
WARING RANK AND APOLARITY OF SOME

SYMMETRIC POLYNOMIALS

by

Max Brian Sullivan

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mathematics

Boise State University

May 2022



© 2022

Max Brian Sullivan

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Max Brian Sullivan

Thesis Title: Waring Rank and Apolarity of Some Symmetric Polynomials

Date of Final Oral Examination:   04 March 2022

The following individuals read and discussed the thesis submitted by student Max 
Brian Sullivan, and they evaluated his presentation and response to questions dur-
ing the final oral examination. They found that the student passed the final oral 
examination.

Zachariah Teitler, Ph.D. Chair, Supervisory Committee

Jens Harlander, Ph.D. Member, Supervisory Committee

Uwe Kaiser, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Zachariah Teitler, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.



dedicated to Brian and Shan Sullivan

iv



ACKNOWLEDGMENTS

Thanks to my masters committee members for their participation and feedback

in my thesis defense, Dr. Harlander and Dr. Kaiser have deepened my appreciation

for pure math in many ways during my time at Boise State as their student. Special

thanks to my advisor, Dr. Zach Teitler, without whom none of this work would

have been possible. I am immensely grateful to have worked so closely with someone

so passionate and understanding. Thanks to Boise State University, for funding me

over the course of this degree in the form of a graduate teaching assistantship, and a

Summer fellowship, which has allowed me to dedicate time to this work. My academic

influences from Southern Utah, Dr. G and Professor M (The Doctors Meilstrup), for

the excellent times in math club, and to Dr. Andrew Misseldine, who sparked my

appreciation for pure math research, and was a dedicated, helpful mentor. Thank

you to my parents, Brian and Shan Sullivan, for being such loving and encouraging

parents in every way, I owe them everything. My sisters, Grace and Lilly, the most

loyal and creative people I know. Very special thanks to my partner Liv, who truly

made this work possible, by moving with me here to Boise so I could continue my

education and pursue this work, and for helping to support our home during this

stressful time. I am grateful to have completed this thesis, for its own sake, and for

the love and support it has made me aware of from the many people I will forever be

indebted to. Thank you.

v



ABSTRACT

We examine lower bounds for the Waring rank for certain types of symmetric

polynomials. The first are Schur polynomials, a symmetric polynomial indexed by

integer partitions. We prove some results about the Waring rank of certain types of

Schur polynomials, based on their integer partition. We also make some observations

about the Waring rank in general for Schur polynomials, based on the shape of their

Semistandard Young Tableaux. The second type of polynomials we refer to as a Power

of a Fermat-type polynomial, or a PFT polynomial. This is a Fermat type (or power

sum) polynomial over n variables with degree p taken to some power k. We prove this

polynomial is not compressed when p > k and k > 2, and conjecture the result is true

in general for all p. The proof takes the following form: the degree k + 1 annihilator

ideal is examined and identified, and form of Rank-Nullity is applied, which provides

a formula for the size of the degree k + 1 subspace of non-zero partial derivatives for

that polynomial. Then we verify that this subspace is linearly independent, which

gives us the dimension of the space of Derivs, and thus a lower bound for the Waring

rank of that polynomial.
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CHAPTER 1

INTRODUCTION

For a homogeneous degree d polynomial, f , in n variables, a power sum decom-

position of f is an expression f = c1`
d
1 + c2`

d
2 + · · · cr`dr where `i are homogeneous

degree 1 polynomials, and ci are scalars. We will refer to homogeneous polynomials

as forms, so each `i is a linear form. The length of the decomposition is the number

of terms used, in this case our decomposition is length r. Here are some concrete

examples of power sum decompositions.

xy =
1

4

(
(x+ y)2 − (x− y)2

)

xyz =
1

24

(
(x+ y + z)4 − (x+ y − z)4 − (x− y + z)4 + (x− y − z)4

)
Definition 1.0.1. The Waring rank of a homogeneous degree d polynomial in n

variables f , denoted r(f), is the smallest length of a power sum decomposition.

Determining the Waring rank of an arbitrary form is often difficult. Often we

search for upper and lower bounds for r(f) using a variety of methods.

Explicit power sum decompositions give an upper bound for the Waring rank of

forms, i.e. r(xy) ≤ 2 and r(xyz) ≤ 4. It is often extremely nontrivial to actually
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compute a power sum decomposition for an arbitrary polynomial. Computational

methods exist to find the power sum decomposition, see [2]. Other methods have

been developed for determining an upper bound more abstractly. For example, the

upper bound can be determined by considering using facts about projective varieties,

see section 5 of [7].

For a lower bound, the earliest method, and the foundation of most subsequent

ones, involve catalecticants, first introduced by Sylvester in 1851. The catalecticant

lower bound gives r(xy) ≥ 2 and r(xyz) ≥ 3. [14]. This method was improved in [7]

giving r(xy) ≥ 2 and r(xyz) ≥ 4 which together with our upper bounds give the rank

as r(xy) = 2, r(xyz) = 4.

In fact, the Waring rank of any monomial is known by [3]. The formula given by

Carlini, Catalisano, and Geramita is as follows.

Theorem 1.0.2. The Waring rank of a monomial given by xd00 x
d1
1 · · ·xdnn where 0 <

d0 ≤ d1 ≤ · · · ≤ dn is equal to (d1 + 1)(d2 + 1) · · · (dn + 1).

The Waring rank is also known for several other types of polynomials, but only in

some very specific cases. Additionally, many other types of polynomials have defined

upper and lower bounds, which help us estimate their Waring rank in specific cases.

We have outlined some of the current methods on finding upper and lower bounds

for the rank of homogeneous polynomials. We are interested here in using some of

these current methods, and develop some strategies specific to our needs, to examine

the Waring rank of several classes of symmetric polynomials.



3

In the next section we will provide some motivation for the topic of Waring rank,

its history and applications in the fields of algebraic geometry, complexity theory, etc.

Then we will define some basic terms, notations, and important results.

Sections 3 and 4 will each be dedicated each to one of the two types of polynomials

we will be studying: Schur polynomials and what we call ‘Power of Fermat-type’

polynomials. Each will give definitions, a survey of previous results, and our main

result for the bounds of the rank for these polynomials.
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CHAPTER 2

BACKGROUND

This chapter will cover all the basic definitions we will utilize and depend on in our

main work, as well as most previous results we will be making use of. The first section

will be mainly definitions and notation, which we will make standard throughout this

work. The second section will be a catalog of all the previous results we will be

making use of, both specific to this field, and general ideas applied in specific ways

for our purposes.

2.1 Definitions

2.1.1 Symmetric Polynomials

Let k be a field of characteristic 0 such as Q,R, or C, and let k[x1, . . . , xn] be the

polynomial ring over k with variables x1, . . . , xn.

Definition 2.1.1. A polynomial f ∈ k[x1, . . . , xn] is symmetric if any of its variables

can be interchanged, and the same polynomial can be obtained.

For example, f = x1x2x3− 4x1x2− 4x1x3− 4x2x3 and f = x31 + x32 + x33 + 9x1x2x3

are symmetric, since any xi, xj can switch places in f , and f would remain the same

polynomial.
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We have some common symmetric polynomials.

Definition 2.1.2. The complete homogeneous symmetric polynomial of degree k in

n variables is a polynomial, denoted hk, over the polynomial ring k[x1, x2 · · · , xn] of

the form

hk(x1, x2, · · · , xn) =
∑

1≤i1≤i2···≤ik≤n

xi1xi2 · · · xik

This type of polynomial is well studied and since it is both symmetric and homo-

geneous, has some nice properties. We will see it more in section 3.2.

Definition 2.1.3. The elementary symmetric polynomial of degree k in n variables

is a polynomial denoted ek over the polynomial ring k[x1, x2 · · · , xn] of the form

ek(x1, x2, · · ·xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik

Definition 2.1.4. The power sum symmetric polynomial of degree k in n variables

is a polynomial denoted pk over the polynomial ring k[x1, x2, · · ·xn] of the form

pk(x1, x2, · · ·xn) =
n∑
i=1

xki = xk1 + xk2 + · · ·+ xkn

This polynomial is also commonly referred to as a Fermat-type polynomial.

Definition 2.1.3 is important to the first type of polynomial we investigate, the

Schur Polynomial. A Schur polynomial is a generalization of the elementary symmet-

ric polynomial, indexed by integer partitions. We will see a more formal definition in

section 3.1.
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Definition 2.1.4 is important to the second polynomial, PFT polynomials. Easier

to define than the Schur polynomial, a Power of a Fermat type polynomial or PFT

polynomial is a Fermat type polynomial taken to a power. We investigate this type

of symmetric polynomial in section 4.1.

