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ABSTRACT

Our increasingly information driven world is growing the demand for new storage
technologies. Current estimates place the total storage demands exceeding the supply of
usable silicon by 2040 [1]. DNA is an attractive technology due to its incredible density,
almost negligible energy requirements, and data retention measured in centuries [1].
DNA does, however, come with new challenges. It is an organic compound with complex
internal interactions which complicate the design and synthesis of DNA sequences for
the purpose of data storage. In this work we demonstrate a new encoding-decoding
process that accounts for some of the challenges in encoding and decoding, including
issues arising from the secondary structure of the sequence, repeated nucleotides, un-
wanted subsequences, as well as GC content, vital for ensuring stable sequences. This
is accomplished by using a graph representation of the possible encoding space that
captures the relevant constraints, combined with a search algorithm that identifies the
optimal encoding for the given input data accounting for these constraints. A benefit of
our approach is that by leveraging the constraints on the encoding process, the decoding
algorithm is able to correct single point errors without the aid of error correction codes;

this is something no current competing solution can accomplish.
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CHAPTER 1

INTRODUCTION

The information age has brought an exponentially increasing demand for data storage.
On our current course, demand for storage will eventually exceed our collective produc-
tion capacity. In addition, storing all this information requires space and energy. Land
to build storage facilities, while plentiful, is still finite, as is the energy needed to power
them. Most of this energy is still currently produced from non-renewable sources. These
factors are driving development into alternative storage technologies.

One promising solution is to use DNA as a storage medium. It is an incredibly stable
compound. When properly stored it can theoretically maintain its integrity for centuries
or millennia, far longer than conventional media. It also has much higher physical
density. The entire human genome, roughly 3 billion base pairs of DNA, weighs roughly
3.6e-16 grams. This kind of data density is not currently possible with current or emerging
technologies [1].

With these advantages, however, come numerous challenges. The primary issue this
work attempts to address is that DNA is a biological compound that interacts with itself.
These internal interactions complicate the synthesis process and can also introduce errors
and instabilities. There are therefore two fronts on developing DNA data storage, the
lab and technology side to improve synthesis and sequencing techniques, and on the
software side to create new algorithms to account for DNA’s properties as a material
when encoding and decoding information.

It is not currently feasible to synthesize a string of DNA the length of an entire file, so

every encoding scheme to date breaks the data up into "packets"” and then encodes each



of these packets into strands of DNA. When decoding, the process is reversed, with each
DNA sequence being decoded into its original packet, and then each packet recombined
to form the original file. This work focuses on this packet encoding-decoding step: where
a packet is translated into a single sequence of DNA.

These are the research questions asked by this work:

¢ How can we build a sequence that encodes specific information while also control-

ling for secondary structures?

¢ How can we find the shortest path between two nodes in a directed graph that has

variable weights?

¢ Can constraints on DNA sequence design be used to correct insertion, deletion, and

mutation errors?

These questions will be addressed and answered in Chapter 4 Methods and Chapter

5 Results of this work.



CHAPTER 2

BACKGROUND

2.1 Existing Data storage Technologies

The majority of current data storage is in magnetic tape, magnetic hard disks, and NAND
flash. Magnetic tape and disk uses the magnetic alignment of ferrous particles to store
information while NAND flash uses a voltage differential in a semiconductor. These
are now very established technologies that are very well understood by the industry.
However, there is a problem, as both of these technologies require energy to maintain and
have a limited service life. Magnetic disks and tape wear out over time from mechanical
stresses. Semiconductors slowly degrade as well, requiring higher and higher voltage
differentials to maintain signal coherency until they simply do not work. These different
storage mediums come with different costs in material and the energy needed to operate
them. The resources needed to create storage to meet demands are finite. DNA data
storage has promises to solve many of the problems that face existing technologies, most
notably service life (how long the data can be stored for) and the energy required. A

comparison of these different mediums can be seen in table 2.1.

2.2 The Challenges of storing data in DNA

The general mechanism for synthesizing a sequence of DNA is to start by making a single
stranded sequence, and then use enzymes to create the second strand to complete the

double stranded structure. One of the problems encountered with synthesizing DNA is



Table 2.1: Comparison of different memory technologies to DNA. Adapted from [1].

Memory | Retention ON Areal | Volumetriq Latency Error
(type) (years) Power Density Density (us/bit) Rate
(W/GB) | (bit/cm?) | (bit/cm®)
Flash 10 [1] 0.01 - 1010 1] 101 [1] 100[1] | 1070 [2]
0.04 [1]
Hard > 10 [1] 0.04 [1] 1011 [1] 10'3[1] | 3%10°- | 1075 [3]
Drive 5% 103 [1]
Magnetic | 30 [3] 0.004[4] | 10°-10" | N/A 60-200 | 10 18-
Tape [5] [5] 10~2 [3]
Cellular | >100[1] | <1010 107 10 [6] | <100(1] 1077 -
DNA [1] 1078 [7]

when it interacts with itself which can render the sequence unusable. Therefore, when
designing DNA sequences to create some features must be avoided. These include (in no

particular order) [8]
- Repeated nucleotides
- Repeated substrings
- reverse complimentary sequences (palindromes)
- GC content that deviates too much from 50%

Reverse complimentary palindromic sequences can create hairpins, where the DNA
can bind to itself, as shown in figure 2.1. Repeated nucleotides of greater than length 3
can create instabilities in the sequence as well as make sequencing later more difficult.
The same is true with repeated substrings. If the GC content deviates too far from 50%

the sequence may break apart and become unusable [8] [1].

DNA sequences have a secondary structure defined by base pair binding, typically
of complimentary bases between and within sequences (A-T, C-G). This can be predicted
and modeled with energetics simulations based on the binding energies of these inter-
actions [9]. The Nupack Project (www.nupack.org) is a software suite containing many
tools for sequence analysis and design based on thermodynamic modeling [10]. One

tool in this suite is called MFE, short for "Minimum Free Energy". This function predicts



Figure 2.1: Example structure of a hairpin caused by a palindrome

A T C A T A C
->

T A G T & T G
C

the most likely secondary structure among a set of possible structures based on what
base pair bindings result in the lowest free energy of the system in kcal/mole [9]. As
more bonds require more energy to break, a higher absolute MFE result means that the
secondary structure contains more base pair bonds. If MFE = 0 kcal/mole, then the most
stable secondary structure contains no base pair binding. This can occur if there are no

secondary binding sites, or if the temperature is too high to allow bonds to form.

221 Summary of Previous Progress

So far, work in DNA data storage has successfully proven the concept, showing that it
can be done. Examples are listed in the related works section. These works all involve
actual laboratory experiments and prove the potential feasibility of this technology.

