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ABSTRACT

Sorting is such a fundamental component of achieving efficiency that a significant

body of mathematics is dedicated to the investigation of sorting. Any modern

textbook on algorithms contains chapters on sorting.

One approach to arranging a disorganized list of items into an organized list is

to successively identify two blocks of contiguous items, and swap the two blocks. In

a fundamental paper D.A. Christie showed that a special version of block swapping,

in recent times called context directed swapping and abbreviated cds, is the most

efficient among block swapping strategies to achieve an organized list of items. The

cds sorting strategy is also the most robust among block swap based sorting methods.

It has been discovered that the context directed block swap operation on a list of

objects generalizes to an operation on simple graphs. In turn it has been discovered

that this operation on simple graphs corresponds with an operation on the adjacency

matrix of a simple graph. The adjacency matrix is a symmetric square matrix with

entries 0 and 1, and all diagonal entries 0. The corresponding operation is denoted

Mcds, abbreviating matrix context directed swap. The operation on the adjacency

matrix naturally employs the arithmetic of GF (2), the finite field of two elements. It

has been speculated that the Mcds operation on these specific matrices over GF (2)

corresponds with the more than a century old Schur complement operation on these

matrices.

In this thesis, we confirm this prior speculation about the correspondence between

iv



Mcds and the Schur complement, in the context of GF (2). We generalize the Mcds

operation to not necessarily square matrices over arbitrary fields and we prove that the

generalized Mcds corresponds with the Schur complement also in the more general

context of all fields.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Origins of Mcds

In a fundamental paper [5] by David Christie, before it was named cds, Christie

gave the first mathematical source demonstrating the importance of the cds sorting

operation. Further examination of [5] shows that minimal block interchanges are

special cases of cds. The cds operation directly relates to a phenomenon in biology,

specifically ciliate genome maintenance. The cds operation on permutations corre-

sponds exactly to the molecular operation named double loop aligned by alternating

directs, denoted dlad and described in [6]. The following is a diagram representing

dlad, and an accompanying quote from [6]

Figure 1.1: dlad in Ciliates
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In this thesis we consider the translation of the cds sorting operation into the world of

matrices, generalizing it from the very special context of certain symmetric matrices

over GF (2), to all matrices (square or rectangular) over any field.

The Mcds operation emerged from the simpler world of permutations on n elements,

and the cds sorting operation on those permutations. The following section explores

the world of sorting permutations using specialized block swaps.

1.1.1 Permutations

Definition 1.1.1. A permutation, π = [a1, . . . , an] is an array of the integers

between 1 and n inclusive, in any order, such that there are no repeats among the

integers. Each integer, i ∈ π, has a left pointer and a right pointer: For an entry i

of π we write (i−1,i)i(i,i+1) where (i− 1, i) is the left pointer, and (i, i+ 1) is the right

pointer of i. [2]

Definition 1.1.2. Given a permutation π and pointers p and q that appear in

p, q, p, q

context, there are the following possibilities:

Say p = (x, x+ 1) and q = (y, y + 1). Then x, y, x+ 1 and y + 1 could appear in any

one of the following relative positions in π:
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Case(1) : [· · · x · · · y · · · x+ 1 · · · y + 1 · · · ]

Case(2) : [· · ·x · · · y + 1 · · ·x+ 1 · · · y · · · ]

Case(3) : [· · ·x+ 1 · · · y · · ·x · · · y + 1 · · · ]

Case(4) : [· · ·x+ 1 · · · y + 1 · · ·x · · · y · · · ]

the corresponding α segmentations would be as follows:

Case(1) : [· · ·x(x,x+1) · · · y(y,y+1) · · · (x,x+1)x+ 1 · · · (y,y+1)y + 1 · · · ]

Case(2) : [· · ·x(x,x+1) · · · (y,y+1)y + 1 · · · (x,x+1)x+ 1 · · · y(y,y+1) · · · ]

Case(3) : [· · · (x,x+1)x+ 1 · · · y(y,y+1) · · ·x(x,x+1) · · · (y,y+1)y + 1 · · · ]

Case(4) : [· · · (x,x+1)x+ 1 · · · (y,y+1)y + 1 · · ·x(x,x+1) · · · y(y,y+1) · · · ]

and with α-notation:

Case(1) : [α1
(x,x+1) _ α2

(y,y+1) _ α3 _
(x,x+1)α4 _

(y,y+1)α5]

Case(2) : [α1
(x,x+1) _ α2 _

(y,y+1)α3 _
(x,x+1)α4

(y,y+1) _ α5]

Case(3) : [α1 _
(x,x+1)α2

(y,y+1) _ α3
(x,x+1) _ α4 _

(y,y+1)α5]

Case(4) : [α1 _
(x,x+1)α2 _

(y,y+1)α3
(x,x+1) _ α4

(y,y+1) _ α5]

In each case the context directed swaps on the permutation π with context

p and q is given as follows:[2]1

1The cds operation always swaps α2 and α4 blocks.
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Case(1) : [α1
(x,x+1) _ (x,x+1)α4 _ α3 _ α2

(y,y+1) _ (y,y+1)α5]

Case(2) : [α1
(x,x+1) _ (x,x+1)α4

(y,y+1) _ (y,y+1)α3 _ α2 _ α5]

Case(3) : [α1 _ α4 _ α3
(x,x+1) _ (x,x+1)α2

(y,y+1) _ (y,y+1)α5]

Case(4) : [α1 _ α4
(y,y+1) _ (y,y+1)α3

(x,x+1) _ (x,x+1)α2 _ α5]

Recall Figure 1.1. The cds operation and the operation given in Figure 1.1, an

operation of swapping y and u sections of corresponding ciliate DNA segments exactly

if we make the following correspondences:

Figure 1.1 ↔ Definition 1.1.2
x ↔ α1

y ↔ α2

z ↔ α3

u ↔ α4

w ↔ α5

α ↔ p
β ↔ q

Figure 1.2: Correspondence Between dlad and cds

The dlad operation in Ciliates interchanges y and u blocks [6], whereas the cds

operation on permutations interchanges blocks α2 and α4 [2]. Example 1.1.3 and

Example 1.1.5 are given to familiarize the reader with the cds operation:

Example 1.1.3. Consider the following permutation:

πγ = [1, 2, 3, 4, 6, 5]
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Besides pointers (4,5) and (5,6) no other pair p and q of pointers appears in p q

p q context. Pointers (4, 5) and (5, 6) are in appropriate order to perform the cds

operation. In order to perform the cds operation on pointers p = (4, 5) and q = (5, 6),

first identify which case of Definition 1.1.2 is applicable. In Example 1.1.3, the first

occurrence of pointer (4, 5) is a right pointer, and the first occurrence of pointer (5, 6)

is a left pointer. Thus cds(4,5),(5,6)(πγ) is an example of Case (2) by Definition 1.1.2.

Next, identify the α segments:

α1
(4,5) = [1, 2, 3, 4]

α2 = [{}]

(5,6)α3 = [6]

(4,5)α4
(5,6) = [5]

α5 = [{}]

With the α’s identified we can now perform the cds operation:

cds(4,5),(5,6)(πγ) = cds(4,5),(5,6) ([1, 2, 3, 4, 6, 5])

= cds(4,5),(5,6)
([

1, 2, 3, 4(4,5), (5,6)6, (4,5)5(5,6)
])

= cds(4,5),(5,6)
(
[α1

(4,5) _ α2 _
(5,6)α3 _

(4,5)α4
(5,6) _ α5]

)
= [α1

(4,5) _ (4,5)α4
(5,6) _ (5,6)α3 _ α2 _ α5]

= [1, 2, 3, 4, 5, 6]

cds(4,5),(5,6)(πγ) is an example of a sorted permutation

�
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Definition 1.1.4. Let k ∈ N. A permutation is called sorted, if the final result of k

cds operations on a permutation π results in the permutation of the form:

[1, 2, . . . , n− 1, n]

Examples 1.1.5 calculates the cds operation on a permutation πσ = [1, 5, 2, 4, 3, 6].

For each pointer pair (p,q) from the set of pairs {((1, 2), (4, 5)) , ((4, 5), (2, 3)) ,

((1, 2), (5, 6)) , ((2, 3), (3, 4)) , and ((4, 5), (3, 4))}, p and q appear in the context

p q p q or in the context q p q p in permutation πσ, and thus provides a context

for applying the cds operation. Examples 1.1.5 calculates the cds operation to a

cds fixed point starting from pointer pairs ((1, 2), (4, 5)) and ((4, 5), (2, 3)). The

remainder of the pointer pairs are left as an exercise to the reader.

Example 1.1.5. Consider the following permutation:

πσ = [1, 5, 2, 4, 3, 6]

Starting with ((1, 2), (4, 5)), in order to perform the cds operation on pointers p =

(1, 2) and q = (4, 5), first identify which case of Definition 1.1.2 is applicable. In

[1, 5, 2, 4, 3, 6], the first occurrence of pointer (1, 2) is a right pointer, and the first

occurrence of pointer (4, 5) is a left pointer. Thus cds(1,2),(4,5)(πσ) is an example of

Case (2) by Definition 1.1.2.

