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ABSTRACT 

Shape memory alloys (SMAs) are functional materials that recover from large 

strains without permanent deformation. In magnetic shape memory alloys (MSMAs), the 

reversible deformation is driven either magnetically or mechanically. Two underlying 

phenomena are responsible for the shape memory effect: (a) a diffusionless, martensitic 

transformation and (b) twinning in the martensite phase. 

In MSMAs, the reversible plastic deformation occurs via twinning in the 

martensite phase, particularly via the movement of twinning disconnections (TDs) along 

the twin boundaries (TBs). A geometric algorithm called the classical model (CM) of 

deformation twinning describes operative twinning modes of a given crystal system. 

There are four types of twins - compound, non-conventional (NC), type I, and type II, 

which are distinguished based on the crystal's orientation relationship (OR) across the 

TB. Recently, Pond, Hirth, and coworkers developed a dislocation model of twinning 

called the topological model (TM) to describe the formation and growth of twins. We 

apply the TM to characterize the defect structure of junction lines and TBs. We show that 

the relaxed structure of type II TBs differs distinctly from those of type I and compound 

TBs. Furthermore, depending on the crystal, the type II interface can either relax into a 

coherently faceted structure (e.g., NiTi) or remain inherently irrational (e.g., 10M Ni-Mn-

Ga (NMG)). 

One of the characteristic features of type II twins is that chains of quadruple 

junction lines (QJLs) appear in the vicinity of the TB. Our analysis shows that QJLs have 
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no long-range stress field. Triple junction lines (TJLs), on the other hand, contain a 

rotational displacement field, i.e., a disclination. A stable chain of TJLs requires a local 

minimum of the strain energy associated with the disclinations. A disclination quadrupole 

approximation shows that the system’s total energy scales with the distance of the 

defects. So, as we approach larger defect spacing, two TJLs may coalesce to form a QJL, 

thus minimizing the system's energy.  

A complete description of twinning includes the kinetic relation, i.e., the 

relationship between the driving force acting on the TB and the resulting velocity of TB 

motion. In 2014, Faran and Shilo presented an analytic kinetic relation for TB motion, a 

general kinetic law typical of viscous interface motion in a periodic potential. We refine 

the model by incorporating the structural differences between type I and type II twins in 

the kinetic relation. We establish the structure of type II TBs in various alloys and 

correlate their kinetic properties with the interface's structure. 

Our work helps establish the kinetic relation for type II twins. Our model predicts 

the mechanism responsible for the high mobility and temperature insensitivity of type II 

TBs. Furthermore, we correctly predict the twinning stress of an alloy for compound and 

type I twins. Our investigation and discovery help enhance the understanding of the 

dynamic behavior of SMAs. 
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CHAPTER ONE: INTRODUCTION 

Active materials act as a transducers, i.e., convert energy from one form to 

another. Examples include shape memory alloys (SMAs), ferroelectric materials, 

piezoelectrics, topological insulators, and energy storage devices. In SMAs, a material 

can attain a significant (3-12%) reversible plastic deformation by converting thermal 

energy into mechanical energy and vice-versa [1–3]. Magnetic shape memory alloys 

(MSMAs) allow the transformation of mechanical and magnetic energy and have 

potential applications as actuators, sensors, energy harvesters, and micropumps [4–10]. 

The underlying phenomena responsible for the shape memory effect in SMAs are 

a diffusionless, martensitic phase transformation and deformation twinning in the 

martensite phase [2, 11, 12]. The martensitic phase transformation is a shear-like 

interface-mediated lattice distortion [12, 13]. Several symmetry-equivalent variants arise 

during the phase change, allowing the transformation with little to no change in volume. 

The straining of SMA samples occurs in the martensite phase via deformation twinning, 

which is a crystallographic reorientation mechanism [12, 14–19]. At the atomistic scale, 

twinning occurs via the formation and growth of twinning disconnections (TDs) along 

twin boundaries (TBs) [18, 20–22]. Four types of twins are distinguished based on the 

type of orientation relationship (OR) of martensite variants across the TB: compound, 

non-conventional (NC), type I, and type II. 

Type I and type II twins are of particular interest because they are geometrically 

related and attain the same overall strain [14–18, 23–25] but have distinctly contrasting 
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properties. For instance, in 10M Ni-Mn-Ga (NMG), the twinning stress − the stress at 

which the material deforms via twinning − at room temperature is about 1 MPa for type I 

twins and only about 0.1 MPa for type II twins [23, 24, 26–28], as shown in Figure 1.1. 

The difference in twinning stress is an order of magnitude within the same material for 

about 6% strain. Furthermore, experiments have shown that type II twins are highly 

mobile [23, 24, 26, 27, 29], and their twinning stress is a weak function of temperature [5, 

23, 30–32]; In NMG, the type II twinning stress at 1.7 K is less than 0.3 MPa [33]. 

 

Figure 1.1 Stress-strain curve of 10M Ni-Mn-Ga (NMG) under compressive 
loading at room temperature for type I (red) and type II (blue) TBs. The twinning 

stress for type II twins is about 0.1 MPa, and for type I twins is about 1 MPa. 
Reprinted from Experimental Techniques, 40 (2016), Faran and Shilo, 

Ferromagnetic shape memory alloys—challenges, applications, and experimental 
characterization, 1005-1031, with permission from Springer Nature. 

The properties of type II twins have puzzled the scientific community, which has 

yet to find agreement on type II twins' formation and growth mechanism and their 

interfacial structure [18, 34–42]. The habit plane of type II twins is crystallographically 

irrational and the only differentiating geometric parameter from type I twins. Some 
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scientists argue that the low twinning stress of type II twins are related to the inherently 

irrational nature of the habit plane. By contrast, others suggest a coherently faceted 

terrace-ledge structure forms the irrational TB, and the interface's defect-interactions may 

explain type II twins' low twinning stress. 

This study aims to characterize the structure of type II TBs and defect junctions in 

various SMAs extensively using the topological model (TM) of interfacial defects [20, 

22, 43–45]. Characterization of the defect structure of the interface enables us to analyze 

the potential barriers to the motion of TDs. The analysis of barriers for the motion of 

disconnections helps us understand the kinetic relation of TBs, i.e., explain the 

relationship between the velocity of a TB and the driving force that acts on it. The overall 

result of this study will help understand and optimize the dynamic behavior of SMAs and 

MSMAs. 
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CHAPTER TWO: SCIENTIFIC BACKGROUND 

2.1 Shape Memory Alloys 

Shape memory alloys are a class of functional materials that can undergo large 

reversible plastic deformation [1, 2, 11]. The underlying mechanism responsible for this 

shape memory effect is a diffusionless martensitic phase transformation and deformation 

twinning in the martensite phase [2, 11, 12]. Twinning and the martensitic phase 

transformation in these materials serve as a basis for converting mechanical energy into 

other forms of energy (thermal, electrical, magnetic, etc.) and vice-versa [3–10, 23]. 

2.1.1 Thermal Shape Memory Alloys 

In thermally activated shape memory alloys like NiTi, a strain of up to 12% is 

recoverable by providing thermal energy [1, 2]. The strain recovery requires activating 

both the martensitic transformation and deformation twinning mechanism. A NiTi sample 

at room temperature is in a low symmetry martensite phase, with a phase transition 

temperature of about 75 °C [1, 46]. The phase transformation from the high symmetry 

austenite phase to the low symmetry martensite phase occurs by the martensitic 

transformation which distorts the lattice about an invariant plane [2, 12]. Based on the 

reduction in the symmetry, several martensite variants form [18, 47], which fit together 

by twinning with little or no volume change of the material after the phase 

transformation. The material is strained in the martensite phase, and the primary 

deformation mechanism is (deformation) twinning due to a limited number of 

independent slip systems and low shear modulus [12, 18, 23]. Now, when the strained 



5 

 

material is heated, it gains thermal energy which serves as the driving force to reverse the 

twinning deformation (de-twinning), ultimately transforming into the austenite and 

recovering the strain caused in the martensite phase. 

2.1.2 Magnetic Shape Memory Alloys 

Magnetic shape memory alloys have a distinguishing feature where a macroscopic 

shape change occurs when the material is exposed to a magnetic field. In these materials, 

shape change occurs via reorientation of martensite variants rather than the phase 

transformation [12, 18, 23]. The reorientation occurs via twinning. The 

magnetocrystalline anisotropy, i.e., the difference in magnetic susceptibility in different 

crystal directions, drives the reorientation process [23]. A variant with the preferred 

orientation of the magnetization axis grows at the expense of the other. The maximum 

driving force, akin to mechanical stress, is given by the ratio of the anisotropy energy and 

the twinning strain and is called magnetostress [23]. In NMG alloys, the maximum 

available magnetostress is about 3MPa, which is higher than the twinning stress of about 

0.1 MPa or 1 MPa (degenerate cases). So, the magnetostress is sufficient to drive the 

twinning reorientation process in NMG alloys and cause a maximum strain of about 6% 

[23, 25, 26, 28, 48]. 

2.2 Deformation Twinning 

Twins are two misoriented crystals related by some symmetry operation: rotation, 

reflection, inversion, or rotoinversion. They can form during growth, transformation, and 

deformation. Based on the classical model (CM) of deformation twinning, twin lattices 

are related by a homogeneous simple shear, s, about an invariant plane. 
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A complete description of twinning requires four crystallographic elements, k1, 

k2, γ1, and γ2, collectively defined as a twin mode [16–19]. k1 and k2, inclined by an angle 

2φ, are the two mutually conjugate planes that remain undistorted when a medium 

undergoes volume-conserving plane strain shear transformation, as illustrated in Figure 

2.1(a). We designate the plane of shear Ps and its normal ns. Suppose we further rotate 

the deformed medium in Figure 2.1(a) by an angle α = ±(π/2 − 2φ) about ns. In that case, 

one of the conjugate planes coincides with its orientation before deformation, thereby 

becoming the invariant plane of twinning. In either case, i.e., whether k1 or k2 is the 

invariant plane of twinning, the overall deformation is a simple shear. The directions 

parallel to k1 and k2, which also lie in Ps, are designated γ1and γ2, respectively. The 

magnitude of shear is s = 2 cot2φ, parallel to either γ1 or γ2. Frank [14] suggested that a 

twinning mode be characterized by parameters K, η, as shown in Figure 2.1(b). 
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Figure 2.1 (a) A volume-conserving plane-strain deformation shows a circle 
deformed to an ellipse. As we see, two undistorted planes k1 and k2 are rotated in the 

deformed medium (k1′ and k2′). A further rotation of the ellipse by ±α results in a 
simple shear of twinning. (b) An illustration of twinning parameters K and η: the 

inset table shows a degenerate solution for a given twin mode. 

When the plane of shear, Ps, is irrational, one of the two undistorted planes has 

irrational Miller indices. We define the rational plane as k1 and the irrational plane as k2. 

With this definition, γ1 is irrational, and γ2 is rational. If the invariant plane of twinning is 

rational, the twins are designated as type I. Conversely, if the invariant plane of twinning 

is irrational, the twins are defined as type II. Compound and NC twins arise when the 

plane of shear, Ps, is rational. All the twinning elements are rational for compound twins, 

whereas all the twinning elements are irrational for NC twins. 

The orientation relationship between the matrix and the twin lattice for type I 

twins is mirror reflection across k1 and denoted by m′, where the prime indicates a “color-

reversing” symmetry operation. The type II twins, i.e., the conjugate of type I, have k2 as 

the invariant plane, and the operation interrelating the crystals is 2′ about γ2. Compound 

twins satisfy both m′ across K1 = k1 or k2 (TB), and 2′ about η1 = γ1 or γ2 (shear 
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direction). The orientation relationship between the NC twins was not established before 

the work presented here. 

2.3 Classical Model of Twinning 

The CM of deformation twinning is a geometric algorithm to predict the operative 

twinning modes for a given crystal structure. A comprehensive review of the CM of 

deformation twinning has been presented by Christian and Mahajan [18]. We implement 

the general theory of twinning in lattices, formulated by Bevis & Crocker [17, 19], to 

predict the possible twinning modes. The theory utilizes the restrictive properties of the 

unimodular correspondence matrix, C, to predict the twinning shear, invariant plane, and 

shear direction. The correspondence matrix defines the relation of coordinate axes 

between a pair of variants and satisfies the twinning restrictions.  

An affine transformation represents a homogeneous simple shear as: 

v = S u          (1) 

where u and v are lattice vectors of the parent and twin lattice vectors, respectively, and S 

is a second rank tensor defining the shear transformation. 

In some general coordinate system, A, Equation (1) is written using the Einstein 

summation convention as: 

Avi = ASj
i Auj          (2) 

where i and j are summing indices. The superscript A denotes the crystal coordinate 

system. The summing indices are in superscript form for real vectors and subscript form 

for reciprocal space vectors. 

In a general coordinate system, A, Sj
i has the form: 

ASj
i = δj

i + s Ali Amj         (3) 
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where δj
i is the Kronecker delta, l is the unit vector parallel to the shear direction, m is the 

unit vector normal to the invariant plane, and s is the twinning shear. 

In general, Equation (3) yields irrational components for Av. However, v is a 

lattice vector of the twin in a new coordinate system B, where the system B is related to A 

by rotation, reflection, or inversion, and designated L. So, we have, 

Bv = L AS Au = C Au         (4) 

where C is the unimodular correspondence matrix. Once the correspondence matrix, C, is 

specified, Bevis and Crocker showed that we can utilize its restrictive properties to 

calculate s, l, and m.  

Implementing matrix notation, the solutions for s, l, and m are found as follows: 

s2 = trace (C’ G C G-1) − 3       (5) 

where, Gij = ai · aj is the metric tensor, and ai are the basis vectors. Using, Y = G − C’ G 

C, we obtain three quadratic equations, defined by the equation: 

Yii mj
2 − 2 Yij mi mj + Yjj mi

2 = 0      (6) 

where i ≠ j, and i, j = 1, 2, 3. Equation (6) yields two possible solutions for m: the 

undistorted conjugate planes k1 and k2. The unit vector l can then be obtained directly 

from Equation (3) or derived from Y-1 using three quadratic equations of the kind of 

Equation (6). Yet again, we obtain two solutions for l: the conjugate shear directions γ1 

and γ2. 

In the case of twinning, Equation (4) shows that the correspondence matrix 

represents point symmetry operations of the higher symmetry phase, which gets 

suppressed in the lower symmetry phase.  
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2.4 Topological Model of Twinning 

The CM is a geometric model that can correctly predict the operative twinning 

mode. However, it fails to describe the twin formation and growth mechanisms. Pond, 

Hirth, and co-workers [20–22, 43, 49] extensively studied interfaces and presented a TM 

that rigorously characterizes the defect structure of an interface. Twinning defects possess 

dual topological character, namely the Burgers vector, b, and the step height, h, and are 

referred to as disconnections [20]. These defects accommodate the misfit between the 

two adjoining crystals across the twinned interface.  The twinning interface, called TBs, 

moves due to the movement of disconnections: the Burgers vector quantifies the lattice 

displacement accompanying the interface motion, and the step height quantifies the 

displacement of the interface. 

The symmetry requirement of twinning imposes rather strict rules for the structure 

and orientation of the interface, thus restricting the admissible defect structure. In the 

literature, there are many accounts of disconnections in compound twins [50–55]. In 

compound and type I twins, the invariant plane is rational, K1 = k1. The formation and 

motion of disconnections on these rational planes, k1, produces an engineering shear 

strain, γe = |b|/2h, which has half the magnitude as the true shear strain, s, and is parallel 

to the classical shear direction, η1 = γ1. The step height, h, is equal to the integral d-

spacing of the k1 planes, and the Burgers vector, b, of the disconnection correspond to 

differences between the shortest translation vectors connecting the adjacent crystals: thus 

b, expressed in the parent coordinate frame, are given by: 

b = P-1 t(λ) − t(μ)        (7) 
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where t(μ) and t(λ) are translation vectors of the steps of the parent (lower) and twin 

(upper) crystal, respectively, as in Figure 2.2, and P is the coordinate transformation from 

μ to λ frame. While both the translation vectors are rational, their difference is generally 

irrational because of the coordinate transformation, as seen in type I twins with b ∥ ±γ1. 

So, compound twins represent a unique case where b is rational. The nucleation and 

growth of type I and compound twins in terms of disconnection and motion have been 

modeled consistently with experimental observations [56–58]. For instance, Pond et al. 

[50] implemented TM to characterize the defect structure of compound twins in non-

modulated Ni-Mn-Ga martensite as k1 = (202)T, i.e., h = dk₁, and b = 1/12 [101�]T, where T 

implies face-centered tetragonal unit cell. 

 

Figure 2.2 Schematic illustration of a disconnection in compound and type I 
twins, with K1 = k1 in both cases 

In contrast, our knowledge of the formation and growth of type II twins is less 

developed. Until recently, the defect structure, formation, and growth mechanism of 

disconnections were unknown due to the irrational invariant plane, K1 = k2. In 2018, Pond 
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and Hirth [44, 45] presented the TM of the formation of type II twins, where the twinning 

shear, s, is obtained by a dual process of shear strain and rotational distortion. Based on 

the model, the nucleation of disconnections still occurs in the rational conjugate plane, k1, 

like type I twins. However, if the leading disconnections begin to accumulate on the 

plane perpendicular to k1, they would gradually form a planar boundary in which the step 

character of the component defects is lost. Each defect in the array undergoes 

accommodation relaxation to create a symmetric tilt boundary. The tilt boundary is 

symmetrical because of the partitioning of shear and rotation across the TB, but it must 

be understood in an averaged sense; the dislocation arrays can kink to lie along with the 

low-energy rational Peierls potential to show an overall mixed character. As the 

configuration relaxes, the strain field parallel to the final interface vanishes at a long 

range. At the same time, the rotation field, which sums to produce a rotation of 2α about 

ns, partitions symmetrically between the adjacent crystals. At equilibrium, the interface 

plane rotates relative to the fixed matrix crystal by α about ns and hence becomes parallel 

to k2, i.e., the type II conjugate forms with interface K1 = k2, as shown in Figure 2.3. 
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Figure 2.3 Schematic illustration of type II twin interface formed after the 
partitioning of displacement and rotational field of the tilt-wall. Tilt-wall forms 

when disconnections in the k1 plane accumulate in a planar boundary and lose their 
step character. 

Since the disconnection glide plane remains k1 for type II twins, |b|/h still defines 

the twinning shear, 𝑠𝑠, as predicted by the CM. However, based on the mechanical 

differences, a type II twin can be interpreted as the sum of a shear tensor of magnitude s/2 

and a tensor rotation ω = tan−1𝛼𝛼, where 𝛼𝛼 = tan−1(|b|/2h). The overall superimposed result 

is a boundary with a misorientation of ns/2𝛼𝛼 or equivalently γ2/2π across the boundary. 

Pond and Hirth showed that the TM of formation of type II twins in Ni-Ti and α-Uranium 

is consistent with experimental observations [44, 45]. 

2.5 Kinetics of Twin Boundary Motion 

The mobility of TBs plays a vital role in the functionality of shape memory 

alloys. Knowledge of the interrelationship between TB mobility and fundamental 

material properties allows systematic reproduction of the shape memory effect and 
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engineering new materials with specific mobility. Faran and Shilo [24, 25, 27, 28] 

developed a microstructure-based kinetic model that can be applied to different materials 

systems to understand the relationship between fundamental materials properties and TB 

mobility. The kinetic relation serves as an input to model the dynamic evolution of TBs 

in a system and measure the overall state of a sample possessing many TBs. 