This thesis builds upon a previous work [11] where I contributed the idea and the
relevant code to use codons as the encoding unit with a one-to-many encoding scheme,
where one hexadecimal character could be coded with multiple codons. This is an
imitation of the biological behavior of nucleic acids, where a single amino acid may be
coded for by multiple codons. The prime contribution of this thesis is the use of a graph

based encoding-decoding scheme and secondary structure prediction in the encoding



process.

2.3 Graph Theory

Graph Theory, as the name suggests, describes the study of graphs. Graphs are math-
ematical constructs that define the relation between different objects. These objects are
referred to as "nodes" or "vertices" while the relation they have between other nodes are
referred to as "edges".

There are several types of graphs. The ones relevant to this work are:

Weighted graphs - graphs where the edges have a weight describing the length, or
cost, of that edge.

Directed graphs - the relation between nodes only goes in one direction. One way to
think about this is a river flowing downhill. The water can only go one way. (in contrast,

bidirectional graphs do not have this restriction)

Figure 2.2: Example of a unidirectional graph

Graphs are a common tool for modeling various problems in mathematics and com-
puter science resulting in many tools to manipulate and traverse them. The most relevant
to this work are algorithms for traversing graphs and finding the shortest path between

two nodes within a graph.



2.4 Path Finding

There are many algorithms designed to find paths in a graph between two nodes. The
type of graph influences which is most appropriate, as they all have their own advantages
and disadvantages in terms of how they scale in memory and computational complexity
based on the number of edges and nodes in the graph, as well as the presence of negative

weights, loops, or if the graph is directional or not.

The two relevant algorithms are Dijkstra’s algorithm and Uniform Cost Search. These
are single source and single target algorithms. This means that the algorithm finds the
shortest path from one vertex in the graph (the source) to another individual vertex
(the target). There are other algorithms, such as Floyd-Warshall and Bellman-Ford, that
instead find all shortest paths in a graph, or all shortest paths from one source vertex to
all other vertices in the graph.

When discussing algorithms it is important to define their time and space complexity,
or how long it will take to run and how much memory is required related to the size of
the input. This is commonly notated with with O(f(n)), which is the upper bound or
"worst case" performance. If an algorithm’s worst case performance is also its best case

performance (meaning it always runs in f(n) time or takes f(#) memory, then it is written

as ©(f (n)).
Dijkstra’s Algorithm [12]
Dijkstra’s Algorithm (DA) is one of the most well known shortest-path algorithms. It
works by recalculating the total distance starting from an initial approximation of infinity;,

finding the chain of nodes that results in the lowest distance.

Dijkstra (Graph, source)
create priority queue Q
n = number of vertices in Graph

create array dist with length = n , all values = 0



create array prev with lengh = n, all values = undefined
for each vertex v in Graph:
if v != source
dist[v] = inf

Q.push (dist[v], v)

while Q is not empty:

q = Q.pop # get the element with lowest priority
if q = end:

break
for each neighbor p of q:

d = dist[q] + length q to p

if d < dist[v]:

dist[p] = d

prev[p] q

Q. update_priority (p, dist[p])

return dist, prev

Dijkstra’s worst case performance is (|E| + |V|log|V|), where |E| is the number of
edges in the graph and | V| is the number of vertices.

Uniform Cost Search [13]

Uniform Cost Search (UCS) is a generalized form of Dijkstra’s algorithm and is a form
of "best-first search". It improves upon Dijktsra’s algorithm where instead of all nodes
being added to the priority queue, they are only added when their neighbor is visited.
This makes it far less demanding on memory and scales better with larger graphs as the

graph is only expanded as nodes are visited.

Uniform_Cost_search (Graph, source, end)



create priority queue Q

n = number of vertices in Graph
dist = 0

path = []

Q.push (dist, source, path )

while Q is not empty:
dist ,q,path = Q.pop # get the element with lowest priority
if q = end:
return dist ,path
for each neighbor p of q:
new_dist = dist + length(p,q)
new_path = path + p
Q.push(new_dist,p,new_path)

UCS has the same computational cost as Dijkstra’s, but because the queue is only
expanded when nodes are visited, it has a lower memory footprint. UCS also has an
added benefit in that it can be run "to completion", where instead of returning the first
path discovered, it runs until the queue is empty and returns the best path. In this
form the worst case computational cost becomes O(b'*+.C/€]), where b is the maximum
branching factor of each node in the graph, C is the length of the shortest path to the goal,
and € is the minimum cost of each edge.

There are other algorithms that should be mentioned, but aren’t applicable to the work
of this thesis as they are not single source and single target algorithms.

Floyd-Warshall [14]

The Floyd-Warshall algorithm is an "all-pairs shortest path" algorithm, meaning that
unlike UCS or Dijkstra’s, it will find the shortest path between all pairs of vertices in a

graph. It has a time complexity of ®(|V|?), where |V| is the number of vertices in the
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graph. This is both the best and worst case time complexity as it will always take this
amount of time to process.

Bellman-Ford algorithm [15]

Bellman-Ford is a single source all shortest paths algorithm, finding the shortest path
from one source to all vertices in a graph. It has a time complexity of ©(|V||E|) where
|V| is the number of vertices in the graph and |E| is the number of edges in the graph. As
with Floyd-Warshall, this is the best and worst case time complexity.

Floyd-Warshall and Bellman-Ford aren’t applicable to this work, but it was important
to mention them as they are well known and fairly commonly used in graph related

algorithms.
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CHAPTER 3

RELATED WORKS

3.1 DNA Storage Algorithms

These works focus on how to store information into sequences of DNA. Information
would be recovered by sequencing the DNA and translating those sequences back into
the original information.

Early works in this field, such as that of Church [2] and Goldman [3] were spawned
opportunistically by falling cost of generating synthetic DNA and sequencing. These

works tend to be "proof of concept" showing the potential of storing information in DNA.

Church : Next-Generation Digital Information Storage in DNA [2]

This is one of the earliest works that combines next-generation synthesis and sequencing
technology with an algorithm to store and retrieve a large amount of data in multiple
DNA molecules. They used a very simple, yet functional algorithm to prove the feasi-
bility of the concept of Nucleic Acid Memory, paving the way for future development.
This algorithm is a "direct encoder”, a term that will be used here to describe similar
algorithms. Their direct encoder functions by mapping a 0 to "A" or "C", and 1 to "G"
or "T". Bases were selected at random while preventing homopolymer runs of 3 or more
nucleotides. Files were split up into separate sequences with unique index identifiers. In
their experiments they experienced an unrecoverable bit error for every 0.7 megabytes of
data stored. Part of this issue was that their error correction scheme could only account

for mutation errors, not insertion or deletion.
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Goldman - Towards Practical, High-Capacity Low-Maintenance Information Storage

in Synthesized DNA [3]

Goldman’s work was concurrent to Church’s and uses a more complex translation
scheme. One major departure is that instead of reading the input data as a binary
sequence, it was read in base-3, or ternary code. This encoding scheme was direct,
like Church’s, but used a rotating code system (see figure 3.1) that used the previous
nucleotide in the sequence to determine the choice for the next. This was done to prevent
repeated nucleotides and reduce the chance for any patterns to develop. There is no
attempt beyond this to control for patterns or any secondary structures, and there is no
control on GC content in resulting sequences.