Next, identify the α segments:



7

α1
(1,2) = [1]

α2 = [{}]

(4,5)α3 = [5]

(1,2)α4
(4,5) = [2, 4]

α5 = [3, 6]

With the α’s identified we can now perform the cds operation:

cds(1,2),(4,5)(πσ) = cds(1,2),(4,5) ([1, 5, 2, 4, 3, 6])

= cds(1,2),(4,5)
([

1(1,2), (4,5)5, (1,2)2, 4(4,5), 3, 6
])

= cds(1,2),(4,5)
(
[α1

(1,2) _ α2 _
(4,5)α3 _

(1,2)α4
(4,5) _ α5]

)
= [α1

(1,2) _ (1,2)α4
(4,5) _ (5,6)α3 _ α2 _ α5]

= [1, 2, 4, 5, 3, 6] (1.1)

The permutation in Equation (1.1) is not a cds fixed point.

Definition 1.1.6. A cds fixed point is a permutation π, where there is no p, q, p, q

or q, p, q, p ordering of the pointers p and q to support application of a cds operation.

For each permutation the outcome of a maximum number of applications of the cds

operation results in a cds fixed point or a sorted permutation [2]

The cds operation on [1, 2, 4, 5, 3, 6] is valid for pointer pairs ((2, 3), (3, 4)), ((2, 3), (5, 6))

and ((3, 4), (5, 6)). Example 1.1.5 continues with cds on pointer pair ((2, 3), (5, 6))

Example 1.1.5 continued. Pointer pairs ((2, 3), (5, 6)) are in correct p q p q or-

dering.In order to perform the cds operation on pointers p = (2, 3) and q = (5, 6),
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first identify which case of Definition 1.1.2 is applicable . In [1, 2, 4, 5, 3, 6], the first

occurrence of pointer (2, 3) is a right pointer, and the first occurrence of pointer

(5, 6) is a right pointer. Thus cds(2,3),(5,6)([1, 2, 4, 5, 3, 6]) is an example of Case (1) by

Definition 1.1.2.

Next, identify the α segments:

α1
(2,3) = [1, 2]

α2
(5,6) = [4, 5]

α3 = [{}]

((2,3)α4 = [3]

(5,6)α5 = [6]

(1.2)

With the α’s identified we can now perform the cds operation:

cds(2,3),(5,6)([1, 2, 4, 5, 3, 6]) = cds(2,3),(5,6)
([

1, 2(2,3), 4, 5(5,6), (2,3)3, (5,6)6
])

= cds(2,3),(5,6)
([
α1

(2,3) _ α2
(5,6) _ α3 _

((2,3)α4 _
(5,6)α5

])
=
[
α1

(2,3) _ ((2,3)α4 _ α3 _ α2
(5,6) _ (5,6)α5

]
= [1, 2, 3, 4, 5, 6] (1.3)

The permutation in Equation (1.3) is a Sorted Permutation.

Next, we revisit πσ = [1, 5, 2, 4, 3, 6] and calculate the cds from pointer pair ((4, 5), (2, 3))

to a fixed point.

Example 1.1.7. Consider the following permutation:
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πσ = [1, 5, 2, 4, 3, 6]

Starting with ((4, 5), (2, 3)), in order to perform the cds operation on pointers q =

(4, 5) and p = (2, 3), first identify which case of Definition 1.1.2 is applicable . In

[1, 5, 2, 4, 3, 6], the first occurrence of pointer (4, 5) is a left pointer, and the first

occurrence of pointer (2, 3) is a right pointer. Thus cds(4,5),(2,3)(πσ) is an example of

Case (3) by Definition 1.1.2.

Next, identify the α segments:

α1 = [1]

(4,5)α2
(2,3) = [5, 2]

α3
(4,5) = [4]

α4 = [{}]

(2,3)α5 = [3, 6]

(1.4)

With the α’s identified we can now perform the cds operation:

cds(4,5),(2,3)(πσ) = cds(2,3),(5,6) ([1, 5, 2, 4, 3, 6])

= cds(2,3),(5,6)
([

1, (4,5)5, 2(2,3), 4(4,5), (2,3)3, 6
])

= cds(2,3),(5,6)
([
α1 _

(4,5)α2
(2,3) _ α3

(4,5) _ α4 _
(2,3)α5

])
=
[
α1 _ α4 _

(2,3) _ α3
(4,5) _ (4,5)α2

(2,3)α5

]
= [1, 4, 5, 2, 3, 6] (1.5)

The permutation in Equation (1.5) is not a cds fixed point. The cds operation on
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[1, 4, 5, 2, 3, 6] is valid for pointer pairs ((1, 2), (3, 4)), ((1, 2), (5, 6)) and ((3, 4), (5, 6)).

Continue the cds operation on pointer pair ((1, 2), (3, 4)). In order to perform the

cds operation on pointers p = (1, 2) and q = (3, 4), first identify which case of

Definition 1.1.2 is applicable . In [1, 4, 5, 2, 3, 6], the first occurrence of pointer (1, 2)

is a right pointer, and the first occurrence of pointer (3, 4) is a left pointer. Thus

cds(1,2),(3,4))(πσ) is an example of Case (2) by Definition 1.1.2.

Next, identify the α segments:

α1
(1,2) = [1]

α2 = [{}]

(3,4)α3 = [4, 5]

(1,2)α4
(3,4) = [2, 3]

α5 = [6]

With the α’s identified we can now perform the cds operation:

cds(1,2),(3,4)([1, 4, 5, 2, 3, 6]) = cds(1,2),(3,4)
([

1(1,2), (3,4)4, 5, (1,2)2, 3(3,4), 6
])

= cds(1,2),(3,4)
(
[α1

(1,2) _ α2 _
(3,4)α3 _

(1,2)α4
(3,4) _ α5]

)
= [α1

(1,2) _ (1,2)α4
(3,4) _ (3,4)α3 _ α2 _ α5]

= [1, 2, 3, 4, 5, 6] (1.6)

The permutation in Equation (1.6) is a Sorted Permutation.

Next, we compute the cds of a permutation π yet again. This π will be carried

through to Section 1.2.
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Example 1.1.8. Consider the following permutation:

π = [6, 4, 1, 3, 2, 5]

In order to perform the cds operation on pointers q = (3, 4) and p = (1, 2), first

identify which case of Definition 1.1.2 is applicable . In π, the first occurrence of

pointer (3, 4) is a left pointer, and the first occurrence of pointer (1, 2) is a right

pointer. Thus cds(2,3),(5,6)([1, 2, 4, 5, 3, 6]) is an example of Case (3) by Definition

1.1.2.

Next, identify the α segments:

α1 = [6]

(3,4)α2
(1,2) = [4, 1]

α3
(3,4) = [{}]

α4 = [3]

(1,2)α5 = [2, 5]

With the α’s identified we can now perform the cds operation:

cds(1,2),(3,4)(π) = cds(1,2),(3,4)
([

6, (3,4)4, 1(1,2), 3(3,4), (1,2)2, 5
])

=
[
6, 3(3,4), (3,4)4, 1(1,2), (1,2)2, 5

]
= [6, 3, 4, 1, 2, 5] = π1

Note that entries 3 and 4 of the permutation now appear in correct relative positions.

Similarly, entries 1 and 2 also now appear in correct relative positions. Continuing
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with the cds operation on pointers (2, 3) and (4, 5) on π2, we obtain the following

permutation:

cds(2,3),(4,5)(π1) = cds(2,3),(4,5)(
[
6, (2,3)3, 4(4,5), 1, 22,3, (4,5)5

]
)

...

= [6, 1, 2, 3, 4, 5] = π2

At this point, we can no longer perform cds operations, due to the fact that there is

no p, q, p, q or q, p, q, p orderings of pointers left. Permutation π2 is an example of a

cds fixed point.. As a result, we know that π is cds-unsortable permutation.

�

With the transition to Graph Theory and Linear Algebra in mind, we now define

a framed permutation

Definition 1.1.9. Given a permutation π = [a1, . . . , an] in Sn, the permutation

πframed = [0] _ π _ [n+ 1] denotes π framed by a0 = 0 and an+1 = n+ 1.

Thus

πunframed = [a1, . . . , an]

πframed = [0, a1, . . . , an, n+ 1]

[2]
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1.2 Graph theory and Linear Algebra

Associated with each permutation is a natural graph, and associated with cds is a

corresponding graph operation on the corresponding graph. From these graphs, and

an operation known as graph context directed swap (gcds), corresponds an adjacency

matrix and a corresponding matrix context directed swap [2].

We next make the transition to graph theory and to linear algebra.

1.2.1 Graph Theory

Definition 1.2.1. A graph is a pair G = (V,E), where V is the set of vertices and

E ⊂ [V ]2 is the set of edges2.

