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ABSTRACT

We apply molecular simulation to predict the equilibrium structure of organic

molecular aggregates and how these structures determine material properties,

with a focus on software engineering practices for ensuring correctness. Because

simulations are implemented in software, there is potential for authentic scientific

reproducibility in such work: An entire experimental apparatus (codebase) can

be given to another investigator who should be able to use the same processes to

find the same answers. Yet in practice, there are many barriers which stand in the

way of reproducible molecular simulations that we address through automation,

generalization, and software packaging. Collaboration on and application of the

Molecular Simulation and Design Framework (MoSDeF) features prominently.

We present structural investigations of organic molecule aggregates and the de-

velopment of infrastructure and workflows that help manage, initialize, and an-

alyze molecular simulation results through the following scientific applications

(1) A screening study wherein we validate self-assembled poly-3-hexylthiophene

(P3HT) morphologies show the same state dependency as in prior work, and (2) A

multi-university collaborative reproducibility study where we examine modeling

choices that give rise to differences between simulation engines. In aggregate, we

reinforce the need for pipelines and practices emphasizing transferability, repro-

v



ducibility, useability, and extensibility in molecular simulation.
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1

CHAPTER 1:

INTRODUCTION

Molecular simulations give us the ability to predict the structures of molecules and

materials through models of atomic interactions. Predicting structure is invaluable

to engineers because atomic structure determines the mechanical, electrical, chem-

ical, and optical properties of a molecule or material, and therefore how it may

be applied to applications in energy generation, sensing, quantum computing, or

medicine. Realizing the potential of molecular simulations to inform and trans-

form materials science and engineering is held back by theoretical and practical

limitations to the library of simulation techniques. At the smallest length scales,

using density functional theory (DFT), it is possible to obtain optimized ground

state structures of collections of atoms and predict induced shifts in the electron

density in the form of charges. The poor computational scaling of DFT, however,

places theoretical limits on the number of atoms whose structure can be predicted

with today’s common computer architectures. Molecular dynamics (MD) simula-

tions that sample equilibrium structures of thermodynamic ensembles expand the

length scales and time scales that are accessible to molecular simulations, with the

trade-off of simplifying assumptions about how atoms interact. The O(N2) scaling

of force calculations in MD simulations is better than the O(N3
e ) scaling of some
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DFT techniques (doubling the number of atoms N makes the computational effort

of advancing one “step” 4x harder in MD, versus a factor 8x harder when doubling

the number of electrons Ne in DFT), but this polynomial scaling still places prac-

tical limits of a few million simulation elements (atoms, or bodies representing

multiple atoms) using modern supercomputers. In addition to these theoretical

limits, the practical difficulties of coding simulation software, creating input files,

running simulations, and performing analysis are barriers to correctness and ul-

timately the utility of molecular simulations. In this work we study and improve

practical aspects of performing molecular simulations with the aim of making sim-

ulations more accessible, reproducible, and ultimately more impactful to society.

The circular scientific process, consisting of observation, hypothesis, experiment,

analysis, and conclusion, often neglects to emphasize a vital extra step which is

review and reproduction of the results. A Nature study from 2016 found that

more than 70% of researchers had tried and failed to reproduce another scientist’s

experiments—over half had failed to reproduce their own past work [1]. The ex-

perience of trying to replicate a seemingly simple method and failing, is common

and discouraging. Pushing the boundaries of knowledge with new discoveries is

important, but it is equally important to validate that these new discoveries are

robust and verifiable.

Computer simulation, in which all parameters can be controlled, should be the

most straightforward to reproduce and get identical results. This is in contrast to

a wet-laboratory setting where many unforeseen factors can influence the result.

For example, in the case of measuring fullerene solubility in water, exposure of the

experiment to sunlight or ozone in the atmosphere may affect the result [2]. In a
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computer simulation, however, no particle or force exists unless it is specified by

the user, so theoretically the experiment should be exactly reproducible. A compu-

tational scientist should be able to read a paper in their field, repeat the experiment

with the information they gained, and achieve statistically identical results. Unfor-

tunately, although this goal is simple in theory, many barriers stand between com-

putational scientists and reproducibility. These struggles can be broken into two

categories: those using established code bases and those using bespoke scripts.

When reporting experiments conducted using established codebases, which are

stable and distributed open or closed source, the following reproducibility issues

can occur:

• Lack of documentation of the version of the software or its dependencies.

(e.g. BLAS libraries, compiler, etc.)

• Potential errors when moving data between software (e.g. improperly han-

dling file type or unit conversions)

• Manual editing of files leading to typographical errors

• User unfamiliarity with which simulation parameters should be reported

• In the case of closed-source software, the simulation details may be obscured;

users cannot view the source code and must rely on the documentation being

accurate

When reporting experiments conducted using custom code, in addition to the

above hurdles, the following barriers stand in the way of reproducibility:

• Researchers may not provide the source code, whether due to fears of others
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using the code to publish before them or unfamiliarity with software distri-

bution

• If the code is available, it may be non-functioning due to lack of unit-tests

and continuous integration

• As user developed code is often under revision, inadequate version reporting

or complete absence of version control

• Poor documentation and examples may make the code base unusable to all

but its developers

• In the case of a workflow consisting of multiple separate scripts, poor docu-

mentation of the process of moving data between scripts or reliance on users

manually editing the data may make the logic hard to follow

So how can we help computational scientists to make their work more repro-

ducible? The solution can be divided into three categories: training, tools, and

community.

Many scientists are subject matter experts first and learn code development on an

as-needed basis, or never have any formal training in software development best

practices. By investing in initial training, ultimately researchers can save time by

working more efficiently. For example, a new scientist may need to learn bash, git,

a programming language, and the specifics of a library or engine that they com-

monly work with. Many engines may provide their own tutorials [3, 4, 5]. Col-

lating some relevant tutorials within a lab (and perhaps creating some additional

training materials) can help to standardize the training process and make sure that
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new researchers are not missing material [6]. There are many short workshops and

references to help newcomers get started, such as Software Carpentry [7]. Soft-

ware Carpentry is an open-source, community-driven organization which hosts a

collection of lessons and conducts in-person and remote workshops to teach basic

lab skills for research computing [8]. Using tools like git can help computational

scientists keep track of how each result was produced, like a lab notebook [9].

Automation, or using scripts to avoid any manual data manipulation, will help re-

duce error and boost efficiency and these scripts should be hosted in open version-

controlled repositories [9]. For example, if a public version controlled repository

is set up from the beginning, when it comes time to publish, no additional work is

required to present the code. Although participation in software-specific training

may add to a scientist’s upfront workload, the long-term efficiency gain results in

saving time.

This training can also help scientists use available tools to increase their productiv-

ity while helping to clearly communicate their process to others. Version control

software, like git, is a great benefit for tracking changes to a code repository, and

many repository hosting services, like GitHub or GitLab, also provide issue track-

ing and project boards which can be used to manage and organize collaboration

and development [10]. To help users understand the purpose behind a code and

how it should be run, there are many tools for creating and hosting documentation

such as ReadtheDocs and sphinx. Providing examples and tutorials can help make

the code more usable. Jupyter notebooks, which contain cells of formatted text

and images alongside runnable code, can be a great way for scientists to show and

tell the story of their work [11]. In addition to documentation to help users get the
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code running, developers can package their code to help users more easily build

the software stack necessary to run it. Providing the exact names and versions of

software aids reproducibility; however, going a step further to provide contain-

ers or virtual machines which contain the exact software stack is even better. This

saves users the hassle of installation and prevents opportunities for version mis-

matching [12, 13]. These tools may add to the cognitive load of a computational

scientist, but ultimately make the developed code more useable by the community.

Providing adequate training upfront and introduction to commonly used tools

can help new scientists feel more prepared to be part of the open source science

community. Training, inclusivity, and collaboration benefit the software develop-

ment community, which can be demonstrated by the recent influx of contributors

to open source molecular simulation codes[14]. This increase in eyes on the code

helps to find bugs, discover new use cases, and make the code more usable to peo-

ple from diverse backgrounds, but it all relies on scientists being willing to share

their code. One reason that scientists may not share their code is because they view

their work as unfinished or messy and don’t have time to prepare it for publication

or worry about being judged [15]. Some scientists may worry that by sharing their

work openly, their discoveries will be scooped, but using version control can not

only help to track their work—as it provides a signed and timestamped commit—

but also these commit signatures can be used to prove priority [16]. Participation

in the open source software development helps scientists find communities which

share the same struggles and can help provide solutions. Often this feeling of com-

munity, not prestige, is what drives open-source developers to contribute [17]. By

providing newcomers with public contributing guides, codes of conduct, prompt
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respectful responses to their questions, and acknowledgement of their contribu-

tions [18], we can help to make this community more welcoming and accessible.

Collaboration and participation in a community is vital to helping make sure that

computational science is reproducible.

Additionally, reproducibility can be aided by not only sharing the source code

but also the unedited raw data and analysis methods [19]. By having the com-

plete process—from data collection, to analysis, and even figure creation—be com-

pletely automated, transparent, and open, computational results can be the most

reproducible and useful to other researchers and society as a whole [20, 21]. These

principles help make computational research transparent, reproducible, useable

by others, and extensible (TRUE) [22]. TRUE principles don’t necessarily guaran-

tee that the results are correct, but instead ensure results are reported in a way that

facilitates replication and testing by readers and reviews. Reporting work accord-

ing to the TRUE principles supports correctness by allowing subsequent works to

more easy scrutinize the results obtained using the exact code used to obtain them.

When code is provided, many corrections can be found and addressed which ulti-

mately adds to the credibility and promise of molecular simulation [23]. An area

where transparency, reproducibility, useability, and extensibility is really brought

to the forefront is in my experience developing scientific software with the Molec-

ular Simulation and Design Framework (MoSDeF) team. I have contributed to the

development of open-source packages including mBuild, Foyer, Signac, Fresnel,

and HOOMD [24, 25, 26, 27, 28]. These contributions have given me ample opportu-

nity to exercise best software development practices such as writing documenta-

tion, using version control, developing unit tests, employing continuous integra-
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tion (CI), using a fork & pull workflow, etc. This experience will help me to be more

efficient in my future work. I’ve also gained valuable experience working as part

of a team. As my work has been intertwined with existing projects, good collab-

orative skills were necessary. The experience has been empowering: submitting

changes to reputable code bases has helped me to place myself in the computa-

tional science community. Helping others to realize this feeling for themselves is

part of the reason I so strongly believe in the principles of TRUE science.

Throughout my journey as a graduate student, I have grown as a computational

scientist. My research focus shifted part way through, but I would say all of my

struggle and efforts have taught me valuable lessons about how to present my

work in a way that is most helpful to the next generation of computational scien-

tists. Broadly, my research has used molecular simulation to determine the mor-

phology of the bulk structure from thermodynamic self-assembly of its constituent

parts. Learning the intricacies and struggles and what matters to each simula-

tion and how to disseminate and visualize these results. I then have used various

analysis methods to validate these simulated morphologies with those observed

in experiment. Along the way, I have found my passion in helping to make com-

putational sciences more accessible and reproducible. There is so much for a new

molecular simulator to learn: When entering the field, these scientists must train

on the underlying theories (e.g., statistical mechanics, thermodynamics, quantum

mechanics, etc.) and the specifics of their materials system (e.g., polymers, or-

ganic photovoltaics, etc.) all while navigating the computational ecosystem (e.g.,

git, compilers, paths, the terminal, clusters, python, etc.). With all this cognitive

overhead to consider, it makes sense that scientists cobble together what they can
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in order to run their experiment; they may not feel they have the time to learn

best practices or they may not be aware these best practices even exist! My work

has focused on developing and using computational tools and workflows to pre-

dict and understand self assembly of electronically active molecules with a focus

on making these tools usable by others and demonstrating best practices follow-

ing TRUE principles. The resulting four journal publications, two in-preparation

manuscripts, two posters, and one conference presentation span all scales from

first-principles calculation of electronically active dimers to the creation of new

tools for analyzing the long-range periodicities of large scale atomistic and coarse-

grain (CG) simulations.

In this dissertation I describe projects in which I was both the lead code developer

as well as projects where I needed to learn existing code to run experiments. An

additional focus of this dissertation is the work that I have done to make the code-

bases I have contributed to TRUE in the hopes that they will serve others after I

leave.

In my first publication on dimer formation, an investigation of the excitonic split-

ting observed in cyanine dye dimers was done using density functional theory

(DFT) [29]. By comparing calculated with experimental absorption spectra it was

found that the solvent may play a large role in the dimer formation and peak shift-

ing. I performed all simulations under the guidance of Dr. Li and Dr. Yurke, cre-

ated all figures, and wrote all stages of draft this paper with review feedback from

Dr. Li, Dr. Knowlton, and Dr. Yurke.

In my second publication, an investigation of the supramolecular interactions
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which guide crystal self-assembly in diphenylurea transition metal complexes was

done using DFT [30]. I contributed DFT energies and optimized structures under

the guidance of Dr King.

My third publication was a thorough investigation of the effect of para-

substituents to the crystal structure of diphenylurea molecules. I contributed DFT

calculations, data analysis, writing in the initial draft, and images made in Figures

3, 4, 5, 6, and 8 [31].

My contribution to the lab’s perspective paper was mostly about my on-boarding

experience trying to reproduce an existing model; a task which should be very

straightforward but, which any computational scientist can attest, is far from sim-

ple [14].

These published works are included in the appendices for readers with interest

in these topics. The two core chapters here focus on the development of TRUE

workflows, highlighting software development efforts.

Chapter 2 details validation of an updated workflow to explore the state-space de-

pendence of the ordering of poly-3-hexylthiophene (P3HT) polymer. This work-

flow was highlighted in a talk given at the 2021 American Institute of Chemical

Engineers conference. One of the tools used in the workflow, GIXStapose, was also

presented in my first poster contribution as Boise State University’s 2020 Research

Computing days and at the 2020 SciPy conference [32, 33]. The original workflow

being validated was transparent in that it freely distributed all it’s source material,

from raw data to all scripts used for processing. It was also reproducible in that

the software stack was documented and if necessary it could be recreated and re-
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run. I added improvements to this workflow by making it easier to install by using

and distributing a Docker container with the full software stack, more usable by

others by creating modular packages with full documentation and tutorials, and

more extensible by generalizing the workflow to accept any molecule as input.

This chapter demonstrates what a TRUE workflow can look like, and how tools

can be designed according to TRUE principles.

Chapter 3 summarizes my effort in a multi-university collaborative study to use

MoSDeF tools reproducibly which is in preparation. This study follows in the

footsteps of other studies which compare the result of analogous methods across

different engines in hopes of validating method implementation[34, 35, 36]. This

study demonstrates the hurdles to achieve reproducible results between different

people using different engines, and the power of collaboration and community to

tackle large problems. My contribution to this study include creation of all scripts

needed to run MD simulations using HOOMD including implementation of a new

method for tail correction and fixing all bugs found along the way.

Through my work spanning all scales of molecular simulation—from implement-

ing details in MD engines, to creating analysis software, to performing DFT calcu-

lations of single molecules, simulations of collections of molecules, and perform-

ing thousands of simulations of collections of molecules across thermodynamic

state space—the need and utility of pipelines and practices emphasizing transfer-

ability, reproducibility, useability, and extensibility has only been reinforced. The

result of my work has been the validation of the general amber forcefield (GAFF)

and an updated workflow for use with P3HT, the creation of extensible tools for

mapping between coarse and atomistic representations, the development of tools
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for reproducibly analyzing structure and diffraction patterns, and the creation and

comparison of methods within the HOOMD engine.
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CHAPTER 2:

VALIDATING STATE SPACE SCREENING

CALCULATIONS, A P3HT CASE STUDY

The following chapter contains yet to be published work written by me with guid-

ance from Dr. Jankowski.

A Jupyter notebook demonstrating the tools mentioned in this chapter can be

found in Appendix A, and a Zenodo dataset containing all data used in this chap-

ter can be found at Ref. Fothergill [37].

2.1 Introduction
An important facet of applying molecular simulations to solve real-world engi-

neering problems is ensuring that the simulations are correct. While there exist

general guidelines for improving simulation correctness (e.g., the TRUE principles

[22]), specific instances will vary widely between disciplines because of individ-

ual workflows that govern scientific simulation pipelines. In this work we detail

the application of TRUE principles for a common problem that arises in molecu-

lar simulations: performing molecular simulations across a set of thermodynamic

state points to screen these conditions for structures of interest. Specifically, we
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consider a case study of validating structural predictions of the organic photo-

voltaic polymer P3HT.

Organic photovoltaics (OPVs) are a focus of this research because they represent

the best opportunity for cost-effective solar power. The theoretical efficiency limit

(Shockley-Queisser limit) for a p-n single junction solar cell is about 30% [38]. Mul-

tijunction cells may achieve efficiencies that surpass this limit, but they often do

not have lower energy payback times as their production is more costly. Figure 2.1

shows the efficiency gains made by single junction silicon and organic photovoltaic

devices over the last 30 years. These are merely a selection among the many cat-

egories of PV devices. The trend of the silicon cells shows that the efficiency gain

is leveling off as the devices approach the Shockley-Queisser limit. OPV devices,

however, still have a lot of room for improvement, and recent increases in effi-

ciency reflect this. The potential of OPVs to achieve higher power conversion ef-

ficiencies depends on the morphology of the active layer. Molecular simulation

can help to predict the combinations of donor and acceptor which will robustly

self-assemble into a morphology best able to transport charge.

A complication of the simulation of OPV polymers is that the properties which pre-

dict a device’s efficiency, for example charge transport, span multiple length scales.

In order to model charge movement through a device, we need to know the posi-

tion of individual atoms in order to discern the electronic environment and thus

the likelihood of a charge hop, but we also need a bulk structure large enough that

we can observe morphological features like the interdigitation of polymer lamel-

lae to compare these morphologies to experiment. But atomic resolution at length

scales of hundreds of nanometers becomes computationally expensive, so simulat-
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Figure 2.1: Comparison of efficiencies in organic and silicon photovoltaic tech-
nologies from 1990 to present. The current state-of-the-art OPV, a mixed poly-
mer, small molecule, and fullerene device, achieves 18.2% efficiency [39]. Data
taken from Nationational Renewable Energy Laboratory. U.S. Department of
Energy [40].

ing larger morphologies necessitates a simplified model. By simplifying our model

using coarse-graining techniques where multiple atoms are represented as a sin-

gle bead we can more efficiently equilibrate larger length scales. In addition to

using a simplified model, the statepoint variables (including temperature, density,

and solvent) must be carefully tuned to find the conditions under which the OPV

morphology has the best self-assembly. Choosing a model and statepoint are some

of the important choices a simulator must make when simulating OPV polymers.

These choices should be informed by data, which increases the scope of this prob-

lem. This chapter will discuss a previous work which laid the groundwork for

making these choices using poly-3-hexylthiophene (P3HT), and the current work
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which aims to reproduce this work with improvements to the underlying tools

which make them more transparent, reproducible, usable, and extensible (TRUE)

[22].

2.2 Background
In previous work from our lab, Ref. Miller et al. [41], hundreds of molecular dy-

namics simulations of P3HT polymer are performed across different temperatures,

densities, and solvent qualities in order to ascertain at which statepoints the mor-

phology would self-assemble into the most ordered structure. These hundreds of

simulations at different statepoints were organized using custom python scripts

which relied on creating and navigating a directory structure. Figure 2.2a helps

Figure 2.2: (a) The degree of ordering, Ψ, at various temperatures and solvent
parameters taken from Ref. Miller et al. [41]. (b) The three largest clusters (col-
ored blue, red, and yellow in order of descending size) in a P3HT morphology
taken from Ref. Miller et al. [41].

us to visualize the temperature and solvent parameter state space. In order to aid

the analysis of this state space, the order parameter (Ψ) was defined as the ratio
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of thiophene moeities in "large" clusters. The clustering criteria takes into account

the distance between thiophene centers and the angle between the planes of the

thiophenes. In Miller et al. [41] the distance cutoff was 6 Å, the angle cutoff was

20 ◦, and a "large" cluster was defined as having 6 or more thiophenes. Figure 2.2b

is a visualization of these clusters in a morphology. The order parameter analy-

sis required selecting specific atoms from the trajectory file based on their index.

The atom indices in this analysis were hard-coded for P3HT. All the input files

were made programmatically, so having hard-coded index values worked; how-

ever, if this analysis was to be used on polydisperse polymer lengths or a differ-

ent molecule, it would have to be changed. Simulated GIXS diffraction was used

to compare the most highly ordered morphologies to experiment and they were

found to show good agreement. Miller et al. [41] accomplished what they set out

to do (validate a simplified model of P3HT) and performed work which was im-

pressive in scope (hundreds of simulations!) and all the code is freely available to

all, but how can we redesign these tools to be easier to use for the next molecule

and the next user?

To reproduce the work of Miller et al. [41], this workflow must be designed to

handle a broad computational scope. It must be able to create and manage a

large parameter space, move data between multiple different pieces of code, trans-

late units, and perform analysis on selected particles from simulation trajectories.

Much of my work in the lab has been to design tools which makes these tasks more

transferable, reproducible, usable, and extensible (TRUE) [22]. Transferable means

the code is general enough to be used in different ways or applied to different

problems. Reproducible means enough information is provided that the work can
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be redone and no important details regarding the process are obscured. Useable

by others means that other people—especially people outside your circle—can ac-

tually use this tool. This entails that not only is the source code freely available

and easy to install but also that users can understand how to use it without too

much cognitive overhead. This can be helped with permissive, open licensing,

dependency documentation and packaging (including containers), and thorough

documentation and examples. Extensible means that others can build upon the

work you have done. If this project is going to have the desired impact (i.e., us-

ing molecular simulation to identify novel OPVs), every step of the process and

the resulting data must be straightforward to reproduce and validate. The na-

ture of a multiscale simulation requires translation between formats and units and

accurate handling of large data, and thus requires infrastructure to reduce error.

Although the molecular and computational scope of this project is broad, by using

and building upon existing architectures and adhering to recent guidelines in the

computational sciences community we can manage the multiscale nature of this

project and contribute to reproducible science. This chapter will demonstrate that

we can reproduce and validate our P3HT morphologies while using MoSDeF tools

to help our methods to be more TRUE.

2.3 Statement of Need
In order to sample the parameter space, we need to be able to spin up a large

number of simulations (i.e., initializing our simulation volume, implementing the

model, and running the simulation) and accurately access each simulation output

to perform analysis. The order parameter analysis involves selecting the atoms that

are part of a chemical moiety and calculating the distance and angle between each
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potential neighbor moiety. If the potential neighbor meets the clustering criteria, it

is added to the cluster. The order parameter can then be calculated as the ratio of

the number of the moiety in large clusters vs the total number in the morphology.

And the GIXS analysis involves converting the simulation trajectory to the format

required by the diffractometer package including unit conversion.

Before we address challenges in the implementation, it is important to note how we

solved issues related to installing the software stack. Often this step goes unmen-

tioned, but installation of software packages and managing dependencies can be a

huge hurdle for computational scientists. To prevent this, we have built pipelines

for all our code repositories (using GitHub Actions) which automatically build

docker containers from each tagged version of the repository and the latest master

branch. These containers can be used with the docker or singularity applications

and contain the exact code state present in the repository along with static versions

of its dependencies. This allows our software to be used without ever having to

manually install it or manage its dependencies. Not only does this make our soft-

ware stack easier to use, but it makes it more portable—we can have the exact same

environment on our school cluster or XSEDE. And if someone wants to reproduce

our work, they can access the exact container we used.

The first challenge, managing a large dataspace, is handled using the signac

framework. Although designing code to work within a framework like signac

does add some cognitive load, after this initial lift the project becomes more ex-

tensible and flexible regrading changes in the parameter space. We will cover the

tool designed to manage and submit OPV MD simulations within this framework,

PlanckTon, later in the chapter.



20

Although the application of the united-atom model to our P3HT system was not

overly complicated as it only contained 3 types, it required manual atom typing,

which presented another hurdle to applying this method to a new and perhaps

more complicated compound. By using the foyer forcefield dissemination and

atom-type engine [25] our atom types can be automatically assigned based on the

chemical connectivity. This allows us to more easily extend to new compounds.

Calculating the order parameter originally depended on a workflow that was hard-

coded for P3HT and selected specific atom indices—this depended on the particle

order in the simulation being the same every time, which it was because routine

initialization methods were used, but it did not allow for the method to be applied

to other compounds.

2.4 Tools
Next we will discuss the various tools used in this project. Figure 2.3 gives an

overview of how these tools work together to perform the structural analysis. This

workflow was designed such that the output from each code can be used as the

input for the next with little to no modification. Many of these code bases are

collaborative works, so I will give credit to the contributors and creators of the

underlying building blocks.

2.4.1 PlanckTon

In order to initialize simulations in a reproducible way, we have designed

PlanckTon: a wrapper for the initialization, management, and submission of or-

ganic photovoltaic molecular dynamics simulations using the HOOMD-Blue en-

gine [42, 14, 43]. The PlanckTon software includes some OPV compounds com-
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Figure 2.3: Overview of the structural analysis workflow. First, the workspace
is created in the PlanckTon-flow framework and all simulations are run. Then
GRiTS is used on the output simulation data to find the thiophene centers. Fi-
nally, the order parameter function in cmeutils is used to calculate the order pa-
rameter of each simulation trajectory and GIXStapose is used to perform GIXS
analysis.

monly used in our lab to guarantee that all simulations are initialized with the

exact same starting compound; however, the workflow is designed to easily ac-

cept any MoSDeF compatible chemical input file format including SMILES strings.

The code base also ships with custom XMLs for OPLS-UA and GAFF and a sep-

arately packaged GAFF XML [44], but is compatible with any foyer XML. The

initialization procedure of PlanckTon is as follows: First the user selects a com-

pound or mixture of compounds, the number of said compounds, the tempera-

ture, the density, and the solvent parameter. As in Ref. Miller et al. [41], the solvent
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in PlanckTon is modelled implicitly, so the solvent quality, ϵs, refers to a scaling

factor on the non bonded forces. In order to more robustly achieve high density

morphologies, the simulation volume is initialized at a lower density and then

shrunk down to the desired density at high temperature[45, 46, 47, 48, 41]. The

creation of our simulation volume, the forcefield atom-type assignment, and the

creation of the HOOMD force objects is completely handled by mBuild and foyer in

the MoSDeF framework[24, 25]. By using the modular, general system initializa-

tion of the mBuild and foyer, we get two benefits: (1) we draw on the knowledge

base of the MoSDeF community–more users means we can find and resolve er-

rors more quickly, and (2) we can more easily incorporate the system initialization

in our other projects. Once the system and forces are initialized, PlanckTon uses

the NVT ensemble via the Nosé-Hoover thermostat [49, 50] as implemented in

the HOOMD-Blue molecular dynamics engine. The initial velocities and angular

momenta are randomly assigned from the Maxwell-Boltzmann distribution. By

having our entire process scripted, we can have everything about our process doc-

umented and available for scrutiny and reduce the potential human error inherent

when switching between codes or transferring files. Through PlanckTon-flow, this

tool is supported by the signac framework, which handles the parameter space

initialization and management and submission to various computing clusters. Be-

cause this workspace is created using signac, signac can be used to navigate it.

This allows to reference our data via the statepoint (e.g., what temperature and

ϵs it was run at) without ever having to create or manage a complicated directory

structure or naming scheme.

PlanckTon was started by my labmates Mike Henry, Evan Miller, and Matty
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Jones[14, 42], and I have assumed responsibility for its development including:

Updating to HOOMD version 2 allowed us to use the HOOMD simulation initialization

functions in mBuild. This allows the package to be more modular and useable by

others; any improvements or bugfixes needed in the create_hoomd_simulation

function can be contributed back to mBuild, which allows the whole community

to benefit. Adding automated docker container builds. Generalizing the initial-

ization procedure to allow starting compounds to be loaded from SMILES strings

or any input file and these untyped compounds can be typed on the fly using any

foyer compatible forcefield. Adding support for all HOOMD neighborlists, which

allows better sampling of sparse systems. And adding support for user specified

temperature ramps, allowing users to perform temperature annealing, a technique

used in OPV active layer synthesis. In order to be more clear about the units used

in PlanckTon, the unyt package is used to handle all unit conversions. This pack-

age allows for values to be tagged with their unit and then all conversions can be

handled by the package.

PlanckTon is unique, but there exist other tools to manage molecular dynamics

simulations. There is a web-based application that facilitates MD simulation us-

ing cloud computing services and automates related tasks [51] and a command

line tool that automates many common MD tasks [52], but I have not seen a pure

python implementation which can also manage a large dataspace.

2.4.2 GRiTS

I developed GRiTS as a tool to assist in applying a coarse-grain mapping and to

backmap a coarse-grain system to a fine one. Although the fine-graining capabil-

ities are still under development, the coarse-graining is robust enough to apply
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a mapping to an entire system trajectory. This mapping can also be used to pick

out specific chemical moieties from a morphology. GRiTS works using SMARTS

matching—implemented in OpenBabel—to map atomic indexes to coarse grain

beads. Once all the atomic indices are assigned to a bead, then bonds are inferred

between coarse-grain beads based on the atomistic bonding scheme. For example,

if an atom in bead A is bonded to an atom in bead B, beads A and B are assumed to

be bonded. When looking at an entire simulation trajectory, the SMARTS matching

algorithm can be prohibitively expensive. So GRiTS uses the following simplify-

ing assumptions: Chemical bonds are not formed or broken over the course of the

simulation—this allows only the first frame of the trajectory to be used for map-

ping. Using only the first frame of the trajectory is also useful because this way

the molecules in the system can be guaranteed to be chemically reasonable—i.e.,

the bonds and angles are not distorted, aromatic systems should be planar, etc. It

is also assumed that if molecules have the same number of atoms, they have the

same chemical structure. This allows us to use the clustering algorithms of imple-

mented in the freud analysis library to break the snapshot into molecules and only

perform SMARTS matching on each molecule type, then extrapolate the mapping

out to other molecules of the same type.

When working with a UA system, GRiTS can also infer hydrogen positions and

bonding. This allows for SMARTS strings to find matches in UA systems. The

hydrogen inferring method uses OpenBabel and requires that the first frame of the

trajectory be chemically reasonable.

There are other tools which handle creating coarse-grain mappings such as

VOTCA [53]. This tool will crate a coarse grain trajectory from an atomistic one
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given an XML file mapping which requires the user to specify everything from the

atom types involved in the bead to the bond and angle information. VOTCA also

has many other functions that GRiTS does not such as coarse-graining (includ-

ing potential development), charge-transport, and excitation transport. VOTCA

requires the user to edit an XML file in which formatting and whitespace have

meaning, and define not only the mapping but also the bonding and angles for the

coarse grain mapping, which could easily be inferred from the mapping scheme.

Creating a mapping with GRiTS is more intuitive because the only parameter

needed is a SMILES string, there are no potentially difficult to parse files for the

user to edit, and all bonding and angles within the coarse grain structure are in-

ferred.

2.4.3 GIXStapose

GIXStapose is a package which allows users to connect the real space view of a

chemical structure to its simulated grazing incidence X-ray scattering (GIXS) pat-

tern. (The name “GIXStapose” is a portmanteau of “GIXS” and “juxtapose.”) I

developed GIXStapose as wrapper for the diffractometer package and the fresnel

ray tracing library [54, 47, 27] GIXStapose works by translating the structural in-

formation in many chemical input files into the formats needed by these two pack-

ages, and in the process can link rotations of the real space image to its diffraction

pattern. The camera information used to generate the real space rendering and

the diffraction pattern can be accessed and saved, allowing users to recreate the

exact figure. The package has an interactive graphical user interface (GUI), but is

completely modular and can be run in a scripted fashion to generate reproducible

figures and diffraction patterns along with translation of units. This work was
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presented at Scipy2020 [33].

2.5 Methods

2.5.1 Generate simulation data

A PlanckTon-flow workspace of 40 simulations defined by their temperature and

solvent parameter (ϵs) was initialized. Each system comprised of 100 united-atom

(UA) P3HT 16-mers parameterized with GAFF. All nonbonded forces used a cutoff

value of 8.91 Å (2.5 times the largest sigma value). The target density for all was

0.56 g
cm3 . All simulations used a timestep of 2 fs and started by shrinking the box

from 125 times the target volume to the target volume (789 nm3) at 629 K, with

a thermostat coupling value (tau) of 2 ps, run over 0.2 ns. Once the shrink step

was finished, each simulation was run at its own combination of temperature and

ϵs ranging from 125, 188 to 629 K and 0.2 to 1.0, respectively. These runs used a

thermostat coupling value (tau) of 0.6 ps and were run for 200 ns. All were run in

the cmelab/planckton_gpu:v0.6.1 docker container.

2.5.2 Create coarse grain mapping

The GRiTS CG_System class was used to find indices of atoms in thiophenes using

SMARTS string “c1cscc1” and inferred hydrogens. This created a new coarse-grain

trajectory file with beads at thiophene centers and a json file which contains the

SMARTS string which generates the mapping and the atom indices in the atomistic

trajectory as a key value pair.

2.5.3 Calculate order parameter

The order_parameter function in cmeutils was designed to use the coarse grain

trajectory and the mapping to calculate the average order parameter of the last ten
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frames of the trajectory. An angle cutoff 10 ◦ and a distance cutoff of 6 Å was used

as the clustering criteria.