Figure 3.1: Rotating encoder used by Goldman et al.

r Mapping scheme )
Previeus nucleotide
A C G T
0 C G T A
_|
g2
oz 1 G T A c
3 <
2o
oL 2 T A C G
\_ ),

Another work, "A DNA-based Archival Storage System" [16] uses a similar rotating
code mapping scheme. Their primary contribution was with a different error correction
and file processing approach. They XOR consecutive data sequences together to create
a third sequence. This allows the system to recreate one of the original two sequences if
one is unrecoverable. The second innovation is to use unique DNA primers for different
sequences. When DNA is synthesized, a primer sequence is appended. This sequence
does not code for any data, but is used in the PCR (Polymerase Chain Reaction) process
that is used to amplify the number of sequences to make sequencing possible. By using

unique primers, they can selectively amplify sequences in the sample pool as a means
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to perform random access of data. This highlights many of the developments of the
2010s, where most work was done on utilizing different physical technologies, with little

exploration of computing and data theory.

Grass - Robust Chemical Preservation of Digital Information on DNA in Silica with

Error-Correcting Codes [4]

Grass’s work takes a biological inspiration from nature, using codons as an encoding
unit. Their encoding process can be seen in figure 3.2. Files are first segmented into
blocks. They are then converted to base 47 before being arranged into 713 by 39 matricies.
These matricies consist of an index section, two redundancy sections, and the original
data. When encoding, a column from each data block is read as a sequence and each base
47 character is then mapped to a unique codon. The adapter sequences on each side of
this encoded sequence are constants and are there to aid in the sequencing process. There
are additional interests of the encoding system used, but this particular one is of interest
as it has the same original inspiration as the work of this thesis, nature and how DNA is
used within a cell.

Figure 3.2: Encoding Process used by Grass et al.
.

A
ﬁ —>» | 1.Binary
2. Group in blocks

Mapping scheme
( Encoding Block R f 3 Synthesis
n=713 Es
4 88 ‘ ‘
r 3 0% . /
32
o
Index i=3 5 a
N=39 Redundancy A Data m =30
Redundancy B 6
32 20 1 33 39 25 DNA strands of 158 nt
H—J %r—’l ACA CGA CGC ATG ATC CCA CTG TAT CAG AGA TCG GAA
I I
n-k=119 k=594 Adaﬁter FO 117 nt Ionﬁ encoded info Adaﬁter RO

\ Synthesized DNA 158 nt long )

Almost every following encoding scheme is either directly related to these early ap-
proaches, especially Goldman’s (rotating codes) and Church (basic direct encoding). The

main developments have been in the addition of newer error correction codes, algorithms
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for splitting files into smaller sequences, and newer synthesis, sequencing, and storage
technologies. In most of these works, the actual encoding algorithm tends to take a back

seat, reflected in the relatively small focus it tends to get in the total work.

Organick - Random Access In Large-Scale DNA Data Storage [7]

This work’s main goal was to develop ways to randomly access data in DNA sequences.
This is because in other DNA storage algorithms the data must be completely decoded
before being read. This feature is implemented in the data wrapping step, and not
in the translation step. The key information relevant to the work of this thesis is the
unique method they used for preventing repeated subsequences or patterns within the
sequences. This was accomplished in two ways. The first was with a psuedo random
number generator (PRNG) with a known seed. The PRNG is used to generate a bit
sequence as long as the data sequence to encode and XORed with it to create a new data
sequence. The second component is in a rotating code translation algorithm. This isn’t
described in the work, but it is assumed this is similar to the algorithm in Goldman’s
work [3]. "A Rewritable, Random-Access DNA-Based Storage System" [17] employs a
similar system of XORing the sequence with the output of a seeded PRNG. Similar to the
example with Bornholt and Goldman, most of their contribution to the field is in novel

physical technologies, not in any new algorithms for encoding information.

Blawat - Forward Error Correction for DNA Data Storage [18]

This work is of particular note in relation to this thesis as it uses a choice based mapping
scheme. The input sequence is read as bytes, and each byte is split into two pairs of bits.
The first pair is directly encoded into a single nucleotide. The second pair is encoded as a
pair of nucleotides, of which there are multiple options for every two bit pair. The option
chosen is one that does not create a run of three nucleotides. This process is shown in

figure 3.3.
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Figure 3.3: Encoding Process by Blawat et al. The relevant portion are the two DNA
mapping sections.
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Erlich - DNA Fountain Enables a Robust and Efficient Storage Architecture [19]

Erlich’s work isn’t revolutionary in its encoder. It doesn’t use a rotating code system
like Goldman’s work, nor a complex system like Grass. Instead, this work uses a simple
encoder similar to Church. What they add is a constraint checking step where sequences
are evaluated on GC content and repeated nucleotides. If they fail this constraint, the
sequences are discarded. This process is possible because this work uses the Fountain
Code algorithm to generate these candidate sequences from the source data.

Fountain Codes aren’t a new idea in data transmission. Fountain Codes and deriva-
tives are used commonly in wireless data transmission as they are resilient to data
corruption. The idea is to first segment the data into sequences with unique identifiers.
Two random number generators then work together to select sequences to be XORed

together. The first generator determines how many sequences will be included in a
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"droplet”, the packaging unit of Fountain Codes. The second generator then determines
which sequences will be included. Sequences are XORed together to create the droplet. A
prefix is added to the beginning of the droplet which contains the number and identities
of the sequences in that droplet. Finally an error correction code is appended to identify
potential errors. In telecommunications, droplets are generated and transmitted until the
sender receives a signal from the receiver saying that the message has been fully received.
In this application that is obviously not possible, so a predetermined number of droplets
are generated instead. The theory behind fountain codes is that if a message can be
split into k sequences, then with fountain codes it should be possible to fully transmit
the sequence in k droplets, even if some of the droplets are lost in transmission. Just in
case, Erlich included a parameter to determine how many extra droplets to generate, as a

percentage of the original number of sequences.

