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ABSTRACT

This dissertation examines long-term trends in extreme environmental events with

considerations for changepoints and autocorrelation. Due to changes in measurement

location, observer, instrument, sampling protocol, local ecosystem, etc., many en-

vironmental time series often contain inhomogeneous changes in their distributions.

If ignored in the modeling process, these inhomogeneities could produce misleading

estimation of the long-term trends in these environmental extremes. Because doc-

umentations for these changepoint-inducing events could be incomplete or missing

in many cases, those changepoints need to be estimated from the data. Here, we

use a genetic algorithm to estimate the number and times of changepoints in the

environmental extremes as a data homogenization procedure before estimating their

long-term trends and return levels. We illustrate our methods using two different

extreme environmental series: monthly maximum coastal sea levels and weekly max-

imum ozone concentrations.

Increase in extreme sea levels can bring disastrous outcomes to people living in

coastal regions by increasing flood risk or inducing stronger storm surges. With a sub-

stantial portion of the global community living in low elevation regions, it is crucial to

understand how extreme sea levels have been changing over time. Therefore, we first

study long-term trends in monthly maximum sea levels from coastal regions around

the world. As strong periodicity and autocorrelation are pertinent to the sea level

data, bootstrap techniques are used to obtain more realistic confidence intervals to

the estimated trends and return levels. We find that the consideration of changepoints

vii



changed the estimated long-term trends of 89 tide gauges (approximately 30% of tide

gauges considered) by more than 20 cm century−1.

Next, we examine another, but equally important environmental extreme event:

extreme ozone concentrations. Specifically, we study long-term trends in weekly

maximum ozone concentrations from the contiguous United States. Because exposure

to an unhealthy level of ozone (even for a short period of time) can adversely affect

one’s health, understanding how extreme ozone events have changed over time can

be of public health interest. Whereas monthly maximum sea levels in many locations

exhibit weak autocorrelation, the weekly maximum ozone concentrations in many

locations show non-ignorable autocorrelation even at two distant time points. For

more accurate estimation of changepoints in the presence of long-memory autocor-

relation, we develop a genetic algorithm based changepoint detection method for

extreme value series with long-memory autocorrelation. This method is subsequently

applied to detect changepoints in extreme ozone series. We find that the consideration

of changepoints changed the long-term trend estimates in 78 counties (approximately

20% of the counties considered) by more than 0.03 ppm century−1. Lastly, we find that

almost all counties considered in the study are projected to experience unhealthy levels

of ozone concentrations exceeding the EPA threshold at least once within 10 years.

Our results for these two extreme environmental events are summarized in maps

with estimated long-term linear trends and return levels.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Extreme environmental events like blizzards, heat waves, hurricanes, ozone episodes,

storm surges, wildfires, etc., often profoundly impact human lives, economies, and

ecosystems. As a result of climate change, extreme weather and climate events are

projected to become more frequent and intense, thereby increasing its impact on many

areas of life (USGCRP, 2018). Quantifying long-term trends in the environmental ex-

tremes can thus serve as a useful indicator to track and better understand the Earth’s

changing climate. However, many environmental time series contain inhomogeneous

changes in their distributions induced by various undocumented outside factors such

as observer changes, instrument changes, measurement location changes, or regime

shifts in local ecosystems. Ignoring those changepoints can result in misleading

long-term trend estimates for the given data.

To illustrate the possible issues with trend estimation in the presence of change-

points, we explore the extreme sea level time series data from Miyakejima, Japan,

shown at Figure 1.1. Upon visual inspection, there appears to be a potential change-

point with an upwards mean shift to the Miyakejima series around September 2000,

denoted by the purple dashed line. We first estimate the trend line using the ordi-

nary least squares regression ignoring this potential changepoint, which estimates an
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increasing trend of 0.78 m century−1. We estimate the trend line again, but with a

mean shift at September 2000 allowed. The least squares estimates a decreasing trend

of −0.57 m century−1 with a mean shift of 0.59 m at September 2000. The estimated

trend lines with and without changepoints are also imposed by red and blue lines

respectively. The estimated trend line with a changepoint appears to better explain

the overall trends of the Miyakejima series, suggesting that the extreme sea levels

of Miyakejima likely have decreased over time, rather than gradually increasing over

time. This example illustrates the possible consequences of ignoring changepoints in

trend estimation. We discuss this issue in detail using extreme value methods in the

following chapters.
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Figure 1.1: Least squares estimated trend lines for the extreme sea levels in
Miyakejima, Japan (blue solid lines, trends with a September 2000
changepoint; red solid line, trends without allowing changepoints)

1.2 Overview

In this dissertation, we aim to rigorously quantify long-term linear trends in two

different environmental extremes: monthly maximum coastal sea levels and weekly

maximum ozone concentrations. These extremes have the potential to tremendously
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impact both human lives and ecosystems. Extreme sea level events can dislodge

people living in low-elevation coastal regions by inducing more intense floods or storm

surges and possibly rendering those areas uninhabitable. Extreme ozone events can

exacerbate asthma and other respiratory symptoms in vulnerable populations and

adversely affect sensitive vegetation and ecosystems. Therefore, it is important to

understand how these extremes have changed over time. To do so, we use a genetic

algorithm to estimate the number and times of changepoints in these extremes. These

estimated changepoints are then used as a part of the data homogenization procedure

before estimating their long-term linear trends using extreme value methods.

In addition to changepoints, autocorrelation also forms an important aspect in

analysis of environmental extremes. Most extreme value analysis techniques are de-

veloped under the assumption that data are independent. With many environmental

time series exhibiting some levels of autocorrelation, this independence assumption

is often not realistic. Näıve use of these techniques in the presence of autocorrelation

could result in substantial estimation bias in model parameters and underestimation of

standard errors for the estimates. There are many different approaches in dealing with

autocorrelated data in extreme value studies and the choice of method is dependent

on the characteristics of data.

The first approach we consider to address this autocorrelation issue is incorpo-

rating the extremal index in the extreme value model. The extremal index has been

considered by many past authors (cf. Acero, Garćıa, and Gallego, 2011; Li et al.,

2016; Rueda et al., 2016) to analyze extreme series with mild autocorrelation. This

approach requires the raw data set where extreme observations are drawn from to

be nearly independent if they are far enough away from each other in time (cf.

Leadbetter, Lindgren, and Rootzen, 1983, pp. 52–54), which in turn implies that
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the autocorrelation in extreme value series need to be weak. The implementation of

this approach is fairly straightforward and are generally computationally inexpensive.

We use this extremal index approach to address autocorrelation issues in monthly

maximum coastal sea level analysis in Chapter 2.

However, some extreme value series exhibit non-ignorable autocorrelation, ren-

dering the extremal value approach insufficient in correcting estimation bias due to

autocorrelation. In this case, we can consider directly modeling the autocorrelation

structure in the extreme value series via copula transformation. The copula transfor-

mation has been considered by some past authors (cf. Ribatet and Sedki, 2013; Zhu,

Liu, and Lund, 2019) to analyze extreme series with non-ignorable autocorrelation be-

tween short time points. However, if the autocorrelation in extreme value series at two

distant time points cannot be ignored, thus exhibiting long-memory autocorrelation,

implementation of this copula transformation approach poses some challenges and is

computationally expensive. In the weekly maximum ozone concentration analysis in

Chapter 3, where it was observed that the extreme ozone series exhibit long-term

autocorrelation, we use this copula transformation approach with considerations for

long-memory autocorrelation.

This remainder of this dissertation proceeds as follows: Chapter 2 summarizes

our analysis of monthly maximum coastal sea levels. Chapter 3 details our weekly

maximum ozone concentration analysis. In Chapter 4, we conclude with a summary

discussion and avenues for future research.
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CHAPTER 2

MONTHLY MAXIMUM COASTAL SEA LEVELS1

2.1 Introduction

With over 10% of the world’s population living in low elevation coastal areas (Mc-

Granahan, Balk, and Anderson, 2007), the increase in sea levels poses a great threat

to our society. In particular, the increase in extreme coastal sea levels could bring

devastating outcomes by inducing more intense floods or storm surges. Furthermore,

unlike most extreme weather events that bring devastating, but at least partially

recoverable damage, extreme sea level rise could critically impact coastal regions by

making low elevation regions permanently uninhabitable.

Many past authors agree that the global mean sea levels have been increasing over

time. Jevrejeva et al. (2008) reconstructed mean global sea level from 1700 using the

tide gauge data and found that global mean sea level has increased by 6 cm during the

19th century and another 19 cm in the 20th century. Church and White (2011) found

that the mean global sea level has increased by about 21 cm during 1880–2009 based

on sea level records from both tide gauges and satellite altimeter. From the satellite

altimeter data, which first became available in 1993, many authors also comment that

1This chapter is a reprint of an article in the Journal of the Royal Statistical Society: Series C
(Applied Statistics). The original citation of the article is as follows:
Lee, M. and Lee, J. (2021) Long-term trend analysis of extreme coastal sea levels with changepoint
detection. Journal of the Royal Statistical Society, Series C (Applied Statistics), 70(2):434–458
c© 2021 Royal Statistical Society
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the sea level has been gradually rising over time (Watson et al., 2015; Chen et al.,

2017; Nerem et al., 2018). Levermann et al. (2013) projected that the global mean sea

level will continue to rise for centuries based on their ice-sheet and climate models.

To quantify long-term trends in extreme sea level data, extreme value methods

should be used, since mean and extreme statistics are statistically independent for

a large sample under some minor regularity conditions (McCormick and Qi, 2000).

Therefore, one should not necessarily assume that extreme sea levels would exhibit

the same features as mean sea levels. Recent authors applied extreme value analysis

techniques to study extreme coastal sea levels and quantify their long-term trends

in a regional scale. Marcos and Woodworth (2017) used tide gauge records from

the North Atlantic Ocean and the Gulf of Mexico to study relationships between

mean and extreme sea levels. They found overall increasing trends of annual 99th

percentile of total sea level for most locations, except the Baltic Sea which showed

decreasing trends. Wahl and Chambers (2015) analyzed extreme sea levels of the

contiguous United States coastlines and found significant increasing long-term trends

in 99.5th percentile of observed sea levels between 1929 and 2013 at almost all

locations. Wang and Zhou (2017) applied the peaks-over-threshold method to sea

level observations from five tide gauges in Macao and Hong Kong, concluding that

there are no significant linear trends in extreme sea level in the Pearl River Estuary,

China.

On a global scale, only a few researchers have examined extreme coastal sea levels.

Menéndez and Woodworth (2010) used time-dependent generalized extreme value

(GEV) distribution to estimate decadal variation and long-term variations in monthly

maximum sea levels. Merrifield et al. (2013) estimated contributing factors to annual

maximum sea levels above the annual mean from 145 tide gauges and decomposed
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them into multiple components. Marcos et al. (2015) used a state-space approach

to explicate decadal to multidecadal variations in sea level extremes from 122 tide

gauges. Wahl et al. (2017) used 20 different extreme value models on 510 tide gauges

to investigate inter-model uncertainties in extreme sea level rise projections.

Two critical issues tackled in this study are changepoints and temporal correla-

tion. First, sea level observations naturally contain inhomogeneous changes in their

means for various reasons, such as changes in instruments, relocation of tide gauges,

earthquakes, land reclamation, dredging, etc. (cf. Becker et al., 2009). If these mean

changes are ignored, the long-term trend for the data can be erroneously estimated (cf.

Lund and Reeves, 2002). Second, sea levels also exhibit strong temporal correlation by

nature. Since most extreme value methods are developed under the assumption that

data are independent, a näıve use of extreme value methods based on independence,

including decorrelation techniques, could result in substantial estimation bias.

In this paper, we study long-term linear trends in monthly maximum coastal sea

levels by applying extreme value methods with changepoint and temporal correlation

considerations. We use a genetic algorithm to estimate the number and locations of

mean shifts induced by changepoints to rigorously quantify the long-term trends in the

extreme coastal sea levels. Also, as sea level data exhibit strong temporal correlation,

we incorporate the extremal index parameter to correct estimation bias in return

levels due to temporal correlation. Bootstrap techniques are used to construct more

realistic confidence intervals for the estimated linear trends and return levels. As

demand increases among practitioners in various disciplines who want to apply ex-

treme value methods and changepoint detection techniques, we thoroughly illustrate

our methodology and plan to aid practitioners by making our R programming codes

available online.
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This paper proceeds as follows: Section 2.2 describes the data set used in our

study. Section 2.3 discusses the extreme value methods and changepoint detection

techniques applied to the sea level data. Section 2.4 describes the simulation study on

changepoint detection and summarizes the performance of the changepoint method.

Section 2.5 illustrates our methods using a case study for the sea level series from

Fishguard, UK. Section 2.6 summarizes our trend and return level analysis for the

entire sea level data set. In Section 2.7, we conclude with further remarks.

2.2 The Data

This study uses the Global Extreme Sea Level Analysis Version 2 (GESLA-2) data set,

published by Woodworth et al. (2016). The GESLA data set provides a semi-global

coverage on high frequency (mostly hourly) sea level observations from 1276 tide gauge

locations around the world, compiled from 27 public sources, including the University

of Hawaii Sea Level Center and British Oceanographic Data Centre (BODC) that

collectively account for about 70% of the tide gauge records. Sea level observations

made by a tide gauge represent the vertical height from the sea surface to a vertical

datum. The GESLA sea level observations are recorded in meters and accompanied by

a quality control value. We considered only those observations marked as either “cor-

rect value” or “interpolated value” and treated the ones marked as “doubtful value”,

“isolated spike or wrong value”, or “missing value” as missing values. These missing

values, accounting for 9.03% of all GESLA data, were discarded from our analysis.

Although the GESLA data set went through some quality control checks provided

by the data providers, it still requires preprocessing for our analysis. Because the

GESLA data set is a compilation of sea level data sets from multiple data providers,
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there are often more than one sea level series pertaining to the same geographic

location. Nearly all of these multiple records are identical to each other except

for having slightly different temporal coverages. For these locations, only the series

with the most non-missing observations was used in our analysis. In the case that

these duplicate records offer some non-overlapping sea level observations, they were

merged to attain the longest possible temporal coverage for that location. In addition,

some sea level series in the data set contain temporal gaps in observations without

documentation. We treated this record as missing values. For our extreme value

analysis, if more than 7% of sea level observations from a single calendar month are

missing, we did not extract the monthly maximum and treated that month as missing.

We then considered all monthly maximum sea level series with at least 30 years of

non-missing data (at least 360 non-missing monthly maxima).
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Map 2.1: Spatial location of the 300 tide gauges after preprocessing
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Our preprocessing procedures resulted in 300 monthly maximum sea level series

for our analysis. Map 2.1 shows the spatial location of the selected 300 tide gauges

used in our analysis. About 82% of the 300 tide gauges are located in Europe, North

America, and Northeast Asia, providing a sufficient coverage to the North Pacific

Ocean and North Atlantic Ocean. About 15% of the tide gauges are sparsely located

in Pacific Islands and South America. Most of the remaining tide gauges are located

in Africa and Oceania.

Although the GESLA data set provides a near global coverage, some regions

are underrepresented. Since we mainly consider locations with at least 30 years of

non-missing monthly maximum sea level data, the limited availability of data impacts

the scope of our studies. Specifically, except for a single tide gauge in Mauritius, no

tide gauges from the coasts of East Africa, Middle East, South Asia, Southeast Asia,

and Western Australia are considered, which essentially leaves out the entire coast of

the Indian Ocean from our analysis. The western side of Africa and the northeastern

portion of South America are also left out, limiting the coverage of the coasts of the

South Atlantic Ocean in our study.

2.3 Methods

2.3.1 Block maxima methods with periodic, trend, and changepoint fea-

tures

Suppose X1, . . . , Xm are independent and identically distributed (IID) random vari-

ables with a common distribution function F (·). Define Y(m) = max{X1, . . . , Xm}

as the maximum statistic of these m random variables. If there are sequences of

constants {am} and {bm > 0} that scale the maximum statistic Y(m) such that
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lim
m→∞

P

(
Y(m) − am

bm
≤ y

)
= G(y)

and G(·) is a non-degenerate distribution function, then the limiting distribution

function G(·) is the following generalized extreme value (GEV) distribution:

G(y) = exp

{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ
+

}
,

where [x]+ = max{x, 0}. The parameters µ ∈ (−∞,∞), σ ∈ (0,∞), and ξ ∈

(−∞,∞) are called location, scale, and shape parameters, respectively.

Block maxima methods use a sequence of these maximum statistics. To elaborate,

we reexpress the raw GESLA hourly sea level series {X1, . . . , XN} at a gauge site as

a set of n blocks with block size m:

{(X1, . . . , Xm), (Xm+1, . . . , X2m), . . . , (X(n−1)m+1, . . . , Xnm)},

where N = nm. We then compute the maximum statistic from each block and denote

the t-th block maximum statistic as Yt = max{X(t−1)m+1, . . . , Xtm} for t = 1, . . . , n.

The extreme value theorem states that if block size m is sufficiently large, the GEV

distribution is a proper probability distribution for {Y1, . . . , Yn} regardless of the dis-

tribution function F (·) from which the raw data {X1, . . . , XN} is taken. Therefore, we

assume that the monthly maximum sea level series {Yt} follows a GEV distribution.

Important features pertinent to monthly maximum sea level series should be

considered for the GEV parameters. First, monthly maximum sea levels naturally

exhibit strong periodicity due to tides caused by gravitational attraction from the

sun and the moon and other external factors. This periodicity needs to be taken
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into account in GEV models. Second, if monthly maximum sea levels are changing,

the rate of change should be considered. The model without trend, when the series

in fact has a trend, will result in erroneous estimation of the model parameters.

Third, monthly maximum sea level series features changepoints for many reasons,

including instrument changes, location changes, and changes in times at which the

measurements are made. Such changepoints can result in misleading outcomes if not

addressed properly.

In this study, the location parameter for the monthly maximum sea level series

{Yt} is posited to include a periodic function, which we use a cosine wave with two

harmonics, a long-term linear trend, and an unknown number of changepoints, each

including a mean shift in {Yt} as follows:

µt = β0 +
2∑
j=1

{
β2j−1 cos

(
2jπt

T

)
+ β2j sin

(
2jπt

T

)}
+ α

(
t

100T

)
+ δt. (2.1)

Here, T = 12 is the period for the monthly maximum series, α is the long-term

linear trend representing the expected change in maximum sea level over a century,

and δt is the mean shift term, parameterizing the magnitude of mean shifts due to c

changepoints at times τ1, . . . , τc as:

δt = ∆0I(1 ≤ t < τ1) + ∆1I(τ1 ≤ t < τ2) + · · ·+ ∆cI(τc ≤ t ≤ n),

where I(E) is an indicator function returning 1 if E is true and 0 otherwise. The

baseline mean shift term ∆0 is set to be zero for parameter identifiability. The scale

parameter is also parameterized as a cosine wave with two harmonics:

σt = ω0 +
2∑
j=1

{
ω2j−1 cos

(
2jπt

T

)
+ ω2j sin

(
2jπt

T

)}
. (2.2)
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The seasonal dependence in extreme sea levels is mainly due to astronomical

(spring tides) and meteorological (storminess season) influences (Menéndez and Wood-

worth, 2010). To capture the possibility of annual and semi-annual periodic features in

monthly maximum sea levels, we parameterize the GEV location and scale parameters

using two sinusoidal harmonics as shown in (2.1) and (2.2). This parameterization is

previously used by other authors, including Menéndez and Woodworth (2010) and

Weisse et al. (2014). This said, the number of harmonics in the location and scale

parameter expressions can be varied, but we found that two work well with most

GESLA monthly maximum sea levels. In addition, we assume that the GEV shape

parameter ξ is constant over time, because the shape parameter estimate can be nu-

merically unstable (Smith, 2014) and likely cause undesirable convergence issues when

a complicated model is used for ξ, especially over short segments. This constant ξ

assumption is often physically and numerically supported by other researchers (Zhang,

Zwiers, and Li, 2004; Parey et al., 2007; Hoang, Parey, and Dacunha-Castelle, 2009).

For parameter estimation, if the changepoint number c is known and these c

changepoints are also known to occur at the times τ1, . . . , τc, the unknown GEV model

parameters are denoted by η = (β0, β1, β2, β3, β4, α,∆1, . . . ,∆c, ω0, ω1, ω2, ω3, ω4, ξ)
T.

The log-likelihood function of the GEV(µt, σt, ξ) distribution with µt in (2.1) and σt

in (2.2) can be written as

`(η) =



−
∑n

t=1 lnσt −
∑n

t=1

[
1 + ξ

(
yt − µt
σt

)]−1/ξ
−
(

1 + 1
ξ

)∑n
t=1 ln

[
1 + ξ

(
yt − µt
σt

)]
, if ξ 6= 0;

−
∑n

t=1 lnσt −
∑n

t=1

(
yt − µt
σt

)
−
∑n

t=1 exp

[
−
(
yt − µt
σt

)]
, if ξ = 0.

(2.3)
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We then use a numerical optimizer to find the maximum likelihood estimates of GEV

parameters η by maximizing this log-likelihood function.

In practice, however, the number of changepoints c and changepoint times τ1, . . . , τc

are all unknown and need to be estimated. We explain the estimation method for

these unknown changepoint parameters in the following subsection.

2.3.2 Changepoint detection using a genetic algorithm

As the GESLA data set lacks metadata other than basic geographical information,

documented changepoint information is greatly limited. For this reason, we use a

genetic algorithm (GA) to detect any significant mean shifts due to changepoints

present in the monthly maximum sea levels. Our GA method is based on the

approaches in Li and Lund (2012) and Lee, Li, and Lund (2014) with modifications

specific to monthly maximum sea levels. We implement the GA as follows.

1. An initial generation of L = 200 changepoint configurations (called “chromo-

somes”) is randomly generated. Each chromosome is expressed as (c; τ1, . . . , τc),

where c is the number of changepoints, and τj is the time (month) at which the

j-th changepoint occurs.

2. The 200 chromosomes are probabilistically crossed as follows. Each chromo-

some is ranked based on its fitness value, where the fittest chromosome is

assigned the highest rank L. One mother and one father are then selected

from the 200 chromosomes. The i-th chromosome is selected as a mother

with probability Ri/
∑L

l=1Rl, where Rl refers to the l-th chromosome’s rank.

To select a father, ranks for the remaining 199 chromosomes are reassigned

and the selection process is repeated. Once mother and father are chosen, a
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child is probabilistically generated. To elaborate, suppose (a;κ1, . . . , κa) and

(b; ζ1, . . . , ζb) are chosen as parents. These two chromosomes are first merged,

resulting in (a+ b; τ1, . . . , τa+b). Next, after eliminating duplicate times, each τi

is removed from the child with probability 0.5. Each remaining τi then remains

unchanged with probability 0.4, moves one month forward with probability 0.3,

or moves one month backward with probability 0.3.

3. Every non-changepoint time location is assigned a probability of pmut = 0.002

to be selected as an additional changepoint. Changepoint times chosen from

this process are called mutations, which form an important aspect of the GA

to avoid falling into local optima.

4. Once a generation of 200 chromosomes is generated, the crossing and mutation

are repeated to obtain new generations until we reach the 300-th generation.

The fittest chromosome from all of these 300 generations is then chosen as the

estimated changepoint configuration.

Our GA method differs from those of Li and Lund (2012) and Lee, Li, and

Lund (2014) in a way that we directly apply the GA to monthly maximum sea level

series with the following modifications for better performance. From our preliminary

simulation study, we found that the GA tends to overfit chromosomes when the

target series does not have linear trends. To address this problem, we introduced the

elitist selection. The two fittest chromosomes from the previous generation are kept

without any alterations. In addition, these two “elite” chromosomes are crossed with

each other and mutated with the same mutation probability as others, producing a

new elite chromosome. These three elite chromosomes are then passed over to form

the next generation along with 197 other new chromosomes.
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We use the minimum description length (MDL) as the fitness function to estimate

the changepoint number and times (cf. Lu, Lund, and Lee, 2010). For a chromosome

of c changepoints at times τ1, . . . , τc, the MDL is calculated as:

MDL(η, c, τ1, . . . , τc) = −`opt(η) + P (c; τ1, . . . , τc). (2.4)

Here, `opt(η) is the optimized value of the GEV log-likelihood function in (2.3) calcu-

lated at the maximum likelihood estimates of η for a given changepoint configuration

(c; τ1, . . . , τc). The penalty term P (c; τ1, . . . , τc) is expressed as

P (c; τ1, . . . , τc) = ln(c+ 1) +
1

2

c+1∑
j=2

ln(τj − τj−1) +
c+1∑
j=2

ln τj,

where τc+1 = n + 1. If missing observations exist in the j-th segment on times

τj−1, . . . , τj − 1, then τj − τj−1 in the penalty term is replaced with the number

of non-missing observations in that segment. A changepoint configuration with a

smaller MDL value is preferred. The performance of the GA method for changepoint

estimation is assessed via simulation in Section 2.4.

We selected the GA technique because GAs are less restrictive to use in a long-term

trend study than many other multiple changepoint detection methods. To be specific,

the target MDL function in (2.4) cannot be reexpressed as
∑c+1

j=1Cj, where Cj is a

cost function associated with the j-th segment. Search algorithms that use this type

as the target function for optimization, including WBS (Fryzlewicz, 2014) and PELT

(Killick, Fearnhead, and Eckley, 2012), will not work, because the parameter estimate

of the long-term trend α, for example, depends on all the data points, not only the

data in any single segment. The model parameters α, β’s, ω’s, and ξ can be poorly
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estimated from small segments. Next, the standard errors for the GEV estimates

with GA are estimated using a moving block bootstrapping method as illustrated in

Section 2.3.4.

2.3.3 Return levels with non-stationary and dependent series

Return levels are an important aspect in extreme value analysis. The return level

associated with the return period z years is the expected value that is to be exceeded

once every z years on average. Since temporal correlation in the data can seriously

affect the accuracy of return levels (cf. Fawcett and Walshaw, 2012; Reich, Shaby, and

Cooley, 2014), past authors often considered an additional parameter, called extremal

index. The extreme value theorem described in Section 2.3.1 then can hold true for

dependent series by incorporating the extremal index.

Suppose X∗1 , . . . , X
∗
m are IID random variables with a common marginal distri-

bution F (·) and X1, . . . , Xm are correlated and stationary random variables with

the same marginal distribution F (·). Define Y ∗(m) = max{X∗1 , . . . , X∗m} and Y(m) =

max{X1, . . . , Xm}. Under the assumption that X1, . . . , Xm satisfy the D(um) condi-

tion (cf. Leadbetter, Lindgren, and Rootzen, 1983, pp. 52–54),

lim
m→∞

P

(
Y ∗(m) − am

bm
≤ y

)
= G(y)

for some sequences {am} and {bm}, if and only if

lim
m→∞

P

(
Y(m) − am

bm
≤ y

)
= Gθ(y)

for a constant θ ∈ (0, 1]. Here, the parameter θ is the extremal index, and the limiting
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distribution function Gθ(·) has the following GEV distribution expression:

Gθ(y) = exp

{
−
[
1 + ξ

(
y − µθ
σθ

)]−1/ξ
+

}
,

where µθ = µ− σ
ξ
(1− θξ) and σθ = σθξ (cf. Coles, 2001, pp. 92–97). When θ = 1, the

limiting distribution of Y(m) is the same as that of Y ∗(m). In short, this result implicates

that if two far enough sets of correlated random variables are nearly independent (so

that the D(um) condition is satisfied), then the GEV distribution still can be an

approximate distribution with aid of θ.

The conventional definition of the return levels with stationary data assumes the

probability of exceedance to be constant over time. Since this assumption is not

satisfied under non-stationarity as is the case with GESLA monthly maximum sea

levels, we instead use the method of Parey et al. (2007) and Parey, Hoang, and

Dacunha-Castelle (2010). Specifically, we now estimate the level rz for which the

expected number of exceedances in z years (12z months) is one. The z-year return

level of non-stationary monthly maxima is then the solution to the following non-linear

equation

1 =

tI+12z−1∑
t=tI

(1−Gθ
t (rz)), (2.5)

where Gθ
t (·) is the time-dependent GEV distribution function in month t, and tI ≥ n

is a predetermined starting time for return level computation. We set tI to be January

2020 for all tide gauges, interpreting rz as the lowest monthly maximum sea level that

is expected to be exceeded once in a z-year period starting from January 2020. For the

stationary case, this definition is equivalent to the conventional definition of return

levels (Parey, Hoang, and Dacunha-Castelle, 2010).
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To accurately compute the return level estimate, we therefore need to estimate

the extremal index θ. Although we do not have a strong preference on a particular

estimation method, we use the semiparametric maxima estimator (Northrop, 2015).

This method does not need parametric modeling for raw hourly sea level data, which

would be a very challenging task for the raw hourly sea level data in this study. In

addition, unlike many others, this estimator does not require an arbitrary selection of

threshold but uses the relationship between the distribution of block maxima and the

marginal distribution of the raw data. Northrop (2015) showed that this estimator is

competitive compared to other existing estimators in a simulation study.

The Northrop’s method proceeds as follows. Suppose X1, . . . , XN are strictly

stationary random variables with a common distribution function F (·) and extremal

index θ. Let Yt be the maximum statistic for the t-th block (month) of size m for

t = 1, . . . , n. Define Vt = −m logF (Yt), which follows an exponential distribution

with mean 1/θ. Since F (·) is often unknown, it is empirically estimated:

F̂−t(y) =


1

N−m
∑

Xs∈A−t

I(Xs ≤ y), if y ≥ minA−t;

1
N
, if y < minA−t,

where A−t = {X1, . . . , XN} \ {X(t−1)m+1, . . . , Xtm}. Then, Vt can be estimated as

V̂t = −m ln F̂−t(Yt) for t = 1, . . . , n. Then, Northrop (2015) derives θ̂ = n
/∑n

t=1 V̂t.

To use this method, we need to convert the raw hourly sea level series to a

stationary series. Our stationary conversion procedure is illustrated in Section 2.5.2.

Once the extremal index θ is estimated, we use the estimate θ̂ to adjust the GEV

distribution function for temporal correlation as done in (2.5). The z-year return

level at a GESLA station is then estimated using its most recent changepoint with
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the assumption that its estimated trend would persist into the future for the z-year

return period. Since the closed form expression for rz in (2.5) is not available for the

non-stationary case, we use a grid search algorithm to numerically estimate rz.

2.3.4 Bootstrap confidence intervals for trends and return levels

Now, we quantify the uncertainty in the parameter estimates. The standard errors

of the parameter estimates would be calculated based on the observed information

matrix, which is computed using software. The asymptotic 100(1 − α)% confidence

intervals of the parameter estimates are typically computed as: (parameter estimate)

±zα/2 (standard error), where zα/2 is the upper α/2-th quantile from the standard nor-

mal distribution. However, if the data are correlated, the standard errors computed

from the observed information matrix can be biased, implicating that the asymptotic

confidence intervals would not produce the intended confidence level. To obtain

more realistic standard errors and confidence intervals for the maximum likelihood

estimates of GEV parameters, long-term linear trend α, and return levels, we use a

bootstrap method.

Classical bootstrap methods assume that the data are IID, so the dependence

structure of the population distribution cannot be fully preserved in the resampling

process. Hence, IID bootstrap methods would fail to adequately approximate the true

distributions of GEV parameter estimates if applied to dependent data. Out of those

approaches in dealing with dependent data, we use a moving block bootstrap (Künsch,

1989) to obtain our bootstrap samples. The moving block bootstrap method proceeds

as follows. From the monthly maximum sea level series {Y1, . . . , Yn} at a gauge site,

n− k+ 1 overlapping blocks of size k can be formed. Out of these blocks, n/k blocks
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are randomly selected with replacement to generate a b-th bootstrap sample of size

n. This process is repeated until B bootstrap samples are obtained.

Once B bootstrap samples are obtained, conventional percentile bootstrap meth-

ods use the upper and lower α/2-th quantiles of the bootstrap estimates of GEV

parameters to construct a 100(1 − α)% bootstrap confidence interval. However, if

the distribution of bootstrap estimates is skewed, percentile bootstrap methods often

fail to reach the desired coverage probabilities. Our preliminary analysis suggests

that the shape parameter for the GEV model of monthly maximum sea level series

is negative for most locations we considered. If the shape parameter is negative, the

GEV distribution is left skewed, indicating that the distribution of a return level is

also left skewed. To correct the bias due to skewness, we use the bias-corrected and

accelerated (BCa) bootstrap method (Efron, 1987) to compute the confidence interval

from bootstrap samples.

2.4 A Simulation Study

A simulation study was performed to evaluate the effectiveness of the GA changepoint

method described in Section 2.3.2. We focus on the following two questions: how well

does the method accurately estimate the number of changepoints and how well does

the method correctly detect the changepoint times.

We consider the eight scenarios as summarized in Table 2.1. The first two consider

a no-changepoint model without linear trends (Scenario 1) and with linear trends

(Scenario 2), estimating the false positive rates of the GA when there are in fact no

changepoints. For those series with no changepoints, a low false detection rate is

desired. Scenarios 3 and 4 have one changepoint in month τ1 = 200 to estimate the
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true positive rates for one changepoint. Scenarios 5 and 6 assume two changepoints

each under a different linear trend and changepoint setting. Specifically, Scenario 5

represents gradually increasing mean shifts without linear trends, making changepoint

detection harder, because the increasing mean shifts can be easily confounded with

a linear trend for some changepoint techniques. This issue can be problematic as it

would suggest a spurious linear trend when there is in fact no linear trend. Scenario

6 has one temporary mean shift occurring at τ1 = 200, then it reverts back to

pre-changepoint level at τ2 = 300. This scenario tests if the GA can correctly detect a

temporary mean shift in means lasting a relatively short time. The last two scenarios

assume three changepoints. Scenario 7, as an extension of Scenario 5, considers grad-

ually increasing mean shifts without linear trends. In Scenario 8, motivated from the

Fishguard series in Section 2.5, we assess the GA in another challenging setting where

the true linear trend is decreasing with positive mean shifts, because no-changepoint

models could incorrectly identify the decreasing trend as an increasing trend.

Table 2.1: Linear trend and changepoint configurations for the simulation study

Scenario Linear trend Mean shifts Changepoint configuration
1 0 (c = 0)
2 2.0 (c = 0)
3 0 0.4 (c = 1; τ1 = 200)
4 2.0 0.4 (c = 1; τ1 = 200)
5 0 0.4, 0.8 (c = 2; τ1 = 200, τ2 = 400)
6 2.0 −0.4, 0 (c = 2; τ1 = 200, τ2 = 300)
7 0 0.4, 0.8, 1.2 (c = 3; τ1 = 150, τ2 = 300, τ3 = 450)
8 −0.5 0.4, 0.8, 1.2 (c = 3; τ1 = 100, τ2 = 300, τ3 = 500)

Long-lasting cyclical autocorrelation is present in raw hourly sea level series at

some GESLA locations. To reflect this type of correlation, we used the following data

generating scheme.
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1. An hourly series of length N = mn = 720 × 600 (600 months of hourly

observations) is generated from a stationary Gegenbauer process with u = 0.875

and a given value of λ ∈ (0, 0.5). The generated series is then standardized to

have a mean of 0 and a standard deviation of 1. This standardized stationary

hourly series, denoted by {X̃1, . . . , X̃N}, serves as our base series to mimic

temporal correlation in hourly sea levels.

2. Next, we mimic periodic fluctuations in means and variances of the raw hourly

data by using the following periodic means and standard deviations: for time

(hour) s = 1, . . . , N ,

µ̈s=2.6+0.001 sin(2πs/T1)−0.015 sin(4πs/T1)−0.002 cos(4πs/T1)

+0.001 cos(2πs/T2)+0.001 sin(4πs/T2)+0.001 cos(4πs/T2),

σ̈s=0.5+0.001 cos(2πs/T1)−0.002 sin(4πs/T1)−0.002 cos(4πs/T1)

−0.001 sin(2πs/T2)+0.002 cos(2πs/T2)−0.01 sin(4πs/T2)−0.2 cos(4πs/T2),

where T1 = 24.838 and T2 = 708.734 represent a tidal lunar day and synodic

lunar month, respectively. These model specifications are chosen from our

analysis of the hourly sea level series to imitate its periodicity and variability

in hourly sea levels. We consider {Ẍ1, . . . , ẌN}, where Ẍs = µ̈s + σ̈sX̃s, to be

a simulated series of hourly sea levels without linear trends and mean shifts

induced by changepoints.

3. For a given scenario in Table 2.1, an hourly sea level series {X1, . . . , XN} is

generated by incorporating long-term trend and mean shifts occurring in months

τj’s into {Ẍ1, . . . , ẌN}.
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4. A monthly maximum series {Y1, . . . , Yn} is obtained with a block size m = 720.

We consider this simulated maximum series to reflect temporal dependence in

hourly sea levels.

Following these steps, we generated 1000 monthly maximum series of n = 600

for each of the eight simulation scenarios. Fig. A.1 (in the supplementary materials)

shows an exemplary time plot from each scenario along with true changepoint times

marked by red vertical lines (Scenarios 3–8). We chose the Gegenbauer process

to reflect long-lasting cyclical autocorrelation present in the hourly sea level series

(Woodward, Gray, and Elliott, 2017). The periodicity and autocorrelation of a

Gegenbauer process are governed by the parameters u and λ. We set u to be 0.875

for a periodic cycle of 12.433 (= 2π/ cos−1(0.875)) hours, mimicking a tidal pattern

present in some GESLA stations. Two values of λ are selected: λ = 0.25 for a weak

but long-lasting temporal correlation case and λ = 0.375 for a moderately strong

and long-lasting temporal correlation case, therefore we assess how our GA performs

under different levels of temporal correlation.

Using the MDL in (2.4) as the fitness function to minimize, our GA method

is applied to these simulated monthly maximum series {Y1, . . . , Yn} to estimate the

number and times of changepoints. Table 2.2 shows the estimated detection rates

of the correct changepoint numbers and the estimated accuracy rates of detected

changepoint times with three different tolerance bands (±3, ±6, and ±9 months) for

the weak but long-lasting correlation case with λ = 0.25. The GA appears to perform

well in estimating the changepoint number for all eight scenarios since it correctly

estimated c in nearly all of the repetitions. The GA changepoint times are also

close to the true changepoint times for all simulation scenarios. About 87–93% of all

repetitions correctly estimated the changepoint times within a three-month margin.
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If an error is allowed up to nine months, the GA correctly estimates the changepoint

times nearly 99% of the time. A frequency histogram of the estimated changepoint

times is shown for Scenarios 3–8 in Fig. A.2 (in the supplementary materials). Most

of the estimated changepoint times are clustered around the true changepoint times

with a minimal variability. Our GA method performs well in estimating changepoint

times for these six scenarios with weak but long-lasting temporal correlation.

Table 2.2: Detection counts and accuracy rates for the GA method with λ =
0.25

Scenario c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 ±3 mos. ±6 mos. ±9 mos.
1 999 1 0 0 0 0
2 991 9 0 0 0 0
3 0 993 7 0 0 0 90.6% 97.7% 98.7%
4 0 993 7 0 0 0 92.8% 97.6% 98.7%
5 0 0 995 5 0 0 90.6% 97.4% 99.4%
6 0 0 995 4 1 0 87.2% 96.7% 98.5%
7 0 0 0 997 3 0 89.0% 96.1% 98.4%
8 0 0 0 993 7 0 88.3% 97.5% 98.8%

Table 2.3 summarizes the estimated detection rates of the changepoint number

and the estimated accuracy rates of changepoint times under the moderately strong

and long-lasting correlation case with λ = 0.375. Our GA correctly estimates the

changepoint numbers about 87–93% of the time for all eight scenarios. Within a

three-month margin, the GA correctly estimates the changepoint times about 72%–

78% of the time. The accuracy rates increase to around 85–90% with a nine-month

margin. Fig. 2.1 shows a frequency histogram of the estimated changepoint times for

Scenarios 3–8. Although the estimated times are slightly more spread out than those

of the case with λ = 0.25, they are still well clustered around the true changepoint

times with a minimal variability. These findings, combined with our results from

the weaker correlation case, suggest that our GA performs well in estimating the
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number and locations of mean shifts induced by changepoints even for a series with

moderately strong, long-lasting temporal correlations.

Table 2.3: Detection counts and accuracy rates for the GA method with λ =
0.375

Scenario c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 ±3 mos. ±6 mos. ±9 mos.
1 913 52 35 0 0 0
2 913 57 27 2 1 0
3 0 878 85 36 1 0 75.6% 82.9% 85.8%
4 0 875 98 25 2 0 73.8% 81.5% 85.2%
5 0 0 922 69 9 0 77.7% 86.4% 89.5%
6 0 0 906 84 10 0 73.0% 83.8% 86.4%
7 0 0 0 927 68 5 75.6% 85.4% 90.0%
8 5 4 7 897 81 6 72.2% 82.9% 87.0%

2.5 Case Study: Fishguard, UK

2.5.1 Long-term trend estimation with changepoints

We use the sea level data of Fishguard, UK to illustrate our methods. Once the

monthly maximum sea level series was extracted from the raw GESLA hourly data at

this gauge site by following our preprocessing procedures as explained in Section 2.2,

we applied the GA method to the Fishguard monthly maximum series using the MDL

in (2.4) as the GA’s fitness function to optimize. The GA estimates three changepoints

at times τ1 = 141 (September 1974), τ2 = 355 (July 1992), and τ3 = 592 (April 2012).

Although metadata are not available for most GESLA stations, BODC, the provider

of the Fishguard data, informed us that the Fishguard tide gauge had experienced

two location changes in 1975 and June 1988. The gauge also had a new instrument

installed in June 1988, set to record data in 15 minute intervals. However, it took

a few more years to fully change over, so hourly data were recorded until December
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Figure 2.1: Histograms of detected changepoint times from the GA method
with λ = 0.375 for Scenarios 3–8
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1992. These two location and instrument changes in 1975 and 1992 appear to concur

with the first two GA changepoints on September 1974 and July 1992. After then, the

Fishguard tide gauge had been experiencing siltation issues, where tide sensors get

buried in silt causing a back pressure, from as early as March 2013. This siltation issue

could be a factor contributing to the third Fishguard GA changepoint in April 2012.

Using these three GA changepoints in the GEV model with the parameter spec-

ifications in (2.1) and (2.2), we estimate the model parameters by maximizing the

likelihood function in (2.3). For comparison, we also estimate the parameters without

allowing changepoints. The standard errors for the parameter estimates are computed

from 10,000 bootstrap samples by using the moving block bootstrap method with a

block size of k = 12 as indicated in Section 2.3.4.

Table 2.4 summarizes our GEV model parameter estimates along with their cor-

responding bootstrap standard errors in parentheses. MDL is substantially improved

in the GEV model with the three changepoints considered, suggesting that the GEV

model with GA changepoints offers a better fit to the Fishguard monthly maximum

series than the GEV model with changepoints ignored. Whereas most estimates

are similar for the two models, the estimated long-term trend parameter α, one of

our main interests, has oppositely changed from positive to negative with a larger

magnitude. To be specific, in the changepoints-ignored model, the estimated linear

trend is 34 cm century−1 with the 95% BCa bootstrap confidence interval of (24, 48).

However, with the three changepoints included in the model, the estimated linear

trend drastically changes to −80 cm century−1 with the 95% BCa bootstrap confi-

dence interval of (−112,−44). This finding indicates that the monthly maximum sea

level series in Fishguard, UK has in fact significantly decreased by about 80 cm for

the last century, rather than gradually increasing over the record period. Fig. 2.2
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shows a time plot of the Fishguard monthly maximum sea levels along with the three

estimated changepoint times marked by purple vertical lines. The estimated trends

with and without changepoints are also imposed by red and blue lines, respectively.

The estimated trend line with those three changepoints appears to be appropriate for

the Fishguard series.

Table 2.4: Fishguard GEV parameter estimates and bootstrap standard errors
in parentheses (units: meters for β’s, ∆’s, and ω’s; m century–1 for
α)

Three changepoints No changepoints
β0 5.038 (0.020) 4.998 (0.020)
β1 0.108 (0.012) 0.109 (0.012)
β2 -0.027 (0.011) -0.033 (0.012)
β3 -0.154 (0.015) -0.156 (0.015)
β4 0.014 (0.015) 0.015 (0.016)
α -0.800 (0.175) 0.342 (0.063)

∆1 0.199 (0.033)
∆2 0.418 (0.062)
∆3 0.651 (0.089)
ω0 0.163 (0.006) 0.173 (0.006)
ω1 0.026 (0.006) 0.023 (0.007)
ω2 0.009 (0.007) 0.011 (0.008)
ω3 0.007 (0.008) 0.012 (0.008)
ω4 0.008 (0.006) 0.007 (0.007)
ξ -0.250 (0.027) -0.237 (0.033)
θ 0.128 0.128

MDL -245.886 -234.857

A goodness-of-fit for the GEV model is also performed to check if our GEV model

fits well to the Fishguard monthly maximum sea level series. Fig. 2.3 shows the

Gumbel scaled quantile-quantile plots for our GEV models, visually comparing the

two GEV models with the three GA changepoints considered and without allowing

changepoints. Overall, the changepoints-included GEV model is an improved fit to

the Fishguard series, since the residuals from the changepoints-included GEV model
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in the plot (left) nearly form a straight line. This supports our claim that changepoints

should be considered in the GEV analysis of extreme sea levels.
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2.5.2 Return level estimation with non-stationarity and temporal corre-

lation

Since the Fishguard hourly sea level series is strongly autocorrelated, we estimate

the extremal index θ and use it for accurate return level estimation as explained

in Section 2.3.3. However, as Northrop’s estimator is developed with a stationary

series, we first remove non-stationary features, such as mean shifts, linear trend, and

periodicity, from the raw data. We used the following stationary conversion procedure.

Other approaches can be used as an alternative.

1. We convert the non-stationary raw hourly sea level data {X1, . . . , XN} to the

changepoint-adjusted and detrended hourly data {Ẍ1, . . . , ẌN}, where Ẍs =

Xs − ψs − γs, and ψs and γ are mean shift and linear trend parameters for the

raw data. However, there are some challenges in this changepoint and trend

estimation. First, a single tide gauge typically contains around a half million

sea level observations, which is too large for effective changepoint estimation

using existing changepoint methods. Second, most sea level series from the

raw data exhibit strong serial correlation and do not follow the Gaussian dis-

tribution, limiting the use of many useful Gaussian-based changepoint methods

available. Third, the marginal distribution of {X1, . . . , XN} is unknown to us,

which leads to the use of non-parametric changepoint methods. To the best

of our knowledge, there are no methods developed under this challenging and

complicated case.

2. To overcome these issues, we approximate changepoints in the raw data via

changepoints in monthly median series. We chose monthly median over monthly

mean, since median is more robust than mean if the distribution is skewed or
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outliers are present in the data as is the case with sea levels. We apply the

E-divisive method to the monthly median series and use the estimated E-divisive

changepoints as a proxy for the changepoints in the raw data. Matteson and

James (2014) showed that the E-divisive method is an effective non-parametric

method in a simulation study. Our preliminary simulation results also suggest

that the E-divisive method performs satisfactorily in detecting changepoints in

a correlated raw series when applied to monthly median series without linear

trends.

3. For the Fishguard monthly median series, the E-divisive method estimates five

changepoints in February 1973, August 1997, September 2000, March 2007, and

September 2011. Two of the three GA changepoints for the monthly maximum

series mostly concur with the E-divisive changepoints from the monthly median

series. We use the E-divisive changepoint times to estimate the mean shift

sizes and linear trend in the raw hourly data by the least squares method.

Subtracting these estimates from {X1, . . . , XN} produces {Ẍ1, . . . , ẌN}.

