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ABSTRACT

Symmetric key cryptographic primitives are essential to encrypt data and protect

communication between parties. Due to resource constraints, some modern devices

are not capable of executing traditional cryptographic algorithms. This fact neces-

sitates new lightweight cryptographic algorithms. Current research into lightweight

cryptology is vast, in part due to the National Institute of Standards and Technology’s

(NIST) lightweight cryptographic standardization process.

There is not much research into the vulnerability to a power analysis attack cre-

ated by the choice of parameters of lightweight symmetric ciphers. This dissertation

develops and demonstrates white box and black box cryptanalysis models for power

analysis attacks on lightweight cryptographic primitives.

The white box cryptanalysis targets the GIFT-COFB family of lightweight ciphers

that include NIST lightweight standard finalists, and examines the security of their

substitution layers in the power analysis setting. Findings include: When deployed

over fields of characteristic 2, the most used platform, the non-linearity metric pro-

vides the best prediction of susceptibility to power analysis attacks. When deployed

over fields of characteristic 3, substitution boxes display a wide range of vulnerability

to power analysis attacks, leading to a classification of substitution boxes into weak

and strong categories.

The black box cryptanalysis focuses on a proprietary cryptosystem acting between

vi



two embedded systems which require a lightweight cipher. The results of the black box

cryptanalysis include a model for the decryption process of the proprietary system,

and a software implementation of a prediction algorithm that predicts the plaintext

giving rise to given ciphertext values.

These research results shed a new light on the resilience of lightweight crypto-

graphic protocols against side-channel and black-box attacks and help in bridging the

gap between theory and practice.
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CHAPTER 1:

INTRODUCTION

With the rise of Internet of Things (IoT) devices and cyber-physical systems (CPS),

there is now a need to construct resilient countermeasures to physical attacks on the

cryptographic implementations such as general defences (Bayrak et al., 2011; Chari

et al., 1999) and multiplicative masking (Golić and Tymen, 2002).

Lightweight cryptology finds a balance in size, speed, and security for devices with

resource constrains. The first noted lightweight cryptographic scheme was the work

of (Bogdanov et al., 2007) in their creation of the cryptogprahic primitive PRESENT,

but since then more lightweight ciphers have been introduced and will be noted later

in this chapter.

1.1 Introduction Symmetric Key Cryptology

A symmetric key cipher operates over three sets being: K (Key Space),M (Message

Space), and C (Ciphertext Space). Symmetric key primitives also make use of three

algorithms that operate on the sets. These algorithms are: KeyGen - An algorithm

that randomly produces a key k ∈ K, Enc - An algorithm that takes as input a key

k ∈ K and message m ∈ M that produces as an output a ciphertext c ∈ C, and Dec

- a deterministic algorithm that takes as input a key k ∈ K and ciphertext c ∈ C and

outputs a plaintext m ∈ M. A symmetric encryption primitive as considered as a
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tuple (KeyGen,Enc,Dec,K,M, C). In order for the primitive to be considered correct

the decryption of the encryption of any message given a constant key must result in

the initial message. This correctness propriety is more formally stated as:

Pr
[
Dec(k,Enc(k,m)) = m

]
= 1

Is is important to be able to formally describe what security is in the setting of

symmetric key cryptography. While no practical cipher qualifies as being perfectly

secure, we will use the notion of describing if a symmetric key cipher is computa-

tionally secure. Consider an instance in which a challenger C randomly selects two

message m0,m1 with fixed size n from the message space M and sends the pair of

messages to an encrypter E. The encrypter then randomly computes a bit b ∈ {0, 1}

and encrypts the message using a fixed key k as follows:

c = Enc(k,mb)

The encrypter then sends c to the challenger. With knowledge of c, the challenger

produces their guess of the b value being b′. If for all polynomial time challenger

strategies there exists a negligible function ε(x) such that

Pr[b′ = b] ≤ 1

2
+ ε(n)

then the scheme is computationally secure.

Because of the needed security for computational devices, the U.S. Department of

Commerce’s National Institute of Standards and Technology (NIST) makes standards
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for commercial, industry, and government use. There have been two standards for

symmetric key primitives known as the Data Encryption Standard (DES) based upon

the Lucifer cipher from the work of (Feistel, 1974) which was the industry standard

until 1999, and the Advanced Encryption Standard (AES) which is still the standard

at the time of writing this dissertation based on the work of (Daemen and Rijmen,

1998, 2001). While DES and AES are the NIST standards, there exist many other

symmetric primitives such as RC5 (Rivest, 1994), Blowfish (Schneier, 1993), and

Serpent (Anderson et al., 1998).

Block Ciphers

A block cipher is a special type of symmetric key cryptosystem. Similar to the

symmetric key definition we have a key space K, but differing from the symmetric

key definition we have a message spaceM acting as both the plaintext and ciphertext

space. Given a fixed key k we denote the encryption function as Enck(p) where p

as a plaintext. Similarly the decryption function is Deck(c) where c is a ciphertext.

Both the encryption and decryption are of the form K ×M→M where k ∈ K and

p, c ∈M

In order to perform the encryption process, a block cipher computes many sub-

functions known as rounds. In each round, the output of one round is used as the

input of another round. The incorporation of these rounds is used to provide diffusion

(a small bit change in the input will lead to a large change overall of approximately

half of the output bits), confusion (meaning that each output bit is dependent on

several bits of the key) (Shannon, 1949).

A common form of block cipher is the Substitution Permutation Network (SPN)
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in which the rounds consist of round functions that substitute data, compute permu-

tations on the data, and add key content into the intermediary states. In SPN ciphers

confusion is provided in the substitution box (S-Box) layer and diffusion is provided

in the permutation layer.

1.1.1 Lightweight Cryptology

Lightweight cryptology attempts to find a balance in size, speed, and security for

devices with resource constraints. The standards such as the Advanced Encryption

Standard (AES) and Triple Data Encryption Standard (3DES) are made for ’regular’

devices such as servers, laptops, desktops, and smart phones that do not have the con-

straint of size. In embedded systems, using small/cheap micro-controllers or FPGAs,

RAM and gate equivalences (GE), are limited and need to perform what the device

is intended to do as well as be secure. Lightweight cryptology minimizes the size of

a cryptographic implementation and retains speed and security. Many lightweight

cryptographic schemes are a block cipher construction such as PRESENT (Bogdanov

et al., 2007), GIFT (Banik et al., 2017), SIMON/SPECK (Beaulieu et al., 2015),

PRINCE (Borghoff et al., 2012), and PICCOLO (Shibutani et al., 2011). Lightweight

cryptographic schemes have use in cyber physical systems as noted in the works of

(Al Faruque et al., 2015; Kocabas et al., 2016).

When performing cryptanalysis on lightweight cryptographic implementations the

knowledge of the attacker varies. In some cases we assume that the attacker has access

to all information except for the private key which is noted as white box cryptanal-

ysis. In other situations the attacker has no initial knowledge of the implementation

and can only conduct attacks based upon observations of plaintext/ciphertext pairs

which is noted as black box cryptanalysis. In this dissertation we consider both
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these situations, white box cryptanalysis and black box cryptanalysis, as we perform

cryptanalysis on lightweight cryptographic schemes.

In our research we will be comparing the security of the S-Box parameter in the

power analysis setting. We will be using the GIFT64 cryptographic primitive (Banik

et al., 2017) as a starting point and replace S-Boxes in our implementation with others

and study the security implementations. While the GIFT cipher will be explained

in detail in Chapter 2, we will state some of the design choices here. GIFT64 is a

member of the GIFT cryptographic family. GIFT64 has 28 round in which each round

is made up of S-Box, PermBits, and AddRoundKey layers. The S-Box is a 4-bit to

4-bit bijective function that acts as the non-linear layer of the cipher. The PermBits

function is a invertible bit permutation that provides diffusion into the cipher. Lastly,

the AddRoundKey function introduces key content into each round of the cipher.

Given these attack models there also exist knowledge assumptions on the attacker

that classify the attacks into White and Black box attacks. White box attacks as-

sume the attacker knows everything except for the cryptographic key and conversely

in Black box the attacker has no knowledge of the underlying algorithm. Works

comparing the attack assumptions are shown in (Biryukov et al., 2014).

Many lightweight cryptographic scheme were submitted for the NIST LWC stan-

dard and the NIST reports are noted in (Turan et al., 2019; Mohajerani et al., 2020;

Mancillas-López et al., 2020), as well as in some papers (Bovy et al., 2020). Cur-

rently the LWC competition has 10 finalists being: ASCON (Dobraunig et al., 2016),

Elephant (Mennink, 2021), GIFT-COFB (Banik et al., 2020), Grain128-AEAD (Hell

et al., 2019), ISAP (Dobraunig et al., 2017), Photon-Beetle (Bao et al., 2019), Romu-

lus (Iwata et al., 2020), Sparkle (Beierle et al., 2020), TinyJambu (Wu and Huang,
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2019), and Xoodyak (Daemen et al., 2020).

The graphs below in Figure 1.1 and Figure 1.2 show FPGA and micro-controller

comparison of the finalists. Figure 1.1 shows a comparison on size and throughput

of all of the finalists on the Xilinx Artix-7 FPGA, except for GRAIN128-AEAD

which was not part of the data-set gathered in (Mohajerani et al., 2020). As their

were multiple variations of each FPGA implementation, we chose the versions that

had the highest throughput. In this comparison we note that ideally the FPGA

implementations should minimize size and maximize the throughput. Figure 1.2

shows a comparison of the finalists in the micro-controller setting using a ARM Cortex

M3. This figure uses the speed up ratio between the LWC implementation and the

cipher ChaChaPoly to compare how fast the LWC implementation is. The ratio is

defined as the time needed for the implementation to encrypt divided by the time

needed for ChaChaPol to encrypt the data. We considered two cases including a 16

byte payload and a 128 byte payload. The larger the ratio, the faster the micro-

controller encryption is. The data gathered for this comparison is in the work of

(Weatherley, 2021).

1.2 Introduction Side Channel Attacks

In the classical attack models described in the previous section, the attacker only

has knowledge of plaintext/ciphertext pairs in which that attacker can choose plain-

text or ciphertext values. Common attacks for knowledge of known/chosen plain-

text/ciphertext pairs are: Linear cryptanalysis (Matsui, 1993), Differential cryptanal-

ysis (Biham and Shamir, 1991), Algebraic cryptanalysis (Courtois and Bard, 2007),

Integral cryptanalysis (Knudsen and Wagner, 2002) and many other classical crypt-

analysis techniques. There exist states when the attacker can also gain temporary ac-
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Figure 1.1: LWC Finalists Comparison FPGA

Figure 1.2: LWC Finalists Comparison Micro-controller
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cess to a cryptographic device and exploit the device while the encryption/decryption

operations are computing to gain more knowledge than the classical input/output.

Side Channel Attacks (SCA) are exploiting the physical effects while a crypto-

graphic device is performing the encryption/decryption operation. The study of SCA

started with the novel works of Kocher in (Kocher, 1996; Kocher et al., 1999). Ex-

amples of measured physical effects are timing, power draw, and electromagnetic

radiation. While the attacker needs physical access to get these physical measure-

ments, once obtained along with the corresponding plaintext/ciphertext pairs, they

can break cryptographic schemes that do not implement countermeasures against

SCA.

Since the seminal work of Kocher, there has been vast research into SCA included

the noted Correlation Power Analysis (CPA) attack (Brier et al., 2004). Originally

SCA attacks focused on DES and AES, but in the last decade there has been research

into SCA on other symmetric ciphers such as: GIFT (Zhang et al., 2021), SIMON

(Shanmugam et al., 2014), and PRINCE (Selvam et al., 2015).

Along with research in SCA, there has also been research into countermeasures on

these attacks. Some examples of countermeasures on SCA are creating implementa-

tions that have a constant power draw (Sundaresan et al., 2008; Popp et al., 2007) and

to implement masking (Golić and Tymen, 2002; Standaert et al., 2005; De Cnudde

et al., 2015). Countermeasures applied to cryptographic schemes of ciphers can be

seen in the work of AES (Oswald et al., 2005), SPECK (Chen et al., 2016), GIFT

(Gupta et al., 2021), and many others.

Research into side channel attacks and countermeasures is crucial for the security

of internet connected devices. If a cryptographic key is lost to an attacker, the attacker
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can learn the secrets of the said devices. The attacker can then impersonate devices

to send forged data and could also have an entry point to attack a victim’s computer

network. Besides the loss of a cryptographic key, other sensitive information can

be obtained using side channel attacks. Examples of real world situations that can

use SCA are: acoustic/thermal attacks on manufacturing systems (Al Faruque et al.,

2016a,b), attacks on hardware cryptocurrency wallets (San Pedro et al., 2019; Gka-

niatsou et al., 2017), attacks on sensor networks (Moabalobelo et al., 2012; Pongaliur

et al., 2008), attacks on medical devices (Pycroft and Aziz, 2018; Zhang et al., 2014),

attacks on biometric security (Galbally, 2020; Dürmuth et al., 2016), and attacks on

critical infrastructure (Tsalis et al., 2019, 2018)

While there is research in lightweight cryptology in the power analysis setting,

most of the research is exploiting or mitigations of a single cipher. There is not much

research into the security of parameter choices of lightweight ciphers in the power

analysis setting.

1.3 Generalizing Cryptographic Schemes

In this dissertation we will be generalizing the GIFT64 (Banik et al., 2017) crypto-

graphic scheme and create a ternary case study. One might wonder what is the point

of doing this, but the current most use variants of public key encryption are elliptic

curve variants of classical Diffie Hellman key exchange (Diffie and Hellman, 1976)

and ElGamal encryption and (ElGamal, 1985). Elliptic curves were first used as a

factoring method (Montgomery, 1987; Atkin and Morain, 1993), but then researchers

used elliptic curves themselves to create cryptosystems (Koblitz, 1987; Menezes and

Vanstone, 1993). At first, the elliptic curve cryptosystems were not mainstream due

to the hardware/software constraints at the time but after a few years they were more
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practical (López and Dahab, 1998; Hankerson et al., 2000; Harkanson and Kim, 2017).

Elliptic curves are now a very popular method of public key encryption used in Bit-

coin (Nakamoto, 2008), OpenSSL libraries (Käsper, 2011), wireless communication

(Lauter, 2004), and many other transmissions of data (Bos et al., 2014).

1.4 White and Black Box Cryptanalysis

When modeling cryptanalysis there exist two models being white box cryptanalysis

and black box cryptanalysis. These models describe how much knowledge the attacker

knows when performing the attacks. In black box, the attacker has no underlying

knowledge of the algorithm/implementation and only has input and output data.

In white box it is assumed that the attacker has knowledge of everything except

the private cryptographic key. Cryptology resistant to white box cryptanalysis are

white box implementations (Preneel and Wyseur, 2008) and examples are shown in

works on AES (Chow et al., 2002a; Billet et al., 2004) and DES (Chow et al., 2002b).

However it is shown in literature that white box cryptology is not necessarily secure

against SCA techniques (Sasdrich et al., 2016). Grey box is located in the middle in

which the attacker has more knowledge then in the black box setting but does not

necessarily know as much as compared to an attacker in the white box setting. Side

channel cryptanalysis techniques are in the grey box attack model. A comparison of

the white and black box cryptogprahic models can be found in (Biryukov et al., 2014)

1.4.1 Black Box Cryptanalysis

In normal cryptanalysis it is assumed that the attacker has knowledge of everything

except the private key but this is not the case in black box attacks. Black box

cryptanalysis is performing cryptanalysis without knowledge of the underlying cryp-
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tographic algorithm. Every case study in Black-Box will vary some of the method-

ologies can be used in different cases. Based upon ciphertexts an attacker can try

and classify the cryptographic primitive (Tan and Ji, 2016). While there is not much

literature on attacking unknown home-made encryption schemes, an example case

study of Black box cryptanalysis is shown in (Capillon, 2016). Applying some ma-

chine learning in the black box setting is considered to be a black box model and can

be found in (Alallayah et al., 2012; Xiao et al., 2019), as well as quantum black box

cryptanalysis in the works of (Brassard et al., 1998).

1.4.2 White Box Cryptanalysis

In contrast to black box cryptanalysis, the white box cryptanalysis method differs

in the knowledge assumptions of the attacker. Classically in white box cryptanal-

ysis, the attacker has access to everything imaginable except for the private key.

With knowledge of the scheme/implementation the attacker can conduct chosen plain-

text/ciphertext attacks and use classical attacks such as linear, differential, and alge-

braic cryptanalysis. With this knowledge, the attacker can exploit any weaknesses in

the mathematical description of the cryptogprahic primitive.

In use in our research we assume that the attacker also has temporary access to

the cryptogprahic device in order to collect traces. In this case, with knowledge of

the primitive and the traces the attacker can exploit power analysis attacks.

1.5 Overview

We will complete the introduction of this doctoral dissertation by stating our research

questions and outlining chapter structure. This dissertation is attempting to study

the security of lightweight cryptographic primitives. In the white box case we will
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conduct power analysis attacks in order to quantify the resistance/susceptibility of

the substitution parameter choice in lightweight symmetric block ciphers. In the

black box case we will conduct a case study which details our attempts at breaking a

lightweight cryptogprahic scheme with no knowledge of the scheme/implementation.

1.5.1 Research Questions

1. How well do the current metrics quantify power analysis leakage? In

literature there exist power analysis metrics that claim to quantify how much

a cryptographic implementation will leak without having to perform the actual

power analysis attacks. There are many papers that show how to structure the

parameters using these metrics to have the lowest possible metric score, but

not many papers actually compare metrics with experimental results. In this

dissertation, we will compare the metric results with actual experimental results

and compare the metrics with the results to show how well the metrics quantify

susceptibility/resistance to power analysis attacks.

2. Given some binary cryptographic S-Boxes from literature which are

more susceptible/resistant We will compare some S-Boxes used in lightweight

cryptology in the power analysis setting to measure the resistance/susceptibility

of these S-Boxes

3. Can we generalize cryptographic ciphers and metrics to work on other

prime power and not just the binary case? Like the works which took the

Diffie-Hellman key exchange from integers to their elliptic curve equivalences

(Menezes and Vanstone, 1993) we plan on giving a generalized construction of

block ciphers to prime powers. In these constructions, we also generalize the
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metrics to work in the case of prime powers, and attempt to generalize other

mathematical proprieties such as equivalence classes. We also prepare a ternary

case study and compare the ternary case study to the classical binary versions.

4. How well correlated are the generalized cryptographic metrics to

power analysis resistance/susceptibility In the binary setting there are

several metrics in literature that show a S-Boxes resistance/susceptibility to

power analysis attacks. In the generalized setting how correlated are the met-

rics related to power analysis resistance.

5. Do mathematical equivalence classes preserve metrics in the general-

ized setting In the binary setting some equivalence classes (Affine, Permuta-

tion XOR) transforms preserve S-Box metrics. Given generalized metrics and

transforms are metrics preserved under cryptographic transforms?

6. Given an implementation of a prime powered non binary base imple-

mented in hardware, will power analysis attacks work and if so, how

well do the attacks work? We will investigate whether or not power analysis

attacks will work in a generalized block cipher scheme implemented in base 2

C code compiled for micro-controllers.

7. Do different cryptographic implementations of odd prime powers leak

less/more? In modern SPN cryptology there is a clear way of creating a binary

implementation of a binary cipher. In implementing a cryptographic scheme in

an odd prime power there are many ways to code the prime powered scheme in

binary hardware/software. As power analysis are attacks on cryptographic im-

plementations, we will show that the process of representing the cryptographic
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odd prime powered scheme in hardware/software will have a relationship of

power analysis resistance/susceptibility.

8. Given a cryptographic implementation of an unknown algorithm how

hard is it to model a black box attack to attempt to break the encryp-

tion of the unknown algorithm? While this will not be the same in every

case, we were provided with hardware that performs encryption/decryption but

not provided any algorithm or source code conveying how the algorithm works.

We will investigate if we can figure out how the provided is computing encryp-

tion/decryption and attempt to mathematically model and break this unknown

cryptographic scheme/protocol.

1.5.2 About This Doctoral Dissertation

This work is divided into 6 chapters in which 3 chapters detail our research and 3

other supplementary chapters for introduction, background, and conclusion. Chap-

ter 1 gave in introduction of what our work will be on and why it is important.

Chapter 2 will give us background information and definitions that will be used in

this dissertation. Chapter 3 will detail our work in power analysis in the binary set-

ting in which we compare metric values with experimental results. Chapter 4 will

state our generalization of block ciphers in show details on our implementation on

our ternary case study and our power analysis of the ternary case study. Chapter 5

will go into details on our cryptanalysis of an unknown algorithm. Lastly chapter 6

will provide some concluding statements of our doctoral dissertation.
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CHAPTER 2:

BACKGROUND

In this chapter we will be stating background material that will be used throughout

this dissertation. Information in this chapter will include but is not limited to: Sub-

stitution Permutation Network (SPN) block ciphers, Side Channel Attacks (SCA),

mathematical equivalence classes, and S-Box metrics. This chapter will also state the

current research done in these areas.

2.1 Substitution Permutation Network Ciphers

This section will give details on what a Substitution Permutation Network (SPN)

block cipher as well as detail the GIFT64 cryptographic primitive scheme that will

be used in our research.

A SPN is an iterated block cipher in which a plaintext and key are required as

input, and over many rounds the plaintext is converted into a ciphertext. During

each round, the output of the previous round is used as input to the current round

along with a round keys derived from the private key. Crucial to the cipher are the

round functions which are a composition of substitution, mixing, and introducing key

content into the cipher so that the cipher has the proprieties of confusion and diffusion

according to Shannon’s principal (Shannon, 1948). Examples of such ciphers are the

seminal work of Advanced Encryption Standard (AES) (Daemen and Rijmen, 2001),
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which is still the standard for symmetric encryption, and a series of other ciphers

that have lightweight proprieties such as PRESENT (Bogdanov et al., 2007), GIFT

(Banik et al., 2017) , PICCOLO (Shibutani et al., 2011) , and many others.

The SPN cipher GIFT is a new and upcoming SPN cipher that is the cryptographic

primitive for multiple round 2 candidates for NIST’s lightweight standard (Banik

et al., 2020, 2019) and a LWC finalist GIFT-COFB. All lightweight cryptographic

candidates attempt to balance size, speed, and security for devices with resource

constraints such as cyber-physical devices.

During each round in GIFT, there are sub-round functions known as S-Box, P-

Layer, and the add round key. The GIFT primitive is split into two primitives known

as GIFT64 and GIFT128, in which the number denotes the block size of the primitive.

Both versions of GIFT takes in a 128-bit key for use in the encryption/decryption

process. Also, both primitives have a key scheduling process that takes as input the

private key and produces round keys. In GIFT64 the key scheduler takes as input

the 128-bit private key and creates 28 64-bit round keys. Figure 2.1 below shows the

structure of GIFT64.

The S-Box of both GIFT cryptographic primitives is a 4-bit to 4-bit invertible

function and is defined in Table 2.1.

Table 2.1: GIFT S-Box Specification

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

In GIFT the P-Layer function is a linear bit permutation defined in Table 2.2

below:

The P-Layer function acts as a mechanism that will provide diffusion in the cipher
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Figure 2.1: 2-rounds of GIFT-64

so even a small change in the plaintext input will lead to an avalanche effect of the

ciphertext.

2.1.1 Key Types

In our research we use three types of keys being private, round, and sub-keys. The

private key is the classical symmetric key that should be the end result that the

attacker is trying to recover.

Round keys are created from the private key through the use of the key scheduler.

If the attacker has enough round keys they should be able to recover the private key.

In some cases such as AES-128 the first round key is equal to the private key. In

cases such as GIFT64, the attacker needs four sequential round keys to recover the

private key.
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Table 2.2: GIFT64 - P-Layer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Lastly sub-keys are sub-quantities of the round key that are the same size as the

input/output of the S-Box layer. One can view the round key to be the concatenation

of several sub-keys. During power analysis attacks, the attacker computes predictions

on each sub-key and uses those quantities to produce round keys and in turn is able

to produce the private key.

2.2 Side Channel Attacks

Since the seminal work by Kocher in (Kocher et al., 1999), Side Channel Attack (SCA)

has been a threat to block ciphers. SCA works by attacking the implementation of a

cryptographic algorithm instead of the actual mathematical structure. Some examples

of SCA are timing attacks, power attacks, and electromagnetic attacks. For the work

in this dissertation, we will focus on power attacks such as Differential Power Analysis

(DPA) and Correlation Power Analysis (CPA) (Brier et al., 2004). In power analysis,

the goal is to use the implementation side effects along with information such as

plaintexts and ciphertexts to deduce secret information such as a private key. The

side effect of the implementation running that we will use to recover the private key

is the device’s voltage draw while the device is performing encryption/decryption.