Definition 1.2.2. Given a permutation π = [a1, . . . , an], the Breakpoint Graph of

the permutation is the undirected graph BG(π) = (V,E), where the set of vertices,

V , consists of the pointers p of π, and the set of edges, E, consists lines connecting

different copies of the same pointers. [2]

Example 1.1.8 continued. Recall π = [6, 4, 1, 3, 2, 5] and observe πframed is [0, 6, 4, 1, 3, 2, 5, 7],

resulting in the following breakpoint graph BG(π) :

0 6 4 1 3 2 5 7
01 5667 3445 0112 2334 1223 4556 67

Figure 1.3: The Breakpoint Graph of π

2[V ]2 denotes the set of all two-element subsets of the set V .
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�

Definition 1.2.3. Given the breakpoint graph BG(π) of a permutation π, the Over-

lap Graph of the permutation π is the graph OG(π) = (V,E) where vertices, V , are

pointers p of π, and edges E denote overlaps between edges of BG(π). [2]

Example 1.1.8 continued. Referencing BG(π), and working from left to right, we

note the following overlaps:

(0,1) overlaps (6,7),(3,4),(4,5),(5,6)

(5,6) overlaps (6,7),(0,1)

(6,7) overlaps (5,6),(0,1)

(3,4) overlaps (0,1),(4,5),(1,2),(2,3)

(4,5) overlaps (0,1),(3,4)

(1,2) overlaps (3,4),(2,3)

(2,3) overlaps (3,4),(1,2)

which results in the graph in Figure 1.4

(4,5) (3,4)

(2,3)

(1,2)

(0,1)

(6,7)

(5,6)

Figure 1.4: The Overlap graph of π.
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1.2.2 Linear Algebra

A matrix M is defined over a specific field. All examples with matrices in this

section will explicitly define the field they are in. We use the symbol F to denote an

arbitrary field. The following are definitions of some specific finite fields.

Definition 1.2.4. GF (2) is the unique field with two elements 0 and 1. Its addition

is defined as the usual addition of integers but modulo 2 and corresponds to the table

below:

+ 0 1

0 0 1

1 1 0

The multiplication of GF (2) is again the usual multiplication modulo 2 and corre-

sponds to the table below:

× 0 1

0 0 0

1 0 1

In general finite fields are of the form GF (pk) where p is any prime number. For

more details about finite fields, to consult Chapter 14 of [3]. The field we are working

in governs the arithmetic for matrix computations.

From the overlap graph, we create a matrix called an Adjacency Matrix, which

records where edges exist between vertices of the overlap graph.
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Definition 1.2.5. The Adjacency Matrix of a graph G = (V,E) with vertex set V

of size n and edge set E is the n×n matrix A(G) defined such that, for 1 ≤ i, j ≤ n,3

A(G)ij =


1, if {vi, vj} ∈ E

0, otherwise.

[2]

Example 1.1.8 continued. To reduce complexity, order pointers from ”smallest” to

”biggest”, and have the ”smallest” pointer index column/row 1, the second smallest

index column/row 2 and so on until we get to the ”biggest” pointer, which indexes

the last column/row. Starting with the positions A(π)1,2 and A(π)2,1 , verify if there

is an e ∈ E of OG(π) from (0, 1) and (1, 2). As there is no edge, each of the entries

A(π)1,2 and A(π)2,1 is a zero

The remaining entries can be verified, and have been filled in below:

A(π) =



(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7)

(0, 1) 0 0 0 1 1 1 1

(1, 2) 0 0 1 1 0 0 0

(2, 3) 0 1 0 1 0 0 0

(3, 4) 1 1 1 0 1 0 0

(4, 5) 1 0 0 1 0 0 0

(5, 6) 1 0 0 0 0 0 1

(6, 7) 1 0 0 0 0 1 0


The adjacency matrix is a matrix of elements of the finite field GF (2)

�

3Adjacency matrices have entries in GF (2)
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. The operations of the field GF (2) will underly the upcoming definition of the

matrix version of cds, denoted Mcds, for matrices over the field GF (2). This limited

version of Mcds can be found in [2].

Definition 1.2.6. Mcds, GF (2)

Consider n × n matrix M with i, j entry denoted mi,j for i, j ≤ n, satisfying the

following three requirements:

1. Each mi,j is an element of GF (2)

2. For each i, mi,i = 0 and

3. for each i and j, mi,j = mj,i.

The matrix cds operation, Mcds, on entries p, q is:

Mcds(M)p,q = M −MIp,qM

where Ipq is a matrix over GF (2) with Iij = 1 if i = p and j = q or i = q and j = p

and Iij = 0 otherwise. [2]

Example 1.1.8 continued. Recall that the adjacency matrix of the permutation π

is

A(π) =



0 0 0 1 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0


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Consider Mcds(A(π))2,4. Recall from Definition 1.2.6 that I2,4 is the matrix



0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


Then by Definition 1.2.6, Mcds(A(π))2,4 = M −MI2,4M=



0 0 0 1 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0



−



0 0 0 1 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0



·



0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



·



0 0 0 1 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0


resulting in a matrix with each entry of row 2 and row 4 a 0, and with each entry of

column 2 and column 4 a 0:4

4Governing arithmetic is that of GF (2)
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

0 0 1 0 1 1 1

0 0 0 0 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0



(1.7)

�

Observation 1.2.7. For later reference note that deleting rows/columns 2 and 4 of

Mcds(A(π))2,4 gives the following:



1 2 3 4 5 6 7

1 0 0 1 0 1 1 1

2 0 0 0 0 0 0 0

3 1 0 0 0 1 0 0

4 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 1 0



→



1 3 5 6 7

1 0 1 1 1 1

3 1 0 1 0 0

5 1 1 0 0 0

6 1 0 0 0 1

7 1 0 0 1 0


(1.8)

1.3 Origins of Schur complement

The Schur complement is a matrix operation named after Issai Schur, and was

developed independently of Mcds. The Schur complement is primarily used to
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factorize a matrix into a product of simpler matrices. Later in this thesis, we will

prove that Mcds and the Schur complement are related.

The following determinant formula, originally developed by Issai Schur is the origin

of the Schur complement:

Theorem 1.3.1. If M is a square matrix subdivided as P,Q,R, and S as in Definition

1.3.2, and if we let M/P denote the Schur complement of P in M , then det(M) =

det(M/P ) · det(P )

The the Schur complement appears in many branches of mathematics. A paper

by Cottle [4], gives numerous manifestations of the Schur complement, ranging from

statistics, to finding the inertia sets of square matrices. Inertias of matrices and

graph theory are also connected, and inertias are used in efforts to solve the inverse

eigenvalue problem, an open problem in mathematics.

In this thesis we provide yet another context in which the Schur complement shows

up, namely in sorting permutations by block interchanges, confirming and generalizing

a speculation given in an email by Dr. Robert Brijder.

In an email dated August 29, 2016, R. Brijder speculated that Mcds as formulated

would be related to the Schur complement of an appropriately chosen 2×2 sub-matrix

of a given matrix. We thank Dr. Brijder for bringing the Schur complement to our

attention.

Definition 1.3.2. Schur Complement of a matrix M

Consider an m × n matrix M . Pick columns/rows p and q and relocate them to

columns/rows 1 and 2 respectively, resulting in M1. Subdivide M1 into sub-matrices

P,Q,R, and S as follows:

• P is the 2× 2 sub-matrix consisting of entries mpp,mqq,mqp and mpq
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• P−1 is the inverse of matrix P

• Q is the 2×(n−2) sub-matrix consisting of entries {mpx,mqx|x = N\{p, q}, x ≤

(n− 2)}

• R is the (m−2)×2 sub-matrix consisting of entries {mxp,mxq|x = N\{p, q}, x ≤

(m− 2)}

• S is the (m − 2) × (n − 2) sub-matrix consisting of entries {mxy|x, y = N \

{p, q}, x ≤ (n− 2), y ≤ (m− 2)}

The Schur Complement of matrix M on rows/columns p and q, denoted

SC(M)p,q is defined as follows:

SC(M)p,q = S −R · P−1 ·Q

SC(M)p,q is a (m− 2)× (n− 2) matrix. 5

The following is an example of the Schur complement computation, using the

adjacency matrix calculated earlier.6

Example 1.1.8 continued. Recall that the adjacency matrix of the permutation π

is

5The Schur complement is applicable for rows and columns within the largest upper square
sub-matrix of M

6The order we move rows and columns does not change the final result of the Schur complement,
so without loss of generality, we will move columns first, and move rows second in all examples of
Schur complement
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A(π) =



0 0 0 1 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0


and consider SC(A(π))2,4 The first step is to move the appropriate columns and rows

of A(π). Say M = A(π) for convenience

Step 1:Move columns 2 and 4 of M to column position 1 and 2 respectively. Name

the resulting matrix M1:

M =



1 2 3 4 5 6 7

1 0 0 0 1 1 1 1

2 0 0 1 1 0 0 0

3 0 1 0 1 0 0 0

4 1 1 1 0 1 0 0

5 1 0 0 1 0 0 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 1 0



→M1 =



2 4 1 3 5 6 7

1 0 1 0 0 1 1 1

2 0 1 0 1 0 0 0

3 1 1 0 0 0 0 0

4 1 0 1 1 1 0 0

5 0 1 1 0 0 0 0

6 0 0 1 0 0 0 1

7 0 0 1 0 0 1 0


Step 2: Move columns 2 and 4 of M1 to column position 1 and 2 respectively. Name

the resulting matrix M2.
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M1 =



