
STRUCTURE AWARE SMART ENCODING AND 

DECODING OF INFORMATION IN DNA 

by 

Shoshanna Llewellyn 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Computer Science 

Boise State University 

August2022 



©2022 

Shoshanna Llewellyn 

ALL RIGHTS RESERVED 



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 

of the thesis submitted by 

Shoshanna Llewellyn 

Thesis Title: Structure Aware Smart Encoding and Decoding of Information in DNA 

Date of Final Oral Examination:   1 April 2022 

The following individuals read and discussed the thesis submitted by student Shoshanna 
Llewellyn, and they evaluated the presentation and response to questions during the final 
oral examination. They found that the student passed the final oral examination. 

Tim Andersen, Ph.D 

Edoardo Serra, PhD 

William L. Hughes, PhD 

Reza Zadegan, PhD 

Chair, Supervisory Committee 

Member, Supervisory Committee 

Member, Supervisory Committee 

Member, Supervisory Committee 

The final reading approval of the thesis was granted by Tim Andersen, Ph.D, Chair of 
the Supervisory Committee. The thesis was approved by the Graduate College by Tammi 
Vacha-Haase, Ph.D., Dean of the Graduate College. 



ABSTRACT 

Our increasingly information driven world is growing the demand for new storage 

technologies. Current estimates place the total storage demands exceeding the supply of 

usable silicon by 2040 [l]. DNA is an attractive technology due to its incredible density, 

almost negligible energy requirements, and data retention measured in centuries [1]. 

DNA does, however, come with new challenges. It is an organic compound with complex 

internal interactions which complicate the design and synthesis of DNA sequences for 

the purpose of data storage. In this work we demonstrate a new encoding-decoding 

process that accounts for some of the challenges in encoding and decoding, including 

issues arising from the secondary structure of the sequence, repeated nucleotides, un

wanted subsequences, as well as GC content, vital for ensuring stable sequences. This 

is accomplished by using a graph representation of the possible encoding space that 

captures the relevant constraints, combined with a search algorithm that identifies the 

optimal encoding for the given input data accounting for these constraints. A benefit of 

our approach is that by leveraging the constraints on the encoding process, the decoding 

algorithm is able to correct single point errors without the aid of error correction codes; 

this is something no current competing solution can accomplish. 
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CHAPTER3 

RELATED WORKS 

3.1 DNA Storage Algorithms 

These works focus on how to store information into sequences of DNA. Information 

would be recovered by sequencing the DNA and translating those sequences back into 

the original information. 

Early works in this field, such as that of Church [2] and Goldman [3] were spawned 

opportunistically by falling cost of generating synthetic DNA and sequencing. These 

works tend to be "proof of concept" showing the potential of storing information in DNA. 

Church: Next-Generation Digital Information Storage in DNA [2] 

This is one of the earliest works that combines next-generation synthesis and sequencing 

technology with an algorithm to store and retrieve a large amount of data in multiple 

DNA molecules. They used a very simple, yet functional algorithm to prove the feasi

bility of the concept of Nucleic Acid Memory, paving the way for future development. 

This algorithm is a "direct encoder", a term that will be used here to describe similar 

algorithms. Their direct encoder functions by mapping a Oto "A" or "C", and 1 to "G" 

or "T". Bases were selected at random while preventing homopolymer runs of 3 or more 

nucleotides. Files were split up into separate sequences with unique index identifiers. In 

their experiments they experienced an unrecoverable bit error for every 0.7 megabytes of 

data stored. Part of this issue was that their error correction scheme could only account 

for mutation errors, not insertion or deletion. 
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Goldman - Towards Practical, High-Capacity Low-Maintenance Information Storage 

in Synthesized DNA [3] 

Goldman's work was concurrent to Church's and uses a more complex translation 

scheme. One major departure is that instead of reading the input data as a binary 

sequence, it was read in base-3, or ternary code. This encoding scheme was direct, 

like Church's, but used a rotating code system (see figure 3.1) that used the previous 

nucleotide in the sequence to determine the choice for the next. This was done to prevent 

repeated nucleotides and reduce the chance for any patterns to develop. There is no 

attempt beyond this to control for patterns or any secondary structures, and there is no 

control on GC content in resulting sequences. 