An example of a voltage reading over time is shown in Figure 2.2 in which the x-
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axis are time units and the y-axis are the voltage readings at the time units. The

collection of voltage over time during the encryption process is called a trace or power

trace. For use in our research the trace is collected during the S-Box operation of the

cryptographic implementation for use in power analysis attacks.

Figure 2.2: A Voltage Reading Over Time Example

2.2.1 Differential Power Analysis

While not used in our research, DPA attacks were a stepping stone to CPA attacks

which we use in our research and has a sub-section later in this chapter. The DPA

methodology works by attacking sub-keys in a given round of a block cipher. The

attacker chooses a point of interest (POI) such as the output of the S-Box layer. The

attacker also chooses a leaky bit that will be used in the DPA methodology. For each

possible sub-key, the attacker computes a difference of means on the average of the

traces in which the bit was 1 vs. the average of the traces in which the bit was 0.

Upon analysis of the difference of means graph, if the correct sub-key was chosen
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there will be a spike in a time instance of the difference of means trace. The attacker

repeats this process for each sub-key in the round key and for as many round keys as

needed to recover the private key.

While DPA was initially made for use with DES, it was later applied to other

block ciphers such as AES, PRESENT, GIFT, and many others.

2.2.2 Correlation Power Analysis

The CPA methodology is a way of attacking a cryptographic implementation in order

to attempt to compute the private key. CPA is an improvement on the DPA attack

allowing to break the key successfully, faster, and using less data (Alioto et al., 2008;

Lo et al., 2017). Two common leakage models are used to do this and they are

Hamming Weight (HW) and Hamming Distance (HD). For use in our research, we

will be using the HW model.

As input for the CPA attack, an attacker needs parings of plaintexts and their

voltage trace over time units when the cryptographic device is performing the en-

cryption operation. The traces can be interpreted as a graph in which the x-axis

are time units and the y-axis are voltage values for that given time unit. All of the

voltage traces need to be synchronized which means that the peaks/troughs of the

trace occur on the same time instances.

The CPA methodology follows the following steps:

• State Point of Interest (POI)

• Capture plaintext/voltages

• Produce hypothetical intermediary values

• Compute estimated power draw from intermediary values
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• Conduct analysis

Point of Interest

When attacking a cryptographic implementation for use with SCA, one needs to

define what part of the implementation they will be attacking. It is common in

literature to attack the output of the S-Box function (Durvaux and Standaert, 2016),

but it is possible to attack other parts of a cryptographic cipher such as after a bit

permutation. For the POI, one needs to consider that the attack needs to happen

after key content is introduced during the encryption process. All states before key

content is incorporated in the cipher is deterministic and computable without any key

content. In AES, the add round key is the first operation so the first output of the

S-Box can be attacked. For other ciphers such as GIFT, the add round key occurs at

the end of each round. In order to attack the private key in GIFT, the output of the

S-Boxes in rounds 2 and later need to be attacked.

Capturing Power Traces

After defining the POI, one will then need to collect power traces. In order to col-

lect the traces, one will need a device that can collect this information such as an

oscilloscope. For use in literature, one can put a trigger call to the oscilloscope to

start/stop the capture in order to have automated and synchronized captures. An

example of a voltage trace was shown previously in Figure 2.2. An example of capture

setup, Figure 2.3 shows a CWLite that is a control board and oscilloscope and the

Device Under Target (DUT) which is a XMEGA 8-bit micro-controller. The trace

needs to have voltage reading when the POI is being computed in the cryptogprahic
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Figure 2.3: An Execution Environment

implementation.

Computing Intermediary Values

After acquiring the plaintexts the attacker will need to compute intermediary values

based upon a sub-key guess and repeat the process for each sub-key. In AES, the

S-Box outputs are 8-bit values so the sub-keys are 8-bits long. However, in GIFT

the S-Box and sub-keys are 4-bits long. For each sub-key, one will compute the

intermediary value of the output of the S-Box given that sub-key value. For each

possible sub-key and plaintext pair the attacker computes the output of the S-Box

after the sub-key has been applied using the XOR instruction.

Computing Hypothetical Power Consumption

Having the intermediary values, one needs to compute the hypothetical power con-

sumption based upon these values. The two common ways of doing this is the Ham-

ming weight HW and Hamming distance HD models. We consider the HW model

which is just the number of 1 bits in the binary representation of a given value. For
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each of the intermediary values, one will compute the Hamming weight and the power

consumption value that are grouped as a pair of values. These values are the hypo-

thetical power consumption which is the output of the HW model and the actual

power consumption which is the voltage trace.

Analysis

Lastly, we will have to compare the computed hypothetical power consumption values

with the voltage traces. Our comparison is the computation of correlation values to

see which of the sub-keys is likely the correct sub-key. In order to do this, we will use

Pearson’s correlation coefficient (Freedman et al., 2007). The inputs to the correlation

coefficient formula will contain two lists. The first list are the real voltage values R.

The second list is the other being the hypothetical ’guessed’ values G based upon the

HW model.

∑
(Ri −Ravg) ∗ (Gi −Gavg)√∑

(Ri −Ravg)2 ∗
∑

(Gi −Gavg)2
(2.1)

Because each voltage trace has many voltage readings, the attacker will compute

a correlation value for each of the time instances of the trace and compute the corre-

lation for each time instance with the hypothetical values. After doing this for each

time instance the attacker takes the maximum correlation for each possible time in-

stance and that is the correlation value for that given possible sub-key. This process is

repeated for each possible sub-key guess. The sub-key with the maximum correlation

value is the predicted sub-key. This process is repeated for all sub-keys in the round

key and for as many round keys as needed.

In AES-128, one round key is enough to recover the private key (the first round
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key is the private key), however, in other block ciphers such as GIFT-64, four sequen-

tial round keys will be needed to recover the private key. The attacker starts with

attacking the first round key and after the first round key is recovered the attacker

uses the first round key and another set of pools relating to the second round key to

attack the second round key. A similar process is computed for the third and fourth

round keys.

When conducting a CPA attack the success rate (SR) indicates if an attack suc-

cessfully recovered the key used by the cryptographic algorithm running on the DUT.

For our uses, we only consider first order attacks. The Success Rate (SR) of CPA

attack, defined in (Biryukov et al., 2016), is denoted as

SR =


1, If derived key is the correct key

0,Otherwise

For use in our research, we consider the mean SR denoted as a percentage as the

average SR.

2.2.3 Side Channel Attack Mitigations

While there is research in SCA attacks on unprotected implementations, such as

our work in (Unger et al., 2021), there exist mitigations that give rise to protected

implementations against SCA attacks. While this is not part of our research, we wish

to state the current state in protected cryptogprahic implementations against SCA
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methodologies.

One approach is to add in NOP (No-Operation) instructions to de-synchronize the

power traces. While this will initially stop the attack from working, if the attacker

knows this mitigation has been applied he/she can re-synchronize the traces and

conduct the attack.

Another method of defense is to add in dual-rail logic that attempts to make every

instruction call have the same power draw (Sundaresan et al., 2008; Popp et al., 2007).

Lastly there is the countermeasure of masking such as Threshold Implementation

(TI). There are several work of ’simple’ masking (Golić and Tymen, 2002; Standaert

et al., 2005) and TI masking (Bilgin et al., 2014b; De Cnudde et al., 2015). As we use

the GIFT cryptographic scheme, there also exist attacks and countermeasures that

were implemented in GIFT in the works of (Satheesh and Shanmugam, 2018; Jati

et al., 2019; Zhang et al., 2021).

2.3 Equivalence Classes

This section will state different transforms that exist on S-Boxes that give rise to

mathematical equivalence classes. For the purposes of our research, we will note

three kinds of transforms: Affine transforms, Permutation XOR transforms, and XOR

transforms. For the use or our research we mainly consider affine and permutation

XOR transforms that are used to make Affine Equivalences (AE) and Permutation

Equivalences (PE). Transforms are used in S-Box analysis and generations such as

the work of (Biryukov et al., 2003; Canteaut and Roué, 2015).

XOR transform Given a n-bit inevitable S-Box, a XOR transform on S creating

a new S-Box S’ is shown below in which c and d both to be n-bit vectors and the
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operation ⊕ to be XOR.

S ′(x) = S(x⊕ c)⊕ d (2.2)

In the XOR transform there are 22n possible transforms, but not all are always unique.

Permutation XOR Transform Permutation XOR transform is defined below

given which A and B are nxn permutation matrices while c and d are n-bit vectors.

S ′(x) = B(S(A(x⊕ c)))⊕ d (2.3)

We note for permutation XOR transforms there are (n!)2 ∗ 22n possible transforms

but not all are necessarily unique.

Affine Transform Lastly the Affine transform is the last transform we will con-

sider and is defined below in which the matrices A and B are nxn invertible matrices

and c and d are n-bit vectors

S ′(x) = B(S(A(x⊕ c)))⊕ d (2.4)

It differs from the permutation XOR transform as the matrices A,B can be chosen

from and binary inevitable matrix instead of just the permutation matrices.

2.4 S-Box Metrics

This section will state some S-Box metrics that are used to compare the security of

one S-Box to another. While there are many S-Box metrics, for use in this doctoral

thesis we will focus on metrics that have correlation with power analysis attacks. The

goal of S-Box metrics for SCA is to measure resistance for SCA without having to

compute the mean success rate. Some examples of S-Box metrics for SCA resistance
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are Non-Linearity (NL) (Matsui, 1993), Transparency Order (TO) (Prouff, 2005),

Revisited Transparency Order (RTO) (Li et al., 2020), Signal to Noise Ratio (SNR)

and Differential Power Analysis Signal to Noise Ration (DPA-SNR) (Guilley et al.,

2004). There exists literature on computing S-Boxes with optimal metric values for

these metrics but not much work has been done comparing the metric values with

actual experimental data.

2.4.1 Mathematical Background

This sub-section will be detailing building blocks that will be used in the S-Box

metrics.

We denote ”+” as the addition of integers in Z and ” ⊕ ” to be addition mod 2

also known as the XOR operation. Given a pair of vectors a = (a0, a1, ..., an−1) and

b = (b0, b1, ..., bn−1) in Fn2 the product a · b is defined as

n−1∑
i=0

(ai ∗ bi) (2.5)

We denote S-Boxes for use in Substitution Permutation Network (SPN) ciphers

are n-bit to m-bit functions denoted as F : Fn2 → Fm2 . In most cases for our research

we will consider the case that n = m.

In a n-bit to n-bit S-Box we consider the S-Box to be made up of boolean functions

in which the output of an S-Box F (x) can be viewed as the concatenation of the output

of the boolean functions that make up the S-Box. Given ’||’ is the concatenation

operation, we describe an S-Box as a concatenation of boolean functions below in
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which each boolean function is of the form Fn2 → F2:

F (x) = F1(x)||F2(x)||...||Fn(x) (2.6)

We define that the discrete derivative of a function F with input a ∈ Fn2 is a

function of the form

DaF : Fn2 → Fm2 (2.7)

in which it is defined by the formula

DaF (x) = F (x)⊕ F (x⊕ a) (2.8)

The function Wf (u, v) is called a Walsh transform on the function F and is defined

as

WF (u, v) =
∑
x∈Fn

2

(−1)v·F (x)+u·x (2.9)

A generalization of the Walsh transform of a discrete derivative, the cross corre-

lation spectrum is defined as

Cf1,f2(a) =
∑
x∈Fn

2

(−1)f1(x)⊕f2(x⊕a) (2.10)

2.4.2 S-Box Metric Definitions

In this sub-section, we will be defining the theoretical metrics that our research or

literature show an impact on SCA resistance. While there is not a proof of the

relationship between these metrics and SCA resistance, the relationship is shown
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through experimental results in literature.

Non Linearity (NL) was defined in (Matsui, 1993) as a metric to measure resis-

tance to linear and differential cryptanalysis but has also shown to be a metric in

relationship to SCA. The higher the NL value is, the more resistant a cipher is to

linear and differental cryptanalysis but higher NL will also lead to more susceptibility

to SCA attacks (Biryukov et al., 2016). The NL of a function F is defined as:

NL(F ) = 2n−1 − 1

2
max

u∈Fn
2 ,v∈Fn∗

2

|WF (u, v)| (2.11)

In several lightweight SPN ciphers, 4-bit to 4-bit S-Boxes are used. The possible

NL values for 4-bit to 4-bit invertible S-Boxes are 0, 2, and 4.

Transparency Order (TO) is another metric introduced in the work of (Prouff,

2005). The Transparency Order (TO) of a function F is defined as

TO(F ) = max
β∈Fn

2

(
|n−2H(β)|− 1

22n − 2n

∑
a∈Fn∗

2

|
∑

v∈Fn
2 ,H(v)=1

(−1)v·βWDaF (0, v)|

)
(2.12)

In the literature they state that the higher the TO value the more susceptible a S-Box

is to SCA (Prouff, 2005). In later works, it was revealed that there are flaws in the

definitions in the classical TO and lead to updated definitions of TO (Chakraborty

et al., 2017). At the time of writing this dissertation, the newest version of TO is the

definition of Revisited Transparency Order (RTO) in the work of (Li et al., 2020).

The Revisited Transparency Order (RTO) is an updated version of TO that fixes
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some of the mistakes in the definition and given a function F is defined as:

RTO(F ) = max
β∈Fn

2

(
n− 1

22n − 2n

∑
a∈Fn∗

2

|
n∑
j=1

n∑
i=1

(−1)βi⊕βjCFi,Fj
(a)|

)
(2.13)

Similar to TO, the results of the RTO metric are if the output is higher the S-Box

should be more susceptible to SCA power analysis attacks.

Signal to Noise Ratio (SNR), (Ziemer and Tranter, 2014) is a probabilistic mea-

surement of signal divided by noise in a cryptographic implementation. The quotient

is defined as:

SNR =
V ar(Signal)

V ar(Noise)
(2.14)

Commonly expressed in the units of decibels as 20log(SNR). The higher the SNR

the stronger the signal and information is relative to the noise or distortion.

Differential Power Analysis Signal to Noise Ratio (DPA-SNR) (Guilley et al.,

2004) is another metric that states to measure resistance to cryptanalysis and given

a function F is defined as:

DPA− SNR(F ) = n22n

(∑
a∈Fn

2

(
n−1∑
i=0

(∑
x∈Fn

2

(−1)Fi(x)+x·a

))4)(−1/2)

(2.15)

The higher the DPA-SNR value is the more resistant the cipher is to classical crypt-

analysis leading to more susceptibility to SCA methodologies.

The confusion coefficient (CC) is the last metric that we will be denoting (Fei

et al., 2012; Picek et al., 2014b). While this metric is not as widely used compared

to the others it still has a following in literature.
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Confusion Coefficient Function

K(Ka, Kb) =

∑
pt∈Fn

p
((HW (S(pt⊕Kz))−HW (S(Kb ⊕ pt)))2)

2n
(2.16)

Confusion Coefficient Metric (CC) For all Ka, Kb in the sub-key space the

variance of all possible outputs of the K function are computed and that is called the

confusion coefficient variance.
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CHAPTER 3:

CORRELATION POWER ANALYSIS

This chapter will focus on our research into CPA attacks on lightweight SPN primi-

tives. We will analyze the security of the GIFT cryptographic primitive, more specifi-

cally analyzing the security of the S-Box layer. For our research we will use the 64-bit

version of GIFT and fix all of the parameters except for the S-Box sub-round function.

This chapter will utilize techniques in white box cryptanalysis in order to use knowl-

edge of a cryptogprahic scheme/implementation along with plaintext/ciphertext pairs

and power traces in order to attempt recovery of the private key. We will then swap

our varying S-Boxes to analyze the mean success rate of CPA attacks and analyze

the mathematical structure of the varying S-Boxes used in our research.

3.1 Summary

In our research we gather existing S-Boxes and create new ones that have varying

mathematical proprieties. We consider some S-Boxes from literature such as GIFT

(Banik et al., 2017), PICCOLO (Shibutani et al., 2011), and PRESENT (Bogdanov

et al., 2007) as well as other S-Boxes we construct. Also in our research are groups of

S-Boxes that use the Bad Output Good Input (BOGI) properties introduced in GIFT

(Banik et al., 2017) in the work of (Kim et al., 2020) and we sample two groups of

8 S-Boxes in which the S-Boxes groups are members of the same affine class. As the
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S-Boxes from (Kim et al., 2020) lead to similar results and metric scores, we show

1 representative from the affine class and note the S-Boxes as S5 and S6. Some of

the S-Boxes we analyze, such as linear S-Boxes with NL = 0 should not be used in

practice. Even though they might be more resistant to power analysis attacks they

are not secure to classical cryptanalysis techniques and are considered weak and only

used as comparison for metrics in our research.

A sample of some S-Boxes analyzed are shown in Table 3.1 and their metric scores

in Table 3.2

Table 3.1: S-Boxes

Input GIFT PICCOLO PRESENT S1 S2 S3 S4 S5 S6

0 1 E C 0 5 0 1 3 C
1 A 4 5 E 1 F 2 E 6
2 4 B 6 7 7 E 3 C 1
3 C 2 B 6 6 D 4 0 8
4 6 3 9 4 4 C 5 8 2
5 F 8 0 5 0 B 6 D 9
6 3 0 A 2 2 A 7 5 E
7 9 9 D 1 E 9 8 2 5
8 2 1 3 3 3 8 9 1 D
9 D A E F F 7 A 4 3
A B 7 F A B 6 B F B
B 7 F 8 B A 5 C 9 4
C 5 6 4 8 8 4 D 6 0
D 0 C 7 9 9 3 E B F
E 8 5 1 C C 2 F A 7
F E D 2 D D 1 0 7 A

The goal in our research is to compare/contrast the metric scores of the S-Boxes

with the experimental results of the mean SR computations. In doing so we analyze
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Table 3.2: S-Boxes with computed metric values

S-Box NonLinearity SNR DPA-SNR TO RTO CC

PICCOLO 4 39.401 3.108 3.666 3.333 0.158
GIFT 4 39.348 2.399 3.466 3.066 0.459

PRESENT 4 34.665 2.129 3.533 3.266 0.660
S2 2 39.968 2.946 3.4 3.266 0.208
S4 0 39.252 2.484 2.933 2.933 0.409
S1 0 38.582 2.579 3.266 3.133 0.359
S3 0 34.148 2.484 2.933 2.933 0.409
S5 4 33.122 2.399 3.467 3.067 0.459
S6 4 41.004 2.579 3.333 3 0.359

which of the metrics has a higher indication of resistance. For use in our research

we execute the CPA attack many times with different sets of plaintext and voltage

arrays.

Experiment An experiment is a collection of CPA attack Success Rates (SR),

with the the input to the experiment being a pool of plaintext/voltage array pairs,

a threshold cap, and the known private key. An experiment is defined as a iterated

loop in which each during every iteration we add a plaintext/voltage array pair to the

internal data structure as input to the CPA attack. After the addition of the pair,

the CPA attack is executed using that data-set. The SR of the CPA attack is stored

along with the count of plaintext/voltage array pairs used to perform the attack. The

experiment continues until either the size of the data-set reaches the threshold cap

or until a success limit of 5 consecutive successful CPA attacks is observed. In our

study, we used a threshold cap of 150 iterations, and pool of plaintext/voltage array

pairs containing 2,000 entries. Example pseudocode is shown in Algorithm 1 :

The success limit was implemented in part to to speed up computation. We chose

the constant 5 to be a success limit based upon early experimental data, but the
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Algorithm 1: Experiment Pseudocode

Result: Success rate for each trace count
count = 0;
successCount = 0;
list initialized;
results structure initialized;
while count < Threshold do

Add random plaintext-voltage array pair to list;
Conduct CPA attack using list;
count++;
results[count] = CPA Success Rate (1/0);
if Successful then

successCount++;
if successCount == 5 then

Mark remaining results successful;
return results;

end

end
else

successCount = 0;
end

end
return results;

best parameter to ensure success stability is an open question. In our experimental

studies, when 5 sequential CPA successes occur, all sequential execution of the CPA

attack with additional plaintext/trace pairs were also successful.

A threshold cap of 150 was chosen based upon trial and error. The goal was

to chose a cap which would halt execution of an experiment, but also allow each

experiment to capture the full progression to a 100% mean success rate. Each of our

S-box experiments achieved 100% mean success rate before the reaching the 150th

iteration.

The output of an experiment is a set of ordered pairs (x, y) stored in a Results
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array. The ’x’ value is the size of the data-set used for the CPA attack and the ’y’

value is either 0 or 1 depending on if the CPA attack was successful or not. This

means that the Results from an experiment is an array in which the index is the

trace/count size and the element in the array is the mean SR.

Trial. A trial is a collection of Result arrays from many experiments. In our

study we consider a trial to be a collection of 100 experiments. The output of a trial

are ordered pairs similar to the output of the experiment, but the ’y’ values hold the

mean success rate of the 100 executions of the experiments. The trial algorithm is

shown in Algorithm 2.

Algorithm 2: Trial Pseudocode

Result: Mean Success Rate for Each Trace Count
count = 0;
results structure initialized;
while count < 100 do

Execute Experiment;
Store results of experiment in the results structure;
count++;

end
Average the results of the experiments for each trace count;
Return the average mean success rates;

For our analysis we chose several S-Boxes with varying values for the metrics

presented previously and executed at minimum 1 trial for each S-Box.

3.2 Equivalence Classes

As part of our research we show mathematical proofs on equivalence classes given

the mathematical background given in the Background chapter. For some metrics,

AE and PE transforms retain the metric values of S-Boxes. In this section we will

mathematically show that some metrics scores are preserved.
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3.2.1 Revisited Transparency Order Preservation

Recall that cross correlation is defined below as shown in the work of (Li et al., 2020).

Cf1,f2(u) =
∑
x∈Fn

2

(
− 1
)f1(x)⊕f2(x⊕u) (3.1)

And RTO is defined as

RTO(F ) = max
β∈Fn

2

(
n− 1

22n − 2n

∑
a∈Fn∗

2

|
n∑
j=1

n∑
i=1

(−1)βi⊕βjCFi,Fj
(a)|

)
(3.2)

We consider the affine transformation in which A and B are both inevitable binary

nxn matrices and d, e are elements in Fn2 .

Let S be our starting S-Box and T is defined such that

T (x) = B(S(A(x)⊕ d))⊕ e (3.3)

We note a proof shown in (Li et al., 2020) that states RTO is preserved under

Permutation XOR transformation when the transformation matrices are the identity.

Assume that T is a PE transformation of S, we then have RTO(S) = RTO(T ).

Proof

Let

RTO(T ) = max
β∈Fn

2

(
n− Qt

22n − 2n

)
(3.4)

where

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βjCTi,Tj(a)

∣∣∣∣ (3.5)
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By expanding and unpacking the cross correlation function we have:

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj
∑
x∈Fn

2

(−1)(B(S(A(x)⊕d))⊕e)i⊕(B(S(A(x⊕a)⊕d))⊕e)j

∣∣∣∣ (3.6)

We extract the e values out of the inner exponent:

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj
∑
x∈Fn

2

(−1)(B(S(A(x)⊕d)))i⊕ei⊕(B(S(A(x⊕a)⊕d)))j⊕ej

∣∣∣∣ (3.7)

We extract the e values from the inner sum using the laws of exponentiation

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
x∈Fn

2

(−1)(B(S(A(x)⊕d)))i⊕(B(S(A(x⊕a)⊕d)))j

∣∣∣∣ (3.8)

We the use the proprieties of reverse distribution under matrices to extract the B

matrix

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
x∈Fn

2

(−1)B((Si(A(x)⊕d)⊕(Sj(A(x⊕a))⊕d))
∣∣∣∣ (3.9)

Let y = A(x)⊕ d.

We note that A(x ⊕ a) ⊕ d = y ⊕ A(a) that switches the iterator in the inner sum

from x to y that results in.