2 4 1 3 5 6 7

1 0 1 0 0 1 1 1

2 0 1 0 1 0 0 0

3 1 1 0 0 0 0 0

4 1 0 1 1 1 0 0

5 0 1 1 0 0 0 0

6 0 0 1 0 0 0 1

7 0 0 1 0 0 1 0



→M2 =



2 4 1 3 5 6 7

2 0 1 0 1 0 0 0

4 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1

3 1 1 0 0 0 0 0

5 0 1 1 0 0 0 0

6 0 0 1 0 0 0 1

7 0 0 1 0 0 1 0


The Schur Complement definition identifies five matrices, named

• P the 2× 2 sub-matrix made of entries m2,2,m2,4,m4,2 and m4,4

• P−1 The inverse of matrix P

• Q the 2× 5 sub-matrix made of entries {m2,x,m4,x|x = {1, 3, 5, 6, 7}}

• R the 5× 2 sub-matrix made of entries {mx,2,mx,4|x = {1, 3, 5, 6, 7}}

• S the 5× 5 sub-matrix made of entries {mxy|x, y = {1, 3, 5, 6, 7}

Now that the sub matrices P,Q,R and S have been identified, we continue the

calculation of Schur complement 7

7The governing arithmetic in Example 1.1.8 is that of GF (2)
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

2 4 1 3 5 6 7

2 0 1 0 1 0 0 0
4 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1
3 1 1 0 0 0 0 0
5 0 1 1 0 0 0 0
6 0 0 1 0 0 0 1
7 0 0 1 0 0 1 0


Figure 1.5: Matrices P , P−1, Q,R, and S Explicitly

S −RP−1Q =



1 3 5 6 7

1 0 0 1 1 1

3 0 0 0 0 0

5 1 0 0 0 0

6 1 0 0 0 1

7 1 0 0 1 0


−



2 4

1 0 1

3 1 1

5 0 1

6 0 0

7 0 0




2 4

2 0 1

4 1 0




1 3 5 6 7

2 0 1 0 0 0

4 1 1 1 0 0



=



1 3 5 6 7

1 0 1 1 1 1

3 1 0 1 0 0

5 1 1 0 0 0

6 1 0 0 0 1

7 1 0 0 1 0


(1.9)

�

Observation 1.3.3. Injecting rows/columns of 0’s in row/column positions 2 and 4

of SC(A(π1))2,4 gives the following:
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

1 3 5 6 7

1 0 1 1 1 1

3 1 0 1 0 0

5 1 1 0 0 0

6 1 0 0 0 1

7 1 0 0 1 0


→



1 2 3 4 5 6 7

1 0 0 1 0 1 1 1

2 0 0 0 0 0 0 0

3 1 0 0 0 1 0 0

4 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 1 0



= Mcds(A(π1))2,4 (1.10)

At this point, we conclude the introduction of the basic concepts needed. The

following sections aim to generalize Mcds to fields other than GF (2) and gives a

relationship between the recent cds sorting operation, and the over 100 year old

Schur complement of a matrix.
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CHAPTER 2

MOTIVATION, APPLICATION AND PURSUING

GENERALIZATION

Observation 2.0.1. By Observation 1.2.7 and 1.3.3 above, the matrix in Equation

(1.9) is exactly the matrix obtained by deleting the 2nd and 4th rows and columns from

the matrix in Equation (1.7), resulting in the matrix in Equation (1.8).

Conversely, the matrix in Equation (1.7) is exactly the matrix in Equation (1.10)

expanded by injecting 0’s in the 2nd and 4th rows and columns of Equation (1.9).

As we will soon see, the above observation is not unique to the world of graphs,

nor to the world of GF (2). It turns out that there is an interesting relation between

Mcds and the Schur complement. This is explored in Chapter 4.

2.1 The connection between Mcds and Schur Complement

over arbitrary fields

In the previous section, we explored the Mcds operation and Schur complement.

However, the matrices used there were from the world of graphs. What if we ventured

outside of the world of permutations and graphs, but stayed in the GF (2) world-

Would Mcds and Schur Complement retain the features of Observation 2.0.1?

Consider the following 5× 5 matrix:
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M =



0 1 1 1 1

1 0 1 1 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0


(2.1)

2.1.1 Computing Mcds(M)3,4

Observation 2.1.1. Observe that M is NOT an adjacency matrix of a graph.

Example 2.1.2. Consider the matrix M in Equation (2.1). Computing Mcds(M)3,4 =

M −MI3,4M gives us the following:

M −MI3,4M =



0 1 0 0 1

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


(2.2)

This concludes the computation of Mcds(M)3,4.

Observation 2.1.3. Deleting rows and columns 3 and 4 from the matrix in Equation

(2.2) produces the matrix:
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

1 2 3 4 5

1 0 1 0 0 1

2 1 0 0 0 1

3 0 0 0 0 0

4 0 0 0 0 0

5 1 0 0 0 0


→



1 2 5

1 0 1 1

2 1 0 1

5 1 0 0

 (2.3)

�

Next we compute a Schur complement of the same 5× 5 matrix M .

2.1.2 Computing SC(M)3,4

Example 2.1.2 continued. Consider the matrix M from 2.1. The first step is to

move the appropriate columns and rows of M .

Step 1:Move columns and rows 3 and 4 of M to column and row position 1 and

2 respectively. Name the resulting matrix M1. The Schur Complement definition

identifies sub-matrices, named P ,Q, R, and S

• P the 2× 2 sub-matrix made of entries m3,4,m4,3,m3,3 and m4,4

• P−1 The inverse of matrix P

• Q the 2× 3 sub-matrix made of entries {m3,x,m4,x|x = {1, 2, 5}}

• R the 3× 2 sub-matrix made of entries {mx,3,mx,4|x = N \ {1, 2, 5}}

• S the 3× 3 sub-matrix made of entries {mxy|x, y = {1, 2, 5}}
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Now that the sub matrices P,Q,R and S have been identified, calculate the Schur

complement:

S −RP−1Q =



1 2 5

1 0 1 1

2 1 0 1

5 1 0 0

 (2.4)

1

�

Observation 2.1.4. Injecting rows/columns of zero’s in positions 3 and 4 of (2.4)

produces the matrix:



1 2 5

1 0 1 1

2 1 0 1

5 1 0 0

→



1 2 3 4 5

1 0 1 0 0 1

2 1 0 0 0 1

3 0 0 0 0 0

4 0 0 0 0 0

5 1 0 0 0 0


(2.5)

Observation 2.1.5. By Observation 2.1.3 and 2.1.4, the matrix in Equation (2.4)

is exactly the matrix obtained by deleting the 3rd and 4th rows and columns from the

matrix in Equation (2.2), resulting in the matrix in Equation (2.3).

Conversely, the matrix in Equation (2.2) is exactly the matrix in Equation (2.5)

1The governing arithmetic in Example 2.1.2 is that of GF (2)



30

expanded by injecting 0’s in the 3rd and 4th rows and columns of the matrix in Equation

(2.4).

And generally, in GF (2), we observe the following

Observation 2.1.6. The SC(M)pq is exactly the matrix obtained by deleting the p-th

and q-th rows and columns from the matrix Mcds(M)pq.

Conversely, Mcds(M)pq is exactly the matrix SC(M)pq expanded by adding a p-th

and q-th rows of zeroes, and a p-th and q-th columns of zeroes

The Schur complement is by definition an operation over any field the constraint

is that P must be invertible. The Mcds operation however, is more constrained. At

this point Mcds on a matrix M is limited by the constraints listed next in (1-4)

1. The matrix M is a square matrix

2. The matrix M is symmetric

3. Each entry of M is an element of GF (2)

4. Each diagonal entry of M is 0

These constraints stem from the origins of the cds operation on permutations, which

in-turn corresponds to the Gcds operation on graphs, and consequently with the

Mcds operation on matrices. The matrices that satisfy (1-4) is a small subset of the

set of matrices over GF (2), let alone the set of matrices over arbitrary fields. One

may ask if the operation generalizes to all matrices in GF (2), regardless of dimension,

and for that matter all matrices over any field, or simply put, can matrices to which

Mcds apply:

1. be m× n matrices where m and n can be distinct,
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2. be not necessarily symmetric,

3. have entries in any field, and

4. have limited restrictions on its diagonal

In Chapter 3, we focus on finding a general expression for Mcds, and in Chapter 4

we shift our focus to finding a general expression for the Schur complement, and we

establish a correspondence between Mcds and the Schur complement.



32

CHAPTER 3

A GENERALIZATION OF MCDS

3.1 A motivated generalization of Mcds

Generally speaking the Mcds operation performed on a matrix M has two inputs,

M itself, and a second matrix, say for now C, and outputs a matrix of the form

M −MCM , where all computations are taking place over a predetermined field F.

In Examples 1.1.8 M was assumed to be a square symmetric matrix over GF (2) with

a zero diagonal, and C was assumed to be a square matrix of same dimensions as M ,

and with two nonzero entries in specific symmetrically located off-diagonal positions.

Similarly, in Example 2.1.2 ,M was assumed to be a square matrix over GF (2) with

a zero diagonal, and C was assumed to be a square matrix of same dimensions as M ,

and with two nonzero entries in specific symmetrically located off-diagonal positions.

In order for M to be Mcds eligible for choices p and q, based on Examples 1.1.8 and

2.1.2, if the mpp and mqq entries are zeroes, and the mpq and mqp entries are non-zero

(in GF (2), mpq = mqp = 1). If there are no p, q for which M satisfies these properties,

then M is said to be an Mcds fixed point.

