure, except for the source of con-

creteness distinction knowledge is rived from the AoA dataset. For this procedure,

ten different ELECTRA-Xsmall models are pre-trained, each corresponding to a

concreteness threshold, which is repeated for different data sizes (Size1, Size2, Size3),

and thus 30 models are obtained for the (data size, AoA threshold) combinations, as

illustrated in Table 3.5.

3.4.3 Procedure3

This procedure is follows the pattern used in the two preceding procedures; the

only difference is the type of input text data used to train the ELECTRA-Xsmall

model. Instead of the referring expressions used in the first two procedures, this

one uses corpus text data from the OpenWebText (Zhu et al., 2015) dataset. How-

ever, other parameters remain the same as the other procedures; the concreteness

thresholds and their corresponding WAC embeddings and the mixed embeddings are

identical to the two preceding procedures. Moreover, not all the OpenWebText data

is used to train these models, as the goal of this procedure is to enrich the analysis

by providing a baseline to compare results from the first two procedures against;

hence, three fragments of text data are extracted from the OpenWebText dataset

with sizes comparable to Size1, Size2 and Size3 of the referring expressions text data

(measured in bytes), as shown in Table 3.1. Consequently, the number of models

obtained from this procedure is 48 for the (data size, 16 AoA and Concreteness Score

thresholds/no threshold) combinations. It should be noted that the image and text

data are considered non-coupled Image-Text datasets, as the images come from one

source (RefCOCO and VisDial), and the text is from another(OpenWebText).
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Procedures Procedure1 Procedure2 Procedure3
Dataset Used Referring Expressions Referring Expressions Corpus

Size1
RefCOCO

(Split=Train)
RefCOCO

(Split=Train)

Comparable size of
RefCOCO

(Split=Train )

Size2
RefCOCO

(Split=TrainValTest)
RefCOCO

(Split=TrainValTest)

Comparable size of
RefCOCO

(Split=TrainValTest)

Dataset Size
Size3

RefCOCO
(Split=TrainValTest)

+
VisDial

(Split=TrainVal)

RefCOCO
(Split=TrainValTest)

+
VisDial

(Split=TrainVal)

Comparable size of
RefCOCO

(Split=TrainValTest)
+

VisDial
(Split=TrainVal)

Concreteness Knowledge Concreteness Score AoA Concreteness Score AoA
Concreteness Threshold

values
[1,5]

With a step of 1
[2,11]

With a step of 1
[1,5]

With a step of 1
[2,11]

With a step of 1

Visual Embeddings

WAC
Trained on

Dataset Sizes
(Size1, Size2, Size3)

of coupled Text-Images

WAC
Trained on

Dataset Sizes
(Size1, Size2, Size3)

of coupled Text-Images

WAC
Trained on

Dataset Sizes
(Size1, Size2, Size3)

of coupled Text-Images

Textual Embeddings

ELECTRA Xsmall
Trained on
Datasets size

(Size1, Size2, Size3)
of Text

ELECTRA Xsmall
Trained on
Datasets size

(Size1, Size2, Size3)
of Text

ELECTRA Xsmall
Trained on

Datasets of comparable size
(Size1, Size2, Size3)

of Text

Table 3.5: The procedures performed to produce all the 96 different
models, each model corresponding to a different threshold value, text
data source, and text data size. This includes 6 conventionally trained
ELECTRA–Xsmall models for each data size and data source (3*2),
without any visual embeddings. Procedure1 and Procedure2 both use the
pre-training text data as referring expressions, and Procedure3 uses the
corpus dataset with comparable sizes to Size1, Size2, and Size3 (measured
in bytes).
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CHAPTER 4:

EVALUATION

For the purpose of evaluating my work, I split the research question into sub-

questions, and I address each one of them independently through analysis, while

highlighting the limitations to which my analysis is subjected. After that, I sum-

marize the results with a reflection that supports/denies my hypothesis. In the next

subsections I introduce the metrics I use and the evaluation sub-tasks, in addition to

the results I collected from my experiments altogether.

4.1 Metrics

Due to the nature of the underlying research question and the baselines against

which it is compared, determining the appropriate metric to evaluate the model has

been difficult. Recall the research question, “Can I move towards emulating the

settings in which children learn their language to enrich language models? On a more

technical level, if language models are given knowledge of the physical world, with

a distinction between concrete and abstract words, and a dataset that is similar to

the child-development inspired dataset, resulting in better model performance. The

main objective is to determine whether LMs will benefit from this new approach.

Hence, the GLUE benchmark, which measures the performance of LMs on various

language understanding tasks, is used as the metric to evaluate my work. Despite
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the fact that the current model is multi-modal, I need to determine whether adding

such features to the model would leverage its “understanding” when applied to pure

language tasks. The second reason I choose the GLUE benchmark is the variety of

tasks/data sources, as each task in GLUE has a different dataset that comes from

different data sources and varies in size.

Some of the GLUE tasks are excluded from the evaluation for different reasons.

For example, according to what is hypothesized by Devlin et al. (2019) that the

higher the model size, the less fine-tuning data it needs; thus, GLUE tasks with small

training datasets would not be informative to my work due to the limitation of the

small pre-training data size I encountered that consequently needs a smaller model.

This limitation excludes the CoLA, MRPC, and STS-B tasks from the evaluation

tasks I use. This is supported by results from previous work by Kennington (2021),

where the CoLA metric is characterized by very low accuracy (approaching zero)

accuracy using the WAC embeddings with the freezing approach in pre-training,

with the pre-training data is the whole OpenWebText of 40GB. In contrast, the

SST-2 and MNLI metrics will best reveal the strength of my approach, as the nature

of the SST-2 dataset (movie reviews) and the fact that it is a single-sentence task

makes it the best metric for overcoming many drawbacks of my work. In addition,

the MNLI has a massive dataset, which will overcome the small pre-training dataset.

Additionally, the WNLI and RTE metrics are added to the list of fine-tuning tasks

used, to provide further analysis of results. The GLUE tasks I use are highlighted

in Table 2.2. In contrast to the approach followed in the BERT and the ELECTRA

papers, I use no hyper-parameter tuning for the GLUE tasks; consequently, all tasks

use the same fine-tuning parameters, including batch size, number of epochs, and
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learning rate, as shown in Table 4.1.

It is worth noting that the GLUE script used in my work is not the same as the

one described in ELECTRA (Clark et al., 2020) and ELECTRA+WAC (Kennington,

2021) papers. This GLUE script is adapted from the ELECTRA Pytorch implemen-

tation1, and it does not use the built-in ELECTRA tokenizer from the Huggingface

library. This script provides flexibility to adjust the BERT Vocabs easily —add new

words from each text data size— and use it with consequent pre-training/fine-tuning

steps. However, to ensure the validity of this script, I compare the results reported for

the ELECTRA-small model in (Clark et al., 2020) with the pre-trained ELECTRA-

small model (Published by Google, through the HuggingFace library) and fine-tuned

using this GLUE script. Both models report comparably equal results. On the other

hand, to ensure the validity of the ELECTRA-small Pytorch implementation used,

it is fine-tuned on the GLUE tasks and compared to results from the pre-trained

ELECTRA-small model (Published by Google, through the HuggingFace library).