This approach comes with some advantages, but also a couple disadvantages. The
main advantage is primarily in their software. Most of the algorithms mentioned here
that have published their software have done so in a manner that is difficult to modify or
tweak. The DNA Fountain Code work on the other hand is easily accessible, making it far
easier to identify improvements and optimizations and reuse in other works. A second
major advantage is that the fountain code system can be used to wrap around other
encoding systems. The direct encoder they use does not have to be used, alternatives
can be substituted in easily for straight forward comparison. And finally, the entire
thing can be tuned and optimized further without fundamentally changing the algorithm.
There are still disadvantages. The most obvious one is that because the entire premise is
based on probabilities, one must check on their own if enough droplets were generated to
decode the original data. The other major negative is that unlike other algorithms, which
have a deterministic run time, this one does not. The culling system they employ means
that it is theoretically possible for a given file and set of parameters for the program to

simply loop forever and never finish. This scenario is, however, extremely improbable
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and avoidable by not over restricting the encoder, but it is still indeed possible.

Suyehira - Using DNA For Data Storage: Encoding and Decoding Algorithm Develop-

ment [11]

Suyehira’s work was mentioned in the background section under section 2.2.1. The en-
coder combines a one-to-many encoding scheme based around codons with the Fountain
Code packaging used by Erlich [19]. This thesis expands on this one-to-many encoder

concept.

As the encoder processes the input sequence, it attempts to pick oligos to encode for a
given hexadecimal without violating constraints (repeated nucleotides and GC content).
If this is not possible, the encoder will backtrack and try again. To keep the algorithm
from running for too long, there is a maximum number of backtracks allowed before the
encoder will exit with a failure to encode. This failure is acceptable due to the nature of
Fountain Codes. Much like with Erlich’s work, if a droplet cannot be encoded, it will

simply be discarded and a new droplet generated.

This work shares the same drawback of Erlich’s fountain codes indeterminate run
time. Other computational algorithms use backtracking, however, one of the goals of the

work of this thesis is to create a new system that does not require such a crude mechanism.

One thing these algorithms all have in common is that they do not account for the sec-
ondary structure of the sequence when encoding data. They all depend on a combination
of error correction codes and redundancy to account for this challenge. Most do account
for the GC balance and repeated nucleotide problem in their encoding process, such as in

the work by Church [2] and Erlich [19].

The increased interest in DNA data storage has caused new interest from outside
the biotechnology and related fields, and now more computer science and mathematics

related work is being published seeking to solve the more complex problems of DNA
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sequence design. 2022 looks to be a year with even more works to be published on the

subject.

3.2 Alternative Approaches to storing and retrieving information in

DNA

Dickinson - An alternative approach to nucleic acid memory

Storing information in a single sequence of information is not the only approach being
developed, and other methods are under investigation. These aren’t related to the work
presented in this thesis, but it would be incomplete to not mention that alternative ideas
exist. The most important one of note is the idea of storing information in the complex
structures formed by binding sequences of DNA. This idea is proposed in "An alternative
approach to nucleic acid memory" [20]. The idea is to design sequences that form a
self assembling two-dimensional structure. This structure can then be read with various
microscopy technologies. This bypasses the issue with sequencing data, as microscopy
can be done faster and the technology is already well developed with other uses pushing

its improvement.

Lochel - Fractal construction of constrained code words for DNA storage systems

The work of Lochel et al. in "Fractal construction of constrained code words for DNA
storage systems" [21] is interesting, as they demonstrate a novel way of analysing and
creating new sequences of DNA for encoding information, what they refer to as "code
words". Core to their idea is to represent a set of sequences as a fractal matrix, or
"chaos game representation”. This allows for a compact graphical representation of many
complex patterns, or as they refer to them, motifs. These fractals are created by assigning
each nucleotide a quadrant in a square and drawing vectors between them and new

subquandrants based on a provided sequence. An example is shown in figure 3.4.
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This fractal system is then used to create a frequency matrix which counts the fre-
quency the vector path is in a quadrant, shown in figure 3.5. This means each element in
the matrix would correspond to a different sequence and allows for a graphical represen-
tation of different patterns and sequence characterizations. For example, a representation
of equal GC content would be having equal frequency in the top two quadrants and the

bottom two quadrants.

Sheridan - Factorization and Pseudofactorization of Weighted Graphs [22]

This work explores using the factorization of a hybercube graph to express the encoding
space of information into a sequence of DNA. This work is far more of a theoretical idea
with no functional solution provided (such as a software artifact).

These two works are extremely new to the field and both show a new shift in DNA
storage algorithms that attempt to solve the error prone nature of current technology of
DNA synthesis, replication, and sequencing not with more error correction code, but in
sequence design. This makes them interesting additions in the context of this work. Both
of these works came out in December of 2021, and so were far too recent to influence the

direction of this thesis.
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Figure 3.4: Chaos Game Representation of the sequence CATA G

A T

CATAG

1 2 3 4 5

Figure 3.5: Frequency Chaos Game Representation Matrix of sequences of increasing scale

n=1 n=2 n=3
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AG TG AC TC

Gas | o | G| o1 | Gac | oA sTe oTe

MGG | 166 [ ADE | ToE | AGE | TEC [ ADC | Too
GG CG GC cC 1 1

G666 | oo | Gos | cos | esc | ooc |soo | coc

order=2 order=4 order=8



21

CHAPTER 4

METHODS

41 Overview

The general concept of this work is to create an algorithm where any provided input
sequence of information has multiple viable DNA sequences which decode back to the
same input sequence. This space of possibilities can then be modeled as a graph with a
single source and sink such that any path from source to sink is a valid encoding. The
different paths through the graph are determined by a mapping scheme which maps
input data to nucleotide sequences, which in our case is a one to many mapping. Con-
straints are represented by static path weights in the case of local constraints, augmented
by dynamic path weights to account for non-local constraints, such as repeat sequences
and palindromes. The path searching algorithm then accounts for the local and non-local
constraints of the DNA by choosing options in the graph path search that minimize the

total path cost.

Decoding also uses a graph path search based algorithm. In the decoding case, the set
of all possible DNA sequences that can be created is modeled as a graph. The path search
algorithm then finds the shortest path through the graph to minimize edge weights and

similarity score.

The specifics of how the encoding and decoding process works are detailed in their
respective sections on "Static Elements" (section 4.3), "Encoding (section 4.4), and "Decod-

ing" (section 4.5).
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4.2 Glossary of Terms and Variables

oligo = a short sequence of nucleotides, short for oligonucleotide. Typically used

for whole sequences. In this section an oligo refers to a short string of nucleotides.

* n = number of nucleotides per encoding oligo

h =number of bits per encoding oligo

encoding unit = the unit in which data is processed

I = number of encoding units

G = graph
* d = input string

* p = number of oligos per character in the mapping scheme

4.3 Static Elements

Core to the encoding-decoding system is what will be referred to as the "Static Elements."
These are static in that they are predefined and precalculated elements. For the encoder
and decoder to function properly, they must use the same set of static elements. The static
elements consist of the Dictionary and the Mapping scheme (or "Map"). These need to be
created prior to any encoding or decoding.