Example 3.1.1. Consider the following matrices:
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
1 1 0

1 1 1

0 0 1

 ,


0 1 0

0 0 1

1 0 0

 ,


1 1 0

1 0 1

1 0 1


These are all examples of Mcds fixed points. A formal definition of Mcds fixed

point is given in Section 3.1.2, Definition 3.1.9. �

If we were to relax the condition that the matrix be square, or symmetric, or has

a zero diagonal, or that the field is GF (2), several considerations arise.

First, consider relaxing the requirement that the matrix be square, and that the field

be GF (2). In the spirit of ”reverse engineering” the Mcds process, let A be the

outcome of the aimed at generalization of Mcds, where the generalized Mcds is

applied to a matrix M . Say A is an m×n matrix. Mcds is obtained as a subtraction,

A = M − B for some appropriate matrix B. Since A is a m × n matrix, M and

B are also m × n matrices. Next examine the matrix B in this subtraction. It is

of the form MCM in Examples 1.1.8 and 2.1.2, we will retain this structure for

B. As B is an m × n matrix, and M is an m × n matrix, C is forced to being an

n × m matrix. Finally, we examine the factor C. Using Examples 1.1.8, and

2.1.2 as a guide, let C be a n ×m matrix, with one nonzero entry, namely cpq, with

p < q ≤ m,n. Multiplying an m × n matrix M with an n × m matrix C that has

only one nonzero entry, MC results in a m × m dimension matrix with a specific

”nonzero” row or ”nonzero” column, p or q. Conversely, multiplying an n×m matrix

C that has only one nonzero entry, with an m× n matrix M , CM results in a n× n

matrix with a specific ”nonzero” row or ”nonzero” column,p or q. Continuing with

the multiplication, Multiplying an m×m matrix MC,a matrix with exactly one row

containing non-zeros, with an m×n matrix M , MCM results in a m×n matrix, with
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a formula for each entry. Conversely, Multiplying an m× n matrix M with an n× n

matrix CM ,a matrix with exactly one column containing non-zeros MCM results in

a m× n matrix, with a explicit formula in terms of the entries of M and C.

The Ipq matrix defined in Mcds is the result of summing two matrices containing

only one nonzero entry each. Specifically, Ipq = C1 + C2, where C1 has an nonzero

entry in position pq, and C2 has a nonzero entry in position qp. The above work

suggests the restrictions to place on M and Ipq for a working definition.

Definition 3.1.2. (Working Definition) Mcds1

Given an m× n matrix M , with restriction on entries as follows:

• mpp,mqq = 0

• mpq,mqp 6= 0

• all other m entries are elements of the field F

the matrix cds operation, Mcds1, on entries p, q is given by:

Mcds1(M)pq = M −MIpqM

where Ipq is a n×m matrix over F with ij position entry nonzero if i = p and j = q

or i = q and j = p and ij entry zero otherwise.1

1The Mcds1 operation is applicable for rows and columns within the largest upper square sub-
matrix of M
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The beauty of this definition is that entries of matrix M are no longer restricted

to {0,1} and M is no longer required to be a square matrix. By Definition 3.1.2 the

matrix M has the following form:

M =



m1,1 m1,2 · · · m1,p · · · m1,q · · · m1,n

m2,1 m2,2 · m2,p · m2,q · m2,n

... · . . . · · ... · ...

mp,1 mp,2 . . . 0pp · mpq · mpn

... · · · . . . · · ...

mq,1 mq,2 . . . mqp · 0qq · mqn

... · · · · · . . .
...

mm,1 mm,2 . . . mmp · mmq · mmn


Also, by Definition 3.1.2, Ipq has the following form:

Ipq =



01,1 01,2 · · · 01,p · · · 01,q · · · 01,m

02,1 02,2 · 02,p · 02,q · 02,m

... · . . . · · ... · ...

0p,1 0p,2 . . . 0pp · ipq · 0pm
... · · · . . . · · ...

0q,1 0q,2 . . . iqp · 0qq · 0qm
... · · · · · . . .

...

0n,1 0n,2 . . . 0np · 0nq · 0nm


First, we prove basic facts regarding the operation Mcds1 in general.
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3.1.1 Mcds Calculations

Notation: We are going to use some familiar notation from linear algebra in an

unfamiliar way:

• RxM references row x of matrix M

Example 3.1.3. Consider the 3 × 3 matrix M =


7 −4 2

0 22 1

−2 5 41

. Matrix M

has three rows, each denoted by RxM , for x ∈ {1, 2, 3}. Thus:

R1M =

[
7 −4 2

]

R2M =

[
0 22 1

]

R3M =

[
−2 5 41

]
�

• CxM references column x of matrix M

Example 3.1.3 continued. Matrix M has three columns, each denoted by

CxM , for x ∈ {1, 2, 3}. Thus:

C1M =


7

0

−2


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C2M =


−4

22

5



C3M =


2

1

41



�

Recall that matrix multiplication is associative, ((M · Ipq) ·M = M · (Ipq ·M)), so the

order we multiply these matrices does not matter in computing the final outcome of

M · Ipq ·M . Starting with M · Ipq.

Lemma 3.1.4. Consider a m×n matrix M where n ≤ m, and let s be a row position,

and t be a column position, such that s ≤ m and t ≤ n

(M · Ipq)st generally has form:

(MIpq)st = (msp · ipt) + (msq · iqt)

Proof. Let M and Ipq be as defined in Definition 3.1.2. First, consider M · Ipq as row

and column operations. Let θ = M · Ipq , and consider position st of matrix θ, or θst:
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θst = RsM · CtI

=

[
ms1 ms2 · · · msp · · · msq · · · msn

]
·



i1t

i2t
...

ipt
...

iqt
...

int


= (ms1 · i1t) + (ms2 · i2t) + · · ·+ (msp · ipt) + · · ·+ (msq · iqt) + · · ·+ (msm · imt).

This leaves us with sixteen cases, depending on how s and t are related to p and q.

As all cases use similar arguments, we explain one case, leaving the remaining cases

to the reader.:

• Case 1: s = p and t = p

Let s = p and t = p, then

(M · Ipq)pp = RpM · CpI

= (mp1 · i1p) + (mp2 · i2p) + · · ·+ (mpp · ipp) + · · ·+ (mpq · iqp) + · · ·+ (mpn · inp)

By definition, {i1p, i2p, · · · , , ipp, · · · , inp} = 0 and iqp = iqp. Thus:
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(M · Ipq)pp = (mp1 · i1p) + (mp2 · i2p) + · · ·+ (mpp · ipp) + · · ·+ (mpq · iqp) + · · ·+ (mpn · inp)

= (mp1 · (0)) + (mp2 · (0)) + · · ·+ (mpp · (0)) + · · ·+ (mpq · iqp) + · · ·+ (mpn · (0))

= mpq · iqp

Generally we see the following:

θst = (ms1 · i1t) + (ms2 · i2t) + · · ·+ (msp · ipt) + · · ·+ (msq · iqt) + · · ·+ (msn · int)

= (ms1 · (0)) + (ms2 · (0)) + · · ·+ (msp · ipt) + · · ·+ (msq · iqt) + · · ·+ (msn · (0))

= (msp · ipt) + (msq · iqt)

As desired.

Now we can continue on with the Mcds calculation, which at this point has us

multiply M · Ipq by M on the right side.

Lemma 3.1.5. Consider a m×n matrix M where n ≤ m, and let s be a row position,

and t be a column position, such that s ≤ m and t ≤ n.

(M · Ipq ·M)st generally has form:

(M · Ipq ·M)st = msq · iqp ·mpt +msp · ipq ·mqt

Proof. We are going to take a similar process as before. Continuing with the operation

from Lemma 3.1.4, consider M · Ipq ·M as row and column operations.Let θ = M · Ipq

, and τ = θ ·M and consider position st of matrix τ , or τst:
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(τ)st = Rsθ · CtM

=

[
0s1 . . . msq · iqp · · · msp · ipq · · · 0sm

]
·



m1t

...

mpt

...

mqt

...

mnt


= 0 + · · ·+ 0 + (msq · iqp) · (mpt) + · · ·+ (msp · ipq) · (mqt) + · · ·+ 0

= msq · iqp ·mpt +msp · ipq ·mqt

As desired.

Continuing with Mcds, we now compute M −M · Ipq ·M

Lemma 3.1.6. Consider a m×n matrix M where n ≤ m, and let s be a row position,

and t be a column position, such that s ≤ m and t ≤ n , (M −M · Ipq ·M)st generally

has form:

(M −M · Ipq ·M)st = mst − (msq · iqp ·mpt +msp · ipq ·mqt) (3.1)

Proof. Continuing with the operation from Lemma 3.1.5, M by definition is a m×n,

I by definition is n × m. MIpqM = (m × n)(n × m)(m × n) = m × n Therefore

subtraction is pairwise between M and MIpqM .