QT =
∑
a∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
y∈Fn

2

(−1)B(Si(y)⊕Sj(y⊕A(a)))
∣∣∣∣ (3.10)



39

We let u = A(a) and change the outside iterator from a to u

QT =
∑
u∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
y∈Fn

2

(−1)B(Si(y)⊕Sj(y⊕u))
∣∣∣∣ (3.11)

Recalling the definition of cross correlation we switch the
∑

notation to the C

notation resulting in:

QT =
∑
u∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ejCBSi,BSj
(u)

∣∣∣∣ (3.12)

We then create new β′iβ
′
j such that β′i = βi ⊕ ei and β′j = βj ⊕ ej that results in

QT =
∑
u∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)β
′
i⊕β′jCBSi,BSj

(u)

∣∣∣∣ (3.13)

If we consider B to be the identity matrix we then have

QT =
∑
u∈Fn∗

2

∣∣∣∣ n∑
j=1

n∑
i=1

(−1)β
′
i⊕β′jCSi,Sj

(u)

∣∣∣∣ (3.14)

Which gives us the result that RTO(S) = RTO(T )

3.2.2 Transparency Order Preservation

Based upon the RTO preservation proof of equivalence classes by (Li et al., 2020) we

show preservation under the classical transparency order in which TO is defined in

the works of (Prouff, 2005). However, our results take Proof’s initial idea and show

that the metric score is preserved under Permutation Equivalence instead of a special

case of PE shown in (Prouff, 2005).
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We note that the definition of TO is:

TO(F ) = max
β∈Fn

2

(n− 2HW (β))− 1

22n − 2n

∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗βWDaF (0, v)|)

(3.15)

For the sake of clarity we will denote the TO formula as:

TO(F ) = max
β∈Fn

2

(n− 2HW (β))− QF (β)

22n − 2n
(3.16)

Where

QF (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗βWDaF (0, v)|) (3.17)

We consider T to be a transformation on F such that:

T (x) = B(F (A(x⊕ d)))⊕ e (3.18)

Giving us the equation for QT shown below:

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗βWDaF (0, v)|) (3.19)

We then expand and unpack the definition of the Walsh Transform of the discrete

derivative.

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
x∈Fn

2

(−1)v∗DaT (x)|) (3.20)
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QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
x∈Fn

2

(−1)v∗(T (x)⊕T (x⊕a)|) (3.21)

We then expand the T function to write it in terms of the transforms of F.

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
x∈Fn

2

(−1)v∗(B(F (A(x⊕d)))⊕e⊕B(F (A(x⊕a⊕d)))⊕e)|)

(3.22)

Because of the XOR operation and each element is it’s own inverse we remove the

e⊕ e.

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
x∈Fn

2

(−1)v∗(B(F (A(x⊕d)))⊕B(F (A(x⊕a⊕d))))|) (3.23)

Because the B matrix is applied to both elements in the right exponent we can

pull out the B matrix.

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
x∈Fn

2

(−1)v∗(B(F (A(x⊕d))⊕F (A(x⊕a⊕d))))|) (3.24)

Let y = A(x⊕d) also leading to the result y⊕A(a) = A(x⊕a⊕d) and by re-indexing

x to y

QT (β) =
∑
a∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
y∈Fn

2

(−1)v∗(B(F (y)⊕F (y⊕A(a))))|) (3.25)

We let u = A(a) and re-index a leading to QT being:

QT (β) =
∑
u∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
y∈Fn

2

(−1)v∗(B(F (y)⊕F (y⊕u)))|) (3.26)
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We then re-pack the definition of the discrete derivative

QT (β) =
∑
u∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗β
∑
y∈Fn

2

(−1)v∗DuBF (y)|) (3.27)

The re-pack the Walsh transform

QT (β) =
∑
u∈Fn∗

2

|
∑

v∈Fn
2 ;HW (v)=1

(−1)v∗βWDuBF (0, v)|) (3.28)

If we consider B to the the identity matrix we have the proven the case of XOR

equivalence. If we consider B to be a permutation matrix we can then re-index v and

we show that TO is preserved under Permutation XOR equivalence (PE).

3.3 Experimental Results

We gathered data on the 8-bit XMEGA micro-controller. The data gathered were

pairs of traces (voltage over time) and plaintext values for each S-Box used in our

case study. For each S-Box, we computed theoretical metric scores from literature

that are shown to have a connection with the success rate of side channel attacks

in experimental results. We computed many executions of the CPA attack and used

that to judge the mean success rate of the S-Boxes. Recall the output of the trials are

graphs in which the x-axis is the give trace count as input to the CPA attack and the

y-axis is the computed mean success rate of the CPA attack. The mean success rate

computations are probabilistic meaning that each time re-execution the trial code

the numeric outputs will be different, however statically speaking each executions are

similar.

The results of the S-Boxes we sampled are below in Figure 3.1.
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Figure 3.1: The mean success rate of a single trial of S-Boxes

We note that all CPA attacks on our S-Boxes ended up having a 100 % mean

success rate given enough traces. To compare the S-Boxes, we compare the mean

success rates of the S-Boxes before the 100% mean success rate mark. In Figure 3.1

we compare the trace range from 20 to 80 because before 20 traces no S-Box has

a mean SR above 0% and at 80 traces most S-Boxes have a mean SR of 100% .

Upon initial observation, we can easily see that some S-Boxes are more resistant to

CPA attack and others are more susceptible. In Table 3.2 the S-Boxes are listed in

order from most susceptible to CPA attack to most resistant. Note that the metric of

non-linearity has clear correlation on how resistant/susceptible the S-Box is to CPA

attack. In 4-bit S-Boxes there only exist 3 possible non-linearity values being the set

{0,2,4} . Because of the distribution on Non-Linearity group together S-Boxes with

the same non-linearity values in Figure 3.2 and Figure 3.3 and there corresponding

metric scores in Table 3.3 and Table 3.4.

Table 3.3: S-Boxes computed metric values for NL=4

S-Box NonLinearity SNR DPA-SNR TO RTO

PICCOLO 4 39.401 3.108 3.666 3.333
GIFT 4 39.348 2.399 3.466 3.066

PRESENT 4 34.665 2.129 3.533 3.266



44

Figure 3.2: The mean success rate of a single trial of S-Boxes with NL=4

Figure 3.3: The mean success rate of a single trial of S-Boxes with NL=0

Table 3.4: S-Boxes computed metric values for NL=0

S-Box NonLinearity SNR DPA-SNR TO RTO

S4 0 39.252 2.484 2.933 2.933
S1 0 38.582 2.579 3.266 3.133
S3 0 34.148 2.484 2.933 2.933

Upon observation of the figures with NL grouping, we try and compare the other

metric scores. In our case study, we use all varying metric values for non-linearity

but for resistance to classical cryptanalysis such as differental and linear the literature

focus on S-Boxes that are ’optimal’ having requirements such as non-linearity = 4,

degree = 3, no fixed points, and differential uniformity = 4.

The cryptographic scheme of GIFT (Banik et al., 2017) also introduced the con-
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cept of bad input good output (BOGI), which is a property of the S-Box to add

additional security to the ’optimal’ S-Boxes. The work of (Kim et al., 2020) added

more research on the BOGI propriety and added other samples of such S-Boxes be-

sides the S-Box for the GIFT cryptographic scheme.

3.4 Correlation Power Analysis Conclusions

Upon analysis of the S-Boxes, we note that the metric of non-linearity has strong

correlation with the mean success rate of the CPA attack and having lower non-

linearity will lead to more resistance. However, because of classical cryptanalysis one

is not always able to choose S-Boxes and to defend against the classical cryptanalysis

attacks one might have to choose the higher non-linearity S-Boxes. We note that if

non-linearity is 4 there is still variation in the mean success rate of the CPA attack.

Analysing the metric scores of SNR, DPA-SNR, TO, and RTO, we note that there

is some correlation but none of the metrics have perfect correlation with the mean

success rate of the CPA attack.
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CHAPTER 4:

GENERALIZED AND TERNARY

CORRELATION POWER ANALYSIS

In this chapter, we will build our theoretical construction of a GIFT-Like SPN cipher

under a varying prime field and show an application of the theoretical construction

using a ternary base. Similar to our binary cryptanalysis, this chapter will utilize

white box cryptanalysis techniques with knowledge of the scheme/implementation

along with plaintext/ciphertext pairs and power traces to attempt to recover the

private key.

4.1 Generalized Mathematical Background

In order to describe our theoretical construction, we first need to describe the building

blocks we will be using. We denote the ⊕p operation to be a generalization of the

XOR operation to work on elements in Fnp in which we denote modular addition of

the n-element vectors. In the binary case, the XOR operation is not distinguished

between addition and subtraction modulo 2 because they are the same operation in

base 2. In our theoretical constructions, we denote ⊕p to be the modular addition

operation and 	p to be the modular subtraction operation.

We define δ to be a pth root of unity that is described as a unit vector in the complex

plane in which there is no positive integer less a < p such that δa = 1. Often
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working under addition, we consider adding complex numbers are adding their real

and imaginary parts such as considering two complex numbers c1 = r1 + g1i and

c2 = r2 + g2i the sum c3 = c1 + c2 is denoted as c3 = (r1 + r2) + (g1 + g2)i.

We still use the ∗ notation as the dot product and now operates on the finite field Fnp

4.1.1 Generalized Walsh Transform

The Walsh Transform is a building block for many metrics in S-Boxes and is used

in our case study. We generalize the Walsh transform to work in any prime power

Fnp . We consider the value δ to be the first pth root of unity. The generalized Walsh

Transform is shown below:

W (u, v)
∑
x∈Fn

p

(
δu·x ∗ δv·S(x)

)
(4.1)

4.1.2 Generalized Discrete Derivative

The discrete derivative is used in the computation of the classical transparency order

as described in (Prouff, 2005). We take the binary definition of the discrete derivative

and use the definition to work in a generalized setting. The discrete derivative is

defined as follows:

Da(S, x) = S(x⊕p a)	p S(x) (4.2)

4.1.3 Generalized Cross Correlation of Discrete Function

The cross correlation function is used in the computation of the revisited transparency

order that is shown in it’s binary case in the work of (Li et al., 2020). For our uses,

we generalized the cross correlation to the generalized setting as described in the
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equation below:

CF1,F2(u) =
∑
x∈Fn

p

(δ)F1(x)⊕pF2(x⊕pu) (4.3)

4.2 Generalized S-Box Metrics

Similar to the work of (Biryukov et al., 2016), we choose S-Box metrics that have

a known relationship with power analysis attacks in literature. After choosing such

metrics, we generalize them to work in the setting of any prime power as compared

to just powers of two. We then compare the metric values of the S-Boxes chosen in

our case study with actual experimental data. The S-Box metrics chosen for use with

our generalized and ternary case study are shown in this section.

4.2.1 Generalized Non-Linearity

In our work, we generalize the non linearity metric to be able to compute on any prime

powered field. This metric was defined in the binary case in the work of (Matsui, 1993)

to describe a ciphers resistance/susceptibility to linear cryptanalysis. We edited the

equation to work under any prime powered field. This metric is defined below:

NL(F ) = pn−1 −
(

1

p
∗ max
u∈Fn

p ,v∈Fn∗
p

∣∣∣∣WF (u, v)

∣∣∣∣) (4.4)

4.2.2 Generalized Differential Power Analysis Signal to Noise

Ratio

DPA-SNR was a metric that was first noted in (Guilley et al., 2004) that is used in the

computation of S-Box susceptibility/resistance under the DPA attacks. In our work,

we edited it to a generalized setting and made some choices on the generalization
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based upon our other generalizations in the case study. It is an open question on

the choice of powers and when to take the absolute value in the case of generalizing

DPA-SNR. Our generalization is shown below:

DPA− SNR(S) = n ∗ p2n
(∑
a∈Fn

p

∣∣∣∣( n−1∑
i=0

(∑
x∈Fn

p

(δ)Si(x)+(x∗a)
))4∣∣∣∣)(−1/2)

(4.5)

4.2.3 Generalized Transparency Order

The classical binary Transparency Order was introduced in the work of (Prouff, 2005).

Transparency Order was one of the first metrics developed to compute the resis-

tance/susceptibility to power side channel attacks. We edited their formula to work

in any prime powered fields and our generalized definition is shown below given a

S-Box S:

TO(S) = max
β∈Fn

p

(
|n− 2HW (β)| − 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDaS(0, v)

∣∣∣∣)
(4.6)

4.2.4 Generalized Revisited Transparency Order

Following the work of (Prouff, 2005), there were many additions/improvements on the

metric of Transparency Order including improved TO revisited TO and modified TO

(Chakraborty et al., 2017). The metric Revisited Transparency Order (RTO)(Li et al.,

2020) is the most recent improvement of TO at the time of writing this dissertation

and is the newest of all S-Box metrics we analyze in this dissertation. We generalized

the metric of RTO to work over any prime field and our generalization is stated below
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given a S-Box S:

RTO(S) = max
β∈Fn

p

(
n− 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗ CSi,Sj
(a)

∣∣∣∣) (4.7)

4.2.5 Signal to Noise Ratio

We also use the classical SNR computation’s for our S-Box analysis which is noted

and the variance of the signal divided by the variance of the noise.

4.2.6 Generalized Confusion Coefficient

The works of (Fei et al., 2012; Picek et al., 2014b) use the confusion coefficient as a

metric for S-Boxes. We generalized it for use in a prime powered S-Box and gathered

data for our ternary case study. The generalized definition of CC is shown below:

Confusion Function

K(Ka, Kb) =

∑
pt∈Fn

p
((HW (S(pt⊕p Ka))−HW (S(Kb ⊕p pt)))2)

pn
(4.8)

Similar to the binary version, the generalized version iterates the values Ka, Kb in

the sub-key space and commute the variance of all the outputs of the K functions

resulting in the CC metric score.

Generalized Confusion Coefficient For all Ka, Kb in the sub-key space the

variance of all possible outputs of the K function are computed and that is called the

confusion coefficient variance.
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4.3 Generalized Equivalence Classes

Similar to the binary case, in the generalized setting we can divide up the set of all

S-Boxes in Fnp into classes that retain some cryptographic properties. We consider

three classes of transforms being: modular addition, permutation modular addition,

and affine. It is important to compute these classes as it retains some cryptographic

properties, so when choosing an S-Box for use in a cryptographic scheme one can

choose an S-Box from a ’good’ class instead of searching the whole S-Box space for

S-Box candidates.

4.3.1 Equivalence Transforms

In this sub-section, we will be stating the definition of the equivalence transforms that

are used to generate classes. For each of the three transforms we are considering.

Modular Addition Transform

Consider an invertible S-Box S Fnp −→ Fnp and two vectors d, e ∈ Fnp . The transform

from S-Box S to S-Box T is shown below:

T (x) = S(x⊕p d)⊕p e (4.9)

Permutation Modular Addition Transform

An extension of modular addition, permutation modular addition adds permutation

matrices A,B ∈ Fnxn2 in which each row has a single 1 entry and the rest of the

numbers in the row are 0 and similarly for the columns. The permutation modular
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addition transform on S to T is shown below:

T (x) = B(S(A(x⊕p d)))⊕p e (4.10)

We define this relationship as a Permutation Equivalence Class (PE)

Affine Transform

An extension of the permutation modular addition transform, the affine transform is

the last transform we will be considering in our work. Similar to PE transform except

instead of A,B being limited to permutation matrices, A,B can be any invertible

matrix in Fnxnp . The affine transform is defined below:

T (x) = B(S(A(x⊕p d)))⊕p e (4.11)

We define this relationship is a Affine Equivalence (AE)

We will now show an example of a S-Box transform:

Modular Addition Ternary Transform Example

In this example we will apply a modular addition transform in the ternary case. In

this we consider 2 ternary digit values and the modular addition is over the two

ternary digit values. Consider the S-Box below and consider the following ternary

addition of vector d:

First we will show an example of the inner ternary modular addition.

S(x⊕3 d) (4.12)
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Table 4.1: S-Box Transform Example

x 00 01 02 10 11 12 20 21 22
S(x) 01 02 10 11 12 20 21 22 00

In which d = 12. The matrix notation is shown below:

S(x⊕3 d) = S

(x1
x2

+

1

2

) (4.13)

For every input in F2
3 we will have to substitute the values in for x1, x2 and then apply

the d vector and then the S-Box to create a look up table for the transformed S-Box.

Let us start with x = 00:

S(00⊕3 d) = S

(0

0

+

1

2

) (4.14)

We compute the modular addition

S(0⊕3 d) = S

(1

2

) (4.15)

We now apply the S-Box:

S(00⊕3 d) = 20 (4.16)

This process is then repeated for every possible input x and our example results in a

transformed S-Box shown below:
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Table 4.2: S-Box Ternary Modular Addition Transform Example

x 00 01 02 10 11 12 20 21 22
S(x⊕3 d) 20 11 12 00 21 22 10 01 02

The process of applying the matrices are similar. Let us consider a transform

S(A(x)) (4.17)

In which

A =

0 1

1 0

 (4.18)

Our equation for the transform is now:

S(A(x)) = S

(0 1

1 0


x1
x2

) (4.19)

Let us consider the case of x = 12

S(A(12)) = S

(0 1

1 0


1

2

) (4.20)

S(A(12)) = S

(2

1

) (4.21)

S(A(12)) = 22 (4.22)

If we repeat this process for every possible x we get the transformed S-Box shown
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in the table below:

Table 4.3: S-Box Ternary Permutation Transform Example

x 00 01 02 10 11 12 20 21 22
S(A(x) 01 11 21 02 12 22 10 20 00

For full transforms we apply the inner and outer transforms but the process of

applying matrix and vector transforms are similar to the examples shown.

4.3.2 Properties of Equivalence Classes

In order to be a equivalence class, the transforms must hold the properties of reflex-

ively, symmetry and transitivity. Suppose that a, b, c are S-Boxes and ∼ denotes a

possible transform.

Reflexive Property

For any A in the class there exists a transform such that:

a ∼ a (4.23)

Symmetric Property

For any a, b in the equivalence class there exist ∼1,∼2 such that

a ∼1 b (4.24)

and

b ∼2 a (4.25)
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Transitive Property

Given three S-Boxes a, b, c if there exists

a ∼1 b (4.26)

and

b ∼2 c (4.27)

There exists a ∼3 such that

a ∼3 c (4.28)

We consider our three equivalence classes as subsets of one another. We consider

the AE class a union of many PE classes and similarly we can consider PE classes a

union of many modular addition classes. Because of this property, if we prove any

statement on AE classes that statement holds on the PE subsets and similarly, if we

prove anything on PE classes that statement holds on the modular addition subsets.

An example of this is the preservation of metric scores like non-linearity.

4.3.3 Generalized Equivalence Classes

In this section, we will be proving that our generalized transforms are indeed mathe-

matical equivalence classes. To do this, we have to prove the proprieties of reflexively,

symmetry and transitivity. After doing so, we will prove that the three equivalence

classes can be divided up to subsets within the equivalence classes.
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Reflexive Proof

In order to show the reflexive propriety, we need to show that there exists a transform

in each of the categories that map an S-Box to itself.

In the case of modular addition if we consider the d, e vectors to be the zero vector

we show that Modular Addition has the reflexive property.

T (x) = S(x⊕p d)⊕ e = S(x) (4.29)

Similarly in the cases of permutation modular addition and affine, we consider the

d, e vectors to be the zero vector and we consider the A,B matrices to be the identity

matrix resulting in:

T (x) = B(S(A(x⊕p d)))⊕p e = B(S(A(x))) = S(x) (4.30)

Symmetric Proof

In order to prove that symmetry exists in the transform, we have to show that if there

exist a transform from the S-Box S to the S-Box T there is also another transform

which maps T back to S. In the case of modular addition we have:

T (x) = S(x⊕p d)⊕p e (4.31)

T (x)	p e = S(x⊕p d) (4.32)
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T (x	p d)	p e = S(x) (4.33)

We can now take the ’negative’ vector and denote them as d′, e′ and use them in

modular addition as shown below:

T (x⊕p d′)⊕p e′ = S(x) (4.34)

In the cases of permutation modular addition and affine we also have to consider the

matrices A,B. The initial transform statement for them is shown below:

T (x) = B(S(A(x⊕p d)))⊕p e (4.35)

That leads to

T (x)	p e = B(S(A(x⊕p d))) (4.36)

We then apply the B−1 matrix to each side:

B−1(T (x)	p e) = S(A(x⊕p d)) (4.37)

Now we apply the A−1 matrix to the inner call of T and S

B−1(T (A−1(x))	p e) = S(x⊕p d) (4.38)

We now let x = x	p d which leads to

B−1(T (A−1(x	p d))	p e) = S(x) (4.39)
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We now distribute the B−1matrix

B−1(T (A−1(x	p d)))	p B−1(e) = S(x) (4.40)

We let e′ = 	pB−1(e) and d′ = 	pd which results in

B−1(T (A−1(x⊕p d′)))⊕p e′ = S(x) (4.41)

And we let B′ = B−1 and A′ = A−1

B′(T (A′(x⊕ d′)))⊕ e′ = S(x) (4.42)

We know d, e are still elements in Fnp and A′, B′ are just inverse matrices of the original

A,B. Also if we consider A,B to be defined as permutation matrices A′, B′ are also

permutation matrices proving symmetry for all 3 classes.

Transitive Proof

In order to prove the transitive property, we have to show if there as a transform from

S-Boxes S to T and S-Boxes T to U there also exists a transform from S-Box S to

U . We will start with the case of modular addition.

T (x) = S(x⊕p d1)⊕p e1 (4.43)

U(x) = T (x⊕p d2)⊕p e2 (4.44)
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When we combine the functions we have

U(x) = S(x⊕p d1 ⊕p d2)⊕p e1 ⊕p e2 (4.45)

We then let d′ = d1 ⊕p d2 and e′ = e1 ⊕p e2 leading to

U(x) = S(x⊕p d′)⊕p e′ (4.46)

d′, e′ is in Fnp which shows the modular addition case does have transitivity.

For the case of permutation modular addition and affine transforms we have:

T (x) = B1(S(A1(x⊕p d1)))⊕p e1 (4.47)

U(x) = B2(T (A2(x⊕p d2)))⊕p e2 (4.48)

When we combine we end up with:

U(x) = B2(B1(S(A1(A2(x⊕p d1 ⊕p d2))))⊕p e1)⊕p e2 (4.49)

We extract the e1 outside the rest of the equation.

U(x) = B2(B1(S(A1(A2(x⊕p d1 ⊕p d2)))))⊕p B2(e1)⊕p e2 (4.50)
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We let e′ = B2(e1)⊕p e2 and d′ = d1 ⊕p d2

U(x) = B2(B1(S(A1(A2(x⊕p d′)))))⊕p e′ (4.51)

We then combine matrices B′ = B2B1 and A′ = A1A2 leading to

B′(S(A′(x⊕p d′)))⊕p e′ (4.52)

We know that d′, e′ ∈ Fnp and that A′, B′ are both invertible matrices. In the case

that A1, A2, B1, B2 are permutation matrices the matrices A′, B′ are also permutation

matrices. This leads to a new transform using A′, B′, d′, e′ which concludes our proof

for both PE and AE classes.

Subset Proofs

Now that we have proven that modular addition, PE, and AE classes are in fact

mathematical equivalence classes, we will now show they are subsets of one another.

Let us first begin with showing modular addition classes are subsets of PE classes.

Let us consider a PE class we will denote as P0 and let us state that there exist an

S-Box S ∈ P0 and that S belongs to the modular addition class M0 We know that

S can generate any other S-Box within the M0 class and we denote that any other

S-Box in M0 can be denoted with a transform

S ′(x) = S(x⊕p d)⊕p e (4.53)
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Because S ∈ P0 we can denote the previous transform as a PE transform and let the

matrices A,B be the identity matrix. We now have a PE transform on any S ′ ∈M0

S ′(x) = B(S(A(x⊕p d)))⊕p e (4.54)

Thus the whole modular addition class M0 must be a sub-class within the PE class P0

Now consider we have a S-Box S in a affine class A0 and the S-Box also belongs

to the PE class P0. The S-Box S can generate any other S-Box S ′ ∈ P0 using PE

transformations in which A,B are permutation matrices and d, e are vectors in Fnp

S ′(x) = B(S(A(x⊕p d)))⊕p e (4.55)

In this case, we can use the same constants A,B, d, e but use them in an affine

transformation so by having S ∈ A0 the whole class P0 can be generated using affine

transforms so P0 is a subset of A0.

4.4 Preservation for Generalized S-Box Metrics

In this section we will show proofs of S-Box metric preservation under different trans-

formations such as modular addition and permutation modular addition.