4. The changepoint-adjusted and detrended hourly series {Ẍ1, . . . , ẌN} is then

transformed to the stationary series {X̃1, . . . , X̃N} by taking X̃s = (Ẍs−µ̈s)/σ̈s,

where µ̈s and σ̈s are hourly mean and standard deviation of the Ẍs series and

are calculated by a similar method to Woody, Wang, and Dyer (2016). To

elaborate, for each hour ν of the synodic lunar month (approximately 708.734

hours or 29.5 days), we compute the means and standard deviations

¯̈Xν =
1

nν

bN/TLc∑
j=0

Ẍ[jTL+ν], S̈ν =

√√√√ 1

nν − 1

bN/TLc∑
j=0

(Ẍ[jTL+ν] −
¯̈Xν)2,
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where nν is the number of non-missing values during hour ν = 1, . . . , 708 of the

synodic lunar month, bac denotes the largest integer smaller than or equal to

a, [a] returns the index of Ẍs closest to a, and TL = 708.734. Next, a regression

model with four harmonics of periods T1 = 24.838/2, T2 = 24.838, T3 =

708.734/2, and T4 = 708.734 is fitted to smooth these means and standard devi-

ations. Here, T1 and T2 account for a tidal lunar day, and T3 and T4 account for

a synodic lunar month. These smoothed values are then extended to all hourly

times s = 1, . . . , N , resulting in the periodic mean µ̈s and periodic standard

deviation σ̈s over the entire record period. Finally, we obtain {X̃1, . . . , X̃N},

where X̃s = (Ẍs − µ̈s)/σ̈s, and consider this series to be stationary.

Now, we estimate the extremal index θ by applying the Northrop’s semiparametric

maxima estimator to the stationary hourly series {X̃1, . . . , X̃N}. The return levels

for 25, 50, 75, and 100 years for the Fishguard monthly maximum sea levels are

then computed from the GEV model with the three GA changepoints. To adjust the

return levels for non-stationarity and temporal correlation, we apply the method in

(2.5) with θ̂ used in Gθ
t (·) as illustrated in Section 2.3.3. To make the return levels

more informative, we subtract the median of all sea level observations pertaining

to the last 12 months’ records. The resulting return levels are then the expected

maximum amount of exceedance from the typical current sea level for a given time

period starting from January 2020. This, in turn, normalizes the return sea level

estimates across the sites and allows us to make meaningful comparisons between

tide gauges. Table 2.5 summarizes the estimated 25, 50, 75, and 100-year Fishguard

sea level return exceedances with the three GA changepoints considered and without

allowing changepoints. Their associated 95% BCa bootstrap confidence intervals are

also reported. We find that the consideration of changepoints noticeably changes the
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return levels. For example, the estimated 50-year return level is lowered by about 22

cm when the GA changepoints are considered.

Table 2.5: Fishguard monthly maximum sea level return exceedances and their
95% BCa bootstrap confidence intervals in parentheses (unit: me-
ters)

Return exceedances Three changepoints No changepoints
r25 2.899 (2.820, 3.048) 3.014 (2.955, 3.086)
r50 2.902 (2.818, 3.048) 3.121 (3.041, 3.219)
r75 2.902 (2.818, 3.046) 3.210 (3.108, 3.339)
r100 2.902 (2.818, 3.047) 3.296 (3.169, 3.456)

2.6 GESLA data analysis

As illustrated in Section 2.5, our methods were applied to the monthly maximum sea

level series at all 300 gauge sites. Out of the 300 sites, 47.7% (143 sites) are identified

to have no significant mean shifts in their monthly maximum series. Most of these sites

are either in North America or Europe. The other 52.3% (157 sites) are flagged for

one or more changepoints. Of those sites with at least one GA changepoints, 89.2%

(140 sites) have experienced one to four changepoints. Five or more changepoints

are also found in the other 10.8% (17 sites), of which 11 sites are located in the

Pacific Ocean and the other six are scattered around in Japan, Central America, and

North America. With these GA changepoints incorporated into our GEV model,

the GEV parameters were estimated via the maximum likelihood method for all 300

locations. The GEV parameters without allowing changepoints were also estimated

for comparison purposes.

To illustrate how changepoints can influence the long-term trend estimation, we

select six gauge sites with a noticeable difference in trend estimates. The selected
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Figure 2.4: Estimated trend lines for the monthly maximum sea levels (blue
solid lines, the trend with GA estimated changepoint times; red
solid line, the trend without allowing changepoints)

gauge sites are Miyakejima, Japan; Kahului, USA; St. Petersburg, USA; Wellington,

New Zealand; Mossel Bay, South Africa; and Le Conquet, France. Fig. 2.4 shows

the monthly maximum sea levels at these sites along with their estimated linear

trends with and without changepoints. The purple vertical lines in this figure denote

the GA estimated changepoint times. The Miyakejima series has experienced two

changepoints, including a substantial upward mean shift in September 2000. It

is uncertain to us what caused these mean shifts, because the GESLA data set

contains no quality control flags for these times. Whereas the trend estimate was
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positive (73 cm century−1) when changepoints are not allowed, these two changepoints

considerably decrease the trend estimate to a negative trend (−26 cm century−1).

Similar to the Miyakejima series, the estimated trends at Kahului, St. Petersburg, and

Wellington oppositely change to negative when changepoints are taken into account,

suggesting that monthly maximum sea levels in these sites have decreased rather

than increased. Consideration of changepoints, however, does not necessarily decrease

trend estimates. For example, the monthly maximum sea levels at Mossel Bay and

Le Conquet show a substantial increase to their estimated trends when changepoints

are considered.

The impact of changepoints on the long-term trend estimation is further examined

for those 157 gauge sites with at least one changepoints. Fig. 2.5 displays the esti-

mated linear trends for these sites from the GEV models with changepoints considered

and without allowing changepoints. Overall, the distributions of the trend estimates

appear to be slightly left-skewed after few outliers are ignored. However, consideration

of changepoints has increased variability and reduced the average estimated trends.

Whereas the trend estimates without allowing changepoints have a mean of 25 cm

century−1 and a standard deviation of 28 cm century−1, the estimated trends with GA

changepoints considered have a mean of 20 cm century−1 and a standard deviation

of 45 cm century−1. Fig. 2.6 shows a scatter plot of the trend estimates with

changepoints included against those with changepoints ignored for the 157 sites.

Many sites in the figure show substantial changes in their trend estimates, further

supporting that changepoints should be considered to accurately quantify trends in

monthly maximum sea levels.

A geographical map of the estimated long-term trends from the GEV model with

changepoints considered for the 300 sites is presented in Map 2.2. Overall, monthly
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Figure 2.5: Histograms of the estimated linear trends with changepoints con-
sidered (left) and without allowing changepoints (right) for the 157
sites with at least one GA changepoints (unit: m century–1)

maximum sea levels have increased in the coasts of the North Atlantic Ocean, whereas

the Gulf of Alaska and Baltic Sea have experienced decreasing monthly maximum sea

levels. We also find that although most of Pacific Islands had overall increasing

estimated linear trends when changepoints are ignored, estimated trends become

negative for many locations once changepoints are considered.

Next, we calculate the 50-year return levels as in (2.5) for the 300 sites by

using the extremal index estimated via Northrop’s method. The median of all sea

level observations pertaining to the last 12 months’ records at each gauge site is

subtracted from the return level estimates. To illustrate how temporal correlation

in sea levels impact the return level estimation, we revisit the Miyakejima, Kahului,

St. Petersburg, Wellington, Mossel Bay, and Le Conquet stations. The 50-year

return level exceedances from the median sea level for these sites are estimated using

(i) the GEV model with both changepoints and extremal index considered, and for

comparison, also using (ii) the GEV model with changepoints included but temporal

correlation ignored and (iii) the GEV model that ignores both changepoints and
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Figure 2.6: A scatter plot of the estimated trends with changepoints considered
against the estimated trends without allowing changepoints for the
157 sites with at least one GA changepoints (unit: m century–1)
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Map 2.2: Estimated linear trends from the GEV model with changepoints
considered (unit: m century–1)
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temporal correlation. Fig. 2.7 shows the estimated 50-year return level exceedances

from the three GEV models. Once changepoints were included, return exceedance

estimates decrease for those four stations with their trend estimates changing to a

negative trend (Miyakejima, Kahului, St. Petersburg, and Wellington), and return

exceedance estimates increase for the two stations that experienced a more positive

trend estimate (Mossel Bay and Le Conquet). This is expected, since a larger

long-term trend implicates a higher risk in return sea level exceedances. On the

other hand, the consideration of extremal index results in lower return sea level

exceedances for all six stations, implying that these six sites are in fact under a lower

risk of extreme sea level events once temporal correlation is considered. In short, the

temporal correlation in sea levels must be quantified and included in the modeling

process to obtain accurate return level estimates of monthly maximum sea levels.
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Figure 2.7: Monthly maximum sea level 50-year return exceedances (◦, change-
points and extremal index considered; 4, changepoints only; ×,
changepoints and temporal correlation ignored; unit: meters)
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Map 2.3 presents the estimated 50-year return sea level exceedances from the

median for all 300 sites from the GEV model with GA estimated changepoints and

temporal correlation considered. Coasts of the Northwestern Europe and the Gulf of

Alaska appear to have the highest risk of extreme sea level events, with their typical

current sea levels expected to exceed approximately 3 to 4 meters on average once

between January 2020 and December 2069.
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Map 2.3: Estimated monthly maximum sea level 50-year return exceedances
(unit: meters)

2.7 Closing Comments

Sea level observations often contain undocumented changes in their means due to

instrument changes, location changes, earthquakes, land reclamation, dredging, and

so on. The number of changepoints and changepoint times are unknown if a metadata
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of recording such changes does not exist or is not complete, as is often the case with

sea level data. Trend analysis methods that ignore such changepoint features can

result in erroneous estimates. We developed a GA method that uses a GEV-based

likelihood and MDL penalty to detect the changepoint number and times in the

monthly maximum sea level series at the 300 gauge sites selected for our study.

The estimated changepoint number and times were then used to rigorously quantify

long-term trends in the monthly maximum sea levels.

We find that monthly maximum sea levels have overall increased in many regions,

including the Gulf of Mexico, the American coast of the North Atlantic Ocean,

the Northwestern European coasts, and the Pacific Coast of Japan. This finding

is consistent with those of Menéndez and Woodworth (2010), Wahl and Chambers

(2015), and Marcos and Woodworth (2017). However, some regions have experienced

a decrease in monthly maximum sea levels. Our decreasing trend for the Baltic

Sea also appears in Menéndez and Woodworth (2010) and Marcos and Woodworth

(2017). These decreasing trends for the Northwestern European coasts and the Baltic

Sea could be due to the post-glacial land uplift in that region (The BACC II Author

Team, 2015).

Our GA method has found one or more significant mean shifts in monthly maxi-

mum sea levels at 157 sites. Although the consideration of changepoints does not

necessarily result in drastic changes to trend estimates at all gauge sites, trend

estimates could be greatly influenced by detected changepoints. In particular, when

changepoints are ignored, the monthly maximum sea levels in Pacific Islands show

overall increasing trends, which is consistent with the finding of Menéndez and Wood-

worth (2010). However, we find that once changepoints are taken into account, the

estimated trends for many Pacific Islands have decreased, revealing that the monthly
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maximum sea levels of Pacific Islands are not uniformly increasing over time. Overall,

38 sites (12.67% of 300 sites), mostly scattered around the Pacific Ocean, had their

estimated trends change signs after the consideration of changepoints. In addition,

29.7% (89 sites) of the 300 sites have their estimated trends changed by more than

20 cm century−1 after changepoints are considered. Among these 89 substantially

impacted sites, 52 of them further show changes of more than 40 cm century−1.

Map 2.4 depicts the spatial location of these impacted sites. Many of these sites are

spread out around the equator from Central Pacific Ocean to the western side of the

South America, and some are clustered around the southern coast of Japan. There

are also several such changepoint-influenced sites in the coasts of North America and

Europe.
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Map 2.4: Spatial location of the tide gauges where the consideration of change-
points changed the estimated trends by more than 40 cm century–1

(52 sites, dark blue), between 20 and 40 cm century–1 (37 sites, blue),
and less than 20 cm century–1 (211 sites, light blue)
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Strong temporal correlation is pertinent in most raw sea level data. The ex-

tremal index θ, a measure for the strength of temporal correlation, was estimated

between 0.005 to 0.501, with a median of 0.111. These small values of θ̂ indicate

that many GESLA sea level series exhibit strong temporal correlations. For this

reason, return sea level estimates could be greatly affected by the estimated extremal

index. Therefore, we incorporate the extremal index to the GEV distribution for

accurate return level estimation for all 300 sites. We find that 26 sites have their

estimated 50-year return levels changed by more than 70 cm when extremal index

is considered, and there are another 47 sites with changes between 30 and 70 cm.

Map 2.5 shows the spatial location of these 73 gauge sites along with other tide gauges

considered in this study. A large number of sites in the European coasts, particularly

the Baltic Sea, have their estimated return exceedances severely impacted by the

temporal correlation. Many sites in the Japanese coasts and the American coast of the

North Atlantic Ocean, particularly the Gulf of Mexico, are also substantially affected.

Bootstrap methods were used to compute the standard errors of GEV parameter

estimates and bias-corrected confidence intervals for return levels. The GA estimated

changepoints also affect these return levels when changepoints are detected.

There are some avenues for future research. First, our GEV model considers

possible changes in the mean level of monthly maximum sea level series, while the

GEV scale and shape parameters and the extremal index are not influenced by

changepoint-inducing events. This model specification is due to our understanding

that typical changepoint-inducing events for sea levels, such as relocation of tide

gauges, repairs and/or changes in measuring equipment, or change in the elevation

due to natural disasters, would affect the mean level of sea level series the most while

having a lesser impact on long-term trends, variability, shape, and temporal correla-
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Map 2.5: Spatial location of the tide gauges where the consideration of extremal
index changed the estimated 50-year return sea level exceedances
from the median level by more than 70 cm (26 sites, dark blue),
between 30 and 70 cm (47 sites, blue), and less than 30 cm (227 sites,
light blue)

tion of sea levels. Although our model specification satisfactorily offers a good balance

between goodness-of-fit and parsimoniousness, one could consider a GEV model with

more complicated parameterization to capture more of the varying climate signals

in sea levels. Second, the performance of our GA could be further assessed under

more diverse simulation scenarios, including model mis-specification and different

data generating schemes, to provide more robust evidence for the effectiveness of

the GA method in different environments. Finally, our stationary conversion process

applied to hourly sea level series as illustrated in Section 2.5.2 is ad-hoc. Developing

an alternative procedure that reflects more diverse non-stationary features in the

hourly sea level data could be further considered.
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CHAPTER 3

WEEKLY MAXIMUM OZONE CONCENTRATIONS

3.1 Introduction

Extreme ground-level ozone pollution influences vast aspects of our lives, including hu-

man health, vegetation, and ecosystems. Unlike the naturally-occurring stratospheric

ozone that filters the Sun’s harmful radiation, ground-level ozone is a secondary pollu-

tant formed via chemical reactions between nitrogen oxides (NOx) and volatile organic

compounds (VOCs) under sunlight. Exposure to ground-level ozone along with other

air pollutants are associated with a higher risk of death from cardiopulmonary causes

(Jerrett et al., 2009), such as cardiovascular and respiratory diseases (Lim et al.,

2019) and neurological diseases (Zhao et al., 2021). Further, ozone pollution damages

vegetation and impacts agricultural production. For example, McGrath et al. (2015)

found that elevated ozone concentrations reduced maize and soybean productions in

the U.S. from the rain-fed fields by about 10% and 5% respectively, causing a total

loss of approximately $9 billion each year. In the United States, the Environmental

Protection Agency (EPA) sets the limit for ground-level ozone pollution along with

other airborne pollutants via the National Ambient Air Quality Standards (NAAQS).

As of 2015, the NAAQS regulates the daily maximum 8 hour average concentration

at a standard of 0.07 ppm for most regions in the U.S.

Many authors examined how ground-level ozone levels have been changing over
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time. To name a few, Jhun et al. (2015) found significant decreases in daytime ozone

concentrations in the U.S. during warm seasons (May–October) and at peak levels

(≥75-th percentile). But they also found significant increases at non-peak levels (<75-

th percentile) mostly due to increases during nighttime and cold seasons (November–

April). Simon et al. (2015) evaluated ozone trends across the U.S. and found decreas-

ing trends in the summer, less urbanized areas, and at peak levels (95-th percentiles),

whereas they found increasing trends in winter, more urbanized areas, and at 5-th

percentiles. They found decreased variability in overall ozone emission distribution.

Yan, Lin, and He (2018) also found that the U.S. daytime ozone during summer has

decreased from 1990 to 2014 due to reductions in anthropogenic emissions.