First, in preparation for creating the dictionary, the number of nucleotides per oligo
must be chosen. This value n will be 3 in all examples in this thesis. Once a value of n
is chosen, the dictionary is created by generating all possible oligos of length 7, and then
culling those with three or more repeated nucleotides or other unwanted subsequences
in them.

The dictionary itself can be represented as two matrices, Band W. B is a 1-dimensional

matrix that contains a GC bias factor B; = (g; + ¢;) — n/2 where g; and ¢; are the counts
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of G’s and C’s within the ith oligo (oligo with a unique ID of i). W is a two-dimensional
matrix, where W; ; is a weight factor that is determined by examining the concatenation
of the jth oligo to the end of the ith oligo. Weight factors are defined by a lookup table of
different oligos with an associated weight factor. For example, the table used in testing
has an oligo "AAA" with an associated weight of 0.5 and another oligo "AAAA" with an
associated weight of co. These weights were determined by reviewing relevant literature
on synthesis and sequencing feasibility and given appropriate weights accordingly (Three
repeated nucleotides can be tolerated more than four). W;; is initialized with 1 and the
concatenated oligo i + j is compared to the lookup table. For every oligo in the table that
is found within i + j the associated weight is added to W; ;. As an example, if i ="GAA"
and j ="AAT", theni + j ="GAAAAT". W, ; starts as 1, add 0.5 as the i +j contains "AAA"

and then finally co as it also contains "AAAA".

Once the dictionary is created, we determine the base,h, for how data will be inter-
preted by the encoder. This can be any positive integer value, such as 2 (interpreted
as a stream of bits), base 10 (decimal) or base 16 (a string of hexadecimal characters).
For all examples in this thesis 1 = 16. The next step is to create the map or mapping
scheme. The mapping scheme, M, is a one-to-many scheme, meaning one bit-string of
length h can be mapped to any positive number of oligos of length n. The number of
oligos mapped per each encoding character in the mapping scheme is p. This map can be
manually generated, or it can be defined by a generator algorithm. The generator takes
the dictionary and creates a mapping scheme by first splitting the dictionary into two sets
of oligos, one for oligos with high GC content (B; > 0), and the other for oligos with low
GC content (B; < 0). This is done to ensure that there are options for each input character
to balance the GC content when encoding. Then, for each character to be mapped, it
randomly samples from each of these sets, without replacement, such that each character
has an equal number of oligos with low and high GC content. Table 4.1 is an example of

a possible auto generated mapping scheme using 1 = 16, n = 3 and is used in generating
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the results of this thesis. In this mapping scheme each hexadecimal character is mapped

to two oligos, one with high GC content, one with low GC content.

Table 4.1: Example Mapping Scheme

Hexadecimal | DNA
GCC, TCT
AGG, ACT
CAG, CAT
AGC, TAA
ACG, GAT
CGA, TTA
CTC, TAC
CGC, AGT
GTC, GAA
CCG, TTC
GCG, CTT
TCG, AGA
TGC, AAC
TCC, AAG
GCT, ACA
GCA, GTA

=00 |THO |00\ O Ol =W N ~O

4.4 Encoding

Table 4.1 shows the process of encoding a byte sequence into a DNA sequence. The
previous section described the static elements, and the next sections will describe how

they are used to encode information into DNA.

4.4.1 Graph Creation

The encoding process takes the provided mapping scheme as discussed previously and a
provided data string d with [ characters of base /. This data string is then converted into a
unidirectional graph representation of all possible ways that d can be encoded as a DNA
sequence, d’. This graph, G, is initialized with non-coding source node s and non-coding

sink node t. "Non-coding" means that these nodes do not translate to any oligo and are
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Figure 4.1: Diagram of the encoding process

Input Data —| Graph | Shortest Paths —¥| Result
A

Dictionary

Map

Static Elements

used only for the path search process. All other nodes in the graph are "coding” nodes as
they represent an encoding of a single character from the input string to an oligo in the
mapping scheme.

For each character d;, i € {0,..,] — 1} , and a mapping M(d;,j),j € {0,...,p—1} ,a
node v(i, ) is added to the graph with a unique identifier (for the graph) of i_M(d;, j). In
this way, the graph can be described as having I levels of nodes where every node with
an identifier starting with i are part of level i.

Edges are drawn from all nodes in level i to all nodes in level i + 1. Weights are
assigned to each edge based on the dictionary W matrix. If that weight is co then the edge
is removed. Lastly, the source and sink nodes are connected to the nodes in the first and
last level of the graph respectively.

This results in a graph G;. 4.2 is an example graph with 4 levels and a p value of 2.

This process has a computational cost and memory footprint of O(!  h).

By comparison, a tree representation of the same space has a computational cost and
memory footprint of O(h'), as it needs to hold every possible path in memory and com-
pute it during creation. By contrast, this method shifts the majority of the computational

cost to the path search algorithm and maintains a far lower memory footprint.
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Figure 4.2: Example encoding graph

4.4.2 Graph Search

Finding the optimal encoding for a given input is accomplished by finding the shortest
path through the graph using a modified Uniform Cost Search algorithm. This Uniform
Cost Search is a modified form of the generalized UCS algorithm (as defined in the
background material). There are two main modifications, one to the weighting algorithm
and the other to the ending condition. In a conventional path search algorithm the cost of
a path is equal to the sum of the costs on the edges in that path. In this algorithm, the cost
function is C = r + Y w * ¢ where C is the total cost of a path, r is a score based on the
predicted secondary structures, w is the weight of the edge to connect to the next node in

the path, and g is the GC ratio at each step of the path.

P(v(i,])) is the path from s to node v(i, ). The total cost of this path C(P(v(i,})) =
Z((wx * gx),x € P(0(i, ) + r(P(0(, ).

This cost function was developed to balance the GC content, local constraints (re-

peated nucleotides), and the secondary structure. This last element and how it is cal-

culated will be explored in 4.4.3.

This search algorithm operates until it has exhausted the priority queue, returning

the best path it found. This means it has a total computational cost of O(p'). This was
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Table 4.2: Example Queue 1

Cost Node Path
0 0_a s,0_a
0 0b s,0 b

chosen to account for secondary structures, which can have non-localized impact on the
viability of any given path. The problem can be described as saying the weights of the
edges change based on the path taken.

The algorithm can be stopped early, when the first path is found, however this does
not guarantee finding the best possible route. If stopped early, the computational cost
becomes O((I * p)log(l * p)) (the same as Dijkstra’s), and in this case it behaves like a
typical UCS algorithm.

Using the graph shown in figure 4.2 as an example, here is how the process works:

Figure 4.3: Initial state
© O'@ ©
OO
When the UCS is initialized, the source node ’s’ is put on the stack and the code
proceeds to an iterative loop. This graph state is shown in figure 4.3
In the next step, 's” is popped off the queue as it is the only element. It then pushes
two new entries to the priority queue. 0_a and 0_b. Since these are the first nodes and
have the same edge weight from s, their priority will be the same. The queue at this state

is shown in table 4.2

0_a was added first, so it is popped off the queue first, shown in figure 4.4.
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Figure 4.4: Example Path: s — 0,

Table 4.3: Example Queue 2

Cost Node Path

0 0_b s,0_b

1 1c s,0 a,1
2 1.d s,0 a,1

_C
_d

There are two neighbors to 0_a, 1_c and 1_d. They are added to the queue with a
queue cost equal to a combination of the edge weights of the path, as well as a score
based on predicted secondary structures. The queue now would look like table 4.3

The 0_b entry now has the lowest priority, so it is popped from the queue next. This is

shown in figure 4.5 and the queue state in table 4.4

Figure 4.5: Example Path : s — 0,

Like before, its neighbors are then be added to the queue, however there is only one

neighbor, 1_d.
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Table 4.4: Example Queue 3

Cost Node DPath
1 1c s,0_a,1c
2 1.d s,0a,1d

This process will continue until one of these paths reaches the sink node 't’, shown in

figure 4.6.

Figure 4.6: Candidate Path 1

In a traditional UCS algorithm, the entire process is complete at this point. However,
in our algorithm, it is not. Because of the issue with secondary structures, we cannot
be confident that the best path was found, so the best result is stored and the algorithm

continues to explore additional paths, such as in figure 4.7.

Figure 4.7: Candidate Path 2

As an example, lets say that the path in 4.7 has an overall lower path cost than 4.6,

but the path search finds the path in 4.6 first, because, for this example, it has a lower
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static edge weight than the path in 4.7, even though it has a higher r score from its
secondary structure. It is for this reason that the path search algorithm must continue
until all possible paths have been found.

Eventually, all possible finite-cost paths to t are examined and the queue is empty. At
this point, the algorithm returns the optimal path.

This modification, to examine all possible paths, is necessary due to the addition of the
dynamic path score. In a typical UCS path search the path shown in 4.7 would have been
completely missed and so a suboptimal path would have been returned instead. This
modification and the addition of the dynamic score is necessary for accounting for the
secondary structure of the resulting sequence d’, as explored in the next section 4.4.3. This
benefit does come with a trade-off on making the computational cost exponential. Due
to this, the path search algorithm can be run in both modes: with and without dynamic
scores and therefore in polynomial and non-polynomial time. The difference in quality of

resulting sequences is explored in the results section.

4.4.3 Secondary Structure Prediction

The secondary structure of a DNA sequence, as mentioned in previous sections, can
greatly impact the feasibility of synthesis. Therefore, being able to predict encoding paths
that are more likely to create secondary structures and avoid them is extremely beneficial.
Ideally a molecular dynamic simulation would be done, however, this is computationally
extremely expensive and therefore not practical for this application. Thus an alternative
is needed.

The problem with predicting secondary structures in an encoding algorithm is that,
unlike with GC content or repeated nucleotides, or any unwanted subsequences, it cannot
be simplified to a localized constraint. This is why a separate score is needed for cost
calculation in the path search algorithm that takes into account the entire path, not just

one branch in it.
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The encoder uses the Nupack library for modeling the secondary structures of candi-
date sequences. Nupack is a library of functions for nucleic acid sequence analysis and
design and uses binding energies to model how sequences of DNA or RNA interact with
itself and other sequences. This work is not dependent on the Nupack library to function,

and it can be replaced with other systems in the future.

Nupack contains a function called "mfe", standing for "mininum free energy", which
returns the most likely secondary structure of the sequence along with the free energy
of that structure based on binding energies of the different nucleotides. There are other
functions that could be used, which return pairing probabilities, multiple potential struc-
tures, and more. This specific one was picked as it requires the least post-processing,
returning a simple string that represents a secondary structure the provided DNA or RNA
sequence could take, and still shows the benefit of this work as shown in the results when
compared to when no secondary structure prediction is used in the encoding process.

Specific settings used are in the supplementary material.

The output string of the "mfe" function is in ’dot-parentheses notation’, where a
parentheses is used to denote nucleotides that bind together, and a period for a nucleotide

that are free and not bound to another nucleotide.
For example, take this sequence : "ATCAGATCAGAGCGATCAGAT".

For this sequence the mfe function returns the string "....((((....))))...." which represents

this sequences predicted structure. This structure is shown in figure 4.8

This string is then fed into a scoring function. Each binding site is given a score equal
to 10¥ where k is the length of the binding site. The total score of the sequence is s which
is equal to the sum of all binding site scores. The structure shown in figure 4.8 has a score

10* = 10000, as it has one binding site involving 4 pairs of nucleotides.
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Figure 4.8: Example result of "mfe" function
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4.5 Decoding

Due to the nature of the encoding process, not all DNA sequences are possible. There are
only so many oligos in the mapping scheme and there are constraints on how they can be
arranged when encoding. This characteristic is exploited to add some error detection and
correction for minor mutations.

Because the DNA sequence may or may not have errors, and the decoder has no
knowledge of what the encoder originally produced, it first attempts to identify and
correct for errors before the DNA can be decoded back into a bit string. This is done
by identifying constraint violations in the sequence.

For decoding we will extend the glossary from the beginning :

d’ = the encoded DNA sequence (output from encoder)

I’ = length of the encoded DNA sequence

e = the DNA sequence as provided to the decoder before any processing

¢’ = the output of the decoder’s graph based processing step, the "most likely"

original sequence from the encoder
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¢ d = the output of the decoder

e M’ = all oligos present in the mapping scheme

If le] = I’, meaning that the length is of the expected length, the algorithm will then
continue on to the next step of the decoding process as normal.

This process follows the same graph path search idea used by the encoder. It starts by
creating non-coding source and sink nodes s and t. From the mapping scheme M we get
M'. For each level in the graph i € {0,...] — 1} and each oligo M'(j),j € {0,..,|[M'| —1} a
node v(i, j) is added to the graph.

Next, e is split into [ oligos of length n. Each node v(i, j) in the graph is given a ham-
ming distance score u(i, j) equal to the hamming distance of e; to the oligo corresponding
to v(i,j). The hamming distance is based on how many character mutations are required
to turn the oligo e; into the oligo of v(i, ).

For example, if given a sequence of ATCGATCATCGT : the sequence is split into the
following oligos : ATC, GAT, CAT, CGT. Within the mapping scheme is an oligo "GAT".
At each level of the network, this oligo is given the following scores

0 (ATC):3

1(GAT):0

2 (CAT):1

3(CGT):2

Finally, edges are drawn from all nodes in level i to all nodes in level i 4 1 and assigned
a weight based on the W matrix in the dictionary. Edges with co weight are removed.

