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ABSTRACT

Increasing demand, limited supply, and the impact on the environment raise

significant concerns about the consumption of fossil fuels. Because of this, global

economies are facing two significant energy challenges: i) securing the supply

of reliable and affordable energy and ii) achieving the transformation to a low-

carbon, high-efficiency, and sustainable energy system. Recently, there has been

growing interest in developing portable transportation fuels from biomass in or-

der to reduce the petroleum consumption in the transportation sector - a ma-

jor contributor to greenhouse gas emission. A cost-effective conversion process

to produce biofuels from lignocellulosic biomass material relies not just on the

material quality, but also on the biorefinery’s ability to measure the quality of

the source biomass. The quality of the feedstock is crucial for a commercially

viable conversion platform. This research mainly focuses on developing sensing

techniques using 3D X-ray imaging to study quality factors like material compo-

sition, ash content and moisture content which affect the conversion efficiency,

equipment wear, and product yield in the bioethanol production in a real-time or

near real-time basis.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Concerns over the depletion of fossil fuels, energy security, and global climate

change have prompted the development of sustainable renewable energy alterna-

tives to fossil-based fuels. Currently, fossil fuels play a significant role in reaching

daily energy demands like fueling our cars, growing our food, and heating our

homes [1]. In the United States, fossil fuels account for 80% of the total energy

consumption [2]. Among fossil fuel sources, petroleum is a significant contributor

accounting for 35% of total energy consumption, followed by natural gas at 34%

and coal at 10% [2].

Consumption of these fossil fuels releases the stored carbon and other green-

house gases (GHG) into the atmosphere. The buildup of GHG’s like carbon diox-

ide (CO2), methane (CH4), nitrous oxide (N2O), and hydrofluorocarbons (HFCs)

trap the heat and cause the Earth’s atmosphere to warm, resulting in climate change

[3]. Among the others, CO2 is the primary GHG emitted through human activities.

In 2019, CO2 accounted for 80% of all U.S. GHG emissions from human activities.

Though other GHG’s like CH4 and N2O are more potent at warming the planet,

their lifetime is shorter relative to CO2. Because of its long lifetime, CO2 has long

term detrimental effects, and researchers are fervently looking for fuel alternatives
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to reduce carbon emissions.

Among human activities, transportation is the most significant contributor of

GHG emissions, accounting for 35% of the total U.S. CO2 emissions and 28% of

total GHG emissions [4]. The majority of the fuel used in the transportation sector

is petroleum-based (90%), which includes gasoline and diesel [4, 5]. Figure 1.1

shows the GHG emissions from the transportation sector between 1990-2019 in

million metric tons of CO2 equivalent. CO2 equivalent is a metric measure used

to compare the emissions from various GHGs based on global warming potential

(GWP) by converting amounts of other gases to the equivalent amount of CO2

with the same global warming potential. The figure shows that there has been

a significant increase in GHG emissions since 1990. With the rapidly developing

nations, it is estimated that the demand for petroleum will further increase by 50%

by 2025 [6], which will result in higher emissions. With increasing demand, it is

essential to diversify the energy sources in the transportation sector to reduce the

dependency on petroleum.

Recently there has been a lot of interest in developing portable transporta-

tion fuels produced from biomass, known as “biofuels”. The biofuels present a

promising and sustainable pathway to meet the fossil-based fuel demand in the

transportation sector [7]. Biomass generally refers to any renewable organic matter

that stores sunlight in the form of chemical energy, such as plants, agricultural

residues, municipal wastes, and algae [7]. Since biomass’s combustion releases

carbon dioxide that was captured through the photosynthesis process during its

life cycle, biomass is considered a carbon-neutral energy source compared to fossil

fuels created millions of years ago.
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Figure 1.1: Greenhouse gas emissions from the transportation sector between
1990-2019 [4].

Currently, bioethanol and biodiesel dominate the global biofuel market. In

2020, 5% of the U.S. transportation sector demand was met by biofuels [8], where

ethanol’s share is about 4% and biodiesel accounted for 1% [8]. The biofuel output

is expected to increase by 25% between 2019-24, to reach 190 billion L [9]. Cur-

rently, biofuels like bioethanol and biodiesel are widely used as blending agents

with gasoline to increase the octane and cut down carbon monoxide and other

smog-causing emissions [10]. Much work is going underway to increase the usage

of “drop-in” fuels, fuels suitable for use at high blend shares (like biobutanol) or

unblended without technical modifications to engines or fueling infrastructure.

Generally, biofuels like bioethanol or biobutanol are produced from biomass

through a biochemical conversion process. The biochemical process typically relies

on sugar fermentation, such as the ABE (Acetone-butanol-ethanol) process, which
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uses bacteria such as Clostridium acetobutylicum to convert sugars into alcohols

and ketones [10, 11]. Currently, the biofuels industry mainly utilizes sugar crops

(sugarcane, sugarbeet), starch crops (corn, sorghum), and oil-seed crops (soybean,

canola) for biofuel production. The main downside with these feedstocks is that

they compete with food supply [12]. Over the past decade, the U.S. Department

of Energy’s Bioenergy Technologies Office (USDOE-BETO) focused on developing

next-generation fuels based on non-food (terrestrial cellulosic and algae-based)

resources [7]. The next-generation biofuels will primarily come from cellulose,

found in the cell walls of stalks and wood, compared to the sugar found in food

resources like corn. The billion-ton study [13] published by the Department of

Energy states that the United States has a future potential of producing one billion

tons of sustainable biomass, mainly composed of crop residues, wood residues,

and energy crops annually without severe climate and food shortages.

These biomass materials (crop residues, wood residues, and energy crops) are

inherently heterogeneous, have variable composition and conversion properties,

and often contain soil, and other exogenous contaminants detrimental to the han-

dling and conversion process [14, 15]. Most of the analytical techniques used to

study biomass quality are destructive, sampling-intensive, and time-consuming.

To ensure the sustainability of the biofuels, the biorefinery (a facility that integrates

biomass conversion processes and equipment to produce fuels, power, and value-

added chemicals from biomass) should be technologically equipped to rapidly and

non-destructively analyze the incoming biomass and provide feedback that can be

used to adapt processing conditions to meet the feedstock conditions.
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1.1 Aim of the Dissertation

In this work, we focus on developing a sensing framework using 3D X-ray

tomography to study the biomass feedstock quality. This work focuses on ex-

tracting information about the quality of corn stover bales. Since corn is one of

the most abundant crops in the U.S., the infrastructure to collect the stover is

readily available. Because of that, corn stover is one of the initial biomass sources

adapted to produce cellulosic ethanol in the U.S. [16]. However, the harvest meth-

ods mainly focus on collecting the corn, and the corn stover is left in the field,

sometimes for days, before being collected and stored. The entire process from

harvesting to storage conditions adds many unwanted variables that need to be

understood before converting to biofuels at the biorefinery. Chapter 2 provides a

comprehensive report on these unwanted variables.

This dissertation tackles three main research problems:

1. Develop 3D segmentation tools to segment and estimate the volume of dif-

ferent anatomical fractions present in the lignocellulosic biomass, specifically

corn stover, using 3D X-ray tomography.

2. Reconstruct a 3D volume image of corn stover bales with a limited number

of X-ray projections.

3. Generalize the X-ray tomography’s framework to be able to scale up to a

commercial-scale biorefinery.
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1.2 Dissertation Organization

The chapters in this dissertation are divided into three main topics: 3D segmen-

tation techniques for tissue characterization (Chapters 2, 3, 4), tissue characteriza-

tion in the sparse-view framework (Chapters 2, 5 and 6), and X-ray tomography

framework at a commercial biorefinery (Chapter 7). Chapter 8 concludes the dis-

sertation and proposes future work. The contents of each chapter are summarized

as follows:

Chapter 2: Anatomical Tissue Characterization and Computed Tomography

This chapter provides a comprehensive report on the different tissue fractions

in the corn stover bale. The conversion properties of different tissue fractions are

discussed to show the importance of knowing the contents of a bale. The chapter

also talks about the detrimental factors like moisture content, soil-derived ash

content, rocks and metal contaminants present in the bale, and how they affect

the conversion at a biorefinery. At the end, a detailed description of how X-ray

imaging works and the technical background for computed tomography (CT) is

discussed.

Chapter 3: Quantitative Comparison of 3D Skeletonization Algorithms

3D skeletons are widely used as shape descriptors with a broad spectrum of

applications in shape matching, recognition, animation, retrieval, and compres-

sion [17]. Through decades of research, there is now a multitude of algorithms.

However, quantitative comparison of different skeletonization algorithms is still
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an open problem. This chapter discusses the two surface degradation models

and three metrics designed to evaluate the performance of the 3D skeletonization

algorithms.

Chapter 4: Anatomical Tissue Characterization of Corn Stover Bales using 3D

Image Analysis

This chapter presents 3D segmentation strategies to segment and estimate the

volumetric content information of the different tissue contents – rocks, soil clumps

and cobs – present in a corn stover bale. This chapter shows the performance of a

histogram directed thresholding technique to segment and estimate the volume

of rocks and soil clumps present in a bale. In the second half of this chapter,

3D skeletons are used as shape descriptors to extract and segment the corn cobs

present in a corn stover bale. The algorithms presented in this work rely only on

3D shape and texture information to extract the volume of corn cobs. The corn cob

extraction work presented in this chapter formed the basis of the work published

in "Anatomical Fraction Segmentation in the Biomass Bales" [18].

Chapter 5: The Sparse View Image Reconstruction Problem

This chapter explores the 3D image reconstruction problem using fewer X-ray

projections than used in commercial CT technology. This chapter shows the per-

formance of several analytical and iterative reconstruction methods that use fewer

X-ray projections. This chapter also presents a simple and computationally less

expensive two-projection method. The results with a simple phantom show that

the two-projection method can be used for simple application tasks, where the

application only requires detecting and estimating the volume without extracting
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any complicated features about the target object.

Chapter 6: Numerical Evaluation of Tissue characterization in a Corn Stover

Bale with 3D Image Analysis Techniques in a Sparse View Framework

This chapter presents several strategies for segmenting and classifying the dif-

ferent corn stover fractions in the corn stover bale. The work shows the perfor-

mance of the two-projection method proposed in chapter 5 to provide a 3D volume

representation of higher density materials like rocks and soil clumps with adequate

accuracy. Similarly, the work also shows the performance of a statistical recon-

struction method, MLEM, to reconstruct the volume of more complex problems

like the corn cobs and stalk nodes using 5 X-ray projections.

Chapter 7: Assessing the Framework for X-ray Tomography at a Commercial

Scale Biorefinery

This chapter interprets the performance of X-ray tomography at the biorefinery

by identifying and studying the behavior of X-ray photon absorption parameters,

such as the linear attenuation coefficient (µ), bulk density (ρ), and the elemental

composition of the bale. In this work, the feedstock supply chain of the biorefinery

is clearly described, followed by an analysis of the performance of X-ray tomogra-

phy when integrating into the feedstock supply chain.

Chapter 8: Conclusion and Future Directions

The research work presented in this dissertation helps advance the sensing

technology framework for the quality assessment of biomass feedstock at a commercial-

scale biorefinery. An extensive discussion of each problem is presented in each
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chapter. This chapter provides a generalized discussion of the research problems

solved in the dissertation. The second half of the chapter provides future directions

for tissue characterization with CT going forward.
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CHAPTER 2

ANATOMICAL TISSUE CHARACTERIZATION IN CORN

STOVER BALES WITH COMPUTED TOMOGRAPHY

This chapter explores the state of the art relevant to the work presented in this

dissertation. The objectives of this chapter are two-fold. First, a short introduction

to corn stover as a feedstock and its harvest logistics is presented, followed by

discussing the various characteristics and unwanted variables added to the bales

during harvesting, packing, and storing that affect the biofuel conversion process.

Then a brief literature review of the biomass compositional analysis techniques is

provided. Second, the basics of 3D X-ray imaging are introduced, followed by an

in depth discussion of the fundamentals of CT.

2.1 Corn Stover as a Feedstock to the Biorefinery

Corn stover is a significant non-food biomass used as a feedstock to bioenergy

and bio-based products. Corn stover refers to the stalks, leaves, cobs, and husks

left in the field after grain harvest. The United States is estimated to produce 200 to

250 million dry tons of corn stover/year [19, 20, 21]. Because of its abundance and

availability of collection infrastructure, corn stover has become the first non-food
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biomass adapted to be used as a feedstock in bioenergy and bio-based products.

Much research has been done on the biochemical processes to estimate and convert

the bioethanol from corn stover. However, several unwanted variables are added

to the corn stover bale during harvest, collection, and storage, which can cause

significant damage to the equipment and reduce overall yield if left unprocessed.

2.1.1 Characteristics of Corn Stover Biomass

Corn stover is mainly comprised of stalks, leaves, cobs, and husks. These

materials are recalcitrant to bio-degradation. The sugar content present in the corn

stover fractions is not directly available for fermentation. The main constituents

of the corn stover are cellulose, hemicellulose, and lignin. In order to convert the

corn stover fractions biologically, a pretreatment procedure is required to break

down the complex polymer structures. During the pretreatment, the cellulose and

hemicellulose are broken down into glucan and xylan. These Glucan and Xylan

are then fermented to produce bioethanol.

A lot of research has been done to optimize the pretreatment procedure. Each

tissue fraction responds differently at the pretreatment and acid hydrolysis steps

resulting in the variation in the amount of glucan and xylan available for conver-

sion with different fractions of the corn stover [22]. Figure 2.1 shows the glucan

and xylan content recovered from various corn stover fractions with different pre-

treatment procedures. If each fraction is not processed appropriately, the overall

ethanol yield is affected. Thus, having prior knowledge about the volumetric

content of different anatomical fractions present in the corn stover bale at the

preprocessing or screening stage can help optimize the conversion process, achieve
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(a) (b)

Figure 2.1: Amounts of (a) Glucan and (b) Xylan recovered with various
pretreatment methods for each corn stover fraction [22]

a high yield and determine the payout for the bale.

Generally, corn stover harvesting occurs within a few days to a few weeks after

the grain harvest. The corn stover harvest process mainly comprises windrowing,

bailing the stover, and moving it to storage sites. Windrowing refers to placing

corn stover materials into rows of an appropriate size suitable for the bailing.

Windrowing or creating corn stover rows is typically done by chopping the stalks

after the grain harvest. Once this is done, a bar or wheel rake is used to gather

the stover into a single row (see figure 2.2). Then the corn stover is baled to

create high-density packages that can be transported efficiently. During the bailing

process, a machine picks up and packs the loose windrowed stover materials in the

form of a rectangular or cylindrical bales (see figure 2.3).

Depending upon how the windrowing and bailing are completed, the corn

stover harvesting is classified into two categories: single-pass and multi-pass. In

single-pass harvesting, both windrowing and baling processes are done together.
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Figure 2.2: A bar rake being used to create a corn stover windrow [23].

The corn stover is collected directly off the combine’s back before it hits the ground

and is converted into bales. In multi-pass harvesting, the windrower places the

corn stover materials into rows on the ground during the first pass. During the

second pass, the baler picks up and packs the materials into bales. More soil

contamination is observed with multi-pass than single-pass harvesting since corn

stover materials are left on the ground between steps.