2.1.2 Polynomial Ring Notation and Catalecticants

Now we will establish some notation for working over polynomial rings, and

introduce our methods for determining bounds for the Waring rank of our symmetric

polynomials.

Let S = k[x1, x2, · · · xn] denote the polynomial ring over the field k in n variables.

When n ≤ 3 we may use k[x],k[x, y],k[x, y, z]. Otherwise, we will assume S is

the polynomial ring over n variables, and we will assume our monomial ordering is

lexicographic.

Let Sd be the degree d part of S, i.e. for d = 3 we would have

S3 = span{x31, x21x2, . . . , xn−1x2n, x3n}

In general, the space Sd has dimension dim(Sd) =
(
n+d−1

d

)
=
((
n
d

))
, found by

counting the number of multisets of size d from the set of n variables, allowing

repetition [5].

Define ∂xi = ∂
∂xi

as a shorthand for the partial derivative with respect to the vari-

able xi. For example, ∂2x1∂
3
x2
∂x4 denotes a partial differential operator ( ∂

∂x1
)2( ∂

∂x2
)3( ∂

∂x4
).
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Another convention we will sometimes utilize is given α = (a1, a2, . . . , an) then

∂α = ∂a1x1 · ∂
a2
x2
· · · ∂anxn . Then for α = (2, 3, 0, 4) we understand that ∂α = ∂2x1∂

3
x2
∂x4 .

Define T = k[∂x1 , ∂x2 , . . . , ∂xn ] as a polynomial ring of differential operators over

the variables of S. T is called the dual ring to S. T includes every possible partial

derivative of variables in S. Let Td denote the degree d graded part of T , similarly to

Sd. So for d = 3

Td = span{∂3x1 , ∂
2
x1
∂x2 , . . . , ∂xn−1∂

2
xn , ∂

3
xn}

This dual ring is useful in the study of what is called the catalecticant map, defined

next.

Definition 2.1.5. Let f ∈ Sd and 0 ≤ a ≤ d. Then the a-th catalecticant of f is a

linear map Ca
f : Ta → Sd−a defined by ∂α 7→ Ca

f (∂α) = ∂α(f).

For example, f = x3 + 2x2y + 2xy2 + y3 ∈ S3 and a differential operator ∂2x ∈ T2

then C2
f (∂2x) = ∂2x(f) = 6x+ 4y.

This notion goes back to Sylvester in 1851, see [13], and through the years, came to

be written and used in this form in more contemporary work. The map is important

because it is the foundation of our understanding of lower bounds for Waring rank,

using the method of partial derivatives which we will use in this work. For more

detailed info on this method see [8].

Here is a definition key to our use of this method for determining a lower bound

on the Waring rank of these symmetric forms, based on the catalecticant.
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Definition 2.1.6. For a polynomial f , Derivs(f) is the vector space spanned by all

partial derivatives of f of all orders.

For example, if f = xyz then Derivs(f) = span{xyz, xy, xz, yz, x, y, z, 1}.

Let Derivs(f)≤δ be the subset of polynomials in Derivs(f) of degree less than or

equal to δ. These are all subspaces of Derivs(f). Note Derivs(f)≤d = Derivs(f) when

deg(f) = d, and Derivs(f)≤0 = span{1}. These subspaces are nested, so

{0} = Derivs(f)≤−1 ( Derivs(f)≤0 ( · · · ( Derivs(f)≤d = Derivs(f)

where Derivs(f)≤−1 = {0} by convention. This type of nested sequence of subspaces

is called a filtration, and we say that Derivs(f) is filtered by degree.

Another such filtration is given by order of derivatives. For each ε let Derivs(f)≥ε

be the subspace spanned by the derivatives of order ε or greater. In this filtration,

we have

{0} = Derivs(f)≥d+1 ( Derivs(f)≥d ( · · · ( Derivs(f)≥0 = Derivs(f)

Observe that Derivs(f)≥ε ⊂ Derivs(f)≤d−ε since differentiating f at least ε times

reduces the total degree of f by at least ε. However, these subspaces are not necessarily

equal, for example if f = x4 + x2y a degree 4 polynomial, then

Derivs(f) = span{f, ∂xf, ∂yf, ∂2xf, . . .}

= span{x4 + x2y, 4x3 + 2xy, x2, 12x2 + 2y, 2x, 2}

= span{x4 + x2y, 2x3 + xy, x2, y, x, 1}
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In particular, Derivs(f)≤2 = span{x2, y, x, 1}. However,

Derivs(f)≥2 = span{∂2xf, ∂x∂yf, ∂2yf, ∂3xf, . . .}

= span{12x2 + 2y, 2x, 0, 24x, 2}

= span{6x2 + y, x, 1}

Observe x2, y ∈ Derivs(f)≤2 but not in Derivs(f)≥2.

When f is homogeneous of degree d, then this complication does not arise so we

can simplify these two filtration’s into one case, and denote the space of Derivs in the

following way.

Definition 2.1.7. For a homogeneous polynomial f of degree d, Derivs(f)δ is the

subspace of all homogeneous degree δ polynomials in Derivs(f). Equivalently, it is

the set of all order (d− δ)th derivatives of f . Formally,

Derivs(f) = Derivs(f)0 ⊕Derivs(f)1 ⊕ · · · ⊕Derivs(f)d

Thus we have Derivs(f)≤δ = Derivs(f)≥d−δ = Derivs(f)0 ⊕ Derivs(f)1 ⊕ · · · ⊕

Derivs(f)δ. That is, Derivs(f) is graded by degree when f is homogeneous. The space

of Derivs is one key to our examination of these symmetric polynomials. The other

involves a less familiar, and highly related notion.

2.1.3 Apolarity

The method of partial derivatives also involves the notion of apolarity. The

theory of apolarity was developed in the late 19th early 20th century by Clebsch,
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Lasker, Richmond, Sylvester, and Wakeford in their work with canonical forms, see

[12],[15],[13].

This was later utilized by Ehrenborg and Rota to continue this work, who used it

to examine the linear and algebraic dependence of forms [4], [5].

It has been shown using the notion of apolarity that for f a ‘generic’ ternary

quartic (a polynomial in 3 variables of degree 4) cannot be written as `41+`
4
2+`

4
3+`

4
4+`

4
5

iff there exists a dual ternary quartic which is apolar to `31, `
3
2, · · · , `35 where `i are linear

forms. In other words, under this given condition, the Waring rank of f is greater

than 5, giving us a lower bound for generic homogeneous f of degree 4 in 3 variables.

The notion of apolarity gives rise to a significant object called the Apolar algebra

of f [9].

Definition 2.1.8. For a polynomial f in the polynomial ring S, and the associated

dual ring T the Apolar Algebra Rf is the quotient ring defined by

Rf = T/Ann(f)

where Ann(f) is the set of all polynomial differential operators that annihilate f ,

called the annihilator of f .

Ann(f) is also often called the Apolar ideal.

Lemma 2.1.9. Given a polynomial f ∈ S and the ring of differential operators T ,

the set of polynomial differential operators that annihilate f , denoted Ann(f), is an

ideal of T .
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Proof. Let f be a degree d polynomial. Then for any α = (a1, a2, . . . , an) such that

|α| ≥ d+ 1 we know that ∂α ∈ Ann(f) thus Ann(f) 6= ∅.

Given θ1, θ2 ∈ Ann(f) then

(θ1 + θ2)(f) = θ1(f) + θ2(f) = 0 + 0 = 0

so θ1 + θ2 ∈ Ann(f).

Given θ ∈ Ann(f) and γ ∈ T we have

θγ(f) = γ(θ(f)) = γ(0) = 0

So θγ ∈ Ann(f) and therefore Ann(f) is an ideal.

Similarly to the Derivs(f), the annihilator is graded, so the set of all ath differential

operators that annihilate f is denoted Ann(f)a.

For example, Ann(xy) = (∂2x, ∂
2
y) since ∂2x(xy) = 0 and ∂2y(xy) = 0 so (∂2x, ∂

2
y) ⊂

Ann(xy). To see the reverse containment, we can separate Ann(xy) into graded com-

ponents, so Ann(xy)1 = {0},Ann(xy)2 = span{∂2x, ∂2y},Ann(xy)3 = span{∂3x, ∂2x∂y, ∂x∂2y , ∂3y}

and notice that the ideal generated by (∂2x, ∂
2
y) contains the basis of Ann(xy)3 so

Ann(xy) ⊂ (∂2x, ∂
2
y) thus Ann(xy) = (∂2x, ∂

2
y).