4.4.1 Revisited Transparency Order Preservation in Equiva-

lence Classes

Considering the definition of the generalized RTO shown below:

RTO(S) = max
β∈Fn

p

(
n− 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗ CSi,Sj
(a)

∣∣∣∣) (4.56)
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We consider T to be a transform on S shown below

T (x) = B(S(A(x⊕p d)))⊕p e (4.57)

By substituting in T for S we have:

RTO(T ) = max
β∈Fn

p

(
n− 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗ CTi,Tj(a)

∣∣∣∣) (4.58)

We then expand the cross correlation equation

RTO(T ) = max
β∈Fn

p

(
n− 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj∗
∑
x∈Fn

p

(δ)(Ti(x)⊕pTj(x⊕pa)

∣∣∣∣) (4.59)

For the sake of of saving room we consider RTO to be

RTO(T ) = max
β∈Fn

p

(
n− QT

p2n − pn

)
(4.60)

Where

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗
∑
x∈Fn

p

(δ)(Ti(x)⊕pTj(x⊕pa)

∣∣∣∣ (4.61)

We then write T in the form of the transformation using S

QT =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗
∑
x∈Fn

p

(δ)(B(S(A(x⊕pd)))⊕pe)i⊕p(B(S(A(x⊕pd⊕pa)))⊕pe)j

∣∣∣∣ (4.62)

We then extract the ei, ej from the exponents

QT =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj ∗
∑
x∈Fn

p

(δ)(B(S(A(x⊕pd))))i⊕pei⊕p(B(S(A(x⊕pd⊕pa))))j⊕pej

∣∣∣∣ (4.63)
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QT =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj⊕pei⊕pej ∗
∑
x∈Fn

p

(δ)(B(S(A(x⊕pd))))i⊕p(B(S(A(x⊕pd⊕pa))))j

∣∣∣∣ (4.64)

The B matrix is then modified using the propriety of reverse distribution.

QT =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj⊕pei⊕pej ∗
∑
x∈Fn

p

(δ)(B(Si(A(x⊕pd)))⊕p(Sj(A(x⊕pd⊕pa))))

∣∣∣∣ (4.65)

We then let y = A(x⊕p d) also resulting in y ⊕p A(a) also re-indexing x to y

QT =
∑
a∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj⊕pei⊕pej ∗
∑
y∈Fn

p

(δ)(B(Si(y)⊕p(Sj(y⊕pA(a)))))

∣∣∣∣ (4.66)

We now let u = A(a) and re-index a to u

QT =
∑
u∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)βi⊕pβj⊕pei⊕pej ∗
∑
y∈Fn

p

(δ)(B(Si(y)⊕p(Sj(y⊕pu))))

∣∣∣∣ (4.67)

We let β′i = βi ⊕p ei and β′j = βj ⊕p ej

QT =
∑
u∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)β
′
i⊕pβ′j ∗

∑
y∈Fn

p

(δ)(B(Si(y)⊕p(Sj(y⊕pu))))

∣∣∣∣ (4.68)

We then put the y sum back into the form of cross correlation.

QT =
∑
u∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)β
′
i⊕pβ′j ∗ CBSi,BSj

(u)

∣∣∣∣ (4.69)
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Then we can put QT back to the main formula as shown below:

RTO(T ) = max
β∈Fn

p

(
n− 1

p2n − pn
∑
u∈Fn∗

p

∣∣∣∣ n∑
j=1

n∑
i=1

(δ)β
′
i⊕pβ′j ∗ CBSi,BSj

(u)

∣∣∣∣) (4.70)

If we consider the B matrix to be the identity matrix, we have shown preservation

of RTO over the modular addition transformation. Also we can have B to be a

permutation matrix and then re-index i, j and we have shown RTO to be preserved

under permutation with modular addition. RTO is not preserved under the general

case for any invertible matrix B.

4.4.2 Transparency Order Preservation in Equivalence Classes

Consider the base definition of the generalized TO shown below given a S-Box S:

TO(S) = max
β∈Fn

p

(
|n− 2HW (β)| − 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDaS(0, v)

∣∣∣∣)
(4.71)

Where we consider T to be a transform of S shown below:

T (x) = B(S(A(x⊕p d)))⊕p e (4.72)

We now write the RTO formula in forms of T

TO(T ) = max
β∈Fn

p

(
|n− 2HW (β)| − 1

p2n − pn
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDaT (0, v)

∣∣∣∣)
(4.73)
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To save space we consider

TO(T ) = max
β∈Fn

p

(
|n− 2HW (β)| − QT

p2n − pn
)

∣∣∣∣) (4.74)

Where

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDaT (0, v)

∣∣∣∣ (4.75)

We then unpack the Walsh transform

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
x∈Fn

p

(δ)v∗DaT (x)

∣∣∣∣ (4.76)

We then unpack the discrete derivative

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
x∈Fn

p

(δ)v∗(T (x⊕pa)	pT (x))

∣∣∣∣ (4.77)

We now write T in an expanded transform notation

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
x∈Fn

p

(δ)v∗((B(S(A(x⊕pa⊕pd)))⊕pe)	p(B(S(A(x⊕pd)))⊕pe)

∣∣∣∣
(4.78)

Since the e values are on the outside of the transform we can cancel them because of

the 	 operation and we are left with

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
x∈Fn

p

(δ)v∗((B(S(A(x⊕pa⊕pd))))	p(B(S(A(x⊕pd))))

∣∣∣∣ (4.79)
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Using the proprieties of reverse distribution we then pull out the B Matrix

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
x∈Fn

p

(δ)v∗(B(S(A(x⊕pa⊕pd))	pS(A(x⊕pd)))

∣∣∣∣ (4.80)

We then let y = A(x⊕p d) and that also results in y ⊕p A(a) = A(x⊕p a⊕p d). We

then re-index x to y resulting in:

QT (β) =
∑
a∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
y∈Fn

p

(δ)v∗(B(S(y⊕pA(a))	pS(y)))

∣∣∣∣ (4.81)

We then let u = A(a) and we re-index a to u resulting in:

QT (β) =
∑
u∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
y∈Fn

p

(δ)v∗(B(S(y⊕pu)	pS(y)))

∣∣∣∣ (4.82)

We now re-write the exponent into the discrete derivative suing the definition of the

discrete derivative.

QT (β) =
∑
u∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗β
∑
y∈Fn

p

(δ)v∗DuBS(y)

∣∣∣∣ (4.83)

Now we re-pack the Walsh transform resulting in:

QT (β) =
∑
u∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDuBS(0,v)

∣∣∣∣ (4.84)
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We now put our computed QT value back into the TO definition

TO(T ) = max
β∈Fn

p

(
|n− 2HW (β)| − 1

p2n − pn
∑
u∈Fn∗

p

∣∣∣∣ ∑
v∈Fn

p ;HW (v)=1

(δ)v∗βWDuBS(0,v)

∣∣∣∣)
(4.85)

Considering B to be the identity matrix, proves preservation under modular addition.

If we consider B to be a permutation matrix, we can re-index the v value to account

for the permutation and TO is still preserved. TO does not hold under all B that are

invertible meaning that affine transformations will not always preserve TO.

4.5 Ternary Equivalence Class Generation

In this section, we will describe how we exhaustively search through all 9! bijective

S-Boxes in 32 and classify S-Boxes into permutation modular addition classes and

affine classes. Our exhaustive search algorithm is an extension of the 24 exhaustive

search algorithm in the works of (Saarinen, 2011) and (Cheng et al., 2015).

First, we must create a list of balanced component functions. In our case study a

component functions is a function on F2
3 −→ F3. We define a balanced component

functions as a component functions that has an equal amount of output given all

inputs to the component function. In the case of F2
3 given all 9 inputs there are

three outputs of 0, 1, and 2 making it balanced. We define the list of all balanced

component functions as compFunctionArr and the component functions are sorted

lexicographically based upon output of the component functions.

Next, we define the function FuncionsCompatable which denotes a function taking

as input two balanced component functions. This function returns if we can combine

two balanced component functions into a bijective S-Box as a true/false value. This

function concatenates the output of both of the input balanced component functions
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and returns true if the concatenation can return all elements in F2
3 given all inputs in

F2
3.

We then assume that we have code that will take as input a S-Box in F2
3, invertible

matrices, permutation matrices, and trit vectors and outputs the transform on the

input S-Box based upon the other input values. For the transform inputs, there exist

48 unique invertible matrices in F2x2
3 for affine transformation and 2 permutation

matrices for the permutation modular addition transformation. As for the trit vectors,

there exist 9 unique vectors and they are the elements in the field F2
3.

The algorithm is a nested loop searches through all balanced component functions

indexed by i and j and if the component functions can create a S-Box based upon

the FunctionsCompatable function we have then found an S-Box. Next, we search

through our look-up tables to indicate if we have encountered this S-Box before If the

S-Box was in the look-up tables we disregard the S-Box and continue looping. If we

have not encountered this S-Box before, we take the S-Box as input and iterate though

all possible transform constants and generate the AE/PE class. After generating the

class, we store it in a list and count how the size of the AE/PE class and store add

the size to a global counter. When the Global counter reaches 9! we have found all

S-Boxes and have computed all AE/PE classes in F2
3.

In Algorithm 3, one will edit the GenerateClassFromSBox step to either generate

AE or PE classes resulting in the exhaustive search of AE or PE classes.

We note that we order the AE and PE classes lexicographically. In a AE/PE

class we search though all representatives and find the S-Box with the smallest lexi-

cographical representation and let that S-Box represent the class. We then order the
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Algorithm 3: Pseudocode to Generate AE/PE Classes in Ternary Case
Study

Result: List of AE/PE Classes
Generate CompFunctionsArr containing all balances trit functions Initialize
ClassList structure

for index1 = 0, to len(CompFunctionsArr) do
CompFunction1 = CompFunctionsArr[index1];
for index2 = index1 + to len(CompFunctionsArr) do

CompFunction2 = CompFunctionsArr[index2];
if CompFunctionsCompatable(CompFunction1,CompFunction2) then

tempSBox = concat(CompFunction1,CompFunction2);
if tempSBox not in ClassList then

TempArr = GenerateClassFromSBox(tempSBox);
Append TempArr to ClassList;
if All S-Boxes Accounted For then

break our of both for loops
end

end

end

end

end
return ClassList;

AE and PE classes lexicographically based upon their representatives. As an exam-

ple the Identity S-Box (012345678) is the ’smallest’ S-Box lexicographically and the

AE/PE classes containing this S-Box will be AE0 and PE0

4.5.1 Two Digit Ternary Classes

Because of the proprieties of AE/PE classes, we can show that AE classes are union

of PE classes. As we already have the algorithm to generate the classes we will state

in this subsection the AE classes as union of PE Classes.

AE0 = PE0 ∪ PE9 ∪ PE10 ∪ PE11 ∪ PE14 ∪ PE15 ∪ PE421 ∪ PE422 ∪

PE423 ∪ PE426 ∪ PE427 ∪ PE1160 ∪ PE1161
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AE1 = PE1 ∪ PE4 ∪ PE5 ∪ PE6 ∪ PE7 ∪ PE8 ∪ PE16 ∪ PE38 ∪ PE43 ∪

PE59 ∪ PE69 ∪ PE84 ∪ PE90 ∪ PE106 ∪ PE116 ∪ PE133 ∪ PE138 ∪ PE153 ∪

PE176 ∪ PE179 ∪ PE197 ∪ PE202 ∪ PE223 ∪ PE224 ∪ PE243 ∪ PE259 ∪ PE278 ∪

PE285 ∪ PE299 ∪ PE313 ∪ PE327 ∪ PE338 ∪ PE357 ∪ PE367 ∪ PE384 ∪ PE394 ∪

PE399 ∪ PE407 ∪ PE417 ∪ PE418 ∪ PE419 ∪ PE420 ∪ PE449 ∪ PE792 ∪ PE802 ∪

PE942 ∪ PE953 ∪ PE1038 ∪ PE1048 ∪ PE1136

AE2 = PE2 ∪ PE3 ∪ PE12 ∪ PE13 ∪ PE415 ∪ PE416 ∪ PE424 ∪ PE425 ∪

PE671 ∪ PE674 ∪ PE676 ∪ PE934 ∪ PE937 ∪ PE940 ∪ PE995 ∪ PE996 ∪ PE1003 ∪

PE1005 ∪ PE1006 ∪ PE1100 ∪ PE1102 ∪ PE1103 ∪ PE1148 ∪ PE1149 ∪ PE1150 ∪

PE1151 ∪ PE1152 ∪ PE1153 ∪ PE1154 ∪ PE1155 ∪ PE1156 ∪ PE1157 ∪ PE1158 ∪

PE1159

AE3 = PE17 ∪ PE23 ∪ PE25 ∪ PE27 ∪ PE28 ∪ PE30 ∪ PE33 ∪ PE39 ∪

PE42 ∪ PE47 ∪ PE48 ∪ PE50 ∪ PE52 ∪ PE55 ∪ PE57 ∪ PE58 ∪ PE68 ∪

PE70 ∪ PE72 ∪ PE74 ∪ PE77 ∪ PE79 ∪ PE80 ∪ PE85 ∪ PE91 ∪ PE94 ∪

PE97 ∪ PE98 ∪ PE99 ∪ PE101 ∪ PE103 ∪ PE105 ∪ PE115 ∪ PE118 ∪ PE120 ∪

PE121 ∪ PE124 ∪ PE126 ∪ PE128 ∪ PE134 ∪ PE137 ∪ PE141 ∪ PE143 ∪ PE146 ∪

PE148 ∪ PE149 ∪ PE151 ∪ PE154 ∪ PE161 ∪ PE162 ∪ PE164 ∪ PE166 ∪ PE168 ∪

PE169 ∪ PE171 ∪ PE175 ∪ PE180 ∪ PE186 ∪ PE188 ∪ PE189 ∪ PE191 ∪ PE193 ∪

PE198 ∪ PE201 ∪ PE209 ∪ PE211 ∪ PE212 ∪ PE214 ∪ PE216 ∪ PE222 ∪ PE225 ∪

PE227 ∪ PE228 ∪ PE233 ∪ PE237 ∪ PE238 ∪ PE242 ∪ PE244 ∪ PE249 ∪ PE250 ∪

PE251 ∪ PE254 ∪ PE256 ∪ PE258 ∪ PE262 ∪ PE265 ∪ PE269 ∪ PE274 ∪ PE277 ∪
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PE279 ∪ PE281 ∪ PE284 ∪ PE286 ∪ PE288 ∪ PE294 ∪ PE295 ∪ PE298 ∪ PE300 ∪

PE304 ∪ PE306 ∪ PE307 ∪ PE310 ∪ PE312 ∪ PE314 ∪ PE317 ∪ PE322 ∪ PE324 ∪

PE328 ∪ PE330 ∪ PE332 ∪ PE335 ∪ PE337 ∪ PE341 ∪ PE344 ∪ PE348 ∪ PE353 ∪

PE356 ∪ PE358 ∪ PE361 ∪ PE362 ∪ PE366 ∪ PE368 ∪ PE371 ∪ PE375 ∪ PE379 ∪

PE382 ∪ PE385 ∪ PE387 ∪ PE388 ∪ PE393 ∪ PE395 ∪ PE400 ∪ PE402 ∪ PE406 ∪

PE410 ∪ PE413 ∪ PE429 ∪ PE432 ∪ PE433 ∪ PE435 ∪ PE436 ∪ PE440 ∪ PE441 ∪

PE443 ∪ PE451 ∪ PE453 ∪ PE454 ∪ PE455 ∪ PE456 ∪ PE458 ∪ PE468 ∪ PE478 ∪

PE480 ∪ PE482 ∪ PE490 ∪ PE493 ∪ PE498 ∪ PE500 ∪ PE501 ∪ PE511 ∪ PE513 ∪

PE527 ∪ PE528 ∪ PE533 ∪ PE539 ∪ PE550 ∪ PE555 ∪ PE563 ∪ PE564 ∪ PE568 ∪

PE569 ∪ PE570 ∪ PE571 ∪ PE589 ∪ PE590 ∪ PE592 ∪ PE597 ∪ PE598 ∪ PE599 ∪

PE612 ∪ PE613 ∪ PE614 ∪ PE619 ∪ PE624 ∪ PE631 ∪ PE635 ∪ PE641 ∪ PE646 ∪

PE648 ∪ PE657 ∪ PE659 ∪ PE661 ∪ PE678 ∪ PE683 ∪ PE686 ∪ PE687 ∪ PE690 ∪

PE697 ∪ PE704 ∪ PE707 ∪ PE712 ∪ PE719 ∪ PE722 ∪ PE730 ∪ PE731 ∪ PE733 ∪

PE744 ∪ PE748 ∪ PE753 ∪ PE763 ∪ PE764 ∪ PE766 ∪ PE770 ∪ PE773 ∪ PE778 ∪

PE780 ∪ PE781 ∪ PE783 ∪ PE787 ∪ PE788 ∪ PE790 ∪ PE799 ∪ PE800 ∪ PE804 ∪

PE808 ∪ PE810 ∪ PE823 ∪ PE828 ∪ PE832 ∪ PE839 ∪ PE844 ∪ PE860 ∪ PE862 ∪

PE869 ∪ PE870 ∪ PE875 ∪ PE882 ∪ PE885 ∪ PE888 ∪ PE890 ∪ PE894 ∪ PE898 ∪

PE906 ∪ PE910 ∪ PE912 ∪ PE917 ∪ PE925 ∪ PE929 ∪ PE946 ∪ PE950 ∪ PE951 ∪

PE952 ∪ PE958 ∪ PE959 ∪ PE962 ∪ PE969 ∪ PE973 ∪ PE977 ∪ PE980 ∪ PE990 ∪

PE1009 ∪ PE1014 ∪ PE1016 ∪ PE1019 ∪ PE1024 ∪ PE1026 ∪ PE1032 ∪ PE1034 ∪

PE1039 ∪ PE1043 ∪ PE1054 ∪ PE1057 ∪ PE1064 ∪ PE1066 ∪ PE1072 ∪ PE1073 ∪

PE1075 ∪ PE1078 ∪ PE1079 ∪ PE1082 ∪ PE1091 ∪ PE1093 ∪ PE1104 ∪ PE1110 ∪

PE1112 ∪ PE1118 ∪ PE1126 ∪ PE1127 ∪ PE1139 ∪ PE1141
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AE4 = PE18 ∪ PE21 ∪ PE22 ∪ PE26 ∪ PE31 ∪ PE32 ∪ PE35 ∪ PE36 ∪

PE41 ∪ PE45 ∪ PE46 ∪ PE49 ∪ PE53 ∪ PE54 ∪ PE61 ∪ PE62 ∪ PE64 ∪

PE67 ∪ PE71 ∪ PE75 ∪ PE78 ∪ PE81 ∪ PE82 ∪ PE86 ∪ PE88 ∪ PE92 ∪

PE95 ∪ PE96 ∪ PE100 ∪ PE104 ∪ PE108 ∪ PE109 ∪ PE111 ∪ PE114 ∪ PE119 ∪

PE122 ∪ PE123 ∪ PE127 ∪ PE130 ∪ PE131 ∪ PE136 ∪ PE140 ∪ PE144 ∪ PE145 ∪

PE147 ∪ PE150 ∪ PE155 ∪ PE158 ∪ PE165 ∪ PE167 ∪ PE170 ∪ PE174 ∪ PE178 ∪

PE181 ∪ PE184 ∪ PE185 ∪ PE192 ∪ PE194 ∪ PE195 ∪ PE199 ∪ PE204 ∪ PE205 ∪

PE207 ∪ PE208 ∪ PE213 ∪ PE217 ∪ PE218 ∪ PE221 ∪ PE226 ∪ PE231 ∪ PE232 ∪

PE234 ∪ PE239 ∪ PE240 ∪ PE245 ∪ PE247 ∪ PE248 ∪ PE253 ∪ PE257 ∪ PE260 ∪

PE263 ∪ PE266 ∪ PE268 ∪ PE271 ∪ PE273 ∪ PE276 ∪ PE282 ∪ PE287 ∪ PE289 ∪

PE290 ∪ PE292 ∪ PE296 ∪ PE301 ∪ PE303 ∪ PE305 ∪ PE309 ∪ PE315 ∪ PE318 ∪

PE320 ∪ PE323 ∪ PE326 ∪ PE329 ∪ PE331 ∪ PE334 ∪ PE336 ∪ PE339 ∪ PE342 ∪

PE345 ∪ PE347 ∪ PE350 ∪ PE352 ∪ PE355 ∪ PE360 ∪ PE364 ∪ PE369 ∪ PE373 ∪

PE376 ∪ PE378 ∪ PE381 ∪ PE386 ∪ PE389 ∪ PE391 ∪ PE398 ∪ PE401 ∪ PE403 ∪

PE405 ∪ PE408 ∪ PE411 ∪ PE428 ∪ PE434 ∪ PE437 ∪ PE438 ∪ PE444 ∪ PE447 ∪

PE448 ∪ PE452 ∪ PE469 ∪ PE481 ∪ PE502 ∪ PE512 ∪ PE535 ∪ PE553 ∪ PE581 ∪

PE588 ∪ PE606 ∪ PE623 ∪ PE649 ∪ PE685 ∪ PE699 ∪ PE715 ∪ PE721 ∪ PE743 ∪

PE754 ∪ PE762 ∪ PE779 ∪ PE785 ∪ PE786 ∪ PE789 ∪ PE791 ∪ PE793 ∪ PE798 ∪

PE801 ∪ PE803 ∪ PE806 ∪ PE809 ∪ PE811 ∪ PE826 ∪ PE840 ∪ PE854 ∪ PE876 ∪

PE905 ∪ PE920 ∪ PE933 ∪ PE941 ∪ PE944 ∪ PE948 ∪ PE954 ∪ PE957 ∪ PE984 ∪

PE1018 ∪ PE1030 ∪ PE1036 ∪ PE1042 ∪ PE1044 ∪ PE1047 ∪ PE1052 ∪ PE1071 ∪

PE1077 ∪ PE1081 ∪ PE1119 ∪ PE1121 ∪ PE1137

AE5 = PE19 ∪ PE20 ∪ PE34 ∪ PE37 ∪ PE40 ∪ PE44 ∪ PE60 ∪ PE63 ∪
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PE65 ∪ PE66 ∪ PE83 ∪ PE87 ∪ PE89 ∪ PE93 ∪ PE107 ∪ PE110 ∪ PE112 ∪

PE113 ∪ PE129 ∪ PE132 ∪ PE135 ∪ PE139 ∪ PE156 ∪ PE157 ∪ PE159 ∪ PE160 ∪

PE173 ∪ PE177 ∪ PE182 ∪ PE183 ∪ PE196 ∪ PE200 ∪ PE203 ∪ PE206 ∪ PE219 ∪

PE220 ∪ PE229 ∪ PE230 ∪ PE235 ∪ PE241 ∪ PE246 ∪ PE252 ∪ PE261 ∪ PE267 ∪

PE270 ∪ PE272 ∪ PE283 ∪ PE291 ∪ PE293 ∪ PE297 ∪ PE302 ∪ PE308 ∪ PE319 ∪

PE321 ∪ PE325 ∪ PE333 ∪ PE340 ∪ PE346 ∪ PE349 ∪ PE351 ∪ PE359 ∪ PE363 ∪

PE372 ∪ PE374 ∪ PE377 ∪ PE383 ∪ PE390 ∪ PE392 ∪ PE397 ∪ PE404 ∪ PE409 ∪

PE414 ∪ PE430 ∪ PE431 ∪ PE442 ∪ PE445 ∪ PE446 ∪ PE450 ∪ PE457 ∪ PE459 ∪

PE463 ∪ PE471 ∪ PE472 ∪ PE477 ∪ PE479 ∪ PE483 ∪ PE487 ∪ PE489 ∪ PE494 ∪

PE497 ∪ PE499 ∪ PE505 ∪ PE510 ∪ PE514 ∪ PE517 ∪ PE522 ∪ PE524 ∪ PE525 ∪

PE529 ∪ PE536 ∪ PE540 ∪ PE543 ∪ PE546 ∪ PE554 ∪ PE557 ∪ PE560 ∪ PE562 ∪

PE574 ∪ PE577 ∪ PE582 ∪ PE583 ∪ PE586 ∪ PE587 ∪ PE593 ∪ PE603 ∪ PE604 ∪

PE607 ∪ PE608 ∪ PE618 ∪ PE621 ∪ PE629 ∪ PE630 ∪ PE634 ∪ PE636 ∪ PE642 ∪

PE651 ∪ PE654 ∪ PE656 ∪ PE662 ∪ PE666 ∪ PE667 ∪ PE669 ∪ PE672 ∪ PE673 ∪

PE675 ∪ PE679 ∪ PE689 ∪ PE692 ∪ PE693 ∪ PE695 ∪ PE698 ∪ PE702 ∪ PE703 ∪

PE706 ∪ PE714 ∪ PE718 ∪ PE724 ∪ PE727 ∪ PE729 ∪ PE732 ∪ PE734 ∪ PE740 ∪

PE741 ∪ PE747 ∪ PE750 ∪ PE752 ∪ PE755 ∪ PE760 ∪ PE765 ∪ PE767 ∪ PE769 ∪

PE774 ∪ PE777 ∪ PE782 ∪ PE784 ∪ PE794 ∪ PE795 ∪ PE796 ∪ PE805 ∪ PE807 ∪

PE813 ∪ PE815 ∪ PE818 ∪ PE820 ∪ PE821 ∪ PE825 ∪ PE834 ∪ PE835 ∪ PE836 ∪

PE841 ∪ PE848 ∪ PE850 ∪ PE851 ∪ PE852 ∪ PE856 ∪ PE857 ∪ PE859 ∪ PE871 ∪

PE872 ∪ PE874 ∪ PE877 ∪ PE883 ∪ PE884 ∪ PE886 ∪ PE887 ∪ PE891 ∪ PE896 ∪

PE899 ∪ PE900 ∪ PE902 ∪ PE913 ∪ PE914 ∪ PE918 ∪ PE919 ∪ PE921 ∪ PE926 ∪

PE927 ∪ PE930 ∪ PE931 ∪ PE935 ∪ PE936 ∪ PE938 ∪ PE939 ∪ PE943 ∪ PE945 ∪

PE947 ∪ PE955 ∪ PE960 ∪ PE961 ∪ PE963 ∪ PE965 ∪ PE971 ∪ PE972 ∪ PE974 ∪
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PE976 ∪ PE979 ∪ PE982 ∪ PE983 ∪ PE987 ∪ PE991 ∪ PE992 ∪ PE993 ∪ PE994 ∪