2.6 Results and Discussion
With the updates made to this workflow, first let’s check that we get quantitatively

similar results.

Figure 2.4: The degree of ordering, ψ, of P3HT at various solvent qualities, ϵs,
and temperatures. Red regions denote high order, blue regions are disordered.
Each black "x" indicates a measurement, values between are interpolated. Part
a is taken from Miller et al. [41, Figure 3a] and has been cropped and scaled to
focus on the region of interest and make the plot bounds closer in value. Part
b was created using the order parameter value from each simulation trajectory
and the RectBivariateSpline interpolation function from the Scipy library. The
final z values were adjusted such that no order parameter was greater than 1 or
less than 0.

Figure 2.4 shows good qualitative agreement between the previous findings of

Miller et al. [41] and the order parameter trends found in this work. The abso-

lute value of the order parameters seen in this work are, in general, higher than

those observed by Miller et al. [41]. This may be due to the initial high tempera-

ture shrink period used in this work which is similar to Protocol 2 in Miller et al.

[41] which was shown to achieve faster equilibration and more robust ordering.
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Next the high order regions were further examined using GIXS analysis (see Fig-

ure 2.5).

Figure 2.5: Diffraction patterns of P3HT from (a) experimental GIXS of neat
P3HT [55], (b) simulated GIXS [41], and (c) this work. Part c was generated in
GIXStapose using thiophene centers found using GRiTS from the simulation
trajectory ran at ϵs 0.4 and T 251K.

Figure 2.5 shows good quantitative agreement between this work, experiment, and

previous work. This also shows that high order parameter is a good predictor of

clear GIXS peaks. The GIXS data in Figure 2.5c is noisier because was generated

using a very small system (1,600 points vs 15,000 points in part b). However, even

in spite of this, it is clear that qualitatively the same structural features seen in

previous works and experiment are present. And we can check that the real space

distances these peaks correspond to are reasonable using the following equation

dreal =
2π

dpeak
(2.1)

where dpeak is the distance of the bright spot from the origin. The (100) peak corre-

sponds to a periodic distance of 16.4 Å and and the (010) peak to a distance of 3.50

Å; Duong et al. [56] report a lamellar spacing of 16.5 Å and a pi-stacking spacing

of 3.83 Å for neat P3HT. There is room for users to choose multiple points within
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a large, smeary peak such as shown in Figure 2.5c, so these values are reasonable

but could vary depending on the user’s choice.

Using all particles in the united-atom thiophene may result in easier to see spots

in the diffraction pattern (see Figure 2.6).

Figure 2.6: Diffraction patterns of P3HT using (a) all thiophene particles in the
UA trajectory (b) thiophene centers found using GRiTS. Both patterns were gen-
erated using GIXStapose at the same camera angle on the simulation trajectory
run at ϵs 0.4 and T 251K.

Although coarse-graining may provide clarity with much larger or less ordered

structures, in this very small ordered system, the peaks are more easily visible

when all the thiophene particles are used in diffraction.

As Figure 2.5c was generated using GIXStapose, we can examine the real space

structure from the exact viewing angle the diffraction pattern was generated from.
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Figure 2.7: Real space structure of thiophene centers found using GRiTS from
the simulation trajectory run at ϵs 0.4 and T 251K. This figure is generated using
fresnel via GIXStapose with the same "camera angle" as Figure 2.5c.

Figure 2.7 shows the thiophene centers at a high-order statepoint. We can clearly

see the lamellar spacing in the vertical direction, and less clearly the π-π stacking

in the horizontal direction. By viewing the real space structure from the exact

angle as the diffraction pattern, it is easier to correlate periodic features with their

diffraction peaks.

To confirm that the thiophene center beads are being placed correctly, we can view
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an overlay of the thiophene centers with a frame of the unaltered UA simulation

trajectory.

Figure 2.8: Overlay of thiophene bead centers (translucent blue) found using
GRiTS with united atom carbon (grey) and sulfur (yellow) in P3HT simulation
trajectory run at ϵs 0.4 and T 251K. This figure is generated using fresnel via
GIXStapose with the same "camera angle" as Figure 2.5c and Figure 2.7

Figure 2.8 shows that the thiophene beads are correctly capturing the geometric

centers of the thiophene moieties in the trajectory given that the sulfur atoms are

found almost entirely within the thiophene beads. This view also gives us a better

perspective on what forces may be causing the lamellar separation—namely, side-
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chain interactions.

We can also show correlation between low order parameter and disordered sys-

tems with no GIXS peaks (see Figure 2.9 and Figure 2.10).

Figure 2.9: Real space structure of thiophene centers found using GRiTS from
the simulation trajectory run at ϵs 0.2 and T 629K. This figure is generated using
fresnel via GIXStapose with the same "camera angle" as Figure 2.10c
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Figure 2.10: GIXS pattern generated in GIXStapose using thiophene centers
found using GRiTS from the simulation trajectory run at ϵs 0.2 and T 629K.

Figure 2.9 shows the thiophene centers in a basically random configuration and

Figure 2.10 shows a general lack of peaks.

So, we have demonstrated that our ordering trends observed in P3HT are robust to

changes in the forcefield (OPLS-UA to GAFF-UA). And that the changes to simula-

tion initialization (more incorporation of MoSDeF tools) and analysis (using GRiTS

to detect thiophenes) have not skewed our results. Next let’s discuss the potential

effect of our TRUE changes.

2.7 Conclusions
By using mBuild with foyer in PlanckTon to initialize our simulations, we can more

easily use different input file formats including smiles strings and any foyer force-

field. Using GRiTS to select the desired part of the molecule removes any need

for manual indexing, which allows us to more easily extend the order parameter
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calculation to other planar, conjugated molecules like perylene or ITIC. Working

within the signac framework allows us to quickly and easily sample the neces-

sary parameter space without needing to manually create or manage directories.

We’ve also implemented semantic versioning in all our lab’s codebases with ver-

sion tagged docker containers which helps users to keep track of when changes are

made and ensure we use the same code state. By using and building on existing

code, we work with a community of open-source molecular simulators.

The ultimate success of this project to me is if someone else can use it. And in or-

der to achieve that goal, I have tried to develop code with the next user in mind.

I know it can be daunting to be handed someone else’s code. If the only way to

learn how to use it is to read through the code comments (or just the code itself)

and try to figure it out, users may prefer to simply write their own. Even when

good user documentation is provided, often these bespoke codebases have spe-

cific dependencies which may not be continuously maintained so they break in

updated installations. We can consider the effort put in to providing containers

with the complete functioning software stack and writing thoughtful user docu-

mentation and examples as a force multiplier. If the goal of a scientific codebase is

to accomplish work, then the more people who can use this code, the better. Also

writing our code to be more modular and general can help it to apply to more

situations. For example the GRiTS code was designed to create coarse-grain map-

pings, but the mappings can also be used to find instances of a SMILES pattern

with a trajectory as was done in this study.

It is hard to measure the success of that goal, but I submit the following exam-

ples: In the summer of 2021, our lab hosted two students from the NSF Research
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Experience for Undergrads (REU) program and a high school teacher from the Re-

search Experience for Teachers (RET) program. None of these students had any

prior knowledge of shell scripting, python, or molecular simulation. After a week

or so of introductory training, the three researchers were introduced to PlanckTon.

Each researcher chose a molecule, and together with three undergrad researchers

in the lab, were able to run 24K SUs worth of MD simulations on XSEDE using

PlanckTon. A new PhD student in our lab with a strong background in software

engineering but new to molecular simulation and chemistry was able to use GRiTS

to create a coarse grain mapping in a matter of days. She did this without any one-

on-one training beyond the documentation and examples.

By developing code with TRUE principles, other scientists can more easily use and

extend this project. Hopefully this software ecosystem will continue to be dynamic

and evolving. Big problems like solving the climate crisis with photovoltaic tech-

nology require robust solutions and writing usable code allows us to draw on the

strength of the community.



CHAPTER 3:

REPRODUCIBILITY STUDY

The following chapter describes a yet to be published collaboration with

manuscript in preparation. My contribution to this project was preparing the

scripts to run the HOOMD simulations, writing documentation for the project, and

involvement in numerous group discussions. This study brought to light many

many issues which instigated many updates and improvements to the various

codes used in the study. Scientific software improvements I am responsible for

as a result of this study include:

1. Allow HOOMD functions to add to an existing snapshot to facilitate rigid

bodies. (mBuild pull request #808)

2. Ported the rigid body constraint class from the HOOMD v2 to v3 API.

(HOOMD pull request #888)

3. Allow mBuild’s xyz writer to write coordinates with greater precision, so MC-

CCS could use it for this study. (mBuild pull request #948)

4. Added the required neighborlist buffer argument to the mBuild

create_hoomd_forcefield function to address breaking change in the

https://github.com/mosdef-hub/mbuild/pull/808
https://github.com/glotzerlab/hoomd-blue/pull/888
https://github.com/mosdef-hub/mbuild/pull/996
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HOOMD neighborlist API. (mBuild pull request #988)

5. Fixed a bug in the conversion of Ryckaert-Belleman (RB) to OPLS-style dihe-

drals. (mBuild pull request #996)

6. Corrected Coulomb’s constant used in the charge conversion for HOOMD

writers. (mBuild pull request #1011)

7. Add optional calculation of energy and pressure tail correction to the

Lennard-Jones pair force. (HOOMD pull request #1138)

3.1 Introduction
Reproducibility in science means that we are transparent about our methods in a

way that allows others to understand what was done. If the goal of science is to

expand the knowledge of humankind, making sure experiments are reproducible

helps to lay a strong foundation for the next discovery. In computational molecular

simulation, where all parameters can be controlled, it would seem an easy task to

reproduce an existing work. Molecular dynamics (MD) and Monte Carlo (MC)

simulation are both driven by the core principles of statistical thermodynamics.

Many codes for performing these methods exist each with their own algorithms

and implementations, but if each code is correctly using the core principles, the

end result should be the same.

This study aims to learn whether different codes can get the same result using

the same model. Within the umbrella of model is the thermodynamic ensemble

(e.g., NVT, NPT), the representation of the system (e.g., the force field, constraints,

cutoffs), and the statepoint (i.e., the pressure, temperature). In this framework, a

https://github.com/mosdef-hub/mbuild/pull/988
https://github.com/mosdef-hub/mbuild/pull/996
https://github.com/mosdef-hub/mbuild/pull/1011
https://github.com/glotzerlab/hoomd-blue/pull/1138
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"force field" is defined to supply the parameters for a given model. Other details

related to the model are rigid representation and long-range and charged interac-

tions.

In computational molecular simulation, already many hurdles to achieving simu-

lation reproducibility have been reported. Using the same method, ensemble, and

forcefield may not ensure reproducibility between engines, as different engines

lack consistency in the functional forms, implementations, and options for han-

dling long-range and charged interactions [57]. The energy calculated with certain

codes has been found to depend on how the charges are calculated (whether the

charge method uses the whole molecule or fragment) and which charge calcula-

tion method is used is often not reported—even differences in Coulomb’s constant

may cause different results [34]. Due to differences in available implementations

in the difference engines there is no one size fits all protocol [35]. Systematic error

was found between engines in as simple a task as calculating the potential energy

and density of uncharged molecules in the liquid phase, even between groups us-

ing the same engine [36]. Although these hurdles may seem discouraging and lead

some to disregard simulation entirely, I would argue that instead this is a challenge

that be met by the community using TRUE principles.

This study, a multi-university collaboration, aims to determine what information

is necessary to achieve statistically same results across engines. Researchers from

eight universities (see Table 3.1) contributed to scripts to initialize and run each of

these systems. Six different engines (see Table 3.2) were used to conduct molecular

dynamics (MD) and Monte Carlo (MC) simulations. These scripts will use tools

from the Molecular Simulation and Design Framework (MoSDeF) to help with re-
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Table 3.1: Universities participating in the study and their abbreviation.

BSU Boise State University
UD University of Delaware
UH University of Houston
UM University of Michigan
UMN University of Minnesota
UND University of Notre Dame
VU Vanderbilt University*
WSU Wayne State University

Table 3.2: Simulation engines used in the study along with the publications in
which the engine is described, simulation type, and the research group respon-
sible for that engine.

Code Type Ref Group
Cassandra MC [58] UND
GOMC MC [58] WSU
Gromacs MD [59, 60, 61, 62, 63, 64, 65] VU
HOOMD MD [43, 66, 67, 68] BSU, UM
LAMMPS MD [69] UD, VU
MCCCS MC [70, 71] UMN

producible simulation initialization. In order to help manage this large data space

and submission to various clusters, the signac framework will be used to pro-

grammatically organize the statepoint directories and handle the idiosyncrasies of

different cluster schedulers. This study is still ongoing, so some of the data shown

in this chapter may be unfinished or incomplete. I will focus most on the simu-

lations run using HOOMD, as this is the part of the study I am responsible for.

I will also try to distill what we have learned, through the numerous issues we

have discovered and overcome. This project involved a great deal of collaboration

and discussion. Although the systems studied are very simple, we ran into many

challenges: Keeping consistent units, sharing data, and overcoming the many un-

expected hurdles to get consistency between engines due to the different available
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functions in each engine. In addition, choosing what information to store and how

to format that information so it is readable by one analysis script was challenging

between multiple engines because not all engines were able to report the same val-

ues. The benefit of this study is that it provides comprehensive information: the

results obtained and the exact code ran to obtain them. These data can be used by

other simulators to validate their work. These workflows can also serve as valu-

able examples. At the time this study started, HOOMD v3 was still in beta, so

the HOOMD part of this project can serve as a valuable example of how to (1)

run atomistic simulations consistently with other engines, (2) initialize rigid bod-

ies and bond constraints using the MoSDeF framework (this workflow is currently

the only available example of how to initialize rigid bodies on an existing system),

and (4) log individual energies such that they can be compared to other engines.

We have learned that even when you control every step of the initialization pro-

cess, there are still so many additional user-tuned parameters in each engine that

guaranteeing reproducibility requires careful thought.

3.2 Models
The systems which are studied are small, simple, and chosen to demonstrate sim-

ulation in systems with varied degrees of complexity: The TraPPE united-atom

(UA) forcefield was applied to UA methane (see Figure 3.1a) and pentane (see

Figure 3.1b) models to investigate the simplest case of only Lennard-Jones inter-

actions and a linear molecule with bonds, angles and dihedrals [72]. TraPPE-UA

was also applied to a UA benzene model (see Figure 3.1c) to investigate rigid ring

structures. (We initially tried a flexible model based on TraPPE-UA, but some en-

gines were not able to get this model to run [73].) The SPC/E water model (see
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Figure 3.1: Structures of the five models with the atoms types labelled: (a)
TraPPE-UA methane, (b) TraPPE-UA pentane, (c) TraPPE-UA benzene, (d) SPC/E
water, (e) OPLS-AA ethanol

Figure 3.1d) was used to investigate a rigid molecule with electrostatics [74]. Fi-

nally, the most complex system, the OPLS all-atom (AA) forcefield was applied

to ethanol (see Figure 3.1e) to investigate a fully atomistic, charged molecule [75].

The step-wise, increasing complexity in these systems was later very useful for

pinpointing the source of a discrepancy between engines.

The nonbonded interactions were modelled as Lennard-Jones (LJ) interactions

with long-range correction to energy and pressure. (This correction is discussed

further in subsection 3.5.1.) And charged interactions are computed via the par-

ticle particle particle mesh (PPPM) method as described in Darden et al. [76] and
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Lebard et al. [68]. The bonded interactions were modelled as harmonic bonds, har-

monic angles, and OPLS style dihedrals. The forcefield parameters for TraPPE-UA

and OPLS-AA are provided with foyer [25]. The non-bonded potential param-

eters for SPC/E water can be found in Table B.1. The non-bonded TraPPE-UA

potential parameters used for benzene can be found in Table B.2. No bonded po-

tentials were used for either water or benzene as both molecules were modelled as

a rigid bodies [66, 67].

3.3 Methods
The scope of this project meant that it required thoughtful organization: A total

of sixty-nine statepoints each in sixteen replicates were distributed to eight dif-

ferent universities. Devising a custom organization scheme would’ve been time-

consuming and potentially unreliable, so the parameter space was handled by the

signac framework[77, 78, 79, 80]. Signac is a tool designed for managing dynamic

data spaces in a well-defined, indexable way. The study is formatted as a signac

project, so all code—from system initialization to project analysis for all engines—

is contained in a single repository, and access to the data, or "job", can be done

using the statepoint parameters.

The workflow for the HOOMD simulations in shown in Figure 3.2; each engine

will have similar although perhaps not identical workflows. First the statepoint

Figure 3.2: Workflow for HOOMD simulations in the reproducibility study.
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data is used to define the job: The statepoint definition consists of the molecule

being simulated, the temperature and pressure at which the simulation is run, the

simulation ensemble, the number of molecules (N), the side length of the cubic

box, the target density, the molecule mass, the forcefield, including the cutoff style

and cutoff distance (rcut), and the engine used to simulate that statepoint. To pro-

vide adequate data for statistical analysis, 16 replicates were run at each statepoint.

Then using the statepoint data, the system (including the starting structure, box,

etc.) is initialized programmatically.

To ensure that all engines are starting with the same system, this process is gen-

eralized: All engines use the construct_system function, which wraps mBuild’s

fill_box to creates an mBuild Compound object containing the simulation box at the

specified density populated with the specified number of molecules, and load_ff,

which loads the correct foyer Forcefield object from the forcefield name in the

statepoint. Then the forcefield is applied to the system box compound to generate

a ParmEd structure[34], where the atoms are typed according to the forcefield and

the relevant force parameters are also stored within the structure object. From there

each engine takes the parameterized ParmEd structure and converts it to the neces-

sary input format. For HOOMD this is done using the create_hoomd_forcefield

function in mBuild, which handles the unit scaling, initial snapshot creation, and

neighborlist and force creation using the information stored in the ParmEd struc-

ture. Some adjustments are made to the snapshot and forcefield after this to handle

rigid bodies, constrained bonds, neighborlist exclusions, and long range correc-

tion. Then the simulation is initialized, the integrators, methods, and logging are

set and the simulation can be run.
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The first run step in this process is to run a brief shrink step to bring the system to

the desired density. The shrink step starts with the volume expanded by 8 times

(each length of the target box is 2 times larger) then the box is shrunk in the NVT

ensemble over 100 ps with a thermostat coupling value of 1 ps at the simulation

temperature. The NPT run is initialized from the final frame of the shrink trajec-

tory and is run at high thermostat (1 ps) and barostat (5 ps) coupling values initially

(for the first 1 ns) to prevent large fluctuations in the pressure and kinetic temper-

ature and then they are lowered (to 0.1 ps and 1 ps, respectively) for the duration

of the run. The NPT ensemble is run for a minimum of 6 ns, but after each NPT

run, pymbar’s detectEquilibration and subsampleCorrelatedData functions are

used to check whether the volume has equilibrated and the desired number of

decorrelated samples have been run [81, 82, 13]. A minimum of 100 independent

samples at equilibrium were collected for each run, and this equilibration detec-

tion and subsampling is applied across all engines. By using a quantitative metric

to achieve the same number of equilibrated, decorrelated samples, as opposed to

deciding whether a simulation is equilibrated by eye or running for an arbitrary

time, we aim to reduce user error in our sampling. Plots of the evolution of poten-

tial energy over time for the simplest (UA methane) and the most complex system

(AA ethanol) can be found in Figure B.1 and Figure B.2. If the volume has not

equilibrated or the minimum number of independent samples have not been run,

then the NPT simulation continues at the lower thermostat and barostat coupling

values for an additional 5 ns. If the volume has equilibrated, then the statistically

independent samples of the equilibrated volume are averaged and this average is

logged to the job document and the job moves to the NVT run. The NVT run is
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initialized from the final frame of the NPT trajectory, but because this final frame

may not be at the average volume, a short (20 ps) shrink period is done for the ini-

tial NVT run and then the simulation is run for 5 ns. After the NVT run, the same

equilibration detection is used—this time looking at the potential energy values.

If the potential energy is equilibrated, the NVT run is finished, otherwise it is run

again for an additional 5 ns from the last frame of the proceeding NVT run.

Finally the log file containing thermodynamic information written out by HOOMD

is processed to remove any extra headers within the data from restarted jobs, the

pressure and temperature are converted from simulation units into kPa and K, and

the density values are calculated from the volume and logged. For each engine, the

final step is to convert its log and trajectory files to a standard format and unit to

allow analysis to run over all jobs.

All scripts used to initialize, simulate, and analyze this project are publicly avail-

able on GitHub [83]. To share the large data workspace between universities, the

workspace folder is uploaded to a shared Dropbox using Rclone. Once the study

is finalized the complete data will be distributed using Zenodo. Along the way to

achieving consensus between engines in this main project, many stumbling blocks

were encountered. The following sections will detail the issues we encountered

and their resolution.

3.4 Single point energy comparisons
In general when trying to achieve "correctness" in a complex system, it is advisable

to first validate that correctness can be achieved in a simple system, then incremen-

tally add complexity. In this study, single point energy calculations were done after
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discrepancies were found in the simulation results. With the benefit of hindsight,

it is clear that starting with a single point energy comparison would’ve been much

more efficient—allowing discovery of many issues early in the study before nu-

merous compute hours were consumed. It is a good rule of thumb for simulators

to provide a snapshot along with its energy breakdown when publishing if they

want to aid reproduction of their work.

The single point energy evaluation involved distributing the complete informa-

tion for the starting system: atom coordinates and bonding and box information.

The reason this starting structure needed to be distributed is because it was nec-

essary to ensure all starting structures were identical: The packing functions in

mBuild, including fill_box which was used to create the initial simulation inputs

for this study, are wrappers for PACKMOL [84, 85]. PACKMOL uses an intrinsic

random number generation method which is compiler dependent. The result is

that PACKMOL creates different systems based on the operating system on which

it was compiled. In general, simulators are interested in comparing a sampling of

the equilibrium ensemble, which should not depend on the initial position. How-

ever, this discrepancy is important to note if one is trying to compare the energies

of a single frame! For this reason, we could not rely on programmatically gen-

erated structures to compare the single point energies and it is good practice to

distribute the input structure along with the code used to generate it. This start-

ing system was then initialized following the same procedure as the NPT/NVT

ensemble simulations, but the simulation was not allowed to progress in time al-

lowing direct comparison of the energies between engines.

Through the single point energy comparisons, it was determined that information
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about the 1-4 scaling and the combining rule were getting lost in the translation

from foyer forcefield to ParmEd structure to engine input for Cassandra and Gro-

macs. These errors were fixed by mBuild PR 1004 and 1010. Initial comparison of

the single point energies also showed large disagreement between the electrostatic

energies of water in HOOMD and other engines. In HOOMD water was modelled

as a rigid body. When the "rigid" neighborlist exclusion was added on to the de-

fault exclusions set by create_hoomd_forcefield ("bond" and "1-3"), it was found

that the exclusions were double counted by the PPPM energy calculation resulting

in a large discrepancy in the electrostatic energy. This is now noted in HOOMD’s

rigid body documentation. Comparison of the single point energy calculations

also helped to tune the grid size needed for HOOMD’s PPPM charge calculation.

The single point energy values after applying the fixes discussed are included in

Table B.3-Table B.7, and in general these values were found to agree with some

noted discrepancies: Some engines are not able to report as thorough of a break-

down for energies or they may partition the energies differently. For example, the

long range and short range electrostatic energies are not the same between any en-

gines; however, the total electrostatic energy is comparable. By first validating our

method using comparison of the single point energies, we were able to move into

more complex simulations with greater confidence.

3.5 Sensitivity of model to timestep
Designing a general simulation workflow to work with the range of systems in

this study required some model specific adjustments. For example, the atomistic

ethanol system required a smaller timestep. When a timestep which was too large
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but small enough that the system didn’t explode (i.e., the position update didn’t

push the particle outside of the simulation box) was used, the kinetic temperature

was found to equilibrate to a lower value than was set in the NVT/NPT thermo-

stat. Unlike the other systems studied, ethanol has explicit hydrogens with har-

monic bonds. Because hydrogen is such a light particle, the oscillations of bonds

involving hydrogen are very fast. (The SPC/E water system also has explicit hy-

drogens, but because it is rigid, the hydrogen bonds do not have these fast oscilla-

tions.)

The temperature could not equilibrate to the set temperature because the timestep

did not allow adequate sampling of the harmonic bond. Consider the following

example: The period of the harmonic bond is given by

T =
2π√

k
m

(3.1)

where k is the potential constant for the bond given in the forcefield and m is the

mass of the particle. Initially, I was using a timestep of 0.001 (in simulation time

units, approximately 1 fs when converted to real units) while the period of the har-

monic bond (see Equation 3.1) was 0.0118 (in simulation time units, approximately

11 fs). Figure 3.3 illustrates the sensitivity of the harmonic bond sampled at differ-

ent timesteps. By using a smaller timestep (0.0005 in simulation time units, approx-

imately 0.5 fs), the temperature equilibrated to the correct value. Figure 3.4 and

Figure 3.5 show the sensitivity of the equilibrium temperature to timestep based

on system complexity. Both plots are very noisy because they show only the ini-

tial 100 ps post-shrink equilibration in the NVT ensemble, however the methane
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Figure 3.3: Demonstration of how choosing too large a timestep can lead to poor
sampling of the position of atoms in a harmonic bond. Note the divergence from
sinusoidal as dt increases. The dt values and the harmonic bond equation are
accurate with the values given for the hydrogen bond.

Figure 3.4: The evolution of temperature with time with the larger (1 fs) and a
more reasonable (0.5 fs) timestep for the ethanol-AA system. The set tempera-
ture is shown as a dashed line.

temperature fluctuates around the set value and these fluctuations are small (only

a couple of degrees K) and smooth while the ethanol fluctuations are much larger,
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Figure 3.5: The evolution of temperature with time with the larger (1 fs) timestep
for the methane-UA system. The set temperature is shown as a dashed line.

and with the larger timestep, the fluctuations are not about the set equilibrium

temperature. This is due to the increased complexity of the ethanol system requir-

ing finer sampling. When using general simulation workflows, it is important to

check whether set defaults make sense for a particular system.

3.5.1 Cutoff schemes

As is common in molecular simulation, the Lennard-Jones equation (Equa-

tion (3.2)) was used to model the non-bonded potentials between particles. To

save computational resources, it is common to truncate the potential at a certain

distance, and, as a discontinuity in the potential energy can issues in energy con-

servation, there exist various smoothing schemes for handling values beyond the
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cutoff.

ULJ(r) = 4ϵ

[(
σ

r

)12

−
(

σ

r

)6]
;r < rcut (3.2)

= 0; r >= rcut

Generally studies of molecular simulation will report the cutoff handling scheme

used without much elaboration into why the particular scheme was chosen. Per-

haps the engine used does not offer many alternatives or perhaps the forcefield

used is parameterized with a specific cutoff in mind. This is by no means a com-

prehensive study of all cutoff schemes, but let us define three cases for how the

potential beyond the cutoff is handled: hard, shifted, and long-range correction

(LRC). In the "hard" cutoff scheme, the potential is simply set to zero beyond rcut

with no smoothing regardless of the potential’s value at rcut. The "shifted" cutoff

scheme shifts the entire potential by the potential value at rcut (a constant) such that

the potential at rcut is zero. Finally, the "LRC" scheme applies isotropic, integrated

corrections to the energy and pressure based on the particle number densities be-

yond rcut. The energy and pressure corrections ∆E and ∆P are given by

∆E = 2π
n

∑
i=1

Ni

n

∑
j=1

ρj

∫ ∞

rcut

Vij(r)r2 dr, (3.3)

and

∆P =
−2π

3

n

∑
i=1

ρi

n

∑
j=1

ρj

∫ ∞

rcut

(
r

dVij(r)
dr

)
r2 dr (3.4)

where n is the number of unique particle types in the system, ρi is the number

density of particles of type i in the system, Vij(r) is the pair potential between
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particles of type i and j, and Ni is the number of particles of type i in the system

[86, 87]. These expressions assume that the radial pair distribution functions, gij(r),

are unity at the cutoff and beyond.

At the time this study was initiated, the only options for handling the cutoff shared

between all engines were the "shifted" and "hard" schemes. It was found that nei-

ther cutoff scheme was adequate for equilibrating to the correct density or reaching

agreement between MD and MC. So in order to use the "LRC" scheme in HOOMD,

I contributed the tail correction calculations for the LJ pair object which adds a cor-

rection to energy and pressure according to Equation 3.3 and Equation 3.4. The tail

correction code was included in the HOOMD v3.0.0 release.

In order to assess the impact of the cutoff scheme used to handle potential val-

ues beyond rcut, the effect of cutoff scheme on the simplest system, united-atom

methane, was examined. When a hard cutoff is used (see Figure 3.6), there is a large

discrepancy between the MD engines (GROMACS, LAMMPS, and HOOMD) and

the MC engines (GOMC, Cassandra, and MCCCS). The variation in densities be-

tween MC and MD when using the hard cutoff scheme is most likely due to innate

differences in the two methods: MD calculates the interparticle forces—the deriva-

tive of the potential with respect to r—and uses these forces to update the particle

velocities and, in turn, positions. MC, however, calculates the potential values

outright and uses the change in potential to choose whether to accept or reject a

particular move. Using a hard cutoff would cause a discontinuity in the potential,

which results in how the force is handled near the cutoff to be ill-defined.

When a shifted cutoff is used (see Figure 3.7), all engines equilibrate to the same
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Figure 3.6: Average density from NPT simulation of methane using "hard" cutoff
by engine. The average is taken from independent samples of the equilibrated
regions of 16 replicates. The error bars represent two standard deviations in
each direction.

density within error, but the density is much lower than the predicted value—the

density of methane at 140K and 1318kPa is predicted to be 0.37808 g/cm3[88]. This

deviation from the correct density is due to the absolute values of the potential

being shifted. Therefore the potential is different than it was originally created

and parameterized, so it may yield different results. (The TraPPE-UA forcefield,

for example, was designed to be used with analytical tail corrections as described

in Equations (3.3) and (3.4).)

In order to get consensus between engines and closer to the correct density value,

the correction to the energy and pressure was needed (see Figure 3.8). By using

the energy-pressure correction, the energies and densities of both MD and MC are

within the error tolerance of two standard deviations.
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Figure 3.7: Average density from NPT simulation of methane using "shifted"
cutoff by engine. The average is taken from independent samples of the equili-
brated regions of 16 replicates. The error bars represent two standard deviations
in each direction.

It is worth noting that differences in the computed pressure exist between engines

regardless of cutoff scheme, see Figure 3.9. These discrepancies in pressure may be

due to the ideal gas contribution to pressure. The pressure in molecular simulation

can be computed by the following equation

P =
NkBT

V
+

∑N
′

i ri · fi

dV
(3.5)

where N is the number of atoms, kB is Boltzmann’s constant, T is the temperature,

d is the dimensionality of the system, V is the system volume, and ri and fi are the

position and force vectors of atom i [89]. The first term in Equation 3.5 is the ideal

gas contribution to pressure. Not including this ideal gas contribution is akin to

calculating the pressure of the system at 0K. HOOMD calculates the pressure with
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Figure 3.8: Average density from NPT simulation of methane using energy and
pressure long range correction by engine. The average is taken from indepen-
dent samples of the equilibrated regions of 16 replicates. The error bars repre-
sent two standard deviations in each direction.

Figure 3.9: Instantaneous pressure from first frame of methane by engine com-
paring "hard" and "LRC" cutoff schemes.
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the virial equation which includes accounting for the translational kinetic energy,

essentially the kinetic temperature. However, calculating the pressure difference

due to the ideal gas contribution from 900 particles at 140 K in a 63.9 nm3 box

accounts for a difference of about 16 kJ
mol·nm3 while Figure 3.9 shows the discrepancy

is closer to 100 kJ
mol·nm3 , so further investigation into the source of this discrepancy

is required.

Through examination of the energy values of this first frame we also found a dis-

crepancy in the energies reported in newer versions of GROMACS, see Figure 3.10.

This should not have an effect on the end result but is worth noting for those who

Figure 3.10: Instantaneous energies from first frame of methane by engine com-
paring "hard" and "LRC" cutoff schemes.

may want to compare instantaneous energies: Newer versions of GROMACS do

not include the pressure correction to energy in the total potential energy when

running an energy minimization step. This is documented in GROMACS Issue

4229.

https://gitlab.com/gromacs/gromacs/-/issues/4229
https://gitlab.com/gromacs/gromacs/-/issues/4229
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Although it may seem of little significance, the choice of where the cutoff is set and

how the cutoff is handled can greatly affect the simulation outcome.

3.5.2 Rigid constraints

Benzene and water are modelled as rigid bodies in this study. In HOOMD, rigid

bodies consist of a central body particle and its constituent particles. All of these

particles can have forces acting upon them, but the mass and moment of inertia of

the body particle is set to be the full mass and moment of inertia of the body plus

its constituents. Further description of how the rigid constraint forces are imple-

mented can be found in Nguyen et al. [66] and Glaser et al. [67], and I contributed

to updating the rigid body constraint to the v3 api. HOOMD provides functions

to simplify the initialization of rigid bodies; however, using these rigid body func-

tions with MoSDeF tools introduced additional hurdles. The difficulties which

arise at the intersection between codebases are those with which many simulators

will be familiar.