The computational cost and memory footprint of creating this graph is O(h * ).

The Uniform Cost Search algorithm used remains largely unmodified from the origi-
nal, only altering the standard weight function to include the edit distance scores of each
node. The total cost of a path P is C(P) = X(wy) 4+ =), x € P, where g is a constant.

This ensures that the chosen decoding is more affected by similarity to the input sequence
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Figure 4.9: Example decoding graph

600

than by the weights, unless the weight is sufficiently high or the edit distance is extremely
small. For this work a g value of 10? was chosen. Lower values ( < 10%) resulted in errors
being introduced and higher values (> 10%) provided no benefit, however increases the
computational cost due to the nature of the programming language used (Python 3.x

integers are unbounded).

The result of this is ¢/, the most likely original DNA sequence created by the encoder.
¢’ is then converted to d, the most likely original data sequence that was encoded. This
is done by taking each oligo in ¢’ and finding its matching character in M. If there are no

errors in this process then d = d.

If |e| # I, then there is at least one insertion or deletion error present in e. Correction is
done by creating a set of new sequences by creating a set of new sequences E. If |e| — 1" > 0
(the provided sequence is longer than expected) then E contains the set of sequences
created by removing enough nucleotides to make the length of each sequence I’. The
opposite happens if |e] — 1" < 0. Each sequence in E is then processed by the graph

based system and scored based on total path cost. The lowest scoring sequence is then
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determined to be the most likely encoded sequence and is used as ¢’ for the rest of the
decoding process.

The current implementation of the decoder only attempts to decode if |le] — 1’| < 1,
as this gets extremely costly to compute the larger the difference. In addition, to reduce
computational load, the implementation makes use of another optimization where it first
attempts to identify a frame shift in e and only create sequences by altering the nucleotides
in the surrounding region of the sequence. A frame shift is identified by finding the first
oligo e; that is not in the mapping scheme.

This process is not vital to the decoder or algorithm and was added to show the
potential of this entire process, as no other algorithm known to date attempts to correct
for insertion or deletion errors, and instead depends upon redundancy and other error
correction codes. By reducing the dependency on error correction codes and redundancy,

the chance for unrecoverable errors is decreased.
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CHAPTER 5

RESULTS AND DISCUSSION

5.0.1 Introduction

All testing was done via simulation. Future work will be to validate these results with lab
experiments using synthetic DNA.

Section 5.0.2 describes how the experimental simulations were setup

Section 5.0.3 describes the testing of the encoder

Section 5.0.4 describes the testing of the decoder

5.0.2 Experimental Setup

The dictionary and mapping scheme used for testing are mentioned in the previous sec-
tions, and copies can be found in the supplementary material. For all tests, h = 16,n = 3.
These choices were made early on in the design process and is what most of the algorithm
was built around. & = 16 means that the data can easily be processed as hexadecimal
characters. n = 3 provides enough oligos in the dictionary to give every hexadeicmal
character two oligos. Both of these values can be increased, but this has a negative impact

on the computation time and memory usage.

5.0.3 Encoder Testing

The goal of this testing is to show how the encoder controls GC content and the secondary
structure of the sequences. The main test is on randomized hexadecimal sequences. This

is to simulate a realistic use case where data provided to the encoder is compressed.
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Four encoders are used in this test. The first three encoders are based on the work
shown in the methods section of this thesis. One, labeled "Nupack" uses the secondary
structure prediction and scoring system as outlined in section 4.4.3. "Comps" uses the
same scoring system, but secondary structure is approximated with a reverse compli-
mentary algorithm. This algorithm works by making a reverse compliment of the DNA
sequence and finding the locations in both sequences that have the same nucleotide.
"None" uses no secondary structure prediction, that component of the path cost is always
0. The secondary structure prediction algorithm change for "Comps" works by making a
reverse compliment of the sequence, and then matching locations where nucleotides are
the same in both the original and the reverse-compliment sequence. This is represented
in the same dot-parentheses format the scoring algorithm uses to determine the r score
of the sequence. Lastly, the "direct” encoder results uses a very basic direct encoder, the

same used by DNA Fountain Codes [19].

To make the results of all encoders comparable, two datasets are used. Both are
100,000 randomized hexadecimal sequences. To make the output lengths match, "None",
"Comps", and "Nupack" use sequences of 66 hexadecimal characters, while "Direct" uses
sequences of 99 hexadecimal characters. This ensures that the output length of all
encoders is 198 nucleotides long. The difference in data density is not relevant to this

work, only the quality of the sequences.

Results of the encoders are then analyzed for "minimum free energy" with Nupack
and for GC content. This is why output lengths have to be matched, as sequence length
affects the MFE results, and shorter sequences will score better than longer ones. The
results are presented as boxplots shown in figures 5.1 and 5.2 as box-plot graphs. The
central line shows the mean, the the box encompassing the first through third quartiles of

the data, and the whiskers showing the full range of the data.

An unexpected result is how "Comps" and "None" perform about the same as the

direct encoder when it comes to secondary structure. It was unexpected as I thought
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Figure 5.1: Secondary Structure Comparison - Minimum Free Energy

Minimum Free Energy Results
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it would have some noticeable impact, even if it wasn’t that much. This result shows
that the additional processing with Nupack and path searching has a definite benefit on
average sequence quality.

Recall from the background that deviation from 50% GC content increases the chance
of errors in a sequence. In this test "None" performs the best, hitting exactly 50%. This is
because in this example the GC content has a massive impact on path weight. "Comps"
performs worse, showing that the alternative structure prediction system not only has no
benefit to sequence quality, its worse than doing nothing. Lastly, the "Nupack" results in a
slightly worse GC content on average, but still close to 50%. This is because of how G and
C have different energies to A and T, so while the result is extremely good regarding MFE,
it has a negative impact on the average GC content. Its still within acceptable tolerances,
but this may indicate that additional tuning might be needed.

To see if this behavior is the same for more ordered data, Shakespeare’s "Hamlet" was
encoded as well. The text used was retrieved from Folger’s Shakespeare Library [23] as
a TXT file. The file is a 179kB ASCII text file. This experiment was done by converting

into hexadecimal, and then splitting it into 5542 sequences 66 characters long, and for the
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Figure 5.2: Secondary Structure Comparison - GC Content
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direct encoder, 3696 sequences99 characters long. The results are shown in figures 5.3 and

54.

Figure 5.3: Secondary Structure Comparison - Hamlet - MFE
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Figure 5.4: Secondary Structure Comparison - Hamlet - GC Content
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These results follow the same trends as the above in regards to the MFE results. The
GC content for the direct encoder is worse as the sequences this time aren’t random and
are far fewer. This result shows that even with uncompressed and more ordered data this
encoder is still robust and able to create high quality sequences. The reason there is a
difference from the results of the random data sets is down to the much smaller size and

the more ordered nature of the data.