Figure 3.1: Rotating encoder used by Goldman et al.
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Another work, "A DNA-based Archival Storage System" [16] uses a similar rotating 

code mapping scheme. Their primary contribution was with a different error correction 

and file processing approach. They XOR consecutive data sequences together to create 

a third sequence. This allows the system to recreate one of the original two sequences if 

one is unrecoverable. The second innovation is to use unique DNA primers for different 

sequences. When DNA is synthesized, a primer sequence is appended. This sequence 

does not code for any data, but is used in the PCR (Polymerase Chain Reaction) process 

that is used to amplify the number of sequences to make sequencing possible. By using 

unique primers, they can selectively amplify sequences in the sample pool as a means 
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The encoder uses the Nupack library for modeling the secondary structures of candi

date sequences. Nupack is a library of functions for nucleic acid sequence analysis and 

design and uses binding energies to model how sequences of DNA or RNA interact with 

itself and other sequences. This work is not dependent on the Nupack library to function, 

and it can be replaced with other systems in the future. 

Nupack contains a function called "mfe", standing for "mininum free energy", which 

returns the most likely secondary structure of the sequence along with the free energy 

of that structure based on binding energies of the different nucleotides. There are other 

functions that could be used, which return pairing probabilities, multiple potential struc

tures, and more. This specific one was picked as it requires the least post-processing, 

returning a simple string that represents a secondary structure the provided DNA or RNA 

sequence could take, and still shows the benefit of this work as shown in the results when 

compared to when no secondary structure prediction is used in the encoding process. 

Specific settings used are in the supplementary material. 

The output string of the "mfe" function is in 'dot-parentheses notation', where a 

parentheses is used to denote nucleotides that bind together, and a period for a nucleotide 

that are free and not bound to another nucleotide. 

For example, take this sequence : "ATCAGATCAGAGCGATCAGAT". 

For this sequence the mfe function returns the string "' .... (((( ..... )))) .... " which represents 

this sequences predicted structure. This structure is shown in figure 4.8 

This string is then fed into a scoring function. Each binding site is given a score equal 

to 10k where k is the length of the binding site. The total score of the sequence is s which 

is equal to the sum of all binding site scores. The structure shown in figure 4.8 has a score 

104 
= 10000, as it has one binding site involving 4 pairs of nucleotides. 
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Figure 4.8: Example result of "mfe" function 

4.5 Decoding 

Due to the nature of the encoding process, not all DNA sequences are possible. There are 

only so many oligos in the mapping scheme and there are constraints on how they can be 

arranged when encoding. This characteristic is exploited to add some error detection and 

correction for minor mutations. 

Because the DNA sequence may or may not have errors, and the decoder has no 

knowledge of what the encoder originally produced, it first attempts to identify and 

correct for errors before the DNA can be decoded back into a bit string. This is done 

by identifying constraint violations in the sequence. 

For decoding we will extend the glossary from the beginning : 

• d' = the encoded DNA sequence (output from encoder)

• l' = length of the encoded DNA sequence

• e = the DNA sequence as provided to the decoder before any processing

• e' = the output of the decoder's graph based processing step, the "most likely"

original sequence from the encoder
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determined to be the most likely encoded sequence and is used as e' for the rest of the 

decoding process. 

The current implementation of the decoder only attempts to decode if I lei - Z'I < 1, 

as this gets extremely costly to compute the larger the difference. In addition, to reduce 

computational load, the implementation makes use of another optimization where it first 

attempts to identify a frame shift in e and only create sequences by altering the nucleotides 

in the surrounding region of the sequence. A frame shift is identified by finding the first 

oligo ei that is not in the mapping scheme. 