PE997 ∪ PE998 ∪ PE999 ∪ PE1000 ∪ PE1001 ∪ PE1002 ∪ PE1007 ∪ PE1011 ∪

PE1015 ∪ PE1022 ∪ PE1025 ∪ PE1029 ∪ PE1033 ∪ PE1035 ∪ PE1037 ∪ PE1040 ∪

PE1045 ∪ PE1055 ∪ PE1056 ∪ PE1058 ∪ PE1060 ∪ PE1061 ∪ PE1062 ∪ PE1067 ∪

PE1069 ∪ PE1074 ∪ PE1076 ∪ PE1080 ∪ PE1083 ∪ PE1085 ∪ PE1087 ∪ PE1089 ∪

PE1094 ∪ PE1095 ∪ PE1097 ∪ PE1099 ∪ PE1106 ∪ PE1109 ∪ PE1115 ∪ PE1116 ∪

PE1117 ∪ PE1122 ∪ PE1124 ∪ PE1125 ∪ PE1128 ∪ PE1130 ∪ PE1131 ∪ PE1132 ∪

PE1133 ∪ PE1134 ∪ PE1135 ∪ PE1138 ∪ PE1140 ∪ PE1143 ∪ PE1144 ∪ PE1145 ∪

PE1147

AE6 = PE24 ∪ PE29 ∪ PE51 ∪ PE56 ∪ PE73 ∪ PE76 ∪ PE102 ∪ PE117 ∪

PE125 ∪ PE142 ∪ PE152 ∪ PE163 ∪ PE172 ∪ PE187 ∪ PE190 ∪ PE210 ∪ PE215 ∪

PE236 ∪ PE255 ∪ PE264 ∪ PE275 ∪ PE280 ∪ PE311 ∪ PE316 ∪ PE343 ∪ PE354 ∪

PE365 ∪ PE370 ∪ PE380 ∪ PE396 ∪ PE412 ∪ PE439 ∪ PE797 ∪ PE949 ∪ PE956 ∪

PE1041 ∪ PE1046

AE7 = PE460 ∪ PE461 ∪ PE462 ∪ PE464 ∪ PE467 ∪ PE470 ∪ PE473 ∪ PE474 ∪

PE475 ∪ PE476 ∪ PE484 ∪ PE486 ∪ PE488 ∪ PE491 ∪ PE492 ∪ PE495 ∪ PE496 ∪

PE504 ∪ PE506 ∪ PE507 ∪ PE509 ∪ PE515 ∪ PE516 ∪ PE518 ∪ PE519 ∪ PE521 ∪

PE523 ∪ PE526 ∪ PE530 ∪ PE531 ∪ PE537 ∪ PE538 ∪ PE541 ∪ PE542 ∪ PE544 ∪

PE545 ∪ PE547 ∪ PE548 ∪ PE551 ∪ PE552 ∪ PE556 ∪ PE558 ∪ PE559 ∪ PE561 ∪

PE565 ∪ PE566 ∪ PE573 ∪ PE575 ∪ PE576 ∪ PE578 ∪ PE579 ∪ PE580 ∪ PE585 ∪

PE594 ∪ PE595 ∪ PE600 ∪ PE601 ∪ PE602 ∪ PE605 ∪ PE609 ∪ PE610 ∪ PE611 ∪

PE615 ∪ PE616 ∪ PE617 ∪ PE622 ∪ PE625 ∪ PE626 ∪ PE628 ∪ PE633 ∪ PE637 ∪
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PE638 ∪ PE639 ∪ PE640 ∪ PE643 ∪ PE644 ∪ PE645 ∪ PE647 ∪ PE650 ∪ PE652 ∪

PE655 ∪ PE658 ∪ PE660 ∪ PE663 ∪ PE664 ∪ PE665 ∪ PE677 ∪ PE680 ∪ PE682 ∪

PE684 ∪ PE688 ∪ PE691 ∪ PE696 ∪ PE700 ∪ PE701 ∪ PE705 ∪ PE708 ∪ PE709 ∪

PE710 ∪ PE711 ∪ PE716 ∪ PE717 ∪ PE720 ∪ PE723 ∪ PE726 ∪ PE728 ∪ PE735 ∪

PE736 ∪ PE737 ∪ PE739 ∪ PE742 ∪ PE745 ∪ PE749 ∪ PE751 ∪ PE756 ∪ PE758 ∪

PE759 ∪ PE761 ∪ PE768 ∪ PE771 ∪ PE772 ∪ PE776 ∪ PE812 ∪ PE814 ∪ PE816 ∪

PE817 ∪ PE822 ∪ PE824 ∪ PE829 ∪ PE830 ∪ PE833 ∪ PE837 ∪ PE838 ∪ PE842 ∪

PE843 ∪ PE845 ∪ PE846 ∪ PE849 ∪ PE855 ∪ PE858 ∪ PE861 ∪ PE863 ∪ PE865 ∪

PE866 ∪ PE867 ∪ PE873 ∪ PE879 ∪ PE881 ∪ PE889 ∪ PE892 ∪ PE895 ∪ PE897 ∪

PE901 ∪ PE903 ∪ PE904 ∪ PE907 ∪ PE909 ∪ PE911 ∪ PE915 ∪ PE916 ∪ PE922 ∪

PE924 ∪ PE928 ∪ PE932 ∪ PE964 ∪ PE967 ∪ PE970 ∪ PE978 ∪ PE981 ∪ PE985 ∪

PE989 ∪ PE1010 ∪ PE1013 ∪ PE1017 ∪ PE1020 ∪ PE1023 ∪ PE1027 ∪ PE1028 ∪

PE1031 ∪ PE1050 ∪ PE1053 ∪ PE1063 ∪ PE1070 ∪ PE1084 ∪ PE1086 ∪ PE1090 ∪

PE1096 ∪ PE1098 ∪ PE1105 ∪ PE1111 ∪ PE1113 ∪ PE1114

AE8 = PE465 ∪ PE466 ∪ PE485 ∪ PE503 ∪ PE508 ∪ PE520 ∪ PE532 ∪ PE534 ∪

PE549 ∪ PE567 ∪ PE572 ∪ PE584 ∪ PE591 ∪ PE596 ∪ PE620 ∪ PE627 ∪ PE632 ∪

PE653 ∪ PE668 ∪ PE670 ∪ PE681 ∪ PE694 ∪ PE713 ∪ PE725 ∪ PE738 ∪ PE746 ∪

PE757 ∪ PE775 ∪ PE819 ∪ PE827 ∪ PE831 ∪ PE847 ∪ PE853 ∪ PE864 ∪ PE868 ∪

PE878 ∪ PE880 ∪ PE893 ∪ PE908 ∪ PE923 ∪ PE966 ∪ PE968 ∪ PE975 ∪ PE986 ∪

PE988 ∪ PE1004 ∪ PE1008 ∪ PE1012 ∪ PE1021 ∪ PE1049 ∪ PE1051 ∪ PE1059 ∪

PE1065 ∪ PE1068 ∪ PE1088 ∪ PE1092 ∪ PE1101 ∪ PE1107 ∪ PE1108 ∪ PE1120 ∪

PE1123 ∪ PE1129 ∪ PE1142 ∪ PE1146
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4.6 Generalized GIFT Encryption Scheme

In this section, we will give a general description on how we take a SPN cipher such as

GIFT and generalized it to work over any prime power. This is more of a theoretical

section and will not have any implementation details but we then will show how to

implement such a structure in our ternary case study on binary hardware.

First, we will go over the parameters of the GIFT64 SPN cipher in the classical bi-

nary setting. The GIFT64 cipher operates on a block size of 64 bits in which the

blocks can be represented as elements in F64
2 . The sub-round function S-Box layer

is a function of F4
2 → F4

2 in which 4 is a factor of the block size 64. The permBits

layer acts as a bit permutation on the state of bits in the block F64
2 . Lastly, the add

round key performs the XOR operation on the block state with a given round key in

which both are elements in F64
2 and the XOR operation is addition modulo 2 to the

two 64-bit states.

With the base parameter set known in the binary case we will now describe a gener-

alisation of the GIFT64 cryptosystem by going into detail on how to generalize each

of the parameters.

4.6.1 Generalized Block Structure

In our generalization, instead of considering 64-bit blocks, we consider a set of m

elements in Fp which can be denoted as Fmp . In order to operate on real world data,

one can convert any base 2 or base 10 number to be a base p number for operation

on this cryptographic scheme.
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4.6.2 Generalized S-Box Structure

The generalized S-Box will be bijective S-Boxes of the form Fnp → Fnp in which n is a

factor of the block size m. We make the relationship of n,m because we want there

to not be ’fractional’ S-Boxes in the cryptographic scheme and in this structure there

will be m
n

full S-Boxes being computed on each round. The propriety of being a bijec-

tive S-Box is needed in order to invert the S-Box for decryption. While one can use

m
n

different S-Boxes, we will consider all S-Boxes to be the same to keep lightweight

proprieties since this is based upon the GIFT64 scheme and the binary construction

of this scheme is made for the lightweight setting.

As for S-Box proprieties, we note that a S-Box in Fnp can be denoted as a concate-

nation of n different component function acting in Fnp → Fp. Because of this, in

determining the security of a generalized S-Box one can consider the S-Box itself

and the component functions to evaluate the security of the S-Box in the generalized

setting.

4.6.3 Generalized Permutation Structure

While the classical sub-round function is denoted as permBits in the general setting,

we are not permuting bits so we should not note this layer is ’permBits’ but is is

a permutation on the block state in Fmp . This layer operates a permutation on the

elements in the vector Fmp and must be invertible.

4.6.4 Add Round Key

As the last sub-round function, the add round key is also similar to the binary case

except instead of the block state and key being elements in Fm2 they are elements

in Fmp . In order to do the addition we consider the addition of the vectors element
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wise mod p which is also denoted as ⊕p. Unlike the binary case of XOR in which

addition (⊕) and subtraction (	) are the same operating we denote modular addition

and subtraction to be (⊕p) and (	p) During the encryption process, we use modular

addition to add the round key and during the decryption process, we use modular

subtraction to undo the key addition.

4.7 Ternary GIFT Encryption Scheme

In this section, we will be applying the theoretical foundations on generalized GIFT

cryptographic scheme and develop a creation of ternary GIFT. This ternary GIFT

cryptographic scheme will operate on a block of 32-trits, also noted as F32
3 . The S-Box

layer of this scheme will be a two trit to two trit function described as F2
3 → F2

3. The

permutation layer will be a trit permutation on the 32 trit block state.

This section will go into detail of the mathematical structure of our ternary case

study as well as give details on how we construct our implementation of the ternary

cryptosystem to work on binary micro-controllers which were coded up in C for our

case study. Similar to the binary version of GIFT, our case study has a SPN structure

and uses iterated round in which each round has S-Box, PermTrits, and add round

key layers.

4.7.1 S-Box

In our case study, we use varying S-Boxes that will be defined in a later section. We

note that any S-Box in our study will need to be a bijective function in F2
3 → F2

3.

A sample of our first S-Box in the trit notation is shown below in Table 4.4 The

notation shown above, in Table 4.4, is the two trit notation but as it takes up a

significant amount of room to display we will note the ASCII notation which is the
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Table 4.4: Ternary GIFT Sample S-Box

x 00 01 02 10 11 12 20 21 22
S1(x) 02 12 11 00 01 10 21 20 22

the decimal output of the S-Box in order of the inputs from 0 to 8. The ASCII

representation of the S-Box S1 shown in Table 4.4 is 254013768 which indication

S1(0) = 2, S1(1) = 4, ..., S1(8) = 8.

4.7.2 PermTrits

Compared to the binary case, we are permuting trits (the BCT two bit quantities)

instead of bits. The permutation table is shown below for our 32-trit GIFT imple-

mentation: As there is no 32-bit version of GIFT, we constructed a PermTrits 32-trit

Table 4.5: Ternary GIFT - (PermTrits) Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 8 16 24 1 9 17 25 2 10 18 26 3 11 19 27

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 12 20 28 5 13 21 29 6 14 22 30 7 15 23 31

version. If we were to extend our work to be a 64-trit (128-bit), we could use the

permutation table lookup of GIFT64.

4.7.3 Add Round Key

For use in encryption, we use modular addition of a vector of length n that can also

be represented as Fn3 . In our case, we consider a 32-trit block cipher so n = 32.

As noted previously, we will be computing addition mod 3 on the vectors and our

notation of adding two vectors mod 3 is c = a⊕3 b When performing the decryption

operation, we will use modular subtraction instead of modular addition which is noted

as c = a	3 b or c = a⊕3 (−b) that denotes adding the inverse vector with respect to
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addition mod 3.

Example single and two trit addition Cayley tables are shown below:

Table 4.6: Single Trit Modular Addition Cayley Table

⊕3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Table 4.7: Two Trit Modular Addition Cayley Table

⊕3 00 01 02 10 11 12 20 21 22

00 00 01 02 10 11 12 20 21 22
01 01 02 00 11 12 10 21 22 20
02 02 00 01 12 10 11 22 20 21
10 10 11 12 20 21 22 00 01 02
11 11 12 10 21 22 20 01 02 00
12 12 10 11 22 20 21 02 00 01
20 20 21 22 00 01 02 10 11 12
21 21 22 20 01 02 00 11 12 10
22 22 20 21 02 00 01 12 10 11

4.7.4 Key Scheduler

For our case study we needed a way to crate 28 round keys from the 64-trit private

key. Taking inspiration from (Banik et al., 2017) we created a key scheduler for our

ternary case study and it is defined below:

In our ternary case study the key scheduler takes as input a 64-trit key and

produces 28 round keys from the 64-trit private key. The private key and round

keys are interpreted as binary coded trits (BCT) in our implementation for micro-

controllers that have an 8-bit native data type. In the beginning of the key scheduling

process, the BCT private key is stored in what we define as a keyState(KS) that holds
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16 4-trit chunks of data and we denote || to be the concatenation operation.

KS = ks15||ks14||ks13||ks12||ks11||ks10||ks9||ks8||

ks7||ks6||ks5||ks4||ks3||ks2||ks1||ks0 (4.86)

For each round we extract quantities from the key-state that are noted as U and V

each being 8-trit quantities. The first 8 trit quantities are stored as U quantity and

the second 8 trit quantities are stored as the V quantity such that U and V combined

store 16-trits of information relating to the private key.

U = ks1||ks0 (4.87)

V = ks3||ks2 (4.88)

Next, we create a round key by extracting data from the U/V quantities into a round

key that will be 32-trits long. We note that in our 32-trit round keys 16-trits are set

to 003 and the other 16-trits are extracted from the U/V quantities. Let us consider

the U/V quantities concatenated together and viewed as trits to be:

U ||V = u7||u6||u5||u4||u3||u2||u1||u0||v7||v6||v5||v4||v3||v2||v1||v0 (4.89)

In which the ui and vi are 1-trit quantities.

We initialize a round key to be a 32-trit value in which all trits start with the
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value of 003 for each trit value bi and we consider the round key to be:

RK = b31||b30||b29||b28||b27||b26||b25||b24||b23||b22||b21||b20||b19||b18||b17||b16||

b15||b14||b13||b12||b11||b10||b9||b8||b7||b6||b5||b4||b3||b2||b1||b0 (4.90)

Using our U/V quantities we store the 16-trits of active key information into the

round key as follows:

b2∗i+16 ← vi, b2∗i ← ui, ∀i ∈ {0, 1, ..., 7} (4.91)

After the extraction of the U/V values into the round key this round is complete and

the key state will need to be updated in preparation for the creation of the next round

key. Consider the key state in binary as a concatenation of 16 4-trit values:

KS = ks15||ks14||ks13||ks12||ks11||ks10||ks9||ks8||

ks7||ks6||ks5||ks4||ks3||ks2||ks1||ks0 (4.92)

The key state is updated as follows in which ksi <<3 j and ksi >>3 j denotes

a left/right trit shift (not-cyclical) of ksi by j trits, || denotes concatenation and |

denoted the OR operation which in this use case is the same as addition:

KS ← (ks3 >>3 1|ks2 <<3 3)||(ks2 >>3 1|ks3 <<3 3)||(ks0 >>3 2|ks1 <<3 2)||

(ks1 >>3 2|ks0 <<3 2)||ks15||ks14||ks13||ks12||

ks11||ks10||ks9||ks8||ks7||ks6||ks5||ks4 (4.93)
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In our implementation we did not add round constants unlike what they do in the

GIFT64 scheme (Banik et al., 2017). This process is repeated for the other 27 round

keys.

4.8 Case Study Ternary S-Boxes

In our case study, we exhaustively search all bijective S-Boxes in 32 and classify all

9! S-Boxes into permutation modular addition equivalence classes (PE) and affine

equivalence classes (AE).

Within the PE classes there exist 1,162 classes and their distribution is shown

in Table 4.8 below: We note that within the PE classes the PE class size is always

Table 4.8: Ternary S-Box PE Class Distribution

Size Number of Classes

18 2
36 11
54 4
108 30
162 14
324 1101

divisible by the number of inner PE transformation that is 2! ∗ 32 = 18 in which 32

the number of elements in F2
3 and 2! is the number of trit permutation of degree 2.

Similarly, we do the same for the affine classes and their results are shown below in

which there exist 9 affine classes in our 32 case study:

Similar to the PE class, all of the AE class sizes are divisible by 48 ∗ 32 = 432

which is equal to the number of inner transformations in AE because there are 48

invertible 2x2 matrices with elements in F3 and 32 are the number of elements in F2
3

We will now list the S-Boxes in AE/PE classes with S-Box representatives, AE/PE
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Table 4.9: Ternary S-Box AE Class Distribution

Size Number of Classes

432 1
3,456 1
11,664 1
15,552 1
20,736 1
62,208 2
93,312 2

size and class number, metric scores, and CPA status. We denote Success to be

successful after a large amount of trances meaning that the mean SR of that given

execution is larger than 10%. In our case study we conduct our experiments with a

fixed trace/plaintext input of 400 pairs. Fail will denote never being able to recover

the full private key given 400 traces which mans that the mean SR of Fail S-Boxes is

0%. Near Success Denotes having some success in recovering the private key and the

mean SR value is in the interval of 1% to 10%.

4.9 Ternary GIFT: A Case Study

In the binary case the transformation of a theoretical structure of a SPN cipher to

be coded into a micro-controller of FPGA, in our ternary case study it is not straight

forward and in this section we will be stating details we used in our implementation

of our ternary case study using base 2 micro-controllers.

4.9.1 Software Implementation of Ternary Values

Firstly we wanted to keep the concatenation of data form trits to a collection of trits

so we consider a trit to be a 2-bit number. We chose our two bit values carefully so

that each of the trits have a different Hamming weight in the base 2 implementation.
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Table 4.10: Ternary S-Boxes with PE Classes and Metrics

PE Class PE Class S-Box CPA NL SNR DPA TO RTO CC
Number Size Status SNR

PE Classes with multiple representatives

S1

273 324

254013768 Success 1 20.749 18.342 3.417 1.53 1.239
S16 062835417 Fail 1 20.075 18.342 3.417 1.53 0.113
S17 102647853 Fail 1 9.348 22.045 3.417 1.53 0.338
S18 306281754 Fail 1 17.907 18.342 3.417 1.53 0.338

S19

519 324

042685713 Success 1.267 17.986 22.045 3.417 1.53 0.338
S20 157820634 Success 1.267 12.449 18.343 3.417 1.53 1.239
S21 340781625 Fail 1.267 20.638 18.342 3.417 1.53 0.113
S3 013247865 Fail 1.267 23.474 18.342 3.417 1.53 1.239

PE Classes with two representatives

S2
1160 36

048561723 Success 0 25.904 12.727 2.25 2 1.014
S23 570624138 Success 0 28.731 12.727 2.25 2 1.014

S8
589 324

854013762 Success 1 14.439 18.342 3.417 1.53 1.239
S24 074823516 Fail 1 13.617 19.092 3.417 1.53 1.239

S12
409 324

184306275 Success 1 21.016 18.342 3.25 1.53 0.113
S25 073265481 Success 1 17.555 18.342 3.25 1.53 0.338

S13
108 324

184723056 Success 1 16.713 22.045 3.417 1.53 0.338
S26 051237648 Success 1 20.398 18.343 3.417 1.53 0.113

S15
608 324

184730625 Near Success 1 12.522 18.342 3.417 1.53 1.239
S27 073562418 Success 1 27.326 18.342 3.417 1.53 1.239

S9
953 324

548061723 Success 0 13.401 22.045 3.417 2 1.014
S28 061548723 Near Success 0 21.31 22.045 3.417 2 1.014

S11
1035 324

184256703 Success 1 16.694 18.342 3.25 1.53 0.338
S29 064817532 Near Success 1 19.109 18.342 3.25 1.53 0.113

S4
1004 324

013652748 Fail 1.267 33.538 18.342 3.25 1.53 1.239
S30 064781352 Success 1.267 11.588 18.342 3.25 1.53 0.113

S5
2 108

012345786 Fail 0 11.551 15.558 2.5 2 0.338
S31 186420753 Success 0 18.102 15.558 2.5 2 0.338

S6
517 324

013246785 Fail 1 26.499 22.045 3.75 1.333 2.126
S32 065348127 Fail 1 9.619 22.045 3.75 1.333 2.126

S7
151 324

178026354 Fail 1 8.339 19.091 3.417 1.53 1.014
S33 056124783 Success 1 14.009 18.343 3.417 1.53 0.338

S10
302 324

184027356 Fail 1 13.149 19.342 3.417 1.53 1.239
S34 062781453 Success 1 14.739 18.343 3.417 1.53 0.113

S14
131 324

184725063 Fail 1 23.865 18.342 3.417 1.53 0.113
S35 056174283 Fail 1 17.922 18.342 3.417 1.53 1.239

S22
311 324

012487563 Success 1 12.341 19.091 3.333 1.666 0.638
S36 058327614 Fail 1 17.759 19.091 3.333 1.666 0.413
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Table 4.11: Ternary S-Boxes with AE Classes and Metrics

AE Class AE Class S-Box CPA NL SNR DPA TO RTO CC
Number Size Status SNR

AE Classes with multiple representatives

S1

4 62,208

254013768 Success 1 20.749 18.342 3.416 1.53 1.239
S13 184723056 Success 1 16.713 22.045 3.417 1.53 0.338
S26 051237648 Success 1 20.398 18.343 3.417 1.53 0.113
S16 062835417 Fail 1 20.075 18.342 3.417 1.53 0.113
S17 102647853 Fail 1 9.348 22.045 3.417 1.53 0.338
S14 184725063 Fail 1 23.865 18.342 3.417 1.53 0.113
S18 306281754 Fail 1 17.907 18.342 3.417 1.53 0.338
S35 056174283 Fail 1 17.922 18.342 3.417 1.53 1.239

S19

7 62,208

042685713 Success 1.267 17.986 22.045 3.417 1.53 0.338
S20 157820634 Success 1.267 12.449 18.343 3.417 1.53 1.239
S21 340781625 Fail 1.267 20.638 18.342 3.417 1.53 0.113
S3 013247865 Fail 1.267 23.474 18.342 3.417 1.53 1.239

S8

3 93,312

854013762 Success 1 14.439 18.342 3.417 1.53 1.239
S33 056124783 Success 1 14.009 18.343 3.417 1.53 0.338
S7 178026354 Fail 1 8.339 19.091 3.417 1.53 1.014
S24 074823516 Fail 1 13.617 19.092 3.417 1.53 1.239

S12

5 93,312

184306275 Success 1 21.016 18.342 3.25 1.53 0.113
S15 184730625 Near Success 1 12.522 18.342 3.417 1.53 1.239
S25 073265481 Success 1 17.555 18.342 3.25 1.53 0.338
S27 073562418 Success 1 27.326 18.342 3.417 1.53 1.239
S34 062781453 Success 1 14.739 18.343 3.417 1.53 0.113
S29 064817532 Near Success 1 19.109 18.342 3.25 1.53 0.113
S11 184256703 Success 1 16.694 18.342 3.25 1.53 0.338
S6 013246785 Fail 1 26.499 22.045 3.75 1.333 2.126
S10 184027356 Fail 1 13.149 19.342 3.417 1.53 1.239
S32 065348127 Fail 1 9.619 22.045 3.75 1.333 2.126

AE Classes with two representatives

S2
0 432

048561723 Success 0 25.904 12.727 2.25 2 1.014
S23 570624138 Success 0 28.731 12.727 2.25 2 1.014

S28
1 15,552

061548723 Near Success 0 21.31 22.045 3.417 2 1.014
S9 548061723 Success 0 13.401 22.045 3.417 2 1.014

S30
8 20,736

064781352 Success 1.267 11.588 18.342 3.25 1.53 0.113
S4 013652748 Fail 1.267 33.538 18.342 3.25 1.53 1.239

S31
2 3,456

186420753 Success 0 18.102 15.558 2.5 2 0.338
S5 012345786 Fail 0 11.551 15.558 2.5 2 0.338

S22
6 11,664

012487563 Success 1 12.341 19.091 3.333 1.666 0.638
S36 058327614 Fail 1 17.759 19.091 3.333 1.666 0.413

Our conversion from ternary trit to a 2 bit binary coded trit is shown below:

03 = 002 13 = 012 23 = 112 (4.94)
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Since S-Boxes in our case study are F2
3 → F2

3 there are 9 ’active’ BCT values and

7 values that denote error. The conversion from elements in F2
3 to binary nibbles is

shown below:

{0, 1, 2, 3, 4, 5, 6, 7, 8} −→ {0, 1, 3, 4, 5, 7, c, d, f} (4.95)

Because the 102 is not used in our implementation that leads to the 7 error conditions

so the nibbles {2, 6, 8, 9, a, b, e} because either the left two or right two bits are the

error value 102 when a nibble is represented in binary.