In the kinetic model, we study the discrete TB dynamics, i.e., we measure the 

velocity of a single TB, vTB, as a function of a thermodynamic driving force, g, i.e., 

vTB(g). The driving force represents the change in free energy as the twin grows at the 

parent’s expense. Specifically, the driving force is the rate of change of TB energy per 

unit area, UTB, with respect to the normal propagation direction, z : 

g = – ∂
∂z

(UTB)        (8) 

UTB includes several contributions, like mechanical, electric, thermal, and 

magnetic energies. Under mechanical loading, however, UTB only has a mechanical 

contribution and is given by UTB
mech = − z σ εs, where z is the normal propagation distance, 

σ is the applied stress, and εs is the twinning strain. 

Deformation twinning starts with the nucleation of TDs in the glide plane of the 

parent lattice; the twin nucleus form lens-shaped lamellae to minimize the interfacial 

energy, as shown in Figure 2.4 (a). Under sustained external load, the twin nucleus grows 

forward, i.e., the twin tip moves, as shown in Figure 2.4 (b). The forward growth occurs 

at high velocities on the order of the material shear wave speed [59]. Once the tip of the 

twin reaches the physical boundary, the twin domain grows sideways, perpendicular to 

the TB, as shown in Figure 2.4 (c). The sideways growth of the twin is often the rate-

limiting process, and thus it determines the rate of boundary propagation. 
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Figure 2.4 Twinning process showing (a) nucleation, (b) forward growth, and (c) 
sideways thickening of the twin variant. Figure reprinted from Experimental 

Techniques, 40 (2016), Faran and Shilo, Ferromagnetic shape memory alloys—
challenges, applications, and experimental characterization, 1005-1031, with 

permission from Springer Nature. 

Experimental studies of the TB kinetic relation for sideways growth of TBs, as in 

Figure 2.4 (c), are scarce. Nonetheless, Faran and Shilo [24] designed an experiment to 

directly measure the TB velocity as a function of a magnetically induced driving force in 

NMG alloy. The researchers performed a kinetic experiment on a sample containing only 

a single TB. They placed the sample in a magnetic driver that produced a short (μs) pulse 

(up to 2.5 T). For an applied magnetic driving force, the average TB velocity was 

measured optically by tracking the position of the TB before and after the test. By 

repeated testing and capturing TB velocities ranging three orders in magnitude, the 

researchers were able to capture the full kinetic relation, as seen in Figure 2.5. 
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Figure 2.5 Experimental result of kinetic relation for type I (red) and type II 
(blue) twin boundaries (TBs) in NMG. The line is fitted to the boxed data points, 

representing the maximal velocity for a given driving force. Figure reprinted from 
J. Mech. Phys. Solids, 61 (2013), Faran and Shilo, The kinetic relation for twin wall 

motion in Ni-Mn-Ga—part 2, 726-741, with permission from Elsevier. 

Experimental results of the kinetic relation in NMG show a transition in the data 

trend. The researchers proposed that the kinetic relation corresponds to a thermally 

activated process at low driving force and an athermal process at high driving force. 

Furthermore, they also developed an analytical kinetic model for both cases. 

2.5.1 Analytical Model for Kinetics of TB Motion 

Based on the experimental results for the TB relation, as shown in Figure 2.5, 

Faran and Shilo proposed different mechanisms for twin growth. They developed an 

analytical kinetic relation for both cases, i.e., thermally activated slow kinetics at small 

driving force and athermal fast kinetics at large driving force [24, 25, 28, 60]. 

Assuming the case as in Figure 2.4 (c), the TB propagates sideways if the driving 

force exceeds some threshold value. The change in TB interfacial energy (per unit area), 

as a function of the position, is represented by a periodic lattice potential. This 
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assumption is undoubtedly valid for compound and type I twins. The amplitude of the 

periodic potential is designated γo, and it is the activation energy per unit area required to 

overcome the lattice potential. If d is the lattice periodicity typical to the TB, and x is the 

distance the TB traveled, the change in free energy (per unit area), ΔU, for a constant 

driving force, g, is given by: 

ΔUTB = – g x + γo sin2 �πx
d

�       (9) 

Two different mechanisms for TB motion exist based on the sign of ΔU. The sign of ΔU 

depends on the value of a unitless parameter, g ⋅ d / γo. If g ⋅ d / γo > π, ΔU is a 

monotonically decreasing function; otherwise, positive values exist for ΔU, and thus TB 

motion requires thermal activation. 

2.5.1.1 Athermal Kinetics 

If g ⋅ d / γo > π, then ΔU < 0 for all values of x. So, when the driving force is 

higher than the critical driving force, go = γo ⋅ π / d, the TB overcomes the two-

dimensional lattice potential and moves as a flat plane with a uniform velocity. The 

athermal kinetics of the TB motion is modeled using the Landau-Khalatnikov equation to 

obtain an explicit solution for the TB velocity as [61, 62]: 

vTB(g) = μ �g2 – go
2        (10) 

where vTB is the average velocity of the TB, μ is the mobility coefficient, and go is the 

critical driving force. 

2.5.1.2 Thermally Activated Kinetics 

In contrast, if g ⋅ d / γo < π, the TB encounters a positive Peierls barrier. As such, 

the TB cannot move as a flat plane (or nucleate homogeneously); its motion requires 

thermally activated nucleation of TDs in the glide plane of the TB. Again, similar to the 
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two-dimensional lattice potential for TBs, there exists a one-dimensional lattice potential 

for TDs. As the step edge of the TDs move, the change in TD energy (per unit length) as 

a function of position (parallel to the twin plane) is a periodic potential with amplitude 

Ep, called the Peierls energy of disconnections. 

Suppose the driving force in the thermally activated regime is higher than the one-

dimensional Peierls barrier. In that case, the TDs can move athermally, and the rate-

limiting step is the nucleation rate of disconnections. A typical form of the kinetic 

relation for the current scenario, obtained using standard treatment of transformation 

kinetics for a two-dimensional case, is [27, 63]: 

vTB(g) = vo exp �– Q(g)
3 kB T

�       (11) 

where Q is the activation energy for step nucleation, vo is the pre-exponential term, T is 

the absolute temperature, and kB is the Boltzmann constant. To formulate an explicit 

solution for the thermally activated process, one must identify the driving force 

dependency in vo and Q. In their review of the dynamics of TB in MSMA elements, 

Faran and Shilo [24, 25, 28, 60] derived an explicit solution for thermally activated 

kinetics. For athermal kinetics of TD motion, vo has minor dependence on g [64]. Based 

on the step height of the TDs and its critical nucleation size, the activation energy, Q, for 

the formation of a disconnection loop was derived as: 

 Q = 3 π Γ2

2 goh
�go

g
 – 2

3
 �go

g
�

2
�       (12) 

where Γ is the line energy of TDs, h is the step height of the TD, and go is the critical 

driving force. 

The kinetic relation was established on the assumption that the nucleation of TDs 

is the rate-limiting process. Nonetheless, TD motion is the rate-limiting process if the 
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change in free energy is less than the Peierls barrier, Ep. In this case, the disconnection 

nucleation rate is fast enough to provide an equilibrium number of TDs. In their review, 

Faran and Shilo treated such a case as well, but the fit of the analytical solution to the 

experimental results was better when nucleation of TD was taken as the rate-limiting 

step. 

Figure 2.6 represents a summary of the thermal and athermal TB motion. In the 

athermal regime, the TB overcomes the periodic potential and moves as a flat plane. In 

the thermally activated regime, the TB moves by the accumulated movement of TDs 

along the TB plane. If these TDs cannot overcome the Peierls barrier, Ep, they kink and 

grow along a different direction in the TB plane.  
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Figure 2.6 A summary of mechanisms for TB motion are presented in (a), (c), 
and (e). The corresponding two-dimensional and one-dimensional lattice potentials 

are shown in (b) and (d). vTB, vd, and vk are velocities of the TB, twinning 
disconnections (TDs), and disconnection kink, respectively. Figure reprinted from 
Materials Science and Technology, 30 (2014), Faran and Shilo, Dynamics of twin 

boundaries in ferromagnetic shape memory alloys, 1545-1558, with permission from 
Taylor & Francis. 
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CHAPTER THREE: MOTIVATION AND CONTRIBUTIONS 

Type II TBs are highly mobile and have significantly lower twinning stress than 

type I TBs [25, 26, 28]. The difference in the yield stress and kinetics of these twin 

modes, which are conjugate modes and carry the same overall strain, motivates this 

dissertation. We characterize the structure of type I and type II TBs for various shape 

memory alloys and discuss the impact of structural dissimilarity on energy barriers for 

the motion of TBs. My contributions to four journal manuscripts constitute this 

dissertation. Some of the results were presented at the International Conference on 

Ferromagnetic Shape Memory Alloys 2019 and at the conference Shape Memory and 

Elasticity 2020. 

Chapter 4 - Topological model of type II deformation twinning in 10M Ni-Mn-Ga 

(published October 2020 in Acta Materialia): We analyze the structure of type I and type 

II interfaces based on the TM of extended defects. My contribution to the study was 

establishing the defect structure of these conjugate TBs. Analysis of the structure helps 

understand the interface evolution mechanism and the properties materials exhibit. I 

performed part of this research at the University of Exeter under the supervision of Dr. 

Robert Pond. I wrote the manuscript as the first author. 

Chapter 5 – Twin Boundary Junctions in 10M Ni-Mn-Ga (in preparation for 

submission to Acta Materialia in December 2021): We investigate the interaction of 

various TBs and analyze the defect structure of junctions where two or more TBs meet. 

We report the crystallography of NC twins in NMG and establish the equilibrium 
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structure of a chain of rotational defects. My contribution is in establishing the structure 

of defect junctions in NMG and in writing the manuscript as the first author. 

Chapter 6 - A simple method to characterize high rate twin boundary kinetics in 

Ni-Mn-Ga (published October 2019 in Review of Scientific Instruments): We present a 

simple method to identify the transitional stress at which the TB attains high-speed 

kinetics in type I and type II twins. My contribution to the study is conducting the 

experiments, data acquisition, data evaluation, and image analysis of optical results 

obtained with an in-house built solenoid-based mechanical testing device. I went to 

Technion - Israel Institute of Technology for the experiment. I wrote the manuscript as 

the first author. 

Chapter 7 - Twin boundary structure and mobility (published September 2021 

for an Invited Feature Article in Acta Materialia): We evaluate energy barriers for the 

motion of TBs based on the interface's structure. Here we establish the kinetics of TB 

motion for type I and type II twins. My contribution to the project is distinguishing two 

possible relaxed structures of type II TBs: for example, the structures of type II TBs in 

NiTi vs. NMG. A coherently faceted type II TBs, for instance, in NiTi alloy, follows an 

athermal mechanism for the nucleation and motion of interfacial defects. The mechanism 

helps explain the low yield stress, low-temperature sensitivity, and high mobility of type 

II TBs. I wrote section 3 of the manuscript. 

In Chapter 8, we discuss the contribution of each manuscript towards a consistent 

understanding of the unique properties of type II TBs in SMAs. We establish the 

structure of twin interface and defect junctions and the difference in TB evolution 

mechanism between type I and type II TBs. We also present a simple method to identify 
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the stress (driving force) at which the TB kinetics transitions from a thermally activated 

mechanism to athermal evolution. The structure of relaxed type II TBs enforces athermal 

nucleation and propagation of defects, which helps explain the low-temperature 

sensitivity, low yield stress, and high mobility of type II TBs. 



24 

 

CHAPTER FOUR: TOPOLOGICAL MODEL OF TYPE II DEFORMATION 

TWINNING IN 10M NI-MN-GA 

 

Bibek J. Karki1, 

Peter Müllner1, 

Robert C. Pond2 

 

1 Micron School of Materials Science and Engineering, Boise State University, 

Boise, ID, 83725, USA 

2 College of Engineering, Mathematics, and Physical Sciences, University of 

Exeter, EX4 4PY, UK 

 

Published in Acta Materialia: B.J. Karki, P. Müllner, R.C. Pond, Topological 

model of type II deformation twinning in 10M Ni-Mn-Ga, Acta Materialia 201 (2020) 

604-616  



25 

 

Abstract 

The structure of type II twins in 10M Ni-Mn-Ga is modeled using the topological 

method. This method predicts the same twinning parameters as the kinematic model of 

Bevis and Crocker. Furthermore, topological modeling provides mechanistic insight into 

boundary migration rates, the twinning stresses and their temperature dependence. A type 

II twin is envisaged to form from a precursor, which is its type I conjugate. 

Disconnections on the precursor k1 plane align into a tilt wall, which, after the relaxation 

of the rotational distortions, forms the type II boundary parallel on average to the k2 

plane. The component defects may align into a sharp wall or relax by kinking into a less 

orderly configuration. Both interfaces can host additional glissile disconnections whose 

motion along a boundary produces combined migration and shear. The ease of motion of 

these defects increases with their core width, and this, in turn, decreases with increasing 

sharpness of the boundary. Some experimental evidence in other materials suggests that 

type II twins can reduce their interfacial energy by adopting a configuration of low-index 

facets, which reduces twin boundary mobility. Topological modeling suggests that such a 

coherently faceted structure is unlikely in 10M Ni-Mn-Ga, in agreement with the high 

mobility of type II twin boundaries. 

1. Introduction 

10M Ni-Mn-Ga (hereafter NMG) is a ferromagnetic shape memory alloy which 

produces force and deformation in response to an applied magnetic field [1–3]. An 

applied field reorients martensitic variants within the material through the motion of twin 

boundaries (TBs), causing transformation strains of about 6% with sub-millisecond 

response times [4–6]. Potential applications include actuation, energy harvesting, 
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vibration damping, and sensing [6–11]. NMG is monoclinic and exhibits compound, type 

I, and type II twins [12–16]. Extensive experimental work has established that type II 

TBs have particularly high mobility and low twinning stress, so these twins are especially 

suitable for the manufacture of high-performance devices [15, 16]. Several 

phenomenological models have been proposed to discuss the difference in boundary 

mobility of type I and type II twins [17–21]. The objective of the present work is to 

elucidate the structure of type II TB, and hence provide some understanding of their 

exceptional properties.  

Twinning has been studied for many decades [22–29], and a theory for predicting 

the associated crystallographic forms was developed by Bevis and Crocker [22]; we refer 

to this kinematic treatment as the Classical Model (CM). Further insight into the atomic 

structure of compound and type I twins was accumulated over many years because they 

are amenable to experimental investigations using techniques such as transmission 

electron microscopy (TEM) [30–33] and X-ray diffraction [13, 15, 34]. Boundary planes 

are rational for compound and type I twins, while the twinning direction is rational for the 

former but irrational for the latter. Of particular relevance to the present discussion, the 

mechanism of boundary migration for these twins was established to be through the 

motion of twinning dislocations along a boundary [35]. In a later theory of interfacial 

defects, called the topological theory [36], these defects were re-named “disconnections” 

to emphasize that they exhibit both dislocation and step character.  

By comparison with compound and type I twins, much less is known about type II 

twins [27, 30, 37]: this is mainly because type II TB planes are irrational, which makes 

TEM and atomic-scale simulations problematic. However, a theoretical model for the 
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formation of type II twins was suggested recently [38, 39] and shown to be consistent 

with experimental observations in α– U  and NiTi. Disconnection motion and assembly 

into arrays are central in this model, which we refer to as the Topological Model (TM) 

[36]. Thus, the principal aims of the present work are to analyze the structure of type II 

twins in NMG using the TM and to investigate boundary migration by disconnection 

motion. The relative ease with which disconnections move pertains not only to boundary 

migration rates but also to the magnitude and temperature dependence of twinning stress.  

Section 2 is a review of the crystal structure of NMG. It is important to 

demonstrate that the crystallographic twinning parameters for NMG predicted by the TM 

are the same as those obtained by the CM. In Section 3, we apply the original CM 

formulation to find all possible conventional twins in NMG. The type II TB structure, 

according to the TM, is described in Section 4. Three alternative boundary structures are 

proposed, and their differing migration rates and twinning stresses are discussed in 

Section 5. Section 6 is a summary of our conclusions. 

2. Crystallography of Ni-Mn-Ga 

In our analysis, we refer to the axis systems with subscript c, 10M, and m, for the 

cubic austenite structure, the modulated monoclinic martensite structure, and the 

approximated monoclinic martensite structure, respectively. 

2.1 Austenite Crystal Structure and Symmetry 

Above the martensitic transformation temperature, stoichiometric Ni2MnGa is a 

L21-ordered Heusler alloy exhibiting symmetry of space group Fm3�m [40]. The atomic 

motif is Ga at 0,0,0, Mn at 0,0.5,0, and Ni at 0.25,0.25,0.25 and 0.25,0.25,0.75 at each 

lattice point, as illustrated in Figure 4.1 (a). The near-stoichiometry alloy with nominal 
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composition Ni50Mn25+xGa25-x, with x often between 2 and 4, exhibits the modulated 

martensite structure with highly mobile TBs [13, 41]. In the present work, we refer 

specifically to the alloy Ni50.2Mn28.3Ga21.5, with the lattice parameter ac = 0.5832 nm and 

martensite transformation temperature Ms = 323 K [13]. 

2.2 Modulated Martensite Structure and Symmetry 

Following a martensitic transformation, the symmetry of the alloy reduces to 

monoclinic (space group I2/m [42]). A schematic illustration of the martensite viewed 

along its unique axis [010]10M is shown in Figure 4.1 (b), including an outline of the unit 

cell with lattice parameters a10M, b10M, c10M, and β10M. In this diagram, we see the 

modulated structure of the crystal, designated 10M, where these modulations have 

formed by a simple shear along {220}c planes of the parent FCC unit cell. The repeating 

sequence of shears between adjacent planes is three leftwards followed by two 

rightwards, and they are characterized as (3�2)2 to emphasize the ten-layer sequence. An 

electron diffraction pattern obtained with the beam direction [010]10M (i.e., parallel to the 

{220}c planes, Figure 4.1 (c)) exhibits fundamental and superlattice reflections. Atomic 

positions in the actual martensite structure may not correspond exactly to the 

configuration in Figure 4.1 (b), and alternative atomic displacements parallel to these 

{220}c are discussed elsewhere [12, 43, 44]. 

2.3 Approximated Monoclinic Structure and Symmetry 

To assist the crystallographic analysis of twinning in NMG, we adopt the 

suggestions of Sozinov et al. [13, 15] whereby a non-conventional monoclinic unit cell is 

established by suppressing the modulation evident in Figure 4.1 (c) and considering only 

the fundamental reflections. This unit cell is derived from the cubic form in Figure 4.1 (a) 
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by a monoclinic distortion with lattice parameters am, bm, cm and γm. The systematic 

offsets of {220}c planes in the modulated martensite are averaged in this visualization:  

the 10M sequence now is (1)10 rather than (3�2)2. 

The point symmetry of this non-conventional face-centered monoclinic unit cell is 

2/m as illustrated in projection along its unique axis, [001]m, in Figure 4.1 (d). Using X-

ray diffraction, Sozinov et al. [15] determined the lattice parameters for Ni50Mn28.5Ga21.5 

(±0.2 at.%) as am = 0.5974 nm, bm = 0.5947 nm, cm = 0.5581 nm and γm = 90.36°. 

Transformation matrices interrelating planes and directions in 10M and m crystals are set 

out in Appendix A. 
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Figure 4.1 (a) Austenite crystal structure of stoichiometric Ni2MnGa viewed 
along one of its axes. Red is Gallium (circle), green is Manganese (square), and blue 
is Nickel (triangle). (b) The crystal structure of 10M Ni-Mn-Ga (NMG) viewed along 

its unique axis [010]10M shows the modulated assembly of the crystal; a periodic 
simple shear along {220}c planes achieve modulation during the martensitic 

transformation. The monoclinic angle, β10M, is exaggerated in the current 
illustration. (c) Experimentally observed diffraction pattern of NMG that 
corresponds to the schematic illustration in (b): the superlattice reflections 

correspond to the periodic offset of the {220}c planes. (d) Approximated NMG 
crystal lattice using only the fundamental reflections in (c) and derived from the 

parent cubic axes through a monoclinic distortion. 