Only a slight difference is found between the two models, which can be attributed to

the difference in the number of training steps from 100K to 1000K between the two

models, respectively. All of those results are highlighted in Table 4.2.

1From Github: https://github.com/lucidrains/electra-pytorch
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Parameter Value

max seq length 128

per gpu train batch size 32

learning rate 2e-5

weight decay 0.0

adam epsilon 1e-8

max grad norm 1.0

num train epochs 3

Table 4.1: A summary of the parameters used to fine-tune the GLUE tasks.
Unlike the approach used in previous literature (Devlin et al., 2019) and
(Clark et al., 2020). I perform no hyper-parameter tuning on any GLUE
tasks.

4.2 Baselines and Other Points of Comparison

4.2.1 General Baselines

Although variant experiments are applied to approach the research question, the

ELECTRA-Xsmall model of the corresponding data size is used as the baseline for all

of them, as it represents the abstract LM, not only independent of adding the visual

representations but also independent of freezing the embeddings layer weights of the

model. Moreover, models with different settings are evaluated against each other

in my analysis to investigate the effect of the multiple factors within the current

approach.

4.2.2 Downsizing ELECTRA-small

The effect of downsizing the ELECTRA model is considered one of the present
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work’s most significant limitations. The process of selecting adequate model param-

eters is substantial to this study; thus, I report the GLUE tasks metrics for the

ELECTRA model with the different batch size and max sequence length parameters,

starting from ELECTRA-small and progressing to the model ELECTRA-Xsmall. The

dataset used to pre-train models in this analysis is the OpenWebText dataset. The

results of this experiment are reported using the CoLA, MNLI, MRPC, SST-B, STS-2,

RTE and WNLI tasks. As expected, reducing the size of the model has a significant

negative impact, and using a smaller model size than ELECTRA-small yields lower

results for all GLUE tasks used. The most obvious ones were CoLA, MRPC, and

STS-B tasks. As both CoLA and MRPC tasks report no change in results, with

CoLA reporting 0 accuracy and MRPC as 0.748 accuracy, while the STS-B reports

an extreme decay in correlation from 0.78 to 0.08 going from ELECTRA-small to

ELECTRA 64 1282, and with going lower, NaN values (due to division by a zero

value when calculating Spearman’s correlation). There is no significant difference in

the MNLI accuracy between the smaller sizes, but it decreased significantly from 0.79

to 0.33 between the ELECTRA-small and the ELECTRA 64 128 sizes, which is a

substantial change. The RTE has less decay going from 0.608 to 0.527. Those results

are summarized in Table 4.2.

2The ELECTRA 64 128 model has a batch size=64 and max seq length=128, while the
ELECTRA-small model has a batch size=128 and max seq length=128.
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Model name SST-2 CoLA MRPC STS-B MNLI RTE WNLI

ELECTRA 10 12 (Xsmall-ours) 0.6910 0.0000 0.7480 NaN 0.3545 0.5307 0.5634

ELECTRA 32 128 0.5092 0.0000 0.7480 NaN 0.3182 0.4729 0.5634

ELECTRA 64 128 0.5275 0.0000 0.7480 0.0842 0.3223 0.5271 0.5634

ELECTRA 128 128 (small-ours) 0.8727 0.4703 0.8508 0.7796 0.7926 0.6173 0.5352

ELECTRA-small (Google) 0.9105 0.5550 0.8678 0.8610 0.8175 0.6209 0.5211

ELECTRA-small (Google)* 0.8910 0.5460 0.8370 0.8300 0.7970 0.6080 -

Table 4.2: A demonstration of the effect of downsizing the ELECTRA-
small model using GLUE tasks [SST-2, MRPC, STS-B, MNLI, RTE, and
WNLI]. The models are trained with smaller batch size and max sequence
length parameters, on the OpenWebText dataset. The last three models
are all ELECTRA-small, trained by using ELECTRA-small Pytorch im-
plementation. The second is trained and published by Google through the
Huggingface library (Wolf et al., 2019). Both those models are evaluated
using the open-source GLUE script used in my analysis. The last one
is the model reported by Google in the ELECTRA paper (Clark et al.,
2020); the WNLI metric is not reported in this paper. It is clear that
using ELECTRA models smaller than the ELECTRA-small reduces the
model’s performance.

4.3 Experiments

4.3.1 The Effect of Adding Visual Embeddings

In order to address this sub-question, models that had the visual embeddings

added during their pre-training are compared with models that did not/almost did

not have a visual representation in their pre-training. In other words, models that

represent the True Concrete threshold values are compared with others with the

All Abstract thresholds and with the ELECTRA-Xsmall model. Furthermore, those

models are compared in terms of the data size to determine if adding the visual

embeddings to pre-training would outperform models without them and pre-trained
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on a larger data size. Furthermore, this effect is investigated by using corpus data

and referring expressions data independently. The results compared are reported

in two sets of four tables, with each table reporting one GLUE task. The results

for True Concrete models are reported in tables: 4.3, 4.4, 4.5 and 4.6 , and the

All Abstract models are reported in tables: 4.7, 4.8, 4.9 and 4.10.

Using Corpus Data

Across The Same Data Size

For SST-2, MNLI, RTE, and WNLI tasks, no difference in accuracy between

True Concrete and All Abstract models is observed. However, the RTE task demon-

strated a slight decrease in accuracy for the All Abstract models [mix concreteness 5

and mix AoA 3] to be 0.47 and the same accuracy for the True Concrete models

[mix AoA 4 and mix AoA 5], which might be because these models have close thresh-

olds values.

Across Different Data Sizes

Comparing the results from True Concrete to models with less pre-training data

from All Abstracts revealed no change in performance.

Using Referring Expressions Data

Across The Same Data Size

For SST-2 and MNLI tasks, no change is noticed between the All Concrete and

All Abstract model pre-trained on Size1 and Size3. However, for Size2 a change

in the max accuracy between the two threshold categories is noticed. I find that

All Abstract is outperforming the True Concrete thresholds with max accuracy of
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0.70 and 0.55 respectively. On the other hand, the MNLI task, regarding Size2 of

data, has a change in the opposite direction, as the True Concrete is outperforming

the All Abstract thresholds model, with max accuracy of 0.50 (reported by model

mix AoA 5) and 0.43 respectively. The RTE and WNLI tasks report no change in

accuracy.

Across Different Data Sizes

Comparing the results from True Concrete to models with less pre-training data

from All Abstracts revealed no change in performance.

Discussion

Based on previous results, the addition of visual embeddings did not improve

the performance of the corpus-trained models, independent of the data size. This

is also noticed for models pre-trained on referring expressions for Size1 and Size3

of the data. However, All Abstract models perform 0.2 higher accuracy than the

All Concrete models, which implies that adding the visual knowledge to abstract

models —using the methodology applied in this work— does not improve the model

performance on language understanding tasks.