Soil contamination, also referred to as soil-derived ash content, influences the

pretreatment procedure and affects the disposal costs at the conversion facility. It

also affects the overall value of the delivered lot of biomass. High ash contents can

cause problems like slagging, fouling, and corrosion in the thermochemical pro-

cess. Similarly, presence of soil-derived ash content during the ethanol conversion

process can cause the displacement of the fermentable carbohydrate, increasing the

overall operation costs. Because of this, ash content receives special attention. The
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(a) (b)

Figure 2.3: (a) Square bale dropped off from the end of a baler, (b) Round corn
stover bales in the field [23].

amount of soil entering must be minimized to maintain the feedstock’s quality in

combustion or liquid fuel conversion [24]. Likewise, rocks and metal contaminants

are also observed in the corn stover bales. If these are left unprocessed, they can

cause significant damage to the grinding equipment and cause sparks that can lead

to a fire hazard [25].

Like ash content, the moisture content present in the lignocellulosic biomass

is another quality measure that affects the overall ethanol yield and cost of the

production process. High moisture content increases the chance for biological

degradation. Biological degradation reduces the carbohydrate content that will be

available for fermentation. Moisture content determination at the biorefinery helps

to determine the storage conditions needed between arrival and conversion. If the

moisture content in the biomass bale is greater than 35%, it can affect the grinding

equipment, which can drastically increase the preprocessing cost. It is essential to

include a sensing framework to provide volumetric content information about the

soil-derived ash content, rocks, metal contaminants, and moisture content along

with the corn stover tissue fractions.
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2.1.2 Literature review on biomass compositional analysis

Different components of the lignocellulosic biomass behave differently during

the biomass conversion process. Knowledge of the biomass composition is impor-

tant to optimize or modify the operational conditions at the biorefinery to increase

yields, decrease fouling, extend catalyst life, etc. Wet chemical analysis methods

are popular and are the earlier methods developed for determining the biomass

composition. Classical wet chemical analysis methods employ a two-step sul-

phuric acid hydrolysis, and have been in use for over a century. Initially adopted

from the pulp and paper industry, there have been significant improvements in

the adopted methods over time [26, 27]. The NREL had defined a set of proce-

dures to study the biomass composition with wet chemical methods [28]. Stan-

dard wet chemical analysis methods provide reliable information on the biomass

composition. However, these are very time consuming and labor-intensive; it

takes somewhere around 20 to 30 staff hours split between several different staff

members over two weeks to analyze 6 to 10 samples. Moreover, wet chemical

analysis methods are expensive, approximately $800 - $2000 per sample [29]. Over

the years, development in the wet chemical analysis methods has increased the

number of samples that can be tested in reduced time, but it still has a long way

to go [30]. Similarly, the ash and moisture can be studied using dry analysis

methods. Each sample is dried in a oven and the weight difference before and after

is considered as moisture net weight. Ash is calculated by burning the sample and

then calculating the net weight.

Quantitative spectroscopy is another non-destructive technique adapted over
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the years to study the biomass composition. It is considered a fast and reliable

alternative to traditional analytical methods for determining the sample’s chemical

composition. In 1988, Wessman et al. used airborne near-infrared spectroscopy in

agricultural food industries to study the lignin content. Similar work was pro-

posed by Rodriguez et al. in 2001 [31] to use near-infrared spectroscopy in fruit

juices. Later, Hames et al. used the near-infrared (NIR) spectroscopy and partial

least squares (PLS) multivariate regression analysis to develop a calibration model

to predict the chemical composition of the feedstock (corn stover) and ethanol yield

in the acid pre-treated and enzymatic hydrolysis process [32].

Fourier Transform-NIR spectroscopy has been popular, because it provides a

higher resolution and brings higher wave number accuracy to the chemometrics.

Griffiths and De Haseth in 1986 achieved higher resolution without compromising

the signal-to-noise ratio [33]. There were several models proposed in the past

which take into account the moisture content and ash content to get the true heat-

ing value. In 2005 Lestander and Rhén [34] proposed a model which uses NIR

spectroscopy in correlation with a biorthogonal Partial Least Squares approach to

determine the moisture and ash content, and then corrected for the heating value.

In 2006 Jensen et al. [35] proposed a model which accounts for the moisture content

by considering the dielectric properties of water. In the same year Samuelsson et

al. [36] discussed two other approaches for the moisture content determination:

xylene distillation and freeze drying. Nystrom and Dahlquist [37] used X-ray

spectroscopy to determine the moisture content in wood chips. Huang et al. [38]

proposed two models to determine the heating value by just considering ash con-

tent. This work involved the use of Artificial Neural Networks (ANN), a method
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used earlier by Patel et al. [39]. In 2012 similar to [34] Everard et al. [40] using

the work produced by Sanderson et al. [41] in 1996, proposed a model to predict

the heating value by using visible and infrared spectroscopy by understanding the

moisture content and ash content.

2.2 Background on X-ray Tomography or Computed Tomography

The discovery of X-rays in 1895 by the German scientist Wilhelm Rontgen prom-

pted the evolution of the non-invasive radiation imagery field. With its significant

advantage in medical imaging, it quickly attracted a lot of audience attention. In

1917 Wilhelm Johann Radon developed a transformation technique to reconstruct

the 3D image from X-ray projections using a finite number of line integrals. Using

Radon’s theory the first CT scanner was invented in 1972 by Allan M. Cormack

and Sir Godfrey Newbold Hounsfield. Because of its huge demand in medical and

industrial applications, there was a significant development in the reconstruction

technique and CT scan acquisition techniques. This is still subject to active research

to obtain a high-quality reconstruction with minimal exposure and cost.

Now, X-ray tomography or computed tomography (CT) is a widely adopted

non-destructive analysis technique used in clinical visualization. In X-ray tomog-

raphy or CT, the target material or the object is irradiated with X-rays from several

angles, circling the object to get a large number of radiographic projections. The

X-ray projections are then reconstructed using a mathematical algorithm to repre-

sent the target object with a cross-sectional slice image. Multiple 2D cross-sectional

slices are then stacked together to produce a 3D representation of the object. X-rays
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can penetrate through any matter, and the amount of penetrating X-ray photons

is material-dependent. This ability to penetrate through matter is the reason for

wide adaptation in clinical and industrial visualization. This section aims to briefly

introduce how X-rays interact with matter, the underlying physics, and a brief

introduction of cone-beam computed tomography (CBCT).

Fundamentals of X-ray Interaction

X-rays belong to the set of electromagnetic (EM) rays with wavelengths from

0.01 nm to 10 nm, which follow the rules of electromagnetic radiation. EM waves

have radiant energy which passes through spaces in the form of waves or photons.

Similar to visible light, X-rays lose a certain amount of energy as they pass through

the material. The reduction in the radiant energy is referred to as attenuation.

Several physical effects of X-rays contribute to attenuation, including a change of

the photon count, photon direction, or photon energy.

Generally, X-rays interact with matter in two ways: absorption and scattering.

The first phenomenon, absorption, is also popularly known as the photoelectric

effect. Here a valence electron from the outer shell absorbs the energy from the

incident photons and the valence electron gets ejected with a kinetic energy equal

to the binding energy. Figure 2.4a shows the phenomenon when there is no interac-

tion. Figure 2.4b illustrates the phenomenon of photoelectric absorption. Another

property that is observed is scattering. In scattering, two types of phenomena can

be observed: Compton scattering and Rayleigh scattering. With Compton scatter-

ing, photons collide with the loosely bonded outer shell electron. Some photon

energy is transferred to the electron, and the collision impact deflects the incident
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photon. Figure 2.4c shows the Compton scattering effect. Rayleigh scattering is

mainly observed with low X-ray energies. In this scattering phenomenon, the

photon collides with the electron and vibrates with the energy and frequency the

same as the photon. Figure 2.4d shows the Rayleigh scattering. Because of the

absorption and scattering phenomena, the incident photon loses some energy, and

the rest transmits through the object, called attenuation. With a linear attenua-

tion coefficient or mass attenuation coefficient, these attenuation properties can be

studied.

(a)

(b) (c) (d)

Figure 2.4: Principles of photon-matter interaction. (a) No interaction, (b)
Photoelectric absorption, (c) Compton scattering and (d) Rayleigh scattering [42].

Underlying Physics of X-ray Interaction

As the incident X-ray beam passes through the material, because of the atten-

uation the radiation intensity decreases. The relation to the attenuation can be
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defined using an ordinary linear and homogeneous first order differential equation

with a constant coefficient
dI
I
= −µdx. (2.1)

Here µ is a proportional constant, which is also known as the material attenuation

coefficient. I is the intensity of the incident radiation, dx is the thickness of the ma-

terial. The material attenuation coefficient (µ) provides information regarding the

contributions of both absorption and scattering phenomenon for a given material.

Applying an integral on both sides of equation 2.1 gives

∫ x

0

dI(x)
I(x)

dx = −
∫ x

0
µ dx (2.2)

logI(x)− logI(0) = −µx. (2.3)

By taking an exponential on both sides, equation 2.3 can be written as

I(x) = I(0).e−µx. (2.4)

This equation 2.4 is well-known as the Beer-Lambert formula.

Geometry of Cone Beam Computed Tomography

A conventional CT scanner is composed of four main components: (i) an X-

ray tube for generating X-ray beams, (ii) an X-ray detector to measure the extent

of signal attenuation, (iii) a set of mechanical axes for positioning the object, and

(iv) a computer for data acquisition, reconstruction, and subsequent analysis. The

most common CT scanner is a flat detector circular scanning trajectory system with
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cone beam acquisition, known as Cone Beam Computed Tomography (CBCT) as in

figure 2.5. In figure 2.5, a 3D object sits in the middle of the XYZ coordinate system,

where the x-axis (
−→
OX) is aligned with the source, S and the geometric center of the

detector is at the tomographic angle θ = 0. The detector has a planar geometry and

rotates with the source around the z-axis (
−→
OZ). If we represent the attenuation of

X-ray photons as they pass through the 3D object with f (−→r ), where −→r = (x, y, z).

Then each pixel in the detector at every tomographic angle is measured by

p(θ, u, v) = p0

∫ ∞

0
e f (−→r0 (θ)+αγ̂)dα, (2.5)

where p0 is the incident energy without attenuation, −→r0 (θ) = (R sin θ, R cos θ, 0)

is the source location, and α ∈ [0,
√

D2 + u2 + v2]. R represents the source to the

center of rotation distance and D represents the source to detector distance. γ̂

denotes the line direction between the source and detector coordinates (u, v) as in

γ̂ =

−→
d (u, v, θ)−

−−→
r0(θ)

|
−→
d (u, v, θ)−

−−→
r0(θ)|

, (2.6)

where
−→
d (u, v, θ) represents the detector pixel corresponding to a given tomo-

graphic angle θ. Equation 2.5 represents the Beer’s law for CBCT. The measured

projection is a path integral of x-ray attenuation over the X-ray path [43].

While the planar array circular CBCT was just discussed, other geometries also

exist like helical CT [44], parallel CT [45]. Similarly, circular arrays instead of

planar arrays are also used in several applications. Changing the mathematics

based on the specified geometry is not complex.
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p(θ, u, v)
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f(~r)
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v

O

θ

Figure 2.5: Geometry of CBCT [43]

2.3 Discussion

This chapter mainly aimed to provide a brief introduction to corn stover as

feedstock and necessity to know the knowledge about the different contents of the

bale to the interested audience. This chapter also presents a brief overview of the

background related to the X-ray tomography or CT.
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CHAPTER 3

QUANTITATIVE COMPARISON OF 3D SKELETONIZATION

ALGORITHMS

As broadly discussed in chapter 2, providing quantitative information about the

quality of the corn stover bales during the preprocessing stage helps optimize

the conversion process. In this research, a new way of characterizing corn cobs

in a corn stover bale is achieved using shape descriptors called skeletons, which

will be presented in chapter 4. 3D skeletons are shape descriptors with a broad

spectrum of applications in shape matching, recognition, animation, retrieval, and

compression [17]. Skeletons provide a medial axial representation of an object.

For 2-D objects, the skeleton is represented with a 1-D curve. For 3-D objects,

the skeleton is represented with a combination of 2-D surfaces and 1-D curves

(known as surface skeletons) or as a set of only 1-D curves (known as curve skele-

tons). Decades of research contributed to the development of a multitude of skele-

tonization algorithms. These skeletonization algorithms have differences in both

the theoretical aspects (e.g., definition for curve skeletons) and practical aspects

(e.g., spatial discretization (voxel or mesh)) [46]. The underlying assumptions or

approximations incorporated in the skeletonization algorithms generate different

skeletons for the same object in the presence of boundary noise. This causes chal-
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lenges to the users of skeletons to determine which skeletonization algorithm to

use for their respective application.

Currently, the evaluation of the 3D skeletonization algorithms is mainly done

using quality metrics that are solely based on manual inspection [47]. The quanti-

tative comparison of 3D skeletonization algorithms is still an open challenge. This

chapter discusses the fundamentals of skeletonization algorithms, the implemen-

tation of two skeletonization algorithms, and two surface degradation models. It

then presents different metrics to compare 3D skeletonization algorithms quanti-

tatively and evaluate the skeletonization algorithms.

3.1 Skeletonization Algorithms

This section will introduce the fundamentals of skeletonization, and implemen-

tations of two 3D skeletonization algorithms developed during this dissertation.

The two skeletonization algorithms are based on morphological thinning and the

Euclidean distance transform.

3.1.1 Fundamentals on Skeletonization

Skeletons are shape descriptors with a broad spectrum of applications in shape

matching, recognition, animation, retrieval, and compression [17]. Skeletons pro-

vide a medial axis representation of an object. Blum laid a foundation for skele-

tonization algorithms [48]. He defined a skeleton as being formed from the locus

of centers of maximally inscribed circles (for 2D objects) or balls (for 3D objects)
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of an object O (see Figure 3.1). The radius of each maximally inscribed circle

R is also included in combination with circle centers M, to form a Medial Axis

Transform, i.e., MAT(O) = (M, R). A pair (X, r) ∈ MAT(O) is called a medial

atom. These medial atoms form the medial axis of the object O, which is also

known as the skeleton of the object O. Underlying limitations such as the upper

bound of maximally inscribed balls hinder the practical implementation of using

this approach to create skeletons.

Figure 3.1: (a) The MAT skeleton M of the shape O with contour S, (b) Examples
of maximally inscribed circles (red), a medial atom (X, r), and circles which are

neither maximal nor inscribed, thus not contributing to M (green), (c)
Approximate reconstruction of O by the union of circles [47].

Over the years two variants of maximally inscribed circles or balls have become

popular and are predominantly accepted in image processing and computer vision

applications [47]. The first variant is the Grass Fire Analogy. This starts by treating

object O as a patch of grass field. The boundary of O is δ(O). A fire is set along

the boundary δ(O). The fire will propagate isotropically towards the interior of

the object O. The Grass Fire Analogy states that where two fire-fronts meet is

considered to be a quench point. The set of quench points forms the skeleton of



26

the object O [47].

The second variant is the Maxwell set, which is based on the distance transform.

For an object O ⊂ R3 with boundary δ(O), we first define the distance transform,

DTδ(O) : R3 → R+

DTδ(O)(x ∈ O) = miny∈δ(O)||x− y||. (3.1)

The surface skeleton SO, also called a medial surface, is defined as

SO = {x ∈ O|∃ f1, f2 ∈ δ(O), f1 6= f2, ||x− f1|| = ||x− f2|| = DTδ(O)(x)}. (3.2)

Here f1 and f2 are called contact points with the surface of the maximally inscribed

ball in O with center at x, also called feature transform points. When O ∈ R2 this

will yield a 2D skeleton, also known as the medial axis, and when O ∈ R3 it will

return a curve skeleton.

For 2D objects the skeleton is represented with a 1D curve. For 3D objects

it is represented with a combination of 2D surfaces and 1D curves (known as

surface skeletons) or as a set of only 1-D curves (known as curve skeletons). Figure

3.2 shows examples of 2D skeletons and variants of 3D skeletons. Skeletoniza-

tion algorithms can be widely classified into four different categories: Geometric

Approaches, Distance Field Methods, General Field Methods, and Thinning or

erosion. Algorithms that use geometric approaches represent an object boundary

by a discrete set of points in a continuous space. These algorithms are based on

Voronoi diagrams or other continuous geometric approaches [49]. The Voronoi
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edges determine the symmetry structures in an object. Distance Field methods

find the skeleton by determining quench points or singularities in DTδO(x) [50].

Generic field methods are similar to distance field methods except they use fields

smoother than the distance transform [46]. Thinning, or erosion, is a sequential

approach where the algorithm removes boundary pixels or voxels layer by layer

while preserving the connectivity [46]. There are several implementations in 2D

in most image processing libraries. With 3D there are several limitations. For this

dissertation I implemented two 3D skeletonization algorithms in MATLAB and

Python, which can be categorized into morphological thinning and distance field

methods, which are described next.

(a) (b) (c)

Figure 3.2: (a) 2D skeleton example, (b) 3D Surface skeleton example, (c) 3D curve
skeleton example [47].

3.1.2 Morphological Thinning Implementation

The first 3D skeletonization algorithm we use is based on morphological thin-

ning. This is the thinning algorithm by Lee et al. [51]. The morphological thinning

approach discussed here iteratively removes voxels from the surface of the volume

while preserving the topology of the 3D object. In this approach, the Euler char-

acteristics with decision trees are used to solve the skeletonization problem. Euler
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characteristics are one way to represent the topological space. The global formula

defines the 3D Euler characteristics

X(s) = O(s)− H(s) + C(s), (3.3)

where O(s), H(s), C(s) are connected objects, holes (tunnels in 3D), and cavities.

Euler characteristics are prominently used in topological thinning, a branch of 3D

skeletonization techniques based on decision trees. To reduce the complexity of the

problem (i.e., calculating X(s)), the authors solved the problem locally by using

the edge, face, and vertex information in a given small neighborhood. The main

drawback with this approach is that the locally computed Euler characteristics do

not provide any information about the occupant in a given topological space. It

only tells when a voxel/pixel in the given neighborhood is removed, whether it

affects the overall topology.

(a) (b) (c)

Figure 3.3: (a) Original image, (b) Partially thinned image, (c) completely thinned
image

3.1.3 Euclidean Distance Transform based Implementation

The second skeletonization algorithm is based on Euclidean distance maps. The

algorithm presented in this work is similar to the work presented by Latecki et
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al. in [52]. This approach determines the critical points for the skeleton using a

skeleton strength map (SSM). The skeleton strength map is calculated from the

gradient vector flow. The gradient vector flow is estimated from the Euclidean

distance map using the approach shown in [53]. In the Euclidean distance map,

the distance from any voxel p to its nearest boundary increases when moved to-

wards the center. One of the main disadvantages with distance transform-based

approaches is that the resulting skeletons can be more than one voxel thick.

(a) (b) (c)

Figure 3.4: (a) Original image, (b) Euclidean Distance Map, (c) Skeleton extracted
using SSM

3.2 Degradation Models

As mentioned in section 3.1.1, a skeleton needs to provide a medial axis repre-

sentation of the object while capturing the topology of the underlying object. The

underlying assumptions or approximations incorporated into the skeletonization

algorithms make skeletons sensitive to boundary noise. The surface degradation

can lead to issues like the generation of a spurious branch (see figure 3.5) or a

change in the topology captured by the skeleton. In this section, we present two

surface degradation models used to compare the skeletonization algorithms quan-

titatively. Using these two models, the surface noise can be controlled to provide
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a quantitative comparison of the effect the noise has on the skeletons. Figure 3.6

shows the phantom cylinder used for all the experiments in this chapter. The rest

of this section discusses the two surface degradation models in depth.

Figure 3.5: Spurious branch generated in the presence of surface noise.

Figure 3.6: A cylinder phantom used in the experiments.

3.2.1 Surface Roughness

The first degradation model is designed to create roughness on the surface of

the 3D object. To create the roughness, noise following a Gaussian distribution

with mean 0 and standard deviation σ is added to every voxel of the object O

and surrounding air. The volume with noise is then thresholded, followed by
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a morphological closing operation with a spherical structuring element with a

diameter of 3 voxels. The morphological closing operation helps remove any iso-

lated voxels left after thresholding and keeps only the regions directly connected

to the cylinder. The degradation model incorporates the concept of Noise Spread

described by McGillivary et al. [54]. Here Noise Spread defines how far from

the original surface is affected by the noise. The threshold is always set to 0.5,

making the noise spread directly related to the σ of the Gaussian noise. Figure 3.7a

shows a section of the phantom cylinder without any noise. Figure 3.7b shows

the section of the phantom with Gaussian noise on the surface after applying the

threshold. Figure 3.7c shows the section from the phantom cylinder showing the

surface roughness after the morphological closing operation.

(a) (b) (c)

Figure 3.7: A section of the (a) phantom cylinder, (b) surface with Gaussian noise
after thresholding, (c) surface after morphological closing operation.

3.2.2 Surface Protuberances

The second degradation model adds protuberances on the surface of the object.

This model randomly selects a set of points on the surface and adds a sphere with

a given radius centered at the point selected. This noise can be varied by changing

the density of the protuberances, or the size (diameter) of the protuberances. When
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experimenting with the surface protuberances degradation model, three types of

protuberances are considered by changing the noise sphere’s diameter. These three

scenarios help to examine the effect that the diameter of the protuberance has on

the skeleton. Figure 3.8a shows a section of the cylinder without any noise. Figure

3.8b, c, and d shows the same section of the phantom cylinder with the surface

covered with protuberances with diameters 8, 10, and 14 voxels.

(a)

(b) (c) (d)

Figure 3.8: A section of the (a) cylinder phantom, cylinder phantoms with
protuberances of diameter of (b) 8 voxels, (c) 10 voxels, and (d) 14 voxels.

3.3 Comparative Analysis Metrics

The skeletons created for surfaces without noise can be quantitatively com-

pared with those created for surfaces with noise to see the effect the noise has

on the skeletons generated. This section describes a set of three metrics through

which the skeletons are compared quantitatively. First, one-to-one correspondence

between the noise-free skeleton and noisy skeleton is established by using a dy-
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namic time warping algorithm [55]. Then each metric is calculated between the

corresponding skeleton nodes. The rest of the section defines each metric used in

this dissertation for quantitative comparison of the skeletonization algorithms.

Mean Deviation

The mean deviation tells how far a skeleton node has deviated from its initial

location in the presence of noise. The mean deviation is calculated by taking the

average of the Euclidean distance between corresponding skeleton nodes. The

mean deviation excludes any spurious branches generated because of the noise by

using a simple thresholding technique. This metric helps to understand how the

skeleton’s path is changing in the presence of surface degradations.

Number of Added/Missing Nodes

The change in the number of skeleton nodes indicates a significant change in

the topology between the original and noisy skeleton. This simple metric indi-

cates any significant change in the topology of the skeleton. When the deviation

between the number of skeleton nodes is minimal, it mainly indicates a deviation

in the path or discontinuous paths in the skeleton. A significant change in this

metric tells about the presence of branches. This metric is calculated by taking the

difference between the number of skeleton nodes in the original skeleton and the

noisy skeleton.
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Number of Spurious Branches

Spurious branches are one of the main issues with many skeletonization algo-

rithms. Figure 3.5 shows an example spurious branch generated in the presence of

boundary noise. To determine a spurious branch the graph structure of the skele-

ton is extracted. A branch is determined when the distance between two nodes

is approximately equal to the radius of the cylinder. In all the experiments, the

phantom cylinder radius is small, so the complexity of the problem is simple. In

the future, the branch estimation algorithm needs to incorporate other parameters

to work with other complex structures.

3.4 Experiments & Results

In sections 3.1, 3.2, and 3.3 of this chapter, two implementations of the skele-

tonization methods, two surface noise models, and three quantitative metrics are

described. To evaluate the two skeletonization algorithms, we calculate each met-

ric for the two degradation models. With the surface roughness model, the stan-

dard deviation σ of the Gaussian noise is varied to observe the performance with

an increase in the noise. Similarly, with the surface protuberances model the total

percentage of surface points to become centers of the spheres is varied to observe

the performance of skeletonization algorithms. When comparing results, the total

percentage of surface area covered with protuberances is calculated to relate each

metric with increase in the the surface area affected with noise. For each set of

parameters the experiments are repeated ten times to provide an average estimate

across the noise instances. All the comparison results are represented using box
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and whisker plots. The box’s top and bottom edges represent the 75th percentile

and 25th percentile of the total data. The central mark in each box represents the

median. The maximum and minimum values are represented with the whiskers,

excluding any outliers. The outliers are represented using the ‘+’ symbol.

Figures 3.9 and 3.10 outline the behavior of both morphological thinning and

distance field based skeletonization algorithms with the surface roughness degra-

dation model. Figures 3.9a and 3.10a show the box and whisker plot for the av-

erage deviation of the skeleton node observed with an increase in noise. From

the figures it can be observed that as σ of the Gaussian noise increased, the mean

deviation observed also increased, which tells that the path of the original skele-

ton has been modified with the increase in noise conditions. In comparison, the

distance field-based skeletonization algorithm provides better performance; than

the morphological thinning algorithm; change in the path of the original skeleton

is only observed from moderate σ values i.e., greater than 1.5. Likewise, figures

3.9b and 3.10b show the number of missed/added skeleton nodes with increase in

the σ of the Gaussian noise. Figures 3.9c and 3.10c show the increase in spurious

branches with increase in σ of the Gaussian noise. Both algorithms at high σ values

generate spurious branches in addition to the original skeleton. This behavior

tends to change the average deviation observed in the skeleton, which reduces at a

high σ value. With a high σ value, there is a high chance of voxels farther from the

surface being affected by noise which causes the generation of spurious branches.

The second metric is either directly correlated with mean deviation or spurious

branches generation. Either the change in the path of the skeleton or the addition

of spurious branches requires more skeleton nodes to represent the same skeleton
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structure, increasing the number of skeleton nodes between the original and noisy

skeleton. Figures 3.9 and 3.10 conclude that the surface roughness degradation

model mainly changes the path of the original skeleton.

With the surface protuberances degradation model, three sets of experiments

were conducted. The first experiment adds surface protuberances with a smaller

diameter of 8 voxels to the surface of the cylinder phantom. In the second, protu-

berances with a diameter of 10 voxels were added to the surface of the phantom.

The last scenario uses protuberances with a significantly larger diameter of 14

voxels added to the surface of the phantom. Figures 3.11, 3.12, and 3.13 outline the

behavior of the morphological thinning method when small, medium, and large

protuberances are added to the surface as noise. Likewise, figures 3.14, 3.15, and

3.16 outline the behavior with the distance field based skeletonization method.

In each figure, window ‘a’ represents the average deviation metric, window ‘b’

represents the miss/add nodes metric and window ‘c’ represents the number of

spurious branches generated.

When smaller protuberances with a diameter of 8 voxels are added on the

surface, both the morphological thinning and distance field-based skeletonization

methods tend to create a small number of spurious branches. Between the two

algorithms, the distance field based skeletonization algorithm is more robust and

shows no spurious branches when less than 50% of the surface area is occupied.

However, with medium to large protuberances on the surface we see that the

increase in noise directly correlates to spurious branch generation. The miss/add

skeleton nodes and spurious branch metrics both show that the increase in the

protuberances increases the spurious branches, and the number of skeleton nodes
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added to the original skeleton also increases. For the medium protuberance, when

the total percentage of spheres used to add protuberances is increased beyond

75%, multiple spheres overlap, leading to an increase in the mean deviation metric

observed. When multiple spheres are overlapping, it is creating a texture on the

surface instead of the just protuberances, which is the reason for the change in the

average deviation observed in the original skeleton.

3.5 Discussion

Section 3.4 showed how both morphological thinning and distance field based

skeletonization algorithms perform under two types of noise conditions. With the

surface roughness degradation model, the noise mainly changes the path of the

original skeleton. In contrast, with the surface protuberances degradation model

the generation of spurious branches is mainly observed with an increase in the

noise. Both algorithms perform better, but the distance field method shows better

performance than the morphological thinning method. Currently, the gradient

vector flow estimation [53] with the distance transform field method is very time-

consuming.

In the future, more work is required to produce a more efficient implementa-

tion to reduce the time load of the distance field based skeletonization method.

Evaluating the skeletonization methods with more complex shapes like a toroid

is required to analyze further and evaluate the skeletonization algorithms’ perfor-

mance. With the increase in the complexity of the shape, we need to consider other

metrics which provides information such as how much of the original volume can
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be recovered from the skeleton, how much of the corners are preserved, how thick

is the skeleton, and whether the skeleton extracted is really along the center. Also,

geometric entropy information needs to be estimated to correlate the original and

a noisy skeleton. Other metrics which provide a piece of quantitative information

on the preservation of the topography of the 3D object need to be defined.
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(a)

(b)

(c)

Figure 3.9: Evaluation of morphological thinning based skeletonization method
with surface roughness degradation model. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.10: Evaluation of distance field based skeletonization method with
surface roughness degradation model. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.11: Evaluation of morphological thinning based skeletonization method
with protuberances of diameter 8 voxels. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.12: Evaluation of morphological thinning based skeletonization method
with protuberances of diameter 10 voxels. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.13: Evaluation of morphological thinning based skeletonization method
with protuberances of diameter 14 voxels. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.14: Evaluation of distance field based skeletonization method with
protuberances of diameter 8 voxels. Box and whisker plot showing the (a)
average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.15: Evaluation of distance field based skeletonization method with
protuberances of diameter 10 voxels. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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(a)

(b)

(c)

Figure 3.16: Evaluation of distance field based skeletonization method with
protuberances of diameter 14 voxels. Box and whisker plot showing the (a)

average deviation, (b) missing/added nodes, and (c) spurious branches.
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CHAPTER 4

ANATOMICAL TISSUE CHARACTERIZATION IN CORN

STOVER BALES WITH 3D IMAGE ANALYSIS TECHNIQUES

As stated in chapter 1 BETO’s current technological focus is on developing the

next-generation biofuels. The next-generation biofuels rely on non-food (terrestrial

cellulosic and algae-based) resources. Because of its abundance and the availability

of collection infrastructure, corn stover is one of the primary crop residues adapted

to produce biofuels, mainly bioethanol. As discussed in chapter 2 different tissue

fractions in the corn stover bale: cobs, stalks, leaves, and husks have a variable

chemical composition and conversion properties. Likewise, unwanted materials

like rocks, metal contaminants, and soil clumps in the bale can be detrimental

to the conversion efficiency and the equipment. Thus determining the volumet-

ric content information of the different tissue fractions present in the corn stover

bale during preprocessing helps optimize the conversion process and estimate

the biofuel yield from a given bale. This chapter presents the 3D image analysis

techniques that provide quantitative information on the contents of the corn stover

bale utilizing X-ray tomographic data.