Fountain Code Testing

This test was done to test in a real application of encoding an entire file, and comparing
this work to a pre-existing algorithm. For this, DNA Fountain Codes by Erlich [19] was
chosen. Its a well known work in this field with a very open and easy to work with code

base.

For this test "Built in Encoder" refers to the original functionality of the Fountain Codes

algorithm with the only changes made to make it work in the testing environment.
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"Graph Based Encoder" refers to a modified form of Fountain Codes, where the encod-
ing process is cut short. In Erlich’s DNA Fountain Codes algorithm, each droplet that is
generated is checked for constraints and then, if passes, encoded in DNA. Otherwise, the
droplet is discarded and a new one is generated. For this implementation, this entire step
is skipped and every droplet generated is encoded using the "Nupack" based encoder

from the above tests.

To make the results comparable, the arguments for bytes-per-sequence was adjusted to
make the output sequence lengths the same. "Built in Encoder” was set to 46 and "Graph
Based Encoder” was given 26. This results in output sequences of 196 and 198 nucleotides

respectively. The results of this testing are shown in figures 5.5 and 5.6.

Figure 5.5: Encoding Results - Hamlet - Minimum Free Energy
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Here we can see that the sequences generated by our encoder score better on MFE
than the built in encoder. This would be expected as Erlich does not have any control for

secondary structure, only GC and repeated nucleotides.
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Figure 5.6: Encoding Results - Hamlet - GC Content
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The result for the built in encoder is to be expected, as one of the parameters is the
tolerance from 50% for GC content. Default is £5% so these bounds are expected. Even

still, the graph based encoder still produces a better result, with a tighter box plot.

5.0.4 Decoding and Degradation Testing

Decoding testing was done with the same encoder settings from the encoder testing using
the nupack based secondary structure prediction from section 5.0.3. To first verify that
the decoder functions as expected, all sequences were decoded normally with no errors
introduced. This provided an expected result where all decoded sequences matched the

original input sequences (meaning the decoded data matched the encoded data).

Next, for testing how the decoder responded to different types of errors, each dataset
was duplicated three times: once for mutation errors, once for insertion errors, and an-
other for deletion errors. In the mutation error datasets a nucleotide in a random location

in every sequence was changed to another nucleotide at random. For the insertion error
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sets this involved inserting a random nucleotide in a random location. And lastly, for the

deletion error sets this involved removing a random nucleotide from each sequence.

This experiment were repeated three times for all 100,000 sequences in each data set
with different seeds for the psuedo random number generator that was used to introduce

the errors. The results from this experiment are shown in table 5.1.

Table 5.1: Error Decoding Recovery Rate

Random Data Seet Hamlet Text

Average StDev | Average StDev
Mutation | 36.14% 0.017% | 39.94% 0.607%
Insertion | 37.53% 0.191% | 35.48% 0.406%
Deletion | 52.23% 0.103% | 44.65% 0.557%

The first most obvious conclusion that can be drawn from this is that this encoding
system is able to recover information even without error correction codes. It was able to
accomplish this simply with knowledge of how the encoder is constrained. Moving on
from the initial impressions of the results, there is some interesting behavior of note. The
most obvious one is how different the results are between the random set and the hamlet
set. This implies that the data structure itself has some impact itself on how well the
decoder can recover, likely caused by the encoder behavior being differently constrained

with un-ordered data (the random set) and ordered data (the hamlet set).

One consistency between both results is that deletion errors are far easier to recover
from than mutations and insertion errors. The most likely reason is that deletion errors
have a far greater impact on the sequence and are therefore far easier to identify, which
would therefore make them easier to correct. Mutation errors have the possibility of
either changing an oligo to another valid oligo, or shifting the sequence just enough that
another sequence becomes a lower cost option in the decoder. Insertion errors add a frame
shift, but also add potentially erroneous information that could confuse the decoder. On

the other hand, deletions do not add any new information that can be misused, it only
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destroys. This combined with a frame shift means that the decoder is more likely to
identify the correct location of an error and the more likely correct nucleotide.

There are some problems with this test:

- It is not an exhaustive search over every possible error. That would simply be
unfeasible due to immense computational requirements and unlikely to provide any
benefit, considering the low deviations between different random seeds.

- These results cannot be applied to different mapping schemes or any other configu-
ration changes. The only solid conclusion that can be extrapolated is that this algorithm
is capable of decoding sequences with errors in them without any error correction codes.

- Only one error was tested. In mutation testing, only one mutation was added to a

sequence, same for insertion and deletion testing.
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CHAPTER 6

CONCLUSIONS

The goal of this work was to create an encoding scheme for storing digital information in
DNA sequences with an encoding and decoding scheme that was modular and resilient
to errors. These goals were both achieved. The encoding algorithm created is capable
of optimizing GC content and secondary structures of the resulting sequences. In addi-
tion, the decoding side of the system is capable of recovering from some insertion and
deletion errors without depending on redundant data, something that other comparable
algorithms are not capable of. These outcomes show the power and potential of this graph
based approach to encoding and decoding of information in DNA sequences.

Supplementary Material can be found here https:/ /github.com/llewelsd/DNAMG
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CHAPTER 7

FUTURE WORK

7.1 Fine Tuning

This algorithm has a large number of variables and elements that can be optimized. This
includes weights for the dictionary, different mapping schemes, the scoring for secondary
structures, and more. Optimizing these values was out of scope of this work. In future
work on I would work to optimize the parameters which should provide better results

than what was reported in the results.

7.2 Structure Prediction

The implementation of the algorithm explored here uses the Nupack library for predicting
secondary structures. In future work this may be replaced with neural networks or some
other predictive model that may be more computational efficient or more accurate and
therefore provide better results. Preliminary work has already been completed on a
transformer based neural network model for secondary structure prediction, however,
this work is still in very early stages and better approach may present itself in future

research.

7.3 Optimizations

There are many possible optimizations and application specific changes one can make to

this algorithm that could not be explored within the scope of this work. In the future, I
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would like to explore different weights, mapping schemes, and pathing algorithms to
further improve upon the results of this work. In addition, optimizing the encoding
and decoding process for different data packing schemes, such as Fountain Codes. One
thought would be to alter the decoder to save broken (insertion or deletion errors) in a

separate pool, and if needed attempt decoding.

74 Additional Improvements

Recent works on psuedofactorization of weighted graphs [22] and constraint visualiza-
tion and construction with fractals [21] (as mentioned in 3.2) provide interesting options
in improving weight generation, path searching, and decoding. The work of Lochel et.
al. [21] is of particular interest in how it could be used to improve how edge weights are
defined, or in path searching. Instead of depending entirely on just the predefined edge
weights, this model could be used to define an additional heuristic score for avoiding

repeated sub-sequences.
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