We can connect the ideas of the annihilator and the space of Derivs intuitively:

Derivs(f) is a vector space spanned by all partial derivatives of f , and Ann(f) is the
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ideal of all differential operators which when applied to f , result in 0.

2.2 Previous Results

We will present some previously proved theorems and facts about ranks of vector

spaces, apolarity, and other ideas relating to symmetric polynomials.

Theorem 2.2.1. (Rank-Nullity) For vector spaces V,W and a linear transformation

φ : V → W we know:

Rank(φ) + Nullity(φ) = dimV

where

Rank(φ) := dim(Image(φ)), Nullity(φ) := dim(ker(φ))

We can apply this theorem to the catalecticant map Ca
f : Td−a → Sa. The kernel

is Ann(f)d−a, the homogeneous degree d − a elements in Ann(f), and the image is

Derivs(f)a. Therefore,

dim Ann(f)d−a + dim Derivs(f)a = dimTd−a (2.1)

which we know is

dimTd−a =

(
n+ d− a− 1

d− a

)
=

((
n

d− a

))

By examining the size of the Derivs(f)a or Ann(f)d−a we have a formula with

one unknown, which can be solved. The dimensions of these subspaces are important

because of the following result about the catalecticant map and Waring rank.



13

Theorem 2.2.2. Given a homogeneous polynomial f ∈ S and the catalecticant map

Ca
f then the following inequality holds

r(f) ≥ rankCa
f

The proof is surprisingly quick.

Proof. Let f = c1`
d
1 + · · · cr`dr , then the image of Ca

f is spanned by ∂α(f) for ∂α ∈ Ta

and each ∂α(f) ∈ span{∂α(`di ) : i = 1, 2, . . . , r}. Each of these spanning elements is

∂α(`di ) = c`d−ai for some c ∈ k therefore the image of Ca
f ⊂ span{`d−ai : i = 1, 2, · · · , r}

which implies the rank of Ca
f is at most the rank of f .

More useful results to consider about the catalecticant map rank.

Corollary 2.2.3. Given f ∈ Sd and 0 ≤ a ≤ d we have

• rankCa
f = dim Derivs(f)a

• dim Derivs(f)a = dim Derivs(f)d−a and the sequence of dimensions is symmet-

ric.

Proof. Let f be a homogeneous polynomial of degree d and let R be the apolar

algebra of f (we will omit the f subscript). Observe that Derivs(f)a ∼= Ra and

Derivs(f)d−a ∼= Rd−a. Also observe that Rd
∼= Derivs(f)d = span{f} ∼= k. Taking

the Cartesian product Ra × Rd−a gives a space of degree d polynomials, since Rk

corresponds to a space of degree k polynomials. The multiplication map

Ta × Td−a → Td



14

taken modulo Ann(f) gives the map

Ra ×Rd−a → Rd

Therefore this map is bilinear. Then each θ ∈ Ra gives a linear map Rd−a → k, i.e.

an element of R∗d−a, thus we get a map Ra → R∗d−a which is linear and injective. To

see this, if θ ∈ Ra where θ 6= 0 then θ 6∈ Ann(f), so θf 6= 0 which implies there exists

some ψθ 6= 0 in Rd. Then ψ ∈ R∗d−a is an element where the linear functional given

by θ is nonzero, so the map Ra → R∗d−a is injective. Therefore dimRa ≤ dimR∗d−a =

dimRd−a. Similarly, in the other direction we get dimRd−a ≤ dimR∗a = dimRa so

the dimensions are equal.

The consequence of this result is that the the subspaces Derivsa are symmet-

ric. To illustrate what this means, take the elementary symmetric polynomial f =

e4(x0, x1, x2, x3, x4). Here is the list of the dimension of Derivs(e4(x0, x1, x2, x3, x4))a

for 0 ≤ a ≤ 4.

a dim Derivs(f)a

0 1

1 5

2 10

3 5

4 1

Table 2.1: Dimension of Derivs(f)a for f = e4(x1, x2, x3, x4, x5).

We will be looking at the dimension of the Derivs(f)a for specific values of a,

which will tell us about the annihilators and the Derivs space for all of f based on
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this pattern.

We will examine the catalecticant maps of our two symmetric polynomial types.

Each polynomial f will be in n variables, of degree d, so as these numbers, n and d

grow, so does the length of f , and the dimension of each Ca
f . Thus, our computational

data will reflect the limit of our available resources.
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CHAPTER 3

SCHUR POLYNOMIALS

3.1 Definition and Computation

A Schur polynomial is a type of symmetric homogeneous polynomial which is

indexed by an integer partition of the degree of the polynomial.

Definition 3.1.1. Given an integer partition λ = (λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥

. . . ≥ λn and λj ≥ 0, the function

a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn) = det



xλ1+n−11 xλ1+n−12 . . . xλ1+n−1n

xλ2+n−21 xλ2+n−22 . . . xλ2+n−2n

...
...

. . .
...

xλn1 xλn2 . . . xλnn


is an alternating polynomial in n variables of degree d. It will be divisible by the

Vandermonde determinant
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a(n−1,n−2,...,0)(x1, x2, . . . , xn) = det



xn−11 xn−12 . . . xn−1n

xn−21 xn−22 . . . xn−2n

...
...

. . .
...

1 1 1 1


=

∏
1≤j<k≤n

(xj − xk)

The Schur polynomial for the partition λ is computed by the following quotient [16].

sλ(x1, x2, . . . xn) =
a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

a(n−1,n−2,...,0)(x1, x2, . . . , xn)

For example, let n = 3, d = 7 and consider the integer partition λ = (4, 2, 1).

Then the Schur polynomial given by λ is computed in the following way.

s(4,2,1)(x, y, z) =
a4+3−1,2+3−2,1(x, y, z)

a3−1,2−1,0(x, y, z)
=

det



x4+3−1 y4+3−1 z4+3−1

x2+3−2 y2+3−2 z2+3−2

x1+3−3 y1+3−3 z1+3−3



det



x3−1 y3−1 z3−1

x3−2 y3−2 z3−2

x3−3 y3−3 z3−3


Computing these two determinants we get
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a6,3,1(x, y, z) = x6y3z − x3y6z − x6yz3 + xy6z3 + x3yz6 − xy3z6

a2,1,0(x, y, z) = x2y − xy2 − x2z + y2z + xz2 − yz2

Thus the Schur polynomial is given by

s(4,2,1)(x, y, z) = x4y2z + x3y3z + x2y4z + x4yz2 + 2x3y2z2 + 2x2y3z2

+xy4z2 + x3yz3 + 2x2y2z3 + xy3z3 + x2yz4 + xy2z4

The Schur polynomial is a generalization of the elementary symmetric polynomial.

Like many symmetric polynomials, it can be indexed by integer partitions. Schur

polynomials have many interesting properties as a result of this, which have been well

studied in algebraic combinatorics. One such property is we can examine the shape

of a visual representation of these partitions in something called a Young Diagram.

A Young Diagram is a finite collection of boxes, or cells, arranged in left-justified

rows, with the row lengths in non-increasing order. Listing the number of boxes in

each row gives a partition λ of a non-negative integer n, the total number of boxes

of the diagram. The Young diagram is said to be of shape λ, and it carries the same

information as that partition.

A Young Tableau is a filling of a Young diagram with integers 1 through n. The

integers may repeat, or not appear at all. It is semistandard if these integers are

strictly increasing along columns and weakly increasing along rows. Since the integer

partitions, λ, we have for these Schur polynomials could consist of a single repeated

integer, λ = (k, k, . . . , k), or a single positive integer followed by 0’s, λ = (d, 0, . . . , 0),
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we would need to use semistandard Young Tableaux to categorize these polynomials.

We have an alternate definition for Schur polynomials using these semistandard YT.
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Here are all the SSYT for the integer partition (4, 2, 1)

3 3 3 3

2 2

1

3 3 3 2

2 2

1

3 3 2 2

2 2

1

3 3 3 3

2 1

1

3 3 3 2

2 1

1

3 3 3 1

2 2

1

3 3 2 2

2 1

1

3 3 2 1

2 2

1

3 2 2 2

2 1

1

3 3 3 1

2 1

1

3 3 2 1

2 1

1

3 3 2 1

2 1

1

3 2 2 1

2 1

1

3 3 1 1

2 1

1

3 2 1 1

2 1

1

Notice that there are 15 such semistandard Tableaux, and the sum of the coeffi-

cients on our Schur polynomial indexed by the same partition is 15. In other words,

there is a one-to-one correspondence between SSYT for the partition λ and monic

monomial terms in sλ. This leads to our next definition.