Limitations

The limitation that applies in this instance is the low percentage of concrete words

that intersect with words of the referring expressions and corpus data, as determined

by each threshold value. This percentage is reflected in Tables 3.3 and 3.2. Another

limitation is the intersection between corpus data and words with visual embeddings,

as some corpus words may not have visual embeddings from the WAC model, which

is a data inconsistency.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.509174 0.509174

mix AoA 2 0.509174 0.509174

mix AoA 3 0.509174 0.509174
Size1

mix concreteness 5 0.509174 0.497706

ELECTRA-Xsmall 0.509174 0.707569

mix AoA 2 0.509174 0.509174

mix AoA 3 0.509174 0.600917
Size2

mix concreteness 5 0.509174 0.707569

ELECTRA-Xsmall 0.509174 0.813073

mix AoA 2 0.509174 0.805046

mix AoA 3 0.509174 0.814220
Size3

mix concreteness 5 0.509174 0.816514

Table 4.3: The SST-2 results for using referring expressions vs. corpus
textual data, while pre-training using models with All Abstract thresholds
and the ELECTRA-Xsmall model as well, which have all the same settings
except for freezing the word embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.318186 0.318186

mix AoA 2 0.318186 0.318186

mix AoA 3 0.318186 0.318186
Size1

mix concreteness 5 0.318186 0.318186

ELECTRA-Xsmall 0.318186 0.439531

mix AoA 2 0.318186 0.318186

mix AoA 3 0.318186 0.353439
Size2

mix concreteness 5 0.318186 0.439531

ELECTRA-Xsmall 0.318186 0.585430

mix AoA 2 0.318186 0.586449

mix AoA 3 0.318186 0.571065
Size3

mix concreteness 5 0.318186 0.573917

Table 4.4: The MNLI results for using referring expressions vs. corpus
textual data, while pre-training using models with All Abstract thresholds
and the ELECTRA-Xsmall model as well, which have all the same settings
except for freezing the word embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.527076 0.527076

mix AoA 2 0.527076 0.527076

mix AoA 3 0.527076 0.527076
Size1

mix concreteness 5 0.527076 0.527076

ELECTRA-Xsmall 0.527076 0.527076

mix AoA 2 0.527076 0.527076

mix AoA 3 0.527076 0.530686
Size2

mix concreteness 5 0.527076 0.527076

ELECTRA-Xsmall 0.523466 0.545126

mix AoA 2 0.527076 0.530686

mix AoA 3 0.472924 0.527076
Size3

mix concreteness 5 0.472924 0.498195

Table 4.5: The RTE results for using referring expressions vs. corpus
textual data, while pre-training using models with All Abstract thresholds
and the ELECTRA-Xsmall model as well, which have all the same settings
except for freezing the word embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.43662 0.56338

mix AoA 2 0.56338 0.56338

mix AoA 3 0.56338 0.56338
Size1

mix concreteness 5 0.43662 0.56338

ELECTRA-Xsmall 0.43662 0.56338

mix AoA 2 0.43662 0.56338

mix AoA 3 0.43662 0.56338
Size2

mix concreteness 5 0.43662 0.56338

ELECTRA-Xsmall 0.56338 0.563380

mix AoA 2 0.56338 0.394366

mix AoA 3 0.56338 0.563380
Size3

mix concreteness 5 0.56338 0.577465

Table 4.6: The WNLI results for using referring expressions vs. corpus
textual data, while pre-training using models with All Abstract thresholds
and the ELECTRA-Xsmall model as well, which have all the same settings
except for freezing the word embeddings layer feature.

4.3.2 The Effect of using Child-Development Inspired dataset

The first characteristic that distinguishes it from corpus datasets is that it is

comprised of simple short sentences as opposed to complex lengthy sentences in

corpus data. The second characteristic of this data is that it is considered to emulate

children’s interaction with the physical world in terms of describing physical objects

from a visual scene. Hence, each feature is approached independently to answer

this question. For the first sub-question, the effect of using different textual input
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sources for pre-training the model, so All Abstract thresholds are used to perform

the analysis independent of the effect of using visual embeddings. In this setting,

the results between models with different data sources are used for the same size and

across different sizes of the data. On the contrary, the second sub-question needs the

addition of visual embeddings. Consequently, the True Concrete threshold values are

to examine this feature and then compared against True Concrete models using the

corpus dataset for the same and across data sizes.

The Effect of using Referring Expressions as Input text

In order to investigate the effect of using referring expressions versus the corpus

dataset with all other training parameters as constant and independent from adding

the visual embeddings, All bstract threshold values are used for this analysis, where

approximately all the words have only contextual embeddings. As a baseline, these

results are compared against the ELECTRA-Xsmall model as the word embeddings

are purely learned from text data. In addition, this sub-question is investigated across

all three data sizes. The models examined here are: ELECTRA-Xsmall, mix AoA 2,

mix AoA 3 and mix concreteness 5. The results are shown in Tables 4.3, 4.4, 4.5 and

4.6.

Across The Same Data Size

According to SST-2 results, there are no significant differences in terms of accuracy

between the corpus and referring expressing dataset for Size1 of the data. However,

for Size2 and Size3, the models trained on referring expressions outperform the ones

trained on the corpus dataset. The accuracy difference increases with data size; the

difference ranges between 0 to 0.2 for Size2, with the mix AoA 2 model scoring 0
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difference. With respect to Size3, the difference in accuracy is stable at 0.3. The

MNLI results are similar to the SST-2 results, except that for all corpus pre-trained

models, the accuracy is below 0.5, and for the referring expressions pre-trained models,

the accuracy is only above 0.5 for the Size3 models. Consequently, the results for Size1

demonstrate no difference in terms of accuracy. Nevertheless, there is a difference that

ranges between 0 to 0.12 for Size2 and 0.26 to 0.27 for Size3. The RTE results indicate

that there is no difference in accuracy between the corpus and the referring expression

for Size1 and Size2; however, there is a small difference ranging from 0.03 to 0.06 for

Size3. Surprisingly, the WNLI results indicate that the model accuracy for Size1 and

Size3 has not changed, with model mix AoA 2 differing by -0.17 for the corpus model.

Despite this, Size2 follows the rule of the other tasks with a difference of 0.13. Similar

to the MNLI results, the accuracy of the corpus-trained models is below 0.5 for both

Size1 and Size2 in the data. All models report results that approximate the ones

reported by the ELECTRA-Xsmall model (with equivalent data size), which applies

to all the GLUE tasks.

Across Different Data Sizes

For the SST-2, MNLI, and RTE tasks, models that pre-trained on referring

expression of Size2 outperform models trained on Size3 using corpus data, with a

difference in accuracy ranging from 0.0 to 0.2 for the MNLI, from 0.0 to 0.2 for the

SST-2 and 0.0 to 0.12 for the RTE. However, the MNLI accuracy is below 0.5 for all

data sizes, which is unreliable. For The WNLI tasks, Size1 outperforms Size2, as the

accuracy of the Size2 corpus-trained model is decreased.
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Discussion

Based on the previous results, using referring expressions dataset outperformed

using corpus dataset as the input text, for the same data size. This effect is more

clear in the SST-2 task while it exists in RTE and MNLI but is only distinguished

when using Size3. It is noted that all the task results have no difference in Size1. The

referring expressions did not affect the WNLI. The results also show that using the

referring expression as input data outperforms models pre-trained using larger corpus

data, which implies that using such input data can compensate for using a smaller

data size. However, this only works for data size larger than Size1, which also implies

that there is a minimum size of data for this rule to be correct. The results from

SST-2, WNLI, and RTE support this conclusion, while it is also true for the MNLI

task. Nonetheless, the MNLI results are of a very low accuracy (below 0.5).