At the harvest, the baler packs the corn stover in bales, which are sent to the

biorefinery. Here for the experiments, we prepared corn stover bales in the form of
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a mini-round cylinder with a diameter of 12.70 cm and height of 15.24 cm (see figure

4.1b). The X-ray CT scans for the bales were acquired using a North Star Imaging

(NSI) CT 3D X-ray system at the Idaho National Laboratory. Figure 4.1 shows the

geometric setup used for imaging the corn stover bales. Figure 4.1a is the detector

and 4.1c shows the X-ray source. Figure 4.1b shows the corn stover bale in the

middle. For the experiments, scanning was performed with an X-ray tube peak

accelerating voltage of 150 kVp and corresponding tube current-time settings at 60

µA. The NSI CT system is configured to use 720 X-ray projections in the complete

360-degree range to reconstruct the 2D cross-sectional slices of the 3D object. The

NSI CT system outputs the 2D cross-sectional slices. Multiple 2D cross-sectional

slices are stacked together to provide a 3D reconstruction of the bale.

Figure 4.1: CT setup used to extract the radiographs of corn stover bale with (a)
detector (b) mini-round corn stover bale (c) X-ray Source.

After acquiring the X-ray reconstructions, several image analysis techniques

are applied to extract the corn stover content information. Figure 4.2 shows the

workflow diagram of the different stages we propose to use for volumetric content

estimation of different anatomical fractions in the corn stover bale. After acquiring

the 2D cross-sectional slices, we preprocess the 2D cross-sectional slices to remove
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the noise and simplify the data for easy segmentation in the later stages. The next

step involves detecting and extracting the volume information of rocks and metal

contaminants, followed by soil clumps present in the bale. Then in this chapter,

we present an approach for corn cob segmentation and volume estimation using

3D shape descriptors called skeletons. The rest of the chapter discusses the various

stages shown in figure 4.2 in detail.

Figure 4.2: Work flow diagram representing the different stages of the tissue
characterization in a corn stover bale.

4.1 Pre-processing

The intensity distribution in the raw reconstructed 2D cross-sectional slices

from the NSI CT system is based on the incident energy and material absorption

rate. The distribution cannot be directly used for classification as there is a lot
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of information which cannot be directly linked for further processing of the data.

In the preprocessing stage, the entire intensity distribution of the reconstructed

2D slices is modified to make further processing easier. Figure 4.3a shows a raw

reconstructed 2D cross-sectional slice. Figure 4.4a shows the 3D reconstruction of

the corn stover bale formed by stacking multiple 2D cross-sectional slices before

preprocessing.

First, adaptive thresholding is applied to convert the 2D reconstructed images

to a bi-level format. Figure 4.3b shows a 2D cross-sectional slice after thresholding.

Figure 4.4b shows the 3D reconstruction of the corn stover bale after thresholding.

A convolution filter is applied to remove isolated voxels, which can be observed

in both figures 4.3b and 4.4b. Figures 4.3c and 4.4c shows the final reconstructions

after preprocessing. The bi-level data is multiplied with the original data and later

scaled back to 255 grayscale values to simplify the task of segmenting the rocks,

metal contaminants, and soil clumps in the corn stover bale.

(a) (b) (c)

Figure 4.3: Example (a) raw 2D reconstructed slice, (b) reconstructed slice after
thresholding, (c) reconstructed slice after preprocessing.



51

(a) (b) (c)

Figure 4.4: 3D reconstruction using (a) raw 2D reconstructed slices, (b)
reconstructed slices after thresholding, (c) reconstructed slices after preprocessing.

4.2 Detection and Volume Estimation of Ash Content

After preprocessing, the first step is to extract information about the ash con-

tent. The term ash content refers to rocks and soil clumps present in the bale.

These materials have high bulk density compared to corn stover. For example,

rocks have a bulk density equivalent to 2.62 g/cm3, and soil clumps generally

have a bulk density of 1.3 g/cm3. Whereas the corn stover materials have a bulk

density equivalent to 0.15 g/cm3. Higher bulk density usually results in the higher

absorption of the X-ray photons, which appear as higher intensity regions in the

reconstructed data. This can be easily observed in figure 4.5b, where it shows the

histogram of the intensity distribution of an example reconstructed slice (see figure

4.5a) with rocks, soil clumps, and corn stover materials. The histogram clearly

shows the intensity difference between the rocks, soil clumps, and corn stover

materials. In figure 4.5a, the respective region where rock is present is highlighted

with a red circle, soil clumps location is highlighted with a blue circle, and the

background shows the corn stover materials.
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(a) (b)

Figure 4.5: (a) 2D image of X-ray reconstructed data with rocks highlighted with
red circle and soil clumps are highlighted with blue circle, and (b) histogram

showing the intensity distribution of the 2D image.

The histogram clearly shows that the rocks and soil clumps are separated in in-

tensity from corn stover materials. We applied a histogram-directed thresholding

technique to segment the regions of rocks and soil clumps present in the bale from

corn stover materials. After segmenting, the volume and position information is

calculated by using a connected component algorithm. Two physical bale samples

were created for analysis, one filled with rocks and the other with soil clumps.

Figures 4.6a and 4.6b show the 3D reconstructions of the bales showing rocks and

soil clumps present in the bales. Table 4.1 and 4.2 shows the volume accuracy and

average position deviation observed for the test bales.

Table 4.1: Volume of rocks extracted from the test bale

Volume Average Position
Accuracy (%) Deviation (")

99.67 0.01
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Table 4.2: Volume of soil clumps extracted from the test bale

Volume Average Position
Accuracy (%) Deviation (")

99.50 0.05

(a) (b)

Figure 4.6: 3D reconstruction of the bale with (a) rocks, (b) soil clumps where
contaminants are shown in alternate colors.

4.3 Detection and Volume Estimation of Corn Cobs

After high bulk density rocks and soil clumps are detected, and their respective

volume is estimated, the next step involves detection and volume estimation of

corn cobs present in the bale. This section focuses on extracting the corn cob

volume using 3D shape analysis. Because the corn stover materials are organic,

moisture content can increase the bulk density, changing the overall attenuation

of the X-ray photons. This affects the intensity distribution observed in the 2D

cross-sectional slices. So, using a raw intensity distribution to classify different

tissue fractions of the corn stover materials is not practical. Corn cob segmentation

and volume estimation are achieved using 3D shape analysis with 3D skeletons in
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this work.

3D skeletons provide shape information about an object, while preserving the

topology of the object. The skeletons are represented with graphs, which includes

node and edge information. The graphs generally provide a pairwise relationship

between each node. Figure 4.7a shows an example corn cob. X-ray reconstruction

showed the corn cobs are hollow in the center, which produces a cyclic loop in the

skeleton (see figure 4.7b). From this, the corn cob detection problem is converted

to a loop detection problem. The cyclic loops are detected by removing all the

branches (see figure 4.7c) from the skeleton. The branches are detected using the

degree of the nodes. A node connected to a branch will have only one connected

edge. A node in a loop always has two connected edges, making the node’s degree

equal to 2.

(a) (b)

(c)

Figure 4.7: Example (a) corn cob, (b) skeleton of the corn cob represented with
graphs, (c) cyclic loop extracted from the graph.

Loop detection cannot be the only parameter used to classify the corn cob,

because other scenarios can form a cyclic loop leading to false detection. When
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corn cobs are fully intact, looking from the centroid of the loop, there is an outer

loop and inner loop. Figure 4.8 shows the cross-sectional slice extracted from the

corn cob aligned with the loop, with an inner and outer circle. With the corn cob

detection problem, the second stage of confirmation is done by detecting inner

and outer loops. Usually, fully intact corn cobs resemble a cylinder. The volume

of the corn cob can be roughly estimated by measuring their radius and height.

The radius is estimated by calculating the distance from the center of mass of the

loop to the outer boundary. A tracing algorithm is implemented to determine the

cylindrical height. During the tracing, a regression plane is fitted to the cyclic

loop. In each plane, a threshold determines the outer boundary, and the radius

is noted. Then the plane is moved in both directions along the plane normal

direction. At each step, the center of the mass is estimated, and the radius is noted.

The tracing continues until the radius observed is greater than a given threshold.

In the experiments the threshold is set to observe a 10% increase/decrease in the

radius. The distance between these planes is used to determine the cylindrical

height. Figure 4.9 shows a cob with the plane at its initial position and planes at

the ends of the cob where the intersectional radius varied too much.

4.3.1 Results

This algorithm is tested on two mini-round bale sets. Figure 4.10 shows the 3D

view of the two bales and the corn cobs extracted from them using this procedure.

Table 4.3 shows the estimated volume of the extracted corn cobs and the deviation

from the true volume for the two bale sets. Here true volume of the corn cob is

estimated by manual inspection. From the table it can be clearly observed that
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Figure 4.8: 2D cross-sectional image of cyclic loop with arrows pointing the two
distances which we measure

bale # 2 provides better accuracy compared to bale # 1. This is mainly because one

of the corn cobs present in bale # 1 is not exactly cylindrical in shape, which can be

observed in figure 4.10b.

Table 4.3: Volume of corn cobs extracted from the test bales

Total Deviation
Volume from True Volume

Bale Set # 1 18.07 cubic inch 2.50 cubic inch
Bale Set # 2 20.07 cubic inch 1.33 cubic inch

4.4 Discussion

This chapter presented several 3D image analysis strategies to extract the vol-

ume and position information of rocks, soil clumps, and corn cobs present in a

corn stover bale. The results show that the tactics presented for segmentation

and volume estimation provide adequate accuracy. Using skeletons to identify

corn cobs offers a unique advantage as the developed technique efficiency doesn’t

change much in the presence of moisture content or ash content.
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Figure 4.9: A corn cob with the plane at its initial position and planes at the ends
of the cob where the intersectional radius decreased by more than 10%.

Further research is required to devise a more efficient and optimized detection

model. There are a few limitations with the corn cob detection algorithm, as the

algorithm doesn’t provide accurate results when the shape of the corn cob is not

intact. This can be observed for the bale shown in 4.10a-it’s volume estimate was

less accurate, but it can also observed in 4.10b that one of the cobs is missing several

kernels. Future research goals should include optimizing the model to differentiate

between a loop formed with a corn cob and a fully intact corn stalk. The algo-

rithm should be modified to detect the broken corn cobs by incorporating corn

cob texture information. In the future, capturing the required information using

morphological processing with different structuring elements should be explored.
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(a) (b)

(c) (d)

Figure 4.10: (a) baleset # 1, (b) corn cobs extracted from baleset #1, (c) baleset # 2
(d) corn cobs extracted from baleset #2. Note that one of the three cobs at the

bottom of (b) has lost much of its material.



59

CHAPTER 5

THE SPARSE VIEW IMAGE RECONSTRUCTION PROBLEM

In the previous chapter, we presented 3D image analysis techniques to segment

and estimate the volume of different tissue contents – rocks, soil clumps, and cobs

– present in a corn stover bale. The results show that X-ray CT with image analysis

techniques can provide the necessary information about the content of the corn

stover bale with high precision. However, traditional X-ray CT algorithms require

a large number (N) of projections acquired over a full angular range, i.e., 0 < θ <

2π, to reconstruct with adequate quality. Generally, the value for N varies with the

application, but it is usually high. For example, the mini-round bale reconstruction

shown in chapter 4 was created using 720 projections.

Though computational time to reconstruct using image reconstruction algo-

rithms is largely insignificant, collecting a large number of projections will increase

the acquisition time, limiting the practicality of using X-ray CT at the biorefinery.

For commercial sustainability of the biorefinery, X-ray CT technology needs to

reconstruct and provide the volumetric content information in real-time. So, it

is essential to understand the performance of image reconstruction methods with

limited projection data. This is known as the sparse view reconstruction problem.
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Figure 5.1 shows the schematic illustration of data acquisition between a con-

ventional CT framework and a sparse view CT framework. After acquiring X-

ray projections, a mathematical reconstruction algorithm is applied to extract the

cross-sectional slice information of the 3D object. These reconstruction algorithms

are generally divided into two categories: analytical and iterative reconstruction

methods. This chapter shows the performance of analytical reconstruction meth-

ods followed by a few selected iterative reconstruction methods in a sparse view

framework.

(a) (b)

Figure 5.1: Schematic illustration of data acquisition in (a) conventional CT
framework and (b) sparse view CT framework.

The performance of the reconstruction methods is evaluated in both qualitative

and quantitative fashion using a 3D phantom. Figure 5.2a shows the 3D phantom

used in this chapter for evaluation. Figure 5.2b shows the 2D cross-sectional slice

taken from the 3D phantom used for qualitative analysis. For qualitative compar-

ison, the variation in the reconstruction quality with the number of projections

is demonstrated using a 2D cross-sectional slice. For quantitative comparison,

the Pearson correlation coefficient and computational times of each method are
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considered. The Pearson correlation coefficient provides a measure of linear corre-

lation between the reconstructed and original image. The computation time shows

the practicality of the reconstruction methods.

(a) (b)

Figure 5.2: (a) Phantom used for the evaluation, (b) A 2D phantom used for
qualitative analysis.

Not all applications require complex reconstruction methods. For example, we

only need to know the quantity, approximate location and volume when detecting

rocks, metal contaminants, and soil clumps present in the corn stover. In the sec-

ond section of this chapter we propose a simple and computationally less intensive

approach for such applications that uses only two X-ray projections. In this chap-

ter, along with understanding the performance of reconstruction methods with

limited projections, computation times of these image reconstruction methods and

the two-projection method with different input sizes are studied to understand the

variation in computation load with increase in input size.

To study the performance of image reconstruction methods in the sparse view

framework, we use the tomographic iterative GPU-based reconstruction (TIGRE),
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[56] toolbox. TIGRE is a MATLAB/Python-based CUDA toolbox, which supports

both cone-beam and parallel-beam X-ray sources and supports flexible CT geom-

etry (arbitrary axis of rotation, offsets, pixel sizes). In this work, the TIGRE tool-

box with cone-beam computed tomography (CBCT) geometry is used to extract

projections. Figure 5.3 shows the CBCT geometry. The TIGRE toolbox provides

access to over ten iterative reconstruction methods in addition to classic analytical

algorithms, like the filtered back-projection (FBP) algorithm and Feldkamp, Davis,

and Kress (FDK) algorithm. All the experiments in this work are performed on a

windows machine with 16 GB RAM and a 4 GB Nvidia Geoforce graphic processor,

with compute capability of 6.1.

p(θ, u, v)

γ̂
f(~r)

S

x y

z

u
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θ

Figure 5.3: Geometry of CBCT [43]
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5.1 Evaluation of Image Reconstruction Methods

5.1.1 Analytical Reconstruction Methods

The most widely used analytical reconstruction method across all CBCT modal-

ities is the Feldkamp, Davis, and Kress (FDK) algorithm [57]. The popularity of the

FDK algorithm is mainly because of its computational efficiency and numerical

stability. However, when there are errors in the data or the amount of data is

limited, the FDK algorithm often behaves poorly. This is because FDK provides an

analytical approximation of straight path integrals in continuous spaces. To create

a good quality reconstruction with fewer artifacts, many projections from different

angles need to be acquired over a full angular range, i.e., 0 ≤ θ ≤ 2π.