3. Theories of Deformation Twinning 

3.1 Classical Model 

A comprehensive review of the CM of deformation twinning has been presented 

by Christian and Mahajan [27] and is briefly summarized here. When a medium is 

deformed by a volume conserving homogeneous plane strain shear, two mutually 

conjugate planes k1 and k2, inclined by an angle 2ϕ, remain undistorted, as illustrated in 

Figure 4.2 (a). The plane of shear is designated Ps, and its normal is ns. When the plane 

of shear is irrational, one of the undistorted planes is rational (defined as k1), and the 
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other is irrational (defined as k2) [23, 24]. If the deformed crystal is further rotated by an 

angle α = ±(π/2-2ϕ) about ns, one of the conjugate planes comes into coincidence with its 

orientation before deformation, thereby becoming the invariant plane of twinning. If k1 is 

brought into coincidence by rotation, the invariant plane is rational, as illustrated in 

Figure 4.2 (b); conversely, if k2 is brought into coincidence, the invariant plane is 

irrational.  

In both cases, the overall deformation is a simple shear. The directions parallel to 

k1 and k2, which also lie in Ps, are designated γ1 and γ2 respectively. The magnitude of 

shear is s = 2 cot2ϕ, parallel to either γ1 or γ2. When the invariant plane is rational, the 

twins are designated type I, and the orientation relationship between the matrix and twin 

crystal is mirror reflection across k1, denoted by m', where the prime indicates a “color-

reversing” symmetry operation [45, 46]. The conjugate of a type I twin, i.e., where the 

invariant plane is parallel to k2, is called type II, and the operation interrelating the 

crystals is 2' about γ2. In centrosymmetric crystals such as NMG, the interrelationship for 

type I twins can be equivalently described as 2' about the vector normal to k1, and for 

type II twins as m' across the plane normal to γ2. A third kind of twin called compound 

arises when all the twinning elements – Ps, ns, k1, k2, γ1 and γ2 – are rational. There is a 

fourth kind of twin called non-conventional where Ps and ns are rational, but k1, k2, γ1 and 

γ2 are irrational. Such twins have been observed in composite arrangements of compound 

twins [47] but are not pertinent to the present study. Frank [24] suggested that an 

experimentally observed twinning mode be characterized by parameters K, η, as shown in 

Figure 4.2 (c). 
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Figure 4.2 (a) A volume conserving plane-strain deformation shows two 
undistorted planes k1 and k2 that are simply rotated in the deformed medium (k1’ 

and k2’). (b) The k1 plane becomes the invariant plane of twinning when the 
deformed medium in (a) is further rotated by +α about ns (c) An illustration of 

experimentally observed twinning parameters K and η: the inset table shows their 
relationship with twinning elements described in the text. The table also shows the 

conjugate relation between type I and type II twins. 

The geometrical parameters and shear magnitudes for conjugate twinning modes 

can be predicted theoretically [22, 25–27, 29]. In the present work, we use the approach 

developed by Bilby and Crocker [26] and Bevis and Crocker [22, 29], where the 

parameters are deduced from the elements of correspondence matrices. In the present 

case, where the monoclinic unit cell is obtained by a small distortion of the cubic cell, 

correspondence matrices conform to cubic symmetry operations that are suppressed by 

this distortion. 

3.2 Topological Model 

While the CM evaluates the geometrical parameters defining a twinning mode, it 

fails to provide insight into the mechanism of formation and growth of twins. The study 

of twinning dislocations has led to a better understanding of the twinning mechanism 
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[27]. Pond, Hirth, and co-workers [35, 36, 45, 46] extensively studied the character of 

interfacial defects and presented a TM, which rigorously characterizes the dislocation and 

step character of twinning defects. Because of this dual topological character, twinning 

defects are referred to as disconnections, exhibiting both Burgers vector, b, and step 

height, h. In the literature, there are many accounts of disconnections in compound twins 

[35, 48–52]. In compound and type I twins, the motion of a disconnection along the K1 = 

k1 plane produces an engineering shear, γe = b/h, which has the same magnitude as the 

classical value, s, and is parallel to the classical shear direction, η1 = γ1. In addition, the 

nucleation and growth of type I and compound twins in terms of disconnection 

generation and motion have been modeled consistently with experimental observations 

[52–54]. Figure 4.3 is a schematic illustration of type I twins nucleated at a crystal 

surface source and growing into the bulk during compressive loading of NMG. The 

Burgers vector b is shown for the line sense ξ ∥ ns pointing out of the page. 
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Figure 4.3 Schematic illustration of the formation and growth of (a) (011)m and 
(b) (01�1)m type I twins in NMG under compressive load. The disconnections (b, h) 
nucleate near the corner of a parallelepiped specimen and propagate into the bulk 

by gliding along k1 planes. The disconnection line sense ξ ∥ ns points out of the page. 

In contrast, our knowledge of the formation and growth of type II twins is less 

developed. Recently, Pond and Hirth [38] presented a model in the framework of the TM 

that provides insight into the formation of type II twins; we apply this model to the case 

of NMG. Figure 4.4 is a schematic depiction of the formation of the type II twin during 

compressive loading of NMG. The (q11�1)m type II twin shown in Figure 4.4 is the 

conjugate of the (011)m type I twin shown in Figure 4.3 (a). Initially the disconnections 

(b, h) are generated at a surface source and propagate into the bulk by gliding along the k1 

planes (Figure 4.4 (a)), tending to form a lenticular twin tip. However, if the leading 

disconnections begin to accumulate on the plane perpendicular to k1, Figure 4.4 (b), they 

would gradually form a planar boundary in which the step character of the component 

defects has been lost. Each defect in this array produces a displacement field comprising 

both strain and rotational distortions. As the configuration relaxes, the strain field parallel 

to the final interface, Figure 4.4 (c), vanishes at long range. At the same time, the rotation 
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field, which sums to produce a rotation of 2α about ns, partitions symmetrically between 

the adjacent crystals: the rotation of the twin crystal is unconstrained because of the free 

surfaces. At equilibrium, the interface plane rotates relative to the fixed matrix crystal 

about ns and hence becomes parallel to k2, i.e. the type II conjugate has formed with 

interface K1 = k2, as shown in Figure 4.4 (c). 

We propose that the tip blunting of the initial type I twin occurs because of the 

stress-state imposed to induce twinning in single crystal specimens: for example, one 

method involves bending the specimen [90]. This would produce an inhomogeneous 

stress field: compressive in the upper region of the specimen but tensile in the lower part, 

as indicated schematically by the stress figures in Figure 4.4 (e). Thus, the leading 

disconnections would experience a diminishing driving force as they approach the neutral 

plane, and an opposing force thereafter. Furthermore, it is known that in a homogeneous 

stress field, the force necessary for an additional dislocation to join a tilt wall diminishes 

as the wall lengthens [55, 56]. We emphasize that specimen bending induces twin 

nucleation and formation of a type II twin: once the type II twin has been introduced in 

this manner, its dynamic properties are studied by the application of a homogeneous 

compressive or tensile stress to the specimen. 

The defect structure of a sharp type II interface viewed along the direction ξ ∥ ns 

is schematically illustrated in Figure 4.4 (d). The step character of individual defects is 

lost, and there is no residual component of b along k2. Thus, the tilt array can be 

envisaged as a wall of grain boundary dislocations with Burgers vector bg = b cosα and 

spacing h/cosα. Hence from the geometry of Figure 4.4 (d) we see that α = tan-1(b/2h): 

using the magnitudes for |b| and h listed in Section 4.2, we find α = 3.64°, which is the 
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same as the value obtained from the CM. Thus, the total misorientation across the 

boundary is the combination of the type I misorientation, nk1/π, with the supplementary 

tilt, ns/2α. This combination brings the [011]m directions of the two crystals into 

coincidence, thereby forming the η1 = γ2 direction. Thus, the final misorientation can be 

expressed as γ2/π, or as a 2’ axis along this direction interrelating the two crystals. While 

the long-range strain field of the sharp interface vanishes, we presume that its core energy 

may be substantial because the component defects in Figure 4.4 (c) lie on adjacent k1 

planes. Atomic scale simulations are required to determine such energies, but this is 

beyond the scope of the present work. Some authors [27, 30, 57–60] have suggested the 

twin interface may reconfigure into rational facets lying in the η1 = γ2 zone: this 

possibility is investigated further in Appendix C. Pond and Hirth [38] suggested another 

relaxation mechanism where the core energy of the defects diminishes by kinking into 

rational segments while retaining the average line direction, ξ ∥ ns. Since the kinked 

defects retain the overall average line direction, they do not produce a long-range strain 

field; nonetheless, a strain field arises near the interface extending to a distance on the 

order of the kink length. Such a kinked configuration might also affect the mechanism 

and kinetics of interface migration in response to an applied driving force, as is explored 

later. 
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Figure 4.4 Schematic illustration of the formation of (q11�1)m type II twins in 
NMG. (a) Initially, nascent (011)m type I disconnections nucleate at the surface 

source in response to a local compressive stress. (b) The notional intermediate stage 
in an inhomogeneous stress field due to specimen bending: here the disconnections 

begin to accumulate and form a tilt wall perpendicular to the glide plane k1. (c) 
Finally, a (q11�1)m type II conjugate is formed after symmetrical partitioning of the 

rotational distortions across the tilt wall. (d) The exploded view of the sharp type II 
interface in (c), showing the character of the defects in the array: bg = b cosα is the 

resultant Burgers vector of each grain boundary dislocation. (e) The stress 
distribution in a bent parallelepiped specimen showing the stress reversal across the 

neutral plane, which promotes tip blunting. 

When twin nucleation occurs in the bulk, it has been suggested [38] that whether 

the type I or the type II conjugate forms is the outcome of a competitive process. The 

model is consistent with experimental findings where predominantly either a type I or a 

type II twin forms [38, 39]. However, experimental observations of NMG [19, 61, 62] 

show that non-conjugate type I and type II pairs of twins are sometimes observed 

following surface nucleation, implying that the activation energy of both processes may 

be similar. In the present article, our focus is the difference in mobility between type I 

and type II twins. 
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4. Structural Models of Type II Twins in NMG 

4.1 Previous Investigations 

Researchers have investigated the structure of type II twins in NMG using a 

variety of experimental techniques. While observations using optical microscopy [13, 

63], X-ray diffraction [13, 15, 64, 65], and electron diffraction [14, 16, 66] are consistent 

with the twinning parameters predicted by the CM, the atomic structure of type II twins is 

not yet established. Based on high-resolution transmission electron microscopy 

(HRTEM) observations, there are two opposing conjectures:  

The TB is inherently irrational, and thus we find randomly curved strain contrast 

along the boundary in HRTEM images [31, 37, 66, 67]. 

The TB consists of terraces of a nearest low-index rational plane with periodic 

step-like features. The overall boundary is close to the predicted irrational plane [27, 30, 

57–60]. 

Matsuda et al. [66] employed HRTEM to study various twins including the type II 

twinning mode in NMG with η1 = <5�5�1>10M = <1�01�>m. Although the authors were able to 

simultaneously resolve lattice fringes of the adjacent crystals, the boundary was not 

oriented edge-on to the beam, and thus image interpretation was difficult. Moreover, no 

step-like line-defects were discerned.  

Müllner [68] adopted the TM of type II boundaries and showed that disconnection 

loops can be formally defined on the irrational boundary based on the elastic properties of 

crystals. Moreover, using this formalism, Müllner described the difference in twinning 

stress and the impact of temperature on the twinning stress of type I and type II 

boundaries. 
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Knowles and Smith [69] investigated [011] type II TBs in a monoclinic NiTi 

using TEM, and noted that the common (111�) planes are inclined at 10 ± 2° to K1 = k2. 

Later, using HRTEM, Knowles [30] proposed that these TBs may be composed of a 

combination of (111�) and (011�) facets. Further investigation by Liu and Xie [57, 58] 

using HRTEM combined with image simulation reached similar conclusions. 

4.2 Crystallography of Twins in NMG 

The crystallographic parameters predicted by the CM of twinning in NMG are set 

out in Appendix B. The point symmetry of monoclinic NMG martensite and of the cubic 

parent phase are 2/m (order 4) and m3�m (order 48). Therefore, we obtain twelve 

monoclinic variants interrelated by the symmetry operations of the parent group, which 

are suppressed by the monoclinic deformation. These operations define correspondence 

matrices, Ci, from which the twinning parameters are deduced. The predicted twinning 

modes are presented in Table 4.1. 

Using the lattice parameters of Sozinov et al. [15], as listed in Section 2, the 

values of the irrational indices are q1 = 0.1058, q2 = 0.0983, r1 = 0.0924 and r2 = 0.0866. 

The Burgers vector and step height, (b, h), of defects separating energetically 

degenerate regions of an interface (designated admissible defects) are obtained using the 

topological theory of interfacial defects [45, 46], which is based on the fundamental 

principles of symmetry breaking. It is found that the Burgers vector of admissible 

disconnections corresponds to differences between translation vectors in the adjacent 

crystals: thus, Burgers vectors, expressed in the parent coordinate frame, are given by: 

b = P-1 t(λ) - t(μ)        (1) 
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where t(λ) and t(μ) are translation vectors of the upper (twin) and the lower (matrix) 

crystal, as in Figure 4.5, and P represents the coordinate transformation from the μ to λ 

frame. In the present case, we take P to correspond to an operation of the form 2’, as 

defined in Section 3: thus, for type I boundaries, P(I) corresponds to nk1/π, and for type 

II, P(II) corresponds to γ2/π. The Burgers vector of perfect interfacial defects are 

independent of the relative position of the adjacent crystals, designated p in the formal 

theory [45, 46]. However, the magnitudes of atomic shuffles accompanying 

disconnection motion do depend on p, as described elsewhere [52, 54]. The step height of 

a glissile twinning disconnection, h, is given by, 

h = n ⋅ P-1 t(λ) = n ⋅ t(μ)       (2) 

where n represents the unit vector normal to the twin interface. For disconnections in 

type I boundaries, h also corresponds to an integral number of lattice plane spacings 

parallel to the interface, i.e., h = n dk1, where n is an integer, and dk1 is the interplanar 

spacing of the k1 lattice planes, as illustrated schematically in Figure 4.5 (a). 

Equations (1) and (2) are derived from fundamental principles of symmetry 

breaking [45, 46] so are also valid for disconnections in irrational type II boundaries. 

Admissible defects now separate energetically degenerate regions which are locally 

isomorphic. Table 4.2 lists the smallest magnitude values of (b, h) for disconnections in 

selected examples of all three types of TBs specified in Table 4.1. The corresponding 

engineering shear values, γe, are the same as the values from the CM, and we note that the 

magnitudes of γe for disconnections in conjugate interfaces are equal. Moreover, the 

Burgers vectors are parallel to the relevant η1. The disconnection depicted in Figure 4.5 

(b) exhibits the topological properties, (b, h), listed in Table 4.2, where h is understood as 
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the offset in a type II boundary. Motion of this glissile disconnection along a k2 boundary 

would produce coupled shear and migration, manifested macroscopically as the 

engineering shear, γe. If in reality a defect is less localized, its topological properties 

remain unchanged overall. More complex perturbations of a type II boundary can be 

envisioned, and can be modeled for example in terms of disconnection dipoles [70, 71]. 

Table 4.1 Crystallographic parameters of twinning modes in NMG expressed in 
the approximated martensite framework. The shear values, s, and non-integer 
coefficients q and r are obtained using the lattice parameters determined by Sozinov 
et al. [15].  

Twin type k1 k2 γ1 γ2 s 

Compound 
(110)m (1�10)m [1�10]m [110]m 0.0091 

(010)m (100)m [100]m [010]m 0.0126 

type I 
& 

type II 

(011)m (q11�1)m [r11�1]m [011]m 0.1274 

(01�1)m (q1� 11)m [r1�11]m [01�1]m 0.1274 

(101)m (1�q21)m [1�r21]m [101]m 0.1365 

(1�01)m (1q2� 1)m [1r2�1]m [1�01]m 0.1365 

q1 = (2 am bm cos γm) / (cm
2 - bm

2) r1 = (2 bm cm
2 cos γm) / am(cm

2 - bm
2 sin2 γm) 

q2 = (2 am bm cos γm) / (cm
2 - am

2) r2 = (2 am cm
2 cos γm) / bm(cm

2 - am
2 sin2 γm) 
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Figure 4.5 Schematic illustration of a disconnection in (a) (011)m type I twin 
interface, and (b) (q11�1)m type II twin interface. 

4.3 Interface Models 

The sharp interface model of type II boundaries is illustrated in Figure 4.4 (d). 

Here, the defects have irrational line direction, ξ ∥ ns, and are spaced h/cosα apart. In a 

possible relaxed structure, the disconnections in the glide plane k1 are kinked into rational 

segments to minimize their line energy [38] (Figure 4.6). In the present case, where k1 = 

(011)m and k2 = (q11�1)m, the average line sense, ξ ∥ [1 q1/2 q1� /2]m can be approximated as 

≈ 10[100]m + ½[011�]m. These two line segments lie in the (01�1)m and (1�00)m planes 

respectively, which are common to both the twin and matrix as they belong to the η1 = 

[011]m zone. Since the k1 planes are misaligned by 2α about ns, the [100]μ
m and [1�00]λ

m 

directions are not parallel, and neither are [011�]μ
m and [01�1]λ

m, as illustrated in Figure 4.6 

(a).  In the case of ordered line segments, as illustrated in Figure 4.6 (b), where one 

segment is aligned with those above and below it in the array, the boundary is wider than 

the sharp k2 = (q11�1)m form because [100]μ
m is inclined by 4.13° to ns. The kinked 
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configuration does not exhibit a long-range displacement field, although short-range 

stresses arise. One can imagine less ordered defect configurations where the component 

line segments are of different lengths and not completely aligned in the array, as shown in 

Figure 4.6 (c). Also, in this situation, no long-range displacement field arises, but short-

range stresses appear depending on the degree of disorder. We refer to such relaxed 

structures as ragged type II boundaries (Figure 4.6) in contrast to the sharp interface 

depicted in Figure 4.4 (c) and (d). 

All planes in the η1 zone are common to the parent and twin crystals: thus, a 

diffraction pattern taken with the beam along η1 resembles one of a single crystal [31, 37, 

66, 69]. However, these common planes are rationally commensurate only in the η1 

direction [27]: an example is illustrated in Figure 4.7 (a) for the common (01�1)m planes. 

An engineering coherency shear strain of magnitude 0.0092 parallel to η1 would bring 

[100]μ
m and [1�00]λ

m into parallelism, thereby creating fully coherent (01�1)m planes, as 

seen in Figure 4.7 (b). These planes are inclined by only 4.12° to the k2 planes and may 

exhibit relatively modest interfacial energy. The coherency strain produces a long-range 

displacement field unless an interfacial defect array compensates this field. We refer to 

such an interface structure as being a (misfit-relieved) coherent (low-index) approximant. 

The immediate vicinity of such a faceted boundary resembles a compound twin with a 

coherent rational interface and a rational twinning direction. In the published HRTEM 

images of type II boundaries in NMG [66], step-like defects were not discernible due to 

the local strain field, so direct experimental observation of the approximant structure is 

not available. In Appendix C, we show that in NMG the coherency strain can be 

accommodated by an array of admissible screw disconnections with b ∥ [01�1�]m. However, 
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the sign of the steps associated with these disconnections causes the average orientation 

of the faceted configuration to rotate away from k2 rather than towards it. 

 

Figure 4.6 (a) Schematic illustration of defect kinking along low energy Peierls 
valleys in a (q11�1)m type II twin. Here, ξ ∥ ns = [1 q1/2  q1� /2]m ≈ 10[100]m + ½ [011�]m. 

(b) An orderly array of aligned kinked defects. (c) A disorderly array of non-aligned 
kinked defects.  
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Figure 4.7 Schematic illustration of the common (01�1)m planes (a) before and (b) 
after they are sheared into 2-D coherency. In (a), the angle between [100]μm and 

[1�00]λm (in reality only 0.52°) is exaggerated. The partitioning of coherency strain 
between the μ and λ crystals results in [100]m and [011]m becoming orthogonal. 

5. Discussion 

5.1 Properties of Type I and Type II Twins 

Experimental observations indicate that the physical properties of type I and type 

II twins differ, notably in NMG [3, 61, 65, 72]. Earlier works have developed 

phenomenological descriptions of the observed kinetic behavior of twins: for example, 

Faran and Shilo [73] found experimentally that the behavior is bimodal, and formulated 

an expression relating the velocity of a propagating boundary to the thermodynamic 

driving force. At driving forces below a threshold value, go, they propose that motion is 

governed by thermally activated motion of disconnections, and invoke a mobility 

coefficient. Above go, disconnection motion is modeled as athermal. In later experiments 

by Saren and colleagues [74, 75], bimodal kinetic behavior was not observed, and the 

authors pointed out the importance of avoiding any mechanical constraints in the 

experimental apparatus, and also taking the inertia of the growing twin into account when 
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modeling. On this basis, they derived a differential equation relating velocity to magnetic 

driving force, while incorporating the material’s density and specimen geometry. 

Here, building on these empirical studies, we outline aspects of disconnection 

motion in type I and type II twins which are relevant to the development of a mechanistic 

understanding of boundary kinetics. In particular, we consider the twinning stress for type 

I and type II twins and their dependence on temperature, σI
t(T) and σII

t(T), respectively. 

Twinning stress is the stress required to sustain TB motion [76]. In the case of type I TBs, 

the basic mechanism of twinning is the motion of glissile disconnections along low-

energy, sharp interfaces [52–54]. Here, we explore the possibility that a similar 

mechanism operates for type II twins, considering that a twin interface may be (a) a 

relatively high-energy, sharp interface, (b) a disordered arrangement of kinked 

disconnections, or (c) a coherently faceted interface. Extrinsic microstructural features 

such as magnetic domain interactions [77] and junctions between compatible twins 

influence disconnection motion [34, 78]. For simplicity, we neglect such extrinsic effects 

here, and consider only effects on the disconnection mobility intrinsic to the interface 

structure. 

The two primary features governing TB mobility are the nucleation rate, Ṅ,  of 

glissile disconnections at a given applied stress and the twin growth rate, Ġ, 

perpendicular to the boundary. For homogenous nucleation of disconnection loops, the 

activation energy at a fixed stress is approximately proportional to the magnitude of |b|2. 

As such, thermal activation contributes significantly to Ṅ̇ at modest stresses because of 

the small magnitude of Burgers vectors of twinning disconnections [79]. Ġ is expected to 

be dominated by the disconnection mobility. The Peierls stress necessary to move a 
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straight edge dislocation has the form τp = 2Gm/(1-ν) exp(-2πw/b), where Gm is the shear 

modulus, ν is the Poisson’s ratio, and w is the defect core width. Thus, wide core width 

and small magnitude of Burgers vector lead to mobile defects.  Attendant shuffling 

reduces the disconnection mobility [27]: shuffling is defined here as any additional 

atomic displacements necessary to restore perfect twin crystal structure beyond the 

displacement of each atom by b when a disconnection moves along the boundary [54]. 

Since small step height, h, is thought to promote both wide cores and simple shuffles [27, 

80], it is used here as a guide to mobility. 

To illustrate the comparison of type I and type II twins in NMG, we choose a non-

conjugate pair of incompatible twins which has been observed in several experimental 

investigations [19, 61, 62]. The K1 planes of these two twins, (01�1)m and (q11�1)m, have 

very similar orientations, as depicted schematically in Figure 4.8: thus their traces on a 

(100)m surface differ by only about 6° [19, 61, 62]. Inspection of Table 4.1 and Figure 4.3 

shows that a (01�1)m twin is related to the conjugate of the (q11�1)m twin, i.e. the (011)m 

twin, by the (001)m crystal mirror plane. The early stage of growth of the (01�1)m twin is 

depicted schematically in Figure 4.3 (b), and formation of the (q11�1)m twin from its 

(011)m precursor is shown in Figure 4.4. As the twin grows, the area of the TB increases 

until the twin transects the entire specimen: we refer to this position, where the area of 

TB has reached maximum, as the reference location, as shown in Figure 4.8 for type I (a) 

and type II (b) twins. 
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Figure 4.8 Schematic illustration of (a) (01�1)m type I twin boundary (TB) and (b) 
(q11�1)m type II TB in the reference location. The k1, γ1 in (a) and k2, γ2 in (b) are not 

a conjugate pair. 

5.2 Mobility of Type I Twins 

In a (01�1)m type I twin, glissile disconnections with smallest magnitude Burgers 

vector have |b|=0.0259 nm with a corresponding high Ṅ̇ at ambient temperature. At 

equilibrium, the type I TB at the reference location is flat with no disconnections present: 

it is anticipated that the interface structure is sharp and of relatively low energy. In 

response to a driving force, nucleation and propagation of disconnections along the 

rational TB produce the engineering shear γe = |b|/h = 0.1274, where h = 𝑑𝑑(02�2)𝑚𝑚  = 0.2035 

nm. Since b is parallel to η1 = [r1�11]m, these defects have pure edge character if their line 

direction, ξ, is parallel to ns=[1 q1/2 q1/2]m. Since the line direction is irrational, these 

defects may lie predominantly along [100]m Peierls valleys for minimum energy, with 

kinks spaced approximately every 10am, as discussed in Section 4.3. The core width, w, is 

best investigated using computer simulations, but limited results have been published for 
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defects in NMG. Nonetheless, simulations of disconnections for compound twins in hcp 

metals indicate that the cores of disconnections with small h can be relatively wide [81–

83].  

The disconnection motion described above is conservative, i.e. no climb is 

involved, because b is parallel to the (01�1)m twin plane. Moreover, shuffling 

accompanying the defect motion is expected to be small: in austenitic NMG, all four 

atoms in the basis lie in the (01�1)c plane, and since the martensite is a slight monoclinic 

distortion of the cubic phase, all four atoms in the basis are expected to remain close to 

the (01�1)m plane. Thus, all atoms are displaced by b as a disconnection sweeps along the 

boundary, and minimal additional shuffles are anticipated. 

Taking all the factors mentioned above into account, we anticipate relatively easy 

motion of disconnections in type I twins because Ṅ and Ġ are significant. For modest 

driving forces, kink motion along the disconnections, rather than rigid disconnection 

motion, may be the elemental mechanism of twin growth: quantitative assessment of the 

energy barrier opposing the motion is beyond the scope of the paper. Furthermore, we 

surmise that TB mobility is temperature dependent because the activation energy for 

disconnection motion in a periodic rational interface, either by rigid disconnection motion 

or kink motion, is assisted by thermal energy. 

It has also been reported that the twinning stress is a function of imposed strain 

rate [72, 84, 85], and this has been ascribed to increased viscous drag at higher velocities. 

This behavior may arise in part from increased damping at higher disconnection 

velocities, analogous to that of dislocation velocity as a function of applied stress in 

single crystals [79], but additional dissipative mechanisms, such as magnetization 
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rotation and domain wall motion, are also likely to be active in NMG, and are not 

considered further here. 

5.3 Mobility of Type II Twins 

The formation of a (q11�1)m type II TB according to the TM, is depicted 

schematically in Figure 4.4. Disconnection half-loops with b parallel to [r11�1]m are 

initially nucleated at the surface source and glide on the (011)m plane forming a nascent 

type I twin. However, their progress is impeded, as described in Section 3.2, so they 

accumulate into a wall of edge defects approximately perpendicular to (011)m. The 

displacement field of these defects, with line direction ξ parallel to ns = [1 q1/2 q1� /2]m, 

exhibits both strain and rotational distortion. The latter sums to a rigid body rotation 

equal to 2α = 7.29° between the matrix and twin. This rotational relaxation is 

unconstrained in the present case since the twin crystal has free surfaces. 

5.3.1 Sharp (q11�1)m Type II Twins 

Figure 4.8 (b) schematically illustrates the structure of this sharp (q11�1)m type II 

twin in the reference location when viewed along ns. Disconnections can be introduced 

into this boundary, as outlined in Section 4.2 and illustrated schematically in Figure 4.5 

(b): those with the smallest Burgers vector and step height are formed using t(λ) = 

½[110]m and t(μ) = ½[1�01]m in Equations (1) and (2), and P(II) corresponds to the 2’ axis 

parallel to η1 = [011]m. The resulting b is parallel to η1 with magnitude 0.0231 nm, and h 

= 0.1815 nm. The result is consistent with previous modeling in terms of an offset tilt 

wall [70], as illustrated schematically in Figure 4.5 (b), and γe = 0.1274, identical to that 

of the type I conjugate twin. Thus, glissile disconnections could either be nucleated as 
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half-loops at the surface or homogeneously on the boundary as complete loops. In either 

case, Ṅ, is expected to be similar to that of type I twins at ambient temperature. 

As depicted in Figure 4.4, the defects in the type II TB can be regarded either as 

disconnections with characteristic topological parameters (b, h) or as offsets in the tilt 

wall [70]. In the latter visualization, type I disconnections initially glide on the (011)m 

planes and form tilt walls in the manner described by Read and Shockley [86]. In this 

configuration, the disconnections lose their step character, becoming grain boundary 

dislocations with residual Burgers vector, bg, perpendicular to the interface. Thus, lateral 

motion of type II disconnections, (b, h), can alternatively be regarded as motion of the 

grain boundary dislocations in the direction normal to the interface. Dynamic simulations 

are needed to elucidate the extent of shuffling in the present case. Nonetheless, as has 

been described in Section 5.2, shuffling is thought to be minimal for such motion. 

Unlike type I boundaries considered previously, these type II disconnections are 

superimposed on a high energy TB, with only one rational direction, η1, in the twin plane. 

Therefore, deep Peierls valleys can only be envisaged lying along this direction. Thus, 

disconnections with line direction other than η1 are likely to have delocalized cores. 

Consequently, we expect σII
t(T) to be lower than σI

t(T). Moreover, if the activation energy 

for disconnection motion is comparable to thermal energy, σII
t(T) would be effectively 

temperature independent, as is observed experimentally [61, 87]. 

5.3.2 Ragged (q11�1)m Type II Twins 

In this model, the type I disconnections that accumulate in the tilt wall are kinked 

on their rational (011)m glide planes. The line direction, ξ ∥ [1 0.0529 0.0529��������]m in the 

sharp interface can be approximated as ≈ 10[100]m + ½[011�]m. In other words, a 
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disconnection lies along a [100]m Peierls valley with kinks spaced about every 10am, as 

depicted schematically in Figure 4.6. In the most orderly arrangement, the kinks on the 

successive (011)m planes are vertically aligned (Figure 4.6 (b)), and increasingly 

disordered configurations can be imagined (Figure 4.6 (c)). 

As discussed in Section 5.3.1, the migration of ragged type II TBs can be 

regarded either in terms of type II disconnections (b, h), or forward motion of the now 

kinked grain boundary dislocations in offset tilt walls. One consequence of the boundary 

becoming less sharp is that the effective width, w, of type II disconnections increases, 

thereby tending to lower σII
t(T) and reducing the activation barrier for defect motion. 

5.3.3 Coherently Faceted Type II Twin Approximants 

In Section 4.2 the concept of a (misfit-relieved) coherent (low-index) approximant 

to a type II twin was introduced. In this relaxation mechanism, the sharp type II TB 

maximizes the extent of coherent (01�1)m interface. In the reference location, this interface 

structure would differ from that of the (01�1)m type I twin discussed in Section 5.2. While 

the latter is flat with no disconnections present, the former is reticulated by an array of 

screw disconnections to accommodate the shear coherency strain. We assume that the 

coherency strain appears spontaneously, and that the screw disconnections with bm ∥ 

[01�1�]m are nucleated at the surface sources. As shown in Appendix C, the final interface 

orientation of the coherent approximant TB rotates away from (q11�1)m. Under the 

influence of a driving force, the disconnections in the array move synchronously 

perpendicular to their line direction thereby producing an engineering shear. Since the 

overall orientation relationship between the crystals has not changed, the smallest 

magnitude Burgers vector, given in Table 4.2 for the (q11�1)m twin, is enhanced by the 
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coherency strain, giving |bm| = 0.0233 nm. Similarly, h = 𝑑𝑑(02�2)𝑚𝑚  = 0.2035 nm, resulting 

in γe = 0.1147. If the coherency strain is assumed to be partitioned equally between the 

crystals, the rational vectors [100]m and [011�]m in the (01�1)m interface become 

orthogonal, thus resembling a compound twin structure near the interface. Defect motion 

would therefore need to be activated thermally to surmount the Peierls barriers. 

Consequently, we expect σII
t(T) to be higher than for the ragged structure. Further, σII

t(T) 

of the coherent approximant would be temperature dependent. 

6. Conclusion 

The objective of the present work is to elucidate the exceptional mobility of type 

II twins in NMG. Their structure has been investigated through the TM [38], with 

particular emphasis on the role of disconnections in determining the twinning stress and 

its temperature dependence, σII
t(T). Our principal conclusions are as follows. 

A type II twin can form by surface nucleation of a precursor twin, which is its 

type I conjugate, as in the model of Pond and Hirth [38]. An applied stress leads to 

nucleation of disconnections in the precursor k1 plane, which due to lack of mobility, 

accumulate and form a tilt wall; after symmetric partitioning of the rotational distortions, 

the boundary exhibits the crystallography of the k2 twin predicted by the CM [22, 27]. 

The defects forming this wall may form (i) a “sharp” array of aligned edge dislocations, 

or (ii) a more “ragged” configuration by virtue of individual defects becoming kinked in 

their k1 plane, and/or progressive misalignment of defects within the array, or (iii) a 

misfit-relieved coherently faceted interface. 

Sharp type II twins can host glissile disconnections with high mobility, leading to 

fast interface migration. It is suggested that this arises because such disconnections have 
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wider cores than their counterparts in type I twins, combined with simple shuffles 

accompanying their motion. Ancillary consequences are that the magnitude and 

temperature dependence of σII
t(T) for type II twins are expected to be lower than those 

quantities for type I twins, σI
t(T). For ragged type II twins, we anticipate this trend to be 

more pronounced because of the increase in effective core width. 

Previous authors have suggested that a type II twin may lower its interfacial 

energy by reconfiguring into a misfit-relieved assembly of coherent low-index facets [30, 

57–60]. Here, we considered such a mechanism for (q11�1)m type II twins by formation of 

(01�1)m facets. We assume the (01�1)m facets spontaneously adopt a 2-D periodic structure 

through a coherency strain of less than 1%, and this displacement field is accommodated 

by an array of superimposed screw disconnections. However, according to the TM, the 

step sense of disconnections with the appropriate sense of Burgers vector leads to the 

misfit-relieved interface that rotates away from (q11�1)m rather than towards it, contrary to 

experimental observations. Thus, we find that surface nucleated (q11�1)m type II twins in 

NMG are unlikely to adopt a facetted configuration. This conclusion is consistent with 

the expectation that such structures would exhibit higher magnitudes of σII
t(T) and lower 

mobilities because the admissible disconnections would have relatively narrower cores. 
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Appendices 

Appendix A: Transformation Matrices 

Let α and β designate alternative unit cell representations of the same crystal. 

Then reciprocal space vectors transform co-variantly and real space vectors transform 

contra-variantly [88]: 

(h k l)α = (h k l)β βPα        (A1) 

�
𝑢𝑢
𝑣𝑣
𝑤𝑤

�
𝛼𝛼

 = αPβ �
𝑢𝑢′
𝑣𝑣′
𝑤𝑤′

�
𝛽𝛽

        (A2) 

where, αPβ = βPα
-1 
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From the electron diffraction pattern shown in Figure 4.1 (c), we observe, (0 0 

10)10M → (2�2�0)m, (2�00)10M →(2�20)m and (020)10M → (002)m. Thus, we calculate the 

transformation matrices as follows: 

10MPm = 1
5

�
5 −5 0
0 0 5

−1 −1 0
�       (A3) 

mP10M = 1
2

�
1 0 −5

−1 0 −5
0 2 0

�       (A4) 

Appendix B: Bevis & Crocker Tttttheory 

A homogeneous simple shear is represented by an affine transformation as: 

v = S u          (B1) 

where u and v are lattice vectors of the parent and twin respectively, and S is a second 

rank tensor defining the shear transformation. In some general coordinate system, A, the 

Equation B1 can be written using the Einstein summation convention as: 

Avi = ASj
i Auj          (B2) 

In a general coordinate system, A, ASj
i has the form: 

ASj
i = δj

i + s Ali Amj         (B3) 

where δj
i is the Kronecker delta, l is the unit vector parallel to the shear direction, m is the 

unit vector normal to the invariant plane and s is the twinning shear. In general, Equation 

B2 yields irrational components for Av. However, v is a lattice vector of the twin in a new 

coordinate system B, where B is related to A by some rotation or reflection, L. So, 

Bv = L AS Au = C Au         (B4) 

where C is the unimodular correspondence matrix.  
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Once the correspondence matrix, C, is specified, Bevis and Crocker [22] showed 

that we can utilize its properties to calculate s, l, and m. Using matrix notation, the 

solutions for s, l, and m are found as follows: 

s2 = trace (C’ G C G-1) − 3       (B5) 

where, Gij = ai · aj is the metric tensor, and ai are the basis vectors. Using, Y = G − C’ G 

C, we obtain three quadratic equations, defined by the equation: 

Yii mj
2 − 2 Yij mi mj + Yjj mi

2 = 0      (6) 

where i ≠ j, and i, j = 1, 2, 3. Equation B6 yields two possible solutions for m, which are 

the conjugate undistorted planes k1 and k2. l can then be obtained directly from Equation 

B3 or derived from Y-1 using three quadratic equations like B6. Yet again, we obtain two 

solutions for l, which are the conjugate shear directions γ1 and γ2. 

In the case of twinning, Equation B4 shows that a correspondence matrix for a 

conventional twin can be formulated as a 2’ operation. Thus, the complete set of 

correspondence matrices for conventional twins is isomorphous with the 2-fold symmetry 

operations which were present in the austenite, but which are suppressed by the 

monoclinic distortion. There are 12 such operations in the present case, but, in the light of 

Equation B6 which shows that there are two solutions, k1 and k2, for each choice of C, we 

may select just 6 of these. Furthermore, it is helpful to subdivide these 6 into the 

operations which leave the (001)m crystal mirror plane invariant, i.e. 2'[100]c and 2'[110]c, 

because these lead to compound twins, and the others, 2'[101]c, 2'[1�01]c, 2'[011]c and 2'[01�1]c, 

which lead to type I – type II pairs. The C matrix for each of these operations is listed in 

Table 4.B3.  
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Table 4.B3 Correspondence matrices formulated as 2’ symmetry operations that 
are suppressed in the martensite phase compared to its austenite parent phase. 

 Compound twins Type I and type II twins 

 2'[100]c 2'[110]c 2'[011]c 2'[01�1]c 2'[101]c 2'[1�01]c 

C �
1 0 0
0 -1 0
0 0 -1

� �
0 1 0
1 0 0
0 0 -1

� �
-1 0 0
0 0 1
0 1 0

� �
-1 0 0
0 0 -1
0 -1 0

� �
0 0 1
0 -1 0
1 0 0

� �
0 0 -1
0 -1 0
-1 0 0

� 

 

Appendix C: Coherently Faceted Approximant to Type II Interface 

It is possible that the energy of a type II TB can be reduced by the formation of 

coherent facets: for example, recent work by Mohammed and Sehitoglu [60] used 

atomic-scale simulation to investigate a faceted approximant structure in NiTi. Since the 

boundary plane of a type II twin is an invariant plane, there is no long-range elastic strain 

field. If the boundary reconfigures to become faceted, any coherency strain at these facets 

(or terraces) would have to be accommodated by the introduction of an array of 

appropriate interfacial defects. If these defects are disconnections, their step character 

would cause the overall interface orientation to rotate away from the facet orientation. In 

an ideal approximant structure, the array of misfit-removing defects would not only fully 

accommodate any coherency strain but also rotate the interface orientation to that of the 

type II twin. Here, we consider the (q11�1)m type II twin in NMG. 

The axis/angle pair defining the orientation relationship between the two crystals 

in the approximant configuration is taken to be the same as that for the type II twin, i.e. 

P(II) = [011]m/π, so all planes in the [011]m zone are common to both crystals. However, 

these planes are not coherent in 2-D, i.e. [011]m is the only coincident rational direction in 

these planes. We focus on the (01�1)m plane, which is inclined by only 4.12° to (q11�1)m. 
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As illustrated in Figure 4.7, this plane becomes coherent in 2-D by the imposition of a 

small coherency shear strain parallel to [011]m. Such a coherency strain can be 

accommodated by a superimposed array of screw disconnections, and, since these defects 

have step character, the average interface plane consequently rotates away from the 

(01�1)m “terrace” orientation. We investigate whether the misfit can be fully relieved in 

this manner, and whether the interface structure rotates to an orientation close to the 

(q11�1)m plane. Since (01�1)m type I TBs are observed experimentally in NMG [19, 61, 62], 

implying that they have low interfacial energy, this stepped configuration with (01�1)m 

terraces might be energetically feasible. In the coherently strained (01�1)m terrace 

illustrated in Figure 4.7 (b), the [100]m and [011]m directions become orthogonal, whereas 

they are not so in a (01�1)m type I interface. 

We imagine the creation of a bicrystal with a 2-D coherent (01�1)m planar interface 

by the application of shear tractions to the external (top and bottom) surfaces: these 

tractions produce homogenous strains which are equally partitioned between the two 

crystals. Thus, the directions [100]μ
m and [1�00]λ

m, which were originally inclined by 

0.53°, are brought into parallelism, and become perpendicular to the common [011]m 

axis. The defect content of the 2-D coherent interface can be established by applying the 

Frank-Bilby [89] equation. We introduce a coordinate frame where the coherent (01�1)m 

terrace plane has embedded interface coordinates x, y, z with x ∥ [011]m and z parallel to 

the interface normal. Following Hirth et al. [89], we define the matrix, Dij, which 

quantifies the elastic distortions required to transform the “natural” bicrystal into the 

“sheared-coherent” form: the only non-zero element is D12 = -2⋅tan(0.53°/2) = -0.0092. 

When this matrix operates on a probe vector, v, we obtain the coherency dislocation 
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content, bc, necessary to sustain coherency. Using v = [0, -vy, 0] (for consistency with the 

RH/FS convention [79]), we obtain bc = [-D12 vy, 0, 0]. Thus, bc is parallel to x, so these 

dislocations have RH screw character. 

To compensate for the resulting displacement field, we introduce an array of 

equally spaced LH screw disconnections (bm, hm) in the interface, where bm = P(II)-1 tc(λ) 

– tc(μ), and hm = n ⋅ tc(μ) = n ⋅ P(II)-1 tc(λ): here, tc(μ) and tc(λ) are translation vectors in 

the coherent dichromatic pattern (CDP), and n is the unit normal to the (01�1)m plane (i.e. 

the same as m in Equation B6). For the smallest magnitude |bm|, we use tc(μ)= ½ [101�]m 

and tc(λ) =½ [1�1�0]m, i.e. rational vectors with opposite sense of those shown in Table 4.2 

for disconnections in the (q11�1)m twin. These translation vectors give us bm ∥ [01�1�]m. The 

coherency strain enhances the magnitude of the Burgers vector by (1 + |D12|) compared 

with the value given in Table 4.2 for the type II twin, giving |bm|=0.0233 nm, and the 

defects’ step height is hm = 𝑑𝑑(02�2)𝑚𝑚  = 0.2035 nm. 

This disconnection array is shown schematically in Figure 4.C9. We define a 

second interfacial coordinate frame x’, y’, z’, inclined to the terrace by angle θ. In the 

terrace frame, the Burgers vector can be written as bm =[-bx
m, 0, 0], and remains the same 

when resolved into the inclined interface frame. The distortion matrix transformed into 

the inclined frame has non-zero components D12’ = D12 cosθ, and D13’ = -D12 sinθ. Thus, 

for misfit relief on that plane, i.e. B = -bc, and putting vy = L, where L is the disconnection 

spacing on this plane, we have L D12 cosθ = bx
m. Since sinθ = hm/L, we have tanθ = hm 

D12/bx
m, and hence θ = 4.59° in the present case. The residual strain, D13’ < 0.1%, cannot 

be compensated by any regular defect array in the x’y’ plane. Thus, for NMG, the 
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partially misfit-relieved faceted coherent plane would be inclined at 4.12° + 4.59° = 

8.71°, i.e. it rotates away from the invariant (q11�1)m plane, as shown in Figure 4.C9. 

Referring to Figure 4.C9, we can determine whether the stress indicated in Figure 

4.4 would grow or diminish the twin crystal. In the present case, the applied shear causes 

the disconnections in the array to move leftwards thereby promoting twin growth. The 

resulting engineering strain would have magnitude 0.1147. 

 

Figure 4. 9 Schematic illustration of misfit accommodation at a coherently 
faceted approximant structure.  The line direction of RH coherency dislocations, ξc, 

points out of the page, parallel to [011]m. The angle between (01�1)m and (q11�1)m is 
4.12°. The LH screw misfit disconnections have bm anti-parallel to ξc and a negative 

sense of steps. The direction ns is the average line direction of the twinning 
disconnections in the (q11�1)m twin plane. 
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Abstract 

The mobility of twin boundaries determines the performance of shape memory 

alloys. A martensitic transformation gives rise to a hierarchical twin microstructure with 

various interface and interface junction types. Using the example of the magnetic shape 

memory alloy Ni-Mn-Ga, this study quantifies the structure and defect contents of triple 

junction lines (TJLs) and quadruple junction lines (QJLs), formed by the intersection of 

the (100)m compound and non-conventional (NC) twin boundaries. This study 

implements Bevis and Crocker's kinematic model to predict the geometry of non-

conventional twins and compound twins, and their arrangement at triple and quadruple 

junction lines. QJLs are defect-free and allow the contiguous arrangement of all four 

martensite variants. TJLs require rotational accommodation at the junction. Based on the 

three variants that TJLs accommodate, four distinct defect strengths arise. The strain 

energy of a chain of TJLs that fits all four variants is predicted using a disclination 

quadrupole approximation. The energy of the disclination quadrupole system scales as a 

function of the distance between defects. The strain field of the system may provide the 

driving force for pairwise coalescence of TJLs into QJLs at larger length scales to reduce 

the overall energy of the interface, in agreement with experimental findings. 

1. Introduction 

10M Ni-Mn-Ga (NMG) is a ferromagnetic shape memory alloy where a strain up 

to 6% can be induced reversibly by an external magnetic field [1–3]. The applied field 

induces strain via the reorientation of martensite variants. The strain rate depends on the 

mobility of twin boundaries (TBs), which separate the martensite variants. In NMG, TBs 

have low twinning stress and high mobility, attaining sub-millisecond strain response 
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times [4–8]. Potential device applications include actuators, sensors, energy harvesters, 

vibration dampeners, and micropumps [6, 9–16]. 

NMG is monoclinic and exhibits compound, non-conventional (NC), type I, and 

type II twins [17–22]. Type I and type II twins are responsible for the macroscopic 6% 

strain, whereas compound and NC twins help accommodate other martensite variants. 

Type II twins have the most suitable properties for device applications; they have 

extremely low twinning stress (< 0.2 MPa) and exceptionally high mobility, with TB 

speed reported up to 2 m/s [4, 5, 23–26]. Electron micrographs have shown that 

hierarchical twin microstructures appear in the vicinity of type II TBs [19]. The objective 

of the present work is to theoretically predict the orientation of twinned microstructure 

and quantify the defects that form at the junction. We evaluate the energy of these defect 

structures to gain insight into type II twins' exceptional properties. 

Twinning is one of the primary deformation mechanisms and has been studied for 

decades [27–34]. Bevis and Crocker proposed a theory called the classical model of 

twinning to predict the operative twin modes based on the restrictive geometric properties 

of twinning [31, 32]. The theory predicts the existence of NC twins, but no actual 

examples were reported for a long time. Recent microscopy imaging revealed NC twins 

are present in the quadruple junction lines (QJLs) and triple junction lines (TJLs) in 

NMG [19]. A chain of QJLs is present in type II twins' vicinity and, based on their defect 

structure, may reduce, or promote the mobility of type II TBs. 

In Section 2, we review the crystal structure of NMG. We outline the 

crystallography of NC twins and their orientation relationship (OR) in Section 3. Section 

4 analyzes the orientation of TBs at QJLs and TJLs, the defect strength at each junction, 
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and the energetics of the interface for various junction systems. In section 5, we discuss 

the implication of the formation mechanism of TJLs, including NC twins, based on defect 

interactions and QJLs based. In section 6, we summarize our conclusion. 

2. Crystallography of 10M Ni-Mn-Ga 

Our analysis refers to the crystal coordinates with subscript c and m for the cubic 

austenite structure and the approximated monoclinic martensite structure, respectively.  

In the austenite phase, stoichiometric Ni2MnGa exhibits the space group 

symmetry Fm3�m [35]. The basis of the face-centered cubic lattice are Ga at 0,0,0, Mn at 

0,½,0, and Ni at ¼,¼,¼, and ¼,¼,¾. The 10 NMG alloys are obtained with near-

stoichiometric composition Ni50Mn25+xGa25−x (at.%), where x is between 2 and 4, and 

exhibit modulated martensite structure with highly mobile twin boundaries (TBs) [17, 36, 

37]. 

Upon a martensitic transformation, the symmetry of NMG reduces to space group 

I2/m [38]. The near-stoichiometry composition yields a modulated structure via simple 

shear along {220}c planes of the parent FCC unit cell. The shears between adjacent 

planes repeat in a sequence characterized as (3�2)2 to underline the ten-layer series in the 

unit cell exhibiting the crystal's symmetry [18, 39]. 

We ignore the lattice modulation for the crystallographic analysis by considering 

a structure which gives rise to the fundamental diffraction reflections only, thus adopting 

an approximated monoclinic structure. A non-standard face-centered monoclinic unit cell 

is derived from the cubic form: The cubic lattice with parameter ac monoclinically 

distorts by a small Bain strain to a lattice with parameters am, bm, cm and γm as shown in 

Figure 5.1. The point symmetry of this unit cell is 2/m, with [001]m chosen as the unique 



77 

 

axis. Seiner et al. used X-ray diffraction to determine the lattice parameters for 

Ni50.2Mn28.3Ga21.5 (±0.5 at.%) as am = 0.5972 nm, bm = 0.5944 nm, cm = 0.5584 nm and γm 

= 90.37° [19]. 

 

Figure 5.1 (a) Austenite crystal structure of stoichiometric Ni2MnGa viewed 
along one of its axes. Circles (red), squares (green), and triangles (blue) represent 

Gallium, Manganese, and Nickel atoms. (b) Approximated 10M Ni-Mn-Ga (NMG) 
lattice viewed along its unique axis, [001]m; the crystal lattice is derived from the 

parent cubic axes through a monoclinic distortion. (c) Electron diffraction pattern 
of NMG with the electron beam along [001]m. The superlattice reflections 

correspond to the modulation event, and by only considering the fundamental 
reflection, we obtain the averaged unit cell (b). 
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3. Non-Conventional Twins 

A comprehensive review of deformation twinning is presented in the works of 

Christian and Mahajan [33]. A complete description of deformation twinning requires 

four crystallographic elements: undistorted conjugate planes k1 and k2, and undistorted 

conjugate directions γ1 and γ2, collectively defined as a twin mode [27]. The overall 

deformation is a simple shear, s, about an invariant plane (k1 or k2) parallel to either γ1 or 

γ2. The shear magnitude required to transform the matrix to the twin is given by s = 2 cot 

2ϕ, where 2ϕ is the acute angle between k1 and k2. 

Based on the properties of twinning elements, deformation twinning is classified 

into four types: compound, type I, type II, and NC. One distinguishes the twins by 

identifying the invariant/habit plane and shear direction of twinning, i.e., the plane that 

remains unchanged during the twinning transformation and the direction in which the 

twin is sheared with respect to the matrix. If both the habit plane and shear direction are 

rational (i.e., they have integer indices), twinning is compound. If the twinning plane is 

rational, but the shear direction is irrational (non-integer indices), twinning is of type I. 

The situation is reversed for type II twinning, where the plane is irrational, but the 

direction is rational. Finally, both the elements are irrational in NC twinning. 

The classical model of twinning predicts the twinning modes through the 

properties of unimodular correspondence matrices [31–33]. Correspondence matrices 

encode each variant's OR because they represent symmetry elements suppressed during 

the dissymmetrisation stages of higher symmetry precursors. The principle of symmetry 

compensation states that if symmetry is suppressed at one level, it manifests at another 
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level [40]. We explore the proposition that broken point symmetry elements, which are 

unimodular, are the correspondence matrices that relate the OR of twinned variants. 

3.1 Crystallography 

The set of proper point symmetry elements suppressed during dissymmetrisation 

stages of the cubic to monoclinic transition is laid out in Appendix A. The symmetry 

elements suppressed at each transition stage are derived by identifying the invariant 

subgroup of the point supergroup. In the current scenario, we only consider the tetragonal 

to monoclinic transition stage, allowing us to eliminate type I and type II twinning from 

our consideration. The proper point symmetry operations suppressed during this 

dissymmetrisation stages form the following unimodular correspondence matrices: 

2[100]c, 2[010]c, 2[110]c, 2[1�10]c, 4[001]c
+ , 4[001]c

− .1 In the current notation, the number represents 

n-fold symmetry, and the subscript denotes the axis of rotation. The relevant twin modes 

and shear magnitude are deduced from the elements of these correspondence matrices 

using the Bevis & Crocker method [31, 32]. 

Correspondence matrices appear in pairs (degenerate) and predict the same 

twinning mode due to its restrictive properties [31–33]. The pairs of correspondence 

matrices 2[100], 2[010] and 2[110], 2[1�10], predict the two compound twin modes in NMG, as 

shown in Ref. [22]. The remaining pair of suppressed symmetry operations, 4[001]
+  and 

4[001]
- , gives rise to NC twins, and the corresponding twin mode is listed in Table 5.1. The 

conjugate relation between twinning elements becomes evident in NC twins: if the 

invariant plane is k1 for the matrix, the same invariant plane is k2 for the twin. 

 

1 We follow the notation of the International Tables for Crystallography [41]. 
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Correspondingly γ1 is the shear direction for the matrix, and γ2 is the shear direction for 

the twin. A schematic of the NC twins predicted for NMG is shown in Figure 5.2. 

Table 5.1 Crystallographic parameters of non-conventional (NC) twin mode in 
NMG expressed in the approximate martensite framework. The shear value, s, and 
the non-integer coefficients q and r are obtained using the lattice parameters as 
determined by Sozinov et al. [24] 

k1 k2 γ1 γ2 s 

(1 q 0)m (1� r̅ 0)m [q 1� 0]m [r 1� 0]m 0.0159 

     

q = 
2 am bm  cos γm  - �am

4  + bm
4  + 2 am

2  bm
2  cos 2γm

am
2  −  bm

2  = -3.0735 

r = 
2 am bm  cos γm  + �am

4  + bm
4  + 2 am

2  bm
2  cos 2γm

am
2  - bm

2  = 0.3254 

q ⋅ r = -1 
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Figure 5.2 Schematic illustration of (1r0)/(1�q�0) NC twinning in NMG. The 
subscript μ and λ denote the matrix and the twin, respectively. The conjugate 

relationship of the twinning elements is expressed in NC TBs because the TB is k1 
for the matrix, but k2 for the twin. 

3.2 Orientation Relationship 

Bevis and Crocker [31–33] showed that once the correspondence matrix, C, is 

specified, the orientation relationship, L, between the matrix and the twin is given by, 

C = L AS         (1) 

S is the second rank tensor defining shear transformation [30–32]. The superscript A 

represents a crystal coordinate system. Our proposition assumes the correspondence 

matrix, C, is the suppressed proper symmetry element. In a crystal coordinate frame 

A, the elements of the shear transformation, S, have the form [30–33]: 

ASj
i = δj

i + s Ali Amj        (2) 

where δj
i is the Kronecker delta, l is the unit vector parallel to the shear direction (γ1 

or γ2), m is the unit vector normal to the invariant plane (k1 or k2), and s is the 
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twinning shear. The indices i and j are superscripted for vectors and subscripted for 

co-vectors [41].  

After determining C and S, we obtain the OR as: 

L = C AS−1         (3) 

The OR, L, between the two variants, if measured in the reference frame R, is given 

by: 

L = RPA C  AS−1 (RPA)-1       (4) 

where RPA is the transformation matrix relating crystal coordinate (A) to the reference 

(R) frame. 

Using Equations (1) − (4), the OR between the NC twins in NMG with lattice 

parameters listed in Section 2 is equal to 89.54° rotation about the [001]c axis for C = 

4[001]
+ , or 90.46° rotation about [001�]c, for C = 4[001]

- . 

4. Junction Lines 

Seiner et al. [19] depicted NC twins in the hierarchical twinning microstructure of 

NMG using electron micrographs, which are reproduced in Figure 5.3. For a particular 

[001]m, the symmetry compensation gives rise to four variants V1, V2, V3, and V4. NC 

twinning provides additional degrees of freedom for a continuum arrangement of these 

variants, as we discuss in Sections 4.1 and 4.2. Junction lines form where two or more 

TBs meet. These junction lines may either be defect-free or require elastic 

accommodation, depending on the twinning shear and OR of the variants. Properties of 

QJLs and TJLs are discussed below. 
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Figure 5.3 Experimentally observed junction lines in NMG. (a) Scanning 
Electron Microscopy (SEM) image showing a periodic array of quadruple junction 

lines (QJLs) in the vicinity of type II twin boundaries (TBs). (b) Transmission 
Electron Microscopy (TEM) image of a chain of triple junction lines (TJLs) formed 
at the interface between (110)m TB laminate and a homogeneous region. Reprinted 

from Scripta Materialia, 162 (2019), Seiner et al. [19], NC twins in five-layered 
modulated Ni-Mn-Ga martensite, 497-502, with permission from Elsevier. We 

follow the notation of Straka et al. [17] for the designation of variants. 

4.1 Quadruple Junction Lines 

Scanning electron microscopy (SEM) imaging of NMG in the micro-scale range 

shows an abundance of QJLs, as shown in Figure 5.3(a) [19]. We designate the variants 

following Straka et al. [17]. We implement the principle of symmetry compensation to 

deduce the arrangement of four variants surrounding QJLs. First, we consider lattice 

points of a single crystal in the cubic phase (simple cubic for simplicity) viewed along 

one of the principal axes, as shown in Figure 5.4 (a). Four different colors represent four 

regions, each for a particular variant after transformation. In Figure 5.4 (a), we also 

overlay the 2-fold symmetry axes − 2[100], 2[010], 2[110], and 2[1�10] − that leave the crystal 

unchanged after the operation (ignoring the colors), as shown by the dotted lines. These 

symmetry operations, as well as 4[001]
+  and 4[001]

- , get suppressed in the martensite phase, 

as shown in Figure 5.4 (b). The four variants that arise (as coded in colors in Figure 5.4) 

V4

V2

V3
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after transformation can be mapped onto each other through these broken symmetry 

operations as correspondence matrices. Our goal is to find the sequential order of 

appropriate correspondence matrix operations that give rise to QJLs with the least 

distortion. If a systematic product of twinning OR around the QJL results in the identity, 

the junction is defect-free. Otherwise, a rotational misfit occurs, which is accommodated 

elastically by a disclination [42–45]. 

Seiner et al. [19] calculated the angles between TBs in a QJL arrangement of 

variants and deduced that such structures could not be obtained by a combination of 

(100)m and (110)m compound twins. They argued that such a QJL arrangement requires 

two sets of (110)m compound and (1r0)m NC twins. Figure 5.4 (b) summarizes the 

twinning relation around a QJL following the variant notation implemented by Straka et 

al. [17]. Starting from the top left and proceeding clockwise, the variant pairs V3−V1, 

V1−V4, V4−V2, and V2−V3 are related by correspondence matrices 2[1�10], 4[001]
+ , 2[110], and 

4[001]
- , respectively.  Thus, the required systematic operation of OR about the QJL is: 

MQJL = RL(V2 → V3) RL(V4 → V2) RL(V1 → V4) RL(V3 → V1)  (5) 

The overall matrix operation, MQJL, yields the identity or a rotation by θ about cR, 

the direction normal to the plane of shear in the reference frame. If MQJL results in a θ 

rotation about cR, the additional rotational misfit is accommodated elastically by a wedge 

disclination [43, 45], which is a line defect located on the junction line. The Frank vector, 

ω, with the magnitude ω = θ, characterizes the disclination strength. The Frank vector 

signifies a rotation corresponding to the rotational displacement field of the disclination. 

For the current QJL, the matrix operation MQJL yields the identity, i.e., MQJL = I. 

This means that QJLs do not require rotational accommodation, and the junction is 
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defect-free. Thus, QJLs allow for the continuous arrangement of four martensite variants 

without any misfits during phase transformation. 

 

Figure 5.4 a) Schematic illustration of austenite single crystal viewed along one 
of the principal axes; the colors define the four variants that form after the phase 

transformation. The dotted lines represent point symmetry operations – 2[100], 2[010], 
2[110], and 2[1�10] – that get suppressed in the martensite phase. Phase transformation 

breaks the symmetry, and these operations, along with 4[001]
+  and 4[001]

- , become 
correspondence matrices, which define the twinning relation at QJLs. (b) The 
orientation of TBs around a QJL in NMG, which is obtained by a systematic 

operation of OR across the TB in the QJL arrangement. The associated 
correspondence matrices, in order, is 2[1�10], 4[001]

+ , 2[110], and 4[001]
- . 

4.2 Quadruple Junction Line Formation Energetics 

It is unclear how and why four TBs meet at a line to form a QJL in the vicinity of 

type II TBs. TJLs, on the other hand, form in the hierarchical microstructure of twins in 

NMG when two non-parallel TBs meet. We assume a hierarchical formation mechanism. 

At first, variants V3 and V4 form and create a (100)m TB. Second, variants V1 and V2 form 

as twins in variants V3 and V4, respectively, via (110)m twinning. Third, V1 and V2 

impinge on the (100)m TB and create TJLs as shown in Figure 5.5. In this section, we 

study the defect character of these TJLs and implement a disclination quadrupole 



86 

 

approximation [42] to quantify the energy of a system with four variants. Furthermore, 

we show that the strain energy vanishes if the TJLs coalesce pairwise and form QJLs. 

Since we have four variants for a particular [001]m, and only three variants join a 

TJL, four distinct TJLs emerge: V1−V4−V2, V1−V3−V4, V3−V2−V4, and V3−V1−V2. The 

accommodation of variants by TJLs requires an additional degree of freedom, which, for 

NMG, is provided by (100)m and (010)m compound twins. The TJLs are similar to QJLs 

in arrangement, except that the previously not joining variants in QJLs, i.e., V1−V2 and 

V3−V4, are joined by (100)m and (010)m TBs, respectively. For example, in the V3−V2−V4 

TJL, V3−V2 are connected by (1q0)m TB, and V2−V4 by (1�1�0)m TB, similar to QJLs, but 

V4−V3 that were previously not joined in QJL are connected by (01�0)m TB. Again, the 

sequential operation of OR around the V3−V2−V4 TJL, with Figure 5.5 as a reference, 

gives the following rotational misfit: 

M324 = RL(V4 → V3) RL(V2 → V4) RL(V3 → V2)    (6) 

The resulting matrix, M324, represents a misorientation of −0.18° for the given 

TJL.  

Following similar calculations, the systematic operation of OR around the TJLs 

for all possible combinations gives four distinct disclination strengths: −ω1, ω1, ω2, and 

−ω2, where the magnitudes of Frank vectors are ω1 = 0.18° and ω2 = 0.36° for NMG with 

lattice parameters listed in Section 2. The defect strength switches sign when we reverse 

the direction of sequential operation. The difference in disclination strength results 

because a (100)m TB connects the pair V1−V2, whereas an (010)m TB connects V3−V4. 

We have four unique TJLs with two pairs of disclinations of equal strength but 

opposite signs. An isolated disclination is a high-energy defect whose strain field squares 
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with the screening length (Uself ∝ R2). However, these defects are screened by the 

presence of other disclinations; for instance, the pair (ωi, −ωi) forms a disclination dipole, 

which effectively screens each other's diverging strain field [43, 46–48]. Disclination 

dipoles correspond to a superdislocation with Burgers vector, Bi, whose magnitude is Bi = 

ωi Ri, where Ri is the dipole arm length. The energy of a disclination dipole depends 

logarithmically on the screening length R (as does the energy of a dislocation). The 

direction of Bi is perpendicular to the plane containing dipole as well as the line direction 

of the dipoles. Two sets of nearby disclination dipoles lying in the same plane with equal 

but opposite Burgers vector form a disclination quadrupole. The energy of a disclination 

quadrupole depends only on the geometry and not on the screening radius R.  

The disclination quadrupole reaches an unstable equilibrium when the 

superdislocations, representative of disclination dipoles, are flushed along the same plane 

and are equal but opposite in sign. The long-range strain fields of the four disclinations 

cancel if B1 = −B2, (implying ω1R1 = ω2R2). Using disclination theory (Romanov and 

Vladimirov [42]), we implement disclination quadrupole approximation to calculate the 

energy of the system. The energy of the system is the sum of self-energies and 

interaction-energies of disclinations [42], U = Uself + Uint: 

Uself (ω) = 1/8 Dω2R2       (7) 

Uint (ω1, ω2, R2) = ¼ Dω1ω2 [R2 – R2
2 – 2 R2

2 ln(R/R2)]   (8) 

where D = G / (2π (1 - ν)), with G as the shear modulus and ν as the Poisson’s ratio. R is 

an outer cut-off radius, and R2 is the (ω2, −ω2) dipole arm length. 
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With the equilibrium parameter α = ω2 / ω1 = R1 / R2, the disclination quadrupole 

approximation (Ueq) is a function of three parameters, α, R1 and L1 (defined in Figure 

5.5), with the solution: 

Ueq = Dω1
2

2
 �α(L1 - R1)2 log � L1 - R1

L1 - R1 + R1 α⁄ �  + (αL1 + R1)2

α
 

log � L1 + R1 α⁄
L1 - R1 + R1 α⁄ �  - αL1

2 log � L1
L1 - R1 + R1 α⁄ �  - R1

2 log � R1
2 α⁄

(L1 - R1 + R1 α⁄ )2��  (9) 

The solution for Equation 9 assumes that all the four disclinations lie in the same plane, 

which is not the case for NMG, as seen in Figure 5.5. Nonetheless, the solution is useful 

for understanding the trends in energy as we vary the input parameters. For NMG, α = ω2 

/ ω1 ≈ 0.36° / 0.18° ≈ 2. The image plot of the energy as a function of L1 (x-axis) and R1 

(y-axis) is shown in Figure 5.6. Since Equation (9) assumes L1 > R1, no solution exists 

when R1 > L1, as seen by the lack of colors in the upper left triangle of the image plot. We 

can discern from the image plot that energy value is more sensitive to an increase in R1 

than L1: the color changes faster when moving vertically than horizontally. The result 

becomes more apparent when we fix one of the variables (L1 or R1) and plot the energy as 

a function of the other variable, as seen in Figures 5.6 (b) and (c). Figure 5.6 (b) shows 

that Ueq vs. L1 gives us a logarithmic curve for a fixed R1, whereas, in Figure 5.6 (c), we 

approximate Ueq vs. R1 as a polynomial function of order about 2.5 for a fixed L1. For 

small values of R1, the energy is proportional to the square of R1. This result is a 

consequence of the linear relation between R1 and the Burgers vector B as the energy of a 

dislocation depends quadratically on its Burgers vector. Thus, the arm length of the 

disclination dipole significantly affects the energy of the quadrupole system. For narrow 

dipoles, the energy of the system is a logarithmic function, i.e., the energy of the system 

is a function of the length scale of the defects. 
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Figure 5.5 Schematic illustration of TJLs forming a disclination quadrupole 
system to accommodate four martensite variants: the four distinct disclination 
strengths are obtained by systematically studying the OR of variants across the 

junction's TBs.  
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Figure 5.6 a) Equilibrium energy (Ueq) of disclination quadrupole approximation 
as a function of L1 and R1, both ranging from 0 to 20 nm. α = ω2 / ω1 ≈ 2 in the 

present case. (b) For a fixed R1, Ueq as a function of L1 is a logarithmic plot. (c) For a 
fixed L1, Ueq as a function of R1 is a polynomial plot of an order of about 2.5. Thus, 
the energy of the disclination quadrupole is sensitive to the size of the dipole arm 

length. 

4.3 Walls of Triple Junction Lines 

Figure 5.3 (b) (also reproduced in Figure 5.7 (a)) shows a wall of TJLs including 

only three variants, V4, V2, and V3; in these chains of TJLs, the defect strength at the 

junction alters in sign but has the same magnitude. In the V4 → V2 → V3 → V4 

transformation, we follow the OR across (110) TB, (1�r̅0) TB and (01�0) TB systematically 

and obtain a disclination strength of ω1, as in Section 4.2. The defect strength of the next 

junction in the chain is obtained by following the transformation V2 → V4 → V3 → V2. 

Here, the disclination strength, given by the Frank vector, is −ω1. A schematic illustration 
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of orientation and crystallography of TBs around a V4−V2−V3 TJL is shown in Figure 5.7 

(b). 

A wall of wedge disclination junctions with the same disclination power but 

alternating sign corresponds to a tilt wall [49, 50]. A tilt wall can be thought of as a wall 

of dislocations (represented by disclination dipoles), which relaxes by partitioning of the 

strain field across the interface. The overall effect is a rotation of the interface and a 

superimposed misorientation. The total misorientation depends on the volume fraction of 

V2 in V4 . The strain energy increases with the distance between the TJLs, since their 

spacing determines the magnitude of the Burgers vector. A dense chain of TJLs may 

appear in sub-micron length scale, as seen in Figure 5.7 (a), since, at this scale, the 

energy of the system due to the rotational displacement field is small. 

 

Figure 5.7 The orientation of TBs around a TJL in NMG, as shown in (a), is 
reproduced crystallographically in (b). The arrangement is deduced by a taking a 
systematic operation of OR across the TB in the TJL arrangement. Figure (a) is 
adapted from Scripta Materialia, 162 (2019), Seiner et al. [19], NC twins in five-

layered modulated Ni-Mn-Ga martensite, 497-502, with permission from Elsevier. 
We follow the notation of Straka et al. [17] for the designation of variants. 
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5. Discussion 

The phase transformation from the cubic to the monoclinic structure gives rise to 

twelve variants [22, 33, 40]. For a given [001]m, we have four variants. QJLs 

accommodate four variants without additional misfits and may arise during the phase 

transformation. However, their formation mechanism is unclear. TJLs form readily in 

hierarchical twin microstructure but are accompanied by a rotational misfit. Disclinations 

(line-defects) accommodate the rotational misfits, and four disclination strengths appear 

for all possible combination of TJLs. 

While the formation mechanism of QJLs is unclear, the formation of the wall of 

TJLs containing only three variants can be inferred topologically: Imagine regions of 

variants V3 and V4 that are separated by (010)m TB. Now, imagine V2 nucleates and grows 

inside V4, interrelated by (110)m TB. The growth of the variant V2 leads to the 

propagation of twinning disconnections towards the (010)m boundary separating V3. On 

reaching this boundary, the superposition of the disconnections would, after relaxation, 

form an NC TB between V2 and V3 and a TJL separating V3−V2−V4. Based on the density 

of variant V2 nucleation sites, a chain of TJL forms; the defect structure of the interface 

comprises a chain of disclination dipoles (ω1, −ω1), which is equivalent to a tilt wall. The 

rotational displacement field of the tilt wall causes rotation of the interface. The total 

rotation depends on the defect strength and the density and separation distance of the 

dipoles [49, 50]. We see such a dipole chain in TEM images of NMG, as seen in Figure 

5.3 (b). The rotation of the interface adds strain energy to the system but is small in the 

present case. 
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Accommodation of four variants with TJLs means four distinct disclinations 

emerge, as discussed in Section 4.2. We implement a disclination quadrupole 

approximation to show a stable chain of TJLs that accommodate four variants. The strain 

energy of a disclination quadrupole system is proportional to the square of R1 at small 

values (Figure 5.6 (c)). This dependence provides a driving force for the pairwise 

coalescence of TJLs into QJLs. Imagine a disclination quadrupole approximation at the 

beginning, as shown in Figure 5.5. For TJLs to coalesce into QJLs, the mobility of (110)m 

and NC twins is critical. If the strain field at the (010)m/(100)m interface can nucleate 

disconnections and move (110)m and NC TBs synchronously, the disclination dipoles can 

converge via the migration of (010)m/(100)m boundary to form QJLs. An intermediate 

stage of the formation of QJLs from TJLs via the movement of TBs is shown in Figure 

5.8. Thomas et al. [51] suggested a similar mechanism, using molecular dynamics 

simulations, for forming various twin junctions in nanocrystalline nickel, including penta-

twin junctions. 

 

Figure 5.8 An intermediate stage in the pairwise coalescence of TJLs into QJLs, 
with disclination quadrupole approximation, as in Figure 5.5, as a starting 

reference. 
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Our QJL formation assumption is based purely on the energetics and may not 

represent the actual formation mechanism. The orientation of defects and their 

interactions play a crucial role in the mobility and synchronous motion of (110)m and NC 

TBs. Furthermore, we assume the disclination quadrupole as a starting point. The stress 

field near the interface, as the disconnections on (110)m TBs move and approach 

(010)m/(100)m TB, is high and may drive the formation of QJLs rather than a chain of 

TJLs. Finally, our description of QJL formation does not address the question as to why a 

chain of QJLs forms only in the vicinity of type II twins. Type II TBs have an irrational 

interface and consist of an array of dislocations that form a tilt boundary [22, 52, 53]. 

Thus, the tilt boundary of type II twins may interact with (100)m and (110)m compound 

TBs and provide an additional driving force for the formation of NC twins and QJLs. 

Information about the orientation of the tilt-wall in type II and NC twins and their 

interaction with the disconnections in compound TBs is required to understand the 

formation mechanism of QJLs near type II TBs. However, this is outside the scope of the 

current work. 

6. Conclusion 

We study the properties of the twin boundary junctions motivated by an 

abundance of TJLs and QJLs in NMG. NC twins join TJLs with (110) m and (100)m / 

(010)m TBs. QJLs are composed of two NC TBs and two (110)m TBs. 

QJLs form, most likely during the phase transformation, because they allow for 

continuous arrangement of the four twin variants without any additional misfit. TJLs, on 

the other hand, carry a rotational misfit whose strain field diverges. When arranged in 

chains such that the net Burgers vectors of nearby disclination dipoles cancel, 
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disclinations mutually screen their diverging fields effectively. A disclination quadrupole 

approximation predicts a stable structural configuration involving all four variants, where 

the strain energy scales with the length-scale of defects, i.e., the arm of disclination 

dipoles. 

A wall of TJLs accommodating only three variants is also found in NMG. This 

configuration forms due to the superposition of twinning disconnections when a (110)m 

TB abuts the (100)m (or (010)m) boundary from one side. The overall interfacial structure 

corresponds to a tilt wall which causes the rotation of the interface. The rotation of the 

interface increases the strain field and may explain why these chains of TJLs are only 

observed at the sub-micron length scale. 

Since the formation mechanism of a QJL is not clear, we explore the proposition 

that the strain field near the junction interface serves as a driving force for the migration 

of a (100)m / (010)m TB, which causes synchronous motion of (110)m and NC TBs and 

consequently the pairwise coalescence of TJLs into QJLs. Nevertheless, the proposed 

QJL formation mechanism does not consider the interactions of type I and type II TBs; a 

chain of QJLs is present in the vicinity of type II twins, but not so at type I twins [19]. 

This characteristic feature implies that the interaction of the type II tilt boundary with the 

compound twins drives the formation of QJLs. 
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Appendices 

We consider twinning in monoclinic Ni2MnGa, with space group P2/m. We 

regard this monoclinic form to be derived from a higher symmetry precursor, space group 

Fm3�m, by a notional sequence of dissymmetrisation stages, whereby the point symmetry 

elements suppressed at each stage become potential twinning ORs. 
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Dissymmetrisation Stages 

The maximal point supergroup of 2/m is m3�m: it is convenient to consider the 

dissymmetrisation sequence as: 

Stage 1 – cubic, m3�m to tetragonal, 4 m⁄ mm. 

Stage 2 – tetragonal, 4 m⁄ mm to orthorhombic, mmm; 

Stage 3 – orthorhombic, mmm to monoclinic, 2 m⁄ . 

Stage 1: {4 m⁄ mm} is not an invariant subgroup of {m3�m}, so three conjugate subgroups 

are interrelated by symmetry operations: 

{m3�m} = 1 {4 m⁄ mm} ⋃ 3+ {4 m⁄ mm } ⋃ 3− {4 m⁄ mm }   (A1) 

Stage 2: {mmm} is an invariant subgroup of {4 m⁄ mm}; there are two distinct subgroups 

which are interrelated by [001]/45° − i.e., not a symmetry operation. 

{4 m⁄ mm } = 1 {mmm} ⋃ 4[001]
+  {mmm}     (A2a) 

where the mirror planes are parallel to (100), (010) and (001), and 

{4 m⁄ mm } = 1 {mmm} ⋃ 2[100] {mmm}     (A2b) 

where the mirror planes are parallel to (110), (11�0) and (001) 

Stage 3: {2 m⁄ } is an invariant subgroup of {mmm}; there are three distinct subgroups 

which are not interrelated by symmetry operations. 

{mmm} = 1 �2[001] m� � ⋃ 2[100] �
2[001] m� �     (A3a) 

{mmm} = 1 �2[010] m� � ⋃ 2[001] �
2[010] m� �     (A3b) 

{mmm} = 1 �2[100] m� � ⋃ 2[010] �
2[100] m� �     (A3c)  
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Twinning Orientation Relationship 

We take our reference monoclinic form to be �2[001] m� � = {1, 2[001], m(001), 1�}. 

The possible twinning OR correspond to operations in the cosets in A1, A2a, and A3a. 

We ignore the elements in A1 because they do no leave (001) invariant; the remaining 

elements are: 

4[001]
+  {mmm} = �4[001]

+ , 4[001]
- , 2[110], 2[11�0], m(110), m(11�0), 4�[001]

- , 4�[001]
+ � (A4) 

and 

2[100] �
2[001] m� � = �2[100], 2[010], m(010), m(100)�    (A5) 

Thus, the following set of proper operations are suppressed in the tetragonal to 

monoclinic dissymmetrisation: �2[100], 2[010], 2[110], 2[11�0], 4�[001]
+ , 4�[001]

- �. Each of these 

operations can be represented by a unitary matrix and conforms to a correspondence 

matrix interrelating our monoclinic reference to a symmetry related variant. The 

correspondence matrices can be input to the Bevis & Crocker treatment for predicting 

twinning modes. 
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Abstract 

Experimental characterization of twin boundary kinetics is essential to 

systematically test and reproduce the actuation properties of magnetic shape memory 

(MSM) elements at high rates. Here we present a simple, non-destructive, experimental 

method to quantify the dynamic response of a MSM crystal and extract the major 

material properties that govern its kinetics. The tested sample is subjected to a 

mechanical pulse that is produced by a simple off-the-shelf solenoid. The mechanical 

pulse leads to actuation of the tested MSM Ni-Mn-Ga single crystal within 10 ms, during 

which the twin boundary velocity varies between zero and 2 m/s. The displacement and 

force in the MSM crystal are measured simultaneously using an optical sensor and a 

miniature force sensor, respectively. The data captured during a single loading 

experiment allows plotting a dynamic stress-strain curve as well as a kinetic relation that 

characterize the macroscopic response of the crystal. In particular, the obtained kinetic 

relation enables the extraction of the transition driving force between slow (thermally 

activated) and fast (athermal) twin boundary motion. This transition driving force is a key 

material property that governs fast actuation capabilities of MSM elements. The 

macroscopic behavior of the sample is correlated to the motion of individual twin 

boundaries within the crystal by adding high speed microscopy to the experimental setup. 

This allows simultaneous high-rate tracking of individual twinning interfaces in Ni-Mn-

Ga. 

1. Introduction 

Magnetic shape memory (MSM) alloys are candidate materials for fast actuation 

due to their ability to exhibit large and reversible displacements in the martensite phase 
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[1-5]. The mechanical response of MSM alloys can be driven either by a mechanical load 

or by a magnetic field, both of which promote the twinning reorientation process within 

the material. Twinning reorientation proceeds through the motion of individual twin 

boundaries, which are interfaces separating different martensite variants. Thus, the 

kinetics of individual twin boundaries under an external driving force (either mechanical, 

magnetic or both) directly determines the macroscopic response of a given MSM crystal 

[6, 7]. Because a major advantage of MSM alloys over ordinary shape memory alloys is 

their ability to display a high-frequency response under a cyclic magnetic field (typically 

in the 10-1000 Hz range), it is necessary to characterize the twin boundary motion at 

velocities and time scales that are relevant for MSM applications. 

The most common experimental method used for evaluating the motion of twin 

boundaries in MSM alloys is the uniaxial loading method, in which the crystal is 

deformed (usually in compression) at a constant strain rate while the force is recorded. 

Such experiments are performed at slow strain rates, typically smaller than 0.01 s-1, and 

provide a quasi-static stress-strain curve (see, for example, Refs. [8–11]). The resulting 

curve usually displays a long plateau of approximately constant stress, during which the 

twinning reorientation occurs. The average stress during the plateau is known as the 

twinning stress, which is a fundamental material property that represents the minimal 

stress required for twin boundary motion. For example, uniaxial loading tests revealed 

substantial differences between the typical values of the twinning stress of type I (0.7–1 

MPa) and type II (0.05–0.2 MPa) twins in MSM Ni-MN-Ga single crystals [12–16].  

While the twinning stress is an important property, it provides information only 

on the response of an MSM crystal at slow loading rates, which corresponds to a 
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complete twinning reorientation during times longer than 10 s. In addition, kinetic 

measurements performed under slow varying magnetic fields (see, for example, Refs. 

[17, 18]) provide information that is relevant at velocities that are several orders of 

magnitude slower than typical actuation rates. Thus, complementary experimental 

methods must be employed to understand and quantify the kinetics of twinning over a 

wide range of velocities, and in particular at velocities and time scales that match typical 

actuation rates, i.e., at the millisecond scale. In their recent works, Faran and Shilo 

measured the kinetics of individual twin boundaries in MSM Ni-Mn-Ga using pulsed 

magnetic field experiments [19, 20]. This method involves the exposure of an MSM 

crystal to short (typically microsecond scale) magnetic pulses with a nearly constant 

amplitude throughout the majority of the pulse duration. The position of an individual 

twin boundary is tracked optically before and after each pulse, which allows calculating 

an average velocity value during each pulse. By performing a large number of pulsed 

experiments at different intensities of the magnetic field, twin boundary velocities were 

measured in Ni-Mn-Ga over nearly three decades (in the range of 0.01 - 10 m/s) [16]. The 

kinetic relation for twin boundary motion was obtained by plotting the discrete velocity 

values as a function of the driving force.  

The results obtained for Ni-Mn-Ga showed that the velocity of an individual twin 

boundary exhibits a sharp transition from slow (typically below 0.2 m/s) to much faster 

velocities at a distinct value of the driving force. A physical model was developed to 

explain this behavior [19, 20] and predicted that the slow velocity regime corresponds to 

thermally activated motion (where the velocity follows an exponential dependence on the 
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driving force), while the faster regime describes athermal motion, which follows a square 

root kinetic relation of the type: 

vTB = μ �g2 – go
2        (1) 

Here, μ is a mobility coefficient, g is the driving force and go represents the transition 

value from one mechanism of motion to the other, which is associated with the energy 

required for twin boundary motion (analogous to the Peierls barrier for dislocation 

motion). 

The value of the transition driving force go is 2-10 times larger than the value that 

corresponds to the twinning stress [6] and is of great engineering importance as it 

determines the magneto-mechanical response of the MSM alloy at time-scales that are 

relevant for practical applications. Faran and Shilo showed that the performance of MSM 

actuators that are operated at frequencies above 1 Hz is determined mainly by go, while 

the twinning stress plays a minor role [6, 7]. In addition, it was shown that the 

experimentally validated kinetic relations can be implemented in simple models that 

accurately predict and capture the dynamic response of an actual MSM Ni-Mn-Ga 

actuator [21]. 

The above discussion emphasizes the importance in experimentally measuring the 

transition driving force go. This information is essential during the development of 

improved MSM crystals as well as for quality control and regular production of existing 

compositions. Despite the satisfactory results obtained using the pulsed magnetic field 

method, it is relatively time-consuming and requires a large number of individual pulsed 

experiments to obtain the full kinetic behavior of a given crystal. In addition, a given set 

of pulsed magnetic field experiments typically provides kinetic information that 
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characterizes only a small fraction of the tested crystal’s volume. For example, under a 

100 µs long magnetic pulse, at a velocity of 1 m/s, the twin boundary propagates about 

0.1 mm. For a crystal whose length is 5 mm, the volume covered by the moving twin 

boundary during this pulse is only about 2% of the total volume of the crystal, thus 

providing only local information on twinning kinetics. Moreover, applying a well-

controlled magnetic pulse at the microsecond time scale requires a complex experimental 

magnetic assembly, which is suitable mainly for small sized samples, typically not larger 

than 5 mm in length (see also similar pulsed magnetic field experiments reported by 

Ullakko et. al., Refs. [22, 23]) 

In principle, uniaxial loading experiments can be used for measuring twin 

boundary dynamics at high rates and for identifying g0. Recently, Zreihan et al. 

performed sets of such experiments at different rates and showed that, for type II twins in 

monoclinic Ni-Mn-Ga, the plateau stress in the stress-strain curves increases at high rates 

[24]. In their fastest experiment, an almost complete twinning reorientation was obtained 

within 0.5 s, by going to the strain rate limit of a conventional material testing machine. 

Yet, the highest twin boundary velocity they obtained was 10-2 m/s, while the transition 

to the fast regime of the twin boundary motion occurs at velocities of approximately 0.2 

m/s. Thus, these experiments could not reveal the value of g0. 

In this paper, we present an experimental approach that is simple, relatively 

inexpensive and easy to operate, which allows extraction of the full twin boundary 

kinetics in a given MSM crystal from a single experiment. The tested MSM crystal is 

subjected to a uniaxial mechanical pulse in the ms time scale, while the displacement and 

force are measured simultaneously. Loading conditions are designed such that the strain 
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rate during the mechanical pulse varies from zero (at rest position) up to about 20 s-1. 

Under these conditions, twin boundary velocity varies within the interesting kinetic 

regime, and the important kinetic parameters can be extracted. By comparing the 

obtained measurements with high-speed optical images that allow tracking the motion of 

individual twin boundaries, we conclude that the simple setup is adequate for obtaining 

the kinetics of an MSM single crystal. In particular, we show that this method allows the 

identification and extraction of the transition driving force from slow to fast twin 

boundary motion. 

2. Experimental Setup and Test Procedure 

The custom-made mechanical setup is shown in Figure 6.1. A commercial push-

pull solenoid (GEEPLUS 301F) is used for applying uniaxial compression to the sample. 

This actuator is able to produce a mechanical load larger than 30 Newtons over a stroke 

of 2 mm within less than 15 ms.  These capabilities are suitable for the stress and strain 

requirements (up to 10 MPa and 10%, respectively) of typical samples with a cross-

section area below 3 mm2 and length below 20 mm.  

The tested sample is placed within a designated groove in the base frame, between 

the solenoid’s push rod and rigid support. In order to avoid proximity of the magnetic 

flux lines in the ferromagnetic push rod to the tested ferromagnetic sample (which may 

induce an additional, undesired, magnetic driving force for twin boundary motion), a 6 

mm long aluminum rod with diameter of 4 mm was firmly attached (glued) to the front 

end of the push rod, i.e., to the end that forms contact with the sample (Figure 6.1 (b)).  

A miniature force sensor, FlexiForce, type A-201, with a thickness of 0.2 mm is 

placed between the sample and the base frame and measures the compressive force 
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developed in the sample. The force sensor has a typical response time of 5 microseconds. 

The system is designed to accommodate samples of up to 20 mm in length. For shorter 

samples, like the 5 mm long crystal reported in this work, an additional rigid steel spacer 

was inserted between the sample and the force sensor (Figure 6.1 (b)). 

The position of the solenoid’s push rod is measured continuously using an optical 

sensor, MTI 2100 Fotonic sensor, which tracks the back end of the push rod. The optical 

sensor has a resolution of about 1 µm and a frequency response of 150 kHz. A thin 

alumina sheet was glued to the push rod’s back end to improve the reflectance of the 

optical signal Figure 6.1 (c)). Since the plunger is in direct contact with the sample’s end, 

displacement measurement of the push rod provides approximate change in the length of 

the tested sample, which allows calculating its macroscopic strain (the total displacement 

error introduced by elastic deformations of the push rod, the extension aluminum rod and 

the steel spacer is less than 0.3 µm). 

Overall, the mass of the plunger including the added parts described above is 17 

g. Acceleration of this finite mass has some inertial effect, particularly during the first 

stages of the loading pulse. However, the force sensor measures the resultant force 

applied directly on the tested sample, and thus this effect is already taken into account 

and does not require a separate evaluation. 

We measured the kinetics in a 10M Ni50.0Mn28.3Ga21.7 (at %) single crystal 

obtained from AdaptaMat Ltd. The sample size was 2.5 × 0.9 × 5.3 mm3 when fully 

elongated, and the sample faces were cut along {100} of the parent austenite phase. 

Loading tests were performed along the long, 5.3 mm, axis of the crystal. All 

measurements were performed at room temperature, at which the crystal is fully in the 
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martensite phase. The transformation temperature from martensite to austenite for this 

composition is about 50 °C. The crystallographic structure of the martensite is 

monoclinic, which gives rise to the appearance of both type I and type II twinning modes. 

For both types of twins, the magnitude of the axial twinning strain is about 6% (Refs. [12, 

25]). Thus, for a 5.3 mm long sample, a total displacement of about 0.32 mm is expected 

when the sample is completely switched from one twin variant to another.  

Prior to each test, the sample was elongated along its 5mm axis and brought to a 

state of a single martensite variant. This was achieved by placing it inside a dedicated 

magnet assembly. The crystal was then inserted into the loading system, and the plunger 

position was adjusted using a precision linear stage to obtain a small preload of about 0.2 

N. This preload ensured that all gaps between the plunger, sample, force sensor, and the 

rigid support are eliminated prior to the activation of the solenoid.  

The proposed setup is positioned under an optical microscope (Olympus BX51) 

equipped with Nomarski interference contrast imaging and a high-speed camera 

(Photron’s FASTCAM Mini AX200 camera). Fast imaging was performed at a rate of 

20,000 frames per second, with an image size of 704 x 384 pixels, and an exposure time 

of 1.05 microseconds for each frame. An objective magnification of 5 resulted in a field 

of view of approximately 5.5 x 3.0 mm2, which allowed capturing the entire surface area 

of the sample. Under these conditions, each pixel in the captured image corresponds to 

7.9 micrometers on the sample. We emphasize that the use of an optical microscope and a 

high-speed camera is not an essential part of the proposed method and is employed only 

to evaluate and validate its performance. 



113 

 

Trained Ni-Mn-Ga single crystals typically contain few twin boundaries that span 

the entire cross section of the sample. This is characteristic to crystals produced by the 

former Adaptamat (which are tested in this work) as well as to crystals produced to date 

by other manufacturers, such as ETO magnetics (see for example Refs. [10, 26–28]). 

Thus, under most conditions, the number and location of twin boundaries observed at the 

top surface provides a reliable indication of the bulk structure (e.g., when the distance 

between adjacent twin boundaries as well as the distance between a twin boundary and 

the sample edges is larger than the sample's thickness). In addition, previous studies have 

shown that twin boundary motion is symmetric with respect to tension or compression, 

during quasi static loading as well as under high rate loading (see, for example Refs. [10, 

20, 29]). This can be reasoned by the fact that in crystals that contain few twin boundaries 

the distance between adjacent twins is large and thus the interaction between twin 

boundaries is negligible.  
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Figure 6.1 (a) Overall image of the base frame and setup for the experiments. 
The 30 cm ruler serves as a scale bar for the setup. (b) Zoom in on the region of 

interest that shows setup of sample, force sensor and optical displacement sensor. 
The solenoid’s push rod provides mechanical load, and the attached extension 

eliminates its magnetic effect on the MSM element. The rigid spacer is required 
because of the MSM sample dimension. (c) Further zoom in on the solenoid region 
for detailed optical displacement sensor setup. The reflecting surface is attached to 

improve the optical signal. 

3. Image Analysis 

The high-speed camera provided grayscale images with 8-bit dynamic range. This 

implies that each pixel in the images is assigned with a value between 0 and 255, 

representative of its grayscale brightness (see scale bar in Figure 6.2). The displacement 

of the twin boundary along the crystal’s long axis was obtained by systematically 

evaluating pairs of consecutive images (e.g., Figure 6.2 (a) and (b)). First, we calculated 

the absolute difference between two images, i.e., the brightness difference of each pixel 

in the two images, as seen in Figure 6.2 (c). An auxiliary parameter α was defined to 
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provide threshold on the image contrast after obtaining the absolute difference; if the 

brightness difference for a given pixel is larger than α, the twin boundary displacement is 

accepted and the pixel is assigned as white, otherwise it is disregarded and the pixel is 

assigned as black. The resulting white-black binary image of the absolute difference 

contrast is shown in Figure 6.2 (d). An optimal value of the threshold parameter was set 

to α = 50. 

In order to remove noise from the binary contrast image (Figure 6.2 (d)), an 

additional algorithm was applied on each column of the binary image. The algorithm 

groups consecutive indices of white pixels for each column and ignores those groups that 

consist of only one element in the column. If there is an isolated white pixel that does not 

share a neighbor up or down in the column, the pixel is considered as noise and is 

assigned as black. The resulting filtered binary image is shown in Figure 6.2 (e). The twin 

boundary displacement for a given column is taken as the total number of the grouped 

white pixels after filtering the noise. The total displacement of the twin boundary for a 

given filtered binary image is taken as the average of the number of grouped white pixels 

across non-zero columns (i.e., columns in which grouped white pixels were identified). 

We note that some columns might accept noise as valid twin boundary displacement, for 

example an isolated pair of two consecutive white pixels. However, since the average 

displacement across the non-zero columns is considered, most of the noise is suppressed. 

The above algorithm implies that the minimal detection limit for twin boundary 

displacement for each time step is two pixels. This limitation corresponds to detection 

capability of velocities larger than 0.22 m/s. For displacements larger than two pixels, a 
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resolution better than one pixel is obtained due to the averaging over all columns. Based 

on the obtained data, we evaluate the velocity resolution to be 0.05 m/s. 

A twin boundary in Ni-Mn-Ga lies approximately on {110} planes and is thus 

inclined at nearly 45° with respect to the {100} planes of the parent austenite phase, 

which, in our case, are the surface planes of the crystal. Thus, the magnitude of the 

displacement of the twin boundary observed on the surface is larger by a factor of √2 

relative to the normal displacement of the twin boundary (see Ref. [20]). Thus, the “true” 

displacement of the twin boundary (i.e., perpendicular to the boundary plane) is taken as 

the value measured on the surface multiplied by a factor of 1/√2. 

 

Figure 6.2  Calculating twin boundary displacement from microscope images. (a), 
(b) A typical pair of consecutive images, showing an individual twin boundary 

propagating along the sample. (c) The absolute grayscale difference between images 
(b) and (a). (d) A binary image map obtained from image (c) by setting a threshold 

value α = 50 on the absolute difference. (e) Filtered binary image after noise 
reduction. The twin boundary displacement is calculated by averaging the number 

of white pixels in the filtered image (see text for details). The intensity scale bar 
displays the 256 greyscale levels in images (a), (b), (c). 
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4. Results 

Typical profiles of the force, sample’s displacement, and twin boundary 

displacement as a function of time are shown in Figure 6.3 (a)–(c). The displacement of 

the sample reaches a maximal value of 0.33 mm after about 12 ms. This value is in 

accordance with the 6% twinning strain corresponding to c/a = 0.94 (c and a are the 

lattice parameters of the unit cell) and indicates that the entire crystal has completely 

twinned during 12 ms, which corresponds to an average actuation frequency of about 40 

Hz. At the same time, the maximal value of twin boundary displacement recorded by the 

high speed camera is smaller than 2.5 mm and is equivalent to only 3% strain. This 

implies that additional twin boundaries, that were not visible in the microscopy images, 

contributed to the total strain. This point will be elaborated further in this section. 

The time derivative of the displacement data (shown in Figure 6.3 (b), (c)) 

represent the velocities of the sample and of the twin boundary. These data are shown in 

Figure 6.4 (a) alongside the force signal. Due to the lower sampling rate of the twin 

boundary displacement relative to the sample’s displacement, the resulting twin boundary 

velocity data is noisier than the sample’s velocity data. The twin boundary velocity 

changes between zero and about 1 m/s, thus covering the entire range that is relevant for 

practical applications and allows quantifying the full twinning kinetics.  

The data displayed in Figure 6.3 (a)–(c) allowed calculating two independent 

dynamic stress-strain curves, which are presented in Figure 6.4 (b). The first curve (blue 

in Figure 6.4 (b)) is obtained from the measured displacement of the sample, dsample 

(Figure 6.3(b)), and the strain is calculated as: 

εsample = dsample / L        (2) 
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where L = 5.3 mm is the sample length.  The second curve (green in Figure 6.4 (b)) is 

obtained from the measured twin boundary displacement, dTB (Figure 6.3 (c)), and the 

strain is calculated according to: 

εTB = dTB (1 – c/a) / L        (3) 

Here, we assume that only the single visible twin boundary (whose position is displayed 

in Figure 6.3 (c)) contributes to the total strain, and thus multiply its displacement by (1 – 

c/a) (the longitudinal component of the twinning strain). The nearly perfect overlap 

between the two curves at strains smaller than 0.01 (equivalent to the first 4 milliseconds 

of the experiment) indicates that this assumption is valid within this time period. For both 

stress-strain curves shown in (e), the stress is obtained by dividing the measured force by 

the initial cross-section area of the Ni-Mn-Ga sample. 

The shape of the stress-strain curve and the values of the stress shown in Figure 

6.4 (b) are significantly different than common slow-rate stress-strain curves due to the 

high loading rate. In particular, in a typical slow-rate stress-strain curve, the initial sharp 

increase in stress is associated with a dominant elastic response with negligible motion of 

twin boundaries [6, 24]. In the dynamic stress-strain curve in Figure 6.4 (b), the initial 

increase of the stress describes a "pseudo-elastic" response that involves a prominent 

twinning reorientation, as validated by the microscopy images. 

Numbered markings that represent several important points in time are displayed 

on the different plots in Figure 6.3 and Figure 6.4. In the following, we discuss these 

points with respect to the characteristics of the experimental setup and the kinetics of 

twinning in the tested sample. 
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Point (0) marks a time of about 0.2 ms after the solenoid was activated. During 

this period, the force sensor shows a small increase in its reading from the preload value. 

This increase can be associated with the rise time of the magnetic field in the solenoid 

and the resulting magnetization of the push rod. No displacements were recorded during 

this short time and thus it does not appear in Figure 6.3 (b) and (c). 

Around point (1), which corresponds to t =1.6 ms, the displacement sensor and 

the optical images start detecting motion of the sample and the twin boundary, 

respectively, while the force shows an initial increase above the value recorded at point 

(0). The higher spatial and temporal resolutions of the optical sensor relative to the 

camera images lead to a faster and continuous response of the sample’s displacement 

relative to that of the twin boundary. In accordance, the velocities of the sample and the 

twin boundary display non-zero values around this point in time.  

According to the specifications of the solenoid, its initial response time due to 

inertia associated with the mass of the push rod is 1-2 ms. This value is in accordance 

with the observed “dead-time” of about 1.6 ms. Since no motion is detected at times 

smaller than the point (1), the stress-strain curves during this time also show zero strain. 

While point (1) marks the beginning of motion, after an additional 1 ms there is a 

sharp increase in the velocities of the sample and the twin boundary (marked as point 

(2)), which takes place during a relatively small increase in the force. The variations of 

the measured quantities suggest a change in the mechanism of the twin boundary motion. 

The value of the force around which the transition takes place is approximately 1 N, 

which corresponds to a stress of 0.45 MPa or a driving force of 30 kJ/m3 (under 

mechanical loading, the driving force for twin boundary motion is directly related to the 
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uniaxial stress according to g = σ ε, where ε = 1 – c/a is the twinning strain). The velocity 

of the twin boundary around this transition point is about 0.25 m/s. This value is in 

agreement with the one reported earlier for the transition from slower (thermally 

activated motion) to faster (a-thermal) motion [6, 20].  

Approximately 1 ms past point (2), i.e., at t = 3.7 ms, another transition is 

detected and is marked as (3). At this point, the velocity of the twin boundary starts 

decreasing, while that of the sample keeps increasing together with the force. This 

behavior can be explained by considering the start of motion of additional twin 

boundaries in the sample, which are not visible in the optical images. For example, there 

may be an additional twin that nucleated at the bottom surface of the crystal, opposite to 

the surface that is observed by the microscope. Recalling that twin boundaries in Ni-Mn-

Ga are inclined by 450 with respect to {100} planes, the additional twin can expand to a 

width of 1 mm (at the bottom surface) before penetrating to the top surface and be 

observed by the microscope. 

On the stress-strain curves (Figure 6.4 (b)), point (3) marks the start of a deviation 

of the curve calculated based on the twin boundary displacement from the curve 

calculated from the sample displacement. As a result, the twin boundary curve exhibits 

smaller strains for similar stress values. This also supports our assumption that at this 

time additional twin boundary/boundaries start propagating in the sample and their 

motion also contributes to the overall macroscopic strain. 

The last marked point (4) occurs at about t = 4.3 ms and marks a sudden and sharp 

decrease in the measured force from its peak value. This sudden drop in the force 

probably occurs because during this short time-segment the velocity of the solenoid’s 
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push rod is slightly smaller than the contraction velocity of the sample. Yet, the force 

does not drop to zero, indicating that contact between the push rod and the sample is 

maintained during the entire time period. After an additional few tenths of a millisecond 

the force stabilizes, which implies that the velocities of the sample and the solenoid are 

equal again. The transient difference between the velocities of the push rod and the 

sample occurs probably due to the inertia of the push rod, which does not allow it to 

accelerate as fast as the sample’s velocity changes. 
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Figure 6.3 Measured profiles of the force (a), sample displacement (b), and twin 
boundary displacement (c), taken from a pulsed loading test on the sample shown in 

Figure 6.2. The numbered labels mark the same time points on all charts (see text 
for details). 
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Figure 6.4 (a) Calculated velocities of the sample (blue) and the twin boundary 
(green), overlaid on the measured force profile (red). (b) Stress-strain curves 

obtained from the two displacement-force measurements. The numbered labels 
mark the same time points shown in Figure 6.3. 
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5. Discussion 

The results presented in the previous section demonstrate the capabilities of the 

proposed experimental setup to measure and evaluate the mechanical response associated 

with twin boundary motion in an MSM crystal subjected to a millisecond-scale load 

pulse. In the following, we use the measured data to evaluate and quantify the kinetics of 

the process. In particular, we extract the kinetic relations for the motion of twin 

boundaries for two different twin types. Kinetic relations are obtained independently 

from the measured sample displacement and the twin boundary displacement.  

Figure 6.5 presents kinetic analysis for two different experiments on the same 

crystal. The visible twin boundaries in each case (Figure 6.5 (a), (d)) have different 

macroscopic orientations with respect to the top surface plane of the sample (former 

{100} plane of the austenite phase). In Figure 6.5 (a), the projection of the twin boundary 

on the surface plane is generally parallel to the sample's directions, while in Figure 6.5 

(d), the projection is oriented at about 7 degrees with respect to the surface plane.  

The stress-strain curves obtained for the two experiments (Figure 6.5 (b), (e)) 

show similar trends: an initial rise of the stress takes place at strain levels of up to about 

0.02, followed by stabilization of the stress at a value of about 2.5 MPa during the 

remaining 0.04 strain range. The sharp stress drop at a strain of about 0.02 in both cases 

is a result of the experimental setup, as discussed in the previous section, and does not 

necessarily reflect the intrinsic behavior of the tested material. We note that there are 

slow-rate loading tests that also display a stress drop due to nucleation and initiation of 

twin boundary motion. In our experiments, twin boundary motion occurred already 
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before the stress drop and we did not observe nucleation of new twins during the force 

drop event.  

The dynamics associated with the motion of twin boundaries are best 

characterized by the kinetic relation, which correlates the velocity of the process to the 

force that drives it, as presented in Figure 6.5 (c), (f). Note that the kinetic relation figures 

are based only on data recorded up to the stress peak in Figure 6.5 (b), (e), i.e., when the 

velocity of the push rod follows the contraction rate of the sample. Figure 6.5 (c) and (f) 

present two types of kinetic relations. The first is a “macroscopic” kinetic relation that 

correlates between the contraction velocity of the sample and the applied force (blue 

line). The second is a "local" kinetic relation that was tracked using the optical images 

(green marks) and describes the dynamics of the visualized individual twin boundary. 

The error bars/regime in the velocity values of the twin boundary represent the 

measurement uncertainty that is dictated by the finite resolution of the optical camera, the 

filtering algorithm and the frame rate, and is evaluated as ±0.5 m/s. We note that the 

scattering of the velocity data is larger than the measurement error (for similar values of 

the force), and thus indicates variations in the mobility of a twin boundary at different 

locations along the crystal. This phenomenon was also observed and reported in previous 

studies employing the pulsed magnetic field method [16, 19, 20]. 

The vertical velocity axes of the kinetic relations in Figure 6.5 (c), (f) are scaled 

by a factor of 1 – c/a, which is the value of the twinning strain. In the case that a single 

twin boundary propagates along the sample, the two velocities must obey the kinematic 

relation vTB = vsample (1 – c/a). Indeed, the "macroscopic" (sample) and "local" (twin 

boundary) kinetic relations obtained during each single experiment show very good 
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agreement with the above relation during the first few milliseconds of the experiment, 

when only a single twin boundary propagated in the sample. Once the velocity of the 

imaged twin boundary decreases, the two relations deviate from each other: the sample’s 

velocity keeps increasing with the force, while that of the imaged twin boundary 

decreases (see for example at forces larger than 4 N in Figure 6.5 (c)). This behavior 

results when multiple twin boundaries start propagating in the sample, as discussed in the 

previous section. 

The shape of the kinetic relation of the overall sample and that of the twin 

boundary show a transition from slow to fast motion, which takes place at a force of 

about 1 N as indicated by an arrow. This value is equivalent to a transition driving force 

of about go = 30 kJ/m3, which is comparable, but lower, than the values reported for the 

two twin types using the pulsed magnetic field method [20, 28, 30]. Moreover, the good 

correlation between the kinetic relation obtained from the twin boundary displacement 

and that obtained from the sample’s displacement imply that the latter can serve as a 

good indication for the dynamic response of the tested crystal, and in particular for the 

identification of the transition force go, which is an important material property. From an 

engineering perspective, the sample’s kinetic relation provides a macroscopic description 

of the sample’s dynamic response. Thus, we conclude that the simple experimental setup 

presented in this work, even without the addition of an optical microscope and a high-

speed camera, can serve as an efficient and convenient method for complete dynamic 

characterization of Ni-Mn-Ga crystals, and particularly for determining the transition 

driving force go. 
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The differences between the stress strain curves and between the kinetic relations 

obtained from the two experiments are minor (compare Figure 6.5(b) to Figure 6.5 (e) 

and Figure 6.5(c) to Figure 6.5 (f)). This implies that the two twin boundaries shown in 

Figure 6.5 (a) and Figure 6.5 (d) have similar dynamic behavior. At the same time, the 

differences in the orientations of the two twins on the observed surface (which are 

influenced also by the accuracy at which the sample was cut relative to the {100} planes 

of the austenite phase), may suggest that the two boundaries are of different types. In 

order to rigorously identify the exact characteristics of a twin boundary and correlate 

them to the measured dynamic response, the following procedure can be followed: (1) 

create a twin boundary in the tested sample. (2) perform a detailed crystallographic 

analysis of the twin type with electron or x-ray diffraction methods (e.g., EBSD or XRD). 

(3) do a mechanical pulse test using the experimental system described in this work. We 

note that step (2) in the above procedure is beyond the scope of the current work, and 

thus was not pursued here. 

Recent crystallographic studies of twin boundaries in Ni-Mn-Ga using EBSD and 

XRD have shown that mixed regions of type II and I can coexist along a single macro 

twin boundary (see Refs. [31–33]), i.e., the same twin boundary can be of type I in 

certain regions of the sample and of type II in other regions. This complex microstructure 

is feasible through different arrangements of "micro" twins (typically referred to as 

modulation twins) across a "macro" twin boundary [31, 32]. With such XRD and EBSD 

characterization methods, researchers can identify the type of twins, but are restricted to a 

small local region, typically not larger than few tens of micrometers. At the same time, 

optical microscopy images (similar to those in Figure 6.5 (a) and (d)) can capture an 



128 

 

entire millimeter-scale macro twin boundary but can only provide the average angle that 

the projection of the twin boundary forms on the observed surface (see also Refs. [12, 20, 

32, 34]). However, when the macro twin boundary is composed of complex arrangements 

of modulation twins, this average angle is not always a precise indication of the type of 

the macro twin boundary and at the millimeter-scale most twin boundaries may be 

composed of a combination of the two types, as explained in Ref. [32]. Our results 

(Figure 6.5) may represent such a scenario, and in particular indicate that the average 

inclination angle cannot predict its dynamic behavior. This emphasizes the importance in 

performing dynamic loading tests, as described in this work, which can characterize the 

actual kinetic response of a given twin boundary. 
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Figure 6.5 Dynamic behavior of Ni-Mn-Ga single crystal obtained from two 
different experiments conducted on the same sample. Experiment 1: (a), (b), (c). 

Experiment 2: (d), (e), (f). The visible twin boundary in each experiment is shown in 
(a) and (d). Stress-strain curves ((b), (e)) are calculated independently for the 

sample and for the twin boundary from the entire measured data. Kinetic relations 
((c), (f)) are calculated independently for the sample and for the twin boundary, and 
include data recorded up to the stress peak in the stress-strain curves. The shaded 
area in light green represents the estimated measurement error in twin boundary 

velocity. 

6. Summary 

A simple experimental setup is presented that allows both macroscopic and 

microscopic characterization of the dynamic response of an MSM crystal. Dynamic 

uniaxial loading using a commercial solenoid leads to twinning reorientation in the tested 

sample, which is monitored via force and displacement measurements. The collected data 

reveals the overall kinetics of the sample, i.e., the basic relation between the sample's 

deformation rate and the force that acts on it. This relation is vital for characterizing the 
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quality of the crystal and for simulating its dynamic response as a magneto-mechanical 

actuator. In particular, the experimental conditions are tuned such that the velocity of the 

sample spans the relevant range for actuation, and allows detecting the transition force 

from slow thermally activated response to athermal fast response. Complementary high 

speed imaging allowed microscopic evaluation of the motion of individual twin 

boundaries within the sample, and for the correlation of this twin boundary motion with 

the macroscopic response of the crystal. 
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Abstract 

Twinning is an important mechanism of deformation in various crystalline 

materials, and in particular in shape memory alloys, where it is inherent to the shape 

memory and super-elasticity effects. This paper presents a generalized methodological 

approach for analyzing and modeling twin boundary dynamics with particular relevance 

for shape memory alloys. This approach combines the topological model description of 

the interface structure at the atomistic/lattice scale with analytical analysis of energy 

barriers and mechanisms of motion that provide macro-scale kinetic laws for the twin 

boundary motion. We emphasize the main differences between the topological structures 

of different types of twin interfaces and their implications for the mobilities of the 

different twin types. In particular, we elaborate on the relaxed topological structure of 

type II twin boundaries that contains a coherently facetted structure, where the facets are 

rational planes that accommodate misfit strain. Then, we clarify the lattice barriers’ role 

in determining the different regimes of the kinetics of twin boundary motion. Further, we 

develop models leading to analytical expressions for the activation energies of various 

nucleation processes that dictate the overall kinetics of twin boundary motion and 

identify the rate-limiting process for the different twin types. In the case of compound 

and type I twins, the analysis leads to an explicit expression for the magnitude of the 

twinning stress, revealing a strong dependency on the shear modulus and the twinning 

shear, which is in excellent quantitative agreement with experimental values reported for 

BaTiO3, Ni-Ti, Cu-Al-Ni, and 10M and NM Ni-Mn-Ga. Moreover, our analysis explains 

the different temperature dependencies of the twinning stress exhibited by the different 

twin types, and in particular the very low temperature sensitivity of type II twins. 
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1. Introduction 

Twinning is an essential mode of plastic deformation in a variety of solid 

materials, such as hexagonal close-packed (HCP) metals (e.g., Mg and Ti) [1] as well as 

nano-crystalline and nano-structures of face-centered cubic (FCC) metals (e.g., Cu and 

Ni) [2–4]. Besides, twinning reorientation in ferroelectric materials and shape memory 

alloys (SMA) facilitates significant straining [5], thus providing the fundamental 

mechanisms for transformation between electric/magnetic/thermal energy and 

mechanical energy, which are used in a variety of advanced actuation, sensing, and 

energy harvesting applications [6–9]. 

Given the importance of twinning to the functionality of advanced materials, an 

understanding of interrelations between the often-complex twin boundary (TB) structure 

of different twin types and their mobility is required. Further, the knowledge of the 

relations between twin boundary mobility and fundamental material properties, such as 

the twinning shear strain and the shear modulus, is of substantial importance. Such 

knowledge can be acquired through the development of general yet simple 

microstructure-based models that can be applied to different material systems (see, e.g., 

Refs. [10, 11]). This approach should be validated by its power to explain twinning 

behavior based on fundamental material properties such as lattice parameters, twinning 

elements, and elastic constants, and on experimental evidence that has been reported in 

recent years. 

In the classical description of twinning, twins are related by a simple shear. The 

classical model predicts the twinning mode of a given crystal lattice by identifying the 

twinning elements: the twinning invariant planes K1, K2, the twinning directions η1, η2, 
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and the twinning shear strain s [1, 12–14]. Following this description, twins are classified 

into three types: type I, type II and compound. In type I twins, K1 and η2 are rational, 

while K2 and η1 are irrational. In type II twins K1 and η2 irrational while K2 and η1 are 

rational. In compound twins, all four twinning elements are rational. In tetragonal 

martensite (e.g., BaTiO3 [15], non-modulated Ni-Mn-Ga [16]) only compound twins 

exist, while all three twin types can exist in lower symmetry structures, such as 

monoclinic (e.g., NiTi [17], 10M Ni-Mn-Ga [18]) and rhombohedral and hexagonal (e.g., 

Cu-Al-Ni [19], Ti-Al [20]) martensite. 

 Experiments indicate that the dynamics of type II twins are fundamentally 

different from those of type I twins. Type II twins display smaller twinning stress values 

than type I, as reported for several material systems, e.g., Ni-Mn-Ga, Ni-Mn-Sn, and Cu-

Al-Ni [18, 19, 21]. For these materials, the room temperature twinning stress of type II 

twins is smaller than that of the conjugate type I twins by at least a factor of 5 [18, 22, 

23]. Previous studies by several research groups, focusing mainly on the Ni-Mn-Ga 

system, have attempted to explain these differences based on the complex twinned 

microstructure occurring at various length scales [24–29]. Here, we analyze and explain 

the different mobilities of type I and II twins based on the periodicity of the lattice as a 

source for energy barriers and the different lattice-scale topological structures. 

Moreover, the twinning stress of type II twins shows a very weak, in some cases 

indiscernible, temperature sensitivity (e.g., Ni-Mn-Ga, Cu-Al-Ni [30–32]). This is in 

contrast to the behavior of type I and compound twins, which typically display an 

increase in twinning stress as the temperature is decreased relative to the martensite to 

austenite transformation temperature [21, 32–34]. Such behavior indicates that the rate-
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limiting process in the motion of type II twins is different from that in compound and 

type I twins. Moreover, a finite and relatively low twinning stress value of type II TBs 

was reported for 10M Ni-Mn-Ga at temperatures as low as 1.7 K [30]. This indicates that 

the mechanisms responsible for TB motion can proceed in an athermal manner even at 

low driving force values. 

The evolution of twinning, i.e., the micro mechanisms and kinetics by which one 

twin expands at the expense of another through the motion of twin boundaries (TBs), is 

associated with the nucleation and propagation of twinning defects known as twinning 

disconnections (TD). A disconnection is a linear defect with both step and dislocation 

characters [35, 36]. Therefore, a thorough understanding of the origin and dynamics of 

twinning requires the knowledge and modeling of the defect structure and the 

corresponding physical mechanisms of motion. 

The content, properties, and arrangement of TBs and TDs can be well described 

with the topological model (TM) [35–38]. