
STRUCTURE AWARE SMART ENCODING AND

DECODING OF INFORMATION IN DNA

by

Shoshanna Llewellyn

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August2022

©2022

Shoshanna Llewellyn

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Shoshanna Llewellyn

Thesis Title: Structure Aware Smart Encoding and Decoding of Information in DNA

Date of Final Oral Examination: 1 April 2022

The following individuals read and discussed the thesis submitted by student Shoshanna
Llewellyn, and they evaluated the presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Tim Andersen, Ph.D

Edoardo Serra, PhD

William L. Hughes, PhD

Reza Zadegan, PhD

Chair, Supervisory Committee

Member, Supervisory Committee

Member, Supervisory Committee

Member, Supervisory Committee

The final reading approval of the thesis was granted by Tim Andersen, Ph.D, Chair of
the Supervisory Committee. The thesis was approved by the Graduate College by Tammi
Vacha-Haase, Ph.D., Dean of the Graduate College.

ABSTRACT

Our increasingly information driven world is growing the demand for new storage

technologies. Current estimates place the total storage demands exceeding the supply of

usable silicon by 2040 [l]. DNA is an attractive technology due to its incredible density,

almost negligible energy requirements, and data retention measured in centuries [1].

DNA does, however, come with new challenges. It is an organic compound with complex

internal interactions which complicate the design and synthesis of DNA sequences for

the purpose of data storage. In this work we demonstrate a new encoding-decoding

process that accounts for some of the challenges in encoding and decoding, including

issues arising from the secondary structure of the sequence, repeated nucleotides, un­

wanted subsequences, as well as GC content, vital for ensuring stable sequences. This

is accomplished by using a graph representation of the possible encoding space that

captures the relevant constraints, combined with a search algorithm that identifies the

optimal encoding for the given input data accounting for these constraints. A benefit of

our approach is that by leveraging the constraints on the encoding process, the decoding

algorithm is able to correct single point errors without the aid of error correction codes;

this is something no current competing solution can accomplish.

iv

TABLE OF CONTENTS

ABSTRACT • • • • . • • • • • • . • • . • • • . • • . • • • . • • . • • • • • • . • • • • • • . • • . • • • . • • . • • • . • • . • V

LIST OF TABLES . ix

LIST OF FIGURES . xi

1 Introduction . 1

2 Background . 3

2.1 Existing Data storage Technologies . 3

2.2 The Challenges of storing data in DNA . 3

2.2.1 Summary of Previous Progress . 5

2.3 Graph Theory . 6

2.4 Path Finding . 7

3 Related Works .. 11

3.1 DNA Storage Algorithms ... 11

3.2 Alternative Approaches to storing and retrieving information in DNA 18

4 Methods ... 21

4.1 Overview .. 2 1

4.2 Glossary of Terms and Variables 2 2

4.3 Static Elements .. 2 2

4.4 Encoding .. 2 4

4.4.1 Graph Creation ... 2 4

v

4.4.2 Graph Search ... 26

4.4.3 Secondary Structure Prediction 30

4.5 Decoding .. 32

5 Results and Discussion .. 37

5.0.1 Introduction .. 37

5.0.2 Experimental Setup .. 37

5.0.3 Encoder Testing ... 37

5.0.4 Decoding and Degradation Testing 4 3

6 Conclusions .. 4 7

7 Future Work .. 49

7.1 Fine Tuning .. 49

7.2 Structure Prediction ... 49

7.3 Optimizations .. 49

7.4 Additional Improvements .. 5 0

8 References . 5 1

vi

LIST OF TABLES

2.1 Comparison of different memory technologies to DNA. Adapted from [1] . .. 4

4.1 Example Mapping Scheme .. 2 4

4.2 Example Queue 1 ... 27

4.3 Example Queue 2 ... 28

4.4 Example Queue 3 ... 29

5.1 Error Decoding Recovery Rate 4 4

vii

LIST OF FIGURES

2.1 Example structure of a hairpin caused by a palindrome 5

2.2 Example of a unidirectional graph . 6

3.1 Rotating encoder used by Goldman et al 12

3.2 Encoding Process used by Grass et al. 13

3.3 Encoding Process by Blawat et al. The relevant portion are the two DNA

mapping sections. . .. 15

3.4 Chaos Game Representation of the sequence C A T A G 20

3.5 Frequency Chaos Game Representation Matrix of sequences of increasing

scale .. 20

4.1 Diagram of the encoding process 2 5

4.2 Example encoding graph ... 2 6

4.3 Initial state ... 2 7

4.4 Example Path: s --+ Oa .. 28

4.5 Example Path : s --+ Ob .. 28

4.6 Candidate Path 1 .. 29

4.7 Candidate Path 2 .. 29

4.8 Example result of "mfe" function 3 2

4.9 Example decoding graph ... 3 4

5.1 Secondary Structure Comparison - Minimum Free Energy 39

5.2 Secondary Structure Comparison - GC Content 40

5.3 Secondary Structure Comparison - Hamlet - MFE 40

viii

5.4 Secondary Structure Comparison - Hamlet - GC Content 41

5.5 Encoding Results - Hamlet - Minimum Free Energy 42

5.6 Encoding Results - Hamlet - GC Content 43

ix

11

CHAPTER3

RELATED WORKS

3.1 DNA Storage Algorithms

These works focus on how to store information into sequences of DNA. Information

would be recovered by sequencing the DNA and translating those sequences back into

the original information.

Early works in this field, such as that of Church [2] and Goldman [3] were spawned

opportunistically by falling cost of generating synthetic DNA and sequencing. These

works tend to be "proof of concept" showing the potential of storing information in DNA.

Church: Next-Generation Digital Information Storage in DNA [2]

This is one of the earliest works that combines next-generation synthesis and sequencing

technology with an algorithm to store and retrieve a large amount of data in multiple

DNA molecules. They used a very simple, yet functional algorithm to prove the feasi­

bility of the concept of Nucleic Acid Memory, paving the way for future development.

This algorithm is a "direct encoder", a term that will be used here to describe similar

algorithms. Their direct encoder functions by mapping a Oto "A" or "C", and 1 to "G"

or "T". Bases were selected at random while preventing homopolymer runs of 3 or more

nucleotides. Files were split up into separate sequences with unique index identifiers. In

their experiments they experienced an unrecoverable bit error for every 0.7 megabytes of

data stored. Part of this issue was that their error correction scheme could only account

for mutation errors, not insertion or deletion.

12

Goldman - Towards Practical, High-Capacity Low-Maintenance Information Storage

in Synthesized DNA [3]

Goldman's work was concurrent to Church's and uses a more complex translation

scheme. One major departure is that instead of reading the input data as a binary

sequence, it was read in base-3, or ternary code. This encoding scheme was direct,

like Church's, but used a rotating code system (see figure 3.1) that used the previous

nucleotide in the sequence to determine the choice for the next. This was done to prevent

repeated nucleotides and reduce the chance for any patterns to develop. There is no

attempt beyond this to control for patterns or any secondary structures, and there is no

control on GC content in resulting sequences.

Figure 3.1: Rotating encoder used by Goldman et al.

-�0 -,
(1) ::::J
::::J �
O'<
0 a. a.-·
(1) (C

;::;

A

0 C

1 G

2 T

Mapping scheme

Previous nucleotide

C G T

G T A

T A C

A C G

Another work, "A DNA-based Archival Storage System" [16] uses a similar rotating

code mapping scheme. Their primary contribution was with a different error correction

and file processing approach. They XOR consecutive data sequences together to create

a third sequence. This allows the system to recreate one of the original two sequences if

one is unrecoverable. The second innovation is to use unique DNA primers for different

sequences. When DNA is synthesized, a primer sequence is appended. This sequence

does not code for any data, but is used in the PCR (Polymerase Chain Reaction) process

that is used to amplify the number of sequences to make sequencing possible. By using

unique primers, they can selectively amplify sequences in the sample pool as a means

31

The encoder uses the Nupack library for modeling the secondary structures of candi­

date sequences. Nupack is a library of functions for nucleic acid sequence analysis and

design and uses binding energies to model how sequences of DNA or RNA interact with

itself and other sequences. This work is not dependent on the Nupack library to function,

and it can be replaced with other systems in the future.

Nupack contains a function called "mfe", standing for "mininum free energy", which

returns the most likely secondary structure of the sequence along with the free energy

of that structure based on binding energies of the different nucleotides. There are other

functions that could be used, which return pairing probabilities, multiple potential struc­

tures, and more. This specific one was picked as it requires the least post-processing,

returning a simple string that represents a secondary structure the provided DNA or RNA

sequence could take, and still shows the benefit of this work as shown in the results when

compared to when no secondary structure prediction is used in the encoding process.

Specific settings used are in the supplementary material.

The output string of the "mfe" function is in 'dot-parentheses notation', where a

parentheses is used to denote nucleotides that bind together, and a period for a nucleotide

that are free and not bound to another nucleotide.

For example, take this sequence : "ATCAGATCAGAGCGATCAGAT".

For this sequence the mfe function returns the string "' ((((.....)))) " which represents

this sequences predicted structure. This structure is shown in figure 4.8

This string is then fed into a scoring function. Each binding site is given a score equal

to 10k where k is the length of the binding site. The total score of the sequence is s which

is equal to the sum of all binding site scores. The structure shown in figure 4.8 has a score

104
= 10000, as it has one binding site involving 4 pairs of nucleotides.

32

Figure 4.8: Example result of "mfe" function

4.5 Decoding

Due to the nature of the encoding process, not all DNA sequences are possible. There are

only so many oligos in the mapping scheme and there are constraints on how they can be

arranged when encoding. This characteristic is exploited to add some error detection and

correction for minor mutations.

Because the DNA sequence may or may not have errors, and the decoder has no

knowledge of what the encoder originally produced, it first attempts to identify and

correct for errors before the DNA can be decoded back into a bit string. This is done

by identifying constraint violations in the sequence.

For decoding we will extend the glossary from the beginning :

• d' = the encoded DNA sequence (output from encoder)

• l' = length of the encoded DNA sequence

• e = the DNA sequence as provided to the decoder before any processing

• e' = the output of the decoder's graph based processing step, the "most likely"

original sequence from the encoder

35

determined to be the most likely encoded sequence and is used as e' for the rest of the

decoding process.

The current implementation of the decoder only attempts to decode if I lei - Z'I < 1,

as this gets extremely costly to compute the larger the difference. In addition, to reduce

computational load, the implementation makes use of another optimization where it first

attempts to identify a frame shift in e and only create sequences by altering the nucleotides

in the surrounding region of the sequence. A frame shift is identified by finding the first

oligo ei that is not in the mapping scheme.

This process is not vital to the decoder or algorithm and was added to show the

potential of this entire process, as no other algorithm known to date attempts to correct

for insertion or deletion errors, and instead depends upon redundancy and other error

correction codes. By reducing the dependency on error correction codes and redundancy,

the chance for unrecoverable errors is decreased.

36

CHAPTERS

RESULTS AND DISCUSSION

5.0.1 Introduction

All testing was done via simulation. Future work will be to validate these results with lab

experiments using synthetic DNA.

Section 5.0.2 describes how the experimental simulations were setup

Section 5.0.3 describes the testing of the encoder

Section 5.0.4 describes the testing of the decoder

5.0.2 Experimental Setup

The dictionary and mapping scheme used for testing are mentioned in the previous sec­

tions, and copies can be found in the supplementary material. For all tests, h = 16, n = 3.

These choices were made early on in the design process and is what most of the algorithm

was built around. h = 16 means that the data can easily be processed as hexadecimal

characters. n = 3 provides enough oligos in the dictionary to give every hexadeicmal

character two oligos. Both of these values can be increased, but this has a negative impact

on the computation time and memory usage.

5.0.3 Encoder Testing

The goal of this testing is to show how the encoder controls GC content and the secondary

structure of the sequences. The main test is on randomized hexadecimal sequences. This

is to simulate a realistic use case where data provided to the encoder is compressed.

37

Four encoders are used in this test. The first three encoders are based on the work

shown in the methods section of this thesis. One, labeled "Nupack" uses the secondary

structure prediction and scoring system as outlined in section 4.4.3. "Comps" uses the

same scoring system, but secondary structure is approximated with a reverse compli­

mentary algorithm. This algorithm works by making a reverse compliment of the DNA

sequence and finding the locations in both sequences that have the same nucleotide.

"None" uses no secondary structure prediction, that component of the path cost is always

0. The secondary structure prediction algorithm change for "Comps" works by making a

reverse compliment of the sequence, and then matching locations where nucleotides are

the same in both the original and the reverse-compliment sequence. This is represented

in the same dot-parentheses format the scoring algorithm uses to determine the r score

of the sequence. Lastly, the "direct" encoder results uses a very basic direct encoder, the

same used by DNA Fountain Codes [19].

To make the results of all encoders comparable, two datasets are used. Both are

100,000 randomized hexadecimal sequences. To make the output lengths match, "None",

"Comps", and "Nupack" use sequences of 66 hexadecimal characters, while "Direct" uses

sequences of 99 hexadecimal characters. This ensures that the output length of all

encoders is 198 nucleotides long. The difference in data density is not relevant to this

work, only the quality of the sequences.

Results of the encoders are then analyzed for "minimum free energy" with Nupack

and for GC content. This is why output lengths have to be matched, as sequence length

affects the MFE results, and shorter sequences will score better than longer ones. The

results are presented as boxplots shown in figures 5.1 and 5.2 as box-plot graphs. The

central line shows the mean, the the box encompassing the first through third quartiles of

the data, and the whiskers showing the full range of the data.

An unexpected result is how "Comps" and "None" perform about the same as the

direct encoder when it comes to secondary structure. It was unexpected as I thought

Figure 5.1: Secondary Structure Comparison - Minimum Free Energy

Minimum Free Energy Results
0..---------------------,

-5

-10

o -15
E

:3 -20
�

� -25
�

-30

-35 L
-40__-

----..-

----..-

---r-

---r-
---'

Nupac Comps None Direct

38

it would have some noticeable impact, even if it wasn't that much. This result shows

that the additional processing with Nupack and path searching has a definite benefit on

average sequence quality.

Recall from the background that deviation from 50% GC content increases the chance

of errors in a sequence. In this test "None" performs the best, hitting exactly 50%. This is

because in this example the GC content has a massive impact on path weight. "Comps"

performs worse, showing that the alternative structure prediction system not only has no

benefit to sequence quality, its worse than doing nothing. Lastly, the "Nupack" results in a

slightly worse GC content on average, but still close to 50%. This is because of how G and

C have different energies to A and T, so while the result is extremely good regarding MFE,

it has a negative impact on the average GC content. Its still within acceptable tolerances,

but this may indicate that additional tuning might be needed.

To see if this behavior is the same for more ordered data, Shakespeare's "Hamlet" was

encoded as well. The text used was retrieved from Folger's Shakespeare Library [23] as

a TXT file. The file is a 179kB ASCII text file. This experiment was done by converting

into hexadecimal, and then splitting it into 5542 sequences 66 characters long, and for the

39

Figure 5.2: Secondary Structure Comparison - GC Content

GC Content Results

65

.

0%-.-l -t _ 60.0%

55.0%

50.0%

45.0%

40.0%

+
l r

35.0%__-------.-------r---------,-------'
Nupac Comps None Direct

direct encoder, 3696 sequences99 characters long. The results are shown in figures 5.3 and

5.4.

Figure 5.3: Secondary Structure Comparison - Hamlet - MFE

10
Minimum Free Energy Results

0

$E -10

� -20

-30

-40__-------.-------r---------,-------'
N pac Comps None Direct

40

Figure 5.4: Secondary Structure Comparison - Hamlet - GC Content

GC Content Results
65.0%

60.0% -- --

-�

55.0% -- --

50.0% ·= I
-

45.0%

40.0% r
35.0%

Nupac Comps None Direct

These results follow the same trends as the above in regards to the MFE results. The

GC content for the direct encoder is worse as the sequences this time aren't random and

are far fewer. This result shows that even with uncompressed and more ordered data this

encoder is still robust and able to create high quality sequences. The reason there is a

difference from the results of the random data sets is down to the much smaller size and

the more ordered nature of the data.

Fountain Code Testing

This test was done to test in a real application of encoding an entire file, and comparing

this work to a pre-existing algorithm. For this, DNA Fountain Codes by Erlich [19] was

chosen. Its a well known work in this field with a very open and easy to work with code

base.

For this test "Built in Encoder" refers to the original functionality of the Fountain Codes

algorithm with the only changes made to make it work in the testing environment.

41

"Graph Based Encoder" refers to a modified form of Fountain Codes, where the encod­

ing process is cut short. In Erlich's DNA Fountain Codes algorithm, each droplet that is

generated is checked for constraints and then, if passes, encoded in DNA. Otherwise, the

droplet is discarded and a new one is generated. For this implementation, this entire step

is skipped and every droplet generated is encoded using the "Nupack" based encoder

from the above tests.

To make the results comparable, the arguments for bytes-per-sequence was adjusted to

make the output sequence lengths the same. "Built in Encoder" was set to 46 and "Graph

Based Encoder" was given 26. This results in output sequences of 196 and 198 nucleotides

respectively. The results of this testing are shown in figures 5.5 and 5.6.

Figure 5.5: Encoding Results - Hamlet - Minimum Free Energy

o�------------------�

-5

-10

o -15
E

:3 -20
�

� -25
�

-30

-35 I
-40__-----.----------..-------'

Graph based encoder Built in Encoder

Here we can see that the sequences generated by our encoder score better on MFE

than the built in encoder. This would be expected as Erlich does not have any control for

secondary structure, only GC and repeated nucleotides.

42

Figure 5.6: Encoding Results - Hamlet - GC Content

54.0%

52.0%

50.0%
u

u

48.0%

46.0%

Graph based encoder Built in Encoder

The result for the built in encoder is to be expected, as one of the parameters is the

tolerance from 50% for GC content. Default is ±5% so these bounds are expected. Even

still, the graph based encoder still produces a better result, with a tighter box plot.

5.0.4 Decoding and Degradation Testing

Decoding testing was done with the same encoder settings from the encoder testing using

the nupack based secondary structure prediction from section 5.0.3. To first verify that

the decoder functions as expected, all sequences were decoded normally with no errors

introduced. This provided an expected result where all decoded sequences matched the

original input sequences (meaning the decoded data matched the encoded data).

Next, for testing how the decoder responded to different types of errors, each dataset

was duplicated three times: once for mutation errors, once for insertion errors, and an­

other for deletion errors. In the mutation error datasets a nucleotide in a random location

in every sequence was changed to another nucleotide at random. For the insertion error

43

sets this involved inserting a random nucleotide in a random location. And lastly, for the

deletion error sets this involved removing a random nucleotide from each sequence.

This experiment were repeated three times for all 100,000 sequences in each data set

with different seeds for the psuedo random number generator that was used to introduce

the errors. The results from this experiment are shown in table 5.1.

Table 5.1: Error Decoding Recovery Rate

Random Data Seet Hamlet Text
Average StDev Average StDev

Mutation 36.14% 0.017% 39.94% 0.607%
Insertion 37.53% 0.191% 35.48% 0.406%
Deletion 52.23% 0.103% 44.65% 0.557%

The first most obvious conclusion that can be drawn from this is that this encoding

system is able to recover information even without error correction codes. It was able to

accomplish this simply with knowledge of how the encoder is constrained. Moving on

from the initial impressions of the results, there is some interesting behavior of note. The

most obvious one is how different the results are between the random set and the hamlet

set. This implies that the data structure itself has some impact itself on how well the

decoder can recover, likely caused by the encoder behavior being differently constrained

with un-ordered data (the random set) and ordered data (the hamlet set).

One consistency between both results is that deletion errors are far easier to recover

from than mutations and insertion errors. The most likely reason is that deletion errors

have a far greater impact on the sequence and are therefore far easier to identify, which

would therefore make them easier to correct. Mutation errors have the possibility of

either changing an oligo to another valid oligo, or shifting the sequence just enough that

another sequence becomes a lower cost option in the decoder. Insertion errors add a frame

shift, but also add potentially erroneous information that could confuse the decoder. On

the other hand, deletions do not add any new information that can be misused, it only

44

destroys. This combined with a frame shift means that the decoder is more likely to

identify the correct location of an error and the more likely correct nucleotide.

There are some problems with this test:

- It is not an exhaustive search over every possible error. That would simply be

unfeasible due to immense computational requirements and unlikely to provide any

benefit, considering the low deviations between different random seeds.

- These results cannot be applied to different mapping schemes or any other configu­

ration changes. The only solid conclusion that can be extrapolated is that this algorithm

is capable of decoding sequences with errors in them without any error correction codes.

- Only one error was tested. In mutation testing, only one mutation was added to a

sequence, same for insertion and deletion testing.

45

CHAPTER6

CONCLUSIONS

The goal of this work was to create an encoding scheme for storing digital information in

DNA sequences with an encoding and decoding scheme that was modular and resilient

to errors. These goals were both achieved. The encoding algorithm created is capable

of optimizing GC content and secondary structures of the resulting sequences. In addi­

tion, the decoding side of the system is capable of recovering from some insertion and

deletion errors without depending on redundant data, something that other comparable

algorithms are not capable of. These outcomes show the power and potential of this graph

based approach to encoding and decoding of information in DNA sequences.

Supplementary Material can be found here https:/ / github.com/llewelsd/DNAMG

46

CHAPTER7

FUTURE WORK

7.1 F ine Tuning

This algorithm has a large number of variables and elements that can be optimized. This

includes weights for the dictionary, different mapping schemes, the scoring for secondary

structures, and more. Optimizing these values was out of scope of this work. In future

work on I would work to optimize the parameters which should provide better results

than what was reported in the results.

7 .2 Structure Prediction

The implementation of the algorithm explored here uses the Nupack library for predicting

secondary structures. In future work this may be replaced with neural networks or some

other predictive model that may be more computational efficient or more accurate and

therefore provide better results. Preliminary work has already been completed on a

transformer based neural network model for secondary structure prediction, however,

this work is still in very early stages and better approach may present itself in future

research.

7.3 Optimizations

There are many possible optimizations and application specific changes one can make to

this algorithm that could not be explored within the scope of this work. In the future, I

47

would like to explore different weights, mapping schemes, and pathing algorithms to

further improve upon the results of this work. In addition, optimizing the encoding

and decoding process for different data packing schemes, such as Fountain Codes. One

thought would be to alter the decoder to save broken (insertion or deletion errors) in a

separate pool, and if needed attempt decoding.

7.4 Additional Improvements

Recent works on psuedofactorization of weighted graphs [22] and constraint visualiza­

tion and construction with fractals [21] (as mentioned in 3.2) provide interesting options

in improving weight generation, path searching, and decoding. The work of Lochel et.

al. [21] is of particular interest in how it could be used to improve how edge weights are

defined, or in path searching. Instead of depending entirely on just the predefined edge

weights, this model could be used to define an additional heuristic score for avoiding

repeated sub-sequences.

48

CHAPTERS

REFERENCES

1. Zhirnov, V., Zadegan, R. M., Sandhu, G. S., Church, G. M. & Hughes, W. L. Nucleic

acid memory. Nature Materials 15, 366-370. https: //doi. org/10 .1038/nmat4594

(Mar. 2016).

2. Church, G. M., Gao, Y. & Kosuri, S. Next-Generation Digital Information

Stor­age in DNA. Science 337, 1628-1628. ISSN: 0036-8075. eprint: https

: //science . sciencemag . org / content / 337 / 6102 / 1628 . full . pdf. https

: / / science . sciencemag.org/content/337/6102/1628(2012).

3. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information

storage in synthesized DNA. Nature. ISSN: 00280836 (2013).

4. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Robust Chemical

Preservation of Digital Information on DNA in Silica with Error-Correcting Codes.

Angewandte Chemie International Edition 54, 2552-2555. https: / /doi. org/10 . 1002/

anie. 201411378 (Feb. 2015).

5. Bornholt, J. et al. Toward a DNA-Based Archival Storage System. IEEE Micro. ISSN:

02721732 (2017).

6. Semiconductor Industry Association. International Technology Roadmap for Semi­

conductors, 2015 Results. Itrpv 0, 1-37. ISSN: 0018-9162. papers2 : / /publication/

uuid/20F56C7C-3684-4039-B043-D3DE7C5293FA(2016).

7. Organick, L. et al. Random access in large-scale DNA data storage. Nature Biotechnol­

ogy 36, 242-248. https: //doi. org/10 .1038/nbt. 4079 (Feb. 2018).

49

8. Ross, M. G. et al. Characterizing and measuring bias in sequence data. en. Genome

Biology 14, R51. ISSN: 1465-6906. http : / / genome biology . biomedcentral . com /

articles/10 .1186/gb-2013-14-5-r51 (2021) (2013).

9. Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic

Analysis of Interacting Nucleic Acid Strands. SIAM Review 49, 65-88. eprint:

https: //doi.org/10.1137/060651100.

https://doi.org/10.1137/060651100(2007).

10. Fomace, M. E., Porubsky, N. J. & Pierce, N. A. A Unified Dynamic Programming

Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models,

Scalability, and Speed. ACS Synthetic Biology 9. PMID: 32910644, 2665-2678. eprint:

https : / / doi . org / 10. 1021 / acssynbio . 9b00523. https : / / doi . org / 10. 1021 /

acssynbio. 9b00523 (2020).

11. Suyehira, K. Using DNA For Data Storage: Encoding and Decoding Algorithm Develop­

ment MA thesis (). https: / /doi. org/10 .18122/td/1500/boisestate.

12. Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische math­

ematik 1, 269-271 (1959).

13. Wu, G. Comparison between uniform-cost search and Dijkstra's algorithm Aug. 2021.

https:// www.baeldung.com/cs/uniform-cost-search-vs-dijkstras.

14. Floyd, R. W. Algorithm 97: Shortest Path. Commun. ACM 5, 345. ISSN: 0001-0782.

https: / /doi. org/10 .1145/367766. 368168 Oune 1962).

15. Datta, S. Bellman Ford Shortest path algorithm Oct. 2020. https: / /www. baeldung. com/

cs/bellman-ford.

16. Bornholt, J. et al. A DNA-Based Archival Storage System in Proceedings of the Twenty­

First International Conference on Architectural Support for Programming Languages and

Operating Systems - ASPLOS '16 (ACM Press, 2016). https: / /doi. org/10. 1145/

2872362. 2872397.

50

17. Yazdi, S. M. H. T., Yuan, Y., Ma, J., Zhao, H. & Milenkovic, 0. A Rewritable, Random­

Access DNA-Based Storage System. Scientific Reports 5. https: //doi. org/10 . 1038/

srep14138 (Sept. 2015).

18. Blawat, M. et al. Forward Error Correction for DNA Data Storage. Procedia Computer

Science 80, 1011-1022. https: //doi. org/10 . 1016/j. procs. 2016. 05. 398 (2016).

19. Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage archi­

tecture. Science 355, 950-954. ISSN: 0036-8075. eprint: https: //science. sciencemag.

org / content / 355 / 6328 / 950 . f ull . pdf. https : / / science . sciencemag . org /

content/355/6328/950(2017).

20. Dickinson, G. D. et al. An alternative approach to nucleic acid memory. Nature

Communications 12. https: //doi. org/10 . 1038/s41467-021-22277-y (Apr. 2021).

21. Lochel, H.F., Welzel, M., Hattab, G., Hauschild, A.-C. & Heider, D. Fractal construc­

tion of constrained code words for DNA storage systems. Nucleic Acids Research.

gkab1209. ISSN: 0305-1048. eprint: https : / / academic . oup . com / nar / advance -

article - pdf / doi / 10 . 1093 / nar / gkab1209 / 41767134 / gkab1209 . pdf.

https : //doi. org/10 . 1093/nar/gkab1209 (Dec. 2021).

22. Sheridan, K., Berleant, J., Bathe, M., Condon, A. & Williams, V. V. Factorization and

pseudofactorization of weighted graphs 2021. https: / / arxi v. org/ abs/2112. 06990.

23. Hamlet July 2021. https : / / shakespeare . f olger . edu / shakespeares - works /

hamlet/.