This process is not vital to the decoder or algorithm and was added to show the 

potential of this entire process, as no other algorithm known to date attempts to correct 

for insertion or deletion errors, and instead depends upon redundancy and other error 

correction codes. By reducing the dependency on error correction codes and redundancy, 

the chance for unrecoverable errors is decreased. 
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CHAPTERS 

RESULTS AND DISCUSSION 

5.0.1 Introduction 

All testing was done via simulation. Future work will be to validate these results with lab 

experiments using synthetic DNA. 

Section 5.0.2 describes how the experimental simulations were setup 

Section 5.0.3 describes the testing of the encoder 

Section 5.0.4 describes the testing of the decoder 

5.0.2 Experimental Setup 

The dictionary and mapping scheme used for testing are mentioned in the previous sec

tions, and copies can be found in the supplementary material. For all tests, h = 16, n = 3. 

These choices were made early on in the design process and is what most of the algorithm 

was built around. h = 16 means that the data can easily be processed as hexadecimal 

characters. n = 3 provides enough oligos in the dictionary to give every hexadeicmal 

character two oligos. Both of these values can be increased, but this has a negative impact 

on the computation time and memory usage. 

5.0.3 Encoder Testing 

The goal of this testing is to show how the encoder controls GC content and the secondary 

structure of the sequences. The main test is on randomized hexadecimal sequences. This 

is to simulate a realistic use case where data provided to the encoder is compressed. 
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Four encoders are used in this test. The first three encoders are based on the work 

shown in the methods section of this thesis. One, labeled "Nupack" uses the secondary 

structure prediction and scoring system as outlined in section 4.4.3. "Comps" uses the 

same scoring system, but secondary structure is approximated with a reverse compli

mentary algorithm. This algorithm works by making a reverse compliment of the DNA 

sequence and finding the locations in both sequences that have the same nucleotide. 

"None" uses no secondary structure prediction, that component of the path cost is always 

0. The secondary structure prediction algorithm change for "Comps" works by making a

reverse compliment of the sequence, and then matching locations where nucleotides are 

the same in both the original and the reverse-compliment sequence. This is represented 

in the same dot-parentheses format the scoring algorithm uses to determine the r score 

of the sequence. Lastly, the "direct" encoder results uses a very basic direct encoder, the 

same used by DNA Fountain Codes [19]. 

To make the results of all encoders comparable, two datasets are used. Both are 

100,000 randomized hexadecimal sequences. To make the output lengths match, "None", 

"Comps", and "Nupack" use sequences of 66 hexadecimal characters, while "Direct" uses 

sequences of 99 hexadecimal characters. This ensures that the output length of all 

encoders is 198 nucleotides long. The difference in data density is not relevant to this 

work, only the quality of the sequences. 

Results of the encoders are then analyzed for "minimum free energy" with Nupack 

and for GC content. This is why output lengths have to be matched, as sequence length 

affects the MFE results, and shorter sequences will score better than longer ones. The 

results are presented as boxplots shown in figures 5.1 and 5.2 as box-plot graphs. The 

central line shows the mean, the the box encompassing the first through third quartiles of 

the data, and the whiskers showing the full range of the data. 

An unexpected result is how "Comps" and "None" perform about the same as the 

direct encoder when it comes to secondary structure. It was unexpected as I thought 



Figure 5.1: Secondary Structure Comparison - Minimum Free Energy 
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it would have some noticeable impact, even if it wasn't that much. This result shows 

that the additional processing with Nupack and path searching has a definite benefit on 

average sequence quality. 

Recall from the background that deviation from 50% GC content increases the chance 

of errors in a sequence. In this test "None" performs the best, hitting exactly 50%. This is 

because in this example the GC content has a massive impact on path weight. "Comps" 

performs worse, showing that the alternative structure prediction system not only has no 

benefit to sequence quality, its worse than doing nothing. Lastly, the "Nupack" results in a 

slightly worse GC content on average, but still close to 50%. This is because of how G and 

C have different energies to A and T, so while the result is extremely good regarding MFE, 

it has a negative impact on the average GC content. Its still within acceptable tolerances, 

but this may indicate that additional tuning might be needed. 