Figure 5.4 shows FDK reconstructed images of the 2D phantom as the number

of projections is varied. As the number of projections used for the reconstruc-

tion decreases, the streak artifacts become more predominant. The streak artifacts

observed in the projections lower the quality of the reconstruction and would

interfere with subsequent processing and evaluation.

Figure 5.5a shows the Pearson correlation coefficient comparing the true phan-

tom and the reconstructed phantom versus the number of projections. The plot

shows that the correlation between true and reconstructed phantom drops with

the number of projections. A drastic drop can be observed after 100 projections.

It can also be observed in figure 5.4 that the similarity between the two images is

dropped and can be easily observed when the number of projections used for the

reconstruction is less than 100. In practice FDK will require a large number of pro-
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.4: (a) A 2D phantom. 2D phantom reconstruction with FDK using (b) 359
projections, (c) 274 projections, (d) 179 projections, (e) 89 projections, (f) 71

projections, (g) 23 projections, (h) 11 projections, (i) 3 projections.

jections, around 100 projections, to reconstruct the 3D volume with required image

quality. Figure 5.5b shows the computation time in seconds versus the number of

projections. A decrease in the number of projections reduces the computational

time. However, the acquisition time is directly proportional to the number of scans.

So, FDK will not be a good choice to use for reconstruction at the biorefinery.

5.1.2 Iterative Reconstruction Methods

In contrast to analytical approximation, the image reconstruction problem can

also be solved by optimizing a linear model. In the literature, these algorithms

are referred to as iterative reconstruction methods. These algorithms are shown
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(a) (b)

Figure 5.5: (a) Pearson correlation coefficient, (b) computation time in seconds
versus number of projections for the FDK algorithm.

to improve the reconstruction quality, especially when the data is noisy and/or

limited. Iterative reconstruction algorithms in CT generally solve a linearized

model

Ax = b + ẽ, (5.1)

where x ∈ RNvoxels is a vector representing the voxels of the 3D image, b ∈ RNpixels

is a vector representing the measured pixels in the detector. Here, A is a linearized

model matrix that describes the behavior of the CT system, and ẽ represents the

errors from measurements and other linearized errors from approximation. The

problem in equation 5.1 can be minimized as

x̂ = argmin
x
||Ax− b||2 + R(x), (5.2)

where R(x) is the optional regularization function. Numerous iterative recon-

struction methods exist in the literature, using different methodologies to solve

equation 5.2. In this work, we consider the ordered subset-simultaneous algebraic
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reconstruction technique (OS-SART), the simultaneous algebraic reconstruction

technique - total variation (SART-TV), the conjugate gradient least squares (CGLS)

method, and the maximum likelihood expected maximization (MLEM) method

[58, 59, 60]. These methods were selected to represent a broad range of iterative

reconstruction methods. The OS-SART represents the algebraic reconstruction

techniques. Sometimes solving with a regularization function can provide better

results than just solving the data constraint. SART-TV represents the set of re-

construction algorithms that optimize through a regularization function. Then we

have CGLS, which as the name suggests optimizes the function based on the least-

squares problem using the conjugate gradient method. At last, MLEM represents

the statistical iterative reconstruction methods.

The reconstruction quality with iterative methods relies on two parameters, the

number of projections and the number of iterations. We evaluate the performance

of the iterative reconstruction algorithms OS-SART, SART-TV, CGLS, and MLEM

under three cases: one with a moderately higher number of projections (71 pro-

jections, Table 5.1), the second with a significantly lower number of projections

(11 projections, Table 5.2), and the last, reconstruction with only two projections

(Table 5.3). For each scenario, reconstruction is calculated with 5, 30, and 50 it-

erations. Here, we mainly focused on the performance of iterative reconstruction

methods when the number of projections is less than 100, because as observed

in section 5.1.1, the FDK algorithm behaves poorly only after reducing to 100

projections. Tables 5.1, 5.2, and 5.3 show the reconstruction quality of the iterative

reconstruction algorithms OS-SART, SART-TV, CGLS, and MLEM algorithms for

a phantom. From the results, it can be concluded that all algorithms provide a
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satisfactory image quality when an adequate number of projections are available

for reconstruction. However, for OS-SART and CGLS with a drop in the number

of projections the reconstruction quality also drops and requires more iterations to

increase reconstruction quality. Only the SART-TV and MLEM algorithms show a

satisfactory quality even with a lower number of projections and iterations.

Table 5.1: Reconstructed images based on iterative reconstruction methods using
71 projections

Algorithm 5 iterations 30 iterations 50 iterations

OS-SART

SART-TV

CGLS

MLEM

To present the performance of iterative reconstruction methods quantitatively,



68

Table 5.2: Reconstructed images based on iterative reconstruction methods using
11 projections

Algorithm 5 iterations 30 iterations 50 iterations

OS-SART

SART-TV

CGLS

MLEM

we use the Pearson correlation coefficient and computation times. Figures 5.6a,

5.7a, and 5.8a show the Pearson correlation coefficient for the iterative reconstruc-

tion methods versus the number of iterations utilizing 71, 11, and 2 X-ray pro-

jections. The correlation plots show that all algorithms perform well when the

number of projections is high, provided the reconstruction algorithms are allowed

to run for a sufficient number of iterations to optimize the reconstruction quality.
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Table 5.3: Reconstructed images based on iterative reconstruction methods using
2 projections

Algorithm 5 iterations 30 iterations 50 iterations

OS-SART

SART-TV

CGLS

MLEM

Here the SART-TV algorithm offers better quality with fewer iterations compared

to the MLEM, OS-SART, and CGLS algorithms. A similar trend can be observed

from table 5.1 that the SART-TV provides a higher reconstruction quality at 5

iterations compared to other algorithms.

When the number of projections drops further, MLEM offers better reconstruc-
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tion quality with fewer iterations than other algorithms. This can be observed in

figures 5.7a and 5.8a where MLEM reaches an optimum correlation value quicker

than other algorithms. SART-TV trails MLEM, but requires more iterations to

achieve the optimum results. The OS-SART algorithm tends to provide a high

reconstruction quality, but it requires more iterations to increase the reconstruction

quality. CGLS reaches an optimum value and doesn’t improve any further even

with an increase in the number of iterations.

Moreover, the practicality of the algorithm does not just rely on the reconstruc-

tion quality, computation time also play a crucial role. Figures 5.6b, 5.7b, and 5.8b

show the computation times of the iterative algorithms under study versus the

number of iterations. From the plots, it is observed that an increase in the num-

ber of iterations increases the computation times. Between MLEM and SART-TV,

MLEM is more applicable for practice as it provides high reconstruction quality

with lower time complexity. The computation time of the SART-TV algorithm is

significantly greater than the other algorithms.

The evaluation shows that the iterative algorithms are capable of reconstruct-

ing the 3D image with high quality in the sparse view framework. However,

with fewer projections, the iterative algorithms require more iterations to achieve

good quality, increasing overall computational time. The MLEM algorithm is more

practical to use at the biorefinery for complex reconstruction problems. Since

MLEM is a statistical reconstruction method, prior knowledge can be included

using probabilistic models to achieve better reconstruction quality.
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(a) (b)

Figure 5.6: (a) Pearson correlation coefficient, (b) computation time in seconds
versus number of iterations for OS-SART, SART-TV, CGLS, MLEM algorithms

using 71 projections.

(a) (b)

Figure 5.7: (a) Pearson correlation coefficient, (b) computation time in seconds
versus number of iterations for OS-SART, SART-TV, CGLS, MLEM algorithms

using 11 projections.

5.2 Two-Projection Method

Not all applications require complex reconstruction methods to reconstruct the

3D volume from X-ray projections. For example, for rocks, metal contaminants,



72

(a) (b)

Figure 5.8: (a) Pearson correlation coefficient, (b) computation time in seconds
versus number of iterations for OS-SART, SART-TV, CGLS, MLEM algorithms

using 2 projections.

and soil clump detection, one only needs to know approximate location and vol-

ume of the content; it is not required to know all the fine shape details. For such

applications, we propose a mathematical approach in this section that uses two

X-ray projections to reconstruct the 3D volume with high precision.

Figure 5.9 describes the complete architecture of the two-projection method.

The entire process can be divided into two phases. First, both projections are

extrapolated back into 3D space by elongating the “on” pixels in the projection

along the tomographic angle until the 3D volume is equivalent to the detector

dimensions (see figure 5.9c). The two volumes extrapolated from projections are

aligned together (see figure 5.9d), and their intersection is calculated (see figure

5.9e). The intersected volume represents the volume of materials like rocks and

metal contaminants present in a corn stover bale. For all the experiments in this

work, the detector dimensions are set to 512 x 512. The reconstructed volume will
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be 512 x 512 x 512, which will reduce the complexity in the later stages.

Figure 5.9: Architecture of the two-projection method. (a) The phantom
represented in 3D volume, (b) the 2D X-ray projections taken at two tomographic
angles, (c) the extrapolated volume for each projection back in 3D, (d) the aligned

extrapolated volumes, (e) the intersection of the two aligned volumes.

Analysis with a Phantom

Earlier, we discussed the challenges associated with analytical and iterative

reconstruction methods when using fewer X-ray projections. This section will pro-

vide a detailed quantitative and qualitative analysis of the two-projection method

using a phantom (see figure 5.2a). Several experiments were conducted to eval-

uate the two-projection method. Here maximum position deviation and volume

accuracy are considered for the quantitative analysis.

In our experiments, first we will evaluate the technique on the simple phantom

by considering a 90-degree angular separation between two X-ray sources. Then
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we change the angular separation between the two X-ray sources to 135, 75, 60,

45, 30, and 15 degrees to observe the impact on the two-projection method per-

formance with an increase/decrease in the angular separation. The angle between

two projections can be arbitrary. In our experiments, one projection is always set

to the tomographic origin (0 degrees).

As stated previously, we first start with a 90-degree separation with, θ0 = 0

deg and θ1 = 90 deg. Figure 5.10a shows the 2D cross-section slice from the rock

phantom shown in figure 5.2a. Figure 5.10b shows the 2D-cross sectional slice from

the reconstructed phantom when using two projections with 90-degree separation.

The figure shows that the two-projection method can reconstruct the objects of

interest without any streak artifact. Since only two projections with 90-degree sep-

aration are used, the estimate takes on a square instead of a circular shape, where

the sides of the square are the diameter of the circle. The volume estimates from the

two-projection method are always greater than the true volume. The discrepancy

is mainly because the circle always can be inscribed in the reconstructed square,

and the angle between the two X-ray sources and the X-ray acquisition geometry

configuration determine how much area is outside the circle.

Table 5.4 shows the quantitative results for the estimated rock phantom, shown

in figure 5.9a. Figure 5.9e shows the reconstructed volume using the two-projection

method with 90-degree separation. The two-projection method with 90-degree

separation provides a volume estimate with 375.5% accuracy and shows a position

deviation of around 0.018 inches. The 0.018 position deviation is insignificant

when part of a reconstructed 7inch x 7inch x 12inch rectangular volume.
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(a) (b)

Figure 5.10: (a) 2D cross-section slice from the rock phantom, (b) Estimated 2D
cross-section slice from the rock phantom with 90-degree separation.

Table 5.4: Quantitative analysis with simple phantom with angle separation
90-degree

True Estimated Volume Average Position
Volume Volume Accuracy (%) Deviation (")
148672 558336 375.5 0.018

Figure 5.11 shows a circle that is enclosed by the reconstructed square. The

figure shows the discrepancy between the area of the circle and the reconstructed

square. The area of the circle with diameter d is

Areacircle =
πd2

4
. (5.3)

Since the area of the square is d2, we know

Areacircle =
π

4
∗ Areasquare. (5.4)

The π
4 represents a scaling factor which can be used to correct the area estimate

when the angle separation between two X-ray sources is 90 degrees.

In the real world, we may not always be able to use the 0 and 90-degree pair,
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Figure 5.11: Reconstructed square encloses the object circle.

because the camera acquisition system at the biorefinery may have other geomet-

rical constraints. We explored the problem by changing the angle between two

projections to 135, 75, 60, 45, 30, and 15 degrees. Figure 5.12 shows the recon-

structed 2D cross-sections of a circle when the angular separation is greater/less

than 90-degrees. When the angle separation between the two X-ray sources is not

90 degrees, the reconstruction becomes a rhombus instead of a square. The scaling

factor shown in equation 5.4 needs to be adjusted to include the angle to correct

for the error in these cases. Here we generalize the problem and equation 5.4 by

considering the area of the rhombus. Figure 5.13 shows the rhombus representing

the reconstruction of the circle with angle separation θ = |θ1 − θ2| and side length

l. Using trigonometric rules we can see that the diameter of the circle and side of

the rhombus are related by

cos(90− θ) =
d
l

. (5.5)

The area of the rhombus can be calculated using the side and the angle using

Arearhombus = l2sin(θ). (5.6)
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From equation 5.5 l = d
cos(90−θ)

. Since cos(90− θ) = sin(θ), the area of the rhombus

shown in equation 5.6 can be represented as

Arearhombus =

(
d

sin(θ)

)2

sin(θ). (5.7)

The calculated area of the circle will still be πd2

4 , so

Areacircle = Arearhombus ∗
πsin(θ)

4
. (5.8)

This information can be used to create an offset factor to correct for the method

when reconstructing a rhombus instead of a circle.

The assumptions used to this point treat the X-rays as if they were parallel, but

in reality we are using a CBCT configuration. The size of the object on the detector

will be larger than the size of the physical object. The offset factor calculated

from equation 5.4 will not be enough to correct the estimated volume. Figure 5.14

shows the X-ray geometry configuration in 2D where the circle with diameter d is

projected on to the detector. Here d1 represents the distance from the source to the

detector, d2 represents the distance from the source to the center of the object, and

dp represents the size of the object in the projection. Using similar triangles we

observe that,
d1

d2
=

dp

d
. (5.9)

The side of the rhombus in equation 5.7 is really dp not d, so since dp = d1
d2
∗ d, the

area of the rhombus is
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(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: (a) 2D Phantom. Projections with (b) 15 degree, (c) 30 degree, (d) 45
degree, (e) 60 degree, (f) 90 degree, and (f) 135 degree separation.

Arearhombus =
(d1

d2

)2( d
sin(θ)

)2sin(θ). (5.10)

The calculated area of the circle will still be be π d2

4 , so

Areacircle = Arearhombus ∗
(d2

d1

)2 ∗ π sin(θ)
4

. (5.11)
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Figure 5.13: Circle inscribed in a rhombus.

When extending from 2D area to 3D volume the height of the rhomboid also needs

to be taken into consideration producing

Volumecircle = Volumerhombus ∗
(d2

d1

)3 ∗ π sin(θ)
4

. (5.12)

This information can be used to calculate a scaling factor value that will correct for

the X-ray geometry configuration used in the experiment.

Figure 5.14: Fan beam X-ray acquisition geometry.

Table 5.5 shows the offset factor from equation 5.12 at various angle separations

when d1 = 805.48 mm and d2 = 539.69 mm. Here the d1 and d2 are directly taken
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from the X-ray configuration used for scanning, which works for an object at the

center of the bale. We ran the experiment for these angles. Table 5.6 shows the

measured reconstructed volume, and the corrected volume after applying equa-

tion 5.12. Most of the estimates are within 6% error. The overestimates observed in

the table are mainly from excessive border voxels being counted. When there are

multiple objects, the d2 value will vary. For each object of interest, the algorithm

must first estimate the position and adjust the d2 value by estimating the distance

from the center of the entire body to the source. The estimated d2 values help to

calculate the offset factor for a given object.

For narrow-angle separations, the rhombuses are long and narrow. Without

proper padding, the ends can get chopped. Figure 5.15 shows the reconstructed

volume with the cut-off ends when the angle separation is 15 degrees. Proper care

should be taken while padding the volume to avoid any such errors.

Table 5.5: Offset factor at each angular separation

Angle Volume Offset factor
135 0.1914
90 0.2707
75 0.2615
60 0.2345
45 0.1914
30 0.1354
15 0.0701

5.3 Computation Times

Currently, all the experiments in this work were conducted with fixed dimen-

sions and for a mini-round bale. However, at a biorefinery we will be working
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Table 5.6: Quantitative analysis with simple phantom with volume: 148672 voxels

Angle Measured Corrected Volume
Separation Volume Volume Accuracy (%)

135 558336 151141 106.3
90 604386 158046 101.6
75 673854 158018 106.2
60 822224 157373 105.8
45 1167160 158033 106.3
30 2176704 152586 102.6
15 822224 157373 105.8

Figure 5.15: Reconstructed volume of a sphere with 15 degree separation without
proper padding.

with larger bales of size 3′ x 3′ x 4′. This increases the resultant dimensions of the

input data, which the reconstruction algorithms need to process. The resulting

computation time will change with an increase in the dimensions of the input

size. Synthetic samples with different input dimensions were taken to study the

time complexity of the reconstruction algorithms. The two-projection method in

section 5.2 was run on a CPU, whereas the other reconstruction methods described

in section 5.1 were run on GPUs. Figure 5.16 shows the time complexity plot.

Where the x-axis represents the dimensions of the input volume (size x size x
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size). Even with the CPU/GPU difference, the two-projection method was sig-

nificantly faster. However when the input data size is greater than 512 x 512 x 512,

the two-projection method’s computational complexity increases drastically. This

is mainly because the algorithm implemented uses a MATLAB built-in function

called “repmat” to elongate the volume. In the future, the time complexity with

large data sizes need to be reduced by avoiding the usage of built-in MATLAB

functions. The time complexity of the MLEM shows that the algorithm is suitable

for complex reconstruction problems at the biorefinery.

Figure 5.16: Time complexity with increase in input dimensions for OS-SART,
CGLS, MLEM & the proposed two projection method.

5.4 Discussion

This chapter presented the performance of reconstruction methods when the

number of projections is smaller than used in commercial CT imagery. The it-
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erative reconstruction methods like MLEM and SART-TV provide an acceptable

reconstruction quality with fewer projections. However, the SART-TV algorithm

requires a large computation time. From this work, we can conclude that the

MLEM method will be suitable for reconstruction algorithms for the complex re-

construction problems where we reconstruct the corn cobs or stalks volume from

the bale, which will be discussed in chapter 6.

The proposed two-projection method runs quicker and provides a high-quality

reconstruction, suitable for simple problems like volume and position estimation

of rocks, metal contaminants, and soil clumps present in the bale. There are two

kinds of errors which will be observed in the reconstructed volume with two

projection method. First, false phantoms and second intersection of two volumes.

Since only two projections are used when multiple objects are in the same neigh-

borhood they can create false phantoms. The other possible error occurs when two

objects are in a very close neighborhood and the projections taken couldn’t tell the

difference, it is reconstructed as a single object. In the future, these need to be

addressed by accounting for the intensity value observed in the projections.

In all the experiments, the pixel pitch of the detector and the size of each voxel

are made equal, i.e., 1 mm. Future studies should evaluate the performance when

the pixel pitch of the detector and size of each voxel are not equal. Similarly, we

need to study how the criteria for volume correction change with the different

X-ray geometry configurations. Here, the X-ray geometry configuration has the

entire bale in the X-ray source’s Field of View (FOV), and the object is projected

onto a detector that is larger than the dimensions of the bale. For example dp

shown in figure 5.14 is always greater than d. Future study needs to focus on un-
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derstanding what role the X-ray geometry configuration plays in the offset factor.

Also, the program needs to be optimized to reduce the time complexity when the

input data size is large.
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CHAPTER 6

NUMERICAL EVALUATION OF TISSUE

CHARACTERIZATION IN A CORN STOVER BALE WITH 3D

IMAGE ANALYSIS TECHNIQUES IN A SPARSE VIEW

FRAMEWORK

In the previous chapter, we reviewed the performance of several image recon-

struction methods with limited projections. We also proposed and provided an

evaluation of the two-projection method. The two-projection method and the sta-

tistical reconstruction method (MLEM) have shown very high performance with

lower time complexity. However, in the previous chapter the performance of the

image reconstruction methods was evaluated using a simple phantom. This chap-

ter shows the application of these methods to categorize and provide volumetric

estimates of different tissues fractions present in a corn stover bale.

This chapter aims to produce the 3D volume using only a few X-ray projections,

then reconstruct different tissue fractions of the bale and classify them accordingly.

This chapter also discusses the strategies associated with extracting different tissue

fractions. Firstly, we show the application of the two-projection method to segment

the higher density materials – rocks, metal contaminants, and soil clumps– present
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in the corn stover bale. Secondly, we show the performance of the statistical re-

construction method, MLEM, to reconstruct mainly the corn cobs and stalk nodes

present in the bale.

6.1 Detection of Rocks and Metal Contaminants in a Corn Stover

Bale

As mentioned in section 4.2, rocks and other metal contaminants in a corn

stover bale are detrimental to conversion and production when left unattended.

If necessary precautions are not taken, these rocks and other metal contaminants

can cause significant damage to the grinding equipment, which can significantly

increase equipment wear and downtime. Sparks could be generated in the grinder

causing fire hazards [25]. Knowledge about the quantity of this foreign matter and

its location within a bale can be used to determine whether the bale should be

rejected in part or in whole.

As already stated in section 4.2, rocks or any other metal contaminants have a

very high bulk density (2.62 g/cm3) compared to corn stover biomass (0.15 g/cm3).

High bulk density generally relates to more X-ray photon absorption, which results

in higher attenuation. In the X-ray projections, higher attenuation regions are usu-

ally represented with high-intensity values. Because of the significant difference

between the bulk densities, it is easy to segment the rocks and metal contaminants

from corn stover biomass by applying the thresholding technique on the acquired

X-ray projections. Thresholding is the most straightforward segmentation tech-

nique where each pixel intensity below a given threshold value is represented
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with 0, and the rest is represented with 1. Figure 6.1a shows the X-ray projection

through a mini-round cylindrical corn stover bale with a diameter of 12.70 cm and

height of 15.24 cm. Synthetic rocks which resemble the shape of pebbles are added

to the bale. These rocks are represented with a high pixel intensity value in figure

6.1a. Figure 6.1b shows the same X-ray projection after segmenting the rocks using

a simple global thresholding technique.

(a) (b)

Figure 6.1: An X-ray projection through a corn stover bale showing the four rocks
(a) before thresholding, and (b) after thresholding.

After thresholding, the two-projection method presented in section 5.2 is used

to reconstruct the 3D volume of the synthetic rocks in the corn stover bale. Figure

6.2 shows the architecture of the rocks and metal contaminants detection problem

described in this chapter. The intersected volume shown in figure 6.2e provides

the volume estimate for the rocks and other metal contaminants.

In this work, two kinds of synthetic rock samples, smooth pebbles and rough

gravel, are considered to test the two-projection method performance. Figures

6.3a and 6.3b show an example of the smooth pebble and rough gravel data used

in this work. Smooth pebble rocks are created by considering the shape of an
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Figure 6.2: Architecture of the rocks and metal contamination detection in a
sparse view framework using two-projection method where (a) shows the

synthetic rock sample represented in 3D volume with red color, (b) shows the 2D
X-ray projections taken at two tomographic angles, (c) shows the rocks

segmented using thresholding, (d) shows the volume extrapolated into 3D, (e)
shows the aligned extrapolated volumes, (f) shows the intersection of the two

aligned volumes.

ellipsoid with random axis length. The rough gravel shapes are created using

the convex hull command in the MATLAB with random points. For the exper-

iments, the corn stover bale sample shown in previous chapters is used. These

rocks were added synthetically into the corn stover bale. Fifteen cases with ran-

domly chosen locations and volumes are created for smooth pebbles and rough

gravel. Table 6.1 and 6.2 shows the performance of the two-projection method

with synthetic smooth pebble data and rough gravel data. The results show that

the two-projection method could reconstruct and estimate the volume of the rocks

with high precision. Similar to what was observed in chapter 5, the reconstructed

volume with the two projection method is overestimated. The error observed here
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is greater than what we observed in chapter 5 mainly because the sides of the

rhombus are considered for a spherical phantom. In these experiments it is not the

case, so we observe a larger error. In table 6.1 we see that for 30 and 15 degree

separation we see an underestimate this is mainly because the some of the rocks

volume has been cut-off during the reconstruction process.

(a) (b)

Figure 6.3: (a) Smooth pebble rock sample and (b) Rough gravel rock sample

Table 6.1: Quantitative analysis with synthetic smooth pebble data

Angle Volume Average Position
Separation Accuracy (%) Deviation (")

135 108.90 0.018
90 103.20 0.017
75 107.80 0.017
60 107.35 0.017
45 108.90 0.018
30 98.90 0.018
15 97.35 0.017

After evaluating the two-projection method performance with synthetic rock

data, a real rock contaminated mini-round bale was constructed. In this experi-

ment, we took a few rock samples from a garden and added them to a mini corn

stover bale. Figure 6.4 shows the 3D volume representation of the corn stover
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Table 6.2: Quantitative analysis with synthetic rough gravel data

Angle Volume Average Position
Separation Accuracy (%) Deviation (")

135 104.30 0.018
90 105.80 0.017
75 110.90 0.017
60 110.35 0.018
45 104.90 0.018
30 110.25 0.018
15 112.15 0.018

with the rocks represented with red color. Table 6.3 shows the performance of

the two-projection method with the real dataset. The results show that with the

two-projection method, we were able to reconstruct and estimate the volume of

rocks and other metal contaminants with high precision. Similarly, the metal con-

taminants if present in the bale would have high bulk density, which results in

high attenuation, so the work shown in this section can be expanded to detection

of metal contaminants as well. The metal contaminants found in the bales are

mainly from broken farm equipment such as bale spears and hitch parts.

Table 6.3: Quantitative analysis with a real rock sample

Angle Volume Average Position
Separation Accuracy (%) Deviation (")

135 105.30 0.018
90 101.60 0.017
75 106.21 0.017
60 106.42 0.017
45 105.30 0.018
30 104.23 0.018
15 98.90 0.018
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Figure 6.4: A 3D corn stover bale volume with rocks represented with a color red.

6.2 Detection of Soil Clumps in a Corn Stover Bale

After extracting the rocks and metal contaminants present in the bale, the next

higher density materials are soil clumps. Soil clumps present in a corn stover

bale have a bulk density of 1.23 g/cm3 which is still greater than biomass (0.15

g/cm3). In the acquired X-ray projections, after segmenting the rocks and metal

contaminants, a thresholding technique is applied again to segment the soil clumps

from the corn stover biomass. After the segmentation is done, the next step is to

apply the two-projection method discussed in section 5.2.

To test the performance of the two-projection method for soil clump detection,

a soil contaminated corn stover bale was prepared and X-ray projections were

acquired. Figure 6.5 shows the 3D representation of the soil contaminated corn
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stover bale. Since the soil clumps are very close to each other, several regions were

combined and shown as one single region. So the total fraction of the estimated

volume is estimated by using the number of on voxels information present the

bale that represent the soil clumps with the the total number of on voxels, it is

estimated that the soil clumps cover approximately 0.32% of the total volume.

Table 6.4 shows the estimated volume fraction at each degree separation.

Figure 6.5: A 3D corn stover bale volume with soil clumps represented with
orange color.

Table 6.4: Quantitative analysis with clumped soil sample covering 0.32% of the
total volume

Angle Estimated
Separation Volume Fraction

135 0.43%
90 0.40%
75 0.43%
60 0.45%
45 0.43%
30 0.41%
15 0.31%



93

6.3 Detection of various Corn Stover Fractions

After the extraction of rocks and soil clumps, the bale composition is left with

the corn stover fractions like cobs, stalks, leaves, and husks. Like rocks and soil

clumps, corn stover fractions can also be classified into three groups based on

the intensity profiles. The first group is mainly comprised of corn cobs and stalk

nodes, making it a two-class classification problem. The second group comprises

upper stalks and lower stalks. The latter is primarily occupied with what looks like

isolated particles, but they are mainly leaves and husks. Since husks and leaves

are very thin, in the pre-processed reconstructed data, they mostly look like dust

(small components) in the reconstructed volume.

In this work, the statistical reconstruction method, MLEM, is applied to recon-

struct the 3D volume from X-ray projections, as the two-projection method will

not be able to provide high enough quality. As shown in section 5.1.2 among

the iterative reconstruction methods, the MLEM algorithm provided better perfor-

mance in terms of reconstruction quality and computational time. The MLEM is a

statistical reconstruction algorithm which has future capability to incorporate the

prior knowledge information to further increase the performance and application.

Figure 6.6 shows the 3D volume reconstructed with the MLEM algorithm run with

3 and 5 projections at 5, 10, 30, and 100 iterations. After observing the reconstructed

slices, we observed that using 5 projections with 10 iterations provides adequate

quality to be able to perform classification. Once that is done, we can apply the

techniques proposed in chapter 4 to locate and segment the corn cobs. A simple

connected components approach could also be applied to extract the information
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about the different regions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: MLEM based reconstruction using 3 projections with (a) 5 iterations,
(b) 10 iterations, (c) 30 iterations, and (d) 100 iterations, and reconstruction using

5 projections with (e) 5 iterations, (f) 10 iterations, (g) 30 iterations, and (h) 100
iterations.

After the corn cob and stalk node extraction, we are left with upper stalks and

lower stalks. Since stalks are closely packed, the segmentation between them in

the sparse view framework will become more complex. Which is not solved by the

work of this dissertation. Figures 6.7 and 6.8 show the next two intensity profiles in

the projections after corn cob and stalk node volume extraction. Figure 6.9 presents

the different segmented regions of corn fractions in the bale.
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Figure 6.7: A 3D volume of upper and lower stalks after corn cob and stalk node
extraction.

6.4 Discussion

This chapter presented several strategies to extract and calculate the volume

of various corn stover content like rocks, soil clumps, cobs and stalk nodes using

limited X-ray projections. In this work, five X-ray projections evenly distributed

are used to reconstruct the 3D volume from the projections. The results show

that strategies devised in this chapter provide information about the corn stover

contents with high precision.

However, there are limitations with this work, for example added moisture can

increase the bulk density of the corn stover materials. Increase in bulk density

will increase photon absorption which leads to more attenuation. Since the entire

process depends on intensity profiles, that could lead to some error. In the future,

the algorithm needs to be adapted to consider the moisture change. Similarly,
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Figure 6.8: A 3D volume of leaves and husks appear as isolated voxels.

the current approach is not capable of classifying between upper stalks and lower

stalks. However, using the yield monitor and knowledge about the content of cobs

could provide some information. For instance when there is more cob content,

the stalks will be mainly upper stalks because of how the bales are packed. In the

future we need to consider this as well. Similarly, cob kernels are shown as high

density materials.
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Figure 6.9: A 3D volume representation of a corn stover bale with brown color
representing cobs and stalk nodes, green color for upper stalks and lower stalks,

and red color represents the leaves and husks.
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CHAPTER 7

ASSESSING THE FRAMEWORK FOR X-RAY TOMOGRAPHY

AT A COMMERCIAL SCALE BIOREFINERY

In the previous three chapters, we presented several tissue characterization meth-

ods for studying the quality of corn stover bales. Chapter 4 provided a detailed

description of 3D segmentation algorithms that utilize image analysis techniques

like thresholding, and 3D skeletonization to segment and estimate the volume of

different content present in a corn stover bale. Additionally, chapter 5 provided

a detailed description of the sparse view reconstruction problem and the perfor-

mance of several image reconstruction methods with few X-ray projections. The

results in chapter 6 show that X-ray tomography with 3D image analysis in a sparse

view framework can provide the necessary information about the contents of the

corn stover bale with high precision.

All the experiments in the previous chapters used a mini-round bale with a

diameter of 5" and a height of 6". However, at a commercial biorefinery, we will

need to work with bales of dimensions 3’ x 4’ x 8’. To evaluate the performance

of using X-ray tomographic techniques at the biorefinery, it is essential to identify

and study the behavior of X-ray photon absorption parameters, such as the linear

attenuation coefficient (µ), and bulk density (ρ). Similarly, it is also essential to
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identify and study the parameters that change the elemental composition of the

bale, which play a significant role in the X-ray photon transmission and interaction

through the bale.

The linear attenuation coefficient, µ, is an important parameter that charac-

terizes how easily an X-ray beam can penetrate a layer of the material. The µ

depends on the chemical composition of the material and the incident photon

energy. The overall X-ray attenuation through the material is also proportional

to the bulk density (ρ) as described by Beer-Lambert’s law. This chapter looks

more specifically at the change in energy absorption parameters with moisture

content (MC) and soil content (SC). These two factors change the overall chemical

composition and the bulk density, affecting the X-ray photon attenuation through

the bale.

This chapter starts by reviewing the behavior of parameters, µ and ρ, with a

change in MC and SC of the bale. Next, the feedstock supply chain at the biorefin-

ery is examined. Then we identify the locations within the feedstock supply chain

where X-ray tomography can be integrated and define the achievable goals. In the

end, we will examine the behavior of X-ray transmissivity through the corn stover

bale with a change in moisture and soil content at the defined energy range. In this

study, we consider three MC values of 15%, 25%, and 35%, and four SC values of

5%, 10%, 15%, and 20%. These specific conditions help to study the behavior of

the linear attenuation coefficient and X-ray transmissivity for realistic conditions

of the bale.
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7.1 Beer-Lambert’s Law and X-ray Photon Absorption Parameter

Estimation

A brief introduction to the Beer-Lambert law and the procedure to calculate the

photon absorption parameters, like linear attenuation coefficient, and bulk density

are described in this section.

7.1.1 Beer-Lambert’s Law

When a X-ray beam passes through a material of thickness t, the photons are

transmitted according to Beer-Lambert’s law [61]. This process is expressed as

I = I0 ∗ e−(µt), (7.1)

where I0 is the X-ray intensity at the X-ray source, I represents the observed in-

tensity at the detector after attenuation when passed through the material with

thickness t and linear attenuation coefficient µ (cm−1). The linear attenuation

coefficient cannot be computed directly, so the linear attenuation coefficient is

described as

µ = (µ/ρ) ρ, (7.2)

where µ/ρ (cm2/g) represents the mass attenuation coefficient and ρ represents

the bulk density. With this and defining x to represent the mass thickness as the

mass per unit volume, x = ρ ∗ t. With this, equation 7.1 can rewritten as
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I = I0 ∗ e−(µ/ρ)x. (7.3)

A derivation of equation 7.1 is found in section 2.2, which provides a compre-

hensive background on X-ray tomography. Discussion in this chapter uses mono-

energetic photons passing through a single path, however most of the mathematics

in this chapter can be easily applied to other geometries like Cone Beam CT, Helical

CT, and Dual Energy CT. The underlying conclusions will remain the same.

In X-ray tomography, the fractional transmitted intensity I/I0 is used as a mea-

sure of how many rays pass through the object [42]. In this chapter, the fractional

transmitted intensity value is used to evaluate the performance of the X-ray to-

mography with variations in moisture and soil content. The transmitted intensity

calculated from equation 7.3 is,

I/I0 = e−(µ/ρ)x. (7.4)

Here I, I0, and x are measured values. The parameter ρ depends on the baler’s

operational settings and the material composition, and µ depends on the material

composition and the incident energy I0. Since ρ and µ are dependent on the

material composition, it is essential to study the factors like MC and SC which

influence these parameters.

7.1.2 Bulk Density

Bulk density, also called packing density, is defined as mass per unit volume.

To estimate the bulk density of a corn stover bale, we refer to the work published
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by Glassner et al. [62]. In [62], Glassner et al. stated that the John Deere balers

aim to acquire 550 kg (1,200 lbs) of dry weight for big 4’ x 4’ x 8’ square bales. The

authors estimate that the bales have a bulk density of 9.375 lbs/cc.ft (0.15 g/cm3).

In this work, 0.15 g/cm3 is used as a reference to represent dry matter bulk density

of corn stover bale that is free from moisture and soil contamination.

Since moisture or soil contamination affect the bulk density of the bale, it is

essential to know how the moisture content and soil content affect the bulk density

of the bale. The term "soil content" used in the chapter usually refers to the weight

fraction of soil present in a bale. For example, 10% soil content means 10% of the

dry matter weight is from the mass of the soil. However, the moisture content in

a bale is expressed in two forms, wet basis, and dry basis [63]. Wet basis moisture

content (designated Mw) refers to the percentage equivalent of the ratio of the

weight of water (Ww) to the total weight of the material (Wt) [63]. In contrast,

the dry basis (designated Md in this chapter) provides the percentage equivalent

of the ratio of the weight of water (Ww) to the weight of the dry matter (Wd) [63].

The wet basis and dry basis moisture contents are

Mw =

(
Ww

Wt

)
∗ 100 =

(
Ww

Ww + Wd

)
∗ 100, (7.5)

Md =

(
Ww

Wd

)
∗ 100. (7.6)

In this chapter, we will use the term "moisture content" to refer to the wet basis

moisture content. To estimate the weight of the water in a bale, the wet basis mois-

ture content needs to be converted to dry basis moisture content. It is calculated

using:
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Md =

(
Mw

100−Mw

)
∗ 100. (7.7)

The individual weights of the water (Wwater), soil (Wsoil), and stover (Wstover) are

calculated from the dry matter weight using,

Wwater = Md ∗Wd = Md ∗ ρd ∗Volume, (7.8)

Wsoil = SC ∗Wd = SC ∗ ρd ∗Volume, (7.9)

Wstover = ρd ∗Volume. (7.10)

Once the individual weights of water, soil, and stover are calculated, the effective

bulk density is calculated using

ρe f f =
Wwater + Wsoil + Wstover

Volumebale
. (7.11)

7.1.3 Linear Attenuation

The linear attenuation coefficient, µ, depends on the composition of the ma-

terial, which can be calculated from the mass attenuation coefficient value using

equation 7.2. The total mass attenuation coefficient µ/ρ for materials composed

of multiple elements is equivalent to a weighted sum of the (µ/ρ)i values of each

constituent element [64]:

µ/ρ = ∑
i

wi(µ/ρ)i (7.12)

where wi is the fraction by weight of the ith atomic constituent. In this work, two

standard reference databases were used to calculate the mass attenuation coeffi-
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cient values of the corn stover. Firstly, the Phyllis database [65] is used to determine

mass fractions of each element present in the corn stover. Phyllis is a database

containing information on the composition of biomass, macro-and micro-algae,

feedstocks for biogas production, biochar, and torrefied biomass. Table 7.1 shows

the elemental mass fraction information of the corn stover biomass.

Table 7.1: Elemental mass composition of corn stover

Elements Mass %
Oxygen (O) 0.4231
Silicon (Si) 0.0131
Carbon (C) 0.4789

Calcium (Ca) 0.0032
Potassium (K) 0.0089
Sodium (Na) 0.0001

Magnesium (Mg) 0.0019
Sulfur (S) 0.0011

Phosphorus (P) 0.0010
Chlorine (Cl) 0.0027

Aluminium (Al) 0.0005
Hydrogen (H) 0.0587
Nitrogen (N) 0.0068

Elemental mass fractions of moisture and soil content are estimated by taking

the chemical composition of each into account. For moisture, the chemical formula

used is H2O. Individual weight fractions are calculated by considering the atomic

weight of the element with the number of atoms. Table 7.2 shows the elemental

mass composition information used to represent moisture content.

Table 7.2: Elemental mass composition of moisture content

Elements Mass %
Oxygen (O) 0.8881

Hydrogen (H) 0.1119
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In [66], according to Krupenikov et al. the significant elements of soil are con-

ventionally expressed as oxides; on this basis, 60–70% is silica (SiO2) and 13–16%

alumina (Al2O3). The paper also stated that there are substantial amounts of iron

(5–6%) and silicate calcium (about 2%) [66]. Using the mixture rule, the elemental

composition of the soil is calculated. Table 7.3 shows the elemental mass composi-

tion information used to represent soil content present in the bale.

Table 7.3: Elemental mass composition of soil content

Elements Mass %
Oxygen (O) 0.4722
Silicon (Si) 0.3269

Iron (Fe) 0.0419
Calcium (Ca) 0.0143

Aluminium (Al) 0.0846

Next, the X-Ray Attenuation and Absorption for Materials of Dosimetric Inter-

est (XAAMDI) database [64] from the National Institute of Standards and Technol-

ogy (NIST) is used to obtain the mass attenuation coefficient value of each atomic

element at a given energy. To account for the characteristics peak, for any given

peak voltage, the mass attenuation coefficient value is calculated at two-thirds of

the peak voltage. Once the total mass attenuation coefficient is calculated using

equation 7.12, the linear attenuation coefficient is estimated by taking the product

of the mass attenuation coefficient and the bulk density (equation 7.2).

7.2 Bulk Density Behavior with Moisture and Soil Content

Section 7.1.2 explained the procedure to calculate the bulk density of a corn

stover bale. In this section, we try to understand how the moisture and soil content
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Figure 7.1: A 2D surface plot showing the change in bulk density of a bale with
respect to change in moisture content and soil content. Higher quantities of soil &

moisture increases the bulk density.

change the bulk density of the bale. Figure 7.1 is a surface model that shows the

variation in bulk density with an increase in soil and moisture content. The x-

axis represents the soil content, the y-axis represents the moisture content, and the

z-axis represents the bulk density of the bale in g/cm3.

Additionally, figures 7.2a and 7.2b show the average variation of bulk density

with increase in moisture content and soil content respectively. Figure 7.2a shows

that there is a linear relationship between soil content and bulk density. Every 10%

increase in soil content increases the bulk density by a factor of 0.015. Similarly,

Figure 7.2b shows that the moisture content shows an exponential relationship to
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bulk density.

(a)
(b)

Figure 7.2: Variation of bulk density with (a) soil content, (b) moisture content.

7.3 Linear Attenuation Behavior with Moisture and Soil Content

Section 7.1.3 showed the procedure to calculate the linear attenuation coeffi-

cient of a corn stover bale by considering the elemental composition of the corn

stover, soil, and moisture accordingly. This section demonstrates how the mois-

ture and soil content changes the linear attenuation coefficient. Figures 7.3, 7.4

and 7.5 show the linear attenuation coefficient values of corn stover samples with

moisture contents 15%, 25% and 35%. Each figure shows the linear attenuation

coefficient values at various soil content ranging from 5%, 10%, 15% and 20%. The

moisture levels are taken from the work published by Smith et al. in [67], which

stated that the moisture observed in the bales is as low as 15% and as high as

35%. The 25% moisture content is used to represent a moderately moist sample.

Similarly, Bonner et al. in [24] stated that the mean ash content ranges from 11.5%
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to 28.2%, depending on operational choice. However, the ash content estimated

in the work [24] includes both soil derived ash content and ash content because

of the inherent inorganics. To account only for the soil derived ash content, soil

content is set at 5%, 10%, 15% and 20% to represent low, moderate to high soil

contamination. Limiting the study to these specific conditions helps to observe

the linear attenuation coefficient values for realistic conditions of the bale. From

figures 7.3, 7.4, and 7.5 it can be observed that both an increase in soil or moisture

content increases the linear attenuation coefficient. However, the change or shift

is not drastic, and the linear attenuation coefficient increases by 0.001 for every 5%

increase in soil content. A similar trend is observed with moisture content, where

a drop of 0.003 is observed from low to moderate moisture and a drop of 0.004 is

observed is from moderate to high moisture levels. The attenuation resembles bulk

density behavior where after moderate moisture levels the bulk density showed an

exponential increase. The results only conclude that with an increase in moisture

or soil content, the amount of attenuation observed will increase.

7.4 Integration of X-ray Tomography into the Feedstock Supply

Chain of the Biorefinery

In section 7.2 and 7.3, it is shown that an increase in moisture or soil content

increase the bulk density and linear attenuation coefficient of the bale. To deter-

mine whether X-ray tomographic techniques developed in this dissertation can

be applied at the biorefinery, we need to identify another vital photon absorption

parameter, the thickness of the material. Typically, the baler packs the corn stover
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Figure 7.3: Linear attenuation coefficient with 15% moisture content and soil
contents 5%, 10%, 15% and 20% versus peak voltage.

in the form of rectangular bales with dimensions 4′ x 4′ x 8′ or 3′ x 4′ x 8′. We

will base our calculations on 3′ x 4′ x 8′ as this is more common. However, before

we can decide a value for the thickness, it is essential to know how the bales are

processed at the biorefinery. Figure 7.6 shows the advanced feedstock supply chain

at the biorefinery, which outlines the stages from baling to conversion.

From the feedstock supply chain shown in figure 7.6, we can see that X-ray

tomography can be applied at two different locations. First, X-ray tomography can

be used to scan the trailers attached to the trucks – step 4 in the feedstock supply in

figure 7.6 – to estimate volumetric information of the rock and soil contamination.

Second, the CT scanner can be integrated in the Q/A Analysis stage – step 12 in

the feedstock supply chain in figure 7.6 – to learn about different tissue fractions of
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Figure 7.4: Linear attenuation coefficient with 25% moisture content and soil
contents 5%, 10%, 15% and 20% versus peak voltage.

the bale. The rest of this section focuses on defining the achievable goals, detector

resolution and defining the ideal energy ranges that would need to be used at the

biorefinery if these techniques were to be used.

Similar to the linear attenuation coefficient discussion, in this section, we will

limit the study to moisture contents of 15%, 25%, and 35% and soil contents of

5%, 10%, 15% and 20%. The moisture contents used in the study represent a dry

to high moisture sample, and similarly soil content represents a low to high soil

contaminated samples. Bales with moisture contents greater than 35% and soil

contamination greater than 20% are not preferred at the biorefinery, so it is not

necessary to study effects at higher levels.
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Figure 7.5: Linear attenuation coefficient with 35% moisture content and soil
contents 5%, 10%, 15% and 20% versus peak voltage.

7.4.1 Scanning the Truck Load

The first possible place where a CT scanner could be used would be to scan

the input feedstock directly on the truck as the transport arrives at the biorefinery.