With a formula for the entries of M −M · Ipq ·M available, the Mcds operation

can now be analyzed in more detail. Recall we are performing Mcds1 on rows and
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columns p and q

Theorem 3.1.7. Let M and Ipq be as defined as by Definition 3.1.2. If the ipq entry

of Ipq is 1
mqp

, and the iqp entry of Ipq is 1
mpq

, and all other ist = 0, then :

Rpβ =

[
0p,1 0p,2 · · · 0p,n−1 0p,n

]
Rqβ =

[
0q,1 0q,2 · · · 0q,n−1 0q,n

]

Cpβ =



01,p

02,p

...

0m−1,p

0mp



Cqβ =



01,q

02,q

...

0m−1,q

0mq


(3.2)

I.e.,If the ipq entry of Ipq is 1
mqp

, and the iqp entry of Ipq is 1
mpq

, and all other ist = 0,

where s 6= p, q or t 6= q, p, then each entry of rows p and q and columns p and q of β

is a zero row/column.

Proof. Recall, the Mcds1 operation on rows/columns from Definition 3.1.2, results

in a matrix where each entry of rows p and q are zero, and each entry of column p

and q are zero . Therefore, by Lemma 3.1.6:
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Equation (1) : βpx = mpx − (mpq · iqp ·mpx +mpp · ipq ·mqx) = 0

Equation (2) : βqx = mqx − (mqq · iqp ·mpx +mqp · ipq ·mqx) = 0

Equation (3) : βxp = mxp − (mxp · ipq ·mqp +mxq · iqp ·mpp) = 0

Equation (4) : βxq = mxq − (mxp · ipq ·mqq +mxq · iqp ·mpq) = 0

Therefore, if we solve each equation individually we see the following:

Equation (1)

0 = βpx

= mpx − (mpq · iqp ·mpx +mpp · ipq ·mqx)

= mpx − (mpq · iqp ·mpx + (0) · ipq ·mqx)

= mpx − (mpq · iqp ·mpx)

−mpx = −(mpq · iqp ·mpx)

mpx = mpq · iqp ·mpx

1 =
mpx

mpx

= mpq · iqp

1

mpq

= iqp
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Equation (2)

0 = βqx

= mqx − (mqq · iqp ·mpx +mqp · ipq ·mqx)

= mqx − ((0) · iqp ·mpx +mqp · ipq ·mqx)

= mqx − (mqp · ipq ·mqx)

−mqx = −(mqp · ipq ·mqx)

mqx = mqp · ipq ·mqx

1 =
mqx

mqx

= mqp · ipq

1

mqp

= ipq

Equation (3)

0 = βxp

= mxp − (mxp · ipq ·mqp +mxq · iqp ·mpp)

= mxp − (mxp · ipq ·mqp +mxq · iqp · (0))

= mxp − (mxp · ipq ·mqp)

−mxp = −(mxp · ipq ·mqp)

mxp = mxp · ipq ·mqp

1 =
mxp

mxp

= ipq ·mqp

1

mqp

= ipq
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Equation (4)

0 = βxq

= mxq − (mxp · ipq ·mqq +mxq · iqp ·mpq)

= mxq − (mxp · ipq · (0) +mxq · iqp ·mpq)

= mxq − (mxq · iqp ·mpq)

−mxq = −(mxq · iqp ·mpq)

mxq = mxq · iqp ·mpq

1 =
mxq

mxq

= iqp ·mpq

1

mpq

= iqp

Equation (1) corresponds to every entry in row p,Equation (2) corresponds to every

entry in row q , Equation (3) corresponds to every entry in column p, and Equation

(4) corresponds to every entry in column q . These 4 equations for entries p and q of

Mcds1 give us 2 equations for entries iqp and ipq of matrix Ipq, specifically:

Ipq =



011 012 · · · 01p · · · 01q · · · 01m

021 022 · 02p · 02q · 02m

... · . . . · · ... · ...

0p1 0p2 . . . 0pp · 1
mqp

· 0pm
... · · · . . . · · ...

0q1 0q2 . . . 1
mpq

· 0qq · 0qm
... · · · · · . . .

...

0n1 0n2 . . . 0np · 0nq · 0nm


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3.1.2 Generalized Mcds Operation

With Theorem 3.1.7 proved, we can now give a generalized Mcds definition.

Definition 3.1.8. Generalized Mcds-

An m× n matrix M over a field F for which their exists a 1 ≤ p < q ≤ n such that

• mpp,mqq = 0

• mpq,mqp 6= 0

is said to be Mcds eligible.

It is useful to define conditions on matrices related to the Mcds operation.

Definition 3.1.9. Given a matrix M , if M is not Mcds eligible, it is said to be a

Mcds fixed point

Definition 3.1.10. If the indices p and q witness that matrix M is Mcds eligible,

the pair (p, q) is said to be an Mcds context for M .

Definition 3.1.11. If M is Mcds eligible and pair (p, q) is an Mcds context

witnessing this, then β=Mcds(M)pq is the matrix cds operation, Mcds, on positions

p, q where:

β = M −MIpqM

and Ipq is a n×m matrix over F with Ipq(i, j) = 1
mji

if i = p and j = q or i = q and

j = p and Ipq(i, j) = 0 otherwise. 2

2The Mcds operation is applicable for rows and columns within the largest upper square sub-
matrix of M
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The result of one application of the Mcds operation to an Mcds eligible matrix M

with a witnessing context (p, q) is a matrix of the same dimensions as M . Following

previous notation, say β =Mcds(M)pq. β may or may not be a Mcds eligible.

Characterizing matrices that are Mcds eligible according to how many consecutive

Mcds operations on it produces Mcds eligible matrices warrants investigation, and

is an item for future exploration. The following definitions give direction to continue

exploration in this direction.

Definition 3.1.12. We define M to be a Sortable Matrix if there exists a sequence

of consecutive Mcds operations that results in the zero matrix

Definition 3.1.13. Say β =Mcds(M)pq, and pair (r, s) is an Mcds context wit-

nessing a Mcds eligible matrix β, then Mcdsrs(β) is said to be 2-sortable if the

resulting matrix is either the zero matrix, or a Mcds fixed point

Definition 3.1.14. A matrix is k-sortable if it permits k consecutive applications of

Mcds, resulting in either the zero matrix, or a Mcds fixed point
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CHAPTER 4

SCHUR COMPLEMENTS AND MCDS

CORRESPONDENCE

We now turn attention to the question whether the relation between Mcds and the

Schur complement observed for square matrices over GF (2) hold for (not necessarily

square) matrices over arbitrary fields.

4.1 Schur complement

The Schur complement does not have the following constraints, however, with the

intention of finding a correlation between Mcds and Schur, we impose the following

restrictions on the input matrix of the Schur complement operation:

• mpp,mqq = 0

• mpq,mqp 6= 0

• all other entries are elements of the field F

We will first explore the form of the sub-matrices P, P−1, Q,R and S of matrix M .

4.1.1 P, P−1, Q,R and S

Lets consider a matrix M of size m × n, and require M to have the value for

entries:
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• mpp,mqq = 0

• mpq,mqp 6= 0

• all other m entries ∈ F

From M we can build the following matrices:

• M1, the M matrix with rows/columns p and q in row/columns 1 and 2

• P the 2× 2 sub-matrix made of entries mpp,mqq,mqp and mpq

• P−1 The inverse of matrix P

• Q the 2×(n−2) sub-matrix made of entries {mpx,mqx|x = N\{p, q}, x ≤ (n−2)}

• R the (m − 2) × 2 sub-matrix made of entries {mxp,mxq|x = N \ {p, q}, x ≤

(m− 2)}

• S the (m− 2)× (n− 2) sub-matrix made of entries {mxy|x, y = N \ {p, q}, x ≤

(n− 2), y ≤ (m− 2)}

4.1.2 Schur Complement Generally

With the conditions above, compute position st of S−RP−1Q in a similar fashion

as in Lemmas 3.1.4, 3.1.5 and 3.1.6.

Theorem 4.1.1. (S −R · P−1 ·Q)st generally has form:

(S −R · P−1 ·Q)st = mst − (msq ·
1

mpq

·mpt +msp ·
1

mqp

·mqt)
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Proof. Let matrices M,M1, P, P
−1, Q,R and S be defined by Definition 1.3.2. Con-

sider row operations at each step the operation S − RP−1Q. Let θ denote R · P−1.

Then generally:

θst = RsR · CtP−1

=

[
msp msq

]
·

(p−1)1t

(p−1)2t


= (msp)((p

−1)1t) + (msq)((p
−1)2t)

However, by definition, p−1 only has 4 positions, and only 2 are unknown, therefore

we can fill in information (t = {1, 2}), resulting in two possibilities for θst:

θs1 = RsR · C1p−1

= (msp)((p
−1)11) + (msq)((p

−1)21)

= (msp)(0) + (msq)(
1

mpq

)

=
msq

mpq

or

θs2 = RsR · C2p−1

= (msp)((p
−1)12) + (msq)((p

−1)22)

= (msp)(
1

mqp

) + (msq)(0)

=
msp

mqp

Continuing with the operation, let τ denote θ ·Q, and consider τst:
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τst = RsR·P−1 · CtQ

=

[
msq

mpq

msp

mqp

]
·

mpt

mqt


= (

msq

mpq

)(mpt) + (
msp

mqp

)(mqt)

= msq ·
1

mpq

·mpt +msp ·
1

mqp

·mqt

Continuing with the operation, S − τ is just pairwise subtraction between entries of

S and τ .

Therefore:

(S − τ)st = mst − (msq ·
1

mpq

·mpt +msp ·
1

mqp

·mqt) (4.1)

4.1.3 When does Mcds and Schur complement correspond?

With the formulae for entries of the result of Mcds and of the Schur complement

established, the correspondence between these two operations can be determined.

Theorem 4.1.2. Let M be a m× n matrix that is Mcds eligible, let the pair (p, q)

be a Mcds context for M, and let β =Mcds(M)pq, δ=SC(M)pq then:

β with rows Rpβ, Rqβ and columns Cpβ, Cqβ excluded produces δ.

Conversely, δ with rows Rpδ, Rqδ and columns Cpδ, Cqδ injected produces β

Proof. For simplicity, define Mcds(M)pq = β where βst = (Mcds(M)pq)st = mst −

(msp · ipq ·mqt + msq · iqp ·mpt), by Theorem 3.1.7, and define β1 to be the matrix β

with rows and columns p and q excluded.
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Also define SC(M)pq = δ where δst = (SC(M)pq)st = (S − R · P−1 · Q)st = mst −

(msp · 1
mqp
·mpt + msq · 1

mpq
·mq) by Theorem 4.1.1, and define δ1 to be the matrix δ

with rows and columns p and q inserted in positions p and q respectively.

We show the relation that exists between β and δ, by proving that there is equality

between δ and β1 and conversely, proving that there is equality between δ1 and β

First, consider the relation between δ and β1. Both δ and β1 are, by definition,

(m− 2)× (n− 2) matrices. Also, recall by Theorem 3.1.7, (Ipq)pq = 1
mqp

and (Ipq)qp =

1
mpq

. Thus:

βst = mst− (msp · ipq ·mqt +msq · iqp ·mpt) = (mst− (msp ·
1

mqp

·mqt +msq ·
1

mpq

·mpt))

Consider δ − β1

δ − β1 = mst − (msp ·
1

mqp

·mpt +msq ·
1

mpq

·mq)−

(mst − (msp ·
1

mqp

·mqt +msq ·
1

mpq

·mpt))

= 0− 0 + 0 = 0

Therefore, equality exists between δ and β1.

Now, consider the relation between δ1 and β. Both δ and β1 are, by definition, m×n

matrices. Also, recall by Theorem 3.1.7, (Ipq)pq = 1
mqp

and (Ipq)qp = 1
mpq

. Thus:

βst = mst− (msp · ipq ·mqt +msq · iqp ·mpt) = (mst− (msp ·
1

mqp

·mqt +msq ·
1

mpq

·mpt))

Consider δ1 − β
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δ1 − β = mst − (msp ·
1

mqp

·mpt +msq ·
1

mpq

·mq)−

(mst − (msp ·
1

mqp

·mqt +msq ·
1

mpq

·mpt))

= 0− 0 + 0 = 0

Therefore, equality exists between δ and β1, proving the claim.

4.1.4 Examples of Correspondence

NOTE: Verification that matrices in this section satisfy necessary conditions to

complete Mcds and Schur complement is left to reader

First, consider a 3× 3 matrix that is not symmetric but has mpq 6= mqp for p = 1 and

q = 2, a somewhat familiar state from the GF (2) world:

Example 4.1.3. Let

M =


0 7 1

7 0 4

9 13 2


Consider β = Mcds(M)1,2 and δ = SC(M)1,2. For β, the Mcds results in a matrix

where each entry of rows 1 and 2 are zero, and each entry of columns 1 and 2 are zero

, leaving only one entry to compute, namely β3,3, which is given explicitly by Lemma

3.1.6:
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β3,3 = m33 − (m32 · i21 ·m13 +m31 · i12 ·m23)

= 2− (13× 1

7
× 1 + 9× 1

7
× 4)

= 2− (
13

7
+

36

7
)

= 2− 49

7

= 2− 7

= −5

Giving the following matrix:

β =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 −5



Excluding rows and columns 1 and 2 gives the 1× 1 matrix

[ 3

3 −5

]
, call this β1.

Next, Consider δ = SC(M)1,2. The Schur complement of a 3 × 3 matrix on rows 1

and 2 results in the 1 × 1 matrix, where δst is given explicitly by Theorem 4.1.1. In

this case, we are looking at δ3,3:
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δ3,3 = m33 − (m32 ·
1

m21

·m13 +m31 ·
1

m12

·m23)

= 2− (13× 1

7
× 1 + 9× 1

7
× 4)

= 2− (
13

7
+

36

7
)

= 2− 49

7

= 2− 7

= −5

Giving the 1× 1 matrix

[ 3

3 −5

]
.

Injecting rows and columns of 0’s in row and column positions 1 and 2 gives a 3× 3

call this δ1

δ1 =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 −5


Thus we have equality between δ1 and β, and similarly β1 and δ, as expected.1

�

Increasing complexity, we now consider another 3× 3 matrix, but this time there

is no symmetry, and mpq 6= mqp for any q, p

1The governing arithmetic in Example 4.1.3 is that of the R, the natural arithmetic on real
numbers
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Example 4.1.4. Let M =


0 3 7

4 0 1

4 2 18

 Consider β = Mcds(M)1,2 and δ = SC(M)1,2.

For β,the Mcds results in a matrix where each entry of rows 1 and 2 are zero, and

each entry of columns 1 and 2 are zero , leaving only one entry to compute, namely

β3,3, which is given explicitly by Lemma 3.1.6:

β3,3 = m33 − (m32 · i21 ·m13 +m31 · i12 ·m23)

= 18− (2× 1

4
× 4 + 7× 1

3
× 1)

= 18− (
17

3
)

=
37

3

The result is the following matrix:

β =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 37
3


Excluding rows and columns 1 and 2 gives the 1× 1 matrix

[
37
3

]
call this β1.

Next, Consider δ = SC(M)1,2. The Schur complement of a 3 × 3 matrix on rows 1

and 2 results in the 1 × 1 matrix, where δst is given explicitly by Theorem 4.1.1. In

this case, we are looking at δ3,3:
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δ3,3 = m33 − (m32 ·
1

m21

·m13 +m31 ·
1

m12

·m23)

= 18− (2× 1

3
× 4 + 7× 1

4
× 1)

= 18− (
17

3
)

=
37

3

The result is the 1× 1 matrix
[
37
3

]
.

Injecting rows and columns of 0’s in row and column positions 1 and 2 gives a 3× 3

matrix, call this δ1

δ1 =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 37
3


Thus we have equality between δ1 and β, and similarly β1 and δ, as expected.2

�

Increasing another level of complexity, we now compute the Mcds and Schur

Complement of a rectangular matrix, with the restrictions set in Theorem 3.1.7:

Example 4.1.5. Let M =



0 7 −6

4 3 9

2 3 0

4 6 1


Consider β = Mcds(M)1,3 and δ = SC(M)1,3.

For β,the Mcds results in a matrix where each entry of rows 1 and 3 are zero, and

2The governing arithmetic in Example 4.1.4 is that of the R, the natural arithmetic on real
numbers
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each entry of columns 1 and 3 are zero , leaving only two entries to compute, namely

β2,2 and β4,2, which is given explicitly by Lemma 3.1.6:

β2,2 = m2,2 − (m2,3 · i3,1 ·m1,2 +m2,1 · i1,3 ·m3,2)

= 3− (9 · 1

−6
· 7 + 4 · 1

2
· 3)

= 3− (−9

2
)

=
15

2

β4,2 = m4,2 − (m4,3 · i3,1 ·m1,2 +m4,1 · i1,3 ·m3,2)

= 6− (1 · 1

−6
· 7 + 4 · 1

2
· 3)

= 6− (
29

6
)

=
7

6

The result is the following matrix:

β =



1 2 3

1 0 0 0

2 0 15
2

0

3 0 0 0

4 0 7
6

0



Excluding rows and columns 1 and 3 gives the 2× 1 matrix


2

2 15
2

4 7
6

 call this β1.

Next, Consider δ = SC(M)1,3. The Schur complement of a 4 × 3 on rows 1 and
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3 results in the 2 × 1 matrix, where δst is given explicitly by Theorem 4.1.1, and

s, t 6= p, q. In this case, we are looking at δ2,2 and δ4,2:

δ2,2 = m2,2 − (m2,3 ·
1

m1,3

·m1,2 +m2,1 ·
1

m3,1

·m3,2)

= 3− (9 · 1

−6
· 7 + 4 · 1

2
· 3)

= 3− (−9

2
)

=
15

2

δ4,2 = m4,2 − (m4,3 ·
1

m1,3

·m1,2 +m4,1 ·
1

m3,1

·m3,2)

= 6− (1 · 1

−6
· 7 + 4 · 1

2
· 3)

= 6− (
29

6
)

=
7

6

The result is the 2× 1 matrix


2

2 15
2

4 7
6

.

Injecting rows and columns of 0’s in row and column positions 1 and 3 gives a 4× 3

matrix, call this δ1

δ1 =



1 2 3

1 0 0 0

2 0 15
2

0

3 0 0 0

4 0 7
6

0


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Thus we have equality between δ1 and β, and similarly β1 and δ, as expected.3

�

Next, before we get to more complicated examples, we give an example in GF (5),

of a 4× 3 non symmetric matrix. Addition and multiplication are mod 5.