Although these authors found decreasing trends in the peak ozone levels, extreme

value methods should be used to accurately estimate the long-term trends in extreme

ozone. There are a few authors who applied extreme value methods to examine

extreme ozone concentrations at a local scale. Dupuis (2005) analyzed weekly max-

imum ozone from four locations in southern Ontario, Canada and found that the

area is projected to experience high ozone episodes (defined as ozone concentrations

exceeding 0.08 ppm) with 0.55 probability each year. Chan and So (2018) applied

their copula-based spatial generalized extreme value model to weekly maximum ozone

along with other airborne pollutants from Pearl River Delta region in China. Haz-

arika, Borah, and Prakash (2019) analyzed daily maximum ozone in Delhi, India using

generalized extreme value distribution.

At a regional scale, Shen, Mickley, and Gilleland (2016) developed a hybrid ex-

treme value model to examine how climate change influences the number of days with

high ozone concentrations (ozone episodes) in the U.S. They found that, assuming

constant anthropogenic emissions at the present level, there will be as much as
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3–9 more days of ozone episodes each year in the Northeastern, Midwestern, and

Southwestern U.S., and 0–2 days elsewhere by the 2050s. Phalitnonkiat et al. (2016)

analyzed 95-th percentile of the summertime ozone in the continental U.S. using

generalized Pareto distribution with Hill estimator. They found that although the

overall distributions of the extreme ozone in the Eastern U.S. have decreased in recent

years, their tails became heavier, suggesting there may be more intense extreme ozone

events in the future.

We aim to quantify long-term linear trends in U.S. county-level weekly maximum

ozone concentrations using extreme value methods. However, there are two critical

issues to consider to obtain accurate trend estimates. First, due to the events

inducing changes in the ozone concentration observations such as changes in observer,

instrument, measurement location, data collection method, etc., weekly maximum

ozone concentration series can contain inhomogeneous changes in their distribution.

If not appropriately considered in the modeling process, such changes could lead to

misleading results, erroneously concluding that the extreme ozone series has been

increasing over time although it has in fact been decreasing, or vice versa. The

times at which these changes occur are often undocumented and therefore need to

be estimated from the data. For this, we use a genetic algorithm (GA) to detect

changepoints in the extreme ozone concentrations. Second, many weekly maximum

ozone concentration time series often show long-memory autocorrelation, implying

that the autocorrelation of the weekly maximum ozone concentrations at two dis-

tant time points is not ignorable. The methods that do not effectively take such

long-memory autocorrelation into account could mistakenly detect spurious change-

points in the extreme ozone data, consequently resulting in inaccurate estimation of

long-term trends. For more accurate estimation of changepoints with long-memory
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autocorrelation present in weekly maximum ozone series, we extend the short-memory

copula-GEV likelihood (Zhu, Liu, and Lund, 2019) to a long-memory copula-GEV

likelihood, further developing a new GA-based changepoint detection method for an

autocorrelated extreme series with long memory.

The rest of this paper proceeds as follows. Section 3.2 describes the extreme

ozone concentration data set used in this study along with our data preprocessing

procedures. Section 3.3 develops our extreme value model for weekly maximum ozone

series with considerations for long-memory autocorrelation by incorporating the cop-

ula transformation and also illustrates the genetic algorithm for changepoint detection

in a long-memory autocorrelated block maximum series. Section 3.4 summarizes the

simulation study to assess the performance of our changepoint detection technique

under different levels of the long-memory autocorrelation. Section 3.5 illustrates

the application of our methods by making an in-depth exploration of the weekly

maximum ozone series from Clark County in Nevada and Doña Ana County in New

Mexico. Section 3.6 summates the long-term trend and return level analysis for the

U.S. county-level weekly maximum ozone data. In Section 3.7, we conclude with

further comments.

3.2 The Extreme Ozone Data

The EPA’s Air Quality System (AQS) offers ambient air sample data collected by

the EPA, state, local, and tribal air pollution control agencies. The AQS data

offers high frequency observations on various air pollutants, such as ozone, nitrogen

dioxide, PM 2.5, etc. We used hourly ozone concentration measurements to extract

weekly maximum ozone concentration series from 1980 to 2021. The AQS hourly
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ozone records, measured in ppm (parts-per-million), were downloaded from the EPA’s

website at https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw.

Extracting a county-level weekly maximum ozone concentration series from hourly

ozone series requires the following data preprocessing procedures. The AQS ozone

concentration observations are typically reported from multiple sites located in their

respective county. For an analysis of extreme ozone concentrations at a county level,

we need to combine ozone records from multiple sites to form one aggregated ozone

series as a representative of the county. To aggregate for a county, we computed the

mean of all non-missing hourly ozone observations at their measurement sites for each

hour. We then use this hourly ozone mean series to be the hourly ozone concentration

series for the county. Once an aggregated hourly series is obtained for each county,

we proceeded to the weekly maximum extraction. Specifically, a weekly maximum

was extracted only if the missing rate for the week is less than 15%. Otherwise, the

weekly maximum ozone was not extracted and we treated that week as missing. Once

a weekly maximum ozone concentration series was extracted for each of all available

counties, we consider only those counties with at least 780 weeks (≈ 15 years) of

non-missing weekly maxima and an overall missing rate of less than 30%.

The preprocessing procedures above selected 395 U.S. counties for our weekly

maximum ozone series analysis. Alaska, Hawaii, and other outlying U.S. territories

were not considered in this study. Map 3.1 depicts the spatial location of the selected

395 counties. The Southwestern and Northeastern U.S. are fairly well represented,

accounting for about 40% of the selected counties. Coastal counties in the South-

eastern U.S. are also well represented, providing sufficient coverage on that region.

However, counties in the Northwestern and Midwestern U.S. are sparsely represented.

Many non-coastal counties in the Southern U.S. are also not included in our study.
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Map 3.1: Spatial location of the selected 395 counties after data preprocessing

3.3 Methods

3.3.1 Long-memory copula-GEV likelihood

As an extreme value counterpart to the central limit theorem, the extreme value

theorem offers a limiting distribution for extreme statistics (cf. de Haan and Ferreira,

2006). Suppose X1, . . . , Xm are independent and identically distributed (IID) random

variables and Y(m) = max{X1, . . . , Xm} is the maximum statistic of these m random

variables. The extreme value theorem states that if the limiting distribution of Y(m)

exists after appropriate normalization, then it takes the following generalized extreme

value (GEV) distribution:

G(y) = exp

{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ
+

}
, (3.1)

where [y]+ = max{y, 0}. Here, µ ∈ (−∞,∞), σ ∈ (0,∞), and ξ ∈ (−∞,∞) are

GEV location, scale, and shape parameters, respectively.
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Extreme environmental time series studies often analyze a sequence of these block

maximum statistics {Y1, . . . , Yn} extracted from an initial environmental time series

{X1, . . . , Xm, . . . , X(n−1)m+1, . . . , XN} with N = nm. By the extreme value theorem,

the GEV distribution is an appropriate probability distribution to those maximum

statistics as long as the block size is set sufficiently large. For maximum likelihood

estimation with independent block maxima, the GEV log-likelihood function is ob-

tained by adding the logarithm of the marginal GEV probability density function

evaluated at each Yt. For an autocorrelated block maximum series, Zhu, Liu, and

Lund (2019) used a copula transformation to construct a likelihood function that

retains the GEV marginal distribution in each time t and short-memory autocor-

relation
∑∞

h=−∞ |ρ(h)| < ∞ appearing in a time series model such as ARMA(p, q).

However, when applied to a block maximum series with long-memory autocorrelation∑∞
h=−∞ |ρ(h)| =∞ as in ARFIMA(p, d, q), the short-memory copula-GEV likelihood

could produce biased model parameter estimates with underestimated standard errors

for the estimates.

To be specific, Zhu, Liu, and Lund (2019) constructed the short-memory copula-

GEV likelihood as follows. Suppose a base process {Z1, . . . , Zn} is a sequence of

stationary random variables with a standard normal marginal distribution function

Φ(·). For t = 1, . . . , n, define

Yt = G−1(Φ(Zt)), (3.2)

where G−1(·) is the inverse of the GEV distribution function. By the probability

integral transformation, Φ(Zt) follows a standard uniform distribution, which enforces

Yt via G−1(·) to marginally follow a GEV distribution with the same correlation

structure as Zt for each t (cf. Nelsen, 2006, pp. 14–24). They derived the joint
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density function of Y1, . . . , Yn using the Jacobian transformation as:

fY1,...,Yn(y1, . . . , yn) = fZ1,...,Zn

(
Φ−1(G(y1)), . . . ,Φ

−1(G(yn))
)
|J |,

where fZ1,...,Zn(·) is the multivariate normal probability density function of the au-

tocorrelated base process {Z1, . . . , Zn} and J is the Jacobian of the transformation

with

|J | =
n∏
t=1

∂Zt
∂Yt

=
n∏
t=1

∂Φ−1(G(Yt))

∂Yt
=

n∏
t=1

g(Yt)

φ(Φ−1(G(Yt)))
.

Here, g(·) is the GEV probability density function and φ(·) is the standard normal

probability density function. This method expresses the joint density function of

Y1, . . . , Yn as a multivariate normal distribution function (Gaussian copula) as a proxy

to characterize the correlation structure in Yt while keeping GEV marginal distribu-

tion. Zhu, Liu, and Lund (2019) also proved the consistency and asymptotic normality

of the maximum likelihood estimators for the short-memory copula-GEV likelihood

when the base process follows an autoregressive moving-average (ARMA) process.

Now, to include long-memory autocorrelation in block maximum series in the

modeling process, we develop the long-memory copula-GEV likelihood for a block

maximum series with long-memory autocorrelation. For this, we assume that the

base process {Z1, . . . , Zn} is a long-memory Gaussian process specified as the autore-

gressive fractionally integrated moving-average ARFIMA(p, d, q) model as follows:

φ(B)(1−B)dZt = θ(B)εt.

Here, φ(B) = 1 −
∑p

j=1 φjB
j is a causal p-th order AR polynomial with φj’s as AR

coefficients, θ(B) = 1 −
∑q

j=1 θjB
j is an invertible q-th order MA polynomial with
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θj’s as MA coefficients, B is a backshift operator defined as BZt = Zt−1, and {εt} is

a Gaussian white noise process with mean 0 and variance σ2
ε .

Extension of this copula-GEV likelihood to a long-memory process is not straight-

forward and poses some challenges. Notably, the parameter estimation for the copula-

GEV model with long-memory base process is much more computationally expensive

than the one for short-memory process, necessitating the use of a more efficient com-

puting algorithm. Our parameter estimation approach is illustrated in Section 3.3.4.

3.3.2 Non-stationarities with changepoints, trend, and periodicity

Changepoints, trends, and periodicities are important non-stationary features that

commonly appear in many environmental time series. Because models that ignore

these features could produce erroneous results, these non-stationary features must

be considered in the modeling process. Our long-memory copula-GEV likelihood

function is parameterized to capture the effects of changepoints and non-stationarity

to accurately estimate a long-term trend in an extreme value series with long-memory

autocorrelation.

The GEV location parameter for block maximum series {Y1, . . . , Yn} is parameter-

ized to include a mean shift term induced by changepoint events, a periodic function

composed of a sinusoidal wave with K(0) harmonics, and a long-term linear trend

term. To elaborate, if there are c changepoints at times τ1, . . . , τc, we model the

location parameter as

µt = β0 + δ
(0)
t +

K(0)∑
j=1

{
β2j−1 cos

(
2jπt

T

)
+ β2j sin

(
2jπt

T

)}
+ α

(
t

LT

)
. (3.3)

Here, T is the period for the block maximum series. The long-term linear trend
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parameter α is interpreted as the expected change in the block maximum series over

L years, because

E(Yt+LT )− E(Yt) =

[
µt+LT +

σt+LT
ξ

(Γ(1− ξ)− 1)

]
−
[
µt +

σt
ξ

(Γ(1− ξ)− 1)

]
= α,

if ξ < 1 and no changepoints have occurred between times t and t + LT . Similarly,

we model the GEV scale parameter as

lnσt = ω0 + δ
(1)
t +

K(1)∑
j=1

{
ω2j−1 cos

(
2jπt

T

)
+ ω2j sin

(
2jπt

T

)}
. (3.4)

The shifts in the location parameter µt and in the scale parameter σt are

δ
(s)
t =



0, if t = 1, . . . , τ1 − 1;

∆
(s)
1 , if t = τ1, . . . , τ2 − 1;

...

∆
(s)
c , if t = τc, . . . , n,

for s ∈ {0, 1}. We assume that the the GEV shape parameter ξ is constant, although

a more complex parameterization of ξ could be used, to lessen potential numerical

instability issues in its estimate (cf. Zhang, Zwiers, and Li, 2004; Rust, Maraun, and

Osborn, 2009).

Return levels for extreme environmental data form an important aspect of the

extreme value analysis in quantifying the future risk of extreme events. In the

stationary block maxima model, the z-year return level is the high quantile such that

each block maximum has probability 1/(Tz) of exceeding that quantile. However,

if a non-stationary time-dependent extreme value model is used, the probability of
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exceedance is no longer constant over time. Instead, the method of Parey et al. (2007)

and Parey, Hoang, and Dacunha-Castelle (2010) can be used to estimate return levels

for non-stationary block maximum series. This method interprets the return levels

as the value such that the expected number of exceedances during the given period is

one. Specifically, the z-year return level rz of a block maximum series is the solution

to the following non-linear equation:

1 =

tI+Tz−1∑
t=tI

(1−Gt(rz)),

where Gt(·) is the time-dependent GEV distribution function, which is expressed as

(3.1) with µt in (3.3) and σt in (3.4), and tI ≥ n is a predetermined initial time for

return levels. We use a grid search algorithm to numerically estimate rz.

3.3.3 Changepoint detection using a genetic algorithm

Many environmental time series feature changepoints for many reasons, including

instrument changes, location changes, changes in the data collection method, regime

shifts in local ecosystem, etc. Such changepoints, if not addressed properly, can

produce misleading results. However, detecting changepoints is a computationally ex-

pensive process. In an exhaustive search for optimal changepoints, there are
(
n−1
c

)
dif-

ferent configurations for c changepoints for a series with size n. With potential change-

point number c in {0, 1, . . . , n− 1}, there are 2n−1 distinctive changepoint configura-

tions to consider, a practically impossible task even with a moderately sized data set.

Due to this computational issue in changepoint detection, some past authors (cf.

Davis, Lee, and Rodriguez-Yam, 2006; Lu, Lund, and Lee, 2010; Li and Lund, 2012;

Lee, Li, and Lund, 2014; Hewaarachchi et al., 2017) used the genetic algorithm (GA),
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an evolutionary algorithm that effectively searches for an optimal solution over a

large parameter space using the principle of natural evolution: selection, crossover,

and mutation. Their GA methods often encode each changepoint configuration

(chromosome) as (c; τ1, . . . , τc), where c is the number of changepoints and τj is the

time at which the j-th changepoint occurs, and successfully found undocumented

changeppoints in climate and environmental time series.

For our long-memory copula-GEV model with a block maximum series, we imple-

ment the GA for changepoint detection in a similar manner as in Lee, Li, and Lund

(2014), except we directly apply the GA to the block maximum series without using a

reference series. Also, we set each generation to consist of 180 distinct chromosomes

and the mutation probability to 0.001. To improve the efficiency of the selection

process, we use the elitist selection (cf. Bhandari, Murthy, and Pal, 1996) so that

the two fittest chromosomes from a current generation are passed over to the next

generation without any alterations. These two chromosomes are also crossed with

each other and mutated with the same probability of mutation to create a new

chromosome, the third elite one to be passed over to next generation. If the GA

reaches the 200-th generation, we complete the GA and select the fittest chromosome

from all 200 generations as the GA estimated changepoint configuration for the block

maximum series.

To evaluate the model fitness of each chromosome, we use a penalized likelihood

approach with the minimum description length (MDL) as the fitness function for the

GA (cf. Davis, Lee, and Rodriguez-Yam, 2006; Lu, Lund, and Lee, 2010). However,

the MDL expression should consider our GEV model specification. For this, we denote

a vector of the GEV and ARFIMA parameters as
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η = (β0, . . . , β4, α,∆
(0)
1 , . . . ,∆(0)

c , ω0, . . . , ω4,∆
(1)
1 , . . . ,∆(1)

c , ξ, d, φ1, . . . , φp, θ1, . . . , θq)
T.