Limitations

The limitation here is the small model size (batch size and max sequence length),

as the length of the sentences in referring expressions data is small (avg of 3.4 for Ref-

COCO(Split=Train)), and the rest is padded with zeros, but a small max sequence length

is used. On the contrary, with a large model, the max sequence length is 128, which

means a lot more tokens will be zeros, which might affect the results for larger models.

The Effect of Using Coupled Image-Text Referring Expressions

In order to answer the second sub-question, the same method is followed to answer

the previous one, which states comparing the results from using a corpus and referring

expressions datasets as non-coupled and coupled data, respectively. The corpus

text data and the images from RefCOCO and VisDial are considered non-coupled
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Image-Text data, as they are extracted from different sources, and the text within the

corpus does not —directly— refer to objects within the physical world. For analysis,

models with visual embeddings added to their pre-training are compared. Thus, the

True Concrete threshold values are used, and the results from an ELECTRA-Xsmall

model training are added as a baseline to compare the True Concrete models. The

models used in this analysis are: mix AoA 4, mi Ao 5, mix AoA 6, mix AoA 7,

mix concreteness 3, mix concreteness 4 and ELECTRA-Xsmall. The results are shown

in Tables: 4.7, 4.8, 4.9, and 4.10.

Across the Same Data Size

For the SST-2 task, there is no difference in accuracy between the two Size1 model

types. In contrast, the change for Size2 and Size3 increases from 0.0 to 0.5 for Size2

and from 0.0 to 0.3 for Size3, with models trained using coupled data as the upper

hand. The same rule applies to the MNLI task, with an accuracy variance between

0.02 and 0.19. The RTE tasks report comparable accuracy for the two model types

for Size1 and Size2, with a small difference ranging from 0.0 to 0.06 for Size3. In

contrast to the previous tasks, the WNLI tasks report an accuracy change of 0.13 for

both Size1 and Size2. In contrast, Size3 exhibits the opposite effect, with an accuracy

difference of -0.13, as the non-coupled models (corpus-based models) reported higher

accuracy for this size compared to stable and lower accuracy for the coupled referring

expressions models.

Across Different Data Sizes

For both the SST-2 and MNLI, models trained on coupled data of Size2 outperform

models trained on non-coupled data of Size3, but it does not apply for Size1 with
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Size2. However, the WNLI task shows that models trained on coupled data of Size1

outperform models trained on non-coupled data of Size3, but this rule does not apply

for Size2 with Size3. The results from the RTE task do not follow this rule, as there

is a non-significant change in accuracy for the models with different data sources

(coupled vs. non-coupled data) and different data sizes.

Discussion

For the same data size, the result is no change for Size1, indicating that the small

size data is indifferent to using the coupled data vs. non-coupled data. For Size2,

the RTE task is also indifferent, but other tasks MNLI and SST-2, have a slight

difference with models pre-trained using coupled data. This rule applies to Size3

and for SST-2, MNLI and RTE tasks. However, the most significant difference in

accuracy is observed between the ELECTRA-Xsmall model pre-trained on corpus

data, which implies that the change I notice is not due to the coupled data effect, as

ELECTRA-Xsmall pre-training does not involve any visual embeddings.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.509174 0.509174

mix AoA 4 0.509174 0.509174

mix AoA 5 0.509174 0.509174

mix AoA 6 0.509174 0.509174

mix AoA 7 0.509174 0.509174

mix concreteness 3 0.509174 0.509174

Size1

mix concreteness 4 0.509174 0.509174

ELECTRA-Xsmall 0.509174 0.707569

mix AoA 4 0.509174 0.526376

mix AoA 5 0.509174 0.530963

mix AoA 6 0.509174 0.552752

mix AoA 7 0.509174 0.516055

mix concreteness 3 0.509174 0.509174

Size2

mix concreteness 4 0.509174 0.529817

ELECTRA-Xsmall 0.509174 0.813073

mix AoA 4 0.509174 0.813073

mix AoA 5 0.509174 0.808486

mix AoA 6 0.509174 0.811927

mix AoA 7 0.509174 0.815367

mix concreteness 3 0.509174 0.807339

Size3

mix concreteness 4 0.509174 0.801606

Table 4.7: The SST-2 results for using the coupled vs non-coupled data
in pre-training using True Concrete threshold models and the ELECTRA-
Xsmall model which have the same settings except for freezing the word
embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.318186 0.318186

mix AoA 4 0.318186 0.318186

mix AoA 5 0.318186 0.318186

mix AoA 6 0.318186 0.318186

mix AoA 7 0.354457 0.318186

mix concreteness 3 0.318186 0.318288

Size1

mix concreteness 4 0.318186 0.318186

ELECTRA-Xsmall 0.318186 0.439531

mix AoA 4 0.318186 0.490372

mix AoA 5 0.318186 0.504534

mix AoA 6 0.318186 0.339786

mix AoA 7 0.318186 0.361488

mix concreteness 3 0.318186 0.354254

Size2

mix concreteness 4 0.318186 0.363118

ELECTRA-Xsmall 0.354457 0.585430

mix AoA 4 0.318186 0.584921

mix AoA 5 0.318186 0.577993

mix AoA 6 0.318186 0.588996

mix AoA 7 0.354457 0.582680

mix concreteness 3 0.318186 0.562303

Size3

mix concreteness 4 0.318186 0.576261

Table 4.8: The MNLI results for using the coupled vs non-coupled data
in pre-training using True Concrete threshold models and the ELECTRA-
Xsmall model which have the same settings except for freezing the word
embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.527076 0.527076

mix AoA 4 0.527076 0.527076

mix AoA 5 0.527076 0.527076

mix AoA 6 0.527076 0.527076

mix AoA 7 0.527076 0.527076

mix concreteness 3 0.527076 0.527076

Size1

mix concreteness 4 0.527076 0.527076

ELECTRA-Xsmall 0.527076 0.527076

mix AoA 4 0.527076 0.530686

mix AoA 5 0.527076 0.527076

mix AoA 6 0.527076 0.527076

mix AoA 7 0.527076 0.527076

mix concreteness 3 0.472924 0.527076

Size2

mix concreteness 4 0.527076 0.527076

ELECTRA-Xsmall 0.523466 0.545126

mix AoA 4 0.472924 0.527076

mix AoA 5 0.472924 0.490975

mix AoA 6 0.527076 0.537906

mix AoA 7 0.527076 0.530686

mix concreteness 3 0.527076 0.509025

Size3

mix concreteness 4 0.527076 0.545126

Table 4.9: The RTE results for using the coupled vs non-coupled data in
pre-training using True Concrete threshold models and the ELECTRA-
Xsmall model which have the same settings except for freezing the word
embeddings layer feature.
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Data Size Model Name Corpus Referring Expressions