To see if this behavior is the same for more ordered data, Shakespeare's "Hamlet" was 

encoded as well. The text used was retrieved from Folger's Shakespeare Library [23] as 

a TXT file. The file is a 179kB ASCII text file. This experiment was done by converting 

into hexadecimal, and then splitting it into 5542 sequences 66 characters long, and for the 
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Figure 5.2: Secondary Structure Comparison - GC Content 
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direct encoder, 3696 sequences99 characters long. The results are shown in figures 5.3 and 

5.4. 

Figure 5.3: Secondary Structure Comparison - Hamlet - MFE 
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Figure 5.4: Secondary Structure Comparison - Hamlet - GC Content 
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These results follow the same trends as the above in regards to the MFE results. The 

GC content for the direct encoder is worse as the sequences this time aren't random and 

are far fewer. This result shows that even with uncompressed and more ordered data this 

encoder is still robust and able to create high quality sequences. The reason there is a 

difference from the results of the random data sets is down to the much smaller size and 

the more ordered nature of the data. 

Fountain Code Testing 

This test was done to test in a real application of encoding an entire file, and comparing 

this work to a pre-existing algorithm. For this, DNA Fountain Codes by Erlich [19] was 

chosen. Its a well known work in this field with a very open and easy to work with code 

base. 

For this test "Built in Encoder" refers to the original functionality of the Fountain Codes 

algorithm with the only changes made to make it work in the testing environment. 
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"Graph Based Encoder" refers to a modified form of Fountain Codes, where the encod

ing process is cut short. In Erlich's DNA Fountain Codes algorithm, each droplet that is 

generated is checked for constraints and then, if passes, encoded in DNA. Otherwise, the 

droplet is discarded and a new one is generated. For this implementation, this entire step 

is skipped and every droplet generated is encoded using the "Nupack" based encoder 

from the above tests. 

To make the results comparable, the arguments for bytes-per-sequence was adjusted to 

make the output sequence lengths the same. "Built in Encoder" was set to 46 and "Graph 

Based Encoder" was given 26. This results in output sequences of 196 and 198 nucleotides 

respectively. The results of this testing are shown in figures 5.5 and 5.6. 

Figure 5.5: Encoding Results - Hamlet - Minimum Free Energy 
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Here we can see that the sequences generated by our encoder score better on MFE 

than the built in encoder. This would be expected as Erlich does not have any control for 

secondary structure, only GC and repeated nucleotides. 
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Figure 5.6: Encoding Results - Hamlet - GC Content 
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The result for the built in encoder is to be expected, as one of the parameters is the 

tolerance from 50% for GC content. Default is ±5% so these bounds are expected. Even 

still, the graph based encoder still produces a better result, with a tighter box plot. 

5.0.4 Decoding and Degradation Testing 

Decoding testing was done with the same encoder settings from the encoder testing using 

the nupack based secondary structure prediction from section 5.0.3. To first verify that 

the decoder functions as expected, all sequences were decoded normally with no errors 

introduced. This provided an expected result where all decoded sequences matched the 

original input sequences (meaning the decoded data matched the encoded data). 

Next, for testing how the decoder responded to different types of errors, each dataset 

was duplicated three times: once for mutation errors, once for insertion errors, and an

other for deletion errors. In the mutation error datasets a nucleotide in a random location 

in every sequence was changed to another nucleotide at random. For the insertion error 
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sets this involved inserting a random nucleotide in a random location. And lastly, for the 

deletion error sets this involved removing a random nucleotide from each sequence. 

This experiment were repeated three times for all 100,000 sequences in each data set 

with different seeds for the psuedo random number generator that was used to introduce 

the errors. The results from this experiment are shown in table 5.1. 