The MDL for the model fit with a chromosome (c; τ1, . . . , τc) is expressed as

MDL(η, c, τ1, . . . , τc) = −`opt(η|c; τ1, . . . , τc) + P (c; τ1, . . . , τc).

Here, `opt(η|c; τ1, . . . , τc) is the optimized value of the copula-GEV log-likelihood cal-

culated at the maximum likelihood estimates of the GEV and ARFIMA parameters η

for a given changepoint configuration (c; τ1, . . . , τc). Our penalty term P (c; τ1, . . . , τc)

for a changepoint configuration (c; τ1, . . . , τc) under our GEV model specification is

calculated as

P (c; τ1, . . . , τc) =
c+1∑
j=2

ln(τj − τj−1) + ln(c+ 1) +
c+1∑
j=2

ln τj,

where τc+1 = n + 1. In the first penalty term, the two shift parameters per each

changepoint (∆
(0)
j and ∆

(1)
j for j = 1, . . . , c) are collectively charged the penalty of∑c+1

j=2 ln(τj − τj−1), because these shift parameters are real-valued parameters to be

estimated over the j-th series segment {Yτj−1
, . . . , Yτj−1}. If there is at least one

missing observation in the j-th segment, then τj − τj−1 is replaced with the number

of non-missing observations in the segment. The second term denotes the penalty

for the number c of changepoints as an unknown integer-valued parameter. The

third term penalizes the changepoint times τ1, . . . , τc, because each τj is an unknown

integer-valued parameter bounded above by τj+1.

There is a non-ignorable risk of detecting spurious changepoints if even a short-

memory autocorrelation is present in data and changepoint methods do not consider

the autocorrelation (Tang and MacNeill, 1993). This spurious changepoint detection
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issue could be more prevalent in time series with long memory (Nunes, Kuan, and

Newbold, 1995; Kuan and Hsu, 1998; Krämer and Sibbertsen, 2002). In fact, Var-

neskov and Perron (2018) found that a short-memory based changepoint method tends

to overestimate the number of true changepoints when the method is applied to an

autocorrelated series with long memory. These findings indicate that if a block max-

imum series exhibits long-memory autocorrelation, changepoint methods that do not

appropriately consider long-memory autocorrelation could detect spurious change-

points. We explore this spurious detection issue in Section 3.4 with simulated data.

3.3.4 Numerical computation and implementation

Computation of the joint probability density function for an autocorrelated extreme

series with long memory can be computationally intensive even with a moderately

sized sample size n. The Durbin-Levinson algorithm or innovations algorithm (cf.

Brockwell and Davis, 2002, pp. 69–71), which have the numerical complexity O(n2)

for a linear stationary process, can be used to calculate the log-likelihood function

of a stationary Gaussian process. Whereas Zhu, Liu, and Lund (2019) considered

low-order ARMA(p, q) models as a base process in their methods, we consider the

ARFIMA(p, d, q) model to use for a long-memory extreme series. With our GA

using 200 × 180 evaluations of the log-likelihood function until termination, the

Durbin-Levinson algorithm is not desirable as long as a long-memory base process is

considered.

That said, we consider approximating the log-likelihood function of Z1, . . . , Zn

using the method developed by Chan and Palma (1998). Palma and Chan (1997) then

extended the method to deal with missing data. Their method uses an m-truncated

moving-average expansion of the ARFIMA process to approximate its likelihood
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function. Further, this algorithm has a numerical complexity of O(n × m2), where

m � n is a predetermined order for the moving-average truncation and does not

increase with sample size n. This approach is often more efficient than the Durbin-

Levinson algorithm (or other algorithms with comparable computational complexity,

such as the innovations algorithm) particularly for a large sample size as long as

m is set reasonably small. Technical details of this method are illustrated in the

supplementary materials. We apply this moving-average truncation to approximate

the log-likelihood function of a base process {Z1, . . . , Zn} and implement it in C++

to further improve the computation time.

Using the Kalman recursion, Chan and Palma (1998) and Palma and Chan (1997)

expressed the joint probability density function of {Z1, . . . , Zt} as:

fZ1,...,Zn(z1, . . . , zn) = (2π)−n/2

(
n∏
t=1

∆t

)−1/2
exp

{
−1

2

n∑
t=1

(zt − ẑt)2

∆t

}
,

where ẑt = E(zt|z1, . . . , zt−1) is the one-step ahead prediction of zt and ∆t = V ar(zt−

ẑt) is the one-step predictor error variance. If the changepoint number c and their time

locations τ1, . . . , τc are given, the log-likelihood function for the GEV and ARFIMA

parameters η is calculated by

`(η) = −n
2

ln(2π)− 1

2

n∑
t=1

ln ∆t −
1

2

n∑
t=1

(zt − ẑt)2

∆t

+
n∑
t=1

ln gt(yt)−
n∑
t=1

lnφ(Φ−1(Gt(yt))),

(3.5)

with an observed extreme series {y1, . . . , yn}. Here, zt = Φ−1(Gt(yt)) from (3.2).

We use a numerical optimizer to find the maximum likelihood estimates for η by

maximizing the log-likelihood function.
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However, the maximum likelihood estimator of the fractional differencing param-

eter d in the ARFIMA(p, d, q) model is often negatively biased, particularly when AR

or MA components are involved (Smith, Taylor, and Yadav, 1997). Underestimation

of d can produce biased standard errors of the parameter estimates which in turn

would make the asymptotic confidence intervals based on these biased standard errors

fail to maintain the intended coverage probability. Therefore, we use a bias-corrected

and accelerated (BCa) bootstrap method (Efron, 1987) with moving block resampling

(Künsch, 1989) to obtain more realistic standard errors and confidence intervals for

the maximum likelihood estimates of the GEV and ARFIMA parameters η and return

levels rz.

3.4 A Simulation Study

Our simulation study evaluates the effect of long-memory autocorrelation in block

maximum series on changepoint detection by assessing the performance of the long-

memory copula-GEV likelihood in Section 3.3.1 under different long-memory auto-

correlation settings. To reflect realistic features in a block maximum series with

long-memory autocorrelation, we generate a simulated series from an autocorrelated

GEV model based on the weekly maximum ozone series of Clark County in Nevada.

The Clark County GEV model is discussed in detail in the next section. Two

different changepoint scenarios are considered: no changepoints (Scenario A) and

two changepoints (Scenario B). Scenario A estimates the false positive rates of the

GA with long-memory copula-GEV likelihood when no changepoints are assumed.

The true positive rates for the long-memory copula-GEV likelihood are estimated in

Scenario B under a two-changepoint setting.
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The data generation scheme consists of the following two stages. In the first stage,

we generate a stationary standard normal ARIFIMA(0, d, 1) base process {Z1, . . . , Zn}

with n = 1825 (≈ 35 years) under the four different long-memory autocorrelation

cases: (a) (d = 0.1, θ = 0) for a weak long-memory autocorrelation, (b) (d = 0.25, θ =

0) for moderate long-memory autocorrelation, (c) (d = 0.4, θ = 0) for a strong long-

memory autocorrelation, and (d) (d = 0.4, θ = 0.4) for a case where a strong long-

memory autocorrelation is present with a moderate short-memory moving-average

autocorrelation. We note that for the copula-GEV model in Section 3.3.1, the white

noise variance for {Zt} was parameterized so that the base process has a unit variance.

In the second stage, a long-memory autocorrelated copula-GEV series {Y1, . . . , Yn}

is obtained by the transformation Yt = G−1t (Φ(Zt)) in (3.2) with the following non-

stationary GEV parameters:

µt = β0 + δ
(0)
t − 0.017 cos

(
2πt

T

)
− 0.001 sin

(
2πt

T

)
− 0.002 cos

(
2πt

T/2

)
+ 0.01

(
t

100T

)
,

lnσt = ω0 + δ
(1)
t − 0.28 cos

(
2πt

T

)
− 0.08 sin

(
2πt

T

)
− 0.04 cos

(
2πt

T/2

)
+ 0.05 sin

(
2πt

T/2

)
,

and ξ = −0.1. Here, t denotes time in week and T = 365.25/7 is selected for the

periodicity in weekly maximum ozone series. The shift terms for location and scale

parameters are set as follows. For Scenario A, we set β0 = 0.05, ω0 = −5.0, and

δ
(0)
t = δ

(1)
t = 0. For Scenario B, we set β0 = 0.07, ω0 = −4.0, and assume two

changepoints at t ∈ {100, 600} with their associated location and scale shifts as

δ
(0)
t =


0, if t = 1, . . . , 99;

−0.015, if t = 100, . . . , 599;

−0.020, if t = 600, . . . , 1825,

δ
(1)
t =


0, if t = 1, . . . , 99;

−0.8, if t = 100, . . . , 599;

−1.4, if t = 600, . . . , 1825.



63

Figure 3.1 shows generated ARFIMA copula-GEV series for each of the four differ-

ent autocorrelation cases under Scenario A (no changepoints) and Scenario B (two

changepoints) with the true changepoint times displayed by purple vertical lines.

As expected, the generated log-memory copula-GEV series could exhibit spurious

changepoints more often with larger d.

For each generated ARFIMA copula-GEV series, we estimate the number of

changepoints and their associated time locations via the GA. To understand how

long-memory autocorrelation in the generated ARFIMA coupla-GEV series affects the

accuracy of changepoint detection, we compare the following three different autocor-

relation models: our long-memory ARFIMA copula-GEV model, the short-memory

AR(1) copula-GEV model in Zhu, Liu, and Lund (2019), and the autocorrelation-

ignored copula-GEV model.

Table 3.1 shows the estimated number of changepoints under Scenario A (no

changepoints). When a copula-GEV series features weak long-memory autocorrela-

tion with d = 0.1, the GAs using the autocorrelated ARFIMA and AR(1) copula-GEV

models perform comparably, correctly identifying no changepoints 96–97% of the

times. As d gets larger, however, the AR(1) copula-GEV GA method produces a

higher false positive rate, detecting spurious changepoints more frequently. We find

that the ARFIMA copula-GEV GA method performs well across all four cases, con-

sistently maintaining 92–99% accuracy. On the contrary, the autocorrelation-ignored

copula-GEV GA method performs the worst, detecting a large number of spurious

changepoints with larger d.

Table 3.2 summarizes the estimated number of changepoints for the Scenario B

(two changepoints). As in Scenario A, both long-memory and short-memory GAs

perform similarly when the long-memory autocorrelation is weak with d = 0.1,
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Figure 3.1: Autocorrelated copula-GEV series generated with four different
autocorrelation cases under Scenario A (left: no changepoints) and
Scenario B (right: two changepoints)
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Table 3.1: GA detection summary for three copula-GEV models on Scenario A

Case Base process ¯̂c ĉ = 0 ĉ = 1 ĉ = 2 ĉ = 3 ĉ = 4 ĉ = 5+

d = 0.1
θ = 0

ARFIMA(0, d, 0) 0.04 96 4 0 0 0 0
AR(1) 0.03 97 3 0 0 0 0

Autocorr. Ignored 0.15 86 13 1 0 0 0

d = 0.25
θ = 0

ARFIMA(0, d, 0) 0.01 99 1 0 0 0 0
AR(1) 0.44 69 18 13 0 0 0

Autocorr. Ignored 1.60 18 29 34 13 6 0

d = 0.4
θ = 0

ARFIMA(0, d, 0) 0.08 92 8 0 0 0 0
AR(1) 1.39 25 29 30 14 2 0

Autocorr. Ignored 6.91 0 2 2 2 8 86

d = 0.4
θ = 0.4

ARFIMA(0, d, 1) 0.04 96 4 0 0 0 0
AR(1) 2.26 7 20 31 28 10 4

Autocorr. Ignored 2.36 5 19 38 20 10 8

Table 3.2: GA detection summary for three copula-GEV models on Scenario B

Case Base process ¯̂c ĉ ≤ 1 ĉ = 2 ĉ = 3 ĉ = 4 ĉ = 5 ĉ = 6+

d = 0.1
θ = 0

ARFIMA(0, d, 0) 2.01 0 99 1 0 0 0
AR(1) 2.03 0 97 3 0 0 0

Autocorr. Ignored 2.15 0 86 13 1 0 0

d = 0.25
θ = 0

ARFIMA(0, d, 0) 2.01 0 99 1 0 0 0
AR(1) 2.44 0 67 24 7 2 0

Autocorr. Ignored 3.45 0 21 38 23 11 7

d = 0.4
θ = 0

ARFIMA(0, d, 0) 2.01 0 99 1 0 0 0
AR(1) 3.30 0 25 41 19 11 4

Autocorr. Ignored 7.59 0 2 1 6 8 83

d = 0.4
θ = 0.4

ARFIMA(0, d, 1) 2.01 0 99 1 0 0 0
AR(1) 3.71 0 15 37 23 15 10

Autocorr. Ignored 4.11 0 9 30 20 26 15
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correctly identifying two changepoints in nearly all repetitions. However, as the

long-memory autocorrelation in a simulated copula-GEV series gets stronger, the

AR(1) GA substantially overestimates c. We find that our ARFIMA copula-GEV

GA performs very well in all cases, consistently attaining 99% accuracy in identifying

two changepoints. Along with the results from Scenario A, this finding suggests

that the long-memory copula-GEV likelihood should be used to accurately detect

changepoints in autocorrelated copula-GEV series with long memory.

3.5 Case Study Analysis

This section illustrates our methods by analyzing two county-level weekly maximum

ozone concentration series in Clark County, Nevada and Doña Ana County, New

Mexico. Clark County is an urban county where most of its residents live in the Las

Vegas area, one of the fastest growing U.S. cities in the last few decades. Doña Ana

County is adjacent to El Paso, Texas in the U.S. and Ciudad Juárez in Mexico, a

region where air pollution is of particular concern due to its frequent exceedance of

the NAAQS standards and the trans-boundary flow of pollutants between the U.S.

and Mexico (cf. Shi, Fernando, and Yang, 2009).

We apply the GA method with the long-memory copula-GEV likelihood, as il-

lustrated in Section 3.3.1, to the weekly maximum series of these two counties. We

parameterize the GEV location and scale parameters as described in Section 3.3.2 to

include a periodic functions with two harmonics (K(0) = K(1) = 2). The period of

each series is selected to be T = 365.25/7 to explain annual cycles in the extreme ozone

series. The long-term linear trend α is posited to represent the expected change in

the weekly maxima over L = 100 years. In addition, our preliminary analysis found

long-memory autocorrelation characteristics with sample autocorrelations decaying
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slowly and short-memory autocorrelation features with week-to-week autocorrela-

tions. Therefore, we consider the ARFIMA(0, d, 1) model to characterize long and

short memory autocorrelations present in weekly maximum ozone series. Specifically,

the differencing parameter d captures long-memory autocorrelation and the first-order

MA parameter θ models short-memory autocorrelation. Although a higher order for

AR and MA components can be considered, we found the ARFIMA(0, d, 1) model to

offer a good balance between parsimony and model complexity in characterizing the

long and short memory autocorrelations in weekly maximum ozone series.

Now, we estimate changeppoints in the weekly maximum ozone series. For the

Clark County series, the GA method estimates two changepoints at the 18-th week

of 1982 and 40-th week of 1991. Using these two changepoints, we fit the long-

memory copula-GEV model with an ARFIMA(0, d, 1) base process using the Kalman

truncation with m = 52. The standard errors of the GEV and ARFIMA parameter

estimates are calculated using the moving block bootstrap of Künsch (1989) with a

block size of 157 (≈ 3 years). Table 3.3 summarizes the GEV and ARFIMA model

parameter estimates for the Clark County weekly maximum ozone series along with

their corresponding bootstrap standard errors. The fractional differencing parameter

d is estimated to be 0.396, indicating that the Clark County series exhibits strong

long-memory autocorrelation. Our estimate for the long-term linear trend α is 0.019

ppm century−1 with a 95% BCa bootstrap confidence interval of (0.011, 0.034). This

result suggests that the weekly maximum ozone series has been significantly increasing

over time in Clark County.

For the Doña Ana County weekly maximum ozone series, the GA method detects

four changepoints at the 17-th week of 1981, 28-th week of 1985, 32-nd week of 1987,

and 14-th week of 1997. Using these four GA estimated changepoints, we fit the long-
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Table 3.3: Estimated GEV and ARFIMA parameters and their associated boot-
strap standard errors for the weekly maximum ozone series in Clark
County (units: ppm for β’s and ∆’s; ppm century–1 for α)

Parameters Estimates (SE) Parameters Estimates (SE)
β0 0.0711 (0.0023) ω0 -3.9846 (0.0961)
β1 -0.0170 (0.0009) ω1 -0.2978 (0.0354)
β2 -0.0003 (0.0004) ω2 -0.0768 (0.0236)
β3 -0.0019 (0.0002) ω3 -0.0534 (0.0239)
β4 0.0003 (0.0003) ω4 0.0528 (0.0290)

∆
(0)
1 -0.0144 (0.0028) ∆

(1)
1 -0.7869 (0.0987)

∆
(0)
2 -0.0206 (0.0028) ∆

(1)
2 -1.3552 (0.0992)

α 0.0191 (0.0066) d 0.3957 (0.0404)
ξ -0.1189 (0.0161) θ 0.0561 (0.0625)

Table 3.4: Estimated GEV and ARFIMA parameters and their associated boot-
strap standard errors for the weekly maximum ozone series in Doña
Ana County (units: ppm for β’s and ∆’s; ppm century–1 for α)

Parameters Estimates (SE) Parameters Estimates (SE)
β0 0.0500 (0.0021) ω0 -4.1648 (0.0786)
β1 -0.0122 (0.0003) ω1 -0.3095 (0.0354)
β2 -0.0002 (0.0002) ω2 -0.1649 (0.0264)
β3 -0.0022 (0.0003) ω3 -0.0777 (0.0221)
β4 0.0005 (0.0002) ω4 0.0370 (0.0254)

∆
(0)
1 0.0053 (0.0021) ∆

(1)
1 -0.7486 (0.0776)

∆
(0)
2 0.0048 (0.0026) ∆

(1)
2 -0.2163 (0.0859)

∆
(0)
3 0.0096 (0.0026) ∆

(1)
3 -0.6877 (0.0858)

∆
(0)
4 0.0082 (0.0038) ∆

(1)
4 -1.1221 (0.0868)

α -0.0043 (0.0120) d 0.2034 (0.0315)
ξ -0.1780 (0.0182) θ 0.0450 (0.0267)
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Figure 3.2: Estimated trend lines for the weekly maximum ozone series in Clark
County (top) and Doña Ana County (bottom) (blue solid lines, the
long-memory copula-GEV trend with corresponding GA estimated
changepoint times; red solid line, the long-memory copula-GEV
trend without allowing changepoints)

memory copula-GEV model to the Doña Ana County series. The estimated model

parameters along with their corresponding bootstrap standard errors are summarized

in Table 3.4. The long-memory parameter d is estimated to be 0.203, indicating

that there exists moderately persisting long-memory autocorrelation. The long-term

linear trend α is estimated to be −0.004 ppm century−1 with a 95% BCa bootstrap

confidence interval of (−0.024, 0.024), showing an insignificant long-term trend.

To demonstrate the necessity of considering changepoints in extreme ozone anal-

ysis, we now compare the estimated trend lines from the long-memory copula-GEV

model with changepoints considered and with changepoints ignored. Figure 3.2 shows

the time plots of the Clark County and Doña Ana County weekly maximum ozone
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series with their corresponding GA estimated changepoints denoted in purple vertical

lines. The estimated long-term linear trends with GA changepoints considered and

with changepoints ignored are displayed in blue and red solid lines respectively for

each series. The estimated trend line with changepoints appears to better explain

long-term trend in the series than the trend line estimated with changepoints ignored.

Further, the MDL is substantially improved when changepoints were considered for

both series. To elaborate, the long-memory copula-GEV model with changepoints

ignored returned the MDL of −9774.947 for the Clark County series and −9560.231

for the Doña Ana County series, whereas the long-memory copula-GEV model with

GA changepoints yielded the MDL of −9869.718 and −9745.098, respectively. These

results suggest that consideration of changepoints could significantly improve a model

fit for the weekly maximum ozone series.

Table 3.5: The MDL and estimated long-term trend α with 95% BCa bootstrap
confidence interval (unit: ppm century–1 for α) from three autocorre-
lated copula-GEV models considering changepoints for Clark County
and Doña Ana County

Clark County Doña Ana County
MDL Long-term trend MDL Long-term trend

ARFIMA(0, d, 1) -9869.718
0.0191

(0.0110, 0.0339)
-9745.098

0.0043
(-0.0244, 0.0238)

AR(1) -9819.809
-0.0060

(-0.0126, 0.0016)
-9725.684

0.0062
(-0.0132, 0.0356)

Autocorr. Ignored -7717.019
-0.0055

(-0.0134, 0.0008)
-7716.396

-0.0280
(-0.0427, -0.0030)

We revisit the three different autocorrelation models in Section 3.4 and com-

pare their performances with Clark County and Dona Ana County. For the Clark

County series, the AR(1) copula-GEV GA estimates three changepoints and the

autocorrelation-ignored GA estimates five changepoints. For the Doña Ana County
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series, the AR copula-GEV GA estimates five changepoints and the autocorrelation-

ignored GA estimates six changepoints. Table 3.5 summarizes the MDL and the

estimated long-term linear trends from the three autocorrelated GEV models with

their corresponding GA changepoints. For both series, the MDL from the ARFIMA

copula-GEV model is the most desirable, suggesting that the copula-GEV model

with an ARFIMA(0, d, 1) base process offers a better fit to those series than the

other two copula-GEV models. Combined with the earlier finding that both extreme

ozone series exhibit moderate to strong long-memory autocorrelation, these results

suggest that additional changepoints estimated by the AR copula-GEV GA and

autocorrelation-ignored GA are likely to be spurious, consequently suggesting that

the estimated trends from these two copula-GEV models are likely inaccurate. These

findings support our claim that the long-memory copula-GEV model should be used

to analyze a weekly maximum ozone series with long-memory autocorrelation.

-2 0 2 4 6 8

0
5

10
15

Gumbel-Scaled QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

-2 0 2 4 6 8

-2
0

2
4

6
8

10

Gumbel-Scaled QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3.3: Gumbel-scaled quantile-quantile plots for the ARFIMA copula-
GEV model with corresponding GA estimated changepoints consid-
ered for the weekly maximum ozone series in Clark County (left)
and Doña Ana County (right)
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Goodness-of-fit procedures for the copula-GEV model are performed to assess if

the ARFIMA copula-GEV model with GA changepoints is an appropriate model to

the Clark County and Doña Ana County series. Figure 3.3 shows the Gumbel-scaled

quantile-quantile plots for the ARFIMA copula-GEV model to both series with their

corresponding GA changepoints. Overall, the ARFIMA copula-GEV model with

GA changepoints is a reasonable fit to the weekly maximum ozone series in both

counties, because most sample quantiles match with their theoretical quantiles and

only a very small portion (< 0.4%) of the sample quantiles is greater than their

theoretical counterparts in the upper tail.
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Figure 3.4: Normal quantile-quantile plots for the estimated white noise process
for weekly maximum ozone series in Clark County (left) and Doña
Ana County (right)

Next, we assess our time series model choice for the base process {Zt}. If the

ARFIMA(0, d, 1) model adequately characterizes the long-memory autocorrelation in

a weekly maximum ozone series, the estimated white noise process {ε̂t} should be

approximately normal with zero mean and nearly uncorrelated. Figure 3.4 shows
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the normal quantile-quantile plots for the estimated white noise processes, showing

that {ε̂t} appears to be approximately normal for the weekly maximum ozone series

in Clark County and Doña Ana County, with only a small portion (< 0.2%) of the

sample quantiles indicating slight heavy tails. The sample autocorrelations of the

estimated white noise process {ε̂t} are shown in Figure 3.5. The autocorrelations

are fairly weak over all the lags, except a very small negative lag-1 autocorrelation

for the Clark County series. This indicates that the ARFIMA(0, d, 1) model is an

effective choice for the long-memory autocorrelation in the Clark County and Doña

Ana County extreme ozone series without a serious issue for the model fit.
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Figure 3.5: Sample autocorrelation function of the estimated white noise pro-
cess for the weekly maximum ozone series in Clark County (top)
and Doña Ana County (bottom)
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We now estimate the 5-, 10-, and 20-year return levels for the weekly maximum

ozone concentrations in Clark County and Doña Ana County. We selected the initial

period for return levels tI to be the first week of 2023, so that the z-year return level

is interpreted as the lowest weekly maxima that is expected to be exceeded once in

a z-year period starting from 2023. We then calculated 95% confidence intervals for

return level estimates using a BCa bootstrap method with moving-block resampling

and delete-1 jackknife. Table 3.6 summarizes the estimated weekly maximum ozone

return levels and their 95% BCa bootstrap confidence intervals. Weekly maximum

ozone concentrations in Clark and Doña Ana Counties are expected to exceed 0.08–

0.10 ppm at least once in 5–10 years. With the EPA recommended threshold for

ozone pollution being 0.07 ppm, we project that both counties are under a risk of

unhealthy levels of extreme ozone events in the near future.

Table 3.6: Weekly maximum ozone return level and their 95% BCa bootstrap
confidence intervals in parentheses for Clark County and Doña Ana
County (unit: ppm)

Return level Clark County Doña Ana County
r5 0.0943 (0.0874, 0.1000) 0.0862 (0.0826, 0.0911)
r10 0.0973 (0.0900, 0.1037) 0.0882 (0.0841, 0.0938)
r20 0.1007 (0.0927, 0.1082) 0.0899 (0.0847, 0.0966)

3.6 U.S. Extreme Ozone Long-term Trends

Our methods were applied to the weekly maximum ozone concentration series at

all 395 counties selected for this study. The GA method with our long-memory

copula-GEV likelihood estimated no changepoints in 112 counties (28.35%), one

changepoint in 171 counties (43.29%), two changepoints in 84 counties (21.27%),

and three changepoints in 18 counties (4.56%), and four or more changepoints in 10
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counties (2.53%) with a mean of 1.109 changepoints. Although many counties in

the Midwestern and Northeastern U.S. have experienced no changepoints, nearly all

coastal counties have had at least one changepoint. The GA using short-memory

AR(1) copula-GEV likelihood and autocorrelation-ignored copula-GEV likelihood

were also applied for comparison purposes. The short-memory copula-GEV GA

detected a mean of 1.828 changepoints, and the autocorrelation-ignored GA found

on average 2.851 changepoints across all 395 counties. The summary of results from

these three GAs are in the supplementary materials.

0.10

0.20

0.30

0.40

Estimated d

Map 3.2: Spatial patterns of the long-memory parameter estimates in the
ARFIMA copula-GEV model

With the changepoints estimated by the long-memory copula-GEV GA, we esti-

mate the GEV and ARFIMA parameters by maximizing the long-memory copula-

GEV likelihood in (3.5) for all weekly maximum series in the selected 395 counties.

The maximum likelihood estimates of the long-memory parameter d range from 0.009
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to 0.475 with a median of 0.332. Map 3.2 depicts a spatial map of these long-memory

parameter estimates. Although the weekly maximum ozone series overall exhibit

moderate to strong long-memory autocorrelation, we find different patterns across

the regions. For instance, most counties in the Gulf Coast show relatively weak

long-memory autocorrelation with most d estimates between 0.1 and 0.2. However,

those counties located in the Northeastern U.S. and southern California exhibit the

strongest long-memory autocorrelation with the estimated d around 0.4. Because the

changepoint methods based on the short-memory or autocorrelation-ignored copula-

GEV likelihood could find spurious changepoints when the long-memory autocorrela-

tion is strong, our results on the d estimates can be informative for identifying those

counties with spurious changepoints and inaccurate long-term trend estimates.
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Figure 3.6: A scatter plot of the estimated long-term trends with changepoints
considered against the estimated trends with changepoints ignored
for the 283 counties with at least one GA estimated changepoint
(unit: ppm century–1)
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We now examine how the consideration of changepoints influences the long-term

trend estimates in U.S. weekly maximum ozone series. When changepoints are not

considered in the modeling process, the long-term trend estimates across all 395

counties have a mean of 0.020 ppm century−1 and a standard deviation of 0.024

ppm century−1. However, our trend estimates with changepoint consideration have

a mean of 0.009 ppm century−1 and a standard deviation of 0.025 ppm century−1,

showing that the consideration of changepoints has reduced the average estimated

trends. Figure 3.6 shows a scatter plot of the long-term trends estimated with and

without changepoint consideration for the 283 counties that have at least one GA

estimated changepoint. Further, it was observed that about a third of the counties had

their estimated trends change signs once changepoints were considered. This finding

supports our claim that changepoints must be considered to accurately quantify long-

term trends in weekly maximum ozone concentrations.

-0.040

0.000

0.040

Estimated α

Map 3.3: Spatial map of the estimated long-term trends in U.S. weekly maxi-
mum ozone concentrations (unit: ppm century–1)
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Map 3.4: Significance map of the estimated U.S. long-term trends based on
their 95% BCa bootstrap confidence intervals. The U.S. counties are
colored with red if their estimated long-term trends are significantly
larger than zero, light red if not significantly different from zero but
positive, light blue if not significantly different from zero but negative,
and blue if significantly smaller than zero.

Map 3.3 shows a geographical map of the estimated long-term trends from U.S.

weekly maximum ozone series. Significance of the all long-term trend estimates based

on their 95% BCa bootstrap confidence intervals is displayed in Map 3.4. Overall,

the weekly maximum ozone concentrations in the Midwestern and Northeastern U.S.

have significantly increased over time. Nearly all counties in California and Nevada

also show increasing trends, with many of these trends being statistically significant.

On the contrast, many counties in the southern parts of Wyoming and South Dakota,

the Gulf Coast, Southeastern U.S., and U.S.-Mexico border show insignificantly de-

creasing trends.
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Lastly, we estimate the weekly maximum ozone concentration 10-year return level

r10 for all 395 counties and summarize the results in Map 3.5. Many counties in the

Northeastern U.S. and coastal counties in Texas and Louisiana appear to be under

the highest risk of future extreme ozone events with their weekly maximum ozone

expected to exceed over 0.15 ppm, more than two times higher than the EPA threshold

0.07 ppm, at least once between 2023 and 2032. On the other hand, many counties in

Florida, Arizona, and Wyoming along with the Californian coasts and U.S.-Canada

border have relatively lower estimated 10-year return levels with extreme ozone events

projected to be around 0.07–0.10 ppm at least once in the 10-year period. Lastly,

although the estimated r10 varies greatly across the regions, ranging from 0.066 to

0.195 ppm, we find that almost all counties are projected to experience unhealthy

level of ozone concentrations in the near future.
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Map 3.5: The estimated 10-year return ozone concentration level r10 (unit:
ppm)
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3.7 Closing Comments

In this paper, we proposed extending the short-memory copula-GEV likelihood de-

veloped by Zhu, Liu, and Lund (2019) to block maximum series with long-memory

autocorrelation to be used in the genetic algorithm for changepoint detection in

long-memory autocorrelated block maximum series. Our extension allows the auto-

correlation in block maximum series to be modeled using a long-memory time series

model, such as ARFIMA(p, d, q) model. In a simulation study, we showed that if a

block maximum series has long-memory autocorrelation, GA methods for changepoint

detection without long-memory consideration tend to detect spurious changepoints.

On the other hand, our GA method using long-memory copula-GEV likelihood per-

formed quite well in correctly identifying changepoints (or lack thereof) in all levels of

long-memory autocorrelation considered. In a case study with applications to weekly

maximum ozone concentrations from Clark County in Nevada and Doña Ana County

in New Mexico, our long-memory copula-GEV model offers a reasonable fit to the

extreme ozone data in those counties as long as changepoints are considered.

We find that weekly maximum ozone concentrations have increased in many parts

of the contiguous U.S., particularly the Northeastern, Midwestern, and Southwestern

U.S. However, many coastal counties in the Southeastern U.S. had their weekly

maximum ozone concentrations decrease over time. These are overall consistent

with the findings of Phalitnonkiat et al. (2016) and Shen, Mickley, and Gilleland

(2016). Lastly, increasing trends were found in most of California, metropolitan areas

of Chicago and Denver, and coastal regions in New England. We note that these

areas are also designated by the EPA to have not met the NAAQS ozone emissions

requirements (“nonattainment areas”) in recent years (US EPA, 2022).
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Our GA method detected at least one changepoint in 283 counties (71.65% of 395

counties) and consideration of these GA estimated changepoints greatly impacted the

long-term trend estimates in many of these counties. Map 3.6 shows the location of

counties where the consideration of changepoints had substantial impacts to their

long-term trend estimates. Of those 283 counties with at least one changepoint,

27.56% (78 counties) had their trend estimates changed by more than 0.03 ppm

century−1. Most of these counties appear to be fairly scattered around the country,

except for a cluster around the Texas-Louisiana coastline.