ELECTRA-Xsmall 0.43662 0.56338

mix AoA 4 0.43662 0.56338

mix AoA 5 0.43662 0.56338

mix AoA 6 0.43662 0.56338

mix AoA 7 0.43662 0.56338

mix concreteness 3 0.56338 0.56338

Size1

mix concreteness 4 0.43662 0.56338

ELECTRA-Xsmall 0.43662 0.56338

mix AoA 4 0.43662 0.56338

mix AoA 5 0.43662 0.56338

mix AoA 6 0.43662 0.56338

mix AoA 7 0.43662 0.56338

mix concreteness 3 0.43662 0.56338

Size2

mix concreteness 4 0.43662 0.56338

ELECTRA-Xsmall 0.56338 0.563380

mix AoA 4 0.56338 0.436620

mix AoA 5 0.56338 0.563380

mix AoA 6 0.56338 0.507042

mix AoA 7 0.56338 0.436620

mix concreteness 3 0.56338 0.563380

Size3

mix concreteness 4 0.56338 0.563380

Table 4.10: The WNLI results for using the coupled vs non-coupled data
in pre-training using True Concrete threshold models and the ELECTRA-
Xsmall model which have the same settings except for freezing the word
embeddings layer feature.
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4.3.3 The Effect of adding Concreteness Distinction Knowl-

edge

To answer the third question, which studies the effect of concreteness knowledge,

the performance of the various threshold models, from All Concrete, True Concrete,

and All Abstract categories, are compared against one another, and with the ELECTRA-

Xsmall model as a baseline. The results are examined in terms of data size and source,

while considering that the OpenWebText corpus data is non-coupled with the visual

embeddings. Therefore, conclusions are based only on the referring expressions data

but report both. In this experiment, the analysis of the AoA and Concreteness Score

datasets is separated, which should have the same pattern because they correlate

together, as shown in Figure 3.5. The results are examined and summarized for this

question in Tables: 4.11, 4.12, 4.13 and 4.14.

Results

According to the findings, there are a variety of variations ranging from a distinct

difference to complete stability for all threshold categories across all data sizes. For

corpus data, the threshold category made either no difference or random fluctuations

in model performance across all data sizes. However, according to the referring

expressions input data, Size1 and Size3 do not vary across threshold categories.

In contrast, for Size2, the ELECTRA-Xsmall outperformed all other models, while

the True Concrete model mix AoA 8’s inaccuracy is only -0.2, which is the second

highest across all thresholds categories. These outcomes are displayed in Table 4.11.

The Concreteness Score thresholds follow the same pattern for Size1 and Size3, but

with Size2 ELECTRA-Xsmall scored the highest, which is equivalent to the model
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at mix concreteness 5 threshold, which is an All Abstract threshold, as depicted in

Table 4.15.

For the MNLI task, results remained relatively unchanged. As with the SST-2

case, Size1 and Size3 have nearly identical results across all threshold values. How-

ever, Size2 performs better in mix AoA 4 and mix AoA 5, which are both from

the True Concrete category, with an accuracy difference of 0.07 compared to the

ELECTRA-Xsmall, as shown in Table 4.12. The concreteness score thresholds reveal

that the mix concreteness 5 threshold has the highest performance of 0.43, which is

equivalent to ELECTRA-Xsmall. Those are shown in Table 4.16,

As shown in Tables 4.13 and 4.17, The RTE also displays fluctuating results

from all three threshold categories for referring expressions, Size1 and Size2 are both

indifferent, but Size3 has slight variance with the highest score at the mix AoA 11,

which is an All Concrete threshold, with a difference in the accuracy of 0.1 compared

to ELECTRA-Xsmall.

The results of the WNLI task for the models trained on referring expressions

models randomly fluctuate for Size3 but are stable for Size1 and Size2, which is also

the pattern reported for the concreteness score thresholds. Those results are shown

in Tables 4.14 and 4.18.

Discussion

According to the results above, models pre-trained on corpus datasets are indif-

ferent to all threshold values, and their results are approximately identical to those of

the ELECTRA-Xsmall model. The models trained on referring expressions produced

different results, and their threshold values varied, but the upper bound is consistently

scored by ELECTRA-Xsmall, which is the case for Size1 and Size3 of the data.
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However, for Size2, the True Concrete threshold performs slightly higher than the

ELECTRA-Xsmall using the MNLI task and only according to the AoA thresholds.

The SST-2 tasks show that the All Abstract or ELECTRA-Xsmall outperforms the

others. The other RTE and WNLI have fluctuating results, so they are not valid for

this analysis. Except for the cases mentioned, the other model’s performance does

not change with threshold values, which means it does not change with concreteness

distinction knowledge (adding concreteness distinction knowledge does not enhance

the performance of the abstract ELECTRA-Xsmall model).

Limitations

The occasional inconsistency between the AoA thresholds results and correspond-

ing Concreteness score results may be due to the intersection between both datasets

and RefCOCO and VisDial datasets and OpenWebText, as depicted in Tables 3.3

and 3.2.
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Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.509174 0.509174

mix AoA 2 0.509174 0.509174All Abstract
mix AoA 3 0.509174 0.509174
mix AoA 4 0.509174 0.509174
mix AoA 5 0.509174 0.509174
mix AoA 6 0.509174 0.509174

True Concrete

mix AoA 7 0.509174 0.509174
mix AoA 8 0.509174 0.509174
mix AoA 9 0.509174 0.509174
mix AoA 10 0.509174 0.509174

Size1

All Concrete

mix AoA 11 0.509174 0.509174

(a)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.509174 0.707569

mix AoA 2 0.509174 0.509174All Abstract
mix AoA 3 0.509174 0.600917
mix AoA 4 0.509174 0.526376
mix AoA 5 0.509174 0.530963
mix AoA 6 0.509174 0.552752

True Concrete

mix AoA 7 0.509174 0.516055
mix AoA 8 0.509174 0.686927
mix AoA 9 0.509174 0.508028
mix AoA 10 0.509174 0.509174

Size2

All Concrete

mix AoA 11 0.509174 0.509174

(b)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.509174 0.813073

mix AoA 2 0.509174 0.805046All Abstract
mix AoA 3 0.509174 0.814220
mix AoA 4 0.509174 0.813073
mix AoA 5 0.509174 0.808486
mix AoA 6 0.509174 0.811927

True Concrete

mix AoA 7 0.509174 0.815367
mix AoA 8 0.509174 0.807339
mix AoA 9 0.509174 0.810780
mix AoA 10 0.509174 0.807339

Size3

All Concrete

mix AoA 11 0.509174 0.813073

(c)

Table 4.11: The SST-2 results for using all three different concreteness
threshold categories from the AoA dataset and ELECTRA-Xsmall across
the three data sizes: Size1, Size2, and Size3.
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Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.318186 0.318186

mix AoA 2 0.318186 0.318186All Abstract
mix AoA 3 0.318186 0.318186
mix AoA 4 0.318186 0.318186
mix AoA 5 0.318186 0.318186
mix AoA 6 0.318186 0.318186

True Concrete

mix AoA 7 0.354457 0.318186
mix AoA 8 0.318186 0.318186
mix AoA 9 0.318186 0.318696
mix AoA 10 0.318186 0.354457

Size1

All Concrete

mix AoA 11 0.354457 0.318186

(a)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.318186 0.439531

mix AoA 2 0.318186 0.318186All Abstract
mix AoA 3 0.318186 0.353439
mix AoA 4 0.318186 0.490372
mix AoA 5 0.318186 0.504534
mix AoA 6 0.318186 0.339786