Definition 3.1.2. Given the Schur polynomial sλ(x1, x2, . . . , xn), let T denote the

collection of all semistandard Young Tableaux of λ, and let ti be the weights in each

SSYT, that us, ti is the number of times i appears in the tableaux. We have

sλ(x1, x2, . . . , xn) =
∑
T

xtii

Again, consider the Schur polynomial s(4,2,1)(x, y, z). Each tableaux in our list

of all SSYT for (4, 2, 1) corresponds to a single monomial in this Schur polynomial,

where we interpret the numbers as variables. Typically x1, x2, x3, . . . are represented

by 1, 2, 3, . . . for convenience. In this case, we can either let x = 1, y = 2, z = 3 or

x = 3, y = 2, z = 1 and the result is the same. Symmetric polynomials have many
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convenient properties in this way! In the typical assignment of variables to weights,

our first tableaux corresponds to the monomial term xy2z4.

The theory of Schur polynomials is vast, since they are an important example

of symmetric polynomials, and their properties are very interesting to the field of

algebraic combinatorics and algebraic geometry. More can be found about Schur

polynomials in [10]. We are interested here in the annihilator ideal of Schur polyno-

mials, which will largely depend, as we will see, on the integer partition λ, which can

be classified by the Semi-standard Young Tableux (SSYT hereafter) for λ.

We revisit our example polynomial one more time, and examine the annihilator

of it. Consider the annihilators of order 5. Ann(s(4,2,1))a 6= {0} is a = 5. In this

case, we get Ann(s(4,2,1))5 ⊂ span{∂5x, ∂5y , ∂5z}, which is fairly easy to see, since clearly

taking the fifth derivative of any one variable, when the highest power on x, y, z is 4,

the polynomial will be annihilated. Thus dim Ann(f)5 ≤ 3.

For this polynomial, there are other non-monomial annihilators of degree 5, and

in fact of degree 4, dim Derivs(f)b d
2
+1c > 0 where d is the degree of the polynomial.

When dim Derivs(f)b d
2
c = 0, the Derivs is as large as possible for all degrees.

This is sometimes stated by referencing the Hilbert function of the polynomial,

and when the space of Derivs(f) has its maximum dimension, then we say it has a

compressed Hilbert function.

3.2 Results and Proof

We now use this background to make and prove claims about the dimension of

the annihilator ideal of sλ(x1, x2, . . . xn) based on the partition λ.
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Theorem 3.2.1. If λ = (1, 1, . . . , 1) then sλ = x1x2 · · · xn.

We will refer to this Schur polynomial with λ = (1, 1, · · · , 1) as the unit-discrete

Schur polynomial.

Proof. Let N = a(λ1+n−1,λ2+n−2,...λn)(x1, x2, . . . xn) = a(n,n−1,n−2,...,1)(x1, x2, . . . xn) and

D = a(n−1,n−2,...,0)(x1, x2, . . . xn). By the Jacobi bialternant formula, we know that

sλ(x1, x2 . . . , xn) = N
D

. Let the matrix A be defined as the Vandermonde matrix:



xn−11 xn−12 . . . xn−1n

xn−21 xn−22 . . . xn−2n

...
...

. . .
...

1 1 1 1


Now let B be the matrix whose determinant produces N :



xn1 xn2 . . . xnn

xn−11 xn−12 . . . xn−1n

...
...

. . .
...

x1 x2 . . . xn


Finally let X be the matrix with the main diagonal containing x1 through xn and

every other element 0:
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x1 0 . . . 0

0 x2 . . . 0

...
...

. . .
...

0 0 0 xn


It is easy to see that B = AX, and therefore N = detB = detAX = detAdetX =

DdetX. Therefore sλ(x1, x2, . . . , xn) = N
D

= DdetX
D

= detX = x1x2 · · ·xn as desired.

Corollary 3.2.2. If d = kn and λ = (k, k, . . . , k) then sλ(x1, x2, . . . , xn) = (x1x2 · · ·xn)k.

This Schur polynomial will be referred to as the k-discrete Schur polynomial.

Proof. Similarly, for A as before and

B =



xk+n−11 xk+n−12 . . . xk+n−1n

xk+n−21 xk+n−22 . . . xk+n−2n

...
...

. . .
...

xk1 xk2 . . . xkn


is is easy to see thatB = AXk whereX is the same as before. Thus sλ(x1, x2, . . . , xn) =

N
D

= DdetXk

D
= detXk = xk1x

k
2 · · ·xkn = (x1x2 · · ·xn)k as desired.

Therefore λ = (k, k, . . . , k) for f = sλ(x1, x2, . . . , xn). By Ranested-Schreyer, the

rank of a monomial f of the form f = (x1x2 · · · xn)k is known to be r(f) = (k+ 1)n−1
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[11]. The SSYT for the discrete Schur polynomials is a single column, and based on

computed examples, has the lowest rank of any other Schur polynomials with the

same parameters n, d. We now turn to the opposite extreme.

Theorem 3.2.3. If λ = (d, 0, . . . , 0) then sλ = sλ(x1, x2, . . . xn) =
∑

t1+t2+...+tn=d
xtii

and rankC
b d
2
c

sλ =
((

n
b d
2
c

))
.

This Schur polynomial we will refer to as the indiscrete Schur polynomial.

For an example, start with the Schur polynomial n = 3, d = 3 and λ = (3, 0, 0),

over k[x, y, z]. The SSYT of shape λ is a single row, with 3 columns, e.g. i j k

where i, j, k ∈ {1, 2, 3}. Since it is semistandard, the row is weakly increasing, and

repetition of numbers is allowed. Then we can list all possible SSYT of this shape

with these possible weights as follows. Let 111 denote the tableaux with a weight of 1

in the first, second, and third position, e.g. 1 1 1 which corresponds to the term

x3. The set of all SSYT of this shape is counted by the number of ways to arrange 3

objects into 3 bins, weakly increasing and allowing repetition. This is equivalent to

the number of multisets, i.e. there will be
(
3+3−1

3

)
=
((

3
3

))
= 10.

Let Tλ = {ijk|i ≤ j ≤ k, i, j, k ∈ {1, 2, 3}} denote all possible tableaux for λ. Then

Tλ = {111, 112, 113, 122, 123, 133, 222, 223, 233, 333}. Then forming the polynomial

from this arrangement we get

s(3,0,0) = x3 + x2y + x2z + xy2 + xyz + xz2 + y3 + y2z + yz2 + z3

Notice that every degree 3 monomial in k[x, y, z] is present in this Schur poly-

nomial. Recalling definition 2.1.2 we can see that this is the complete homogeneous

symmetric polynomial of degree 3 in 3 variables, h3(x, y, z). This will hold in general,

here is the proof.
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Proof. Let λ = (d, 0, 0 . . . , 0). Then define Tλ as the set of all SSYT of shape λ.

Namely,

Tλ = {i1i2 · · · in : i1 ≤ i2 ≤ · · · ≤ in, ik ∈ [n],
n∑
k=1

ik = d}.

Elements of Tλ are length n strings whose entries come from a size n alphabet, and

whose sum is equal to d. Additionally, any one weight may not appear at all. So

we are counting length n strings, of non-negative weights, since our tableaux are

semi-standard.

This is equivalent to the number of multisets
((
n
d

))
. Since we have already seen

that each tableaux corresponds to a monomial in sλ, and the number of degree d

monomials in k[x1, . . . , xn] is known to be
((
n
d

))
then sλ contains every monomial in n

variables of degree d. Moreover, the tableaux for each monomial is unique, thus the

coefficient on each monomial in sλ is 1. Therefore, we can see that sλ is the complete

homogeneous symmetric polynomial of degree d in n variables.

Recall definition 2.1.2 of the complete homogeneous symmetric polynomial. Notice

that for λ = (d, 0, 0, . . . , 0) then the Schur polynomial sλ(x1, . . . , xn) = hd(x1, . . . , xn).

Theorem 2.11 of [1] states that hd(x1, . . . , xn) has a compressed Hilbert function,

therefore each sλ of this form will have a compressed Hilbert function.