Table 5.1: Error Decoding Recovery Rate 

Random Data Seet Hamlet Text 
Average StDev Average StDev 

Mutation 36.14% 0.017% 39.94% 0.607% 
Insertion 37.53% 0.191% 35.48% 0.406% 
Deletion 52.23% 0.103% 44.65% 0.557% 

The first most obvious conclusion that can be drawn from this is that this encoding 

system is able to recover information even without error correction codes. It was able to 

accomplish this simply with knowledge of how the encoder is constrained. Moving on 

from the initial impressions of the results, there is some interesting behavior of note. The 

most obvious one is how different the results are between the random set and the hamlet 

set. This implies that the data structure itself has some impact itself on how well the 

decoder can recover, likely caused by the encoder behavior being differently constrained 

with un-ordered data (the random set) and ordered data (the hamlet set). 

One consistency between both results is that deletion errors are far easier to recover 

from than mutations and insertion errors. The most likely reason is that deletion errors 

have a far greater impact on the sequence and are therefore far easier to identify, which 

would therefore make them easier to correct. Mutation errors have the possibility of 

either changing an oligo to another valid oligo, or shifting the sequence just enough that 

another sequence becomes a lower cost option in the decoder. Insertion errors add a frame 

shift, but also add potentially erroneous information that could confuse the decoder. On 

the other hand, deletions do not add any new information that can be misused, it only 
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destroys. This combined with a frame shift means that the decoder is more likely to 

identify the correct location of an error and the more likely correct nucleotide. 

There are some problems with this test: 

- It is not an exhaustive search over every possible error. That would simply be

unfeasible due to immense computational requirements and unlikely to provide any 

benefit, considering the low deviations between different random seeds. 

- These results cannot be applied to different mapping schemes or any other configu

ration changes. The only solid conclusion that can be extrapolated is that this algorithm 

is capable of decoding sequences with errors in them without any error correction codes. 

- Only one error was tested. In mutation testing, only one mutation was added to a

sequence, same for insertion and deletion testing. 
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CHAPTER6 

CONCLUSIONS 

The goal of this work was to create an encoding scheme for storing digital information in 

DNA sequences with an encoding and decoding scheme that was modular and resilient 

to errors. These goals were both achieved. The encoding algorithm created is capable 

of optimizing GC content and secondary structures of the resulting sequences. In addi

tion, the decoding side of the system is capable of recovering from some insertion and 

deletion errors without depending on redundant data, something that other comparable 

algorithms are not capable of. These outcomes show the power and potential of this graph 

based approach to encoding and decoding of information in DNA sequences. 

Supplementary Material can be found here https:/ / github.com/llewelsd/DNAMG 
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CHAPTER7 

FUTURE WORK 

7.1 F ine Tuning 

This algorithm has a large number of variables and elements that can be optimized. This 

includes weights for the dictionary, different mapping schemes, the scoring for secondary 

structures, and more. Optimizing these values was out of scope of this work. In future 

work on I would work to optimize the parameters which should provide better results 

than what was reported in the results. 

7 .2 Structure Prediction 

The implementation of the algorithm explored here uses the Nupack library for predicting 

secondary structures. In future work this may be replaced with neural networks or some 

other predictive model that may be more computational efficient or more accurate and 

therefore provide better results. Preliminary work has already been completed on a 

transformer based neural network model for secondary structure prediction, however, 

this work is still in very early stages and better approach may present itself in future 

research. 

7.3 Optimizations 

There are many possible optimizations and application specific changes one can make to 

this algorithm that could not be explored within the scope of this work. In the future, I 
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would like to explore different weights, mapping schemes, and pathing algorithms to 

further improve upon the results of this work. In addition, optimizing the encoding 

and decoding process for different data packing schemes, such as Fountain Codes. One 

thought would be to alter the decoder to save broken (insertion or deletion errors) in a 

separate pool, and if needed attempt decoding. 

7.4 Additional Improvements 

Recent works on psuedofactorization of weighted graphs [22] and constraint visualiza

tion and construction with fractals [21] (as mentioned in 3.2) provide interesting options 

in improving weight generation, path searching, and decoding. The work of Lochel et. 

al. [21] is of particular interest in how it could be used to improve how edge weights are 

defined, or in path searching. Instead of depending entirely on just the predefined edge 

weights, this model could be used to define an additional heuristic score for avoiding 

repeated sub-sequences. 
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