True Concrete

mix AoA 7 0.318186 0.361488
mix AoA 8 0.318186 0.328069
mix AoA 9 0.318186 0.318186
mix AoA 10 0.318186 0.318186

Size2

All Concrete

mix AoA 11 0.318186 0.318186

(b)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.354457 0.585430

mix AoA 2 0.318186 0.586449All Abstract
mix AoA 3 0.318186 0.571065
mix AoA 4 0.318186 0.584921
mix AoA 5 0.318186 0.577993
mix AoA 6 0.318186 0.588996

True Concrete

mix AoA 7 0.354457 0.582680
mix AoA 8 0.318186 0.552522
mix AoA 9 0.318186 0.575853
mix AoA 10 0.318186 0.549771

Size3

All Concrete

mix AoA 11 0.318186 0.577076

(c)

Table 4.12: The MNLI results for using all three different concreteness
threshold categories from the AoA dataset and ELECTRA-Xsmall across
the three data sizes: Size1, Size2, and Size3.
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Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.527076 0.527076

mix AoA 2 0.527076 0.527076All Abstract
mix AoA 3 0.527076 0.527076
mix AoA 4 0.527076 0.527076
mix AoA 5 0.527076 0.527076
mix AoA 6 0.527076 0.527076

True Concrete

mix AoA 7 0.527076 0.527076
mix AoA 8 0.527076 0.527076
mix AoA 9 0.527076 0.527076
mix AoA 10 0.527076 0.527076

Size1

All Concrete

mix AoA 11 0.527076 0.472924

(a)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.527076 0.527076

mix AoA 2 0.527076 0.527076All Abstract
mix AoA 3 0.527076 0.530686
mix AoA 4 0.527076 0.530686
mix AoA 5 0.527076 0.527076
mix AoA 6 0.527076 0.527076

True Concrete

mix AoA 7 0.527076 0.527076
mix AoA 8 0.527076 0.530686
mix AoA 9 0.527076 0.527076
mix AoA 10 0.527076 0.527076

Size2

All Concrete

mix AoA 11 0.527076 0.527076

(b)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.523466 0.545126

mix AoA 2 0.527076 0.530686All Abstract
mix AoA 3 0.472924 0.527076
mix AoA 4 0.472924 0.527076
mix AoA 5 0.472924 0.490975
mix AoA 6 0.527076 0.537906

True Concrete

mix AoA 7 0.527076 0.530686
mix AoA 8 0.472924 0.530686
mix AoA 9 0.472924 0.534296
mix AoA 10 0.472924 0.505415

Size3

All Concrete

mix AoA 11 0.527076 0.555957

(c)

Table 4.13: The RTE results for using all three different concreteness
threshold categories from the AoA dataset and ELECTRA-Xsmall across
the three data sizes: Size1, Size2, and Size3.
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Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.43662 0.56338

mix AoA 2 0.56338 0.56338All Abstract
mix AoA 3 0.56338 0.56338
mix AoA 4 0.43662 0.56338
mix AoA 5 0.43662 0.56338
mix AoA 6 0.43662 0.56338

True Concrete

mix AoA 7 0.43662 0.56338
mix AoA 8 0.43662 0.56338
mix AoA 9 0.43662 0.56338
mix AoA 10 0.56338 0.43662

Size1

All Concrete

mix AoA 11 0.43662 0.56338

(a)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.43662 0.56338

mix AoA 2 0.43662 0.56338All Abstract
mix AoA 3 0.43662 0.56338
mix AoA 4 0.43662 0.56338
mix AoA 5 0.43662 0.56338
mix AoA 6 0.43662 0.56338

True Concrete

mix AoA 7 0.43662 0.56338
mix AoA 8 0.43662 0.56338
mix AoA 9 0.43662 0.56338
mix AoA 10 0.43662 0.56338

Size2

All Concrete

mix AoA 11 0.43662 0.56338

(b)

Data Size
Concreteness
Threshold

Model Name Corpus
Referring

Expressions
ELECTRA-Xsmall 0.56338 0.563380

mix AoA 2 0.56338 0.394366All Abstract
mix AoA 3 0.56338 0.563380
mix AoA 4 0.56338 0.436620
mix AoA 5 0.56338 0.563380
mix AoA 6 0.56338 0.507042

True Concrete

mix AoA 7 0.56338 0.436620
mix AoA 8 0.56338 0.436620
mix AoA 9 0.56338 0.422535
mix AoA 10 0.56338 0.563380

Size3

All Concrete

mix AoA 11 0.56338 0.436620

(c)

Table 4.14: The WNLI results for using all three different concreteness
threshold categories from the AoA dataset and ELECTRA-Xsmall across
the three data sizes: Size1, Size2, and Size3.
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Data Size Concreteness Threshold Model Name Corpus Referring Expressions

mix concreteness 1 0.509174 0.509174
All Concrete

mix concreteness 2 0.509174 0.509174

mix concreteness 3 0.509174 0.509174
True Concrete

mix concreteness 4 0.509174 0.509174

mix concreteness 5 0.509174 0.497706

Size1

All Abstract
ELECTRA-Xsmall 0.509174 0.509174

mix concreteness 1 0.509174 0.522936
All Concrete

mix concreteness 2 0.509174 0.587156

mix concreteness 3 0.509174 0.509174
True Concrete

mix concreteness 4 0.509174 0.529817

mix concreteness 5 0.509174 0.707569

Size2

All Abstract
ELECTRA-Xsmall 0.509174 0.707569

mix concreteness 1 0.509174 0.817661
All Concrete

mix concreteness 2 0.509174 0.815367

mix concreteness 3 0.509174 0.807339
True Concrete

mix concreteness 4 0.509174 0.801606

mix concreteness 5 0.509174 0.816514

Size3

All Abstract
ELECTRA-Xsmall 0.509174 0.813073

Table 4.15: The SST-2 results for using all three different concreteness
threshold categories from the Concreteness Score dataset and ELECTRA-
Xsmall across the three data size: Size1, Size2, and Size3.
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Data Size Concreteness Threshold Model Name Corpus Referring Expressions

mix concreteness 1 0.318186 0.372084
All Concrete

mix concreteness 2 0.318186 0.318186

mix concreteness 3 0.318186 0.318288
True Concrete

mix concreteness 4 0.318186 0.318186

mix concreteness 5 0.318186 0.318186

Size1

All Abstract
ELECTRA-Xsmall 0.318186 0.318186

mix concreteness 1 0.318186 0.333164
All Concrete

mix concreteness 2 0.318186 0.338971

mix concreteness 3 0.318186 0.354254
True Concrete

mix concreteness 4 0.318186 0.363118

mix concreteness 5 0.318186 0.439531

Size2

All Abstract
ELECTRA-Xsmall 0.318186 0.439531

mix concreteness 1 0.318186 0.582170
All Concrete

mix concreteness 2 0.318186 0.582680

mix concreteness 3 0.318186 0.562303
True Concrete

mix concreteness 4 0.318186 0.576261

mix concreteness 5 0.354457 0.573917

Size3

All Abstract
ELECTRA-Xsmall 0.354457 0.585430

Table 4.16: The MNLI results for using all three different concreteness
threshold categories from the Concreteness Score dataset and ELECTRA-
Xsmall across the three data size: Size1, Size2, and Size3.
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Data Size Concreteness Threshold Model Name Corpus Referring Expressions

mix concreteness 1 0.527076 0.527076
All Concrete

mix concreteness 2 0.527076 0.527076

mix concreteness 3 0.527076 0.527076
True Concrete

mix concreteness 4 0.527076 0.527076

mix concreteness 5 0.527076 0.527076

Size1

All Abstract
ELECTRA-Xsmall 0.527076 0.527076

mix concreteness 1 0.527076 0.527076
All Concrete

mix concreteness 2 0.527076 0.527076

mix concreteness 3 0.472924 0.527076
True Concrete

mix concreteness 4 0.527076 0.527076

mix concreteness 5 0.527076 0.527076

Size2

All Abstract
ELECTRA-Xsmall 0.527076 0.527076

mix concreteness 1 0.472924 0.530686
All Concrete

mix concreteness 2 0.472924 0.530686

mix concreteness 3 0.527076 0.509025
True Concrete

mix concreteness 4 0.527076 0.545126

mix concreteness 5 0.472924 0.498195

Size3

All Abstract
ELECTRA-Xsmall 0.523466 0.545126

Table 4.17: The RTE results for using all three different concreteness
threshold categories from the Concreteness Score dataset and ELECTRA-
Xsmall across the three data size: Size1, Size2, and Size3.
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Data Size Concreteness Threshold Model Name Corpus Referring Expressions

mix concreteness 1 0.43662 0.56338
All Concrete

mix concreteness 2 0.43662 0.56338

mix concreteness 3 0.56338 0.56338
True Concrete

mix concreteness 4 0.43662 0.56338

mix concreteness 5 0.43662 0.56338

Size1

All Abstract
ELECTRA-Xsmall 0.43662 0.56338

mix concreteness 1 0.43662 0.56338
All Concrete

mix concreteness 2 0.43662 0.56338

mix concreteness 3 0.43662 0.56338
True Concrete

mix concreteness 4 0.43662 0.56338

mix concreteness 5 0.43662 0.56338

Size2

All Abstract
ELECTRA-Xsmall 0.43662 0.56338

mix concreteness 1 0.56338 0.563380
All Concrete

mix concreteness 2 0.56338 0.436620

mix concreteness 3 0.56338 0.563380
True Concrete

mix concreteness 4 0.56338 0.563380

mix concreteness 5 0.56338 0.577465

Size3

All Abstract
ELECTRA-Xsmall 0.56338 0.563380

Table 4.18: The WNLI results for using all three different concreteness
threshold categories from the Concreteness Score dataset and ELECTRA-
Xsmall across the three data size: Size1, Size2, and Size3.

4.3.4 The Effect of Data Size

Although this question does not have a direct implication in the hypothesis, the
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effect of data size on the current experiments is further investigated, as it is one of the

limitations encountered due to the small data size used. For this analysis, the results

shown in Tables 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18 are investigated.

Results

For the STS-2, the size does not affect models pre-trained on corpus dataset.

However, for the ELECTRA-Xsmall model pre-trained on the referring expressions,

the STS-2 and MNLI tasks witness an increasing change in accuracy from 0.5, 0.7,

0.8 and 0.3, 0.4, 0.58 for Size1, Size2 and Size3, respectively. However, for the RTE

and WNLI tasks, there is no change in the performance of ELECTRA-Xsmall model

with changing the data size.

Discussion

For the models trained on referring expression, it is evident that the data size has

a significant impact on the results only for the SST-2 and MNLI tasks, whereas the

RTE and WNLI tasks experience no/insignificant change. This pattern is reported

by the. In contrast, in the models trained using text corpus data, there is no effect

for the size on the performance and all the tasks used.

4.4 Results Discussion

Summing up the results from the previous analysis, the addition of visual embed-

dings did not improve the performance of the corpus-trained models, and this holds

true for all data sizes. The same rule applies to models that have been pre-trained

on referring expression, except for Size2 reported by MNLI tasks. The models that

have been pre-trained with Size1 are indifferent to the use of referring expressions or



86

corpus data. With Size2 and Size3, however, performance significantly improves with

the SST-2 task, whereas MNLI and RTE have only a slight performance increase

that develops with the data size. In addition, models pre-trained with Size2 of

referring expressions data outperform models pre-trained with Size3 corpus data. This

result is due to the stable performance of models using corpus text as pre-training

input data, while models pre-trained with referring expression increase in performance

with increased data size. From the previous analysis, it is difficult to conclude that

using coupled Image-Text data enhances the model performance as adding the visual

embeddings does not affect the performance, which makes me lean towards the the

improvement from using the coupled Image-Text referring expressions over the non-

coupled Image-Text corpus is mainly due to using the referring expressions, and the

couple/non-coupled data has no effect over it. I support this decision by comparing

my results to the ELECTRA- Xsmall models (trained using the same data source and

size), as this model does not have any visual word embeddings. The results imply

that the models pre-trained on both the corpus and referring expressions text data

are not affected by adding the concreteness knowledge, as varying the concreteness

threshold from the All Abstract conditions to the All Concrete conditions does not

yield a distinct variation in performance. Moreover, comparing the results to the

ELECTRA-Xsmall (with the same parameters) affirms the previous results, except

for the True Concrete models pre-trained on Size2 of referring expressions data that

outperform the other models (also pre-trained on Size2 of referring expressions text

data), reported by the MNLI metric.

Finally, the current analysis results are compared with those reported in the

previous literature (i.e., ELECTRA-small). Table 4.2 compares the results of the
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ELECTRA-Xsmall trained on referring expressions of Size3. For the SST-2, MNLI,

RTE and WNLI the results are: 0.87, 0.79, 0.64, 0.53 and 0.81, 0.59, 0.55, 0.56 for

ELECTRA-small (trained on OpenWebText of size 40 GB) and ELECTRA-Xsmall

(trained on Size3 of 16.9 MB referring expressions) respectively. The results are

comparable, with ELECTRA-small outperforming ELECTRA-Xsmall, but the data

size each model is trained on is incomparable, indicating that this approach has the

potential to be further investigated in future work, especially when the data size is

critical to the application and a smaller model size is used to incorporate the data

limits.

4.5 Limitations

After exploring the results and evaluating the current work, the limitations are

summarized, contributing to interpretations of the findings and highlighting the

limitations.

4.5.1 Data Limitations

The used data probably have a significant number of limitations. The first one

is the small data size, as all LMs (such as BERT or ELECTRA) use massive data,

which enables the model to report high performance when fine-tuned. In addition,

it is possible to fine-tune small data sizes and yet have good performance, and the

larger the data size, the larger the performance. Due to the small data size, the model

size is reduced ( another limitation). The second limitation is using VisDial datasets’

answers, which is noisy for referring expressions as the sentences (answers) are in the

context of the dialogue, and not all of the answers are descriptive of the image, but

some of them could be just follow-up to a previous question/answer. Another data

limitation is the combination of both RefCOCO and VisDial datasets, as those are
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collected from different settings and for different tasks (explained in Section 2.5 and

Section 2.6), and the difference between the images from both datasets, as images

from the RefCOCO dataset are the sub-image (object within the original image with

relative position information). In contrast, the VisDial images are the whole image

with more than one object, so it does not have position information ( position vector

is zeros). A fourth limitation is the intersection of the words between words within

the concreteness knowledge dataset and words with WAC visual embeddings (derived

from the coupled Image-Text datasets). For instance, the interaction between words

in the AoA dataset and the words with WAC embeddings for data sizes: Size1, Size2,

and Size3 are: 30%, 32%, and 39%, respectively. Similarly, the intersection with the

Concreteness Threshold dataset is 40%, 39%, and 50%, respectively, which means

that less than half of words within the concreteness knowledge datasets have WAC

visual embeddings, and this percentage decrease with choosing different concrete-

ness thresholds that lean toward being True Concrete thresholds. These results are

summarized in Table3.2 and Table 3.3 (for Concreteness Score and AoA datasets,

respectively).