We see then that in one extreme, the discrete case, has rank (k − 1)n−1. In

the other extreme, the indiscrete, the Hilbert function is compressed, meaning that

by 2.2.2 our lower bound for the Waring rank of the indiscrete Schur polynomial,

sd,0,··· ,0 ∈ k[x1 . . . , xn] is rankC
b d
2
c

f =
((

n
d
2

))
, which is as large as possible.
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Every pair (n, d) will have one indiscrete Schur polynomial, however we only get

a discrete Schur polynomial when d = kn. Therefore we classified the lower bound of

one Schur polynomial for each (n, d), and a second one if d = kn. Generalizing this

result involves examining the SSYT shape, which we will mention in the next section.

3.3 Further Questions

We examined several hundred Schur polynomials, generalizing up to 7 variables

and up to degree 9. Our computer data suggests that there exists a pattern of

when the Hilbert function of the Schur polynomials is compressed, that aligns with

our rigorous results. By categorizing the Schur polynomials by their Semi-standard

Young-Tableaux we noticed that when the Tableaux is a single row (indiscrete) the

Hilbert function is compressed.

Our data suggests that if the Schur polynomial SSYT is a long row with a small

tail, the Hilbert function will be compressed, and depending on the degree and

number of variables, the tail can grow larger, while the HF remains compressed.

Whereas, if the SSYT is a single column (discrete) we proved the Hilbert function

is not compressed, and we can find the annihilator ideal. If the SSYT of a Schur

polynomial is a large column with a small arm, the Hilbert function will often be

uncompressed, though this case has more deviation that the former.

It is not completely clear at what point this change occurs, and if it can be

generalized. It is an interesting algebraic-combinatorial problem to connect the shape
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of the SSYT to the rank of the annihilator ideal, or the dimension of the space of

Derivs, that we would like to explore further in the future.
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CHAPTER 4

POWERS OF FERMAT TYPE POLYNOMIALS

Our next type of polynomial is the PFT polynomial, which we will define below,

along with some other specific background definitions and notation. Section 2 will go

over some computational examples, and results, which will play a role in our larger

proofs. Section 3 will be our main results for the annihilator ideal of PFT polynomials

in general, and our final section will contain further questions on this subject.

4.1 Definition and Notation

Recall definition 2.1.4 of a Fermat polynomial.

Definition 4.1.1. Let spn = xp1+xp2+ · · ·+xpn be the degree p Fermat-type polynomial

in n variables. Then define

F(n,p,k) := (spn)k = (xp1 + xp2 + · · ·+ xpn)k

be the k-th power of spn. This polynomial we will call the Power of a Fermat Type

polynomial or a PFT polynomial, henceforth.

The inspiration for studying this polynomial came from the papers [1] and [6]

which both proved that the PFT polynomial, where p = 2, has compressed Hilbert

function. We wanted to further generalize on the power of p, and examine the
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annihilator ideal of this polynomial, to determine a lower bound for its Waring rank.

Definition 4.1.2. Let f be a polynomial over S. The support of f , denoted supp(f),

is the set of monomials occurring in the polynomial f .

For example, in the polynomial f = x31x2 + 3x23 − 2x5 the support is supp(f) =

{x31x2, x33, x5}. If a degree d polynomial f includes all degree ≤ d monomials then f

is said to have full support. This definition of support could also be called monomial

support to differentiate it from variable support, the set of variables occurring in the

polynomial. When f is homogeneous, which is all f we are considering, we will use

‘full support polynomial’ to denote a homogeneous polynomial containing all degree

d monomials.

Full support polynomials have some nice properties, the ones that will benefit us

the most involve determining, based on parameters (n, p, k), what monomials exist in

the partial derivatives of f = F(n,p,k).

We can generalize the notion of support in a way that helps us examine these

PFT polynomials.

Definition 4.1.3. Let f(x1, x2, . . . , xn) be a polynomial in R = k[xp1, x
p
2, . . . , x

p
n]. If

f(y1, y2, . . . , yn) has full support in the polynomial ring R′ = k[y1, y2 . . . , yn] where

yi = xpi then we say f has p-full support.

The main usefulness of these results is being able to determine the monomials

from F(n,p,k) that will be present in span(∂α)(f), which is the key to testing for linear

independence of each of our Derivs subspaces. To make this work easier, we will
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introduce some notation for dealing with monomials of ∂α(F(n,p,k)).

For f ∈ S be an arbitrary polynomial let Zθ = xpθ11 · · · xpθnn denote some monomial

Zθ ∈ supp(f) where θ = (θ1, θ2, . . . θn). Also let cθ be the coefficient on Zθ. We will

see both how to determine exactly what monomials are in supp(f), when f is an

element of some Derivsδ(F(n,p,k)), in the next section. Additionally, we will see how to

find cθ given (n, p, k), another necessary part of determining the linear independence

of each subspace of the Derivs.

4.2 Computational Results and Examples

4.2.1 Useful Results

We can write a general formula for the coefficients on each PFT polynomial, for

any parameters (n, p, k), using the fact that every PFT polynomial has p−full support,

and the help of our old friend the binomial theorem.

Lemma 4.2.1. Let f = F(n,p,k) ∈ Snpk be a PFT polynomial, and let θ = (θ1, θ2, . . . , θn)

be a tuple with 0 ≤ θi ≤ pk. Then for any monomial Zθ ∈ supp(f) the coefficient on

Zθ is given by

cθ =
k!

θ1! · · · θn!

Proof. The coefficient cθ on a monomial Zθ = cθx
pθ1
1 · · ·xpθnn for any Zθ ∈ supp(f) is

given by the multinomial theorem
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cθ =

(
k

θ1, θ2 . . . , θn

)
=

k!

θ1! · · · θn!

This allows us to easily predict coefficients on any monomial in a partial derivative

of f , for some ∂α(f) ∈ Derivsδ(f).

Corollary 4.2.2. Given a differential operator ∂α = ∂a1x1 · · · ∂
an
xn ∈ Tδ and a monomial

Zθ, the coefficient, dθ, on ∂α(Zθ) is given by

dθ =
k!pθ1! · · · pθn!

θ1! · · · θn!(pθ1 − a1)! · · · (pθn − an)!

Proof. Note ∂α(cθZθ) = cθ∂
α(Zθ) so we need only find the coefficient for ∂α(Zθ) and

multiply it by cθ. Differentiating Zθ by ∂α gives us the monomial

∂α(Zθ) = ∂α(
n∏
i=1

xpθii ) =
n∏
i=1

∂ai(xpθi−aii )

=
n∏
i=1

(pθi)(pθi − 1) · · · (pθi − ai + 1)xpθi−aii

=
n∏
i=1

(pθi)!

(pθi − ai)!
xpθi−aii

Thus the coefficient dθ on ∂α(Zθ) ∈ supp(∂α(f)) is given by

dθ = cθ

n∏
i=1

(pθi)!

(pθi − ai)!

=
k!

θ1! · · · θn!

(
pθ1!

(pθ1 − a1)!

)
· · ·
(

pθn!

(pθn − an)!

)
=

k!pθ1! · · · pθn!

θ1! · · · θn!(pθ1 − a1)! · · · (pθn − an)!
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Here we have a lemma about a specific type of matrix, which we will see in some

computational examples. It will be easiest to prove some facts about this matrix in

general before dealing with specific cases.

Lemma 4.2.3. For an n× n real valued matrix of the form:

M =



a b . . . b

b a . . . b

...
... . . .

...

b b . . . a


If a+ (n− 1)b 6= 0 and a− b 6= 0 then M is invertible.

Proof. Assume that a + (n − 1)b 6= 0 and a − b 6= 0. Note that the column vector

vT = [1, 1, . . . , 1] consisting of n copies of 1 is an eigenvector of M and its eigenvalue

is a+ (n− 1)b. Now notice we can rewrite the matrix M as

M = (a− b)I + bvvT

Now let w be another column vector that is orthogonal to v. Multiply by w on

the right to both sides of the above equality and we can see:

Mw = (a− b)Iw + bvvTw = (a− b)w + bv · 0 = (a− b)w
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because vTw = 0.

So w is an eigenvector with the eigenvalue of a− b. So for any w orthogonal to v,

w is another eigenvector with eigenvalue of (a− b).

It is easy to see that there are n−1 linearly independent w’s that will be orthogonal

to v: Let

wTi = [1, x1, . . . , xn−1] where xi = −1, xj = 0 for j 6= i

Any vector of this form will be orthogonal to v and there are
(
n−1
1

)
= n−1 linearly

independent w’s.

Then span{v, w1, w2, . . . wn−1} forms a complete eigenbasis for M with eigenvalues

a+(n−1)b and a−b (with multiplicity n−1). This implies the matrix is diagonalizable.

Since M is diagonalizable, then M is invertible if and only if it’s eigenvalues are

all nonzero. By assumption, a + (n − 1)b 6= 0 and a − b 6= 0 and these are our only

eigenvalues, therefore M is invertible.

Given the polynomial f , define LM(f) as the leading monomial of f , using lex

monomial ordering. For example if f = 4x3 + 2y2 − 3z4 then LM(f) = x3.

Lemma 4.2.4. Let f = F(n,p,k), the (n, p, k) PFT polynomial, and let p > k. Consider

tuples β = (b1, b2, . . . bn) and γ = (c1, c2, . . . , cn) such that ∂β, ∂γ ∈ Tk. Provided

∂β(f), ∂γ(f) 6= 0 we have β = γ if and only if LM(∂β(f)) = LM(∂γ(f)).

Proof. Assume that ∂β = ∂γ. Then every term in the polynomials will be the same,

hence the leading monomials will be the same, so LM(∂β(f)) = LM(∂γ(f)).
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Now assume that LM(∂β(f)) = LM(∂γ(f)). These monomials will be of the form:

LM(∂β(f)) = xpa1−b11 · xpa2−b22 · · · xpan−bnn

LM(∂γ(f)) = x
pa′1−c1
1 · xpa

′
2−c2

2 · · · xpa′n−cnn

We cannot assume that the ai = a′i.

Now using our assumption we know that

xpa1−b11 · xpa2−b22 · · ·xpan−bnn = x
pa′1−c1
1 · xpa

′
2−c2

2 · · ·xpa′n−cnn

We end up with the system

pai − bi = pa′i − ci, 1 ≤ i ≤ n

Rearranging this we can see that

p(ai − a′i) = bi − ci

This implies that p|bi − ci. Since we know that
∑
bi =

∑
ci = k then bi, ci ≤ k so

|bi − ci| ≤ k < p. Therefore bi − ci = 0 which implies bi = ci for all i ∈ {1, 2, . . . , n}.

Therefore β = γ.

For two tuples α = (a1, . . . , an) and β = (b1, . . . , bn) we say that α ≡ β (mod p)

if ai ≡ bi (mod p) for i ∈ [n]. For congruent tuples α, β we say that the differential

operators ∂α, ∂β are ‘congruent mod p’, as shorthand for α ≡ β (mod p). Then we
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have the following result about congruent differential operators.

Lemma 4.2.5. Suppose ∂α1 , ∂α2 ∈ Ta are two distinct differential operators. Then

for PFT polynomials f = F(n,p,k) if ∂α1(f), ∂α2(f) have any monomials in common

then α1 ≡ α2 (mod p).

Proof. Let ∂α1 , ∂α2 ∈ Tk+1 be two distinct differential operators. Write α1 = pβ1 + γ1

and α2 = pβ2 + γ2. We want to show that if ∂α1(f), ∂α2(f) have any monomials in

common, then γ1 = γ2.

Assume that ∂α1(f), ∂α2(f) have a monomial in common, so cxq11 x
q2
2 · · ·xqnn ∈

∂α1(f) and dxq11 x
q2
2 · · ·xqnn ∈ ∂α2(f). Let α1 = (u1, u2, · · · , un) and α2 = (v1, v2, · · · , vn).

Note that since f = (xp1 + xp2 + · · ·+ xpn)k then every monomial of the expansion of f

is of the form xpλ11 xpλ22 · · · xpλnn .

In other words, the power on every variable is a multiple of p. Let β1 = (j1, j2, · · · , jn)

and β2 = (l1, l2, · · · , ln), and let γ1 = (g1, g2, · · · , gn) and γ2 = (h1, h2, · · · , hn). Then

observe the following.

qi = pλi − ui = pλi − (pji + gi)

= p(λi − ji)− gi ≡ p− gi (mod p)

Similarly, we have

qi = pλi − vi = pλi − (pli + hi)

= p(λi − li)− hi ≡ p− hi (mod p)

Since qi ≡ p− gi (mod p) and qi ≡ p− hi (mod p) then p− gi ≡ p− hi (mod p)

therefore since we know gi, hi < p then this implies gi = hi which means γ1 = γ2 as
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desired.

Note that the original λi’s do not have to be the same for each differential operator.

The common monomial term in ∂α1(f), ∂α2(f) could have come from 2 different

monomials of f , and in fact they must come from different terms of f for distinct

partial derivatives.

Lemma 4.2.6. Let ∂α1 , ∂α2 ∈ Ta and α1 6= α2. If the supports of ∂α1(f), ∂α2(f) have

a monomial, M , in common, with ∂α1(Zθ) = M and ∂α2(Zη) = M then Z1 6= Z2.

Proof. Recall Zθ = xpθ11 · · · xpθnn and Zη = xpη11 · · ·xpηnn . Assume that ∂α1(f), ∂α2(f)

have a monomial, M , in common. By 4.2.5 this implies that α1 ≡ α2 (mod p). Let

the common monomial M be M = xζ11 · · ·xζnn .

∂α1(Zθ) = xpθ1−a11 · · ·xpθn−ann = xζ11 · · ·xζnn

∂α2(Zη) = x
pη1−a′1
1 · · ·xpηn−a′nn = xζ11 · · ·xζnn

Then,

pθi = ζi + ai

pηi = ζi + a′i

Since ai 6= a′i for some i then pθi 6= pηi, therefore Zθ 6= Zη.

For example, when f = F(3,3,2) = x6 + 2x3y3 + 2x3z3 + y6 + 2y3z3 + z6 then
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∂3x(f) = 120x3 + 12y3 + 12z3

∂3y(f) = 12x3 + 120y3 + 12z3

∂3z (f) = 12x3 + 12y3 + 120z3

These all have supp(∂3x(f)) = supp(∂3y(f)) = supp(∂3z (f)) = span{x3, y3, z3}. This is

because (3, 0, 0) ≡ (0, 3, 0) ≡ (0, 0, 3)( mod 3).

Corollary 4.2.7. For a PFT polynomial ∂α1 , ∂α2 ∈ Ta, if α1 ≡ α2 (mod p) then

∂α1(f), ∂α2(f) have identical monomials.

Proof. Suppose f = F(n,p,k). Let ∂α1 , ∂α2 ∈ Ta where α1 = pβ1+γ1 and α2 = pβ2+γ2,

with γ1 = γ2 (this is equivalent to α1 ≡ α2 (mod p)). For ease, let γ1, γ2 = γ.

Let M be a monomial where M ∈ supp(∂α1(f)). This resulting monomial came

from some term, Z1 ∈ supp(f) where Z1 = xpθ11 · · ·xpθnn . So ∂α1(Z1) = M . It is easy

to find Z1 based on α1. Say α1 = (a1, a2, . . . , an) and α2 = (a′1, a
′
2, . . . , a

′
n).

Then we can write α1 as

α1 = pβ1 + γ

= p(b1, b2, . . . , bn) + (g1, g2, . . . , gn)

Similarly for α2 we have
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α2 = pβ2 + γ

= p(b′1, b
′
2, . . . , b

′
n) + (g1, g2, . . . , gn)

Then,

∂α1(Z1) = M = ∂α1(xpθ11 · · ·xpθnn )

M = x
pθ1−(pb1+g1)
1 · · ·xpθn−(pbn+gn)n

M = x
p(θ1−b1)−g1
1 · · ·xp(θn−bn)−gnn

Let Z2 = x
pθ′1
1 · · ·x

pθ′n
n be another term in f where θ′i = θi − bi + b′i. This is always

possible because we know bi ≤ θi, so then θ′i will always be non-negative.

Because f has p−full support (see 4.1.3), we are guaranteed to have Z2 ∈ supp(f)

with these given θ′i exponents.

Then observe that

∂α2(Z2) = ∂α2(x
pθ′1
1 · · ·xpθ

′
n

n )

= x
p(θ1−b1+b′1)−(pb′1+g1)
1 · · ·xp(θn−bn+b′n)−(pb′n+gn)n

= x
p(θ1−b1)−g1
1 · · · xp(θn−b1)−g1n

= M
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Therefore M ∈ supp(∂α2f)) which implies supp(∂α2(f)) ⊂ supp(∂α1(f)). The

process is similar in the other direction, therefore we can conclude that

supp(∂α1(f)) = supp(∂α2(f)).

These results show that if α1 ≡ α2 (mod p) then ∂α1(f), ∂α2(f) have the same

support, otherwise they will have disjoint supports (no monomials in common). This

helps us with proving linear independence for the space of Derivs in our general

results.

4.2.2 Computed Examples

We will examine some specific PFT polynomials and their annihilator ideals. To

start, take n = 3, p = 3, k = 2. We have f = F3,3,2 = x6+2x3y3+2x3z3+y6+2y3z3+z6.

The dimension of Derivs(F )3 ⊂ Sn3 is at most
((
n
3

))
since the number of degree

3 monomials is counted by choosing 3 variables with repetition from the set of 3

variables {x, y, z}, so dimS3
3 =

((
n
3

))
.

Recall the image of Ca
f : T3 → S3 is Derivs(f)3, and the nullity is Ann(f)3. By

2.2.1 dim(T3) =
((
n
3

))
= dim(Derivs(f)3) + dim(Ann(f)3). We claim that Ann(f)3 =

{∂x∂y∂z}.

First note ∂x∂y∂z(f) = ∂x∂y∂z(x
6 + 2x3y3 + 2x3z3 + y6 + 2y3z3 + z6) = 0 since

there is no term in this polynomial involving all 3 variables x, y, z then ∂x∂y∂z(F ) = 0

therefore {∂x∂y∂z} ⊂ Ann(f)3 so dim(Ann(f3)) ≥ 1.

To show that dim(Ann(f)3) = 1, form a matrix, M , of the image of Ca
f whose

columns are spanned by Derivs(f)3, indexing the rows by elements of S3 and the
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columns by elements of T3. The rank of this matrix should be equal to the dimension

of Derivs(f)3.

So the (i, j) entry is the coefficient of the ith element of S3 on the jth derivative of

f . We know by the previous part that we get a column of 0′s in the ∂x∂y∂z position.

Then we need only calculate the rank of the rest of the matrix, which we can split

into 2 pieces as follows.

Let M1 be the three columns indexed by {∂3x, ∂3y , ∂3z} and let M2 be the 6 columns

indexed by {∂2x∂y, . . . , ∂y∂2z}, and omit the column of 0’s indexed by ∂x∂y∂z.

We can compute ∂3x(f) = 120x3 + 12y3 + 12z3 and similarly for ∂3y(f), ∂3z (f). We

get the following matrix.

M1 =



120 12 12

12 120 12

12 12 120


By Lemma 4.2.3 we can see the matrix will have full rank, so rank(M1) = 3.

For rank(M2) observe that for each pair of distinct variables in {x, y, z} there is

only one term in f that contains both, therefore ∂x2y(f) is a monomial, and the

monomial must be 36xy2 since the only term of f containing both x, y is 2x3y3 and

∂x2y(2x3y3) = 36xy2. In fact for each ∂x2mxn the image will be ∂x2mxn(F ) = 36xmx
2
n.

Each of these monomials are unique, then this space is linearly independent and has

size 2
(
n
2

)
= 6. Therefore rank(M2) = 6.
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Notice that the intersection of the columns of M1 and M2 is 0 since the former

is spanned by polynomials such that every term is in one variable alone, and M2 is

spanned by monomials such that every term is a monomial in two variables. Then

rank(M) = rank(M1)+rank(M2) = 3+6 = 9. Since M is a 10×10 matrix, its nullity

is nullity(M) = 10− 9 = 1. So dim(Derivs(f)3) = 9, and dim(Ann(f) = 1. Therefore

Ann(f)3 = span{∂x∂y∂z}.

The differential operator ∂x∂y∂z is what we call a square-free differential operator.

An a−th order square-free differential operator ∂α for α = (a1, . . . , ak) is an element

of Tk such that k of the ai’s are 1 and the rest are 0. These types of differential

operators will be important to our results.

Now we will generalize on n, so take f = Fn,3,2 ∈ S6. By the multinomial theorem

this function is given by

f = (x31+x32+ . . .+x3n)2 = x61+2x31x
3
2+ . . .+2x3n−1x

3
n+x6n =

n∑
i=1

x6i +
n∑

i,j∈{1,...n},i 6=j

2x3ix
3
j

We want to show that dim(Derivs(f)3) =
((
n
3

))
−
(
n
3

)
.

There are
((
n
3

))
3rd partial derivatives of f so dim Derivs(f)3 ≤

((
n
3

))
.

Notice that span{∂xi∂xj∂xl : i 6= j 6= l} ⊂ Ann(f)3 since supp(f) = span{x6i , x3ix3j :

i 6= j}. So the annihilator contains every square-free differential operator in T3, thus

dim(Ann(f))3 ≥
(
n
3

)
, since there are

(
n
3

)
such differential operators. Now we need to

establish that the remaining elements of Derivs(f)3 are linearly independent.

Let M be a matrix of the image of Ca
f whose columns are spanned by Derivs(f)3,
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indexing the rows by elements of S3 and the columns by elements of T3. The rank

of this matrix should be equal to the dimension of Derivs(f)3. We will leave off the

columns of 0’s created by the square-free derivatives. This matrix can be decomposed

into two pieces, as before, M1 whose columns are spanned by operators of the form

∂3xi , and M2 whose columns are spanned by ∂2xi∂xj where i 6= j.

M1 =



120 12 · · · 12

12 120 · · · 12

...
...

...
...

12 12 · · · 120


M2 =



36 0 · · · 0

0 36 · · · 0

...
...

...
...

0 0 · · · 36



By Lemma 4.2.3 M1 is linearly independent and invertible. For M2 observe for

any pair of variables xi, xj ∈ {x1, . . . xn} there is a unique term of F that involves

both. Thus for any ∂x2ixj we have ∂x2ixj(F ) = 2 · 3 · 2 · 3 ·xix2j = 36xix
2
j . This matrix

is clearly invertible.

Every element of M1 is of the form 120x3i +
∑n

j=1,j 6=i 12x3j and every element of

M2 is of the form 36xix
2
j so the intersection of their column spans is empty, therefore

rank(M) = rank(M1) + rank(M2). Since both matrices have full rank, then the

remaining set of partial derivatives is linearly independent, therefore there are no

additional degree 3 annihilators of f and Ann(f)3 = span{∂xi∂xj∂xl : i 6= j 6= l}.

Therefore dim(Derivs(f)3) =
((
n
3

))
−
(
n
3

)
. This result will continue in general, with

some mild constraints on the values for p and k.



43

4.3 Results and Proofs

Here we present some general results about the Derivs of PFT polynomials, using

the background we developed in the previous sections. Our main theorem is on the

degree k and k + 1 annihilators of general PFT polynomials, for p > k.

Lemma 4.3.1. Let f = F(n,p,k) be the (n, p, k) PFT polynomial where n > k. Then

Ann(f)k+1 6= {0} and contains the span of all square-free monomials in Tk+1.

Proof. First, note that since n ≥ k+1 there exists at least one square-free differential

operator in Tk+1. There are exactly
(
n
k+1

)
square-free differential operators in Tk+1,

since the number of operators is equivalent to the number of size k + 1 subsets from

a set of n elements.

Each of these square-free differential operators will annihilate f , since every mono-

mial Zθ ∈ supp(f) will contain at most k distinct variables, thus differentiating with

respect to k + 1 arbitrary variables will annihilate f . Therefore Ann(f)k+1 contains

the span of all these order k + 1 differential operators.

Theorem 4.3.2. Let f = F(n,p,k) be the (n, p, k) PFT polynomial and let p > k.

Then Ann(f)k = {0}, if n ≤ k then Ann(f)k+1 = {0} and if n > k then Ann(f)k+1

is spanned by the square-free differential operators of Tk+1.

Proof. First, we work over the map Ck
f : Tk → Spk−k. Let ∂α ∈ Tk. We know

that ∂α(f) 6= 0 since f contains the monomial xpα = xpa11 xpa22 · · ·xpann with some

nonzero coefficient because f has p−full support. Therefore ∂α(f) contains ∂α(xpα) =

xpa1−a11 xpa2−an2 · · ·xpan−ann with some nonzero coefficient. And this term is nonzero

since p ≥ 2. By 4.2.4 we know for distinct α, β the leading monomials will be distinct.

Therefore the set {Ck
f (∂α) : ∂α ∈ Tk} is linearly independent, so the matrix of Ck

f
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has linearly independent columns, spanned by the partial derivatives ∂α(f). Thus

rankCk
f = dimTk and Ann(f)k = {0}.

Now let n > k and we work over the map Ck+1
f : Tk+1 → Spk−k−1. We can see every

square-free monomial in Tk+1 is in Ann(f)k+1, by 4.3.1. Let ∂α be any non-square-free

differential monomial in Tk+1. We claim ∂α(f) 6= 0. Let α = (a1, a2, . . . , an). Since α

is non-square-free, then some ai ≥ 2. Without loss of generality assume that a1 ≥ 2.

Because
∑n

i=1 ai = k + 1 then (a1 − 1) +
∑n

i=2 ai = k. Therefore x
p(a1−1)
1 xpa22 · · ·xpann

is a monomial with degree pk, which means it is in supp(f).

Then observe,

∂α(x
p(a1−1)
1 xpa22 · · ·xpann ) = cx

p(a1−1)−a1
1 xpa2−a22 · · · xpan−ann

for some constant c, and p(a1 − 1)− a1 > 0 because p ≥ 2. Therefore ∂α(f) 6= 0.

Now just like in the above case, we know the sets of the form {∂α(f) : ∂α ∈

Tk+1, ∂
α is nonsquare-free} are linearly independent, since they will all have distinct

leading monomials by 4.2.4.

The only exception is when p = k + 1 the leading monomials of every ∂α are

distinct, except for the subset {∂pxi(f) : i ∈ [n]}, the partial derivatives of order k+ 1

which are the k + 1 power of a single operator.

Therefore take Derivs(f)k+1 and decompose it in the following way.

Derivs(f)k+1 = V1 ⊕ V2

where V1 = span{∂pxi(f) : i ∈ [n]} and V2 is spanned by ∂α(f) for all other α of total
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degree k + 1 involving at least 2 variables.

The first subspace we have shown is linearly independent, by 4.2.4. The second

subspace has equivalent monomials by 4.2.5 and 4.2.7. In particular, notice that the

matrix for the image of {∂pxi(f) : i ∈ [n]} will be equal to vT × w where v is a vector

of coefficients, and w is the coefficient vector for F(n,p,k−1). This results in the matrix

of {∂pxi(f) : i ∈ [n]}. These coefficients for each Zθ ∈ supp(∂pxi(f)) will be


(

(pθi)!
(pθi−p)!

)
if θi 6= 0

p! if θi = 0

giving two cases for each coefficient based on what variable is being differentiated,

and each column will index exactly one of those differential operators. So the matrix

vt × w will look like the matrix in 4.2.3, which we have shown is invertible. Then

{∂pxi(f) : i ∈ [n]} is linearly independent.

Therefore in the matrix for the image of the map Ck+1
f , the columns induced by

nonsquare-free monomials are linearly independent for all p > k, and the kernel of

this map is given by Ann(f)k+1 = span ∂α : squarefree monomials .

Finally, when n ≤ k, we can observe that there are no squarefree monomials of

degree k+ 1 in Tk+1 so Ann(f)k+1 = {0} in this case, and the above argument shows

that all the columns of the matrix of Ck+1
f are linearly independent.

This theorem implies that for any f = F(n,p,k) where p > k, we have
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rank(f) ≥
((

n

k + 1

))
−
(

n

k + 1

)

which gives a lower bound for the Waring rank of all PFT polynomials when p > k.

4.4 Conjecture of Generalization

We believe 4.3.2 extends to all PFT polynomials but this proof strategy fails

when p ≤ k, since 4.2.4 does not hold for PFT polynomials where p ≤ k. Observe

the following counterexample.

f = F3,3,3 = x9 + 3x6y3 + 3x6z3 + 3x3y6 + 6x3y3z3 + 3x3z6 + y9 + 3y6z3 + 3y3z6 + z9

we can take partial derivatives and observe their lead monomials: LM(∂3x(f)) =

x6,LM(∂3y(f)) = x6. Thus the leading monomials of Derivsd−k(f) are not distinct for

each ∂α. This counterexample does not disprove the general result for this case, since

our result on the uniqueness of the leading terms is a stronger condition than linear

independence.

Conjecture 4.4.1. Let f = F(n,p,k) be the (n, p, k) PFT polynomial. Then theorem

4.3.2 holds for all p.

Our approach to this involved using 4.2.5 and 4.2.7 to classify each partial differ-

ential operator of Tk+1 into congruence classes mop p, similar to our method in 4.3.2

for p = k + 1. We were not able to apply this method more generally, since in that
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case, we only had one set of congruent differential operators, single operators to the

power p. The case is not so simple for p ≤ k. For example, let f = F3,3,3, so

f = x9 + 3x6y3 + 3x6z3 + 3x3y6 + 6x3y3z3 + 3x3z6 + y9 + 3y6z3 + 3y3z6 + z9

We want to examine the degree 4 partial derivatives of f , these are given by

{∂4x, ∂3x∂y, ∂3x∂z, ∂2x∂2y , ∂2xyz, ∂2x∂2z , ∂x∂3y , ∂x∂2y∂z, ∂x∂y∂2z , ∂x∂3z , ∂4y , ∂3y∂z, ∂2y∂2z , ∂y∂3z , ∂4z}.

Then the congruence classes for each ∂α are given below.

If we then look at all the monomials in supp(∂α(f)) for each ∂α ∈ Ta we can verify

that if two ∂α1 , ∂α2 have equal γ’s, then supp{∂α1(f)} = supp{∂α2(f)}. Thus 4.2.5

and 4.2.7 should aid in showing these partial derivatives are all linearly independent.

Once this is established, then 4.3.2 holds without the condition p > k. We are

confident it is possible to prove this, and hope to revisit this natural extension.

4.5 Further Questions

We were able to prove 4.3.2 for p > k, and we believe strongly that this theorem

is true when p ≤ k, however this case will take considerably more work, as we have

seen in our original strategy. A further question we may ask is if there is a method

of proving both cases together, in general. The method of partial derivatives, and

apolar algebra have been useful and essential to this work, but can they be utilized

in other ways, that are less computationally rigorous? Our proof is an extension of

methods detailed in [1], which showed Fn,2,k has a compressed Hilbert function. A
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∂α ∂α(f) α β γ

∂4x 3024x5 + 1080x2y3 + 1080x2y3 (4,0,0) (1,0,0) (1,0,0)

∂3x∂y 1080x3y2 + 108y5 + 108y2z3 (3,1,0) (1,0,0) (0,1,0)

∂3x∂z 1080x3z2 + 108y3z2 + 108z5 (3,0,1) (1,0,0) (0,0,1)

∂2x∂
2
y 540x4y + 540xy4 + 216xyz3 (2,2,0) (0,0,0) (2,2,0)

∂2x∂y∂z 324xy2z2 (2,1,1) (0,0,0) (2,1,1)

∂2x∂
2
z 540x4z + 216xy3z + 540xz4 (2,0,2) (0,0,0) (2,0,2)

∂x∂
3
y 108x5 + 1080x2y3 + 108x2z3 (1,3,0) (0,1,0) (1,0,0)

∂x∂
2
y∂z 324x2yz2 (1,2,1) (0,0,0) (1,2,1)

∂x∂y∂
2
z 324x2y2z (1,1,2) (0,0,0) (1,1,2)

∂x∂
3
z 108x5 + 108x2y3 + 1080x2y3 (1,0,3) (0,0,1) (1,0,0)

∂4y 1080x3y2 + 3024y5 + 1080y2z3 (0,4,0) (0,1,0) (0,1,0)

∂3y∂z 108x3z2 + 1080y3z2 + 108z5 (0,3,1) (0,1,0) (0,0,1)

∂2y∂
2
z 216x3yz + 540y4z + 540yz4 (0,2,2) (0,0,0) (0,2,2)

∂y∂
3
z 108x3y2 + 108y5 + 1080y2z3 (0,1,3) (0,0,1) (0,1,0)

∂4z 1080x3z2 + 1080y3z2 + 3024z5 (0,0,4) (0,0,1) (0,0,1)

Table 4.1: ∂α ∈ T4 Applied to f = F(3,3,3) and Their Congruence

proof exists in [6] that shows the same result, which utilizes representation theory.

This methodology could be applied here, if we continued this work starting over from

a new perspective.

There exist a number of places in this work where we utilize common combinatorial

methods, and there may be more results from algebraic-combinatorics which might

help us better understand the origin of the results we achieved here.
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Our examination of this type of polynomial started with extending the result about

F(n,2,k) by generalizing the inside power. However, we could also extend this result

by examining other symmetric polynomials taken to a power, for example given the

elementary symmetric polynomial en,d define a polynomial F(n,d,k) := (en,d)
k. What

is the annihilator ideal of this polynomial?

We are proud of our results here, and hope to continue to expand and simplify

them, as well as find connections to other similar problems and related work in Waring

rank and Apolarity.
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