Because we can concatenate two trits to a nibbled binary, from that it is straightfor-

ward to concatenate two BCT nibbles to a BCT byte and concatenate a BCT byte

to a 64-bit (32-trit) block that will be used in our ternary GIFT cipher.

This implementation leads to trivial permTrits as instead of permuting 1-bit values

we permute 2-bit BCT values. Similarly for the key scheduling algorithm instead of

dealing with bits it deals with BCT trits but the conversion is trivial. As for the

S-Box layer, if the input is a BCT nibble the output will also lead to a BCT nibble

based upon the S-Box look up table in the BCT format.

We would also like to note that the implementation of the BCT effects the side

channel susceptibility. Originally we had the BCT values be 0b00, 0b01, and b010

but we were not able to have any success in CPA attacks while using thousands of

plaintext/trace pairs. While we only tried a few S-Boxes with this older implemen-

tation we stuck with the BCT described earlier because in each BCT value has a

different HW compared to our original implementation in which two of the three trits

have identical HW in the implementation for micro-controllers.
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4.9.2 Software Implementation of Ternary Addition

Because during the encryption process the traces need to be synchronized, during the

coding process of the ternary GIFT scheme we want to avoid if statements because

it will change the locations of the peaks and troughs during the collection of the

power trance based upon the input to the scheme. This is not a big deal for the

most part during the implementation except when we will need to perform ternary

modular addition during the add round key sub-round function. This is difficult

because we represent the trits as BCT values but when we perform addition it needs

to be evaluated as ternary addition. In order to solve this problem instead of using

if statements we created a look up table on all possible pairs of BCT values and the

lookup table holds the ternary sum of the given BCT values.

4.9.3 Error Cases of Inputs in Software Implementation

Because of the error conditions of the 102 valued BCT, when given input to plaintext

or key to the cryptographic scheme the inputs must be sanitized. This is needed

because during data collection we generate a random 64-bit plaintext and in some

cases we change the 64-bit key but we need to make sure when choosing these values

randomly that they are in the BCT from expressed earlier in this section. In order

to do this the sanitizing function takes in a 64-bit or 128-bit values and extract all

2-bit values and checks if they are the ’error’ value of 102. If it is the error value we

replace the value with one of the other 3 valid choices. For this case study any input

of 102 is replaced with 002 and those values that the sanitization occur on are keys

and plaintext values. In doing so we avoid the error conditions as input and because

of the BCT coding in the implementation it will not have BCT error conditions in

intermediary states in the cipher because of input sanitization.
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The follwing was added to the dissertaion to address prlaintext generation:

4.9.4 Algebraic Normal Form

Algebraic Normal Form (ANF) is a way to represent the component functions of

S-Boxes as polynomials modulo p which in our case is p = 3 for our case study.

ANF representation of binary S-Boxes are well studies such as the work of (Picek

et al., 2014a; Bakoev, 2017) but we will be extending their work to represent the

S-Boxes of GF (32) → GF (32). A S-Box in 32 can be viewed as a concatenation

of component functions in which each component function is a function of the form

GF (32)→ GF (3).

A classical binary case of component functions GF (24) → GF (2) in which the

ANF form of the component functions take the form of:

f1(x1, x2, x3, x4) = c0 + c1x1 + c2x2 + c3x3 + c4x4 + c5x1x2 + c6x1x3+

c7x1x4 + c8x2x3 + c9x2x4 + c10x3x4 + c11x1x2x3 + c12x1x2 + x4 + c13x1x3x4+

c14x2x3x4 + c15x1x2x3x4 modulo 2 (4.96)

In which the constants to the monomials are ci ∈ Z2 and there are 24 different

coefficients to consider.

In the case of component functions in GF (32) → GF (3) the structure is similar

in which they are 32 = 9 coefficients, but the ANF polynomials are in the form:

f1(x1, x2) = c0 + c1x1 + c2x
2
1 + c3x2 + c4x

2
2 + c5x1x2 + c6x

2
1x2+

c7x1x
2
2 + c8x

2
1x

2
2 modulo 3 (4.97)
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In which the ci ∈ Z3.

The ANF form can also be described as a summation

f(x1, x2) =
∑

u∈F2
3
aux

u modulo 3

Where xu = xu11 x
u2
2 and au ∈ F3

Any component function of an S-Box can be represented in ANF form and when

done can give valuable information of the algebraic construction of the component

function such as Min/Max degree and a representation of the non-linearly of the

function.

Let us consider an example using the ternary S-Box S1. The S-Box is defined as

Table 4.12: Ternary GIFT Sample

x 00 01 02 10 11 12 20 21 22
S1(x) 02 12 11 00 01 10 21 20 22

We will now separate the S-Box into it’s component functions:

Table 4.13: Ternary GIFT Sample

x1x2 00 01 02 10 11 12 20 21 22

f1(x1, x2) 2 2 1 0 1 0 1 0 2
f2(x1, x2) 0 1 1 0 0 1 2 2 2

The ANF polynomials for these two component functions are:

f2(x1, x2) = x21 + 2x2 + x22 + 2x1xx2 + x21x2 + 2x1x
2
2 modulo 3 (4.98)

In which we can apply the 9 options for input to the component functions:

f2(0, 0) = 0 (4.99)
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f2(1, 0) = (1)2 modulo 3 = 1 (4.100)

f2(2, 0) = (2)2 modulo 3 = 1 (4.101)

f2(0, 1) = 2 ∗ (1) + (1)2 modulo 3 = 0 (4.102)

f2(1, 1) = (1)2+2∗(1)+(1)2+2∗(1)∗(1)+(1)2∗(1)+2∗(1)∗(1)2 = 9 modulo 3 = 0

(4.103)

f2(2, 1) = (2)2 + 2(1) + (1)2 + 2(2)(1) + (2)2(1) + 2(2)(1)2 modulo 3 = 1 (4.104)

f2(0, 2) = 2(2) + (2)2 modulo 3 = 2 (4.105)

f2(1, 2) = (1)2 + 2(2) + (2)22(1)(2) + (1)2(2) + 2(1)(2)2 modulo 3 = 2 (4.106)

f2(2, 2) = (2)2 + 2(2) + (2)2 + 2(2)(2) + (2)2(2) + 2(2)(2)2 modulo 3 = 2 (4.107)



93

This example illustrated the 9 possible inputs to the component function f2 of S1 and

shows the ANF form equals the component function in Table 4.13.

For our use we use ANF to find the min/max degree of the S-Box but it also can

be used to algebraically describe the S-Box.

4.10 Ternary GIFT Correlation Power Analysis

Attack

Show how we adapted the CPA methodology to work in the ternary setting. In order

for fair evaluation across S-Boxes data was gathered in the following way.

One constant private key was used across all of our ternary experiments. That

constant private key was the sanitized default ChipWhisperer default key shown below

in base 10 form as BCT:

PrivateKey : [3, 124, 21, 20, 0, 12, 208, 4, 3, 247, 21, 0, 1, 207, 79, 60] (4.108)

Which is also mathematically viewed as each byte being 4 trits as shown in below in

the ternary form:

PrivateKey3 : [0002, 1220, 0111, 0110, 0000, 0020, 2100, 0010, 0002, 2212,

0111, 0000, 0001, 2022, 1022, 0220] (4.109)

For each S-Box we gathered a pool of 5,000 plaintext/trace pairs for use in our

CPA attack. Because of our ChipWisperer Lite’s restrictions we are only able to

gather around 23,000 voltage samples per trace so we must gather 4 separate data

pools, one for each of the first 4 round keys we are attacking and we use the 23,000
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samples per trace in all of our experiments. The plaintexts were gathered using the

ChipWisperer’s ktp.next() call (O’Flynn and Chen, 2014) using the ChipWhisperer

python library and then the plaintexts were truncated to be the correct bit length

and then are sanitized and used is input for encryption on our target device. Our

experiments for each S-Box require 5,000 plaintexts per pool and 4 pools for each

S-Box resulting in 20,000 plaintexts gathered per S-Box. Because we have 36 S-Boxes

in our case study that leads to 720,000 plaintext gathered for our case study.

5, 000 ∗ 4 ∗ 36 = 720, 000 (4.110)

It is worth noting that since each plaintext is chosen randomly the pools plaintext

are going to differ being the pools have different plaintexts during the data collection

process. We assume that the attacker has knowledge of the cryptographic scheme

and it’s implementation along with the 4 data pools gathered for each S-Box.

4.10.1 Correlation Power Analysis Attack Definitions in Ternary

Case Study

In our case study not every S-Box was able to successfully recover the private key using

the CPA attack. For S-Boxes that were successful in extracting the private key we can

use the mean success rate to perform the comparison on the resistance/susceptibility

to attack. For those S-Boxes that performed poorly during the CPA attack we will use

Guessing Entropy to compare the results of the CPA attack like they do in the work

of (Biryukov et al., 2016). Cite from theory to practice paper and give justification

on any changes/additions/reductions we make.

Similar to the base 2 chapter we run 100 experiments in our computation as one
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Algorithm 4: Experiment Pseudocode in Ternary Case Study

Result: SR and GE for each trace count
count = 0;
successCount = 0;
list initialized;
SRresults structure initialized;
GEresults structure initialized;
while count < Threshold do

Add random plaintext-voltage array pair to list;
Conduct CPA attack using list;
count++;
results[count] = CPA Success Rate (1/0);
GEresults[count] = Mean GE 0 ≤ x ≤ 2
if Successful then

successCount++;
if successCount == 5 then

Mark remaining SR results successful;
Mark remaining GE results 0.0;
return SR/GE results;

end

end
else

successCount = 0;
end

end
return SR/GE results;

trail and a trial in our ternary case study is defined in Algorithm 5

4.10.2 Correlation Power Analysis Attack in Ternary Case

Study

Similar to the binary CPA attack, the ternary attack on our Ternary GIFT imple-

mentation attacks sub-keys nibbles at a time. One difference we note as in the binary

case we have to consider all 16 possible nibbles, in our ternary case study we only

have to consider 9 because the other nibbles are error conditions. We still use the
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Algorithm 5: Ternary Trial Pseudocode

Result: Mean Success Rate for Each Trace Count
count = 0;
SRresults structure initialized;
GEresults structure initialized;
while count < 100 do

Execute Experiment;
Store results of experiment in the SR/GE results structure;
count++;

end
Average the results of the experiments for each trace count;
Return the mean GE/SR results;

hamming weight model and in doing so we consider the hamming weight of the BCT

nibble values. The correlation computation is the same as in the binary case.

In the binary case, given enough traces we were always able to compute the private

key in less than 250 traces. In the ternary case we have S-Boxes that are able to reach

100% mean success rate in 400 traces, some that are able to have mean success rate

larger than 0% but never reach 100%, and some S-Boxes never were successful in

extracting the key in our case study. We use two leakage models to compare the

CPA attack results on our ternary S-Boxes. The models are mean success rate and

mean guessing entropy. The mean success rate is used to compare the CPA attack

results of successfully extracting the key and the mean guessing entropy is used to

compare CPA results when we are unable to recover the key using the given S-Box.

Both of these metrics give numerical results that we can use and analyze to compare

a S-Boxes resistance/susceptibility to cryptographic power analysis attacks.
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4.11 Evaluation Framework

4.11.1 Measurement Setup

All experiments reported in this chapter were performed on target board being an

8-bit ATXMEGA micro-controller mounted on a CW308 UFO board. The control

board in our experiments is a CW-Lite FPGA that acts both as a control board for

our experiments and as a low cost oscilloscope. The control board has two connections

to the target board being a 20-pin ribbon cable for data transfer and a SMA cable to

measure voltage draw on the target device.

We mount the CPA attacks on a 8-bit native data type TernaryGIFT written

in C that runs as an extension of the CW simple serial protocol that is available

for use with Chip Whisperer software/hardware by NewAE. Within the C code also

exist a trigger that indicates to the oscilloscope to begin/end the trace. The only

modification to the C source code across our experiments is the S-Box look up tables.

In order for fair comparison the attacker needs to extract the same 128-bit private

key being the CW default key which is 0x037C1514000CD00403F7150001CF4F3C.

Also in all of our experiments in our ternary case study we use the same number of

trace/plaintext pairs being q = 400.

4.11.2 Experimental Result Metrics

In order to have a fair and uniform test we use some evaluation methodologies from

(Standaert et al., 2009). In this case study we use three different evaluation metrics to

experimentally measure how much information an attacker recovers when performing

the CPA attack. These metric measure if the attacker recovers the key, the statistical

positions of the correct sub-keys, and the difference of the correction coefficients in
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each possible sub-keys. Trough these metrics we experimentally measure how much

information an attacker gains during the CPA attack.

We recall that during the CPA attack, the attacker computes each of the sub-keys

separately in order to recover the round key. We use the selection function φ(x, k) to

be the output of the S-Box functions when the input to the S-Box is x ⊕p k where

k is the sub-key and x is a plaintext state. The following three metrics quantify the

information the attacker gains during the CPA attack as well is knowing these values

the amount of effort/computational time the attacker needs to break the private key.

Success Rate

Extending from the work of (Biryukov et al., 2016) we denote the Success Rate of

given a CPA attack the SR of an attack is one if the attack successfully computed

the private key and is 0 if the attack does not compute the private key. This is noted

in the formula below:

SR =


1, If derived key is the correct key

0,Otherwise

(4.111)

As we compute this over many experiment we note that the mean success rate is an

average over many experiments leading to a percentage value. We run experiments

100 times so each experiment success/failure is noted as a single percentage point.

In this description is a ”all or nothing” compared with models such as GE which

indicate how much of the key was successfully recovered.
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Guessing Entropy

In order to compare the S-Boxes that had low mean SR even with a large amount of

traces we use Guessing Entropy (GE) to compare the results of the CPA attack. GE

was fist noted in the work of (Massey, 1994). Let K be the set of all possible sub-keys.

Let G = (g0, g1, ..., g|K|−1) be the CPA ranking during the correlation computation

and the g values be sorted by their correlation value and let k∗ be the known sub-key

value.

GE(k∗, G) = i, such that k∗ = gi for gi ∈ G (4.112)

In our ternary case study there are only 3 options for each sub-key so the values

for GE are either 0,1, or 2. Zero denotes that the sub-key was recovered correctly

and 2 denotes that the correct sub-key was ranked last, while 1 is in the middle of

the two conditions. We compute this GE computation for each sub-key in the round

key and for the first 4 round keys of our ternary GIFT cryptosystem and then take

the average to compute the mean GE values. Because both GE and SR are leakage

models dependent on CPA attack we can compute them both at the same time when

performing CPA computations.

Upon observation if the mean success rate reaches 100% the mean GE will result

in 0.0. If one is choosing sub-keys randomly the GE should tend towards 1.0 given

enough computations. If the mean GE is larger than 1 and the attacker is aware, the

attacker can invert all sub-key guess list and then have mean GE that is less than 1

if there attacking scheme is performing worse than random guessing. We apply the

GE computation on experiments that give a mean GE and SR computation for a
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given trace counts on inputs to the CPA attack and the definition of an experiment

is shown in Algorithm 4.

Delta Value

Definition 4.1 Introduced in the work of (Biryukov et al., 2016), the computation

of the δ value measures the difference in the correct sub-key correlation value with the

most likely sub-key value. We denote k∗ to be the correct sub-key value and k� to be

the most likely sub-key. The definition is split up into two sub-cases on if the correct

sub-key is ranked highest or not. Similar to GE we rank the set of all sub-keys K into

an ordered list G = (g0, g1, ..., G|K|−1 based upon the CPA correlation value. We note

for any given sub-key gi that cgi is the correlation value of the sub-key gi during the

CPA attack.

Case 1: Correct Sub-key has the highest correlation value

In this case we describe the computation of δ when the correct key has the highest

correlation value. We let k� = g1 as k∗ = g0 and we compute the delta value shown

below.

δ = ck∗ − ck� (4.113)

We note that in this case the value δ ≥ 0.

Case 2: Correct Sub-key does not have the highest correlation

In this case the correct sub-key does not have the highest correlation. We let k� = g0

and k∗ = gi for 1 ≤ i ≤ |K| − 1. Similar to the other case δ as computed as follows:

δ = ck∗ − ck� (4.114)
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We note that in this case the value of δ ≤ 0.

This δ value measures how strong the correlation is compared to other correlation

values and gives us a better measurement of success of partial key recovery We take

the mean values of these experimental result metrics over 100 executions using 400

trace/plaintext pairs randomly chosen from a the data pool.

4.12 Quantifying Power Leakage

Using the measurements of mean SR/GE/Delta results, we quantify the leakage of

different S-Boxes to analyze which are more resistant and which are more suscepti-

ble to cryptographic power analysis attacks. Based upon our results we will show

which ternary S-Box in our study will be the ’best’ for real use in the setting of

defense against cryptographic side channel attacks. For the measurements we con-

sider plaintext/trace pairs gathered experimentally on our underlying hardware. Our

measurements were all gathered under the same known cryptographic key to have

a uniform execution environment in our collection. Our plaintexts were randomly

generated 32-trit values.

We followed the evaluation methodology of (Biryukov et al., 2016) we define our

CPA evaluation a collection of experiments. Experiment are described in the pseu-

docode below in Algorithm 6:

To understand and compare the leakage of S-Boxes in our ternary setting, many

S-Boxes were collected. All of our S-Box leakage functions consider the output of

a given S-Box, in which the input to the S-Box is a plaintext state modular added

with a sub-key. Based upon our experimental results we categorized the S-Boxes

using mean SR and we compare the experimental results shown in Table 4.14 and
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Algorithm 6: Experiment Pseudocode in Ternary Case Study

Result: SR and GE for each trace count
count = 0;
SRresults structure initialized;
GEresults structure initialized;
Deltaresults structure initialized;
while count < Threshold do

Pick 400 random plaintext/trace pairs from the data pool;
Conduct CPA attack using the randomly chosen pairs;
Store the resulting SR/GE/Delta values in the data structures;
count++;

end
return mean SR/GE/Delta results;

Table 4.15.

4.12.1 Understanding the Leakage

The leakage in our case study comes from the Hamming weight (HW) of the values

that are stored after the S-Box calls in the cryptographic scheme. Based upon the

Hamming weight, on average a higher hamming weight will have more power draw

and a lower Hamming weight will have less power draw. Because the POI of the

cipher is the output of the S-Box, the chosen S-Box function will influence the power

draw of the cipher. In our case study we compare different S-Box with the rest of

the cipher being fixed for fair evaluation and we measure our experimental results for

each S-Box to compare the leakage of the S-Box within the cipher.

4.12.2 Comparison of Different Ternary S-Boxes

In our ternary case study we chose 36 S-Boxes randomly in which the first few were

input randomly from the keyboard other remaining S-Boxes in the first 15 were chosen

to have varying S-Box metric scores with multiple representatives for each score.

The other 21 were chosen to be in PE classes similar to the first 15 S-Boxes. The
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Figure 4.1: A 3D Figure comparing the Experimental Results

other 21 S-Boxes were chosen so that each represented PE/AE class has at least 2

representatives. In order to gather the experimental results, we used Boise State’s

R2 computation cluster. We compare our S-Boxes used in our case study with mean

SR/GE/δ values. After the trials were computed containing 100 experiments in each

trial we have our initial results in Table 4.14. We also note that the selection functions

used in Table 4.14 is ϕi(x ⊕3 k) = Si(x ⊕3 k) for i ∈ Z36. We show our results in

different tables to compare metric scores, experimental results, and mathematical

equivalence classes. In Figure 4.1 shows the relationship between the experimental

results SR/GE/Delta. The 3D figure has axes for SR/GE/Delta as well as having a

color gradient corresponding to the SR value that takes a gradient of the colors green,

yellow, and red.

We also represent the experimental results in a 2D graph with color representing

a third dimension shown in the figure below: This figure also shows a regression line

that indications a line of the equation:

y = −0.3349x+ 0.2409 (4.115)
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Figure 4.2: Experimental Results

In this figure you can clearly see that there is correlation between all three experi-

mental results and the exact values of that correlation are also listed in a table later

on. Note the clustering of the data, in the top left of the graph all S-Boxes are

more susceptible to CPA attack and in the bottom right there are clusters of S-Boxes

that are more resistant to attack. We will use this observation of clustering to make

categories for the GE and δ results.

The following tables will compare experimental results with one another.