Example 4.1.6. Let M =



0 2 2

0 1 1

1 1 0

1 4 1


Consider β = Mcds(M)1,3 and δ = SC(M)1,3.

For β,the Mcds results in a matrix where each entry of rows 1 and 3 are zero, and

each entry of columns 1 and 3 are zero , leaving only two entries to compute, namely

β2,2 and β4,2, which is given explicitly by Lemma 3.1.6:

β2,2 = m2,2 − (m2,3 · i3,1 ·m1,2 +m2,1 · i1,3 ·m3,2)

= 1− (1 · 1

2
· 2 + 0 · 1

1
· 1)

= 1− (1)

= 0

β4,2 = m4,2 − (m4,3 · i3,1 ·m1,2 +m4,1 · i1,3 ·m3,2)

= 4− (1 · 1

2
· 2 + 1 · 1

1
· 4)

= 4− (5)

= −1

≡5 4

3The governing arithmetic in Example 4.1.5 is that of the R, the natural arithmetic on real
numbers
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The result is the following matrix:

β =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

4 0 4 0



Excluding rows and columns 1 and 3 gives the 2× 1 matrix


2

2 0

4 4

 call this β1.

Next, Consider δ = SC(M)1,3. The Schur complement of a 4 × 3 on rows 1 and

3 results in the 2 × 1 matrix, where δst is given explicitly by Theorem 4.1.1, and

s, t 6= p, q. In this case, we are looking at δ2,2 and δ4,2:

δ2,2 = m2,2 − (m2,3 ·
1

m1,3

·m1,2 +m2,1 ·
1

m3,1

·m3,2)

= 1− (1 · 1

2
· 2 + 0 · 1

1
· 1)

= 1− (1)

= 0

δ4,2 = m4,2 − (m4,3 ·
1

m1,3

·m1,2 +m4,1 ·
1

m3,1

·m3,2)

= 4− (1 · 1

2
· 2 + 1 · 1

1
· 4)

= 4− (5)

= −1

≡5 4
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The result is 2× 1 matrix


2

2 0

4 4

.

Injecting rows and columns of 0’s in row and column positions 1 and 3 gives a 4× 3

matrix, call this δ1

δ1 =



1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

4 0 4 0


Thus we have equality between δ1 and β, and similarly β1 and δ, as expected.4

�

For the remainder of the examples of correspondence, we will only show the final

result of Mcds and Schur complement. Verification of individual entries are left to

the reader. The following examples are of varying size, complexity, and fields. First,

we give more complicated examples of the correspondences, with matrices over R,

with the natural arithmetic on real numbers.

Example 4.1.7. Consider

4The governing arithmetic in Example 4.1.6 is that of the GF (5), Arithmetic mod 5
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M =



2 2 4 4 1 0 4 0 5 4 4

5 5 0 0 1 0 2 2 2 3 4

4 5 0 2 2 4 3 0 2 3 4

1 1 2 0 1 1 1 3 4 3 1

3 2 4 4 3 4 1 5 5 0 0

1 1 3 3 0 2 2 4 1 1 5

3 5 4 4 3 5 4 2 2 4 3


Consider β = Mcds(M)3,4 and δ = SC(M)3,4. For β, the Mcds results in a matrix

where each entry of rows 3 and 4 are zero, and each entry of columns 3 and 4 are

zero. Entries of β are given explicitly by Lemma 3.1.6, and the computation of β

gives the following:

β =



1 2 3 4 5 6 7 8 9 10 11

1 −8 −10 0 0 −5 −10 −4 −6 −7 −8 −6

2 5 5 0 0 1 0 2 2 2 3 4

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 −7 −10 0 0 −3 −6 −7 −1 −7 −12 −10

6 −13
2

−8 0 0 −9
2

−11
2

−4 −1
2

−8 −8 −5
2

7 −7 −7 0 0 −3 −5 −4 −4 −10 −8 −7


Excluding rows and columns 3 and 4 gives the 5× 9 matrix β1:
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β1 =



1 2 5 6 7 8 9 10 11

1 −8 −10 −5 −10 −4 −6 −7 −8 −6

2 5 5 1 0 2 2 2 3 4

5 −7 −10 −3 −6 −7 −1 −7 −12 −10

6 −13
2

−8 −9
2

−11
2

−4 −1
2

−8 −8 −5
2

7 −7 −7 −3 −5 −4 −4 −10 −8 −7


Next, Consider δ = SC(M)3,6. The Schur complement of a 7 × 11 on rows 3 and

4 results in the 5 × 9 matrix, where δst is given explicitly by Theorem 4.1.1, and

s, t 6= p, q. Computation of δ gives the following

δ =



1 2 5 6 7 8 9 10 11

1 −8 −10 −5 −10 −4 −6 −7 −8 −6

2 5 5 1 0 2 2 2 3 4

5 −7 −10 −3 −6 −7 −1 −7 −12 −10

6 −13
2

−8 −9
2

−11
2

−4 −1
2

−8 −8 −5
2

7 −7 −7 −3 −5 −4 −4 −10 −8 −7


Injecting rows and columns of 0’s in row and column positions 3 and 6 gives a 9× 7

matrix, call this δ1
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δ1 =



1 2 3 4 5 6 7 8 9 10 11

1 −8 −10 0 0 −5 −10 −4 −6 −7 −8 −6

2 5 5 0 0 1 0 2 2 2 3 4

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 −7 −10 0 0 −3 −6 −7 −1 −7 −12 −10

6 −13
2

−8 0 0 −9
2

−11
2

−4 −1
2

−8 −8 −5
2

7 −7 −7 0 0 −3 −5 −4 −4 −10 −8 −7


Thus we equality between δ1 and β, and similarly β1 and δ, as expected.5

�

Next, we see examples in GF (11). Multiplication and addition are mod 11.

Example 4.1.8. Let

M =



3 9 6 4 6 7 8

6 4 7 7 4 0 10

5 6 0 0 7 1 0

9 8 2 9 10 7 8

5 1 6 3 8 3 1

3 2 8 8 9 0 8

4 8 2 3 10 10 4

5 3 0 0 5 3 4

6 3 3 4 2 1 3


5The governing arithmetic in Example 4.1.7 is that of the R, the natural arithmetic on real

numbers
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Consider β = Mcds(M)3,6 and δ = SC(M)3,6. For β, the Mcds results in a matrix

where each entry of rows 3 and 6 are zero, and each entry of columns 3 and 6 are

zero. Entries of β are given explicitly by Lemma 3.1.6, and the computation of β

gives the following:

β ≡11



1 2 3 4 5 6 7

1 7 4 0 9 8 0 2

2 2 5 0 0 3 0 3

3 0 0 0 0 0 0 0

4 9 4 0 7 0 0 6

5 7 9 0 8 5 0 6

6 0 0 0 0 0 0 0

7 0 8 0 1 1 0 2

8 1 7 0 0 6 0 4

9 4 10 0 1 4 0 0


Excluding rows and columns 3 and 6 gives the 7× 5 matrix β1:

β1 =



1 2 4 5 7

1 7 4 9 8 2

2 2 5 0 3 3

4 9 4 7 0 6

5 7 9 8 5 6

7 0 8 1 1 2

8 1 7 0 6 4

9 4 10 1 4 0


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Next, Consider δ = SC(M)3,6. The Schur complement of a 9 × 7 on rows 3 and

6 results in the 7 × 9 matrix, where δst is given explicitly by Theorem 4.1.1, and

s, t 6= p, q. computation of δ gives the following

δ ≡11



1 2 4 5 7

1 7 4 9 8 2

2 2 5 0 3 3

4 9 4 7 0 6

5 7 9 8 5 6

7 0 8 1 1 2

8 1 7 0 6 4

9 4 10 1 4 0


Injecting rows and columns of 0’s in row and column positions 3 and 6 gives a 9× 7

matrix, call this δ1

δ1 =



1 2 3 4 5 6 7

1 7 4 0 9 8 0 2

2 2 5 0 0 3 0 3

3 0 0 0 0 0 0 0

4 9 4 0 7 0 0 6

5 7 9 0 8 5 0 6

6 0 0 0 0 0 0 0

7 0 8 0 1 1 0 2

8 1 7 0 0 6 0 4

9 4 10 0 1 4 0 0


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Thus we equality between δ1 and β, and similarly β1 and δ, as expected.6

�

6The governing arithmetic in Example 4.1.8 is that of the GF (11), Arithmetic mod 11
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CHAPTER 5

WHAT IS NEXT?

There is still much that is not known about Mcds. Below is a small sample of

questions yet to be answered

1. Cardinality Questions:

(a) How many Mcds eligible matrices are there over a given finite field?

(b) For a positive integer k, How many k-sortable matrices are there over a

given finite field?

2. Generalize the Mcds definition

(a) Is there a sorting algorithm for matrices with nonzero entries in position

pp or position qq, or

(b) Is there a sorting algorithm for matrices with pq and qp entries non neces-

sarily non zero

3. Tensors

(a) Could Mcds be extended to a tensor cds operation?
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