Initializing rigid bodies in HOOMD using MoSDeF tools required additional ef-

fort, as there are some idiosyncrasies that conflict with the typical workflow. In or-

der to initialize a rigid body in HOOMD, all the body particles must be first in the

snapshot and the constituent particles must all have the same relative orientation

to the body particle. To reduce the cognitive load for users, HOOMD recommends

creating the body constituent particles using the create_bodies function, but this

precludes using the MoSDeF initialization functions which fill the simulation vol-

ume, apply the forcefield, and initialize the HOOMD forces. Therefore, we have

developed a generalized workflow based on the assumption that each molecule is

the same and will be its own rigid body. First, an initial snapshot is created with
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the same number of body particle as molecules. Using a functionality which I con-

tributed to the create_hoomd_forcefield, this initial snapshot can be passed in

and the normal workflow—filling the box with all molecules in the same orienta-

tion and applying the forces—can add on to this initial snapshot. Next, the number

of molecules and the number of particles in each molecule is used index through

the snapshot to set the body ids for each constituent particle and to calculate and

set the position, mass, and moment of inertia tensor for each body particle. Finally,

the body constraint is defined based on the types, charges, diameters, and relative

positions and orientations, of the first molecule.

Before using rigid bodies for water and benzene, the HOOMD simulations were

taking an excessive amount of time to equilibrate and were equilibrating to vastly

different results as other engines. There was some hesitation to use rigid bodies

because it was a function that was not supported or implemented differently in

other engines. However Figure 3.15 and Figure 3.17 suggest that the rigid models

achieve agreement.

Currently the example for initializing rigid bodies in the HOOMD v3 API is still

under development. This workflow can serve as an example of how run simula-

tions of rigid bodies in HOOMD using MoSDeF tools.

3.6 Results
This study is still underway and data is still being collected, however we will ex-

amine the current results of this study up to this point, namely the densities and

potential energies. First let’s start with the simplest system, UA methane. The

density of methane between engines agrees within error (see Figure 3.11). The MC
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Figure 3.11: Average density of methane by engine. The average is taken from
independent samples of the equilibrated regions of 16 replicates. The error bars
represent two standard deviations in each direction.

density and potential energy data shows higher variation than the MD results. It

appears that the MC engines in general equilibrate to a lower density, perhaps be-

cause they can more easily sample high density configurations using unphysical

moves (e.g., moving through objects, etc). In contrast, MD may be more restricted

by dynamics and must follow a physical path to reach a configuration, which could

make getting to these high density configurations more difficult. The predicted

density of methane at 140 K and 1318 kPa should be around 0.37808 g/cm3 [88].

We can see that the MD engines, which get closer to the predicted density, have a

lower potential energy Figure 3.12. Although there are some differences we can see

here between MD and MC, the potential energies of methane also agree between

engines within error.

Next, let’s examine UA pentane, which adds bond, angle, and dihedral forces.
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Figure 3.12: Average potential energy of methane by engine. The average is
taken from independent samples of the equilibrated regions of 16 replicates.
The error bars represent two standard deviations in each direction.

Within the pentane model, two bond types were used: flexible and fixed-length

(also called constrained) bonds. This choice was made because the MC engines

only have the capability to model constrained bonds. Therefore, by modelling

a single system in each way (for the engines which are able) we can isolate and

observe the effect of bond type. Figure 3.13 shows the densities of pentane with

flexible and fixed bonds by engine. I do not yet have data for constrained bond

from LAMMPS, and so the only engines we can compare at this point are GRO-

MACS and HOOMD. Both engines seem to have greater variability in the density

when using flexible bonds. This seems reasonable: allowing the bond lengths to

fluctuate essentially allows the volume the molecule occupies to also fluctuate, so

in order to keep the intermolecular forces consistent, the box volume must also

fluctuate. The HOOMD flexible and constrained bond pentane densities appear
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Figure 3.13: Average density of pentane with flexible or constrained bonds by
engine. The average is taken from independent samples of the equilibrated
regions of 16 replicates. The error bars represent two standard deviations in
each direction.

to agree within error although the density of the flexible bond pentane is higher.

For the GROMACS, however, the flexible pentane is much lower density and not

within error of the constrained bond model. Further investigation into the cause of

this will be required. The differences between the potential energy of the flexible

and constrained bond pentane (see Figure 3.14) are much more clear. The poten-

tial energies for the constrained bond pentane are much lower because the bond

lengths for all systems are fixed at their equilibrium length, which is the minima

of the harmonic bond potential. In the flexible bond model, the bond is allowed to

deviate from its equilibrium length, resulting in higher positive contribution to po-

tential energy from the bond. This difference will be seen in the potential energies

for other systems. When the bond lengths are fixed (as in the water and benzene

models), the potential energy values observed by MD are closer to those observed
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Figure 3.14: Average potential energy of pentane by engine. The average is taken
from independent samples of the equilibrated regions of 16 replicates. The error
bars represent two standard deviations in each direction.

by MC. (A direct comparison of flexible vs fixed bonds is shown in Figure 3.14, but

Figure 3.18 and Figure 3.16 also are rigid models or have fixed bonds.)

Next, let’s examine UA benzene, which is a ring structure modelled as a rigid

body. I will use the term "rigid body", although the actual implementation may

vary depending on the options available in each engine. Some engines may be

fixing bonds, angles, and dihedrals, while others (like HOOMD) may support true

rigid bodies. Although the implementations of rigidness may differ between en-

gines, the average density of benzene between engines agrees within error (see

Figure 3.15). Again we see slightly lower density with greater variation in MC,

the reasons for this are likely the same as with methane. Figure 3.16 shows the

potential energies of benzene by engine. With the exception of MCCCS, the po-

tential energies agree within error. Further investigation will be required into the
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Figure 3.15: Average density of benzene by engine. The average is taken from
independent samples of the equilibrated regions of 16 replicates. The error bars
represent two standard deviations in each direction.

Figure 3.16: Average potential energy of benzene by engine. The average is
taken from independent samples of the equilibrated regions of 16 replicates.
The error bars represent two standard deviations in each direction.
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incongruous energy value reported by MCCCS.

Next, let’s examine SPC/E water, which is modelled as a rigid three-site charged

molecule. Figure 3.17 shows the density of water by engines at three statepoints.

The density of water at each statepoint appears to agree within error between all

Figure 3.17: Average density of water at three statepoints by engine. The average
is taken from independent samples of the equilibrated regions of 16 replicates.
The error bars represent two standard deviations in each direction.

engines The average densities are also relatively close to the predicted values:

0.99991, 0.99656, and 0.98953 g/cm3, respectively [88]. The potential energies of

water at these three statepoints Figure 3.18 show similar agreement with the ex-

ception of LAMMPS. It seems that this discrepancy is related to the PPPM imple-

mentation in LAMMPS because the potential energy is systematically high in both

charged systems (see Figure 3.18 and Figure 3.20). Further investigation into this

discrepancy will be required.

Finally, let’s look at the most complex system, all-atom ethanol, which is a fully-
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Figure 3.18: Average potential energy of water by engine. The average is taken
from independent samples of the equilibrated regions of 16 replicates. The error
bars represent two standard deviations in each direction.

flexible molecule with charges. (Full flexibility, of course, depends on the engine’s

capabilities, so MD engines modelled this system with flexible bonds and MC en-

gines used fixed bonds.) The densities of ethanol by engines at three statepoints

is shown in Figure 3.19. The densities agree within error for each method (MC

or MD), but this time the density observed in MD is higher than that in MC. It is

hard to make a clear statement for what is causing this discrepancy in densities be-

tween the two methods with the data available, but comparison with Figure 3.13

could suggest that the higher density observed in MD is due to the flexible bonds.

The potential energies of ethanol (see Figure 3.20) show the greatest variability be-

tween engines; however, this can be attributed to two issues which have already

been discussed. The first is that the MD engines are using flexible bonds while the

MC engines are using fixed bonds. Figure 3.14 shows that when the only difference
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Figure 3.19: Average density of ethanol by engine. The average is taken from
independent samples of the equilibrated regions of 16 replicates. The error bars
represent two standard deviations in each direction.

Figure 3.20: Average potential energy of ethanol by engine. The average is taken
from independent samples of the equilibrated regions of 16 replicates. The error
bars represent two standard deviations in each direction.
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is whether bonds are flexible or fixed, the potential energy of the fixed bonds will

be much lower, which explains the lower potential energy seen in the MC engines

in Figure 3.20. The second is the yet to be understood discrepancy with LAMMPS

in the PPPM model.

3.7 Conclusions
Achieving equivalent results in molecular simulations can be tricky because it’s

not always possible to implement models identically in different engines. For sim-

ple models like UA methane, sampling differences arise, but the engines largely

agree. As our models increase in complexity so do the deviations in our results

between engines and methods. There’s moderately good consensus among the

UA pentane constrained-bond models, but the flexible bond model has greater

variation and highlights the discrepancy when comparing against the constrained

model. The potential energy and density calculations of rigid UA benzene appear

to demonstrate consensus, aside from MCCCS, but this deviation gives us a direc-

tion to investigate. In the SPC/E water and AA ethanol simulations, we see much

more variance between MD and MC engines but consistency among each simu-

lation method. Performing these consistency checks helps find bugs and identify

modeling choices that give rise to these differences.

This study was a community-driven effort to show MoSDeF tools can help achieve

reproducible results across engines. Beyond just an opportunity to validate that

our results were "correct", working on this project together with other simulators

was an invaluable opportunity to learn. Initially, this project seemed to be an easy

task. However, it quickly became apparent that even seemingly minor choices rele-
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vant to the simulation parameters required discussion. These discussions forced us

to dig into each engines code in a way that helped us better understand the simula-

tions we were running. Each group brought a different background and expertise

which was of great benefit when trying to pinpoint the source of a discrepancy. Al-

ready, this collaboration has prompted many improvements to MoSDeF tools and

the engines they support. Ultimately the goal of molecular simulation is to probe

the thermodynamic equilibrium of materials in ways which may give insight that

experiment cannot. In order to draw meaningful conclusions from simulation we

must understand how the choices made in our model influence the results.
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CHAPTER 4:

CONCLUSION AND OUTLOOK

In this work we have aimed to show what reproducibility can look like in molecu-

lar simulation in particular and in computational sciences in general. As someone

who came into my PhD with almost no coding experience, I know the struggles

of trying to reproduce an unfamiliar work—especially scientific scripts which may

be done to achieve a purpose without really considering the next user. Although

designing with the next user in mind may take more work upfront, with practice it

becomes habit and helps promote efficiency and reproducibility. The effort toward

clear documentation and transparency in methods is a benefit for anyone trying to

reproduce the method, including the original author. Collaborative development

through all stages of the project helps to ensure that our methods and documenta-

tion make sense from a different perspective. Being part of a broader collaboration

where I was encouraged to build on and change some of the existing framework

helped me build confidence and to learn how to make my own projects. Discussion

of these works with others from diverse backgrounds and expertise has helped me

to develop a more well-rounded understanding of molecular simulation. Not only

has this community helped me develop a better understanding of simulation, but

also helped me design tools from a simulator’s perspective.
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I am excited by the prospects of my work to persist and be used after I graduate,

and I look forward to seeing future developments. Currently an undergraduate

scientist in our lab is using PlanckTon to investigate the molecule Y6, a component

in the current state-of-the-art OPV. The SMARTS definitions for all the atom types

in Y6 are not yet present in the forcefields provided with foyer, so she is working

to parameterize this compound through other methods and add these parameters

to the custom GAFF forcefield shipped with PlanckTon. Although the workflow

for adding Y6 is not as simple as other compounds, the modular framework and

workflows are still in place to help her quickly spin up simulations once she has

her parameters in place. As she has worked on this task, she has provided essential

feedback on gaps in documentation. The work of Miller et al. [90] has shown the

importance of polydisperse polymer lengths and their ability to form tie-chains

for charge transport simulations. Another scientist in our lab has been devel-

oping tools for initializing a system of polymers with a distribution of lengths,

and his work has included completely revamping mBuild’s polymer builder. And

while these tools are still under development, they would be a great addition to

PlanckTon [91]. Although GRiTS has some rudimentary fine-graining ability, fur-

ther development of this method will be useful for its use in coarse-graining ap-

plications. The code and workflows that I leave behind have been designed for

the next user, and I look forward to the science to which they can be applied. The

order parameter workflow could easily be applied to new compounds and com-

pound mixtures in order to find novel OPV compounds or determine the state

at which self-assembly most robustly produces the morphologies best for charge

transport. The most efficient way to sample this state space would be to start with
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a small system size at a sparse selection of temperatures, solvent qualities, and

densities, then increase the system size and state-space precision after high-order

regions are identified. I also look forward to the conclusions of the reproducibility

study. Already so many fixes and new features have been implemented as a result

of the study’s findings, and I hope that the MoSDeF community will continue to

grow and strive for reproducibility between all the engines we support. These ob-

servations support our thesis that community-built open tools contribute to more

efficient, correct scientific software development.
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APPENDIX A:

NOTEBOOK EXAMPLE FOR P3HT VALIDATION
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A.1 P3HT Validation
[1]: import os

from cmeutils.structure import order_parameter

from fresnel import camera, pathtrace, light

from gixstapose.diffractometer import Diffractometer, get_angle

from gixstapose.draw_scene import get_scene

import gsd.hoomd

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

from planckton.utils.units import string_to_quantity,␣

↪→kelvin_from_reduced

from scipy.interpolate import RectBivariateSpline

import signac

import unyt as u

In the following notebook, we will demonstrate the recreation of part a of the fol-

lowing figure from Miller 2018. This figure shows the order parameter of a OPLS-

UA P3HT system at different temperatures and solvent parameters (ϵs or e_factor).

http://www.mdpi.com/2073-4360/10/12/1305
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The order parameter is used to quantify the degree of ordering in the system by

grouping structures into clusters, and then calculating the ratio of the structures

in a “large” clusters over the total number of structures in the system. In the case

of a P3HT polymer, the structure we use for the order parameter analysis is the

thiophene moeity. The clustering criteria depends on the angle between the planes

of the thiophenes and the distance between the thiophene centers. A thiophene

pair must meet both clustering criteria to be considered cluster neighbors. For

example, if the angle cutoff is 10° and the distance cutoff is 6Å, the image below

shows a thiophene pair which does not meet the criteria (encircled and crossed in

red) and another which does (encircled in green).
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For a cluster to be considered “large”, it must contain at least 6 thiophenes.

All of this analysis, from the simulations to the functions used to run the analysis

itself has been redone using new tools. The goal is to show that not only can we

recreate our previous work, but also the tools we’ve developed make this analysis

more transparent, reproducible, usable, and extensible.

The dataset used in this notebook was generated using PlanckTon, which provides

a way to easily and reproducibly interface with the HOOMD-blue molecular dy-

namics engine, and PlanckTon-flow, which uses Signac to initialize and submit

simulations across the desired parameter space. The workspace with all data used

in this notebook can be found here.

First, assuming the tarball from the above link is unpacked in this directory, we

can use signac to explore this workspace:

[2]: p = signac.get_project("p3ht-ua")

https://github.com/cmelab/planckton-flow
https://hoomd-blue.readthedocs.io/en/latest/index.html
https://github.com/cmelab/planckton-flow
https://docs.signac.io/en/latest/
https://zenodo.org/record/5911940
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p.detect_schema()

[2]: ProjectSchema(<len=15>)

{

'density': 'str([0.56_g-cm**3], 1)',

'dt': 'float([0.001], 1)',

'e_factor': 'float([0.2, 0.4, 0.6, 0.8, 1.0], 5)',

'forcefield': 'str([gaff-custom], 1)',

'input': 'tuple([('P3HT-16-gaff',)], 1)',

'kT': 'tuple([(1,), (1.5,), (2,), ..., (4,), (5,)], 8)',

'mode': 'str([gpu], 1)',

'n_compounds': 'tuple([(100,)], 1)',

'n_steps': 'tuple([(100000000.0,)], 1)',

'r_cut': 'float([2.5], 1)',

'remove_hydrogens': 'bool([True], 1)',

'shrink_kT': 'int([5], 1)',

'shrink_steps': 'float([100000.0], 1)',

'shrink_tau': 'int([1], 1)',

'tau': 'tuple([(0.3,)], 1)',

}

The above schema shows that we are looking at a dataspace of P3HT 16-mers, at a

density of 0.56 g/cm3 at 8 different temperatures and 5 different e_factors. In order

to run the order parameter analysis, there is a little bookkeeping to be done with

units.
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PlanckTon runs its simulations in reduced units to reduce floating point error. This

means all lengths are scaled such that the largest sigma value in the non-bonded

potential is equal to 1, and so on with the largest epsilon value in the non-bonded

potential, and the largest particle mass.

This information is stored in the job document and can be converted to a unyt

quantity using the string_to_quantity function.

In the cell below we set our angle and distance cutoffs for the order parameter

analysis to 10° and 6Å scaled by the unit length of our simulation.

[3]: for job in p:

if job.doc.get("done"):

break

ref_energy = string_to_quantity(job.doc["ref_energy"])

ref_mass = string_to_quantity(job.doc["ref_mass"])

ref_distance = string_to_quantity(job.doc["ref_distance"])

print(f"{ref_distance:.3f} {ref_mass:.2e} {ref_energy:.3f}")

r_max = float(6 * u.Angstrom / ref_distance)

a_max = 10

print(f"r_max: {r_max:.2f}, a_max: {a_max}")

3.564 Å~ 5.32e-26 kg 0.250 kcal/mol

r_max: 1.68, a_max: 10

In the following cell, the order parameter analysis is performed over the entire

https://hoomd-blue.readthedocs.io/en/latest/units.html
https://docs.signac.io/en/latest/jobs.html#the-job-document
https://unyt.readthedocs.io/en/stable/
https://unyt.readthedocs.io/en/stable/
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workspace. Previously, this was done using manual indexing and was hardcoded

for our P3HT input files. But this workflow has been updated to use GRiTS which

uses SMARTS chemical grammar to detect chemical patterns and map the particles

in that pattern to a bead. The order_parameter function in cmeutils then takes this

mapping and the bead positions from GRiTS and calculates the order parameter

of the last 10 frames of the trajectory.

[4]: %%time

o_dict = {}

orders = []

job_strs = []

ts = []

efs = []

keys = []

for (ef, kt), jobs in p.groupby(["e_factor", "kT"]):

for job in jobs:

if job.doc.get("done"):

t_si = int(kelvin_from_reduced(kt[0],ref_energy))

key = (ef, t_si)

if key not in keys:

gsdfile = job.fn("trajectory.gsd")

cg_gsdfile = job.fn("cg-trajectory.gsd")

mapfile = job.fn("mapping.json")

https://bitbucket.org/cmelab/evan_analysis_scripts/src/master/order_over_time.py
https://bitbucket.org/cmelab/evan_analysis_scripts/src/master/order_over_time.py
https://github.com/cmelab/grits
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://github.com/cmelab/cmeutils
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if job.doc.get("order") is None:

if not (exists(mapfile) and exists(cg_gsdfile)):

system = CG_System(

gsdfile,

beads={"_B" : "c1cscc1"},

conversion_dict=amber_dict,

add_hydrogens=True,

)

mapping = system.mapping["_B...c1cscc1"]

system.save_mapping(mapfile)

system.save(cg_gsdfile)

print("\tCG_System created")

else:

with open(mapfile) as f:

d = json.load(f)

mapping = np.stack(d["_B...c1cscc1"])

print("\tUsing mapping")

order, _ = order_parameter(gsdfile, cg_gsdfile,␣

↪→mapping, r_max, a_max)

order = np.mean(order)

job.doc["order"] = order

else:

order = job.doc.order
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o_dict[key] = order

orders.append(order)

keys.append(key)

ts.append(t_si)

efs.append(ef)

job_strs.append(str(job))

CPU times: user 29.2 ms, sys: 2.94 ms, total: 32.2 ms

Wall time: 30 ms

Next we will plot the order parameter vs T and e_factor using an interpolating

function from scipy.

[5]: x = np.array(efs)

y = np.array(ts)

z = np.array(orders)

ux = np.unique(x)

uy = np.unique(y)

uz = np.zeros((len(uy),len(ux)))

# key = (ef, t_si)

for i, xi in enumerate(ux):

for j, yj in enumerate(uy):

uz[j,i] = o_dict[(xi, yj)]

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy-interpolate-rectbivariatespline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy-interpolate-rectbivariatespline


148

f = RectBivariateSpline(uy,ux,uz)

xs = np.linspace(0.2, 1.2, 15)

ys = np.linspace(50, 700, 15)

zs = f(ys, xs)

zs[np.where(zs > 1)] = 1

zs[np.where(zs < 0)] = 0

plt.contourf(xs, ys, zs, 15, cmap="rainbow", vmax=1, vmin=0)

cbar = plt.colorbar(ticks=np.linspace(0, 1, 5, endpoint=True))

cbar.ax.set_title(r"$\psi$", fontsize=40, pad=20)

# Show the positions of the sample points, just to have some␣

↪→reference

plt.scatter(x, y, c="k", marker="x", s=100)

plt.xlabel(r"$\epsilon_{s}$")

plt.ylabel("Temperature (K)")

plt.xticks(np.linspace(0.2, 1.2, 6))

fig = plt.gcf()

fig.set_size_inches(12, 10)
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plt.savefig("order_parameter.pdf")

Even with the changes to our analysis method (using GRiTS instead of manual in-

dexing), the forcefield (using a GAFF-UA model with flexible thiophenes instead

of an OPLS-UA model with rigid thiophenes), and the clustering criteria (10° in-

stead of 20°), the trend in the order parameter across temperature and e_factor

space appears pretty robust! I have included only part a from Miller 2018 below

with the plot skewed so that the bounds are the same.
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We can show that our order parameter metric is robust, but how does it relate to

any physically measurable analysis? To address this question, let’s look at some

diffraction patterns for the highest and lowest order jobs to see if our order pa-

rameter metric is correlated with differences in the periodic structure. We’ll be

using GIXStapose to visualize the real space structure and its simulated diffraction

pattern.

[6]: highest_order_jobs = [job_strs[orders.index(i)] for i in␣

↪→sorted(orders)[-3:]]

lowest_order_jobs = [job_strs[orders.index(i)] for i in␣

↪→sorted(orders)[:4]]

https://github.com/cmelab/GIXStapose
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print("Higest order")

for job_id in highest_order_jobs:

job = p.open_job(id=job_id)

T_SI = int(kelvin_from_reduced(job.sp.kT[0],ref_energy))

print(f"e_factor: {job.sp.e_factor}, T: {T_SI}K")

print(f"\t{job}")

print("\n\nLowest order")

for job_id in lowest_order_jobs:

job = p.open_job(id=job_id)

T_SI = int(kelvin_from_reduced(job.sp.kT[0],ref_energy))

print(f"e_factor: {job.sp.e_factor}, T: {T_SI}K")

print(f"\t{job}")

Higest order

e_factor: 0.4, T: 188K

6289cb58ab91a927f702b7cf238820aa

e_factor: 0.4, T: 251K

16db9573e2e2c6a027abad40cf87733e

e_factor: 0.2, T: 125K

c1e543f38d9f49677b3e3649018152b8
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Lowest order

e_factor: 0.2, T: 629K

c0fd30e6247f95e9c26984ec5f24d99e

e_factor: 0.4, T: 629K

e8e42f76f02e02e686332ce8127e1b24

e_factor: 0.2, T: 503K

349a22231886a7a46aeb7f20c95204e0

e_factor: 0.6, T: 629K

d2da0d6355f3d11fd0132bcf8433df7e

First let’s look at one of the high order jobs (e_factor: 0.4, T: 251K). We’ll first visual-

ize the centers of the thiophenes. (It is a little less busy than the atomistic sturcture

and allows us to more easily see the lamellar spacing.)

The camera position was chosen using the GIXStapose GUI to rotate the structure

as to best see the lamellae.

[7]: job = p.open_job(id=’16db9573e2e2c6a027abad40cf87733e’)

cg_gsd = job.fn("cg-trajectory.gsd")

scene, info = get_scene(cg_gsd, color={"_B": "lightblue"},␣

↪→scale=ref_distance)

cam = camera.Orthographic(

position = [8.133, 5.203, 43.865],

look_at = [0.000, 0.000, 0.000],

up = [0.900, 0.424, -0.101],

height = 31.896
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)

scene.camera = cam

scene.geometry[0].radius[:] *= 3

output = pathtrace(scene, light_samples=40, w=600, h=600)

image = Image.fromarray(output[:], mode="RGBA")

image.save("cg-trajectory_scene.png")

output

[7]:
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We can see that this high order structure has clear repeated planes of thiophenes,

even within these planes there appears to be some ordering most likely due to pi

orbital overlap in the thiophenes. Let’s look at the diffraction pattern of this view:

[8]: d = Diffractometer(length_scale=float(ref_distance))

d.load(info["positions"], info["box"][:3])

d.diffract_from_camera(cam)



155

fig, ax = d.plot(cmap="jet", crop=2.6)

y_min, y_max = ax.get_ylim()

ax.set_ylim((-0.01, y_max))

[l.set_visible(False) for l in ax.xaxis.get_ticklabels()[::2]]

[l.set_visible(False) for l in ax.yaxis.get_ticklabels()[::2]]

plt.show()

In this view, we can see bright peaks in the qz-direction corresponding to the lamel-

lar spacing. The pi-stacking can also faintly be seen in the qxy-direction. We can

label these peaks with their distance from the origin using the interactive PeakLa-

beller class provided in GIXStapose. (To see a demo of how to use this class check

out the GIXStapose example.)

https://github.com/cmelab/GIXStapose/blob/master/examples/Figure_Example.ipynb
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These peaks correspond to periodic distances of 17.24 Å and 3.61 Å which are in

the right ballpark for P3HT: Duong 2013 reports a lamellar spacing of 16.5 Å and

a pi-stacking spacing of 3.83 Å for neat P3HT.

In the next cell, we’ll visualize the overlay of the coarse grain structure with the

atomistic one:

[9]: ua_gsd = job.fn("trajectory.gsd")

ua_scene, _ = get_scene(

ua_gsd,

color={’c3’: "grey", ’cc’: "grey", ’cd’: "grey", ’ss’:␣

↪→"yellow"},

scale=ref_distance,

scene=scene

)

https://www.sciencedirect.com/science/article/pii/S1566119913000840?via%3Dihub
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ua_scene.camera = cam

ua_scene.geometry[0].material.spec_trans = 0.5

ua_scene.lights = light.cloudy()

output = pathtrace(ua_scene, light_samples=40, w=600, h=600)

image = Image.fromarray(output[:], mode="RGBA")

image.save("cg-overlay_scene.png")

output

[9]:
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When we view this overlay (thiophene center beads show in translucent blue,

atomistic carbons in grey and sulfur in yellow), it becomes more clear that this

lamellar spacing is due to the regions with the alkyl tails interacting.

Finally let’s look at one of the low order jobs (e_factor: 0.2, T: 629K):

[10]: job = p.open_job(id=’c0fd30e6247f95e9c26984ec5f24d99e’)

cg_gsd = job.fn("cg-trajectory.gsd")
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scene, info = get_scene(cg_gsd, color={"_B": "lightblue"},␣

↪→scale=ref_distance)

scene.geometry[0].radius[:] *= 3

output = pathtrace(scene, light_samples=40, w=600, h=600)

image = Image.fromarray(output[:], mode="RGBA")

image.save("cg-trajectory-amorphous_scene.png")

output

[10]:
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This view shows that the packing looks basically random.

And we can confirm this by examining the diffraction pattern:

[11]: d = Diffractometer(length_scale=float(ref_distance))

d.load(info["positions"], info["box"][:3])

d.diffract_from_camera(cam)

fig, ax = d.plot(cmap="jet", crop=2.6)
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y_min, y_max = ax.get_ylim()

ax.set_ylim((-0.01, y_max))

[l.set_visible(False) for l in ax.xaxis.get_ticklabels()[::2]]

[l.set_visible(False) for l in ax.yaxis.get_ticklabels()[::2]]

plt.show()

The general lack of peaks suggests that there are few periodic features to be found.

In conclusion, this analysis has shown that we can reproduce our prior work with

updated tools, the order parameter metric is robust across different forcefields and

relates to the prominence of peaks in the diffraction pattern.

[ ]:
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B.1 Forcefield parameters

Table B.1: Non-bonded parameters for SPC/E water

epsilon (kJ/mol) sigma (nm) charge (e) mass (amu)
OW 0.650194 0.316557 -0.8476 15.99940
HW 0.0 0.0 0.4238 1.00800

Table B.2: Non-bonded parameters for TraPPE-UA benzene

epsilon (kJ/mol) sigma (nm) mass (amu)
CHE 0.419880362216737 0.3695 13.01900

B.2 Potential energy plots

Figure B.1: Potential energy over time for methaneUA NVT ensemble.

B.3 Single-point Energies



164

Figure B.2: Potential energy over time for ethanolAA NVT ensemble.

Table B.3: Single-point energy breakdown for methaneUA

Engine Potential VDW Tail Correction
LAMMPS-VU 5.367E+05 5.37E+05 -1.28E+02
LAMMPS-UD 5.369E+05 5.37E+05 -1.19E+02

MCCCS 5.367E+05 5.37E+05 -1.28E+02
HOOMD 5.368E+05 5.37E+05 -1.19E+02

GROMACS 5.368E+05 5.37E+05 -1.19E+02
GOMC 5.367E+05 - -1.28E+02

Cassandra 5.367E+05 5.37E+05 -1.28E+02
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APPENDIX C:

PERSPECTIVE ON COARSE-GRAINING,

COGNITIVE LOAD, AND MATERIALS

SIMULATION

The following chapter was published in Computational Materials Science under

authors Eric Jankowski, Neale Ellyson, Jenny W. Fothergill, Michael M. Henry,

Mitchell H. Leibowitz, Evan D. Miller, Mone’t Alberts, Samantha Chesser, Jaime

D. Guevara, Chris D. Jones, Mia Klopfenstein, Kendra K. Noneman, Rachel Sin-

gleton, Ramon A. Uriarte-Mendoza, Stephen Thomas, Carla E. Estridge, and

Matthew L. Jones. My contributions to this paper were writing about my experi-

ence as a new student, editing, and figure creation.

C.1 Abstract
The predictive capabilities of computational materials science today derive from

overlapping advances in simulation tools, modeling techniques, and best prac-

tices. We outline this ecosystem of molecular simulations by explaining how im-

portant contributions in each of these areas have fed into each other. The com-

bined output of these tools, techniques, and practices is the ability for researchers

to advance understanding by efficiently combining simple models with powerful

software. As specific examples, we show how the prediction of organic photo-

voltaic morphologies have improved by orders of magnitude over the last decade,

and how the processing of reacting epoxy thermosets can now be investigated
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with million-particle models. We discuss these two materials systems and the

training of materials simulators through the lens of cognitive load theory.

For students, the broad view of ecosystem components should facilitate under-

standing how the key parts relate to each other first, followed by targeted explo-

ration. In this way, the paper is organized in loose analogy to a coarse-grained

model: The main components provide basic framing and accelerated sampling

from which deeper research is better contextualized. For mentors, this paper is

organized to provide a snapshot in time of the current simulation ecosystem and

an on-ramp for simulation experts into the literature on pedagogical practice.

C.2 A vibrant ecosystem
This perspective describes four issues in computational materials, the vibrant

ecosystem in which they are being solved (Figure C.1), and a review of recent

advances and best practices for studying materials self-assembly. A central theme

of this work is the use of simplified models[92] to provide accessible on-ramps for

deeper investigation. The four issues are as follows:

1. Understanding materials behavior through computer simulation

2. Reproducibility of research

3. Accessibility of materials simulation tools

4. Demand for computationally literate researchers

These issues overlap: Reproducible results better advance understanding of ma-

terials. Accessible tools facilitate reproducibility. Students with molecular simu-

lation expertise have transferable, in-demand skills. By discussing these issues in

the context of the molecular simulation ecosystem, we show how components of

the ecosystem are related and are advancing materials research.

The problems of research reproducibility and demand for computationally lit-
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erate researchers are broad, encompassing more than the molecular simulation

community. In 2016, 52% of researchers agreed there is a “crisis” of repro-

ducibility [93] and more than 600,000 high-paying tech jobs went unfilled in

the US [94]. Who will fill these jobs and who will ensure research is repro-

ducible? One candidate population is the pool of XSEDE [95] supercomputer

users. These researchers (2,186 undergraduate and 8,409 graduate students in

2017) use nationally-available high performance computing (HPC) facilities to

perform scientific research [96] and develop expertise with automating repeat-

able tasks, managing software stacks, using parallel hardware, and writing soft-

ware to extract understanding from data. Such computational researchers have

the opportunity to demonstrate leadership with reproducibility because the en-

tire research apparatus of one user, including the hardware, software, and pseu-

dorandom number generator seeds used to perform a computation can be repli-

cated exactly by another user—luxuries that are generally not available to non-

computational research. However, the fact that only 0.011% of the 19.8 million US

undergraduates in 2017 were XSEDE users gives a sense for how rare such lead-

ers might be and the gaps that exist in training computationally literate scientists.

Researchers themselves are aware of the gaps: 60% of those surveyed in 2015 re-

ported computational training as their greatest need [97]. In part, this is due to

increased data ubiquity and the associated data science and HPC skills needed to

manage it [98].