Generally, the trailers carrying corn stover bales have two stacks of bales arranged

in a given row. Each bale has a dimension equivalent to 3′ x 4′ x 8′, so the X-ray

beam should transmit through a 6′ bale thickness to reach the detector. Figures 7.7,

7.8 and 7.9 show the fractional transmitted intensity (I/I0) with moisture contents

at 15%, 25%, and 35% respectively. Each figure shows I/I0 at different soil contents

varying from 5%, 10%, 15%, and 20%.

The I/I0 plots show that the detector receives less than 3% of the incident

energy at peak voltage less than 500kV. However, at higher peak voltages in terms
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Figure 7.6: Advanced feedstock supply chain at a biorefinery [68]. At stages 4 and
12 (circled) techniques developed in this work can be applied.

of 1 MV, it received a maximum of 5%. For example, for a bale with 15% MC

and 5% SC with incident peak voltage between 350-400 kV the detector receives

a maximum of 2% of the initial peak voltage. The plots show that the I/I0 drops

by 0.2% for every 5% increase between low to moderate soil contents (5% to 15%).

Moreover, from moderate to high soil contents (15% to 20%), a drop of 0.1% is

observed. A similar trend is observed with moisture contents, where the I/I0 value

drops by a factor of 0.8% between low to moderate moist samples and a factor of

0.5% between moderate to high moist samples. With a 16-bit detector knowing a

0.2% change between levels will require 216 ∗ 0.0002 = 13 bits. These 13 bits should
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Figure 7.7: Fractional X-ray transmission (I/I0) with 15% moisture content and
soil contents 5%, 10%, 15% and 20% with 6ft thickness of the material versus peak

voltage.

represent the full voltage received at the detector. It will not provide sufficient

contrast between most organic contents of the bale. Therefore, the application of

X-ray tomography to scan a truckload has limited applications.

When scanning a truck load, imaging techniques with CT can be used to detect

high attenuation regions, such as big rocks and high moisture regions. Rocks or

clumped soil [24] have bulk densities 2.67 and 1.66, respectively. In the presence of

these high density materials significantly fewer photons will reach the detector,

thus leaving a blind spot, or dark region in the reconstructed image denoting

the presence of these object. Using the two-projection reconstruction method de-

scribed in section 5.2, we can take two projections, threshold the images to isolate

the rocks and high moisture areas, and produce a 3D image that includes blobs
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Figure 7.8: Fractional X-ray transmission (I/I0) with 25% moisture content and
soil contents 5%, 10%, 15% and 20% with 6ft thickness of the material versus peak

voltage.

representing these objects. From this 3D volume we can then estimate the volume

information and location of the rocks and high moisture regions. 3D shape analysis

can be used to distinguish rocks and soil clumps from high moisture regions. High

moisture regions will look more distributed, whereas rocks and soil have a specific

convex structure. To account for rocks and soil clumps [24] a linear array detector

with a pixel pitch of a quarter to half an inch can be used. The term pixel pitch

refers to the dimensions of each pixel in the detector.

7.4.2 Scanning a Single Bale

For Q/A analysis of the feedstock, the CT scanner will need to scan a single

bale. Here the X-ray beam should transmit through 3′ bale thickness and reach the
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Figure 7.9: Fractional X-ray transmission (I/I0) with 35% moisture content and
soil contents 5%, 10%, 15% and 20% with 6ft thickness of the material versus peak

voltage.

detector. Figures 7.10, 7.11 and 7.12 show the fractional transmitted intensity (I/I0)

with moisture contents at 15%, 25%, and 35%, respectively. Each figure shows I/I0

at different soil contents varying from 5%, 10%, 15%, and 20%.

In the plots between 350-400 kV, the I/I0 value ranges from 14% to 4% with the

change in moisture and soil content change. At peak voltages greater than 300keV,

the plots show that for dry to moderate samples, I/I0 drops by 1% for every 5%

increase in soil content. A similar trend is observed with the high moisture sample,

but the drop observed is only 0.4%. Analysis of moisture content shows that low

(15%) to moderate (25%) moisture samples show a drop of 3%, and moderate (25%)

to very moist samples (35%) show a drop 2%. At the biorefinery, high moisture

samples will be rejected, so we can neglect the soil content change in that situation.
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Figure 7.10: Fractional X-ray transmission (I/I0) with 15% moisture content and
soil contents 5%, 10%, 15% and 20% with 3ft thickness of the material versus peak

voltage.

In the dry to moderate samples, the minimum drop observed between soil

contents is 1%. With a 16-bit detector accounting for the 1% change, we will

have 216 ∗ 0.01 ≈ 655 levels and assuming only 60% of the bits are available

will return 655 ∗ 0.6 ≈ 400. Thus the complete voltage range at the detector can

be represented with 400 grayscale values. With 400 grayscale values we should

have enough contrast to classify the different content of the bale. We therefore

conclude that it is possible to scan a single bale at the biorefinery and produce a 3D

volume representation of the bale with enough details to analyze using techniques

in chapters 4 and 6 to segment and estimate the volume of different contents of

the corn stover bale – rocks, soil clumps, and cobs – with peak voltage between

350-400 keV. To account for the dimensions of each corn stover component [69], a
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Figure 7.11: Fractional X-ray transmission (I/I0) with 25% moisture content and
soil contents 5%, 10%, 15% and 20% with 3ft thickness of the material versus peak

voltage.

flat panel detector with a pixel pitch of 1 cm can be used for the application. The

term pixel pitch refers to the dimensions of each pixel in the detector.

7.5 Discussion

In the previous chapters many techniques were provided to locate and estimate

the volume of rocks, soil clumps and cobs present in a minibale. In this chapter,

we have considered the challenges and theoretical performance of using X-ray

tomography at a commercial-scale biorefinery. Based on the linear attenuation co-

efficient and bulk density behavior with moisture content and soil content, the ex-

pected image details can be determined. The chapter emphasizes the two locations
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Figure 7.12: Fractional X-ray transmission (I/I0) with 35% moisture content and
soil contents 5%, 10%, 15% and 20% with 3ft thickness of the material versus peak

voltage.

within the feedstock supply where X-ray tomographic techniques presented in this

dissertation can be applied. Furthermore, the chapter also provided a detailed

description of strategies associated with classification, technical specifications as-

sociated with X-ray tomography integration into the feedstock supply chain of the

biorefinery.

Since the work is based mainly on theoretical calculations, there are limita-

tions. Several issues need to be addressed before applying X-ray tomography to a

commercial-scale biorefinery. In this work, the bulk density showed an exponen-

tial relationship with moisture content. The absorption rate and characteristics of

corn stover materials at several moisture concentrations need to be accounted for

to get practical bulk density information. Likewise, electrical noise, quantization
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errors, and other sources of image artifacts in the reconstructed image need to be

studied. Similarly, the importance of motion compensation while scanning the

bale may need to be considered if the stover is to be scanned without temporarily

halting the process.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

Biofuels present a promising and sustainable pathway to reduce the fossil-based

fuel demand. The sustainability of the biofuels depends on the biorefineries ability

to examine the incoming biomass feedstock in a fast and non-destructive fashion

and provide a quality assessment. Thus, prior knowledge about the volumet-

ric content of different anatomical fractions in the corn stover bale during the

pre-processing or screening stage can help optimize the conversion process and

achieve a high yield. The current capabilities are very time-consuming and labor-

intensive. In this dissertation, we attempt to develop a sensing framework using

X-ray tomography to study the quality of the biomass feedstock at a commercial-

scale biorefinery. This dissertation presents the reconstruction algorithms and 3D

image analysis strategies we developed and implemented to provide a volumetric

estimate of the contents of a corn stover bale. This chapter presents a generalized

discussion of the research problems solved in the dissertation, followed by a dis-

cussion of the future directions with the tissue characterization with X-ray tomog-

raphy. Here is the summary of research problems solved and our contributions

though this dissertation:

1. The quantitative comparison of 3D skeletonization algorithms using sur-
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face degradation models. The implementations of 3D skeletonization al-

gorithms presented in the dissertation are easy to use. These tools provide

access to skeletonization algorithms for researchers to use and adapt for their

application easily. Having the implementations in MATLAB and Python

helps reach a broad group of researchers in different programming envi-

ronments. 3D skeletons are widely used in many applications. However,

the underlying concepts vary with the algorithms making it hard for the

researchers to decide which algorithm to use. The evaluation metrics and the

surface degradation models presented with the skeletonization algorithms

help to study the topology and efficiency of the skeleton to represent a 3D

object. The skeletonization algorithms presented in the dissertation represent

only a subset of commonly known techniques, from morphological thinning

to Euclidean distance field-based skeletons commonly seen in the literature.

In the future, we will extend the quantitative comparison to other known

skeletonization algorithms.

2. The 3D image analysis strategies to segment and estimate the volumet-

ric content of different tissue fractions in a corn stover bale in a conven-

tional CT framework. The strategies implemented and the algorithms devel-

oped to characterize the various contents of the bale in the conventional CT

framework provide very high accuracy. The histogram-directed thresholding

strategy presented in chapter 4 segments the rocks and soil clumps very

effectively. The algorithm we developed to characterize the corn cobs with

the help of 3D skeletons makes them robust to changes, like an increase in

density with increased moisture content or ash content, causing a difference
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in the intensity value observed in the reconstruction. In most situations, the

corn cobs retain their shape and texture, making the developed algorithm

very effective. Currently, the segmentation using skeletonization requires a

significant computation power which needs to be addressed in the future.

3. The 3D image analysis strategies to segment and estimate the different

tissue fractions of the corn stover bale in a sparse view framework. Ac-

quisition time is directly correlated with the number of projections acquired

for a given bale. Many projections are required to reconstruct the 3D vol-

ume in a conventional framework, which drastically increases the acquisition

time. For a real-time quality analysis, the acquisition time should be minimal.

Where the overall idea is to complete the acquisition and analysis under 2

minutes to be precis 90 seconds. We experimented by reducing the number

of projections to understand how different reconstruction algorithms behave

in a sparse view framework. Our work concluded that the statistical recon-

struction method, MLEM is more suitable for applications where complex

information needs to be extracted. We also developed a simple and less com-

putationally intensive two projection method that provided high precision

volumetric and position estimates. Using these reconstruction algorithms,

we detected the rocks, soil clumps, and corn cobs using very few X-ray pro-

jections with high accuracy. This knowledge during pre-processing provides

a significant load of information and fills a big technological gap with the

quality assessment work at a biorefinery.

4. The demonstration of the applicability of using X-ray tomography at a

commercial-scale biorefinery. We showed that we could extract the volu-
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metric content information of the corn stover bale with decent accuracy using

few X-ray projections. All the experiments we conducted were on a mini

round cylindrical bale with a diameter of 12.70 and a height of 15.24 cm.

At a commercial-scale biorefinery the bales are in the form of rectangular

bales with dimensions 4′ x 4′ x 8′ or 3′ x 4′ x 8′. To understand the applica-

bility of X-ray tomography at the commercial-scale biorefinery. We tried to

evaluate how the X-ray energy conditions change when the bale dimensions

are increased. Several experiments were conducted. The conclusion from

that analysis is that X-ray tomography can be applied at two places at the

biorefinery. One is scanning the truckload, and the other is scanning the

single bale. When scanning the single bale, if an X-ray source with average

photon energy between 350-400 keV is used, the reconstructed 3D volume

of the bale will have enough contrast, and we can extend the techniques

developed in this dissertation to work with single bale. However with the

truckload scenario, we saw that X-ray tomography has limited applications.

The energy reaching the detector after passing through the bale is very small.

It doesn’t provide enough contrast to be able to segment different tissue

fractions. We concluded that the applications of X-ray tomography could be

limited to the important needs of detecting big rocks and moisture content

estimation by incorporating 3D shape analysis.

Future Directions

As is common with any research, the future work possibilities span a broader,

more extended research focus than the work itself. Next I present areas for future
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work.

Currently, the skeletonization algorithms run on CPUs. Implementing 3D skele-

tonization algorithms on GPUs can significantly improve the computational times.

Having a computationally faster algorithm will further benefit a wider audience

working with large datasets.

We need to evaluate the performance of the implemented skeletonization meth-

ods with more complex shapes like a toroid. Other metrics need to be defined

which can tell information about how much of the original volume can be recov-

ered from the skeleton, how much shape corners are preserved, how thick the

skeleton is, and whether the skeleton extracted is really along the center. Also,

geometric entropy information needs to be estimated to correlate the original and

a noisy skeleton.

Currently, there are a few limitations with the corn cob detection algorithm

presented in chapter 4. The algorithm doesn’t provide accurate results when the

shape of the corn cob is not intact. The algorithm should be modified to detect the

broken corn cobs by incorporating corn cob texture information. Future research

goals should include optimizing the model to differentiate between a loop formed

with a corn cob and a fully intact corn stalk. In the future, capturing information

using morphological processing with different structuring elements should be ex-

plored.

The tissue characterization methods, especially corn stover fractions in the sparse

view framework, rely on segmenting the regions in the projections based on the

intensity. An increase in the moisture or ash content can change the overall X-ray
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photon attenuation, which in turn can change the intensity profile of the voxels.

In future work we need to implement a moisture content detection method. Cur-

rently, the NIR can estimate the correct moisture content value, but it is sampling

intensive. In chapter 7, we observed that an increase in moisture content increases

the attenuation. We can define the regions of interest using the intensity profiles

and then use the NIR to calculate the actual moisture content value. The MC

information can be used as an offset factor for the given region of interest.

It would also be helpful to be able to distinguish between upper stalks and

lower stalks. The reconstruction quality is not high enough to estimate or separate

the upper stalks from lower stalks when using fewer projections. In the future,

using the yield monitor information and the composition of corn cob knowledge,

we could estimate the possible composition of the upper stalks from lower stalks.

While developing algorithms in the sparse view framework, the pixel pitch of

the detector and the size of each voxel are made equal, i.e., 1 mm. Future studies

should evaluate the performance when the pixel pitch of the detector and the size

of each voxel are not equal. Similarly, we need to study how the criteria for the

volume correction factor presented in chapter 5 change with the different X-ray

geometry configurations. The X-ray geometry configuration used here has the

entire bale in the X-ray source’s Field of View (FOV) in all the experiments, because

the dimensions of the detector are larger than the dimensions of the bale. Future

study needs to focus on understanding what role the X-ray geometry configuration

plays in the offset factor. Also, the two projection method needs to be optimized

to reduce the time complexity when the input data size is large.
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In chapter 7, the work presented is mainly based on theoretical calculations,

so there are limitations. Several other issues need to be addressed before ap-

plying X-ray tomography to a commercial-scale biorefinery. In the future, the

absorption rate and characteristics of corn stover materials at several moisture

concentrations need to be studied to get more realistic bulk density information.

Likewise, electrical noise, quantization errors, and other sources of image artifacts

in the reconstructed image need to be studied. Similarly, the importance of motion

compensation while scanning the bale may need to be considered if the stover is

to be scanned without temporarily halting the process.

The work in chapter 7 only considered a homogeneous sample. The future

study should include a heterogeneous sample and assess the change in behavior

of X-ray photon attenuation with an increase in MC or SC or both. The success

of the biorefineries relies on accepting different types of feedstocks like other crop

residues and forest residues. Different kinds of feedstocks have their complexities

that need to be studied to adapt the techniques developed in this dissertation for

other types of feedstocks.
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