4.5.2 ELECTRA-Xsmall limitations

Using a smaller version of the ELECTRA-small model is essential to work with

the small-size text data limitation, but it reduces the model performance, as shown in

Table 4.2, using the OpenWebText data with smaller batch size and max seq length

values. Another limitation regarding pre-training the model is that swapping the

embeddings while freezing creates a gap between the concrete and abstract word

embeddings as both are learned from entirely different sources (text and images).



89

4.5.3 WAC Limitations

Although the WAC model has a number of limitations (it assumes all words have

only visual meaning and sentence structure is ignored), the limitations affecting the

current results are only considered. One of those limitations is that the WAC model

creates embeddings for words that occurred more than a certain number of times

within the images-text dataset, which is not a suitable indication that this word is

concrete (and should have visual embeddings). These words can be “the”, “at”, “is”,

which are very misleading and, therefore, give the All Concrete conditions more false

visual embeddings (visual meanings). Another limitation of the same effect is that

WAC assumes all words are concrete, so another filtration method needs to be used

to balance this effect. However, this limitation does not affect the True Concrete and

the All Abstract thresholds models.

4.5.4 Mixing The Embeddings Limitations

Due to the gaps within the intersection between the concreteness distinction

datasets used and words with WAC embeddings (extracted from textual pre-training

data), there will be special cases for words that are determined to be concrete (by the

threshold) but do not have WAC visual embeddings (either do not meet the WAC

conditions to create classifier or do not exist in the RfCOCO/VisDial dataset), so

these words will have an embedding as a vector of zeros. This limitation is exacerbated

by freezing the weights (due to ELECTRA pre-training), as it prevents changing

the value of the embedding but instead changes the Generator and Discriminator

parameters.

4.5.5 GLUE limitations

Although the GLUE benchmark is widely used as a metric for Natural Language
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understanding, it has limitations, some of which significantly impact the current

work more than others. As previously mentioned, the small data size for specific

tasks (such as RTE and WNLI) makes it unreliable for small models’ fine-tuning.

Another limitation is that tasks involving two sentences (such as QNLI and WNLI)

are inapplicable to my work because the data consisted of only simple, separated

sentences. Overall, GLUE only measures how models learn contextually, but learning

the meanings requires additional tasks, such as robot-human interaction tasks, to

evaluate performance.

4.6 Conclusion

The motivation behind this work is to advance LMS to the next step. Indeed,

these models do an outstanding job learning some meanings for words from the text.

However, there is a wide gap between the meaning that humans and the LMs learn

for words, starting from the methodology humans learn their first language. Looking

at the first years of language acquisition for children, the settings used are entirely

different than how LMs work, yet if applied, it would solve the LMs issues, such as

the wrong assumptions about the word’s meaning —meaning is all abstract— and

the need of large size of pre-training data. Therefore, this work aims to address these

limitations for the LMs and further emulate similar settings in which children learn

their first language to enrich the LMs, with the addition that the meaning of the word

is both concrete for some words and abstract.

Using referring expressions helps the model approach higher accuracy for GLUE

tasks. In addition, the difference is clearer with the higher data size. Using corpus-

based data, however, is unaffected by data size (for the small data sizes I use), even

when the model is pre-trained using the entire OpenWebText as shown in Table 4.2.
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This implies that decreasing the model size prevents the model from learning the

language (while all parameters, including the number of epochs, are the same), which

is the effect observed when the batch size and max sequence length parameters are

both less than 128.

Additionally, the concreteness distinction knowledge did not improve the model’s

performance (except on the MNLI tasks in Size2). However, this is contested due to

the small number of words with WAC visual embeddings (extracted from the text in

RefCOCO and VisDial datasets) and words from AoA or Concreteness score datasets

that intersect. As shown in Tables 3.2 and Table 3.3, the maximum intersection is

less than fifty percent, indicating that more than 50 % of the words with visual WAC

embeddings cannot be distinguished as concrete and that the model does not use

these visual embeddings for these words. This finding implies that future research

will require a higher intersection percentage and more text cleaning and preprocessing

to close the gap (in terms of the number of words) between both datasets (i.e.,

stemming and lemmatization). In Kennington (2021), it was shown that adding

visual embeddings to a model improved its accuracy. This is another reason why

adding concreteness knowledge to a model would be beneficial. The difference is that

they used ELECTRA-small (a more significant model than the one I use), the entire

40 GB of OpenWebText data, and visual embeddings for a much larger set of words

than used in the current research, which is 27,152 words out of 30K words.

Finally, according to the current research hypothesis, adding visual knowledge

of the world controlled by concreteness distinction knowledge and using the text of

referring expressions to pre-train transformer-based language models will improve

their performance with smaller text data sets (measured in Bytes). The results,
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however, demonstrate that the methodology utilized in this thesis cannot prove

the first two parts of the research hypothesis (adding visual knowledge and adding

concreteness distinction knowledge will improve LMs). On the contrary, the re-

sults suggest that using referring expressions as the text input to the reduced-size

ELECTRA-Xsmall model enhanced its performance when applied to pure language

understanding benchmark tasks. The outcomes are encouraging for further research

in this field, particularly to overcome the massive data size restriction imposed by

transformer-based language models.
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José M. F., Parikh, Devi, & Batra, Dhruv. 2017. Visual Dialog. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1080–1089.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, & Toutanova, Kristina. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

Pages 4171–4186 of: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-



94

nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association

for Computational Linguistics.

Gokaslan, Aaron, & Cohen, Vanya. 2019. OpenWebText Corpus.

Huang, Zhicheng, Zeng, Zhaoyang, Liu, Bei, Fu, Dongmei, & Fu, Jianlong. 2020.

Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Transformers.

Jiao, Xiaoqi, Yin, Yichun, Shang, Lifeng, Jiang, Xin, Chen, Xiao, Li, Linlin, Wang,

Fang, & Liu, Qun. 2020. TinyBERT: Distilling BERT for Natural Language

Understanding.

Kazemzadeh, Sahar, Ordonez, Vicente, Matten, M., & Berg, Tamara L. 2014.

ReferItGame: Referring to Objects in Photographs of Natural Scenes. In: EMNLP.

Kennington, Casey. 2021. Enriching Language Models with Visually-grounded Word

Vectors

and the Lancaster Sensorimotor Norms. In: Proceedings of the 25th Conference

on Computational Natural Language Learning. Association for Computational

Linguistics.
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