Because computational materials researchers develop XSEDE-user skills, under-

standing the computational materials ecosystem of tools, techniques, and prac-

tices can inform modern workforce training more broadly. We aim for materi-

als simulations that are transferable, reproducible, usable, and extensible (TRUE). In

this work we describe best practices and computational tools that enable TRUE

simulations. These practices and tools help researchers waste less time, enhance
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research reproducibility, and prepare them for in-demand technical roles.

Modeling
Techniques

TRUE
Simulations

Simulation
Tools

Best
Practices

Figure C.1: Molecular simulations are becoming more informative and repro-
ducible due to overlapping advances in modeling techniques and simulation
tools through best practices in teaching, sharing, and software development.

“Best practices” refers to the use of open software, software engineering prac-

tices, and pedagogy for teaching computing generally and molecular simulations

specifically. These practices have both a) enabled the creation of open source tools

used broadly by the molecular simulation community, and b) been used within

the molecular simulation community to advance simulation tools and modeling

techniques (Figure C.1). The “simulation tools” discussed are used primarily to

perform molecular dynamics simulations using pairwise potentials to model the

interactions between simulation elements. Each of the main simulation engines is

a significant feat of software engineering towards meeting their users’ demands

of application-specificity and performance. “Modeling techniques” refers to the

algorithms used within simulation engines, interaction potentials (force fields),

statistical sampling techniques, and theory. Explaining how practices, techniques,

and engines are connected to each other is important because each area in isola-

tion has near-infinite depth that can hinder accessibility to new researchers.

C.3 Timescale problems
Molecular simulations predict the structure and properties of materials using

computer implementations of physics-based descriptions of matter. The recent re-
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view article by Braun et al. provides a comprehensive overview of the components

and considerations for molecular dynamics (MD) simulations [99], which we also

focus on here. MD simulations suffer from two scaling timescale problems: The

more atoms needed to represent a system, (1) the more calculation time is required

to generate the next configuration, and (2) the more configurations need to be sam-

pled before equilibrium is achieved. In other words, it takes a lot more time to

simulate larger systems. These timescale problems derive from algorithmic scal-

ing of calculating interactions between N simulation elements (often atoms) and

because larger systems have more configurations (microstates) [100, 41]. Graph-

ics processing units (GPUs) represent a major advance in computing hardware

for ameliorating these scaling problems, and we recommend the 2010 review by

Stone et al. as a starting point [101]. Because of the performance benefits of GPUs,

all open-source MD packages now offer GPU support [102, 103, 104, 105, 106].

We introduce here the training timescale problem that MD and MC simulation

techniques also suffer from: Researchers spend more time making and fixing

modeling errors as the number of software dependencies and scientific topics

needed for the model increases, especially if any of them are new to the re-

searcher. The importance of the training timescale problem explains the grow-

ing efforts around training computational researchers [107]. Because scaling and

training problems are obstacles to performing TRUE simulations, it is important

for researchers to be mindful of tradeoffs between them when making modeling

choices.

C.4 Best practices and cognitive load
Evidence-based instructional practices are being applied within communities of

scientific software developers to create tools and training materials that feed back

into these communities. Ambrose et al. provides a comprehensive review of the

science of teaching, and is an accessible introduction to research around cognitive
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load that we focus on here [108]. The basic idea of cognitive load is that the men-

tal faculties of learners are finite, and their performance on a task (e.g., testing a

new MD package) is hindered when they are asked to do more than one thing at

a time [109]. The lens of cognitive load provides an accessible introduction to the

research around stereotype threat and inclusivity, major barriers to participation

of historically underrepresented groups in science, technology, engineering, and

mathematics [110, 111, 112]. Reduction of cognitive load is a principle of course

design [113, 114, 115, 97, 7, 116], human computer interactions [117], model-based

computing [118, 119], and efforts to make academic writing more accessible [120].

In particular, Software Carpentry, Data Carpentry, and Library Carpentry (The

Carpentries) are community-driven projects that apply the science of teaching

(especially cognitive load reduction) to empower individuals to use computing

in support of their professions [7, 107, 115, 97, 116]. We focus on cognitive load

because of its centrality to tool accessibility and inclusive research communities.

For a sense of the ubiquity of cognitive overload in materials simulation, consider

a novice simulator investigating how metal nanoparticles sinter on a surface dur-

ing additive manufacturing in an atmosphere with alkanes. They begin with an

xml file and discover they need to use a command-prompt to get it “in” to their

lab’s simulation engine. They review the literature to find dozens of seemingly ap-

propriate forcefields with different parameterizations and functional forms [121].

After selecting the embedded atom model [122] to represent the metal atoms, they

find difficulty choosing a forcefield for the atmosphere from MM4 [123], OPLS-AA

[75], GAFF [124], COMPASS [87], and TraPPE [125], all with different models for

the same compounds—how can this be? They consider the importance of charges,

leading to Ewald summation [68] and polarizable force fields [126]. They begin

to despair and wonder if compiling a density functional theory package will be

faster. It isn’t. Now with six unresolved lines of questioning and a command-

https://carpentries.org
https://carpentries.org
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prompt that beeps at the letter ‘f’, the simulator feels like they’re moving back-

ward.

Beeping prompts and sad students are finding help in the modern pedagogy sum-

marized above, facilitated by the development of open-source tools. It came as a

surprise to many that large, decentralized software projects could be successful

despite lack of private return [127]. However, people enjoy helping each other on-

line, both for the enjoyment of sharing their experiences and building professional

reputation, and researchers further derive utility from software that helps with re-

search [128]. This is apparent in the development logs of Carpentries lessons: As

one example, there are 1,942 commits from about 230 individuals since 2013, all

attempting to make a better lesson for teaching the basics of version control (Soft-

ware Carpentry commit log). Open-source, GPU-accelerated MD engines have

experienced growth in community development over the same time frame (Fig-

ure C.2).

2000 2005 2010 2015 2020
year

0

20

40

60

80

100

cu
m

ul
at

iv
e 

co
nt

rib
ut

or
s lammps

gromacs
openmm
hoomd

Figure C.2: Number of unique authors of four popular MD simulation engines
over the last two decades. The increased growth around 2010 coincides with
maturation of GPU technologies for MD and growth in Software Carpentry
efforts. Numbers are approximate, as a few authors in each community may
be double-counted if they commit with multiple pseudonyms.

This is not to say any one of the Carpentries, GPUs, or GitHub explains the recent

https://github.com/swcarpentry/git-novice/commits/gh-pages
https://github.com/swcarpentry/git-novice/commits/gh-pages
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growth in open source science software, but instead emphasizes that coincident

contributions to pedagogical practices, hardware advances, and online develop-

ment communities are important in understanding this ecosystem.

Simulators are exchanging information beyond individual packages, now shar-

ing teaching material under version control (David Kofke’s molecular simulation

course), pre-packaged virtual machines for workshops [129], and new journals

for living documents of best practices, tutorials, and perpetual reviews. A number

of organizations have grown around the support of sustainable software develop-

ment for science and the work of Katz et al. provides a broad overview [130]. A list

of tools for molecular simulation is included in Table C.1, and The OpenScience

Project catalogs hundreds of open projects across disciplines.

Beyond tools designed for molecular simulation, there are important categories

of tools for lowering the cognitive load of software development and fostering

collaboration. GitHub, Bitbucket, and Gitlab are the three largest platforms [144]

for collaborating on code repositories, and offer extra useful features at no cost

for academic use. Messaging products Slack and Gitter are now popular for their

integration with hosted repositories [145] and lower the barrier to entry for dis-

cussing issues and getting help. To lower the cognitive load of getting someone

else’s code to run, myBinder [146] enables users to launch Jupyter notebooks sup-

porting multiple languages with pre-made enviroments for the code in question.

As examples, the MoSDeF tutorials[147] use myBinder to spin up a Jupyter note-

books enabling users to begin tutorials without touching the software environ-

ment on their own computer. For solving the software stack problem on HPC clus-

ters, singularity [148] enables users to deploy portable “containers” from open-

source Dockerfiles[149] across multiple clusters, works with NVIDIA GPUS, and

on many XSEDE resources.

Recurring themes in recommended readings [150, 7, 151] around best practices

https://github.com/kofkeLab/Mol-Sim-Intro
https://github.com/kofkeLab/Mol-Sim-Intro
https://www.livecomsjournal.org/
http://openscience.org/
http://openscience.org/
https://help.github.com/en/articles/applying-for-an-educator-or-researcher-discount
https://bitbucket.org/product/education
https://about.gitlab.com/solutions/education/
https://github.com/mosdef-hub/mosdef_tutorials
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Table C.1: Open source software helpful for materials simulations.

Package Name Description
Diffractometer[47, 54] Python code for generating scattering patterns from MD

snapshots
foyer[131] Python package for atom-typing
freud[132] Python exposure of C++ analysis: RDF, order parameters,

correlation functions
mBuild[133] Python package for system initialization with reusable,

hierarchical components enabling complex initialization
from simple building blocks

MDAnalysis[134] Python package for MD trajectory analysis supporting
many file formats

MDTraj[135] Python package for analyzing and extracting information
from MD trajectories

MorphCT[47, 136] Python package for obtaining and aggregating charge
transport properties from MD snapshots

OVITO[137] Python explosure of C++ analysis: Visualization, struc-
ture determination

packmol[85] Library for initializing configurations of simulation ele-
ments

physical_validation[138] Python package for performing thermodynamic consis-
tency checks

Planckton[42] Python package for initializing and executing HOOMD-
Blue (hoomd) simulations

PLUMED[139] Software for advanced sampling, using collective vari-
ables

pyLAT[140] Python package used to manage LAMMPS output
Rhaco[141] Python package for initializing and simulating molecules

and atoms at surfaces
SSAGES[142] Use collective variables and advanced sampling methods

with amny engines
signac-flow[77, 78] Python package for automating workflows including

HPC schedulers and job submission
signac[77, 78] Python package used to manage multi-dimensional data

spaces and general workflows at scale
VMD[143] Interactive and scriptable visualize and analysis of simu-

lations
VOTCA[53] Package for automating coarse-graining and charge

transport calculations
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and considerations for community-driven scientific software development in-

clude:

1. take into account cognitive load

2. use version control

3. automate repetitive tasks

4. collaborate on and share open code

5. write code in the highest-level language possible

6. software development is a fundamental literacy for engineers and re-

searchers.

We also recommend Ref. [134] as an example of a clearly described scientific soft-

ware package (MDAnalysis) with relevance to materials simulation.

C.5 Modeling Techniques
We now return to the original problem of advancing understanding of materi-

als from molecular simulations and describe techniques for extracting more in-

formation from each step of an MD trajectory. Both coarse-grained models and

advanced sampling help with scaling timescale problems by focusing on the key

features of the phenomenon of interest, spending less effort on irrelevant details.

In practice, implementing these techniques can lead to increased cognitive load if

we are unaware of available infrastructure, so we organize key sources for learn-

ing more.

Briefly, by representing a collection of atoms with “coarse” simulation elements,

significantly longer timescales are accessible because a) less computation is

needed to compute the next configuration, and b) dynamics are accelerated be-

cause the underlying energy landscape is smoothed. Simplified models of poly-

mers are among the first systems studied with molecular simulations [152, 153]
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and the literature around coarse-graining is now extensive. For a polymer focus,

see the recent perspective by Gartner and Jayaraman [154]. For biomolecules and

protein folding there are many good sources including the reviews of Voth [155],

Clementi [156], Elber [157], Klepeis [158], Kamerlin [159], and Kmiecik [160]. The

MARTINI model stands out as a broadly successful coarse biomolecular model

[161]. The specific problem of virus capsid self-assembly is reviewed in Perlmut-

ter et al. [162]. For multiscale modeling, coarse-grained potentials can be derived

by matching structure [163] or forces [164, 165], and the relative entropy frame-

work of Shell and Chaimovich [166, 167] provides a measure of information loss

through coarse-graining.

The calculation of free energy differences, rare events, and alternative approaches

to sampling long dynamics can be accomplished by applying statistical mechan-

ics to simulated trajectories. SSAGES [142] provides a comprehensive overview

of advanced sampling techniques as well as open software for deploying them.

Markov state models (MSM) [168] are statistical tools for describing the coarse

dynamics of MD trajectories and provide a way of aggregating information from

multiple short runs. MSMs themselves are a coarse-graining approach that has

benefited from and contributed to the molecular simulation ecosystem. Ma-

chine learning approaches provide opportunities for extracting collective vari-

ables, trends, and patterns from materials simulations, and the review by Fer-

guson [169] provides a current, comprehensive view.

C.6 Organic photovoltaic structure and performance
In this section we review key topics in simulations of organic photovoltaics

(OPVs) and describe our recent work in this context. OPVs convert photons into

electrical current and engineering their structure to improve performance is an

active area of research. For a more detailed picture of why OPVs are a promis-

ing technology for sustainable energy generation, start with [170, 171]. OPV
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performance is strongly dependent on the morphology, and Refs. [172, 173] pro-

vide overviews of the key factors governing charge generation, separation, and

transport. A review summarizing computational OPV morphology prediction

at different length-scales is presented in Ref. [174]. Computational predictions

of OPV morphologies are used as inputs into charge transport simulations that

link OPV structure to metrics determining their efficiency. Refs. [173] and [175]

explain charge generation and transport, while [176] explains how these proper-

ties can be simulated with kinetic Monte Carlo algorithms. We summarize re-

cent morphology and charge transport predictions of the benchmark OPV mate-

rial poly(3-hexylthiophene) (P3HT) in Table C.2. Combining hardware, software,

and coarse-graining advances, routine simulations of P3HT have improved by

roughly four orders of magnitude over the last decade (0.6 monomer-µs in 2010

vs. 6900 monomer-µs in 2018).
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A challenge to making efficient OPVs is determining which combinations of pho-

toactive compounds and thermodynamic conditions (temperature, pressure, con-

centrations) will result in a favorable morphology—a task well-suited to MD sim-

ulation. Probing this vast data space requires organizing ensembles of simula-

tions, distributing them on high-performance computing clusters, retrieving the

data, and then distilling the data into understandable chunks.

In our recent work [187, 48, 41, 90], we use HOOMD-Blue (hoomd) to predict

morphologies of perylene, perylothiophene, P3HT, and poly(benzodithiophene-

thienopyrrolo-dione) (BDT-TPD) oligomers using simplified (united atom) mod-

els. Neglecting partial charges and treating conjugated systems as rigid are two

assumptions that lower cognitive load associated with force fields, avoiding the

first-principles calculation of unknown charge, dihedral, and angle parameteri-

zations missing from OPLS-UA or GAFF. These simplifications helped with both

training and scaling timescale problems, resulting in morphology predictions in

agreement with experiments [187, 48, 41] (see Figure C.3 and Figure C.4).

(010)(010)
(100)

(200)

(300)

a b

Figure C.3: a) Simulated and b) experimental grazing incident X-Ray scattering 
of P3HT show near identical features and wavenumbers along the (010) and 
(100) planes. The agreement indicates the same structures are being probed in 
both cases. Figure adapted with permission from Ref. [41].
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Figure C.4: a) Experimental and b) simulated grazing incident X-Ray scatter-
ing of BDT-TPD showing agreement. The agreement validates our simplified
model. Reprinted with permission from[48]. Copyright 2017 American Chemi-
cal Society.

An example of developing transferable skills to deal with combinatorial explo-

sion occured in this P3HT work: Only 14 temperatures, 6 solvent strengths, and

5 densities equates to 420 unique simulations. In each of these 420 cases, we aim

to understand how the proximity and orientation of thiophene rings correlates

with charge transport. A single structural descriptor is applied to each case, and a

“phase-diagrams” is constructed for each density, providing a handful of figures

summarizing large data spaces (Figure C.5).
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Figure C.5: 100 P3HT chains of 15 repeat units are represented as three sim-
ulation species: Yellow (sulfur), blue (aromatic carbon), and cyan (aliphatic 
carbon). Temperature, solvent strength (specified as a scaling of the Lennard-
Jones well depth) and density, determine thermodynamic self-assembly of 420 
unique structures. The self-assembled structures are quantified for ordering on 
the interval [0, 1] - where 0 is completely disordered and 1 is completely ordered, 
according to the clustering of neighboring repeat units based on relative dis-
tances and orientations. Ordering is then summarized into “phase-diagrams” 
depicting the order as a function of these three variables; demonstrating how 
hundreds of simulations can be distilled to a few, quickly interpretable figures.

Testing transferability, reproducibility, usability, and extendibility of OPV mod-

eling techniques is an exciting area of future work. For P3HT in particular, the 

number of models, simulation engines, and sampling schemes used makes it a

good candidate for evaluating TRUE-ness. With a myriad of open approaches for

coarse-graining, there is no fundamental reason why multiscale efforts validated

by different groups could not be a test-bed for testing reproducibility these scales.

Similarly, the availability of various charge-transport calculation approaches pro-

vides for opportunities to reproduce predictions of how charge transport depends 

on morphology and chemistry. Such cross-validation teams would help accelerate

improvements around charge transfer calculations themselves, where opportuni-

ties exist to improve understanding of this broadly applicable phenomenon.



183
C.7 Predicting crosslinking dynamics

In this section we review computational approaches to predicting the crosslinked

networks of toughened thermosets and discuss our recent work in this context.

Thermosets are strong, low-density materials formed by the covalent bonding of

liquid precursors into a 3D network that can be made less brittle through the intro-

duction of a thermoplastic “toughener”. In the fabrication of composite materials

made from carbon fibers impregnated with toughened thermosets the network is

“cured” through the heating and cooling of a part over time. The temperature his-

tory experienced by the part during curing influences the rates of diffusion and

reaction, and therefore its resulting nanostructure and residual stresses. As the

thermoset precursors crosslink, there is an entropic driving force for the phase-

separation of the thermoplastic [188], which complicates nanostructure evolution.

For a review of the key concepts in modeling thermosets (cure fraction, gelation,

and glass transition temperature) see Li and Strachan [189]. The challenge fo-

cused on here is using molecular simulations to predict how thermoset formula-

tion, toughener chemistry, and temperature history determine the cured nanos-

tructure.

The central problems are those of scaling and training timescales, plus the fact

that reacting systems are not in equilibrium. On the sampling side, the slow dy-

namics of gelling, glassy thermosets make relaxation intractably long even for

small systems. Further, validating simulations against experimental systems with

1nm-100nm phase-separated length scales demands large simulated volumes. On

the training side the main tensions are between faithful representation of reaction

kinetics, coarse models that enable access to long timescales, and implementing

these simultaneously. The knowledge that the equilibrium integration schemes

available in hoomd and lammps are in conflict with the exothermic formation of

bonds, and that using ReaxFF [190] won’t permit sufficient volumes to be accessed
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is liberating: It allows the question to be reframed as “How predictive of nanos-

tructure can a simplified model of crosslinking thermosets be?”

To advance towards the goal of large, fast, predictive thermoset simulations we

develop epoxpy as detailed in Ref. [191]. This was the first project in which we

employed continuous integration into model development. Sanity checks built

around initialization of the tougheners and the generation of trajectories with and

without the reaction algorithms implemented allowed the submission of large en-

sembles of jobs to multiple clusters with confidence. This further allowed the

research team to quickly progress through a series of models in support of the

science question:

• DPD models are good for simplicity and performance, but not for represent-

ing entangled glasses

• LJ potentials and bond constraints can be parameterized to model entangled

glasses

• Angle constraints are needed here for Tg measurements to fit the

DiBenedetto expression

• In some cases, million-particle systems are needed to capture the microphase

separated morphologies (Figure C.6)

• Bond-forming models can be made with hoomd plugins and calibrated

against reaction kinetic models with and without heats of reaction

The results of our approach are summarized with recent simulations in Table C.3.

The two distinguishing features of our recent work ([191]) are (1) the ability to

investigate structural evolution while the model epoxies cure and (2) ability to do

so for million-particle volumes in a few days or weeks on a single GPU.
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Table C.3: Overview of recent reacting epoxy models, sorted by system size.
Most efforts do not capture dynamic bonding during MD integration nor val-
idate glass transition (Tg) as a function of cure fraction α (DiBenedetto expres-
sion).

Model
(Chemistry)

Bond
Probability System Size Tg(α)

Validation

CGMD[192]
EP/CA Arbitary 5.0 × 103 No

AAMD[193]
(DGEBA/DETA) Arbitary 5.9 × 103 No

CGMD/AAMD[194]
(DGEBA/DETA) 1 2.2 × 104 No

AAMD[195]
(DGEBA/33DDS) 1 6.9 × 104 No

AAMD[196]
(DGEBA/44DDS) 1 9.8 × 104 No

DPD[197]
(DGEBA/DETA) 1 1.1 × 105 No

DPD[198]
(DDS/RA/SA) 0.001 2.5 × 105 No

CGMD/DPD[199]
(DGEBA/44DDS/PES)

∼ exp( Ea
kBT ) 4.0 × 106 Yes
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Figure C.6: The ability to perform curing simulations of million-particle 
toughened thermoset models enables the identification of sufficient box 
sizes. Here, divergence of the low-wavenumber structure factor is used to 
identify macrophase separation, and for small volumes (blue, left) of this CG 
model the morphologies appear macrophase separated. Large volumes 
(orange, right) of the same model show a local maximum in the structure 
factor (qmax) indicating microphase separation is observable when the length-
scales of separation are smaller than half the simulation box length. Here, 
1.2e6 particles (35nm boxes) are needed, reinforcing the importance of fast, 
large simulations for studying toughened epoxy thermosets.

Despite the simplifications, our coarse simulations match experimental reaction

dynamics and glass transition temperatures [199]. Further, because we can vary

temperature over the course of these reacting systems we can for the first time use

MD to investigate how nanostructure depends upon temperature history during

curing. Here we present new results (Figure C.7 and Figure C.8) summarizing the

evolution of structure in two types of curing simulations where the primary ac-

tivation energy is 2.1 dimensionless energy units, the secondary EA = 2.52, N = 

400000, L = 73.7nm and dt = 0.01, using the Lennard-Jones parameters from Ta-

ble 5.1 and the fiducial simulation parameters from table 5.2 of [199]. Specifically,

the ratio of coarse amine, epoxy, and toughener (A, B, and C) considered here is

1:2:2, with εAA = 0.9216, εBB = 1.0, εCC = 0.8840, εAB,AC,BC are obtained using the

Lorentz-Berthelot mixing rule (e.g. εAB = √εAAεBB), harmonic bond r0 = 1.0 and

k = 100 ε
σ2 . The Langevin thermostat with drag parameter γ = 4.5 is used to ad-
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vance simulation trajectories. Simulations were performed on NVIDIA K40 cards

using hoomd 2.2.1 (commit hash f664aebdf55e44f10cdd6d5edc3a090f1bca713b),

In both figures, the wavenumber associated with microphase separation is plotted

vs. time, with the simulation temperature (red) overlaid, along with the system’s

glass transition temperature (purple) which is a function of the degree-of-cure.

In Figure C.7, the sample being cured at 0.8 kT (above Tg) is quenched to 0.5 kT

(below Tg) before gelation, and in Figure C.8 the quench occurs after the onset of

gelation. In both cases, the morphologies achieve the same degree of cure (α =

0.78), and the standard error of five independent simulations are plotted with

the grey error bars. We observe that curing post-gelation narrows the variance

in cured structure, and these results demonstrate the importance of temperature

history on cured morphology.

Figure C.7: Time evolution of the dominant length scale measured by the
toughener-toughener structure factor for toughened reacting epoxy thermosets
quenched below Tg (solid line) before gelation at time step 10,480,000. Curing
temperature is shown by the dotted line. Error bars represent standard error
from five independent simulations
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Figure C.8: Time evolution of the dominant length scale measured by the 
toughener-toughener structure factor for toughened reacting epoxy thermosets 
quenched below Tg (solid line) after gelation at time step 30,480,000. Curing 
temperature is shown by the dotted line. Error bars represent standard error 
from five independent simulations

The present example combining simplified models with continuous integration—

two of the best practices from section C.4—demonstrates improved understand-

ing of materials behavior. Because the code is open, the data is available, and 

because experimentation in this area is active, we identify epoxy thermosets as an 

area where we expect development around TRUE simulations to accelerate. Com-

munity validation of morphology predictions from simulations with varied tem-

perature histories offers opportunity to increase the industrial impact of molecular

simulations.

C.8 Training new simulators
In this section we describe several examples of on-boarding students to new

projects wherein open tools (namely hoomd, mBuild, foyer, signac) and Software 

Carpentry pedagogy are used to reduce cognitive load and aid reproducibility. 

In addition to using the aforementioned tools directly in python scripts, we de-
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velop two packages, Rhaco [141] and Planckton [42], that combine these tools to

accomplish common tasks for specific systems. Rhaco facilitates the initialization

and simulation of matter near surfaces and Planckton provides infrastructure for

coupling MD simulations of OPVs to charge transport simulations (Table C.1). Ex-

amples of the diverse surface systems investigated with Rhaco are summarized in

Figure C.9 and have enabled broad testing of forcefield compatibilities and quali-

tative investigation of surface phenomena while teaching students from multiple

disciplines. In Figure C.10 we summarize DNA, fullerene, OPV material, asphal-

tene, and patchy particle models developed by new students leveraging mBuild

and hoomd.

aa

b

c

d

Figure C.9: a) PDMS chains initialized over NiMnGa, b) configuration of PDMS 
on NiMnGa by combining UFF and an OPLS-UA-derived potential, c) PDMS 
initialized on an M1 surface, d) Sintering silver nanoparticles on a corundrum 
surface combining EAM and UFF.

These examples are representative of students being able to initialize and debug

models in weeks. In the case of Figure C.10a, quickly moving past the initial-

ization step of building coarse-grained DNA identified i ssues w ith o ur imple-
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fullerene oxides solubilizing C60was identified by trying seven coarse models.

In Figure C.10c, initializing the complex truxene (a new candidate molecule for

OPVs) with foyer immediately identified needed dihedral constraints. The as-

phaltenes components in Figure C.10d can be tuned for molecular weights and

number of chains and was accomplished by an REU team. The patchy trapezoids

in Figure C.10e permit quick testing of how patch size and shape influences as-

sembly propensity.

a b c

d e

Figure C.10: a) Coarse-grained DNA initialized directly from sequence of 
nucleobases using the model from [200], b) Micelle self-assembly from a 
coarse-grained model of fullerene and their oxides, c) truxene molecule with 
electroactive components core and three functional groups, d) examples of 
programmatically-generated asphaltene components, e) 2D patchy particles de-
signed to self-assemble terminal structures.

By combining tools for particular applications, we create “higher-level” languages

for describing the system initializations in these examples. This enables the con-

cepts of the models to be probed faster, lowering the load associated with initial-

ization and parameterization, and the management of conversion between units

and dimensionless quantities used in hoomd. Further, the code development bene-

fits are bidirectional: By engaging with developer communities, students broaden

their network of support and provide feedback that informs tool development.
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All of the repositories mentioned here (hoomd, mBuild, foyer, signac, and Software 

Carpentry’s instructor training) have now merged student pull requests originat-

ing from missing features or bugs encountered en route to the above work. These 

examples dispel the notion that aiming for simplicity necessarily creates “black-

boxes” that limit student understanding of details, or the notion that higher-level 

languages necessarily create dependencies on established techniques. Rather, 

aiming for low cognitive load can focus development of new techniques and fea-

tures with the best payoff for the researcher. Students anecdotally report increased 

interest and confidence, and this area represents a potential opportunity for future 

studies of professional identity, retention, and long-term career outcomes [201].

Related to the professional identities of materials simulators is the idea that cer-

tain scientist roles might enhance TRUE simulations. For example, should train-

ing prioritize the development of tool developers and tool users separately, or 

jack-of-all-trades scientists that can do everything? We find guidance to answer-

ing this question from our experiences with distributed code development: It is 

impossible for any individual to master everything, so leveraging the knowledge 

embedded in diverse development communities should be prioritized. Prioritiz-

ing diverse development communities highlights the need for the individuals in 

these communities to communicate and collaborate. The existence of and adher-

ence to community codes of conduct (see The Carpentries code of conduct, for 

example) helps to ensure communities practice inclusivity and fosters collabora-

tion. Within such communities we do not know if the prioritization of particular 

roles is yet warranted to enhance the realization of TRUE simulations, but we hold 

the optimistic opinion that communities offer the opportunity for the ensemble of 

individual interests and strengths to overlap in a way that makes any individual’s 

shortcomings irrelevant.

https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
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C.9 Outlook

This instant in time represents a period of major change in the materials simu-

lation ecosystem. Distributed coding communities have appeared, grown (Fig-

ure C.2), and disrupted the development practices and availability of simula-

tion tools, continuing progress towards TRUE simulations since the field’s origins

[202, 203]. In this perspective we make the case for thoughtful training to take

a central role in enhancing research reproducibility while simultaneously train-

ing researchers for broadly-needed technical roles. We also make the case that en

route to TRUE simulations, these simulations should begin as less “true”: Lower-

ing cognitive load by sacrificing completeness now is made up for by increased

efficiency and correctness later. However, TRUE simulations are not yet the norm.

Materials simulators are in a position of opportunity and responsibility: We can

demonstrate how reproducible science can be performed through increased en-

gagement with our peers in the coming years. If the current momentum around

communication and collaboration wanes, however; if the community becomes

less inclusive rather than more, we may expect the amount of beeping prompts to

increase. We take a more optimistic view: There has never been a better time to be

a molecular simulator because of how active the community is with helping train

its members to do transferable, reproducible, usable, extensible science.
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APPENDIX D:

AB-INITIO STUDIES OF EXCITON

INTERACTIONS OF CY5 DYES

The following chapter was published in Journal of Physical Chemistry A in 2018

under authors Jenny W. Fothergill, Andres Correa Hernandez, William B. Knowl-

ton, Bernard Yurke, and Lan Li. My contributions to this paper under the guid-

ance from Drs Li, Knowlton, and Yurke were all DFT, python, and java calcula-

tions, data curation and analysis, all figure creation, and all draft writing.

This was my first published paper and I have learned a lot since its publishing, so

I’d like to give a little further context with guidance for how it could be improved.

At this time I wrote some python code which used singular value decomposition

to fit the mostly-planar dye molecules to a vector and a plane. I showed a graphic

for how this was done in the SI, but did not include any code or any details of

what software versions I used. The method is not theoretically complex and if

I recall correctly I used a function from the Scipy library, but this work would

have been more reproducible had the exact code and its dependencies been pro-

vided in the supporting information (SI). At the time, however I was not aware

of version control using git or GitHub and instead used Dropbox’s history. I did

my best to report all details for the computations I performed although they were

done in a proprietary package (Gaussian09), so the source code is not available.

Along with the SI, PDB files for all DFT optimized structures were included, but

194
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I did not provide any of the raw input or output files used by Gaussian, nor did

I report how I converted these structures to PDB. Another bespoke code used in

the publication, referred to as the KRM code, was developed in Java by Dr Yurke

and its theory is given in Cannon et al. [204, Supporting Information], but to my

knowledge the source code is not publicly available or under version control, so

I could not report its version or give instructions for how this work could be re-

produced. This critique of my past work is by no means a condemnation of it;

my effort and the guidance I received from my collaborators were an invaluable

learning experience. Learning to use git and GitHub is an initial barrier which

adds to cognitive load—a novice computational scientist needs to learn the the-

ory and background of their method, how to navigate the shell, how to use a new

software, and perhaps a scripting language, so although using version control is

a vital part of writing reproducible scientific code, initially learning how to use it

may seem like an unwanted additional hurdle. I was also somewhat ignorant of

what details I should report—at the time I don’t think I knew how to determine

what version of python or java or which additional libraries I was using. Ad-

ditionally, DFT was used to get the optimized orientations of the oblique dimer

in DNA and these orientations were used as input to the KRM code in order to

get an absorbance spectrum to compare with experiment. DFT does not take into

account temperature, and due to computational limitations the DNA cannot be

included in the model, so perhaps a better method for obtaining the average ori-

entations of these dye molecules would’ve been to use molecular dynamics, which

could more easily model this larger system.

D.1 Abstract
The excited state properties of cyanine dyes and the orientations of their aggre-

gates were studied using density functional theory (DFT). The effects of exchange-

correlation functional and solvent model on the absorption spectrum of Cy5 was
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investigated. Using the 6-31+G(d,p) basis set and B3LYP exchange-correlation

functional with IEF-PCM (water) solvent, the predicted spectrum achieved a max-

imum absorbance within 0.007 eV of experiment. An in-house program based on

the theoretical model of Kühn, Renger, and May (KRM), which predicts the ori-

entation of dyes within an aggregate from its absorbance and circular dichroism

(CD) spectra or vice versa, was used to investigate the orientation of an exper-

imentally observed dimer. The absorbance spectrum predicted using the KRM

model of the dimer structure optimized with the 6-31+G(d,p) basis set, ωB97XD

exchange-correlation functional, and IEF-PCM (water) solvent agrees with exper-

imental data.

D.2 Introduction
Chromophore aggregates in the light-harvesting complexes of photosynthetic or-

ganisms have been shown to exhibit exciton delocalization, in which an electron-

hole pair is delocalized over spatially separated chromophores [205, 206, 207].