Map 3.6: Counties where the consideration of changepoints changed the long-
term trend estimates by more than 0.03 ppm century–1 (red) and less
than 0.03 ppm century–1 (blue)

The copula-GEV likelihood approach requires an appropriate time series model

to be determined for base process. Although the ARFIMA(p, d, q) model was used

to illustrate our long-memory copula-GEV likelihood, a different long-memory time

series model can be considered. In addition, although we applied our methods to

weekly maximum ozone concentrations, other environmental extremes with long-
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memory autocorrelation can be analyzed using the long-memory copula-GEV like-

lihood. Lastly, our method could be further modified for other long-memory autocor-

related environmental series (not necessarily extremes) by substituting the marginal

GEV distribution in (3.2) with another suitable probability distribution.

Although many areas in the contiguous U.S. were well represented in our study,

some portions of the U.S. were sparsely represented due to limited data availability,

particularly the Northwestern and Midwestern U.S. This limited spatial coverage

restricts the scope of our analysis. It would be possible to have improved coverage in

currently underrepresented regions when more data becomes available in the future.
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CHAPTER 4

CONCLUDING REMARKS

4.1 Summary Discussion

This dissertation rigorously estimated long-term trends and return levels of two differ-

ent extreme environmental events: monthly maximum coastal sea levels and weekly

maximum ozone concentrations. Due to changes in measuring location, instrument,

observer, sampling protocol, local ecosystem etc., these extreme environmental data

were found to often contain undocumented inhomogenous shifts in their distributions.

For accurate modeling of these extreme environmental events, we used a genetic

algorithm to estimate the number and times of these changepoints from the data.

These GA estimated changepoints were then used to quantify their long-term trends

and return levels.

In Chapter 2, we examined monthly maximum sea levels from coastal regions

around the world. Although the monthly maximum sea level series show weak auto-

correlation in most locations, raw hourly sea level series were found to exhibit strong

and long-lasting autocorrelation. In this case, naiv̈e application of extreme value

methods with independence assumption could result in substantial estimation bias

in parameter estimates. Therefore, we incorporated the extremal index parameter,

measuring the strength of autocorrelation in the raw hourly series, in our extreme

value model to correct the estimation bias in parameter estimates. Our analysis
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found that the consideration of changepoints changed the estimated linear trends of

89 tide gauges (approximately 30% of tide gauges considered) by more than 20 cm

century−1. The consideration of autocorrelation via the incorporation of extremal

index substantially influenced return level estimates of 73 tide gauges (approximately

24% of tide gauges considered) by changing their estimated 50-year return levels by

more than 30 cm.

In Chapter 3, we analyzed weekly maximum ozone concentrations from the con-

tiguous United States at a county level. Unlike monthly maximum sea level series

which exhibited weak autocorrelation in most locations, many weekly maximum

ozone series were found to exhibit long-memory autocorrelation, requiring a new

model for long-memory extreme value series. To effectively consider this long-memory

autocorrelation in the modeling process, we extended the short-memory copula-GEV

likelihood developed by Zhu, Liu, and Lund (2019) to a long-memory copula-GEV

likelihood. We then used this long-memory copula-GEV likelihood to further develop

a genetic algorithm based changepoint detection method for extreme value series

with long-memory autocorrelation. In a simulation study, we found that our GA

method with long-memory copula-GEV likelihood performs well in correctly identify-

ing changepoint numbers in block maximum series with varying levels of long-memory

autocorrelation, whereas the method without long-memory consideration were found

to overestimate changepoint numbers in the presence of long-memory autocorrelation.

Next, we used our GA method with long-memory copula-GEV likelihood to accurately

estimate the number and times of changepoints in the weekly maximum ozone series.

Overall increasing trends were found in weekly maximum ozone concentrations across

many regions of the U.S. We also found that the consideration of changepoints in the

modeling process changed long-term trend estimates of 78 counties (approximately
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20% of counties considered) by more than 0.03 ppm century−1. Lastly, our analysis

revealed that nearly all counties are projected to experience unhealthy levels of ozone

concentrations in the near future, exceeding the EPA recommended threshold of 0.07

ppm for ozone pollution.

4.2 Future Work

There are several future research topics that can arise from our work in this disser-

tation. First, the effectiveness of our GA methods for changepoint detection were

assessed via simulation study under the assumption that model specification was

done correctly. It would be interesting to assess the performance of our methods

under simulation scenarios when the model is mis-specified.

Second, we focused on analyzing environmental extremes at an individual site

level and our methods were subsequently developed to address issues arising from

temporal correlation in the extreme value series. Extension of our methods to jointly

model environmental extremes at multiple sites by incorporating a spatiotemporal

method can be considered. This extension could make spatially out-of-sample fore-

casting possible and offer useful insights on possible geographical effects on extreme

environmental events.

Third, extending our methods to extreme value series with clumping-at-zero can be

beneficial because this extension could make our methods applicable to more diverse

settings where zero-valued observations are prevalent. A discrete-continuous mixture

model (cf. Weglarczyk, Strupczewski, and Singh, 2005; Couturier and Victoria-Feser,

2010; Hautsch, Malec, and Schienle, 2014; Harvey and Ito, 2020) can be considered in

modifying our extreme value methods to allow for frequent zero-valued observations.
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Last, the main focus of this dissertation was the analysis of extreme environmental

data using statistical methods based on extreme value theory. Due to the interdisci-

plinary nature of environmental science, it would be interesting to consider collaborat-

ing with researchers from other disciplines for future studies. For extreme sea levels,

some possible interdisciplinary collaborations could be projecting future extreme sea

level events based on different climate change scenarios, examining effectiveness and

making comparisons of different greenhouse gas reduction policies on extreme sea

level rise, and quantifying economic or environmental damages of projected future

extreme sea level events. For extreme ozone concentrations, possible interdisciplinary

collaborations include considering additional air pollutants as covariates for ground-

level ozone formation in the modeling process, examining joint relationships between

the ozone concentration and its other covariates under long-memory autocorrelation,

investigating long-term implications and effectiveness of air pollution control policies,

and exploring epidemiological and economic impacts of extreme ozone events.
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Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary

observations. Annals of Statistics, 17(3):1217–1241.

Leadbetter, M. R., Lindgren, G., and Rootzen, H. (1983). Extremes and Related

Properties of Random Sequences and Processes. Springer-Verlag, New York, NY,

1st edition.

Lee, J., Li, S., and Lund, R. (2014). Trends in extreme U.S. temperatures. Journal

of Climate, 27(11):4209–4225.

Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., and

Robinson, A. (2013). The multimillennial sea-level commitment of global warming.

Proceedings of the National Academy of Sciences, 110(34):13745–13750.

Li, S. and Lund, R. (2012). Multiple changepoint detection via genetic algorithms.

Journal of Climate, 25(2):674–686.

Li, Z., Wang, Y., Zhao, W., Xu, Z., and Li, Z. (2016). Frequency analysis of high

flow extremes in the Yingluoxia watershed in Northwest China. Water, 8:215.



91

Lim, C. C., Hayes, R. B., Ahn, J., Shao, Y., Silverman, D. T., Jones, R. R., Garcia,

C., Bell, M. L., and Thurston, G. D. (2019). Long-term exposure to ozone and

cause-specific mortality risk in the United States. American Journal of Respiratory

and Critical Care Medicine, 200(8):1022–1031.

Lu, Q., Lund, R., and Lee, T. C. M. (2010). An MDL approach to the climate

segmentation problem. The Annals of Applied Statistics, 4(1):299–319.

Lund, R. and Reeves, J. (2002). Detection of undocumented changepoints: A revision

of the two-phase regression model. Journal of Climate, 15(17):2547–2554.

Marcos, M., Calafat, F. M., Berihuete, A., and Dangendorf, S. (2015). Long-term

variations in global sea level extremes. Journal of Geophysical Research: Oceans,

120(12):8115–8134.

Marcos, M. and Woodworth, P. L. (2017). Spatiotemporal changes in extreme sea

levels along the coasts of the North Atlantic and the Gulf of Mexico. Journal of

Geophysical Research: Oceans, 122(9):7031–7048.

Matteson, D. S. and James, N. A. (2014). A nonparametric approach for multiple

change point analysis of multivariate data. Journal of the American Statistical

Association, 109(505):334–345.

McCormick, W. P. and Qi, Y. (2000). Asymptotic distribution for the sum and

maximum of Gaussian processes. Journal of Applied Probability, 37(4):958–971.

McGranahan, G., Balk, D., and Anderson, B. (2007). The rising tide: Assessing

the risks of climate change and human settlements in low elevation coastal zones.

Environment and Urbanization, 19(1):17–37.



92

McGrath, J. M., Betzelberger, A. M., Wang, S., Shook, E., Zhu, X.-G., Long, S. P.,

and Ainsworth, E. A. (2015). An analysis of ozone damage to historical maize

and soybean yields in the United States. Proceedings of the National Academy of

Sciences, 112(46):14390–14395.

Menéndez, M. and Woodworth, P. L. (2010). Changes in extreme high water levels

based on a quasi-global tide-gauge data set. Journal of Geophysical Research,

115(C10):C10011.

Merrifield, M. A., Genz, A. S., Kontoes, C. P., and Marra, J. J. (2013). Annual

maximum water levels from tide gauges: Contributing factors and geographic

patterns. Journal of Geophysical Research: Oceans, 118(5):2535–2546.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer Science & Business Media,

New York, NY.

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and

Mitchum, G. T. (2018). Climate-change–driven accelerated sea-level rise detected

in the altimeter era. Proceedings of the National Academy of Sciences, 115(9):2022–

2025.

Northrop, P. J. (2015). An efficient semiparametric maxima estimator of the extremal

index. Extremes, 18:585–603.

Nunes, L. C., Kuan, C.-M., and Newbold, P. (1995). Spurious break. Econometric

Theory, 11(4):736–749.

Palma, W. and Chan, N. H. (1997). Estimation and forecasting of long-memory

processes with missing values. Journal of Forecasting, 16(6):395–410.



93

Parey, S., Hoang, T. T. H., and Dacunha-Castelle, D. (2010). Different ways to

compute temperature return levels in the climate change context. Environmetrics,

21(7-8):698–718.

Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D. (2007). Trends and

climate evolution: Statistical approach for very high temperatures in France.

Climatic Change, 81:331–352.

Phalitnonkiat, P., Sun, W., Grigoriu, M. D., Hess, P., and Samorodnitsky, G. (2016).

Extreme ozone events: Tail behavior of the surface ozone distribution over the U.S.

Atmospheric Environment, 128:134–146.

Reich, B. J., Shaby, B. A., and Cooley, D. (2014). A hierarchical model for

serially-dependent extremes: A study of heat waves in the western US. Journal of

Agricultural, Biological, and Environmental Statistics, 19(1):119–135.

Ribatet, M. and Sedki, M. (2013). Extreme value copulas and max-stable processes.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

A.1 Additional Graphics

In Section 2.4, we considered the eight scenarios as summarized in Table 2.1. Fig A.1

shows an exemplary time plot of the simulated monthly maximum sea level series from

each scenario with true changepoint times marked by red vertical lines (Scenarios 3–8).

Fig A.2 shows a frequency histogram of the GA estimated changepoint times for

a weak but long-lasting temporal correlation case with λ = 0.25. For all scenarios

considered, most of the GA estimated changepoint times are clustered around the

true changepoint times with a minimal variability. This result supports our finding

that our GA method performs well in estimating changepoint times for Scenarios 3–8

in a weak but long-lasting temporal correlation case.
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Figure A.1: Time plot of the simulated monthly maximum series under Scenar-
ios 1–8
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Figure A.2: Histograms of detected changepoint times from the GA method
with λ = 0.25 for Scenarios 3–8
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Technical Details of the Truncated m-Dimensional State-

Space Method for ARFIMA(p,d,q) Process

This section illustrates the technical details of the truncated m-dimensional state-

space method of Chan and Palma (1998) and Palma and Chan (1997) applied to the

ARFIMA(p, d, q) process in Section 3.3.4 as follows.

Since the ARFIMA(p, d, q) process Zt is stationary and causal, it can be repre-

sented as an infinite moving-average process:

Zt =
∞∑
k=0

ψkεt−k =

(
1−

p∑
j=1

φjB
j

)−1
(1−B)−d

(
1−

q∑
j=1

θjB
j

)
εt, (B.1)

where ψt is the coefficients of the infinite moving-average process (cf. Hosking, 1981).

The ψt and white noise variance εt are set such that V (Zt) = 1 to ensure the marginal

distribution of each Zt is standard normal. This infinite moving-average representa-

tion of Zt in (B.1) can be approximated by truncating the infinite summation after

m terms,

Zt =
m∑
k=0

ψkεt−k. (B.2)

This truncated model can then be represented as an m-dimensional state-space
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system. For t = 1, . . . , n,

xt+1 = Fxt +Hεt,

where xt = (z(t|t − 1), z(t + 1|t − 1), · · · , z(t + m − 1|t − 1))T with z(t|t − 1) =

E(zt|zt−1, zt−2, . . .) and

zt = Gxt + εt.

The system matrices are as follows.

Fm×m =

0 Im−1

0 0

 ,

Hm×1 =



ψ1

ψ2

...

ψm


,

and

G1×m =

(
1 0 · · · 0

)
.

Following the approach by Palma and Chan (1997), the one-step predictions can

be recursively produced using the following Kalman equations:

∆t = GΩtG
T + σ2

ε ,

Θt = FΩtG
T + σ2

εH,
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Ωt+1 =


FΩt+1F

T + σ2
εHH

T − Ωt∆
−1
t ΘT

t , if zt is known;

FΩt+1F
T + σ2

εHH
T, if zt is missing,

x̂t+1 =


F x̂t + Θt∆

−1
t (zt −Gx̂t), if zt is known;

F x̂t, if zt is missing,

and

ẑt = Gx̂t.

Based on the Kalman recursive equations, the joint probability density function

of Z1, . . . , Zt can then be written as follows.

fZ1,...,Zn(z1, . . . , zn) = (2π)−n/2

(
n∏
t=1

∆t

)−1/2
exp

{
−1

2

n∑
t=1

(zt − ẑt)2

∆t

}
,

where ẑt = E(zt|z1, . . . , zt−1) is the one-step ahead prediction of zt where ẑ1 = 0 and

∆t = V ar(zt − ẑt) is the one-step predictor error variance.

B.2 GA Detection Counts on U.S. County-Level Weekly Max-

imum Ozone Concentrations

This section summarizes changepoint detection results on weekly maximum ozone

concentrations using three different autocorrelation models in the GA: long-memory

ARFIMA(0, d, 1) copula-GEV model, short-memory AR(1) copula-GEV model, and

the autocorrelation-ignored copula-GEV model. Table B.1 summarizes the esti-

mated number of changepoints in weekly maximum ozone series from all 395 coun-

ties. Maps B.1–B.3 depict spatial maps of the estimated changepoint numbers by
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the ARFIMA(0, d, 1) copula-GEV GA, AR(1) copula-GEV GA, and autocorrelation-

ignored copula-GEV GA, respectively. As expected, the AR(1) copula-GEV GA and

autocorrelation-ignored GA overall estimate larger number of changepoints than the

ARFIMA(0, d, 1) copula-GEV GA in most counties.

Table B.1: Detection counts for the GA method using three copula-GEV models
on weekly maximum ozone concentrations from 395 U.S. counties

Base process c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

ARFIMA(0, d, 1) 112 171 84 18 6 3 1 0 0 0
AR(1) 31 149 120 64 19 19 9 1 2 0
Autocorr. Ignored 8 70 100 109 52 32 16 2 3 3
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Map B.1: Spatial patterns of the estimated changepoint numbers from the GA
using long-memory copula-GEV
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Map B.2: Spatial patterns of the estimated changepoint numbers from the GA
using short-memory copula-GEV
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Map B.3: Spatial patterns of the estimated changepoint numbers from the GA
using autocorrelation-ignored copula-GEV