4.12.3 Correlation of Metric Values

We noted that SR is the ’gold standard’ that measures if the private key was suc-

cessfully recovered or not. GE and δ also measure the success of the CPA in different

ways. We computed correlation values using the Pearson’s correlation coefficient de-

scribed in the introduction and used that to compute the correlation of all metric
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Table 4.14: Experimental Results

S-Box SR GE δ NL

S1 254013768 62% 0.02125 0.19477 1
S2 048561723 88% 0.00906 0.21088 0
S3 013247865 0% 0.677 0.0211 1.267
S4 013652748 0% 0.5375 0.02914 1.267
S5 012345786 0% 0.3492 0.0997 0
S6 013246785 0% 0.6964 0.0039 1
S7 178026354 0% 0.5925 0.0413 1
S8 854013762 100% 0.0 0.27255 1
S9 548061723 23% 0.05484 0.2601 0
S10 184027356 0% 0.7617 0.01899 1
S11 184256703 35% 0.09859 0.2539 1
S12 184306275 91% 0.018125 0.274493 1
S13 184723056 27% 0.2184 0.19759 1
S14 184725063 0% 0.502 0.07451 1
S15 184730625 9% 0.1128 0.24523 1
S16 062835417 0% 0.2194 0.1244 1
S17 102647853 0% 0.2229 0.1471 1
S18 306281754 0% 0.63828 0.0312 1
S19 042685713 87% 0.01047 0.25336 1.267
S20 157820634 96% 0.005467 0.28289 1.267
S21 340781625 0% 0.25672 0.16253 1.267
S22 012487563 45% 0.0702 0.2391 1
S23 570624138 100% 0.0 0.2555 0
S24 074823516 0% 0.1425 0.1534 1
S25 073265481 74% 0.0320 0.21345 1
S26 051237648 32% 0.0879 0.17089 1
S27 073562418 20% 0.1278 0.19339 1
S28 061548723 4% 0.1611 0.1578 0
S29 064817532 1% 0.2258 0.11291 1
S30 064781352 48% 0.0703 0.23703 1.267
S31 186420753 17% 0.0856 0.1787 0
S32 065348127 0% 0.5228 0.0519 1
S33 056124783 44% 0.06 0.20738 1
S34 062781453 43% 0.0519 0.2114 1
S35 056174283 0% 0.5481 0.0572 1
S36 058327614 0% 0.5905 0.0571 1
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Table 4.15: Experimental Results with Leakage Class

CPA Status SR GE δ

S1 Success 62% 0.02125 0.19477
S2 Success 88% 0.00906 0.21088
S3 Fail 0% 0.677 0.0211
S4 Fail 0% 0.5375 0.02914
S5 Fail 0% 0.3492 0.0997
S6 Fail 0% 0.6964 0.0039
S7 Fail 0% 0.5925 0.0413
S8 Success 100% 0.0 0.27255
S9 Success 23% 0.05484 0.2601
S10 Fail 0% 0.7617 0.01899
S11 Success 35% 0.09859 0.2539
S12 Success 91% 0.018125 0.274493
S13 Success 27% 0.2184 0.19759
S14 Fail 0% 0.502 0.07451
S15 Near Success 9% 0.1128 0.24523
S16 Fail 0% 0.2194 0.1244
S17 Fail 0% 0.2229 0.1471
S18 Fail 0% 0.63828 0.0312
S19 Success 87% 0.01047 0.25336
S20 Success 96% 0.005467 0.28289
S21 Fail 0% 0.25672 0.16253
S22 Success 45% 0.0702 0.2391
S23 Success 100% 0.0 0.2555
S24 Fail 0% 0.1425 0.1534
S25 Success 74% 0.0320 0.21345
S26 Success 32% 0.0879 0.17089
S27 Success 20% 0.1278 0.19339
S28 Near Success 4% 0.1611 0.1578
S29 Near Success 1% 0.2258 0.11291
S30 Success 48% 0.0703 0.23703
S31 Success 17% 0.0856 0.1787
S32 Fail 0% 0.5228 0.0519
S33 Success 44% 0.06 0.20738
S34 Success 43% 0.0519 0.2114
S35 Fail 0% 0.5481 0.0572
S36 Fail 0% 0.5905 0.0571
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Table 4.16: Branch and Degree of Sampled S-Boxes

DBN LBN MinDegree MaxDegree

S1 2 2 3 3
S2 3 3 1 1
S3 2 2 3 3
S4 2 2 2 3
S5 2 2 1 2
S6 2 2 3 3
S7 2 2 3 3
S8 2 2 3 3
S9 2 2 3 3
S10 2 2 3 3
S11 2 2 2 3
S12 2 2 2 3
S13 2 2 3 3
S14 2 2 3 3
S15 2 2 3 3
S16 2 2 3 3
S17 2 2 3 3
S18 2 2 3 3
S19 2 2 3 3
S20 2 2 3 3
S21 2 2 3 3
S22 2 2 3 3
S23 3 3 1 1
S24 2 2 3 3
S25 2 2 2 3
S26 2 2 3 3
S27 2 2 3 3
S28 2 2 3 3
S29 2 2 2 3
S30 2 2 2 3
S31 2 2 1 2
S32 2 2 3 3
S33 2 2 3 3
S34 2 2 3 3
S35 2 2 3 3
S36 2 2 3 3
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pairs. Table 4.17 compares each metric pair wise with all metrics. This was conduced

with our metrics and experimental results on all 36 S-Boxes in our case study. We

note that the metrics (SR/GE/δ) have high correlation with each-other and the other

pairings have lower correlation.

Table 4.17: Pairwise Correlation of Experimental and S-Box Metrics

Element1 Element2 Correlation Value

GE SR -0.710
GE δ -0.946
SR δ 0.767
GE NL 0.235
GE SNR 0.077
GE DPA-SNR 0.227
GE TO 0.308
GE RTO -0.308
GE CC 0.321
SR NL -0.083
SR SNR 0.077
SR DPA-SNR -0.336
SR TO -0.336
SR RTO 0.157
SR CC -0.075
δ NL -0.161
δ SNR -0.152
δ DPA-SNR -0.163
δ TO -0.238
δ RTO 0.257
δ CC -0.276

4.13 Results of Ternary GIFT Case Study

In this section we will interpret the results from this chapter on Generalized GIFT and

our ternary case study. We will compare metric scores and the varying equivalence

classes in comparison with the success/failure of our CPA attack and the mean success



109

rate of the successful attacks on varying S-Boxes sampled in our case study. We

will then note on which S-Boxes in our ternary case study would be the ’optimal’

choices compared with others that would not be a What is a practical decision?

1 of, involving, or concerned with experience or actual use; not theoretical. 2 of

or concerned with ordinary affairs, work, etc. practical choice to use in real world

situations.

4.13.1 Metric Comparison with Experimental Mean Success

Rate

Recall in the binary case of S-Box metric analysis the non-linearity metric had a large

correlation with the mean CPA success rate and other metrics has smaller correlation.

However in our ternary case none of the metrics we sampled had notable correlation

with the mean success rate.

In the case of non-linearity we note that non-linearity has three possible options:

0,1,1.267. Within each of these non-linearity metric scores we have S-Boxes that

are successful and S-Boxes that were not able to recover the key fully given a large

plaintext/trace pair size. The same statement on no noticeable correlation happened

with all other sampled metric scores in comparison with CPA success in our ternary

case study. While we did not sample the whole S-Box space because it was not

practical to do, we do have numerous S-Boxes with similar metric scores showing

vastly different CPA status and CPA mean success rate.
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4.13.2 Equivalence Classes in comparison with Metrics and

CPA Success/Fail

AE Class Analysis

Upon observation of the AE Table 4.11 we note that we can see the preservation of

metrics or lack there of. We note that in the overlapping S-Boxes within a AE class

that they always have the same NL metric score. As for the other metrics there can

be some overlap but there does not have to be. For metrics other than NL we can

find counterexamples of metric scores not holding such as S12 and S15 are both in AE

Class 5 but have differing TO/RTO/CC values. Also in S-Boxes S6 and S10 within

AE class 5 we note different DPA-SNR metric values.

Within each of the overlapping representatives we also note that there is a variation on

the CPA status in which each class with more than one entry has at leas one success

and one fail on the CPA attack to recover the private key. Upon this observation we

state that there is no clear correlation that AE classes preserve the CPA status on

key recovery.

4.13.3 What We Expected vs. Experimental Results

Initially we knew that the higher delta values would lead to a higher SR along with

lower delta values leading to a lower SR based upon the definition of delta. We also

knew that lower GE will lead to higher SR and higher GE will lead to lower SR based

upon the GE values. This is because delta measures the difference in correlation of

the correct key with the next best key. Having a high correlation means that on

average the correct key guess has a higher correlation value by a margin then the

next best key. Similarly GE measured the index of the correct sub-key. The more



111

sub-keys that have GE 0 means that the GE will be small leading to a higher success

rate.

We did not know the rate of change when GE/Delta changes when compared to

the success rate. Based upon our data, as GE changes delta also changes linearly.

However bases upon Figure 4.1 the change in SR when compared to Delta/GE seems

to be more of an exponential decay.

4.13.4 S-Box Metrics Alterations Attempted

Our initial goal when generalizing S-Box metrics was to find a metric generalization

that could distinguish wither or not a S-Box is resistant to power analysis attacks.

Our generalizations listed in this document do not do that however we tried. Most of

our metrics had straight forward generalizations except the metric DPA-SNR in which

we tired editing the metric many ways in hopes of getting better results to compare to

the experimental data. We know from observations that changing the multiplicative

constants will not lead to any substantial change of the metric scores so during our

edits of DPA-SNR we focused on edits that would have a wider change being the

exponents and where the ABS call is made. For the inside exponent we tired values

(2,3,4, and 9) and for the outer constant we attempted values (-1/2,-1/3,-1/4,-1/9)

as well as changing the ABS call before and after any possible summation call. After

attempting all possible combinations of the changes listed we left editing/creating a

S-Box that strongly correlates with power analysis resistance as future work.

4.14 Conclusion

Based upon our analysis of the experimental results we have classified the S-Boxes

into categories based upon the mean Success Rate (SR). We note that the S-Boxes
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in the success category are S-Boxes that leak the most in our case study and are the

worst choice for practical use. S-Boxes in the Fail category however are more resistant

and would be our choices for actual use.

Comparing the S-Boxes the two worst choices are S8 and S23 as they have 100%

mean success rate given 400 traces. The best choice for S-Boxes based upon our

experimental results are S6 and S10 in which both have 0% SR but also the Delta

values are less than 0.01 and the Ge values are greater than 0.69 which indicates the

least amount of leakage of S-Boxes surveyed in our case study.
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CHAPTER 5:

BLACK BOX CRYPTANALYSIS

In this chapter we will be describing our black box case study on an unknown algo-

rithm that is called AEA. We do not have access to the source code, but we have

access to devices in which we can encrypt/decrypt packets of data and capture the

packets using the wireshark packet sniffing software. In capturing data, our goal

is to mathematically describe the underlying functions that are used in the encryp-

tion/decryption process without the source code and without utilizing reverse engi-

neering. In this chapter, we will describe our initial data collection process and our

methodologies that were used to understand the process of the underlying algorithm.

We will then test our conjectures on what we believe that is going on in the underlying

cryptosystem.

5.1 Introducing Black Box

5.1.1 Attack Models

In attacking cryptographic systems, there are a few knowledge models that one can

use when performing cryptanalysis. These models describe the information that

the attacker has access to. Some sample models are ciphertext only, known plain-

text/ciphertext pairs, chosen plaintext and knowledge of the corresponding cipher-

text, and chosen ciphertext and knowledge of the corresponding plaintext.
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Attacking in the ciphertext only model, one has less information but if one is able to

break a cryptosystem in this method the cryptosystem is proven to be weak. Break-

ing a cryptographic scheme in the black box model is much harder than the variants

of grey/white but depending on information available and the skills of the attacking

group it is still possible to do so.

5.2 Mathematical Definitions

In our attempt of this black box cryptanalysis, we will use some mathematical def-

initions that are described in this section. We will define these statements in this

chapter but their use might not be clear until it is applied in our case study.

5.2.1 Modular Hamming Distance

In our case study, we will be comparing how close our predictions are with the actual

’true’ values. In order to do this comparison we will be defining what is referred to as

Modular Hamming Distance (MHD). Similar to the well-known Hamming distance

(HD) model, MHD measures how close two values are to each other. But unlike the

classical HD, our MHD will work in bases other than 2. While it will work in any

base, for our research we will focus on a byte MHD which is base 256.

First we will show the comparison of two byte values using MHD. We consider

two values a, b ∈ Z256. We define the byte-wise MHD to be

MHD256 = Min((a− b) mod 256,−(a− b) mod 256) (5.1)

In this definition we see we are measuring how far away a is to b modulo 256, but we

include both the positive and negative values of this distance using modular arith-

metic. By doing this, we show that 0 is 1 away from 255 because 0 + (−1) = 255
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modulo 256.

In our research, we consider 8-byte values which can be viewed as elements in

Z8
256. In order to compute byte-wise MHD on these values, we just add up the single

byte MHD values and sum over the 8 byte pairs. A mathematical description of this

is below:

let A,B ∈ Z8
256; MHD256(A,B) =

7∑
i=0

(
MHD256(Ai, Bi)

)
(5.2)

In computing MHD, we measure how close two 8-byte values are to each other when

comparing values modulo 256.

5.2.2 Error Bounds

In our case study, we will use MHD to compare 8-byte chunks to each other. When

computing the MHD value, we state if it is within a given error bound. Let us consider

an error bound of 8. We state that when comparing two values A,B are within an

error bound of 8 if

MHD256(A,B) < 8 (5.3)

If the MHD values of A and B are 8 or greater we state that the pair A,B are outside

of the error bound.

In our case study, we will be making predictions on values and comparing them

with ’true’ values, but our predictions are not perfect. We need to measure how close

the predictions are and if they are close enough to the true value to show that are

prediction software is accurate. By measuring if our predictions are within the error

bound, we will show while the predictions are not perfect, they are close to the true

values.
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5.3 Case Study SEL Information Gathering

In this section, we will be describing how we captured data in this case study.

Initially we were given equipment that produced a cryptographic tunnel between two

end-to-end nodes that were communicating to each other. In between the end nodes

are 2 pieces of hardware, one takes in a plaintext and produces ciphertext and the

other takes in ciphertext and produces plaintext. These pieces of hardware are paired

with each other. The algorithm for encryption and decryption are unknown. A figure

explaining the initial configuration is shown in Figure 5.1 While no source code of

the compiled libraries were given to us, the code to call the library does take in the

serial number of the other RTAC device in the RTAC configuration.

Figure 5.1: The original network setup for the SEL AEA encryption

In the default configuration the protocol to send data from the RTAC devices to

the client/server was the unsecured telnet protocol. Initially we started sending data

though the telnet protocol. The RTAC equipment would then encrypt/decrypt the
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data and the end server node would receive what was initially sent. We captured

the packets in the encrypted tunnel and noted that the encrypted packets were 4

bytes longer than the plaintext packets. We gathered the packets using the packed

sniffer Wireshark (Lamping and Warnicke, 2004). Several plaintexts were sent for

encryption but no pattern was noted in the initial setup depicted in Figure 5.1. Each

time we encrypted a plaintext, a different ciphertext was produced. We noted that the

encryption process must be probabilistic. We gathered several packets in which we

encrypted 8 bytes in which each byte had the same value. This process was repeated

for the digits 0-9 and single character letters a-z and A-Z. Because the encryption is

probabilistic we then decided to perform chosen ciphertext attacks.

We edited the network topology to send a n+ 4 byte ciphertext to be decrypted and

we recover a n byte plaintext.

Observation 5.1 Encrypting any ’n’ byte plaintext will result in the encrypted text

being an ’n+4’ byte ciphertext. This was tested for ’n’ valued bytes lengths of 3,4, and

8.

Observation 5.2 AEA’s encryption is probabilistic meaning that when encrypting

the same plaintext the result is a different cipher text each time.

5.3.1 Chosen Ciphertext Attack

In order to change our attack model to chosen ciphertext, we needed to modify our

network topology. We eliminated the end node client as well as the client RTAC and

added in a ’RTAC imposter’. The imposter will send ciphertext to the RTAC server

and the RTAC server will decrypt the data for use and produce the plaintext. The
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modified network topology for use in the chosen ciphertext data collection and attack

scheme is shown in Figure 5.2

Figure 5.2: The modified network setup for chosen ciphertext attack on
SEL AEA encryption algorithm

In the beginning of our data-collection, much was done by manually imputing data

into a telnet terminal to get an idea of the underlying process that must be computed

in the cryptographic algorithm. After some initial data collection we decided to

automate the process and write a program in Java that would generate a random

12-byte ciphertext to be decrypted into a 8-byte plaintext. We took note that the

ciphertext was 4 bytes larger than the plaintext. We started to investigate why the

ciphertext was 4 byte larger and collected data in which the last 4 bytes would remain

constant. Some of our noted observations on our initial data collection in the chosen

ciphertext model are shown below:

Observation 5.3 A ciphertext of all zeros when decrypted results in a plaintext of
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all zeros.

Dec(0x00...00) = 0x00...00 (5.4)

We also noted some homomorphic proprieties in a 12-byte ciphertext affecting the

first 8 bytes.

Observation 5.4 In the case of a 12-byte ciphertext the first 8 bytes are malleable.

Consider:

Dec(C1||C2||...||C8||B1||...||B4) = P1||P2||...||P8 (5.5)

we choose ’A’ (random or pre-selected) such that:

A = A1||A2||...||A8 (5.6)

In which each Ai is one byte of data.

Dec((C1⊕A1)||(C2⊕A2)||...||(C8⊕A8)||B1||...||B4) = (P1⊕A1)||(P2⊕A2)||...||(P8⊕A8)

(5.7)

Each of the byte XOR operations or ⊕ are addition in the group:

Z2 x Z2 x Z2 x Z2 x Z2 x Z2 x Z2 x Z2 (5.8)

In which each of the sub-groups represent a bit of data and all eight combined create

a byte.

Note: The last four bytes: B1, B2, B3, B4 do not have this property.

Because of this homomorphic propriety, we noted that the last 4 bytes of the

ciphertext must hold information relating to the decryption process. Also we noted
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first 8 bytes hold information on the underlying plaintext. We then thought that the

last 4 bytes could act as input to a pseudorandom function that generates an OTP

like value to XOR with the other 8 bytes as listed in the proposition below:

Proposition 5.5 In decryption the last four bytes create a One Time Pad (OTP) to

decrypt the data. An example of a 12-byte ciphertext is shown below

Dec(C1||C2||...C8||B1||...||B4) = (C1||C2||...||C8)⊕ (fOTP (B1, B2, B3, B4)) (5.9)

Next, we started to compute what values would be if the first 8 bytes of the ciphertext

were zeros and the last 4 bytes differed.

In testing our idea on malleability, we gathered data in which the first 8 bytes of the

ciphertext were zero while also having the hamming weight of the last 4 bytes was 1.

This lead to 32 options on which bit was active in the last 4 bytes. An example is

shown below:

Example 5.6 Below is an example of a ciphertext in which one bit is active in the

last four bytes

F1 = 0x00 00 00 00 00 00 00 00 80 00 00 00 (5.10)

Which leads the last four bytes (in binary) to be:

0b10000000 0b00000000 0b00000000 0b00000000 (5.11)

Example 5.7 Consider when the 1 bit is shifted right in order to create all of the 32
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options.

Fi = (F1 >> (i− 1)) (5.12)

And the decryption of Fi:

Gi = Dec(Fi) (5.13)

After obtaining the decryption values of these 32 values, we asked ourselves if

by knowing these values, we could approximate the function that we are assuming

takes in the 4 byte quantity and produces the XOR pad. For each of the bits in the

last 4 bytes of the cipher we have an 8 byte value. We then started to attempt an

approximation on what would be the value if a ciphertext’s first 8 bytes were zero

and the last 4 bytes had a hamming weight of 2.

Example 5.8 Consider if we have two values for the following 4 last bytes of the

ciphertext:

0x10 00 00 00 and 0x01 00 00 00 (5.14)

Reusing the naming convention from Example 5.7, we can refer to these two values

as F4 and F8. This implies the decrypted values are G4 and G8. Our speculation was

that by knowing G4 and G8 we could produce the value for:

Dec(0x00 00 00 00 00 00 00 00 11 00 00 00) (5.15)

Though trial and error, we ended up with two ways of approximating the XOR

pad from values known in look up tables. The ways to combine the values are addition
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with/without carry, and their definitions are listed below:

Definition 5.9 Addition without carry

Considering an n-byte plaintext, addition without carry is the direct product of:

Z28 x Z28 x... Z28 (5.16)

In which there are n Z28 groups.

Definition 5.10 Addition with carry

Addition in the group Z28∗n in numbers with n byte plaintext.

In later sections in this chapter we will go into how these definitions are applied

and their results in breaking this cipher in the black box setting.

5.4 Prediction Programs for AEA Decryption

In this section, we will describe how we took look-up tables and made an approxi-

mation on the decryption algorithm in the 12-byte ciphertext/ 8-byte plaintext set-

ting. During our research into this approximation, we made different version of the

decryption approximation that we note as Special Ciphertext Prediction, Plaintext

Prediction, and XOR Pad Prediction. They ordered chronologically as for when they

were created in our research. We are also able to compare the approximation with

known plaintext values as we have access to chosen ciphertext/plaintext pairs. In

doing so we can mathematically state how close our prediction are to the true XOR

pad value.
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5.4.1 Building Blocks for Prediction

We will start to describe how the addition without carry combines two predicted

values into a single predicted value. One assumes that each of the two predicted

values are obtained from the look-up tables are are being combined. An example of

addition without carry is shown below:

Example 5.11 Consider two plaintexts A,B such that:

A = A1||A2||...||A8 (5.17)

B = B1||B2||...||B8 (5.18)

The prediction using addition without carry works as follows:

C ′ = A�B = (A1+B1 mod 256)||(A2+B2 mod 256)||...||(A8+B8 mod 256) (5.19)

Similarly our addition with carry procedures classically adds two 8 byte values. We

ignore any carry over values in the addition process.

With access to the hardware, we are able to get the true XOR pad and plaintext

values. We then needed a way to compare how close our approximated XOR pad

value is to the true XOR pad value and a similar process for the plaintext values. In

doing so we created an accuracy formula that is defined earlier in the error rate:

The accuracy computed the MHD of each of the 8 bytes and adds up the MHD

values to get a total accuracy value. I the case of MHD = 0 the prediction is the

same as the true value and the closer the value is to zero the closer the predicted pad
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is to the true pad.

In this study, we started with the 32 look up tables, one for each bit in the 4-byte

quantity of the last 4 bytes.

Look Up Tables used in Prediction Software

If approximating low hamming weight values, the accuracy was close to the true

value, but as the hamming weight rose the prediction became less accurate. We then

decided against using the 32 look up table values. Instead we created a list of 4

separate look up tables, one for each of the 4 bytes at the end of the ciphertext. Each

table contains all 256 possible values for each of the extra 4 bytes resulting in 1024

values. We combine 4 of the values from the tables to compute our predicted XOR

pad value. The look up tables that are used in the prediction software are generated

as follows:

Consider the first of the 4 ’extra bytes’ to be B1. B1 is shown in the ciphertext as:

0x00 00 00 00 00 00 00 00 B1 00 00 00 (5.20)

We loop though all 256 possible values for B1 and store the decryption of those 256

values in a look up table. This process is repeated for the other 3 bytes B2, B3, B4

and those also have a 256 value look up table for each of them.

We then use the look up tables to compute a prediction of a decryption value on a

ciphertext in which the first 8 bytes are zero and the last 4 bytes are random such as

what is displayed below:

0x00 00 00 00 00 00 00 00 B1 B2 B3 B4; (5.21)
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To do this, we have the 4 look up tables for the B values and we use addition either

with or without carry which is denoted with the � symbol. This creates a prediction

by performing the formula below:

Table1(B1)� Table2(B2)� Table3(B3)� Table4(B4) (5.22)

Next, we compare the prediction with the true value to get a numerical represen-

tation of how close the prediction is to the true value (MHD error value).

5.5 Prediction Program Versions

Using the building block presented in the previous section, we will now describe how

they are applied to approximate decryption. In this case study we created three

versions of the prediction software which are described in the sub-sections below.

5.5.1 Prediction Software - Special Ciphertext Prediction

The first version of our prediction software (Special Ciphertext Prediction) applies

the calculations of the look up table and produces a prediction of the decryption in

the special case of a 12-byte ciphertext when first 8 bytes are zero. We then apply the

accuracy formula to compare our predicted decryption value with the actual value

that has been obtained.

Given a ciphertext with eights bytes of 0 followed by four random bytes we com-

pute the accuracy of:

Err(Dec(0||...||0||B1||B2||B3||B4), P red(B1, B2, B3, B4)) (5.23)

In which the Pred function applies the look up tables and combines the output of
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the look up tables with addition without carry resulting in:

Pred(B1, B2, B3, B4) = Table1(B1)� Table2(B2)� Table3(B3)� Table4(B4) (5.24)

During computations with the hardware, errors occur in data collecting in which

some packets are dropped when running our computations. This results in a differing

number of predictions compared to the number of plaintexts captured. In order to

deal with this disparity, we look for when errors occur and re-synchronized the tables

to pair together as shown in Figure 5.3

Figure 5.3: Special Ciphertext Prediction Software Accounting for Error
in Packet Capture

We then apply our accuracy formula for each paired prediction to true value. We

compute the comparison and get an error value interpreting the modular hamming

distance (MHD). We collect different data-sets and then represent the results of that

data-set in the heat map table. The results of our Special Ciphertext Prediction

data-sets are shown below:
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Experiment 1 A data sample results using Special Ciphertext Prediction with 992,570

samples are shown below. It was our first large-scale data collection.

Table 5.1: Special Ciphertext Prediction Sample 1

v1 data set 1: Prediction size 1 million, Plaintext size 992,570
MHD 0 1 2 3 4 5 6 7 Total
Value 38,047 208,887 382,594 273,683 81,654 7,705 0 0 992,570

Special Ciphertext Prediction with data set 1 resulted in 992,570 matches (success-

ful predictions within an error bound)

992, 570

992, 570
= 100% (5.25)

Of data within the error bound.

Experiment 2 111,833 matches were in the allowed error bound leading to a suc-

Table 5.2: Special Ciphertext Prediction Sample 2

Special Ciphertext Prediction data set Apr15: Prediction size 112,007, Plaintext size 111,833
MHD 0 1 2 3 4 5 6 7 Total
Value 4,256 23,459 43,177 31,011 9,065 865 0 0 111,833

cess rate of:

111, 833

111, 833
= 100% (5.26)

Of data within the error bound.
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We note that in the Special Ciphertext Prediction of our case study, we are able

to match 100% of the value together after accounting for the packet loss error. While

only some have 100% accuracy, all of our predictions are within a MHD value of 5

across the 8-byte predicted plaintext value.