Exciton delocalization plays a role in the energy transfer to the reaction cen-

ter in photosynthesis and was first observed in nonbiological molecular crystals

[208, 209, 210, 211]. Early steady-state absorption measurements suggested exci-

ton delocalization was present in chlorophyll from spinach photosystem I [212].

Later, femtosecond two-dimensional spectroscopy was used to observe the indica-

tive quantum “beating” between chromophores in bacteriochlorophyll at 77K, a

result that was later confirmed at room temperature [213, 214]. These excitonic

phenomena are of considerable interest due to their potential for applications in

the realms of solar energy harvesting and quantum optics [215, 216, 217]. A sig-

nature of exciton delocalization in dye aggregates is the shifted absorption max-

ima (relative to the monomer) due to molecular transition dipole interactions.

When two chromophores come close enough that their transition dipoles inter-

act, the excited state energy is split. Two commonly formed types of aggregate
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are known as J- and H- aggregates [218]. J-aggregates, named after the chemist E.

E. Jelley, display a narrow, intense, bathochromic absorbance (i.e., red shift) with

nearly resonant fluorescence, while H-aggregates display a hypsochromic shift

(i.e., blue shift) in absorbance maxima and quenched fluorescence as explained by

the molecular exciton theory of Kasha [219]. Figure D.1 illustrates the energy split-

Figure D.1: Energy diagram based on molecular exciton theory of Kasha show-
ing the excitation pathways for the J-dimer, H-dimer, and oblique dimer relative
to the monomer [218]. The allowed (solid) and forbidden (dashed) transitions
result from the orientations of the molecular transition dipole moments.

ting and allowed states of different dye dimers. The transition dipole moment is

assumed to be parallel to the long axis of the dye molecule. The selection rules for

light absorption involve taking the vector sum of the transition dipoles, so only

transitions with net non-zero vectors are allowed. Oblique aggregates, in which
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the alignment of the transition dipole moments of the dyes is at some angle be-

tween the H- or J- configurations, have allowed transitions to both the higher and

lower energy states, so the absorbance spectra show Davydov splitting of their

absorbance maxima [209]. Due to their excitonic properties, dye aggregates have

been proposed to be used for light harvesting and excitonic quantum computing

applications [220, 221, 222, 223]. However, the chromophores must be precisely

spaced in order to achieve predictable exciton delocalization behavior as small

changes in the orientation of the chromophores will cause large shifts in the ab-

sorption spectra.

Recently, cyanine dyes covalently incorporated into duplex DNA have been stud-

ied for their exciton delocalization properties that include J- and H-aggregate

behavior and Davydov splitting that manifest as red shifts, blue shifts, and si-

multaneous red and blue shifts in absorbance, respectively, as compared to the

dye monomer. The self-assembly properties of DNA can bring dyes within sep-

aration distances that induce shifts in the absorption maxima. Using DNA as

a scaffold allows for manipulation of the orientation of cyanine dye molecules.

DNA nanotechnology enables the precise construction of nanodevices due to the

self-assembly of nucleic acids determined by Watson-Crick base pairing. The use

of DNA as a building material has demonstrated precise control of 2D and 3D

nanoscale shapes [224, 225]. It has been shown that Cy5 dimers covalently bound

into the sugar-phosphate backbone of duplex DNA adopt a J-dimer configuration

in 100 mM sodium chloride [226]. Another study found that Cy3 dimers cova-

lently attached to DNA showed H-dimer absorbance in which the intensity varied

with base-pair separation distance and the rigidity of the DNA scaffold [227]. The

exciton-coupling strength of Cy3 dimers in double-stranded DNA has been found

to decrease with an increase in temperature [228]. It has also been found that vary-

ing the salinity of a solution containing Cy5 in DNA with magnesium chloride
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(from 0 mM to 100 mM) as well as the DNA concentration resulted in a confor-

mational change from a J- dimer to H- tetramer configuration [204]. The relative

orientation of the dyes in the DNA scaffold has been investigated by fitting the

absorption and circular dichroism (CD) spectra using an in-house program based

on the theoretical model of Kühn, Renger, and May (KRM) [204, 229, 230]. In this

model, the dominant vibrational mode of the electronic ground state and the elec-

tronic excited state of each molecule in the aggregate is treated non-perturbatively

by including its Hamiltonian in the system Hamiltonian that is diagonalized on

a truncated Hilbert space in order to obtain the system energy eigenvalues. To

go beyond the approximation in which the exchange interaction arises from point

dipoles, the program, from here on referred to as the KRM code, treats the in-

teraction using the extended dipole model [231]. In this manner, the program is

able to more accurately model aggregates of rod shaped molecules, like Cy5, for

which nearest neighbor distances can be shorter than the length of the molecules.

Cannon et al. used the KRM code to find the orientation of the chromophores by

varying the input orientations and fitting parameters until a good fit was obtained

between the theoretical and experimental spectra [204, 229]. Having determined

the values of the fitting parameters for Cy5, the KRM code can be used to pre-

dict the absorbance and CD spectrum of a given Cy5 aggregate structure. Further

detail about the methods implemented in the code can be found in Cannon et al.

[204].

This paper investigates the excited state and intermolecular Cy5 (see Figure D.2

for structure) dye interactions using ab-initio density functional theory (DFT)-

based approach. Determining the position and orientation of these molecules is

a vital first step to study their excitonic behavior. This work is in support of a

previously published article in which the orientation of dyes covalently bound to

duplex DNA was investigated by analysis of the absorption and circular dichro-



200

Figure D.2: The molecular structure of Cy5 (or 1-1’-dimethyl-3,3,3’,3’-
tetramethylindocarbo-cyanine). Linkers are attached at R groups: for H-dimers 
and monomer, R = methyl, for oblique dimer, R = propyl chain.

ism spectra using the KRM model [204]. The dimer orientation predicted by Can-

non et al. for a Cy5 dimer in duplex DNA in 0 mM MgCl2 from analysis with 

the KRM code of the absorbance and circular dichroism data (this dimer structure 

is from here on referred to as the oblique dimer) was also optimized using differ-

ent exchange-correlation functionals [204]. The predicted spectra of the optimized 

oblique dimer structures using the KRM code were compared to the experimental 

spectrum obtained by Cannon et al. [204]. Vibrationally resolved absorbance spec-

tra for the Cy5 monomer were generated using each exchange-correlation func-

tional and compared to the experimental spectra. The computational results ad-

vanced our understanding of exchange-correlation functional effect on the struc-

tural stability and excitonic phenomenon of the Cy5 materials.

For the Cy5-DNA materials system to be considered as a viable candidate for ex-

citonic applications, control of position of Cy5 dyes in different DNA assemblies 

must be demonstrated. In our work, DFT-based electronic structure calculations 

helped determine the orientation of Cy5 dyes in DNA at the ground state. TD-DFT 

modelled a system in the excited state, revealing the effect of exchange-correlation 

functional and solvent on the absorbance spectra.
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D.3 Methods

All ab-initio calculations were performed via the Gaussian09 quantum chem-

istry package [232]. Molecules were first optimized using the semi-empirical

PM6 method [233]. These structures were then optimized to a residual force of

4.50x10-4 Hartree/Bohr (2.31x10-2 eV/Å) using the Kohn-Sham formulation of

DFT with the B3LYP, CAM-B3LYP, or ωB97-XD hybrid exchange functionals and

6-31+G(d,p) basis set [234, 235, 236, 237, 238]. B3LYP is a three-parameter hybrid,

combining Hartree-Fock, GGA, and LDA with no long-range or dispersion cor-

rection [234]. CAM-B3LYP also considers long-range correction by the Coulomb

attenuating method [235]. ωB97-XD has both long-range and damped empirical

dispersion corrections [236]. The effect of basis set extension was also investigated

using the 6-311++G(2df,2pd) basis set. These basis sets and exchange-correlation

functionals were chosen based on a study which found them to work well for

the Cy5-DNA system [239]. Because the research focus is on the excited state

energies, the diffuse functions (represented by +) and the polarization functions

(represented by the p, d, or f orbital designation) in the basis set were used to

better approximate the higher energy molecular orbitals. All solvated structures

were optimized using the polarizable continuum model of water solvent using

the integral equation formalism (IEF-PCM) [240]. Structures were confirmed to

be minima on the potential energy surface by the lack of negative vibrational fre-

quencies.

The terms flipped and stacked denote the position of the tertiary amine groups

in the dimers: stacked refers to the amine groups of each dye molecule being on

the same side while flipped refers to the amine groups being on opposite sides

(see Figure D.3). The initial positions of the flipped and stacked H-dimer were

chosen by placing the centers of the molecules within 1 nm of each other but no

closer than 5 Åbecause any closer is not physically likely to occur. The atoms in



the H-dimer were fully geometrically relaxed.

Figure D.3: The initial structures for the flipped (a) and stacked (b) Cy5 H-
dimers. The blue atom represents the nitrogen in the amine group while carbon 
is in grey and hydrogen is in white.

The initial position of the oblique dimer was obtained by matching the dimer 

position with the orientation vectors obtained by Cannon et al. using the KRM 

code [204]. In the experiments of Cannon et al., the oblique dimer was covalently 

bound into DNA, so to model this situation, the initial orientation of the oblique 

dimer from the KRM code was covalently bound into the DNA backbone with 

propyl linkers and optimized using the universal force field (UFF) in the Avogadro 

molecule editor [241, 242]. Then, the position of the terminal carbon atom on the 

linker group was frozen to simulate binding to DNA, and the DNA was removed 

to reduce computational time before optimization using PM6 followed by DFT 

optimization with a hybrid functional.

To investigate the effect of solvent on the excited state energies, a linear response 

formalism which adds the solvent terms to the excited state equations was em-

ployed, and the geometry of the lowest excited state was optimized with IEF-

PCM water solvent. To account for the Duschinsky effect (i.e., the change in vi-

brational modes upon electronic transition), the Adiabatic Hessian approach was 

used to expand the excited state potential energy surface around the equilibrium 

excited state geometry [243, 244]. To obtain a vibrationally resolved absorption 

spectra the magnitude of the transition dipole moment between vibrational lev-

202
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(FC) with and without the Herzberg-Teller (HT) approximation for comparison

[245, 246, 247, 248, 249]. The resulting stick spectra were broadened using Gaus-

sian functions with a half-width at half-maximum (HWHM) of 300 cm-1.

D.4 Results and Discussion
Table D.1 and Table D.2 show the solvation energy for the Cy5 monomer and

H-dimer and the dye-dye interaction energy of the H-dimers in consideration of

various basis set and exchange-correlation functional combinations. The solvation

energy is calculated as follows:

Esol = ET − Ev (D.1)

where ET is the energy of the solvated molecule and Ev is the energy of the relaxed

molecule structure in vacuum. The interaction energy of the dimer is calculated

as follows:

Eint = Edimer − 2 × Emonomer (D.2)

where Edimer is the energy of the dimer and Emonomer is the energy of the monomer.

Table D.1: Solvation energy of relaxed Cy5 monomer for given basis sets and
exchange-correlation (xc) functionals

Basis Set xc-functional Solvation Energy (eV)
6-31+G(d,p) B3LYP -1.488
6-31+G(d,p) CAM-B3LYP -1.501
6-31+G(d,p) ωB97-XD -1.506
6-311++G(2df,2pd) B3LYP -1.477
6-311++G(2df,2pd) CAM-B3LYP -1.492
6-311++G(2df,2pd) ωB97-XD -1.493

The solvation energy is used as a qualitative measure to determine which dye ori-

entation will be more stable as the experiment we aim to support takes place in

aqueous solution [204]. The more negative the solvation energy, the more energet-



204
Table D.2: Solvation energy and interaction energy of relaxed Cy5 H-dimers
(flipped and stacked) for given basis sets and exchange-correlation (xc) func-
tionals

Structure Basis Set xc-functional Solvation
Energy
(eV)

Interaction
Energy
(eV)

H-dimer (flipped)

6-31+G (d,p) B3LYP -4.234 0.002
6-31+G (d,p) CAM-B3LYP -4.343 -0.039
6-31+G (d,p) ωB97-XD -4.460 -0.636
6-311++G (2df,2pd) B3LYP -4.104 0.008
6-311++G (2df,2pd) CAM-B3LYP -4.334 -0.025
6-311++G (2df,2pd) ωB97-XD -4.427 -0.572

H-dimer (stacked)

6-31+G(d,p) B3LYP -4.413 -0.003
6-31+G(d,p) CAM-B3LYP -4.638 -0.069
6-31+G(d,p) ωB97-XD -4.690 -1.054
6-311++G(2df,2pd) B3LYP -4.239 0.009
6-311++G(2df,2pd) CAM-B3LYP -4.624 -0.044
6-311++G(2df,2pd) ωB97-XD -4.663 -1.033

ically favorable for the constituent to exist in the solvent. Table D.1 and Table D.2

show that the solvation energy of the dimer is more negative per chromophore

than that of the monomer, suggesting that the dimer structure would be more en-

ergetically favorable in a polar solvent such as water. We suggest the reason for

this is the reduction of hydrophobic interactions with the solvent. The monomer

calculations show no significant difference in either structure or solvation energy

as exchange-correlation functional varies. For the dimer structures, however, the

way in which the functional models consider long-range and dispersion interac-

tion differs and thus impacts the results. Compared to the flipped structure, the

stacked H-dimer structure overall has more negative solvation energy because in

the optimized geometry this dimer is more compact and thus required a smaller

cavity in the solvent.

The interaction energy provides insight into the strength of the intermolecular

interaction of the two dyes. Table D.2 shows that the interaction energy be-

tween the H-dimers using B3LYP is very small or even positive suggesting that



205
this functional underestimates the intermolecular dye interactions because similar

cationic cyanogen dyes are known to aggregate in aqueous solution [250, 251, 252].

Considering the long-range correction (CAM-B3LYP) in the exchange-correlation

functional lowers the energy, but adding dispersion corrections (ωB97-XD) results

in the lowest energy (i.e., the most favorable interaction) for both the flipped and

stacked H-dimer. The interaction and solvation energies indicate that the stacked

H-dimer is more energetically favorable, i.e., more stable, than the flipped struc-

ture, even though stacking the methyl groups could result in steric hindrance;

potentially, favorable pi-stacking of the aromatic rings contributes to the lower

interaction energy.

As Cy5 is a cationic dye, a preliminary investigation into the effect of the pres-

ence of an explicit (chlorine) counter ion was done (see Supporting Information

Table E.1). However, analysis with the KRM code suggests that the oblique dimer

structure which was relaxed with counter ions is not a better fit to experiment (see

Figure E.1).

Comparison of the solvation energy or the interaction energy of the H-dimer

structures optimized using the same exchange-correlation function and either the

small (6-31+G(d,p)) or large (6-311++G(2df,2pd)) basis sets shows that these en-

ergies do not differ between basis sets. A good agreement between the relaxed

dimer structures within the same exchange-correlation functional and between

basis sets further confirms that the basis set superposition error (BSSE) is negligi-

ble in the small basis set. (For a detailed orientation of each dye within the dimer

structures, see Table E.2 and Table E.2.) Finally, this similarity of the optimized

structures between basis sets can be visualized using the absorbance spectra pre-

dicted by the KRM code, where small changes in dye orientation will induce large

shifts in the absorbance (see Figure E.2).

To compare the spectra, and thus the difference between the dimer structures, the
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root mean square error (RMSE) is provided as a measure of the difference between

two absorbance data as follows:

RMSE =

√
∑n

i=1(y1i − y2i)2

n
(D.3)

where y1 and y2 are the y-axis (absorbance) values corresponding to the first and 

second data sets and n is the number of points. The lower the RMSE, the more 

similar the spectra, and if the two data sets are equal, the RMSE will be zero.

Including the DNA in the DFT calculation makes the system unmanageably large, 

so investigation of the effect of the DNA scaffold on the Cy5 dimer structure was 

done in stages. First, the initial structure of the oblique dimer, which was exper-

imentally observed in duplex DNA, was designed to fit t he o rientation vectors 

found by Cannon et al. using the KRM code [204]. As confirmation, following 

the UFF relaxation of the dye dimer in DNA structure, the vector fit of the relaxed 

dimer structure was re-entered into the KRM code to ensure that the predicted 

spectrum continued to match the experimental spectrum. For information on the 

vector fitting e mployed, see Figure E .3. Figure D.4 confirms that the generated 

and experimental spectra are in good agreement. (RMSE = 0.0543)

The next stage in the investigation of the effect of DNA scaffolding is based on 

the simplifying assumption that the main contribution of the DNA scaffold is the 

position restraint imposed by the alkyl linker chains. This assumption is based on 

necessity (the system is too large for DFT) and the observation the absorbance of 

the monomer does not change appreciably when bound to DNA (see Figure E.4). 

After relaxation in DNA with UFF, the oblique dimer with fixed linker chains was 

optimized using PM6 and then DFT using the 6-31+G(d,p) basis set (chosen based 

on the results of the H-dimer calculations which showed that the BSSE using this 

basis set for the Cy5 dimers was not significant) and various hybrid functionals
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Figure D.4: Theoretical absorbance spectrum generated using KRM code for 
the oblique dimer structure relaxed using UFF compared to experimental ab-
sorbance of oblique dimer obtained by Cannon et. al. Initial structure for 
oblique dimer was designed based on vectors determined by Cannon et. al., 
so as expected the spectra show good agreement between the theoretical and 
experimental [204]. RMSE value provided for quantification of difference.

(B3LYP, CAM-B3LYP, and ωB97XD). Figure D.5 shows the predicted spectra of the 

relaxed structures using the KRM code. For the corresponding orientation of the 

dyes after relaxation, see Table E.4.

The small peak at 550 nm in all predicted spectra corresponds to a vibronic tran-

sition which is not observed in experiment most likely due to temperature or sol-

vent induced peak broadening. Comparison of the predicted spectra in Figure D.5 

with the experimental spectra suggest that the dimer drifts away from the orien-

tation found by experiment after (a) the PM6 optimization (the RMSE value in-

creases from 0.0543 to 0.1195) and drifts even further upon optimization using (b)

B3LYP (the RMSE value increases from 0.1195 to 0.1336); however, after optimiza-

tion with the long range corrected (c) CAM-B3LYP and dispersion corrected (d)
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Figure D.5: Theoretical absorbance spectra for the relaxed oblique dimer gener-
ated using KRM code compared to experimental absorbance of oblique dimer 
obtained by [204]. All structures were relaxed with the (a) PM6 semi-empirical 
method before further relaxation with a hybrid functional: (b) B3LYP, (c) CAM-
B3LYP, or (d) ωB97XD. RMSE value provided for quantification of difference.

ωB97XD functionals, the predicted spectra become a better fit to the experimental 

spectrum (the RMSE decreases from 0.1195 to 0.0525 and 0.0514 for CAM-B3LYP 

and ωB97XD, respectively), and even show a better agreement with the exper-

imental spectrum than the initial position which was designed to be a good fit 

(Figure D.4, RMSE=0.0543). Although the KRM method requires reducing the 

molecules to vectors and does not involve any ab-initio energy calculations from

atomic positions, this result suggests that long-range and dispersion correction 

are vital to accurately modelling the intermolecular interactions of the dye aggre-

gates. Additionally, this system was also optimized using dispersion corrected

B3LYP, but analysis of the resulting structures with the KRM code suggests they 

are not as good a fit to experiment [253, 254] (see Figure E.5). The structure of the

oblique dimer optimized using ωB97XD, which provides the best fit of the pre-

dicted spectrum using the KRM code to the experimental spectrum, is shown in
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Figure D.6.

Figure D.6: Structure of the Cy5 oblique dimer with propyl linkers optimized 
using ωB97XD functional. The terminal carbon atoms of the linker chain (high-
lighted in yellow) were “frozen” during relaxation. See Figure D.5(d) for the 
predicted spectrum from this structure using the KRM code.

In addition to the spectra generated using the KRM code, an ab-initio calculation 

of the absorbance spectrum of the monomer was performed using the Franck-

Condon approximation with and without the Herzberg-Teller approximation on

vibrational modes determined using DFT and TD-DFT (see Figure D.7 for molec-

ular structure). The intensity of absorption depends on the square of the electronic

transition dipole moment and the radiation frequency, and it is also assumed that 

the Born-Oppenheimer approximation, where nuclear motions are much slower

than electronic transitions, holds true, so during an electronic transition the nuclei

can be considered static [255]. The Franck-Condon (FC) approximation further as-

sumes that the electronic transition dipole also remains static, while the Herzberg-



210
Teller (HT) approximation allows for linear variation of the dipole moment with

respect to the nuclear coordinates during the transition [247, 248, 256, 257]. The

FC approximation can predict fully dipole-allowed transitions while the HT ap-

proximation can better predict weakly allowed or dipole forbidden transitions.

Table D.3 shows the shift in absorption maxima (relative to experiment) for spec-

tra generated using the FC and FC with HT approximations.

Figure D.7: Molecular structure of Cy5 monomer optimized using 6-31+G(d,p) 
B3LYP in IEF-PCM water solvent. The average C=C bond length in the methine 
chain is 1.4 Å.

Although the optimized geometries of the Cy5 monomers do not vary appreciably 

between exchange-correlation functionals (see Table E.5), the transition energies

from the ground to excited state are found to depend strongly on the optimiza-

tion conditions. Table D.3 and Figure D.8 show that the conditions which bring

the wavelength of maximum absorbance, λmax, of the predicted spectrum closest 

to that observed in experiment are obtained using the Franck-Condon approxima-

tion on structures optimized with the B3LYP functional in IEF-PCM water solvent

(∆λmaxx 0.007 eV or 2.2 nm). The consideration of long-range (CAM-B3LYP) and
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Table D.3: Comparison of the difference in maximum absorbance (∆λmax) of
experimental Cy5 monomer spectrum [204] to absorption spectra generated us-
ing the Franck-Condon (FC) approximation with or without contribution from
the Herzberg-Teller (HT) approximation. Approximation schemes use TD-DFT
and DFT results relaxed using the 6-31+G(d,p) basis set and three different xc-
functionals in IEF-PCM (water) solvent.

xc-functional Approximation ∆λmax (eV)
B3LYP FC 0.007
B3LYP FCHT 0.080
CAM-B3LYP FC 0.188
CAM-B3LYP FCHT 0.207
ωB97XD FC 0.215
ωB97XD FCHT 0.222

dispersion correction (ωB97XD) overestimate the ground to excited state energy

transition of the monomer.

Figure D.8: Comparison of spectra generated using the FC approximation to ex-
perimental spectrum obtained by [204]. The almost complete overlap of the pre-
dicted absorbance spectrum generated using B3LYP and the FC approximation
(red line) with the experimental spectrum (black line) suggest that the condi-
tions not only accurately predict λmax but also the vibronic structure. All struc-
tures were optimized using 6-31+G(d,p) basis set in IEF-PCM (water) solvent.
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For all spectra the predicted energies of the transitions are higher than observed 

in experiment. This is expected; TD-DFT using hybrid functionals has been shown 

to overestimate the vertical absorbance transition energy of cyanine dyes [258, 

259, 260]. The addition of solvent is known to improve the prediction of the 

transition energy [259] and appears to red-shift the energies and improve the 

calculation of the most intense transition, λmax, for all xc-functionals regardless of 

whether only the FC or also the HT approximations are considered. (See Figure 

E.6 for spectra from vacuum calculations.) Figure D.8 provides a comparison of 

the Cy5 monomer spectra generated with various exchange-correlation 

functionals in IEF-PCM water solvent using the FC approximation. The good 

agreement between the absorbance spectrum generated using the B3LYP 

exchange-correlation functional with the FC approximation and the experimental 

spectrum shows that not only does this method accurately predict λmax, but the 

relative strength of the vibronic peaks also seem to be in good agreement.

The use of the HT approximation does not improve the calculation of the most in-

tense transition which suggests that the contribution of weakly-allowed or dipole-

forbidden transitions to the absorption spectrum of a Cy5 molecule is negligible. 

Figure D.9 compares the spectra for the same structures generated using the FC 

approximation with the HT approximation and shows that this method is not as 

useful for predicting the absorption spectrum for this system as the FC approxi-

mation alone. As opposed to the HT principle, using the FC principle the symmet-

ric ground state vibration can only couple with symmetric vibrations; the intensity 

distribution of the band shapes will be dominated by one vibrational mode [261]. 

The good agreement of the absorbance spectrum generated using the FC principle 

with experiment suggests that primarily one vibrational mode contributes to the 

vibrational profile of Cy5.
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Figure D.9: Comparison of spectra generated using the FC approximation with
the HT approximation to experimental spectrum obtained by [204]. Compar-
ison of these spectra with those in Figure D.8 show that adding the HT ap-
proximation does not improve accuracy. All structures were optimized using
6-31+G(d,p) basis set in IEF-PCM (water) solvent.

D.5 Conclusions
Comparison of the H-dimer structures within different exchange-correlation func-

tionals shows that the structures optimized using the smaller 6-31+G(d,p) basis set

are not significantly impacted by BSSE. By comparing the spectra calculated using

the in-house KRM code with the experimental dimer spectrum, the oblique dimer

structure optimized using the ωB97XD functional in IEF-PCM water solvent pro-

vides the best agreement with the experiment. It suggests that the long-range and

dispersion corrections imposed by the exchange-correlation functional are needed

to accurately estimate the dye-dye interactions. Comparison of the vibrationally

resolved electronic absorption spectra of the monomer produced using the FC

and HT approximations shows that the spectrum obtained using the structures
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optimized with the B3LYP functional in IEF-PCM water solvent and the FC ap-

proximation agrees well with the experimental monomer spectrum. The B3LYP

functional works well for a single molecule while the long-range and dispersion

correction could over-estimate the transition energy for a single molecule. For

future work, we will combine quantum mechanical and molecular mechanical

(QM/MM) calculations to incorporate DNA into the chromophore system. We

will also calculate vibrationally resolved absorption spectra of the oblique dimer

structures to continue revealing the effect of exchange-correlation functional. Our

work aims to investigate the effects that various simulation conditions have on the

unobservable atomic structures and, in turn, the effects that the atomic structure

has on the observable spectra. By understanding what factors are most impor-

tant when simulating the system, we hope to contribute our understanding to the

knowledge of how to best optimize this system in experiment.

D.6 Associated Content

D.6.1 Supporting information

The following files are available free of charge: Molecular structure files for

oblique dimers relaxed with UFF, PM6, B3LYP, CAM-B3LYP, and ωB97XD.

(obdimer-UFF.pdb, obdimer-PM6.pdb, obdimer-B3LYP.pdb, obdimer-CAM-

B3LYP.pdb, obdimer-wB97XD.pdb) Information about calculations including

counter ions and additional dispersion corrected xc-functionals; tabulated orien-

tation vectors and centers of mass for the H- and oblique dimers, and spectra

predicted using the KRM code for the H-dimers; information about vector fit-

ting; comparison of the absorbance spectrum of free and bound Cy5; tabulated

structural information for Cy5 monomer; comparison of Cy5 monomer spectra

obtained without solvent model to experimental spectrum obtained by [204] (Ap-

pendix E)
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APPENDIX E:

SUPPORTING INFORMATION FOR AB-INITIO

STUDIES OF EXCITON INTERACTIONS OF CY5

DYES
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As Cy5 is a cationic dye, the presence of an explicit (chlorine) counter ion will

likely affect the solvation and interaction energy. It was found that inclusion of

the counter ion(s) resulted in a less negative solvation energy and a more negative

interaction energy for the dimer structures and a more negative solvation energy

for the Cy5 monomer (see Table E.1). This does not necessarily suggest that the

structure without the counter ion is more soluble, but instead because the vacuum

structure is more stable with the counter ion, the solvent does not need to do as

much to stabilize the charge.

Table E.1: Solvation energy and interaction energy of relaxed Cy5 H-dimers
(flipped and stacked) and monomer for given basis sets and exchange-
correlation (xc) functionals with explicit counter ion(s). The energies of the
same structure optimized at the same level of theory without the counter ion(s)
are also included for comparison.

Structure Solvation
Energy
(eV)

Interaction
Energy
(eV)

Cy5 monomer 6-31+G(d,p) B3LYP -1.488 –
Cy5 monomer + 1Cl− 6-31+G(d,p) B3LYP -1.947 –
H-dimer (flipped) 6-31+G(d,p) ωB97-XD – -0.636
H-dimer (flipped) + 2Cl− 6-31+G(d,p) ωB97-XD – -0.665

H-dimer (stacked) 6-31+G(d,p) CAM-B3LYP -4.638 -0.069
6-31+G(d,p) ωB97-XD -4.690 -1.055

H-dimer (stacked) + 2Cl− 6-31+G(d,p) CAM-B3LYP -3.322 -0.088
6-31+G(d,p) ωB97-XD -2.980 -1.170

The relaxed structure for oblique dimer with chlorine counter ions was also calcu-

lated using the 6-31+G(d,p) basis and ωB97XD functional. Analysis of this struc-

ture with the KRM code (see Figure E.1) shows that it is not as good of fit as the

oblique dimer without the chlorine counter ions. (The RMSE between the pre-

dicted spectrum of the oblique dimer without chlorine and experiment with this

functional is 0.0514.)

As our method used a finite basis set, the overlap of basis functions can cause an

increase in the effective basis set which in turn result in a lower energy solution to
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Figure E.1: Theoretical absorbance spectrum generated using KRM code for the 
oblique dimer with chlorine counter ions relaxed using ωB97XD xc-functional 
compared to experimental absorbance of oblique dimer obtained by Cannon et 
al. [204] and oblique dimer without chlorine ions. RMSE value provided for 
quantification of difference.

the Schrödinger equation. The difference in energy between the finite overlapping 

basis set and the theoretical infinite basis set is called basis set superposition error 

(BSSE). By comparing the energies and geometries of the systems optimized with

a small basis set to those optimized using a large basis set, the amount of BSSE 

present can be qualitatively described. Using a series of basis sets and exchange-

correlation functionals, the optimized geometries of the Cy5 monomer and H-

dimer were compared to determine the extent of BSSE.

Except for the case of the B3LYP exchange-correlation functional (Figure E.2 a and 

b), there is good agreement of the spectra generated using the H-dimer structures

relaxed using the 6-311++G(2df,2pd) and 6-31+G(d,p) basis sets, suggesting the 

degree of BSSE present in the 6-31+G(d,p) basis set does not impact the energy or



220
Table E.2: Orientation of the relaxed Cy5 stacked H-dimer structures for given
basis sets and exchange-correlation (xc) functionals including the zenith (θ) and
azimuth (ϕ) angles for the vectors which lie along the long axis of the chro-
mophores (arbitrarily labelled dye 1 and 2), the zenith (θp) and azimuth (ϕp)
angles for the perpendicular vector which points in the direction of the methyl
groups connected to the tertiary amine (see Figure E.3 for a graphical represen-
tation of these vectors), and the centers of mass of the chromophores.

Basis Set xc- dye θ (°) ϕ (°) θp (°) ϕp (°) center of mass
functional x (nm) y (nm) z (nm)

6-31+G B3LYP 1 71.00 173.64 93.93 -97.64 -0.033 -0.006 0.411
(d,p) 2 72.48 48.20 84.11 139.97 0.033 0.006 -0.411
6-31+G CAM- 1 72.77 -179.77 95.74 -91.47 -0.013 0.018 0.347
(d,p) B3LYP 2 71.25 41.80 83.60 133.86 0.013 -0.018 -0.347
6-31+G ωB97- 1 81.42 -173.25 97.43 -84.36 0.008 0.013 0.273
(d,p) XD 2 78.15 35.08 81.03 126.92 -0.008 -0.013 -0.273
6-311++G B3LYP 1 69.90 179.28 92.62 -91.62 -0.053 -0.023 0.488
(2df,2pd) 2 75.83 43.05 92.71 132.39 0.053 0.023 -0.488
6-311++G CAM- 1 72.75 -179.44 95.47 -91.06 -0.012 0.016 0.348
(2df,2pd) B3LYP 2 71.23 41.41 83.44 133.52 0.012 -0.016 -0.348
6-311++G ωB97- 1 80.80 -173.96 97.28 -85.13 0.008 0.004 0.267
(2df,2pd) XD 2 78.14 35.71 83.95 126.95 -0.008 -0.004 -0.267

structure enough to justify using the 6-311++G(2df,2pd) basis set. The disagree-

ment occurs in the B3LYP case due to the absence of long range and/or dispersion

correction in the exchange-correlation functional, showing failure to accurately

estimate the inter-dye interactions. These results suggest that the magnitude of

basis set BSSE in the small basis set does not significantly impact the resulting en-

ergies enough to justify using the large basis set, so the small basis set was used

for further calculations to reduce computational time.

In order to succinctly represent the relative orientation of the dyes in a dimer

structure, the dye molecules are simplified to vectors. To calculate these vectors,

the atom positions in dye molecules are fit to a plane, using the method of least

squares, and a vector, using a singular value decomposition (Figure E.3). As the

molecules are longer than their width, only the vector which lies along the long

axis of the molecule is used to represent the molecule in the KRM code. A vec-
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Table E.3: Orientation of the relaxed Cy5 flipped H-dimer structures for given
basis sets and exchange-correlation (xc) functionals including the zenith (θ) and
azimuth (ϕ) angles for the vectors which lie along the long axis of the chro-
mophores (arbitrarily labelled dye 1 and 2), the zenith (θp) and azimuth (ϕp)
angles for the perpendicular vector which points in the direction of the methyl
groups connected to the tertiary amine (see Figure E.3 for a graphical represen-
tation of these vectors), and the centers of mass of the chromophores.

Basis Set xc- dye θ (°) ϕ (°) θp (°) ϕp (°) center of mass
functional x (nm) y (nm) z (nm)

6-31+G B3LYP 1 89.72 11.53 79.78 101.58 -0.176 -0.027 0.315
(d,p) 2 94.92 29.68 106.35 121.06 0.176 0.027 -0.315
6-31+G CAM- 1 94.30 20.99 85.06 110.62 -0.155 -0.033 0.246
(d,p) B3LYP 2 93.96 19.61 104.34 110.59 0.155 0.033 -0.246
6-31+G ωB97- 1 95.08 20.31 85.37 109.90 -0.139 -0.037 0.208
(d,p) XD 2 94.77 20.05 101.54 111.01 0.139 0.037 -0.208
6-311++G B3LYP 1 89.84 9.56 79.50 99.59 -0.228 -0.040 0.383
(2df,2pd) 2 97.12 31.23 106.69 123.27 0.228 0.040 -0.383
6-311++G CAM- 1 94.25 20.87 84.98 110.49 -0.155 -0.033 0.245
(2df,2pd) B3LYP 2 93.93 19.79 104.16 110.75 0.155 0.033 -0.245
6-311++G ωB97- 1 95.13 20.22 85.47 109.81 -0.138 -0.036 0.208
(2df,2pd) XD 2 94.68 20.17 101.86 111.13 0.138 0.036 -0.208

tor which points in the direction of the methyl groups connected to the tertiary

amine, lies in the plane of the molecule, and is perpendicular to the long axis

of the molecule was also defined to provide the absolute orientation of the chro-

mophores. The zenith and azimuth angles (θ and ϕ, respectively) for these vectors

for the H- and oblique dimers in spherical coordinates are given in Table E.2, Ta-

ble E.2, and Table E.4.

Assuming that the DNA scaffold does not have a large impact on the electrostatic

environment of the Cy5 dyes may be a gross oversimplification; however, this

assumption is supported by the observation that the absorbance spectrum of Cy5

does not exhibit a shift in absorbance maxima or noticeable change in vibronic

structure when bound to DNA (see Figure E.4).

The structure of the oblique dimer was also relaxed using the long range disper-

sion correction implemented by Grimme [253]. Two- (D2) and three-body (D3)
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Figure E.2: Comparison of basis set effect on theoretical absorbance spectra 
of (a)(c)(e) the flipped and (b)(d)(f) stacked H-dimer structures predicted using 
KRM code. With the exception of the stacked structure relaxed using (b) B3LYP, 
the spectra show significant overlap for the 6-311++G(2df,2pd) and 6-31+G(d,p) 
basis sets suggesting the smaller basis set is adequate. RMSE value provided 
for quantification of difference.

dispersion effects have been considered, the latter also includes rational damping

according to the formula of Becke and Johnson (BJ-damping) [254]. It was found

that the absorbance spectra predicted using the KRM model are not more similar

to experiment than ωB97XD (see Figure E.5). Interestingly, however, the oblique 

dimer structures optimized using dispersion-corrected B3LYP (D2 and D3-BJ) are

more plane-parallel than those optimized using any other method, which may

mean that this method models pi-stacking, which should require parallel stacking

of the conjugated bonds, better than other dispersion-corrected methods.
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Figure E.3: Graphic showing the vector fit to long axes of the molecules (ma-
genta), the plane of the molecule (rainbow), and the perpendicular vector point-
ing in the direction of the tertiary amine (blue).

Table E.4: Orientation of the Cy5 oblique dimer optimized using the 6-
31+G(d,p) and specified exchange-correlation (xc) functionals including the
zenith (θ) and azimuth (ϕ) angles for the vectors which lie along the long axis
of the chromophores (arbitrarily labelled dye 1 and 2), the zenith (θp) and az-
imuth (ϕp) angles for the perpendicular vector which points in the direction of
the methyl groups connected to the tertiary amine (see Figure E.3 for a graphical
representation of these vectors), and the centers of mass of the chromophores.

xc-functional dye θ (°) ϕ (°) θp (°) ϕp (°) center of mass
x (nm) y (nm) z (nm)

B3LYP 1 105.67 -21.32 118.72 45.21 0.507 -0.343 0.308
2 29.20 33.96 147.32 -137.60 -0.507 0.343 -0.308

CAM-B3LYP 1 103.82 -18.46 111.98 30.32 0.495 -0.282 0.313
2 21.97 32.08 159.01 -148.70 -0.495 0.282 -0.313

ωB97-XD 1 100.96 -13.05 11.72 5.39 0.506 -0.235 0.325
2 19.55 33.20 109.59 -151.56 -0.506 0.235 -0.325
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Figure E.4: Comparison of absorbance spectra of Cy5 dye when free in solution
and when bound to duplex DNA [204, 262].

Table E.5: Structural information for Cy5 monomers optimized with given ba-
sis set and exchange correlation (xc) functionals, showing little significant dif-
ference between structures. The molecule length is measured as the greatest
distance between any two atoms in the molecule and the methine chain is the
greatest distance between carbon atoms in the methine chain.

Basis Set xc-functional Molecule
length (Å)

Methine chain
length (Å)

Average C=C
bond length (Å)

6-31+G(d,p) B3LYP 18.698 7.436 1.398
6-31+G(d,p) CAM-B3LYP 18.572 7.386 1.392
6-31+G(d,p) ωB97-XD 18.495 7.365 1.393
6-311++G
(2df,2pd)

B3LYP 18.616 7.403 1.391

6-311++G
(2df,2pd)

CAM-B3LYP 18.480 7.349 1.386

6-311++G
(2df,2pd)

ωB97-XD 18.396 7.328 1.387
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Figure E.5: Comparison of theoretical absorbance spectrum generated using
KRM code for the oblique dimer structures relaxed using B3LYP-D2 and B3LYP-
D3BJ xc-functionals compared to experimental absorbance of oblique dimer
obtained by Cannon et al. [204]. RMSE values provided for quantification of
difference.
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Figure E.6: Comparison of Cy5 monomer spectra generated using the FC ap-
proximation with and without the HT approximation to experimental spec-
trum obtained by Cannon et al. [204]. Comparison of the vacuum spectra to
those obtained using a solvent model (Figure D.8 and Figure D.9) show that the
bathochromic shift induced by the solvent provides a more accurate prediction
of the maximum absorbance
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APPENDIX F:

SUPRAMOLECULAR INTERACTIONS OF GROUP

VI METAL CARBONYL COMPLEXES: THE

FACILITATING ROLE OF

1,3-BIS(P-ISOCYANOPHENYL)UREA

The following chapter was published in Inorganic Chemistry in 2019 under au-

thors Shaun Millard, Jenny W. Fothergill, Zoe Anderson, Dr. Eric C. Brown, Dr.

Matthew D. King, and Dr. Adam C. Colson. My contributions to this paper were

DFT calculations under the guidance of Dr. King.

F.1 Abstract
An investigation of supramolecular phenomena involving zero valent transition

metal complexes was facilitated by the production of the ditopic isocyanide lig-

and 1,3-bis(p-isocyanophenyl)urea, which was synthesized via sub-stoichiometric

phosgenation of 4-isocyanophenylamine and used to coordinate Group VI metal

carbonyl fragments. The resulting binuclear organometallic complexes were ob-

served to pack into ladder-like anisotropic arrays in the solid state. Crystallo-

graphic and computational evidence suggests that this packing motif can be at-

tributed to a combination of intermolecular π-π and urea-π interactions. Sim-

ilar to other N,N’-diarylureas bearing electron withdrawing groups, 1,3-bis(p-

isocyanophenyl)urea and the organometallic complexes prepared therefrom also
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exhibit an affinity towards anion binding in non-aqueous s olution. Equilibrium 

constants (K) for the formation of host-guest complexes between the organometal-

lic derivatives of 1,3-bis(p-isocyanophenyl)urea and chloride, nitrate, and acetate 

anions exceed 103, 104, and 105 M−1, respectively.

F.2 Introduction
Non-covalent interactions are foundational to the field of supramolecular chem-

istry and have enabled emerging applications in chemical sensing, molecular 

recognition, and the self assembly of hierarchal materials [263, 264, 265]. Such 

interactions are also exploited in the field of crystal engineering to direct the orga-

nization of molecular solids in which constituent molecules are arrayed according 

to desired structural motifs [266, 267, 268, 269]. Although research efforts in these 

fields often emphasize the assembly of purely organic molecules, the integration 

of organometallic and coordination complexes into supramolecular structures and 

engineered molecular solids is also well-documented [270, 271, 272, 273, 274]. 

Less common, however, are accounts of supramolecular phenomena or crys-

tal engineering involving low- or zero-valent transition metal carbonyl com-

plexes, despite the fact that such complexes have long attracted interest due 

to their unique structural and electronic properties as well as the convenient 

spectroscopic monitoring afforded by the metal-bound carbon monoxide ligands 

[275, 276, 277, 278, 279, 280, 281, 282].

One challenge associated with the study of supramolecular behavior in low-

valent transition metal complexes is the incorporation of organic ligands capa-

ble of binding to the electron-rich metal centers while simultaneously participat-

ing in non-covalent intermolecular interactions. To address this challenge, we 

have designed a ditopic organic ligand (1) bearing isocyanide functional groups 

appended to the well known N,N’-diarylurea moiety (Figure F.1). Organic iso-

cyanides are isolobal analogues of carbon monoxide and their ability to stabilize
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neutral and anionic transition metal complexes has been broadly demonstrated

[283, 284, 285, 286, 287, 288, 289, 290]. Unlike carbon monoxide, additional func-

tionality can be conferred upon isocyanides by modification of the appended

organic component, a useful feature that has been exploited in the preparation

of chelating ligands, coordination polymers, and functional components in ad-

vanced materials [291, 292, 293, 294, 295, 296, 297, 298, 299, 300].

Figure F.1: 1,3-bis(p-isocyanophenyl)urea (1)

Our selection of the N,N’-diarylurea moiety as a facilitating agent for supramolec-

ular chemistry and crystal engineering was motivated by the versatility of the urea 

group in promoting multiple intermolecular interactions [264, 301, 302, 303, 304]. 

Examples of three prominent supramolecular motifs associated with the N,N’-

diarylurea moiety are depicted in Figure F.2. The most intuitive non-covalent 

interactions are those between the N-H hydrogen bond donors and C=O accep-

tors of the urea group. In the absence of competing donor or acceptor species, 

these interactions can drive the formation of ribbon- or tape-like supramolecu-

lar structures (Figure F.2a)[301]. In the presence of alternative hydrogen bond 

acceptors such as halides or oxoanions, strong interactions are often observed be-

tween the urea host and the anionic guest (Figure F.2b), presenting opportunities 

for applications in anion detection or anion-templated supramolecular assembly 

[301, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316]. Perhaps less intu-

itively, the urea group is also known to facilitate π-π interactions between neigh-
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boring N,N’-diarylurea subunits (Figure F.2c). The relative co-planarity of the aryl

groups in N,N’-diarylurea compounds is largely determined by the extent of in-

tramolecular hydrogen bonding between the oxygen atom of the urea moiety and

the ortho proton located on the adjacent N-aryl ring; experimental and compu-

tational evidence indicates that this planarity is most pronounced when the aryl

rings bear electron withdrawing functional groups [312, 317, 318, 319, 320].

Figure F.2: Major supramolecular motifs associated with N,N’-diarylurea com-
pounds

The objective of the present study was to identify which—if any—of the 

supramolecular motifs depicted in Figure F.2 might be observed in N,N’-

diarylureas appended with zero-valent metal carbonyl subunits. Accordingly, we 

describe the synthesis of 1,3-bis(p-isocyanophenyl)urea and its subsequent coor-

dination to M(CO)5 (M = Cr, Mo, and W) metal carbonyl fragments. A notable 

structural feature of these complexes is the nearly planar conformation of the 

N,N’-diarylurea moiety, which facilitates molecular packing into ordered stacks 

through a combination of π-π and urea-π interactions. Like their purely organic 

counterparts, the metal bound derivatives of 1,3-bis(p-isocyanophenyl)urea also 

exhibit an affinity towards anion binding in acetonitrile solution.

F.3 Results and Discussion
The ditopic 1,3-bis(p-isocyanophenyl)urea ligand (1) was prepared by treating 

4-isocyanophenylamine with a sub-stoichiometric quantity of triphosgene. The
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Table F.1: Diagnostic infrared C≡N and C≡O stretching frequencies for com-
pounds 1-4.

ν C≡N (cm−1) ν C≡O (cm−1)
1 2127 N/A
2 2143 2058, 1955
3 2143 2063, 1956
4 2144 2059, 1950
*Recorded in CH2Cl2

formation of 1 presumably proceeds through the intermediacy of an isocyanate

species, although no attempts were made to isolate or characterize the latter

[321]. The PdO-catalyzed ligand substitution method described by Coville [322]

was used to append Cr(CO)5 and W(CO)5 fragments to the isocyanide groups

of 1, producing homobimetallic complexes 2 and 4, respectively. The Mo-

containing variant (3) was prepared via chemical decarbonylation of Mo(CO)6 us-

ing trimethylamine N-oxide in the presence of 1. Complexes 2, 3, and 4 are readily

identifiable by their diagnostic infrared spectra, as summarized in Table F.1. It is

worth noting that the C≡N stretching frequency of 1 increases upon metal co-

ordination, suggesting that the isocyanide acts primarily as a σ-donor with very

little π-accepting character. This observation is consistent with previous reports

of aromatic isocyanide coordination in heteroleptic metal carbonyls in which pro-

nounced shifting of the C≡N stretch to lower frequencies was not observed until

two or more isocyanide ligands were attached to a metal core [322, 323, 324].
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Single crystals of complexes 2, 3, and 4 suitable for X-ray diffraction studies were

grown from acetonitrile solutions at -20 °C. As a representative example of the

series, the molecular structure of 3 is shown in Figure F.3. The most prominent

structural feature is the nearly planar configuration of the N,N’-diarylurea moiety.

The Cortho-Cipso-Nurea−Curea torsion angles of 0.46° and 7.5° are similar to those re-

ported by Reddy et al. [317] for other N,N’-diarylureas bearing para-substituted

electron withdrawing groups. This planarity may be attributed to intermolecu-

lar C-H· · ·O hydrogen bonding between ortho aryl protons and the urea oxygen

atom, as proposed by Etter et al. [318]; indeed, the Cortho · ·· Ourea distances and

Cortho-H· · · Ourea angles in complexes 2, 3, and 4 range from 2.84 to 2.87 Å and 121

to 122°, respectively, and are consistent with the analogous distances (2.83 to 2.94

Å ) and angles (119 to 122°) observed in other N,N’-diarylureas of comparable pla-

narity [317, 318]. Salient structural features for complexes 2 and 4 are presented

in Table F.2 and Figure G.1 and Figure G.2 in the Supporting Information.

Figure F.3: Molecular structure of complex 3. Thermal ellipsoids are rendered at 
the 50% probability level. Only urea N-H atoms and aromatic hydrogen atoms 
participating in hydrogen bonding are shown.

The packing of 3 within the molecular solid is depicted in Figure F.4a. Despite the

relative steric bulk of the Mo(CO)5 subunits, the planarity of the N,N’-diarylurea 

moiety facilitates packing into ordered stacks, resulting in staggered, ladder-like 

arrays of metal atoms (Figure F.4b). It is tempting to view the orientation and

proximity of these metal sites and speculate on the potential development of

charge transfer materials, especially considering that adjacent metal atoms are
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Table F.2: Selected bond distances, close contacts, and torsion angles for com-
plexes 2, 3, and 4

2 (M = Cr) 3 (M = Mo) 4 (M = W)

Distances (Å)
M - Cisocyanide 1.981(2), 1.979(2) 2.127(2), 2.130(2) 2.119(3), 2.113(3)
Cortho - H· · ·Ourea 2.24, 2.22 2.25, 2.23 2.25, 2.23
Cortho · ··Ourea 2.86, 2.84 2.86, 2.84 2.87, 2.84
π-π contacts ‡ 3.31 3.33 3.32
urea-π contacts ‡ 3.29 3.32 3.31

Angles (°)
Cortho-H· · ·Ourea 121.8, 121.3 121.8. 121.0 121.0, 122.0
Cortho-Cipso-Nurea-Curea 1.1, 6.1 0.46, 7.5 0.45, 7.8
‡distance between adjacent mean N,N’-diarylurea molecular planes

separated by only 6.0 to 7.6 Å. This separation is well within the 4 to 14 Å range

over which the majority of electron transfer processes occur in benchmark bio-

logical systems [325, 326]. In their present form, however, complexes 2, 3, and 4

undergo electrochemically irreversible oxidation and are therefore unlikely can-

didates for such applications (Figure G.3).

Figure F.4: (a) Molecular packing of 3 showing the orientation of the molecules 
relative to the unit cell axes. (b) Alternative representation of the molecular 
packing of 3 viewed through the N,N’-diarylurea planes with the CO ligands 
omitted and Mo atoms depicted at full Van der Waals radius.

The molecular packing of 3 is reminiscent of the π-stacking motif introduced in
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Figure F.2c in which planar N,N’-diarylurea moieties are arranged parallel to one 

another in an offset or “slipped” orientation; however, close inspection of the 

interactions between molecules of 3 reveals several subtle deviations from the 

archetypal packing motif. As shown in Figure F.5a, the separation between the 

adjacent N,N’-diarylurea planes of complex 3 is ∼3.32 Å, while the distance be-

tween the centroids of interacting aromatic rings alternates between 3.76 and 4.79 

Å. By comparison, previous structural studies of N,N’-diarylureas bearing elec-tron 

withdrawing functional groups have reported interplanar distances of 3.4 to 3.5 Å, 

with the aromatic centroids separated by no more than 4.2 Å [317, 327] Al-though 

the interplanar distances associated with complex 3 are consistent with other π-π 

interactions reported in the literature, the significant separation be-tween 

alternating pairs of ring centroids suggest that π-π interactions are not the only 

non-covalent interactions contributing to the close contact between N,N’-diarylurea 

planes [328]. Additional insight into the nature of a secondary interac-tion can be 

gained by viewing adjacent pairs of N,N’-diarylurea moieties from a direction 

normal to the molecular planes (Figure F.5b). From this perspective, it becomes 

apparent that the interactions between an arbitrary N,N’-diarylurea moi-ety of 

complex 3 and the molecules positioned directly above and below are not 

equivalent—one face of the aromatic ring experiences substantial overlap with the 

aromatic ring of a neighboring molecule, while the opposite face interacts with the 

nitrogen atom of a different neighbor. In the latter case, the distance between the 

aromatic ring centroid and the urea nitrogen atom is only 3.34 Å, suggesting the 

existence of a non-covalent urea-π interaction. Similar close contacts are also ob-

served in the Cr- and W-containing derivatives (2 and 4), as tabulated in Table F.2.

Interactions between aromatic π-systems and urea or amide moieties have been 

predicted computationally and observed experimentally, although reports of such 

interactions outside of a biological context are scarce [329, 330, 331, 332]. Because
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Figure F.5: (a) Distances between adjacent N,N’-diarylurea planes and the aro-
matic ring centroids of complex 3. (b) Alternating stacking motifs viewed nor-
mal to the N,N’-diarylurea planes. Hydrogen atoms and all ring substituents 
are omitted for clarity.

urea-π interactions are not commonly observed in synthetic systems, computa-

tional methods were employed to determine whether urea-π interactions truly

contribute to the molecular packing observed for complexes 2, 3, and 4, or if 

the packing motif is simply an artifact of the steric encumbrance imposed by the

Mo(CO)5 groups.

Initial solid-state DFT calculations were performed on the crystal structure of

complex 3 to assess lattice energy in terms of cohesive and conformational strain 

energies associated with crystal packing. The basis set superposition error-

corrected lattice energy was determined to be -123.20 kcal mol−1, which accounts

for the balance of -172.86 kcal mol−1 of cohesive energy offset with 49.65 kcal
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Table F.3: Calculated energies per molecule (kcal mol−1) of complex 3 in the
crystal and dimer conformations.

Complex 3
Total Lattice Energy -123.20

Cohesive Energy -172.86
Conformational Energy 49.65

Complex 3 Dimers
π - π urea - π

Total Binding Energy -118.43 -111.64
Relative Binding Energy 0.000 6.797

N,N’-diarylurea Dimers
π - π urea - π

Total Binding Energy -57.92 -55.62
Relative Binding Energy 0.000 2.295

mol−1 of adverse molecular strain energy due to deformations emerging from

crystal packing forces (Table F.3). This significant contribution of molecular strain

to the overall lattice energy, primarily in the N,N’-diarylurea moieties, likely re-

sults from steric effects of geometric packing of the bulky Mo(CO)5 end groups.

To allocate the relative contributions of the substituent π-π and urea-π stacking

motifs described in Figure F.5 to the complex 3 lattice energy, appropriate dimer

configurations were isolated from the DFT-optimized solid-state structure. Single-

point energy calculations were performed to obtain dimer and single-molecule

energies for the models representative of their strained solid-state molecular con-

formations. It was found that the two motifs are comparable in interaction en-

ergy, with total binding energies of -118.43 and -111.64 kcal mol−1 for the π-π and

urea-π stacking motifs, respectively, corresponding to a ∆Ebind of only 6.80 kcal

mol−1 favoring the π-π intermolecular interactions. These stacked dimer models,

however, still contained interacting Mo(CO)5 end groups, thereby not adequately

representing the true nature or relative consequence of the two participating N,N’-

diarylurea stacking motifs.
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Subsequent calculations isolated the interaction energy contributions to the N,N’-

diarylurea π-π and urea-π stacking motifs, for which the Mo(CO)5 groups were 

removed from the molecular models. The p-substituent isocyanides groups were 

terminated with H atoms to provide a better representation of the bonding con-

figuration of the N,N’-diarylurea moieties as they exist in the complex 3 crystal 

structure. The resulting calculations produced absolute N,N’-diarylurea dimer in-

teraction energies of -57.92 and -55.62 kcal mol−1, respectively. Remarkably, this 

amounts to an approximate difference of only 4% (i.e. 2.30 kcal mol−1) between 

the π-π and urea-π stacking interactions of the N,N’-diarylurea groups, despite 

the reduction of surface contact area from 94.8 to 76.4 Å[266, 267, 268, 269] for the 

urea-π stacked dimer (based on MSMS surface area calculated using 1.5-Å probe 

sphere). These results demonstrate that the urea-π stacking is indeed a robust 

intermolecular interaction and plays an important role in molecular ordering dur-

ing crystal growth, and that the association is not an ancillary product of crystal 

packing.

The underlying nature of the prominent urea-π stacking interactions observed in 

the synthetic complexes can be explained through observation of electrostatic 

potentials and molecular orbital interactions. An electrostatic potential map of 

the urea-π stacked N,N’-diarylurea dimer shows that the positive electrostatic po-

tential arising from the urea nitrogen atom overlaps with the negative potential 

central to an aromatic ring of the adjacent molecule (Figure F.6). The proximity of 

the molecules in the urea-π dimer pair, separated by 3.32 Å, provides a favorable 

distance for strong electrostatic interaction between these substituent groups. In 

addition, inspection of molecular orbitals reveals that the N,N’-diarylurea HOMO 

and LUMO share significant constructive spatial overlap in their relative dimer 

positions (Figure F.7). The individual molecule orbital energies were calculated 

at -6.344 and -1.601 eV for the HOMO and LUMO, respectively. The resulting
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HOMO of the dimer complex, representative of the single-molecule orbital combi-

nation formed in the crystalline orbital, was calculated at -6.439 eV. The combina-

tion of advantageous electrostatic interactions and molecular orbital interactions

provides the physical description for the strong interaction evident in the urea-π

stacking of the N,N’-diarylurea dimer in the crystal structure of complex 3.

Figure F.6: Electrostatic potentials mapped onto the electron density isosurface 
(isovalue: 1.0 × 10−6 e bohr−3) of the N,N’-diarylurea urea-π stacked dimer.
(a) Top view of urea-π dimer indicating urea nitrogen atoms (blue circle) and 
the aromatic ring (red circle) of the upper molecule involved in electrostatic 
binding interactions. (b) Locations of the two nitrogen-ring interactions (green 
arrows) in the N,N’-diarylurea urea-π dimer.

Having investigated the intermolecular interactions between complexes 2-4 in the

solid state, a short study of the anion-binding behavior of 1-4 in non-aqueous so-

lution was initiated. Urea containing compounds are known to act as effective

receptors or hosts for anionic guests [301, 305, 306, 307, 308, 309, 310, 311, 312,

313, 314, 315, 316]. The host-guest interaction of interest can be represented by the

following equilibrium relationship: host + guest− ⇌ [host · guest]−. The corre-
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Figure F.7: Molecular orbital surface representations of N,N’-diarylurea (a) 
HOMO and LUMO orbitals for non-interacting molecules in the urea-π stacked 
dimer orientation, and (b) the resulting HOMO of the N,N’-diarylurea urea-π 
dimer.

sponding equilibrium constant (K) may be estimated by performing spectroscopic 

titration experiments followed by fitting of the resultant data to established bind-

ing models [333, 334]. In the present study, solutions of 1-4 were titrated with the 

tetrabutylammonium salts of chloride, nitrate, and acetate as representative ex-

amples of the halides, inorganic oxoanions, and organic oxoanions, respectively.

1H NMR spectroscopy was selected as the primary method for estimating equi-

librium binding constants, as incremental titration of urea hosts 1-4 with anionic 

guests consistently produced a detectable response in the spectral features. Un-

der the dilute conditions of the titration experiments (≈ 0.1 mM), broadening of

the urea N-H proton NMR signals prevented unambiguous chemical shift assign-
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ment. Consequently, the 1H NMR signals corresponding to the aromatic ring pro-

tons were used to probe anion binding behavior. Two unique aromatic proton

resonances were observed for compounds 1-4, a downfield signal corresponding

to the pair of protons nearest the urea moiety (Hα) and an upfield signal rep-

resenting the pair of protons nearest the isocyanide functional group (Hβ). The

latter signal shifts upfield upon titration and was used to determine K for all host-

guest complexes, as the former signal (Hα) was prone to considerable broadening,

especially during titrations with acetate. As a representative example, Figure F.8

a illustrates the effects of chloride titration on the aromatic 1H NMR signals of 1,

while Figure F.8 b compares the magnitude of the 1H NMR chemical shifts of Hβ

observed upon titration of 1 with nitrate, chloride, and acetate anions.

Figure F.8: (a) Overlay of 1H NMR spectra obtained during the titration of 1 
(0.90 x 10−4 M in CD3CN) with [Bu4N]Cl. (b) Comparison of 1H NMR chemical 
shifting observed during titration of 1 with nitrate, chloride, and acetate 
anions. The dotted lines represent the results of non-linear fitting to a 1:1 host-
guest binding model.

The respective upfield and downfield shifts observed for the Hβ and Hα 
1H NMR 

signals are consistent with previous observations of signal shifting during titra-

tion of N,N’-diarylureas with anions [308, 335, 336, 337]. It should be noted that

deprotonation of N,N’-diarylureas has been reported during titrations with basic

anions such as fluoride o r a cetate, e specially w hen t he u rea ( or t hiourea) hosts

are particularly acidic [311, 338]. As a means of confirming that the observed 1H

NMR chemical shifts may be attributed to host-guest complex formation rather
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than deprotonation of the N,N’-diarylurea host, UV-Vis spectroscopy was used to 

probe the magnitude of the bathochromic spectral shift accompanying addition 

of excess acetate anion. Formation of hydrogen bonding host-guest complexes is 

typically characterized by a modest spectral shift (< 50 nm), while formal depro-

tonation produces an absorption band that is generally red-shifted by more than 

100 nm [308, 310, 339]. Addition of excess acetate to 1 produced a bathochromic 

spectral shift of only 15 nm with no additional features appearing at higher wave-

lengths, indicating that the urea moiety remains protonated under the titration 

conditions (Figure G.5).

Equilibrium constants for the formation of host-guest complexes of 1-4 with chlo-

ride, nitrate, and acetate were derived from 1H NMR titration profiles a nd are 

reported in Table F.4. All values of K assume a 1:1 binding ratio between the urea 

host and anion guest, an assumption substantiated by direct observation of the 1:1 

host-guest complexes using electrospray ionization mass spectrometry as well as 

the consistency of the 1:1 binding model in accounting for the experimental data 

(Figure G.6-Figure G.10)[333]. Compounds 1-4 exhibit similar affinities for each of 

the anions studied, the values of K becoming progressively larger with increasing 

anion basicity. The equilibrium constants for the formation of host-guest com-

plexes of 1-4 with chloride and nitrate anions are comparable to those reported by 

Boiocchi et al. [308] for the 1,3-bis(p-nitrophenyl)urea receptor, although a higher 

affinity t owards a cetate w as m easured f or t he l atter ( log K  =  6 .61). T he results 

presented in Table F.4 suggest that the isocyanide functionalized N,N’-diarylurea 

(1) is capable of strong anion-binding and that attachment of organometallic sub-

units does not substantially impact the ability of the urea moiety to act as an anion 

receptor.
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Table F.4: Equilibrium constants (log K) for formation of host-guest complexes
of 1-4 with selected anions

log Ka

Urea Host NO−
3 Cl− CH3COO−

1 3.62(5) 4.42(3) 5.30(8)
2 3.52(3) 4.35(3) 5.41(7)
3 3.60(3) 4.35(8) 5.50(3)
4 3.70(3) 4.58(3) 5.66(4)
a In CD3CN solution at 25 °C. Values in
parentheses indicate uncertainty in the
last figure

F.4 Conclusions
The synthesis of 1,3-bis(p-isocyanophenyl)urea, its coordination to Group VI

metal carbonyl fragments, and the structural characterization of the binuclear

organometallic products have been reported. The nearly planar configuration of

the N,N’-diarylurea moiety enables the packing of the organometallic complexes

into ladder like anisotropic arrays in which the zero valent metal atoms are sepa-

rated by 6.0 to 7.6 Å. Crystallographic and computational evidence suggests that

that the formation of these arrays can be attributed to a combination of inter-

molecular π-π and urea-π interactions. Although the metal carbonyl fragments

employed in this exploratory study undergo irreversible electrochemical oxida-

tion, the methods and observations reported herein might be extended to produce

similar molecular solids containing more electrochemically-robust organometallic

fragments; specimens of the latter may in turn find application as charge transfer

materials. Similar to other N,N’-diarylureas bearing electron withdrawing groups,

1,3-bis(p-isocyanophenyl)urea and its organometallic derivatives were also found

to behave as anion receptors in non-aqueous solvent. Equilibrium constants (K)

for the formation of host-guest complexes of 1,3-bis(p-isocyanophenyl)urea with

chloride, nitrate, and acetate exceed 103, 104, and 105 M−1, respectively. Com-

plexes of 1,3-bis(p-isocyanophenyl)urea with Group VI metal carbonyl complexes
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exhibit similar anion binding behaviors, presenting opportunities for additional 

research into anion detection or anion-templated supramolecular assembly using 

low-valent organometallic species.

F.5 Experimental

F.5.1 General Considerations

All synthetic operations were carried out under a nitrogen atmosphere using stan-

dard Schlenk techniques to exclude moisture and oxygen. Nitrogen was prepu-

rified by passage through columns of activated copper catalyst (BASF PuriStar 

R3-11G) and molecular sieves (RCI-DRI 13X). Glassware was dried in an oven at 

130 °C, assembled while hot, and allowed to cool under reduced pressure. All 

solvents were dried according to published procedures and degassed with nitro-

gen prior to use.21 Cr(CO)6 (Beantown Chemical, 99%), Mo(CO)6 (Acros, 98%), 

W(CO)6 (Beantown Chemical, 97%), PdO (Acros), trimethylamine N-oxide dihy-

drate (Beantown Chemical, 98%), and triphosgene (Chem Impex, 99%) were used 

as received without further purification. 4-Isocyanophenylamine was prepared 

according to literature procedures and sublimed prior to use [340].

Infrared spectra were obtained using a Thermo Scientific Nicolet iS5 FTIR spec-

trometer equipped with a 0.2 mm BaF2 liquid cell. 1H and 13C NMR data were 

recorded on a 600 MHz Bruker AVANCE III spectrometer. Electrospray ioniza-

tion mass spectrometry (ESI-MS) was carried out using a Bruker HCTultra CTD II 

spectrometer in negative ion mode. Samples of 1-4 were dissolved in CH3CN and 

treated with the tetrabutylammonium salts of chloride, nitrate, and acetate prior 

to injection into the mass spectrometer. Elemental analyses were performed by 

Atlantic Microlab, Inc in Norcross, GA, USA.
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F.5.2 Synthesis of 1,3-bis(p-isocyanophenyl)urea (1)

4-isocyanophenylamine (3.00 g, 25.4 mmol) was dissolved in 80 mL of anhydrous

dichloromethane, followed by addition of 7.8 mL of triethylamine. The solution

was cooled to 0 °C and triphosgene (1.20 g, 4.04 mmol) was slowly introduced

into the reaction vessel. (CAUTION: Triphosgene is toxic and its reaction with 4-

isocyanophenylamine generates considerable heat and an abundance of hydrogen chloride.

Triphosgene should be added very slowly and in several portions to allow for sufficient

heat exchange with the cooling media.) The light yellow reaction mixture was mag-

netically stirred for 3 hours at 0 °C, then stirred for an additional 45 hours at 25 °C.

Methanol (10 mL) was added to the reaction mixture and stirring was continued

for an additional hour. Organic solvents were removed under reduced pressure,

and the residues were dissolved in 60 mL of dimethyl formamide (DMF). Deion-

ized water (60 mL) was slowly added, and the reaction vessel was gently heated to

ensure that the solution remained clear. After addition of deionized water, the so-

lution was allowed to cool slowly to room temperature, whereupon an off-white

precipitate formed. The precipitate was filtered and washed with three 20 mL

portions of water, followed by 20 mL of diethyl ether and 20 mL of hexanes, re-

spectively. After drying under reduced pressure for one day, 1 was obtained with

sufficient purity for further experimentation. Yield: 2.82 g (84.6%). IR (CH2Cl2,

cm−1): νCN 2027 (vs). 1H NMR (CD3CN, 20 °C): δ 7.38 (d, 4H, Ar-H, J = 8.86), 7.53

(d, 4H, Ar-H, J = 8.86), 7.60 (br s, 2H, N-H). 13C NMR (CD3CN, 20 °C): δ 119.3,

127.1, 140.3, 151.9, 163.5, ipso C not observed. MS(ESI): m/z 297 [M + Cl−]−, 324

[M + NO3−]−, 321 [M + CH3COO−]−. Anal. Calcd for C15H10N4O: C, 68.69; H,

3.84; N, 21.36. Found: C, 68.47; H, 4.05; N, 21.17.

F.5.3 Synthesis of Complex 2

Cr(CO)6 (317 mg, 1.44 mmol) and 1 (182 mg, 0.694 mmol) were combined with 25

mL of DMF and heated to 90 °C, whereupon PdO (14 mg, 0.12 mmol) was added
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to the reaction vessel. The reaction mixture was magnetically stirred at 90 °C for

15 minutes, then allowed to cool to room temperature. DMF was removed by vac-

uum distillation, leaving behind an oily residue. The oily residue was extracted

with dichloromethane and filtered to remove insoluble impurities. Hexanes were

added slowly to the dichloromethane filtrate until the solution became cloudy,

then the solution was centrifuged at 5000 rpm for 2 minutes, after which the clear

supernatant was decanted and dried under reduced pressure. The residual pale

yellow solid was dissolved in warm acetonitrile, then cooled slowly to -20 °C to

yield crystals of 2 · CH3CN. Yield: 242 mg (50.7%). IR (CH2Cl2, cm−1): νCN 2143

(m), νCO 2058 (s), 1955 (vs). 1H NMR (CD3CN, 20 °C): δ 7.44 (d, 4H, Ar-H, J = 8.75),

7.58 (d, 4H, Ar-H, J = 8.89), 7.71 (br s, 2H, N-H). 13C NMR (CD3CN, 20 °C): δ 120.2,

127.9, 141.1, 153.0, isocyanide and adjacent ipso carbons not observed. MS(ESI):

m/z 681 [M + Cl−]−, 708 [M + NO−
3 ]−, 705 [M + CH3COO−]−. Anal. Calcd for

C27H13Cr2N5O11: C, 47.18; H, 1.91; N, 10.19. Found: C, 47.23; H, 1.83; N, 10.16.

F.5.4 Synthesis of Complex 3

Mo(CO)6 (811 mg, 3.07 mmol) and 1 (403 mg, 1.54 mmol) were dissolved in 25

mL of tetrahydrofuran (THF). A dropping funnel charged with trimethylamine N

oxide dihydrate (342 mg, 3.07 mmol), THF (10 mL), and methanol (10 mL) was

attached to the reaction flask, the contents of which were added dropwise to the

reaction mixture over the course of 1 hour. The reaction mixture was magnetically

stirred for 6 hours at room temperature, after which the solvents were removed

under reduced pressure. The residues were extracted with dichloromethane

and filtered to remove insoluble impurities. Hexanes were added slowly to the

dichloromethane filtrate until the solution became cloudy, then the solution was

centrifuged at 5000 rpm for 2 minutes, after which the clear supernatant was de-

canted and dried under reduced pressure. The residual off-white solid was dis-

solved in warm acetonitrile, then cooled slowly to 20 °C to yield crystals of 3.
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Yield: 871 mg (77.0%). IR (CH2Cl2, cm−1): νCN 2143 (m), νCO 2063 (s), 1956 (vs).

1H NMR (CD3CN, 20 °C): δ 7.43 (d, 4H, Ar-H, J = 8.86), 7.57 (d, 4H, Ar-H, J =

8.82), 7.69 (br s, 2H, N-H). 13C NMR (CD3CN, 20 °C): δ 119.3, 127.2, 140.4, 151.8,

isocyanide and adjacent ipso carbons not observed. MS(ESI): m/z 769 [M + Cl−]−,

796 [M + NO−
3 ]−, 793 [M + CH3COO−]−. Anal. Calcd for C25H10Mo2N4O11: C,

40.89; H, 1.37; N, 7.63. Found: C, 41.03; H, 1.38; N, 8.15.

F.5.5 Synthesis of Complex 4

W(CO)6 (369 mg, 1.05 mmol) and 1 (132 mg, 0.503 mmol) were combined with

25 mL of DMF and heated to 90 °C, whereupon PdO (10 mg, 0.082 mmol) was

added to the reaction vessel. The reaction mixture was magnetically stirred at 90

°C for 5 minutes, then cooled to room temperature. DMF was removed by vac-

uum distillation, leaving behind an oily residue. The oily residue was extracted

with dichloromethane and filtered to remove insoluble impurities. Hexanes were

added slowly to the dichloromethane filtrate until the solution became cloudy,

then the solution was centrifuged at 5000 rpm for 2 minutes, after which the clear

supernatant was decanted and dried under reduced pressure. The residual yel-

low solid was dissolved in warm acetonitrile, then cooled slowly to -20 °C to yield

crystals of 4 · CH3CN. Yield: 211 mg (44.1%). IR (CH2Cl2, cm−1): νCN 2144 (m),

νCO 2059 (s), 1950 (vs). 1H NMR (CD3CN, 20 °C): δ 7.43 (d, 4H, Ar-H, J = 8.93),

7.57 (d, 4H, Ar-H, J = 9.00), 7.69 (br s, 2H, N-H). 13C NMR (CD3CN, 20 °C): δ 119.3,

127.3, 140.4, 151.8, isocyanide and adjacent ipso carbons not observed. MS(ESI):

m/z 945 [M + Cl−]−, 972 [M + NO−
3 ]−, 969 [M + CH3COO−]−. Anal. Calcd for

C27H13N5O11W2: C, 34.10; H, 1.38; N, 7.36. Found: C, 34.29; H, 1.31; N, 7.41.

F.5.6 Determination of Equilibrium Formation Constants (K) by

1H NMR

In typical titration experiments, CD3CN solutions of urea hosts 1-4 (0.75 mL, 0.10

mM) were loaded into standard NMR tubes and initial 1H NMR spectra were col-
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lected. Aliquots of an anion-containing solution were then delivered to the NMR

tubes using a microsyringe, the mass of each aliquot being recorded on a microbal-

ance. The first ten aliquots of titrant were taken from a stock solution of the anion

guest (2.0 mM) prepared by dissolving a known quantity of the appropriate tetra-

butylammonium salt in a 0.10 mM solution of the urea host, thereby minimizing

host dilution effects. Subsequent aliquots of titrant were taken from a stock so-

lution of anion guest (4.0 mM) prepared in the same manner. Sufficient anion

was delivered during each titration step to enable collection of 1H NMR spectra at

the following approximate [anion]/[urea] ratios: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0, 1.2, 2.0, 3.0, and 4.0. The upfield shifting of the aromatic proton signals

centered between 7.38-7.44 ppm was recorded and values of K were calculated by

non-linear fitting to a 1:1 binding model using the WinEQNMR2 software package

[341].

F.5.7 Crystal Structure Determination of Complexes 2-4

X-ray diffraction data were collected at 100 K on a Bruker D8 Venture using MoKα

-radiation (λ = 0.71073 Å). Data were corrected for absorption effects using the

SADABS area detector absorption correction program [342]. The structures were

solved by direct methods using Olex2 with the SHELXT structure solution pro-

gram and refined with the SHELXL refinement package using least squares min-

imization [343, 344, 345]. All non-hydrogen atoms were refined with anisotropic

thermal parameters. Hydrogen atoms attached to heteroatoms were identified

from the residual density maps and refined with isotropic thermal parameters.

All other hydrogen atoms in the investigated structure were located from differ-

ence Fourier maps, but their positions were ultimately placed in geometrically cal-

culated positions and refined using a riding model. Additional calculations and

refinement of structures were carried out using APEX3 and SHELXTL software

[346, 347]. Graphical representations of crystallographic data were generated us-
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ing the Mercury software package [348]. X-ray data collection and refinement 

parameters are tabulated in Table G.1.

F.5.8 Computational Methods

All DFT calculations were performed using the Crystal14 software package [349, 

350]. Calculations utilized a pairwise dispersion-corrected B3LYP-D2 den-sity 

functional with atom-centered Dunning cc-pVDZ basis sets on all non-metal 

atoms[234, 351, 253, 352, 353]. Mo atoms were treated with LANL2DZ effective 

core potentials with standard Dunning D95V valence orbitals [354, 355]. Atomic 

coordinates from the X-ray structural determination of complex 3 were taken as 

the initial geometry for the crystal structural optimization. The energy minimiza-

tion allowed full relaxation of atom positions and lattice parameters within the 

constraints of space group symmetry. A shrinking factor of 4 was used in defin-

ing the k point sampling of the density matrix and commensurate grid in recip-

rocal space to achieve precision on energy convergence of 10−6 hartree for all ge-

ometry optimizations and single-point energy calculations [356, 357]. A pruned 

(75,974) integration grid was used to define the radial and angular grid-point dis-

tribution. Corrections for basis set superposition error were performed using a 

counterpoise method [358]. Interaction energies for stacked dimer structures were 

calculated using dimers extracted from the expanded DFT optimized complex 3 

crystal structure. Single-point energies were used to determine interaction ener-

gies from Ei
A
nt

B = E(AB) − [E(A) + E(B)], where single-molecule energies for A 

and B were calculated in the full AB basis.

Calculated and experimental molecular bond lengths, bond angles, dihedral an-

gles, and RMSDs for complex 3 are provided in Table G.2, Table G.3, and Table G.4.

F.6 Supporting Information
Supporting Information is available free of charge on the ACS Publications web-

site at DOI: 10.1021/acs.inorgchem.9b00917.
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Molecular structures of complexes 2 and 4, electrochemical methods and data,

ESI-MS data, tables of X-ray data collection and refinement parameters, and cal-

culated and experimental molecular bond lengths, bond angles, dihedral angles,

and RMSDs for complex 3 (Appendix G)
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Figure G.1: Molecular structure of complex 2. Thermal ellipsoids are rendered
at the 50% probability level. Only urea N–H atoms and aromatic hydrogen
atoms participating in hydrogen bonding are shown.

Figure G.2: Molecular structure of complex 4. Thermal ellipsoids are rendered 
at the 50% probability level. Only urea N–H atoms and aromatic hydrogen 
atoms participating in hydrogen bonding are shown.

G.1 Electrochemical Measurements
Cyclic voltammograms were recorded in 0.1 M [Bu4N][PF6] DMF solutions at ν 

= 100 mV/sec with a Princeton Applied Research VersaSTAT 3 potentiostat. All 

experiments were performed using a standard three-electrode configuration un-

der an atmosphere of pure nitrogen. Glassy carbon working electrodes (3 mm, 

CH Instruments) were used for all measurements and were polished with aque-

ous slurries of 0.3 µm and 0.05 µm alumina powder, sequentially. After polishing, 

the electrodes were rinsed with Milli-Q water, methanol, and dichloromethane

and dried in a stream of air. Working electrodes were preconditioned by per-

forming three cyclical scans from 2.0 to -2.5 V at 250 mV/sec in a DMF solution

of [Bu4N][PF6] (0.1 M). A graphite rod served as the counter electrode and a sil-

ver wire immersed in a 0.1 M DMF solution of [Bu4N][PF6] and separated from 

the cell compartment by a porous glass frit (CoralPor 1000) was employed as a
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Ag+/Ag pseudoreference electrode. Measured potentials are reported relative to

the ferrocenium(1+)/ferrocene(0) redox couple, which was achieved by addition

of ferrocene at the end of each set of scans.

Figure G.3: Cyclic voltammograms of complexes 2-4 (≈ 1 mM) recorded in 0.1
M [Bu4N][PF6] DMF solution at ν = 100 mV/sec with a glassy carbon work-
ing electrode, graphite rod counter electrode, and a silver wire pseudoreference
electrode.

Figure G.4: Atom labels used in structure analysis of complex 3 provided in
Table G.2, Table G.3, and Table G.4.

Table G.2: Heavy atom bond lengths (Å) and RMSD for experimental X-ray and
calculated crystal structures of complex 3.

Bond exp. DFT

C12-Mo1 2.127 2.1778

C14-C15 1.395 1.4104

C14-C19 1.398 1.4094
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C15-C16 1.381 1.3892

C16-C17 1.386 1.4013

C17-C18 1.385 1.4021

C18-C19 1.384 1.3907

C20-C21 1.401 1.4084

C20-C25 1.394 1.4085

C21-C22 1.378 1.3885

C22-C23 1.383 1.4003

C23-C24 1.390 1.4038

C24-C25 1.378 1.3904

C26-C27 1.453 1.4564

Mo1-C2 2.052 2.1024

Mo1-C3 2.020 2.0675

Mo1-C4 2.056 2.1078

Mo1-C5 2.063 2.1201

Mo1-C6 2.046 2.0903

Mo2-C10 2.053 2.0989

Mo2-C11 2.052 2.0963

Mo2-C13 2.130 2.1826

Mo2-C7 2.044 2.0925

Mo2-C8 2.022 2.0745

Mo2-C9 2.068 2.1158

N1-C1 1.381 1.3827

N1-C14 1.397 1.3956

N12-C12 1.155 1.1747

N12-C17 1.400 1.3832

N13-C13 1.161 1.1749
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N13-C23 1.396 1.3825

N2-C1 1.373 1.3840

N2-C20 1.397 1.3958

N3-C26 1.136 1.1619

O1-C1 1.216 1.2293

O10-C10 1.135 1.1509

O11-C11 1.137 1.1506

O2-C2 1.137 1.1495

O3-C3 1.143 1.1560

O4-C4 1.138 1.1488

O5-C5 1.138 1.1472

O6-C6 1.138 1.1524

O7-C7 1.137 1.1496

O8-C8 1.147 1.1550

O9-C9 1.134 1.1463

RMSD 0.0279

Table G.3: Heavy atom bond angles (°) and RMSD for experimental X-ray and
calculated crystal structures of complex 3.

Bond Angle exp. DFT

C1-N1-C14 127.10 127.47

C1-N2-C20 128.00 128.30

C10-Mo2-C11 176.44 178.47

C10-Mo2-C13 92.66 91.79

C11-Mo2-C13 90.38 89.43

C12-N12-C17 172.00 170.06

C13-N13-C23 171.90 171.30
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C14-C15-C16 120.90 120.95

C14-C19-C18 119.70 119.87

C15-C14-C19 119.30 119.19

C15-C16-C17 119.10 119.29

C16-C17-C18 120.80 120.38

C17-C18-C19 120.10 120.30

C2-Mo1-C12 86.43 88.10

C2-Mo1-C3 92.27 91.92

C2-Mo1-C4 178.49 177.19

C2-Mo1-C5 89.50 89.71

C2-Mo1-C6 89.54 87.64

C20-C21-C22 120.90 121.04

C20-C25-C24 119.50 119.55

C21-C20-C25 119.50 119.37

C21-C22-C23 119.00 119.24

C22-C23-C24 120.80 120.23

C23-C24-C25 120.40 120.56

C3-Mo1-C12 178.49 177.46

C3-Mo1-C4 88.90 90.00

C3-Mo1-C5 89.89 89.28

C3-Mo1-C6 90.82 91.79

C4-Mo1-C12 92.41 90.08

C4-Mo1-C5 91.45 92.36

C4-Mo1-C6 89.49 90.26

C5-Mo1-C12 89.33 88.18

C5-Mo1-C6 178.83 177.17

C6-Mo1-C12 89.94 90.74
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C7-Mo2-C10 89.96 90.02

C7-Mo2-C11 88.42 89.14

C7-Mo2-C13 85.38 85.77

C7-Mo2-C8 92.48 91.77

C7-Mo2-C9 175.60 175.80

C8-Mo2-C10 87.78 88.11

C8-Mo2-C11 89.12 90.64

C8-Mo2-C13 177.82 177.54

C8-Mo2-C9 91.83 92.40

C9-Mo2-C10 91.10 90.63

C9-Mo2-C11 90.76 90.29

C9-Mo2-C13 90.30 90.06

Mo1-C12-N12 175.60 176.06

Mo1-C2-O2 178.40 177.36

Mo1-C3-O3 178.50 177.88

Mo1-C4-O4 178.60 178.49

Mo1-C5-O5 178.70 177.70

Mo1-C6-O6 179.20 177.40

Mo2-C10-O10 176.70 177.09

Mo2-C11-O1 178.00 179.22

Mo2-C13-N13 175.50 174.57

Mo2-C7-O7 176.60 176.05

Mo2-C8-O8 179.20 178.48

Mo2-C9-O9 178.70 177.70

N1-C1-N2 111.50 111.70

N1-C14-C15 117.00 116.85

N1-C14-C19 123.70 123.96
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N12-C17-C16 120.30 120.85

N12-C17-C18 118.90 118.76

N13-C23-C22 120.50 120.81

N13-C23-C24 118.70 118.96

N2-C20-C21 116.70 116.54

N2-C20-C25 123.80 124.09

N3-C26-C27 178.80 179.85

O1-C1-N1 124.10 124.39

O1-C1-N2 124.40 123.91

RMSD 0.86

Figure G.5: UV-Vis spectrum of 1 (10.8 µM in CD3CN) in the absence and pres-
ence of excess acetate anion.
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Table G.1: X-ray data collection and refinement parameters for complexes 2-4.

Compound 2 3 4

Formula C25H10N4O11Cr2
·CH3CN

C25H10N4O11Mo2
·CH3CN

C25H10N4O11W2
·CH3CN

Formula weight 687.42 775.30 951.12
Temperature (K) 100 100 100
Crystal system monoclinic monoclinic monoclinic
Space group P21/c P21/c P21/c
a (Å) 6.8126(2) 6.8694(5) 6.8575(4)
b (Å) 13.8536(5) 14.0047(10) 13.9691(9)
c (Å) 32.1439(11) 32.536(2) 32.525(2)
α (deg) 90 90 90
β (deg) 93.8630(10) 93.115(2) 93.145(2)
γ (deg) 90 90 90
Volume (Å3) 3026.82(17) 3125.5(4) 3110.9(3)
Z 4 4 4
density (g/cm3) 1.509 1.648 2.031
abs coeff (mm−1) 0.784 0.867 7.454
F(000) 1384 1528 1784
Crystal size (mm) 0.42 × 0.18 × 0.12 0.4 × 0.05 × 0.05 0.17 × 0.14 × 0.05
λ (MoKα) (Å) 0.71073 0.71073 0.71073
2θ range (deg) 5.87 to 55.068 5.818 to 61.12 5.804 to 54.968
reflns (coll) 40623 120953 50308
reflns (unique) 6937 9565 7120
Data/restraints/

parameters
6937/0/415 9565/0/415 7120/0/415

GOF (on F2) 1.131 1.072 1.206
Final R indexes

[I ≥ 2σ (I)]
R1 = 0.0356,
wR2 = 0.0848

R1 = 0.0327,
wR2 = 0.0578

R1 = 0.0242,
wR2 = 0.0463

Final R indexes
[all data]

R1 = 0.0433,
wR2 = 0.0877

R1 = 0.0555,
wR2 = 0.0623

R1 = 0.0312,
wR2 = 0.0477

Largest diff.
peak/hole (e Å−3)

0.45/-0.23 0.58/-0.47 0.88/-0.43
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Table G.4: Heavy atom dihedral angles (°) and RMSD for experimental X-ray
and calculated crystal structures of complex 3.

Dihedral Angle exp. DFT
C1-N1-C14-C15 173.1 -179.16
C1-N1-C14-C19 -7.5 1.15
C1-N2-C20-C21 179.3 177.82
C1-N2-C20-C25 -0.5 -2.82
C14-C15-C16-C17 0.1 0.19
C14-N1-C1-N2 -179.2 177.72
C14-N1-C1-O1 1.0 -2.02
C15-C14-C19-C18 -3.2 -1.12
C15-C16-C17-C18 -2.8 -0.83
C15-C16-C17-N12 176.2 178.44
C16-C17-C18-C19 2.5 0.50
C17-C18-C19-C14 0.5 0.49
C19-C14-C15-C16 2.9 0.79
C20-C21-C22-C23 -0.2 -0.06
C20-N2-C1-N1 -178.0 179.74
C20-N2-C1-O1 1.9 -0.52
C21-C20-C25-C24 0.5 1.20
C21-C22-C23-C24 0.0 0.55
C21-C22-C23-N13 -179.1 -178.62
C22-C23-C24-C25 0.4 -0.16
C23-C24-C25-C20 -0.6 -0.73
C25-C20-C21-C22 -0.1 -0.82
N1-C14-C15-C16 -177.6 -178.92
N1-C14-C19-C18 177.4 178.57
N12-C17-C18-C19 -176.5 -178.79
N13-C23-C24-C25 179.5 179.03
N2-C20-C21-C22 -179.9 178.57
N2-C20-C25-C24 -179.7 -178.14
RMSD 2.46
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Figure G.6: ESI-MS data for 1:1 host–guest complexes of 1 with (a) NO−
3 , (b)

Cl−, and (c) CH3COO−.

Figure G.7: ESI-MS data for 1:1 host–guest complexes of 2 with (a) NO−
3 , (b)

Cl−, and (c) CH3COO−.

Figure G.8: ESI-MS data for 1:1 host–guest complexes of 3 with (a) NO−
3 , (b)

Cl−, and (c) CH3COO−.
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Figure G.9: ESI-MS data for 1:1 host–guest complexes of 4 with (a) NO−
3 , (b)

Cl−, and (c) CH3COO−.

Figure G.10: 1H NMR chemical shifting observed during titration of (a) 2, (b)
3, and (c) 4 (∼0.1 mM in CD3CN) with nitrate, chloride, and acetate anions.
The dotted lines represent the results of non-linear fitting to a 1:1 host–guest
binding model.



APPENDIX H:

CATALOGUING THE ENERGETIC

CONTRIBUTIONS TO THE SUPRAMOLECULAR

ASSEMBLY OF P-SUBSTITUTED

N,N’-DIPHENYLUREAS AND THEIR

ORGANOMETALLIC DERIVATIVES IN THE SOLID

STATE: A DENSITY FUNCTIONAL THEORY

APPROACH

The following chapter was published in Crystal Growth and Design under au-

thors Jenny W. Fothergill, Dr. Adam C. Colson, and Dr. Matthew D. King. My

contributions to this paper were DFT calculations under the guidance of Dr. King,

writing of the initial draft, and figure creation.

H.1 Abstract
Crystal engineering relies on the predictability of the elaborate interplay of co-

hesive and conformational energies driven by both intra- and intermolecular in-

teractions of the constituent molecules. In an effort to better understand these

influences on crystal packing of p-substituted N,N’-diphenylureas (pDPUs) and

organometallic derivatives, we present a detailed computational investigation of

pDPU species utilizing solid-state density functional theory (DFT), and demon-

262
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strate the applicability of predictive supramolecular synthons applied towards

growth of related organometallic complexes. Dominant noncovalent interactions

of pDPUs can be tuned by altering the electron-withdrawing character of the p-

substituents. The strength of this electron-withdrawing nature governs the incli-

nation of the molecules to form either dominant electrostatic or π-stacking inter-

molecular interactions in the crystal structure due to potential molecular confor-

mational stabilization through intramolecular C-H· · ·O electrostatic interactions

between ortho phenyl hydrogens and the urea oxygen atoms. This propensity is

also influenced by the symmetry of p-substitutions in mono- and di-substituted

DPUs. The results of the holistic DFT investigation show a relationship between

gas-phase and solid-state conformations, and also presents evidence of mecha-

nisms leading to deviations in predicted crystallization behaviors based on the

balance of intra- and inter-molecular interactions. The foundational computa-

tional study was expanded to build on previous experimental and theoretical

work involving zerovalent transition metal complexes in which p-isocyanophenyl

DPUs were appended with group IV metal carbonyl fragments. In this study, we

synthesized an asymmetric analogue of the latter in which N-(p-isocyanophenyl)-

N’-phenylurea (pCNHDPU) was appended to a Mo(CO)5 metal carbonyl frag-

ment, allowing us to associate the crystallization behaviors and interactions of

organometallic DPU derivatives with those of simpler pDPUs. It was observed

that the supramolecular assembly of the organometallic complexes display sim-

ilar predictive patterns, as well as additional complexities to molecular packing

arising of the bulkier metal carbonyl substituents. An inclusive computational

categorization of DPU-based systems in complement to experimental data will

aid in the advancement of design rules for patterned crystal growth of DPU and

related systems for the development of innovative materials having unique solid-

state properties.
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H.2 Introduction

The properties of supramolecular aggregates and molecular crystals may differ

considerably from those of their isolated molecular constituents, and developing

a deeper understanding of the noncovalent interactions that guide molecular as-

sembly could contribute to advances in various applications, including the self-

assembly of light-emitting diodes (LEDs), photovoltaic arrays, and field-effect

transistors (FETs) [266, 269, 359, 268, 264, 360]. The N,N’-diphenylurea (DPU)

moiety is a particularly versatile synthon for supramolecular assembly because

it can participate in multiple types of noncovalent interactions. N,N’ dipheny-

lureas bearing electron-donating functional groups can act as both hydrogen bond

donors and acceptors, resulting in the formation of supramolecular “ribbons” or

“tapes” (Figure H.1a) [301, 320]. Alternatively, aromatic rings bearing electron-

withdrawing functional groups can participate in π-π interactions, resulting in

the slip-stack packing of relatively planar N,N’ diphenylurea units, as depicted in

Figure H.1b [360].

Figure H.1: Supramolecular motifs associated with N,N’-diphenylurea com-
pounds.

In addition to π-π interactions, we have recently reported that π-urea inter-

actions can facilitate the assembly of anisotropic molecular arrays in the solid
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state [30]. Organometallic DPUs prepared by tethering Mo(CO)5 fragments to

1,3-bis(p-isocyanophenyl)urea were observed to exhibit an unusual ladder-like

packing motif consisting of alternating π-π and urea-π interactions. Intrigu-

ingly, solid state DFT calculations revealed that the cohesive contributions from

the π-π and urea-π interactions to the total lattice energy were nearly equal in

magnitude. This holistic computational treatment of lattice energy provided im-

portant insights into the subtleties of the intermolecular interactions governing

molecular assembly in the solid state. The present work describes a more expan-

sive computational effort to survey the lattice energies of DPU systems bearing

electron-withdrawing functional groups and to identify the cohesive and confor-

mational strain energy contributions to their overall lattice energies. Additionally,

a mono-substituted Mo(CO)5 derivative of the previously reported metal-bound

1,3-bis(p-isocyanophenyl)urea was synthesized and crystallized to relate observed

supramolecular behavior of these organometallic complexes with the predictabil-

ity discerned from the explored pDPUs. Ultimately, we anticipate that the find-

ings presented in this work will inform the development of design rules for the

patterned crystal growth of DPU-based systems.

H.3 Materials and Methods

H.3.1 Theoretical

The DPU molecules selected for this study include 1,3-bis(p-cyanophenyl)urea

(pCyDPU), 1-(p-cyanophenyl)-3-(p-nitrophenyl)urea (pCyNDPU), 1,3-bis(p-

trifluoromethylphenyl)urea (pCF3DPU), 1-(p-cyanophenyl)-3-phenylurea

(pCyHDPU), 1-(p-nitrophenyl)-3-phenylurea (pNHDPU), and 1-(p-chlorophenyl)-

3-phenylurea (pClHDPU), the crystal structures of which have previously been

archived in the Cambridge Crystallographic Data Centre (pCyDPU, 1554302;

pCyNDPU, 676835; pCF3DPU, 1554299; pCyHDPU, 1554301; pNHDPU, 676839;

pClHDPU, 1554300) [361, 327]. All DFT calculations were performed using
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the Crystal14 software package [349, 350]. Calculations utilized a pairwise

dispersion-corrected B3LYP-D2 density functional with the atom-centered triple-

ζ basis with polarization functions, pob-TZVP, which is an Aldrich’s triple-ζ basis

set modified for solid-state calculations [234, 351, 352, 362]. Dimer calculations

used Ahlrich’s valence triple-ζ basis [363, 364]. Atomic coordinates determined

using single crystal X-ray diffraction were used as the initial geometry for the

crystal structure optimization. The energy minimization allowed full relaxation

of the atom positions within the constraints of the space group symmetry to a

residual force of 10−6 hartree. Shrinking factors of 3 (pCF3DPU), 4 (pCyDPU,

pCyNDPU, pNHDPU, pClHDPU), and 6 (pCyHDPU) were used in defining the k

point sampling of the density matrix in reciprocal space [356, 357]. Corrections

for basis set superposition error (BSSE) were performed using the counterpoise

method [358]. The lattice energy was calculated using the energy of the opti-

mized crystal structure (Ecell) and the BSSE-corrected energy of a single molecule

(EmoleculeBSSE) as follows:

ELattice =
Ecell − Z × EmoleculeBSSE

Z
(H.1)

where Z is the number of molecules in the unit cell. The strain energy of the crys-

tal packing was calculated using the single point energies of a molecule extracted

from the crystal structure (EmoleculeSP) and the energy of the molecule after geom-

etry optimization (Emoleculeopt) as follows:

Estrain = EmoleculeSP − Emoleculeopt (H.2)

The cohesive energy was calculated as follows:

Ecohesive = Elattice − Estrain (H.3)
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Interaction energies for the dimer structures were calculated using single-point

energies of dimers extracted from the optimized crystal structure (Edimer), along

with BSSE-corrected molecular single-point energies as follows:

Einteraction = Edimer − 2 × EmoleculeBSSE (H.4)

H.3.2 Experimental

General Considerations

All synthetic operations were carried out under a nitrogen atmosphere using stan-

dard Schlenk techniques to exclude moisture and oxygen. Nitrogen was prepu-

rified b y p assage t hrough c olumns o f a ctivated c opper c atalyst ( BASF PuriStar 

R3-11G) and molecular sieves (RCI-DRI 13X). Glassware was dried in an oven at 

130 °C, assembled while hot, and allowed to cool under reduced pressure. All 

solvents were dried according to published procedures and degassed with ni-

trogen prior to use. Mo(CO)6 (Acros, 98%), trimethylamine N-oxide dihydrate 

(Beantown Chemical, 98%), and phenyl isocyanate (Acros, 99%) were used as 

received without further purification. 4-Isocyanophenylamine was prepared ac-

cording to literature procedures and sublimed prior to use [340]. Infrared spectra 

were obtained using a Thermo Scientific Nicolet iS5 FTIR spectrometer equipped 

with a 0.2 mm BaF2 liquid cell. 1H and 13C NMR data were recorded on a 600 

MHz Bruker AVANCE III spectrometer. Electrospray ionization mass spectrom-

etry (ESI-MS) was carried out using a Bruker HCTultra CTD II spectrometer in 

negative ion mode. CH3CN solutions of analytes were treated with the tetrabuty-

lammonium salts of chloride and nitrate prior to injection into the mass spectrom-

eter. Elemental analyses were performed by Atlantic Microlab, Inc in Norcross, 

GA, USA.
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Synthesis of N-(p-isocyanophenyl)-N’-phenylurea (pCNHDPU)

p-Isocyanophenylamine (318 mg, 2.69 mmol) and phenyl isocyanate (300 mg, 2.52 

mmol) were dissolved in 20 mL of CH3CN. The reaction mixture was heated at 

reflux for three hours, after which the solvent was removed under reduced pres-

sure. The solid residues were washed with toluene followed by hexanes and dried 

under reduced pressure. The product was isolated as a pale yellow solid (433 mg, 

72% yield). IR (CH2Cl2, cm−1): νCN 2064 (vs). 1H NMR (CD3CN, 20 °C): δ 7.05 (t, J 

= 7.41 Hz, 1H, Ar H), 7.31 (t, J = 8.15 Hz, 2H, Ar H), 7.37 (m, 3H), 7.44 (d, J = 7.61 

Hz, 2H, Ar H), 7.53 (d, J = 8.59 Hz, 2H Ar H), 7.55 (br s, 1H, NH). 13C NMR 

(CD3CN, 20 °C): δ 117.3, 119.0, 122.9, 127.1, 128.8, 139.1, 140.7, 152.3, 163.4, 206.5. 

MS(ESI): m/z 272 [M + Cl−]−, 299 [M + NO3−]−. Anal. Calcd for C14H11N3O: C, 

70.87; H, 4.67; N, 17.71. Found: C, 70.58; H, 4.63; N, 17.91.