While our Special Ciphertext Prediction prediction software only works in the special

case that the first 8 bytes are zero, The other versions work in cases where all 12-bytes

of the ciphertext are random.

5.5.2 Prediction Software - Plaintext Prediction

Our Plaintext Prediction software was our first attempt at predicting the decrypted

value of a random 12-byte ciphertext. This version is a generalization of t as it the

Special Ciphertext Prediction as not restricted to the ’special’ ciphertext. Because

Special Ciphertext Prediction had a ciphertext of 8 leading zeros, the decryption

value is the same as the predicted XOR pad if Proposition 5.5 holds. In Plaintext

Prediction, we similarly use the last 4 bytes to compute the predicted XOR pad and

we then use that prediction to attempt to decrypt the ciphertext when the first 8

bytes are random.

Because we know from Special Ciphertext Prediction, the prediction of the XOR

pad is not always accurate, we will have to account for this error in the Plaintext

Prediction. We do this by acquiring three 8-byte quantities when computing the

prediction. Those three values are the true known plaintext, the prediction using

addition without carry, and the prediction without carry with ’1’ are added to each

of the bytes. We consider in this case that P ′ is the true decrypted value, while P

is the prediction, and PE is the prediction with ’1’ added to each of the elements.

In order to compute the accuracy with these values we edit the accuracy formula as
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shown below:

Definition 5.12 Let P ′ be the true known plaintext, P be our predicted plaintext, and

PE be the plaintext prediction with 1 added to each byte value. Our error computation

ErrV 2 is shown below

ErrV 2(P
′, P, PE) =

n∑
i=1

(Min(|Pi − P ′i |, |PE
i − P ′i |)) (5.27)

And the P values are computed as follows given � is modular addition:

Pad = Table1(B1)� Table2(B2)� Table3(B3)� Table4(B4) (5.28)

P = Pad⊕ Cipher (5.29)

Assuming Pi is the ith byte of P and || denotes the concatenation operation PE will

be:

PE = (P1+)||(P2 + 1)||...(Pn + 1) (5.30)

In the equations above, we note that Plaintext Prediction attempts to deal with the

error by adding 1 to the predicted plaintext value like what was done in Special Ci-

phertext Prediction. This leads to errors that will be described in a later sub-section

and is corrected in the last version.

In Plaintext Prediction the process of accounting for packet error is the same in

Special Ciphertext Prediction Figure 5.3, except we have two sets of predictions, the

classical and the error predictions.
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Plaintext Prediction did not perform as well as the first version when measuring

the accuracy. In our experimental results, we gathered a single data-set for Plaintext

Prediction because after observing the error in Plaintext Prediction we created a new

version of the software that results in better accuracy.

Experiment 3

Table 5.3: Plaintext Prediction Sample 1

Plaintext Prediction data set Feb1: Prediction size 83,766, Plaintext size 83,666
MHD 0 1 2 3 4 5 6 7 Total
Value 3,081 17,382 30,010 17,666 3,276 0 0 0 71,415

71,415 matches were in bound leading to a success rate of:

71, 415

83, 666
= 85.4% (5.31)

Of data within the error bound.

5.5.3 Prediction Software - XOR Pad Prediction

Our XOR Pad Prediction software is our latest version. It works similar to Plaintext

Prediction, in which it attempts to make predictions on the decryption value of a ran-

dom 12-byte ciphertext. However it performs better than Plaintext Prediction and

the computations on the error values differ when compared to Plaintext Prediction.

The majority of our results on research for the black-box cryptanalysis comes from

XOR Pad Prediction. It has high accuracy rate and works on 12-bytes of random

ciphertext as compared to Version 1 that only works on special ciphertexts.
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When comparing results on XOR Pad Prediction, instead of comparing known plain-

text values, we compare known XOR pad values with the predicted XOR pad values.

In the first version, these values are the same but because the first 8 bytes are random.

This differs when compared to the other two versions. When comparing accuracy, we

use the same error formula from Special Ciphertext Prediction, but the inputs to the

formula differ in XOR Pad Prediction. We define D to be the prediction of the XOR

pad coming from addition without carry of the 4 look-up table values. E is defined

to be the true XOR pad by performing the XOR operation on the first 8 bytes of the

Ciphertext with the 8-byte plaintext resulting in the ’true’ XOR pad.

Definition 5.13

D = Pred(B1, B2, B3, B4) (5.32)

E = (P1||P2||...||Pn)⊕ (C1||C2||...||Cn) (5.33)

XOR Pad Prediction works better than Plaintext Prediction because instead of

performing the error computations on the predicted plaintext value the error com-

putations are computing on the predicted XOR pad leading to better computational

results. XOR Pad Prediction deals with packet error/loss the same way that the

other versions dealt with the packet error/loss.

Because XOR Pad Prediction performed better than Plaintext Prediction, we spent

more time gathering different data-sets and also expanded the experiment to see in

which byte the errors occur in the generation of the XOR pad. The results in our

experimentation are shown below:
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Experiment 4

Table 5.4: XOR Pad Prediction using Sample 1

XOR Pad Prediction data set Feb1: Prediction size 83,766, Plaintext size 83,665
MHD 0 1 2 3 4 5 6 7 Total
Value 3,082 17,473 32,413 23,183 6,897 617 0 0 83,665

83,665 matches were in bound leading to a success rate of:

83, 665

83, 665
= 100% (5.34)

Of data within the error bound.

In XOR Pad Prediction we compared the true OTP value with the predicted one

and came up with these detailed results showing in which byte the error occurs on

Table 5.5: XOR Pad Prediction Error Sample 1

XOR Pad Prediction data set Feb1: 83,665 Matches, Error Table
Byte Number Err=0 Err=1 Err=2 Err=3
0 83,665 0 0 0
1 83,665 0 0 0
2 42,285 41,380 0 0
3 59,938 23,727 0 0
4 83,665 0 0 0
5 16,116 55,663 11,886 0
6 45,686 37,979 0 0
7 83,665 0 0 0
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Table 5.6: XOR Pad Prediction Sample 2

XOR Pad Prediction data set Jan25: Prediction size 88,784, Plaintext size 88,573
MHD 0 1 2 3 4 5 6 7 Total
Value 3,437 18,779 34,239 24,283 7,162 673 0 0 88,573

Experiment 5

88,573 matches were in bound leading to a success rate of:

88, 573

88, 573
= 100% (5.35)

Of data within the error bound.

The error distribution is shown below:

Table 5.7: XOR Pad Prediction Error Sample 2

XOR Pad Prediction data set Jan25 88,573 Matches, Error Table
Byte Number Err=0 Err=1 Err=2 Err=3
0 88,573 0 0 0
1 88,573 0 0 0
2 44,807 43,766 0 0
3 63,877 24,696 0 0
4 88,573 0 0 0
5 17,507 58,515 12,551 0
6 48,533 40,040 0 0
7 88,573 0 0 0

In our experiments in XOR Pad Prediction we note that we are able to recover the

XOR pad with 100% success rate when accounting for error. When error does occur

we note that we consider which byte the error occurs on. Based upon the data we

gathered in XOR Pad Prediction, we made some observations on the experimental

data we gathered.
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Observation 5.14 In the case of a 12-byte ciphertext and using 4 look up tables, 1

for each of the last 4 bytes, bytes 0,1,4, and 7 have no error during the prediction of

the XOR pad.

Observation 5.15 In the case of a 12-byte ciphertext and using 4 look up tables, 1

for each of the last 4 bytes, bytes 2,3 and 5 have no error or have a error of 1 during

the prediction of the XOR pad.

Observation 5.16 In the case of a 12-byte ciphertext and using 4 look up tables, 1

for each of the last 4 bytes, bytes 5 has the most possible error during the XOR pad

prediction in which it is either correct or can have an error up to 2.

Observation 5.17 In the case of a 12-byte ciphertext and using 4 look up tables, 1

for each of the last 4 bytes, bytes 2 and 6 have close to 50% of the time correctly

predicting the byte and the other 50% has an error of 1.

Based upon these observations, if the attacker does not have access to the plaintext

the attacker can create the possible XOR pad values accounting for error leading to

23 ∗ 3 = 24 possible pad values. The search that space to find the true plaintext of

the possible 24 XOR pad values. Because of the distribution of the error values one

can order the 24 possible values statistically by the likelihood of the outcome of the

values based upon the error percentage in our experimental data.
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CHAPTER 6:

CONCLUSION

In this work, we looked into cryptanalysis of binary ciphers, generalized/ternary ci-

phers, and an unknown cryptographic implementation. Chapter 3 focuses on CPA

attacks on of the binary GIFT64 cryptographic in which we swapped out the S-Box

layer of the cipher and evaluated the power analysis susceptibility/resistance of the

S-Box parameter in the power analysis setting. Chapter 4 showed a mathematical

generalization of a GIFT like scheme and out implementation TRITGIFT32 in the

ternary setting. We also studied the power analysis resistance/susceptibility of the

S-Box layer in the ternary setting. Chapter 5 showed how to approach the black-box

cryptographic of an unknown cryptographic implementation and results we found in

this case study. In this final chapter we review and answer our research questions

as well as restate some open questions that could be used that our research did not

answer.

6.1 Research Results and Contribution

• How well do the current metrics quantify power analysis leakage? In

our binary case study we sampled several S-Boxes in our implementation with

varying S-Box metric values. We showed that Non-Linearity had the strongest

correlation with any of the metrics that we surveyed. However, other metrics
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such as Transparency Order (and it’s variations) and DPA-SNR did have a re-

lationship with the CPA mean success rate. Non-Linearity had clear correlation

with CPA attack but as there are only 3 possible Non-Linearity values there

was a lot of variations with the Non-Linearity classes. Because the implemen-

tation should be resistant to other cryptanalysis attacks besides power anaysis

the Non-Linearly should be as high as possible which and choose a S-Box within

the high Non-Linearity class that is more resistant in the class.

• Given some binary cryptographic S-Boxes from literature, which are

more susceptible/resistant

In literature S-Boxes are chosen to have the highest Non-Linearity to defend

against classical cryptanalysis attacks. Of the S-Boxes we sampled PICCOLO

was the most susceptibility to attack and PRESENT was most resistant. It is

worth noting that we did find S-Boxes not used in literature that were more

resistant in the power analysis setting but they should not be used because of

the weaknesses to classical cryptanalysis techniques.

• Can we generalize cryptographic ciphers and metrics to work on other

prime power and not just the binary case? In our work we did generalize

the base cryptographic scheme and applied the generalization to work in the

ternary setting. We mathematically generalized the cryptographic metrics to

work in the generalized setting and also applied them to work in the ternary

setting. While the S-Box metrics did not work well in the ternary setting the

general metrics that are obtained by the experimental CPA results worked well

to compare S-Boxes in the ternary case study.
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• How well correlated are the generalized cryptographic metrics to

power analysis resistance/susceptibility In the ternary case study, none

of the ternary S-Box metrics had strong correlation with the CPA success rate.

However, our experimental result metrics (SR/GE/δ) were used to compare

power analysis susceptibility/resistance well because they are the result of the

CPA attack being executed.

• Do mathematical equivalence classes preserve metrics in the general-

ized setting Yes, the S-Box Non-Linearity metric is preserved in the equiva-

lences of affine, permutation modular addition, and modular addition. Trans-

parency Order and Revisited Transparency Order are preserved in permutation

modular addition and modular addition transforms. While we have proofs to

show this in the generalized setting we also executed proofs by computation in

the ternary setting as well as showing contradictions when the transforms do

not preserve the metrics.

• Given an implementation of a prime powered non binary base imple-

mented in hardware, will power analysis attacks work and if so, how

well do the attacks work? In our ternary case study we did have an imple-

mentation that lead to success in the CPA setting. We sampled several S-Box

parameters in the ternary implementation and had results ranging from 100%

mean success rate to 0% mean success rate given the same amount of input data

to the differing S-Boxes. Because of this we also used the experimental result

metrics of GE and δ to compare the different S-Boxes. Given the experimental

result metrics we show that the choice of the S-Box parameter in the ternary

setting has a relationship with the CPA resistance/susceptibility.
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• Do different cryptographic implementations of odd prime powers leak

less/more? In our first ternary implementation the CPA attacks were not

successful given any cryptographic S-Boxes that were tests. In our second

ternary implementation we caused all three trit options to have unique Ham-

ming weights in out implementation which caused us to have high success given

some S-Boxes. Because of this the implementation definitely has a relationship

with the CPA resistance/susceptibility.

• Given a cryptographic implementation of an unknown algorithm how

hard is it to model a black box attack to attempt to break the encryp-

tion of the unknown algorithm? While every black box cryptanalysis case

will differ, we showed our approach of black box cryptanalysis on our unknown

implementation. Through chosen ciphertext attack we were able to gather suf-

ficient data to model the scheme and predict what the plaintext will be given

the ciphertext.
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CHAPTER 7:

FUTURE WORK

7.1 Correlation Power Analysis

For future work, one could look into the following

One can expand on this work and consider a larger number of S-Boxes for com-

paring with the experimental result of SR and the S-Box metrics. We only considered

a few S-Boxes and one could select a larger set of S-Boxes to analyze. While it is

not practical to sample the whole S-Box space (16!), one could sample a larger set.

Also we only selected a few S-Box metrics. One could also sample more metrics and

compare them to experimental results.

While this work focused on 4-bit S-Boxes one could look at other S-Boxes sizes.

In literature there exist 8-bit S-Boxes for use in ciphers like AES and other sized

including 5-bit S-Boxes.

This research only used micro-controllers but one could extend this research into

other hardware such as FPGAs and ASIC devices. This is important because both

micro-controllers and FPGA/ASIC are used in real world use cases and we did not

investigate S-Box security for FPGA/ASIC architectures.

One can also extend this research to work on protected version of ciphers using

masking or threshold implementations. Also available for research is to use other
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methodologies such as mutual information and profiled attacks as well as higher or-

dered attacks.

7.2 Generalized Correlation Power Analysis

In this work we generalized a few metrics that were noted to have a connection with

base 2 power analysis such as TO/RTO and non-linearity. One can work on generaliz-

ing other metrics such as differential uniforming and other metrics with a connection

with classical cryptanalysis.

The focus of this chapter was on cryptographic side channels but one could extend

classical cryptanalysis techniques such as linear, differental, and algebraic cryptanal-

ysis on non-binary SPN structured cryptosystems. In doing so one can find/prove

that the generalization of classical crypto metrics could have a relationship on the

generalization of generalized classical cryptanalysis techniques.

We also only considered changing the underlying structure from a base 2 powered

field to a prime powered field, one could extend this and produce a SPN structure on

different mathematically structures such as elliptic curves, Dihedral groups, Lucas’s

groups or other mathematically sets and measure their security.

7.3 Ternary Correlation Power Analysis

The goal in this ternary research was to find a metric that indicated resistance/susceptibility

to power analysis without the need to compute actual mean SE/GE rates. In the bi-

nary case there was clear correlation between some of the metrics and experimental

results but in this case study in the ternary case that was not true. In future work

one could design/modify a metric and show that has a relationship with the mean

SR/GE results. We also only sampled some of the PE classes and one could extend
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this work so sample more of them and derive results on the relationship between some

PE classes and experimental SR/GE results.

Also in this work we set the permutation layer constant and only changed the S-Boxes

during the experiments. One could fix a S-Box and do computations on how other

parameters effect the security in relationship with power analysis. In doing so one

can also perform computations on other bases besides 2 and 3.

One can also look into changing the trit implementation in base 2 hardware. We chose

this implementation based upon the experimental results that lead to an early success

with the initial S-Boxes but one could change the implementation and measure the

resistance to power analysis attacks. We computed all of the ternary experiments

on a 8-bit XMEGA micro-controller but one could try different micro-controllers or

FPGAs and get different results in doing so.

In this research we only consider attacking the output of the S-Box using the ham-

ming weight model. One can use the hamming distance model or attack another part

of the cipher and produce results doing so.

We only computed the results on unprotected GIFT but we could apply power analy-

sis mitigation techniques shown in the works of (Bilgin et al., 2014a,b; Sasdrich et al.,

2018) and show that they also work on protecting ternary based ciphers.

7.4 Black Box Cryptanalysis

In this work we never had access to the source code so if we were granted access a

lot more research could be done. Also because we do not have access to the code

we cannot ’prove’ any statements but based upon the data and observation we have

a decent idea of what is going on ’under the hood’ of the underlying cryptographic

algorithm.
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For this case study we only really considered the 12-byte ciphertext leading to an

8-byte plaintext. Some initial steps have been performed on a generalized size but

that work remains unfinished.

During the data collection, some plaintext packets are dropped and the reason for

this is unknown. One could research what causes the dropped packets.

The last version of the prediction software are able to predict the XOR pad but we

have to account for some error as the predictions are not perfect. One can dig deeper

to predict when the error of off by one or two will occur and expand on this work.

In this case study we only used one RTAC Server but one could use another RTAC

device and collect the look up tables for that device to show that this methodology

is correct when given different RTAC devices using the same cryptographic libraries

but having a differing RTAC serial number.

Lastly one could hook the device to a more real world examples such as a power grid

or micro-grid compared to this program just inputting random ciphertexts and see

how this prediction program performs in a more real world situation.
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A.1 Example Computations

This this section of the appendix we will display some computational examples used

in our black box case study.

A.1.1 Look Up Tables

One of the pieces at the heart of our experiment was the look up tables that we used

to approximate the XOR pad used in our case study. In this example we will show

the first 20 look up table values on the 3rd of the 4 bytes that are used in the look up

tables.

0000000000000000 1cd0ab8503154f80 38a0560b072a9e01 547001910a3fed82

7040ac170e553d03 8c10579d116a8c84 a8e00223157fdb05 c4b0ada918952a86

e080582f1caa7a07 fc5003b51fbfc987 1821ae3b23d51808 34f159c126ea6789

50c104472affb70a 6c91afcd2d15068b 88615a53312a550c a43105d9343fa48d

c001b05f3854f40e dcd15be53b6a438e f8a1066b3f7f920f 1472b1f14294e190

This listing denotes the first 20 values for the third byte and they correspond with

the inputs 0,1,2,...,19.

A.1.2 Addition and OTP Prediction Example

This example will how an example decryption using the Version 1 software in which

the plaintext and predicted XOR pad are the same.

Consider the ciphertext with the first 8 bytes being zero and the last 4 bytes being

1,2,3 and 4 in that order. The 4 values for the look up table are as follows:

Cipher = 0x 00 00 00 00 00 00 00 00 B1 B2 B3 B4
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B1 = 0x01, B2 = 0x02, B3 = 0x03, B4 = 0x04

Table1(B1) = 00 00 f9 80 00 40 70 00

Table2(B2) = 00 00 00 00 00 e0 00 00

Table3(B3) = 54 70 01 91 0a 3f ed 82

Table4(B4) = 00 70 2f f2 00 3d 01 80

When preforming addition in the without carry mode each byte adds the 4 input byte

and takes the output mod 256. That will produce a value in the set { 0,1,2,...,255}

54 e0 29 03 0a 9c 5e 02

In the case of addition with carry we have a carry over value from bytes 3,4,6,7 and

8 resulting in:

54 e1 2b 03 0b 9d 5f 02

In practice we chose to use addition without carry. This was chosen because in the

case of addition without carry the error was always higher meaning the prediction of

each byte was correct or smaller that the actual value. In the case of addition with

carry it has cases where is could be lower or higher making it harder to preform the

prediction and error computations.

A.2 XOR Pad Values

In our computations we sampled many of the 232 options for the 4 bytes that created

the XOR pad used in our prediction software. A sample of some of the XOR pad

values shored numerically is shown below in FigureA.1:

On observation we note that at least the first byte in not totally random as the

byte value is always divisible by 4. We know that not all 28∗8 value are possible be
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Figure A.1: Sample XOR pads sorted by value

possible because there are only 24∗8 values for the 4 bytes that generate the XOR

pad.

A.3 Data Collection Examples

In this section we will describe the data collection process in more detail and with

screenshots of the process.

To capture the actual true plaintext values we use a packet sniffer program called

Wireshark (WU add citation) which is well known in the realm of computer networks.

The plaintext data that is received is using the Telnet protocol and we have configure

Wireshark with a filter that restricts the source IP address, port, and the length of the

message. We create these restriction so we only have listed plaintext values because
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we know the IP address of the server RTAC, the known port for Telnet is 23, and

because we are sending a 12-byte ciphertext it will in turn be a 8-byte plaintext. A

screenshot of the Wireshark filter is shown in Figure A.2 After the filter is applied one

Figure A.2: Applying a Wireshark filter

needs to export the packets to a text file in preparation to be used by our prediction

software. That process within the Wireshark program in shown in Figure A.3 and

Figure A.4 so that only the packet bytes are exported.

Figure A.3: Starting the Wireshark export process
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Figure A.4: Final step in exporting

After exporting to a text file the consents of the file are split up into columns con-

taining byte numbers, hex content, and ASCII content. An Example of 3 exported

packets are shown below:

0000 f4 30 b9 15 f5 c7 00 30 a7 12 45 c1 08 00 45 00 .0.....0..E...E.

0010 00 3c 73 2d 40 00 40 06 b2 bf c0 a8 c9 be c0 a8 .¡s-@.@.........

0020 c9 bf 00 17 00 17 41 85 0c 28 f8 21 63 fd 80 18 ......A..(.!c...

0030 03 91 55 26 00 00 01 01 08 0a d9 29 ed 29 9c 63 ..U& .......).).c

0040 af 99 68 9b 80 4c 6d 17 f6 db ..h..Lm...

0000 f4 30 b9 15 f5 c7 00 30 a7 12 45 c1 08 00 45 00 .0.....0..E...E.

0010 00 3c 73 2e 40 00 40 06 b2 be c0 a8 c9 be c0 a8 .¡s.@.@.........
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0020 c9 bf 00 17 00 17 41 85 0c 30 f8 21 63 fd 80 18 ......A..0.!c...

0030 03 91 b2 d3 00 00 01 01 08 0a d9 29 f1 11 9c 63 ...........)...c

0040 be 42 e4 c6 0f a7 dc ef 0b 37 .B.......7

0000 f4 30 b9 15 f5 c7 00 30 a7 12 45 c1 08 00 45 00 .0.....0..E...E.

0010 00 3c 73 2f 40 00 40 06 b2 bd c0 a8 c9 be c0 a8 .¡s/@.@.........

0020 c9 bf 00 17 00 17 41 85 0c 38 f8 21 63 fd 80 18 ......A..8.!c...

0030 03 91 32 cf 00 00 01 01 08 0a d9 29 f4 f9 9c 63 ..2........)...c

0040 c2 2a a0 e9 80 02 34 87 ff 4d .*....4..M

...

Our program takes in this input and with knowledge of the following structure

extracts the 8 bytes that are the plaintext data part of the Telnet packet and ignores

the rest of the packet. This process is the same for all 3 Versions of our prediction

software.

A.4 Ciphertext Files

In our case study we generate ciphertexts and send those chosen encrypted values

to the RTAC Server for decryption. The creation of the payloads are computed in

java and send but we also have to keep track of the ciphertexts sent for use in our

prediction program. Our program randomly selects the bytes and send them to the

RTAC device but also keeps track of the ciphertexts sent in a text file

For the Version 1 content we only keep track of the last 4 bytes as the first 8 bytes are
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all zeros. A sample from our Version 1 ciphertext files is shown below in which each

line has 4 decimal represented bytes separated by spaces and each line represents a

ciphertext. 153 110 214 15

177 127 63 60

189 44 88 40

247 138 10 162

110 21 70 231

163 168 214 36

252 64 249 3

Note that there are two new line characters in between every set of data. The extra

new lines were a design choice and can be easily edited in the code.

For Versions 2 and 3 the design is similar but the file contains ciphertexts represented

as 12 bytes as all 12 are random during the production of ciphertexts. An example

of the ciphertext file for Versions 2 and 3 are shown below:

99 72 42 22 123 64 8 98 111 77 152 49

145 22 104 154 208 35 54 17 143 225 249 135
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177 70 161 103 241 106 111 237 216 172 64 207

122 128 158 35 28 161 55 140 116 50 192 16

211 50 38 138 177 43 100 158 131 105 178 238

46 45 22 184 127 15 105 47 205 39 134 226

128 99 8 6 231 6 107 195 12 211 51 18

NOTE: Certain parts of the code use these value as int values (32-bit) and other

parts use them as byte values (8-bit). In the java code an int value could have a value

of (255) but that same value in the byte form would be (-1).
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