Synthesis of Mo(CO)5(pCNHDPU)

Mo(CO)6 (556 mg, 2.11 mmol) and pCNHDPU (500 mg, 2.11 mmol) were dis-

solved in 25 mL of tetrahydrofuran (THF), and a dropping funnel charged 

with trimethylamine N-oxide dihydrate (233 mg, 2.10 mmol), THF (10 mL), and 

methanol (10 mL) was attached to the reaction flask, the contents of which were 

added dropwise to the reaction mixture over the course of one hour. The mixture 

was magnetically stirred for six hours at room temperature, after which the sol-

vents were removed under reduced pressure. The residues were extracted with 

ethyl acetate, filtered to remove insoluble impurities, and adsorbed onto silica gel. 

Mo(CO)5(pCNHDPU) was isolated by column chromatography using silica gel as 

the stationary phase and a mixed solvent system as eluent (5:4:1 vol. eq. CH2Cl2, 

hexanes, and ethyl acetate). The chromatographic fractions were dried under re-

duced pressure and the residues dissolved in N,N’-dimethylformamide (DMF). 

Slow titration of the DMF solution with distilled water produced colorless crys-
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talline needles (606 mg, 61% yield). IR (CH2Cl2, cm−1): νCN 2143 (m), νCO 2063 

(s), 1956 (vs). 1H NMR (CD3CN, 20 °C): δ 7.05 (t, 1H, Ar-H, J = 7.41 Hz), 7.31 (t, 

2H, Ar-H, J = 8.15 Hz), 7.40 (m, 3H), 7.45 (d, J = 7.61 Hz, 2H, Ar H), 7.55 (d, J = 8.59 

Hz, 2H Ar H), 7.61 (br s, 1H, N-H). 13C NMR (CD3CN, 20 °C): δ 119.3, 127.2, 140.4, 

151.8, isocyanide and adjacent ipso carbons not observed. MS(ESI): m/z 510 [M + 

Cl−]−, 537 [M + NO3−]−. Anal. Calcd for C19H11MoN3O6: C, 48.22; H, 2.34; N, 

8.88. Found: C, 48.16; H, 2.26; N, 8.98.

H.4 Results and Discussion
The crystal structures of several p-substituted DPUs were acquired from the Cam-

bridge Crystallographic Database, which represent a diverse cross-section of DPU 

derivatives to compare preferred molecular conformations, crystal packing con-

figurations, and interaction energies as a function of the electron-withdrawing na-

ture of the p-substituents. The systems studied were 1,3-bis(p-cyanophenyl)urea 

(pCyDPU), 1-(p-cyanophenyl)-3-(p-nitrophenyl)urea (pCyNDPU), 1,3-bis(p-

trifluoromethylphenyl)urea (pCF3DPU), 1-(p-cyanophenyl)-3-phenylurea 

(pCyHDPU), 1-(p-nitrophenyl)-3-phenylurea (pNHDPU), and 1-(p-

chlorophenyl)-3-phenylurea (pClHDPU) (Figure H.2). The selected structures 

offer both mono-and di-para-substituted DPUs having electron withdrawing 

substituents of varying magnitudes.

The implications of the pDPU molecular structures is that they may facilitate the 

dominant interactions driving crystal packing formation. Information on molec-

ular structure can therefore provide predictive insight towards patterned crystal 

growth and engineering. There exists an interplay between intramolecular forces, 

intermolecular forces, and molecular conformational strain that govern how each 

DPU will behave in the gas and solid states. In the crystalline solid, any molecular 

DPU conformation can participate in the urea ribbon motif, but planar molecules 

are favored for π-stacking interactions. In instances of DPU planarity, steric hin-
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Figure H.2: Chemical structures of pDPUs examined in this study.

drances of adjacent rings prevent the formation of the hydrogen-bonded urea 

ribbon motif and rely on stabilization through π-π interactions. However, ring 

substituents may contribute to additional lattice stabilization by forming hydro-

gen bonds with the available urea moieties. In order for a DPU to achieve pla-

narity, the electrostatics of the ring must be altered through addition of electron-

withdrawing substituent groups at the para position. Such additions result in 

a coupled withdrawal of charge density at the ortho position, thus generating 

greater positive charge localized on the ortho-hydrogens. Although not a “true” 

hydrogen bond, the electrostatic interaction between the ortho-hydrogen on the 

aromatic ring and the urea oxygen may facilitate stabilization of a co-planar aryl 

conformation. This favorable electrostatic interaction is countered by the repul-

sion between the opposite ortho-hydrogen of the same ring and the urea hydro-

gen. The magnitude of the hydrogen bonding is greater than that of this H-H 

repulsion, which can therefore be overcome only through structural addition of
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strong electron-withdrawing groups. The favored molecular conformation ulti-

mately affects the crystal packing configuration, and the degree of DPU planarity 

and its ability to form stabilizing π-π interactions in the crystal phase is depen-

dent on the magnitude of the electron-withdrawing character of the p-substituent 

group(s).

Contained in the investigated structures are the ring substituents chloro, cyano, 

trifluoromethyl, a nd n itro g roups. F rom o ur s ingle-molecule D FT calculations, 

Mulliken charges of the electron-withdrawing groups were determined and 

ranked as NO2 > Cl > CN > CF3 in terms of net negative group charge (av-

erages of -0.54, -0.23, -0.13, -0.10, respectively). The propensity to form planar 

molecular structures, and therefore encourage π-π stacking motifs in the crys-

tal structure, is a result of the withdrawal of electron density from the phenyl 

ring and shifting electron density away from the ortho-H, thereby increasing the 

strength of the o-H· · ·Ourea stabilizing intramolecular interaction. Evident by the 

single-molecule structural optimizations shown in Figure H.3, the strength of the 

electron-withdrawing character at the para position has a notable effect on pre-

ferred molecular configuration. Non-substituted DPU optimizes with the phenyl 

groups twisted ∼40° from the urea N-C-N plane due to repulsion between the 

o-H and Hurea, yielding H· · ·H distances of 2.29 Å. These repulsive forces are bal-

anced by the weak interactions between the adjacent o-H and the Ourea at 2.40 Å. 

The addition of p-substitutions to the DPU molecular structures alters the electron 

density at the important ortho position and, hence, the ring orientations. The di-

substituted pCyNDPU contains the strongest electron-withdrawing groups, and 

the resulting optimized structure is nearly planar due to the increase interaction 

strength between the o-H and the Ourea. The preferred molecular orientation has 

nearly equivalent o-H· · ·Ourea and o-H· · ·Hurea separations of 2.20 and 2.21 Å, 

respectively. Examination of the remaining molecule structures reveals that devi-
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ation from planarity is increased. In the case of pCF3DPU, which has the weakest

electron withdrawing character, the resulting structure is nearly that of the non-

substituted DPU structure with o-H· · ·Ourea and o-H· · ·Hurea distance of 2.37 and

2.28 Å, respectively.

Figure H.3: Single-molecule geometry optimizations of pDPUs.

The trend in ring planarity as a function of the electron-withdrawing character 

of the ring substituent is clear looking at the three optimized mono-substituted 

DPU molecules. The o-H· · ·Ourea distances with respect to the p-substituted ring 

were 2.19, 2.28, and 2.38 Åfor the NO2, CN, and Cl substitutions, respectively 

(2.21, 2.26, and 2.30 Åfor the o-H· · ·Hurea). The relative orientation of the non-

substituted ring was not significantly different between each of the structures, and 

corresponded to the structural parameters observed for the non-substituted DPU 

structural optimization. However, slight variations in the o-H· · ·Ourea distances 

were calculated due to the overall molecular redistribution of electron density 

resulting from the single ring substitution. These distances with respect to the 

non-substituted ring were calculated to be 2.34, 2.39, and 2.43 Åfor the NO2, CN, 

and Cl substitutions, respectively (2.27, 3.33, and 2.30 Åfor the o-H· · ·Hurea).

In molecular crystals systems, the relationship of packing forces and conforma-
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tional strain energies often results in deviations between molecular structures ob-

served in the solid phase and that of the optimized single-molecule ‘gas phase’ 

orientation. These structural deviations can sometimes be significant such that 

molecules cannot be treated as rigid building blocks in the construction of 

thermo-dynamically stable crystal structures. Optimization of lattice energy 

during crys-tal growth depends upon maximization of stabilizing intermolecular 

interactions while minimizing distortion of the molecules from their most stable 

molecular conformation. It is the relative strengths of these intra- and inter-

molecular forces that ultimately determine the crystalline configuration of organic 

molecules. As such, the single-molecule structures of the pDPUs were compared 

to those taken in their respective crystal structures in order to better understand 

the influence of preferred molecular conformation of crystal packing assembly. In 

the case of pDPUs, two primary intermolecular interactions are present: hydrogen 

bonding through the urea moiety and π-π interactions between phenyl rings. In 

the for-mation of a stable crystalline packing orientation, the system must either 

maintain the preferred molecular structure or overcome the magnitude of the 

intramolecu-lar interactions within the pDPU molecules.

The general packing assembly of the pDPUs are shown in Figure H.4. Although 

all crystal structures are composed of molecules containing the DPU motif, the 

crystal structures are quite different depending on the dominant supramolecular 

interactions. The molecular orientation of di-substituted DPUs as they are found 

in the crystal structure generally follow those of the single molecule optimiza-

tions. Stabilization of the planar molecular structures in the cases of pCyNDPU 

and pCyDPU through o-H· · ·Ourea interactions, and inversely the lack of elec-

trostatic stabilization through the weakly electron withdrawing p-substituents of 

pCF3DPU, provides the ‘rigid’ building blocks for crystalline assembly. Preferen-

tially planar molecules are likely to adhere to a π-stacking crystal orientation, and



274
those lacking robust o-H· · ·Ourea interactions adopt urea hydrogen-bonding rib-

bon motif in the solid-state. Given the stability afforded by dominant 

intramolecu-lar interactions, in this case the o-H· · ·Ourea interactions, reliable 

predictions can be made on the molecular configurations likely to be observed in 

the solid phase. The intricacies of the crystalline conformation also depend on 

other thermodynamic factors and the ability of the substituents to form additional 

stabilizing interaction with neighboring molecules. Take for example the 

pCyNDPU and pCyDPU crys-tal systems. Even though both molecules adopt a 

planar molecular conformation in the crystal structure, the mechanism of stacking 

of these planar molecules dif-fers between the two. The pCyDPU molecule forms 

continuous chains stabilized through π - π interactions, while pCyNDPU forms 

paired molecular π - π stack-ing and lacks a continuous chain resulting from this 

type of interaction. The rea-son is the ability of the pCyNDPU to also form 

hydrogen bonds with neighboring molecules through adjacent -NO2 and -CN 

substituents. This takes advantage of not only the spatial advantage of stacking 

flat molecular building blocks, but also enables strong contacts to be made 

between neighboring molecules. The result of this is the maximization of crystal 

density and minimization of total lattice energy by forming the strongest possible 

ensemble of favorable molecular interactions.

The situation becomes more complex for mono-substituted DPUs where only half 

the molecule may experience stabilizing intramolecular o-H· · ·Ourea contacts. In 

this case, the intricate balance of intra- and intermolecular forces guiding crystal 

packing configurations leans towards the dominant crystalline intermolecular in-

teractions. Energetic favorability is gained through disruption of the molecular 

structure and subsequent optimization of molecular packing rather than main-

taining the gas-phase molecular orientation. Most demonstrable in the crystal sys-

tems examined is that of pCyHDPU in comparison to the di-substituted pCyDPU. 

Mono-substitution of the electron-withdrawing -CN group is not sufficient to pre-
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Figure H.4: Primary packing orientations within the pDPU crystal structures of 
(a) pCyNDPU, (b) pCyDPU, (c) pCF3DPU, (d) pNHDPU, (e) pCyHDPU and (f) 
pClHDPU.

serve a planar molecular orientation in the crystal phase. The resulting crystal

structure contains pCyHDPU molecules in the preferred packing efficiency that 

involves the urea ribbon motif, thus overcoming the intramolecular interactions

resulting in the partially planar gas-phase orientation imposed by the electron-

withdrawing -CN substituent. Also a factor is the reduced ability to form stabi-

lizing hydrogen bonding between the -CN p-substituents and the urea hydrogens 

an efficient manner due to spatial constraints and reduced molecular symmetry.

Noteworthy disparity in crystallization behavior is also discerned in pNHDPU. 

This molecule forms a solvate crystal structure in which DMF solvent molecules

are intercalated into the co-crystallized system at a 1:1 ratio with pNHDPU. The 

energetic balance is addressed by allowing pNHDPU to maintain their preferred
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planar molecular orientations afforded by the strong electron-withdrawing char-

acter of the -NO2 substituent. Without the ability for NO2 to form additional 

stabilizing intermolecular hydrogen bonds with neighboring molecules in a spa-

tially favorable manor, it becomes advantageous for co-crystallization with DMF 

as opposed to a geometrically strained π-stacking configuration. Additional sta-

bilization energy is acquired through hydrogen bonding of the DMF oxygen atom 

with the urea hydrogens of pNHDPU. The reduction in molecular symmetry be-

tween the di-substituted pCyNDPU and mono-substituted pNHDPU prevents an 

efficient packing configuration to enable the hydrogen bonding between p-

substituents and urea moieties. Interestingly, there is also no π-stacking inter-

actions stabilizing the crystal structure, which would be expected in systems con-

taining co-planar phenyl groups. The limitations in options for hydrogen bonding 

within the crystal to overcome the intramolecular forces, and the associated lim-

itations in packing configurations having one planar and one non-planar phenyl 

orientation, provide a more favorable environment for solvent inclusion in the 

thermodynamically stable pNHDPU crystal structure. The molecules are able to 

maintain their planar configuration while achieving a favorable crystal packing 

density through the solvent inclusion.

Solid-state DFT calculations where performed to evaluate the balance of inter-

actions leading to the desired crystalline conformations observed for the vari-

ous pDPUs. The lattice energy provides a measure of the driving force for the 

molecules to form in the solid state. In order to obtain an optimal lattice energy, 

the system must be able to form favorable intermolecular interactions while being 

counteracted by the necessity to overcome intramolecular attractions, thus creat-

ing an unfavorable molecular strain energy that is compensated by a more ad-

vantageous lattice energy. The results of energy calculations of the pDPU crystal 

systems are provided in Table H.1 and expressed in terms of lattice energy bro-
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ken down into cohesive and molecular conformational strain energies. Also tabu-

lated are the interaction energies between dimers extracted from the crystal struc-

tures that contain the desirable supramolecular interaction motif, i.e. hydrogen-

bonded chain or π-stacking, exhibited in each crystal system. Although many 

favorable interactions for crystal assembly may be present in a particular sys-tem, 

only the dominant intermolecular interactions were examined. This energetic 

component is isolated to provide additional information that connects the single-

molecule and crystalline conformations of the constituent molecules. In the case 

of pNHDPU, for which DMF solvent co-crystallizes at a 1:1 ratio, the prominent 

dimer energetic contribution is that of the hydrogen bonding between the DMF 

oxygen and the pNHDPU urea hydrogens. Mulliken population analysis was per-

formed for each system to analyze partial charges on the Ourea, o-H, and o-C atoms 

of the crystalline pDPU structures (Table H.2). The results show that when the p-

substituted groups are sufficiently electron-withdrawing, the hydrogens in the or-

tho position are more positively charged and can therefore interact more strongly 

with Ourea. This is best demonstrated by comparing the symmetric pCyDPU and 

pCF3DPU molecules, for which the stronger electron withdrawing group, -CN, 

produced a net positive charge of +0.090 at the o-H’s, whereas CF3 substitution 

yielded only a charge of +0.056 on these atoms. This seemingly small difference in 

atomic charge is sufficient to greatly influence the intramolecular structure and 

the resulting primary intermolecular motif exhibited in the crystal structure.

The lattice energies are similar among the di-substituted pDPU structures, with a 

slight increase in stabilization energy as the strength of the electron-withdrawing 

p-substituent decreases (Table H.1). The same trend is observed in the dimer 

energies and is much more pronounced, suggesting that the hydrogen bonded 

urea ribbon motif is considerably more stable than the primary π-stacking in-

teractions exhibited in the pCyDPU and pCyNDPU crystal packing (Figure H.4).
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Table H.1: Calculated lattice, cohesive, strain, and dimer energies for pDPU
crystal structures. Energies provided in units of kcal mol−1.

Complex ELattice ECohesive EStrain EDimer
di-substituted
pCyDPU -72.83 -94.78 21.95 -49.07
pCyNDPU -74.60 -97.58 22.98 -57.17
pCF3DPU -76.72 -105.46 28.74 -73.64
mono-substituted
pCyHDPU -65.17 -87.39 22.22 -57.27
pNHDPU -90.87 -112.70 21.83 -42.49a

pClHDPU -66.39 -88.55 22.15 -57.38
apNHDPU:DMF dimer interaction energy

Table H.2: Mulliken population analysis of partial charges on the Ourea, o-
H, and o-C atoms in pDPUs (reported as elementary charge units). The av-
erage charges are reported for di-substituted DPUs, and both substituted and
non-substituted phenyl groups are reported for mono-substituted DPUs. The
phenyl ring with the electron withdrawing group (EWG) or hydrogen (H) at the
para position are denoted.

di-substituted Ourea o-H o-C
pCyDPU -0.73 +0.09 -0.05
pCyNDPU -0.73 +0.09 -0.05
pCF3DPU -0.75 +0.06 -0.00
mono-substituted Ourea o-H (EWG) o-H (H) o-C (EWG) o-C (H)
pCyHDPU -0.77 +0.06 +0.04 -0.01 +0.01
pNHDPU -0.74 +0.09 +0.07 -0.06 -0.04
pClHDPU -0.75 +0.05 +0.05 +0.00 -0.01
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However, in order to achieve hydrogen bonding between urea moieties of adja-

cent molecules, the molecules must undergo large conformational changes. Ac-

companied with this change is a substantial increase in conformational strain en-

ergy. For instance, the pCyDPU and pCyNDPU molecules exhibited comparable 

conformational strain energies of 21.95 and 22.98 kcal mol−1, whereas pCF3DPU 

revealed a larger 28.74 kcal mol−1 due to the molecular deformation required to 

attain the urea ribbon motif. The strain energy of the planar pCyDPU and 

pCyNDPU molecules would be necessarily much higher to achieve an analogous 

ribbon hydrogen bonding pattern since more energy would be required to break 

their stronger o-H· · ·Ourea contacts. It is therefore more energetically favorable for 

the planar pCyDPU and pCyNDPU configurations to maintain intramolecular o-

H· · ·Ourea contacts while minimizing conformational strain energy. The trade-off 

of energy contributions yields comparable lattice energies for each of the di-

substituted DPU crystal structures.

Of the molecular crystals examined in this study, only pCyDPU and pCyNDPU 

display evidence of π-stacking (Figure H.5). The symmetrically substituted 

pCyDPU exhibits isotropic molecular stacking, forming contiguous π-stacked ar-

rangements in the solid state, whereas the π-stacked pCyNDPU molecular dimers 

exist in orientations inverted to one another. This difference nonetheless yields 

comparable distances between ring centroids of 3.76 and 3.83 Å, respectively. En-

ergy calculations show the pCyNDPU dimer interaction to be more favorable by 

8.1 kcal mol−1 due to added constructive interactions primarily between the o-H 

and Nurea of adjacent DPU molecules. The variations in relative orientations and 

overall packing configurations are accounted for by the additional hydrogen 

bonding interactions available between p-substituents and the DPU urea group in 

the crystal structures.

The most favorable lattice energy is observed in pNHDPU. The dominant inter-
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Figure H.5: (a) Top view of pCyDPU dimer showing isotropic slipped π-
stacking motif. The distance between the ring centroids is 3.76 Å. (b) Top view 
of pCyNDPU dimer showing slipped π-stacking motif, with a distance 
between ring centroids of 3.83 Å in the crystal structure.

action in this crystal is hydrogen bonding between the urea hydrogens and the 

DMF oxygen. The molecule remains moderately planar allowing the crystal pack-

ing to adopt a herringbone stacking pattern. Although the planar conformation

of pNHDPU has the potential for π-stacking, the distance between the ring cen-

troids (7.39 Å) in the crystal structure is too great to expect that orbital overlap

facilitates the crystal self-assembly. Despite the most favorable lattice energy, the

weakest calculated primary interaction energy was between pNHDPU and the 

co-crystallized DMF solvent. This was not surprising given the relatively small

size of the DMF molecule and that the hydrogen bonding interaction between

pNHDPU and DMF is likely not as strong as those in structures with the urea 

ribbon motif since the DMF molecule will exhibit more thermal motion, whereas 

the urea ribbon in stabilized on both sides by the ribbon-like hydrogen bond net-
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work. However, the additional spatial freedom afforded by the inclusion of the 

smaller DMF molecules allows the crystal system to adopt the more energetically 

favorable herringbone packing configuration.

The least favorable lattice energy is observed in the asymmetric pCyHDPU which 

crystallizes according to the urea ribbon motif. The calculated lattice energy was

-65.17 kcal mol−1, in contrast to that of pNHDPU of -90.87 kcal mol−1. This raises

the question as to why additional thermodynamic stability could not be achieved 

by pCyHDPU through the formation of a DMF solvate as did its pNHDPU coun-

terpart. Inspection of the stabilizing partial charges on the o-H atoms and the 

calculated strain energies of the two molecules suggests that considerable energy 

would be required for the pCyHDPU molecule to adapt to a planar configura-tion 

in the crystalline configuration. The additional conformational strain en-ergy 

needed to force this configuration would outweigh the stabilization energy 

gained by incorporating DMF solvent molecules into the crystal structure. One 

must also consider the nucleation and growth processes involved in crystalliza-

tion. The DMF-pNHDPU dimer interaction of -42.49 kcal mol−1 is much weaker 

than that of the pCyHDPU dimer of -57.27 kcal mol−1. The stronger interaction of 

the pCyHDPU dimer likely drives the contiguous kinetic growth of the crys-tal, 

whereas the combination of DMF stabilization and the inclination to conserve the 

planar intramolecular structure of pNHDPU drives the thermodynamically 

favorable crystallization of the DMF-pNHDPU solvate, even though the crystal 

structure lacks any obvious intermolecular interactions constructively leading to 

the auspiciously high lattice energy.

Comparing structural similarities/disparities of those DPUs forming the urea rib-

bon motif, i.e. pCF3DPU, pCyHDPU, and pClHDPU, two primary ring orienta-

tions are observed (Figure H.6). In order to achieve the ribbon hydrogen bonding 

pattern, the rings substituents must deviate from planarity. The pCF3DPU and
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pClHDPU have isostructural molecular conformations in their respective crystal 

structures. The ring substituent groups are twisted in opposite directions in re-

lation to the urea moiety at plane angles formed between phenyl rings of 83.90°

and 90.77°, respectively. The pCyHDPU molecule adopts a different orientation 

in which the rings are rotated in the same direction in relation to the urea groups, 

possibly driven by the stronger electron-withdrawing character of the -CN group 

maintaining a higher degree of the o-H· · ·Ourea contact within the molecule. The 

resulting angle between phenyl planes was 142.58°. The differences observed in 

the DPUs are again the balance of intra- and intermolecular forces guiding the 

crystal formation, with variations in phenyl orientations resulting from the system 

pushing for optimal packing density through intermolecular interactions while 

preserving favorable intramolecular stabilization.

The underlying motivation to investigate the intricacies of the crystal structures of 

p-substituted DPUs comprises the interest of acquiring a broader understanding 

of how molecular structure, intra- and intermolecular interactions, and packing 

forces govern the organization of molecular solids. Progression of crystal engi-

neering capabilities to direct the organization of molecular solids according to 

desired structural motifs requires the knowledge of not only the easily discern-

able intermolecular interactions, but also the subtle interactions that may exist 

within a molecule or that may be exposed following crystallization—many of 

which are often unexpected. This holds true for many crystal systems of related 

molecular species. Our interest in pDPUs originates from our current develop-

mental endeavors of low- and zerovalent transition metal carbonyl complexes 

incorporating p-substituted N,N’-diarylurea moieties as a facilitating agent for 

supramolecular chemistry and crystal engineering of advanced materials. The 

multiple supramolecular motifs made accessible by such DPUs offers much ver-

satility in the generation of novel organometallic structures and functional mate-
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Figure H.6: Angle between ring planes in DPU structures crystallizing accord-
ing to the urea ribbon motif: (a) pCF3DPU, (b) pCyHDPU, and (c) pClHDPU.

rials.

We recently detailed the multifaceted interactions found in the crystal structures 

of organometallic complexes containing 1,3-bis(p-isocyanophenyl)urea tethered to 

M(CO)5 fragments (M = Cr, Mo, and W) via isocyanide linkages (Figure H.7). The 

coordination of bulky metal carbonyl fragments to the DPU scaffold introduced 

additional layers of complexity in that significant steric effects would expectedly 

influence the crystal packing configuration and the observed interaction motifs. 

The binuclear organometallic complexes were observed to pack into ladder-like 

anisotropic arrays in the solid state. Crystallographic and computational evidence
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suggested that the observed packing motif could be attributed to a combination

of intermolecular π-π and urea-π interactions. Intriguingly, the magnitude of

the unconventional urea-π interactions was nearly equivalent to the familiar π-

π stacking motif, with respective cohesive energies of urea-π and π-π dimers

calculated at -111.64 and -118.43 kcal mol−1. The strength of the urea-π interac-

tions was explained through comprehensive analysis of electrostatics and favor-

able HOMO/LUMO overlap of the dimer complexes. Notable structural simi-

larities of the carbonyl complexes with the p-substituted DPUs presented in this

study are that of ring planarity resulting from strong electron-withdrawing ring

substituents and the resultant slipped-stacked molecular packing configuration,

as opposed to a urea ribbon hydrogen bonding motif. The supramolecular assem-

bly of these complexes seems to be governed first by the favorable intramolecular

o-H· · ·Ourea contacts and secondly by spatial acclimations afforded by intermolec-

ular motifs advantageous to planar DPU compounds.

Figure H.7: (a) Solid-state packing of Mo(CO)5-appended 1,3-bis(p-
isocyanophenyl)urea showing the orientation of the molecules relative to 
the unit cell axes. (b) Alternative representation viewed through the N,N’ 
diarylurea planes. All CO ligands and H atoms are omitted and Mo atoms are 
depicted at full Van der Waals radius (reproduced from CCDC 1905536) [30]

Based on the findings of the present and past works, we were inspired to ex-

tend our computational investigations to the crystal structure of an asymmet-

ric organometallic complex prepared by tethering a Mo(CO)5 fragment to N-
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(p-isocyanophenyl)-N’-phenylurea (pMo(CO)5HDPU). Of primarily speculation, 

what are the principal interactions present, and are they consistent with the stud-

ied pDPUs and/or the dioptic metal carbonyl complexes? Could the primary 

structural characteristics of the thermodynamically stable crystal be predicted 

from the knowledge gained through computational modeling of pDPU crystal-

lization behaviors? Again, the understanding of how to control the crystallization 

propensity of compounds synthesized comprising the versatile pDPU moiety will 

guide our exploration into novel organometallic crystal systems with unique ma-

terials applications.

Crystallographic characterization of the asymmetric pMo(CO)5HDPU exhibited 

the pDPU moiety crystallized in a nearly planar configuration despite the sin-gle 

asymmetric substitution, analogous to the pNHDPU crystal structure (Fig-ure 

H.8). This occurrence is likely due to the enhanced electron-withdrawing 

character of the Mo(CO)5-CN− substituent as compared with the asymmetrically 

substituted pCyHDPU, which exhibits the urea ribbon motif in the solid state. The 

bolstered electron-withdrawing nature of the metal carbonyl fragment provides 

the necessary intramolecular stabilization through o-H· · ·Ourea hydrogen bond-

ing to maintain the planar molecular orientation in its crystalline configuration. 

Also akin to pNHPDU was the co-crystallization of DMF solvent molecules at a 

1:1 ratio. The DMF forms the stable Hurea · ··ODMF hydrogen bonding complex in a 

likewise manner, thus filling otherwise void space created between the planar 

DPUs and bulky Mo(CO)5 substituents, and adding additional stabilizing lattice 

energy.

Based on the careful observations of the studied pDPU systems, one may have 

predicted the observed nature of crystallization of the pMo(CO)5HDPU molecule. 

The similar balance of intramolecular and intermolecular forces driving crystal 

nucleation and growth in the DPU crystal systems is met through the intricate
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Figure H.8: (a) Molecular packing in the pMo(CO)5HDPU crystal system. (b) 
Planar configuration of the pDPU moiety as found in the pMo(CO)5HDPU crys-
tal structure. (c) Hydrogen bonding distances of o-H· · ·Ourea and Hurea· · ·ODMF 
contacts in the crystal structure.

interactions of the DPU moiety internally, with neighboring pMo(CO)5HDPU

molecules, and with the abundantly available solvent molecules. The resulting



287
molecular conformations found in the isolated molecule and in the crystal struc-

ture are primarily consequences of the electron-withdrawing character of the DPU 

p-substituents. Solvent molecules may or may not be incorporated into the crystal 

system based on spatial constraints and the energies associated with disrupting a 

preferred planar molecular conformation.

Remarkably, the Mo(CO)5 moieties in crystalline pMo(CO)5HDPU form an 

ordered array similar to that observed in the previously reported di-

substituted 1,3-bis(p-isocyanophenyl)urea. The distances between metal centers 

of pMo(CO)5HDPU were 6.06, 6.85, and 8.18 Å, which is remarkable close to those 

of the di-substituted species of 6.01, 6.87, and 7.58 Å. This demonstrates the role 

in crystallization of the appended metal carbonyl fragments to the pDPU struc-

ture. While the DPU elements behave in a seemingly predictable manner, the 

Mo(CO)5 groups may as well. The result is the concerted balance between the two 

prominent molecular constituents that guides the formation of the supramolecu-

lar structure. Although the current sample size is limited for this specific class of 

molecular species, the convoluted balance of energies steering the nucleation and 

crystallization of complex solid-state systems may too become more predictable 

as we continue to gather data on such systems as this field of study progresses.

We have established the role of pDPUs in facilitating the growth of organic and 

organometallic crystal systems, and we have also shed light on the engagement of 

metal carbonyl fragments in patterning crystal growth. This study relies on quan-

tum chemical calculations, experimental crystallographic analysis, and the chem-

ical synthesis of a new class of organometallic complexes to improve the under-

standing of the intricacies of complex intra- and intermolecular interactions driv-

ing the formation of tailorable crystal structures with the hopes that this knowl-

edge can be leveraged for predictive capabilities in the design of further novel 

materials. Continued perseverance and comprehensive computational and ex-
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perimental investigations into DPU and organometallic derivatives may provide

the necessary predictive ability for the engineering of novel crystal systems with

enhanced performance in processing, development, and applications as charge-

transfer materials.

H.5 Conclusions
Understanding the balance of opposing packing forces and conformational strain

energies is paramount for the engineering of novel organic and organometal-

lic crystalline materials. In this study, we categorize the intricate features of

energetic contributions to the supramolecular assembly of p-substituted N,N’-

diphenylureas (pDPUs) and organometallic derivatives utilizing a holistic DFT

approach. The results show a relationship between gas-phase and solid-state

molecular conformations, and how the observed structural differences may or

may not lead to deviations in expected crystallization behaviors based on the

strengths of relative intra- and intermolecular interactions. Building on pre-

vious reports of DPU-based organometallic crystal systems, we also present

the synthesis of an asymmetric Mo(CO)5-substituted N-(p-isocyanophenyl)-N’-

phenylurea in efforts to further relate the crystallization behaviors and interac-

tions of organometallic DPU derivatives with those of the base pDPU systems. It

was observed that the supramolecular assembly of the organometallic complexes

display similar predictive crystallization patterns, as well as additional complexi-

ties evolving due to the bulky metal carbonyl substituents. We present a compre-

hensive computational classification of pDPU-based crystal systems in comple-

ment to experimental data in our endeavors to develop reliable design rules for

patterned crystal growth of DPU and related systems for the future generation of

new materials having unique solid-state structures and properties.
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I.1 Crystal Structure Determination of

Mo(CO)5(pCNHDPU)
X-ray diffraction data were collected at 100 K on a Bruker D8 Venture using MoKα-

radiation (λ = 0.71073 Å). Data have been corrected for absorption using SAD-

ABS [342] area detector absorption correction program. Using Olex2 [343], the

structure was solved with the SHELXT [345] structure solution program using Di-

rect Methods and refined with the SHELXL [344] refinement package using least

squares minimization. All non-hydrogen atoms were refined with anisotropic

thermal parameters. Hydrogen atoms attached to heteroatoms were found from

the residual density maps, placed, and refined with isotropic thermal parame-

ters. All other hydrogen atoms in the investigated structure were located from

difference Fourier maps but finally their positions were placed in geometrically

calculated positions, and refined using a riding model. Isotropic thermal parame-

ters of the placed hydrogen atoms were fixed to 1.2 times the U value of the atoms

they are linked to (1.5 times for methyl groups). Calculations and refinement of

structures were carried out using APEX2 [347], SHELXTL [346], and Olex2 soft-

ware. Graphical representations of crystallographic data were generated using

the Mercury software package [348].
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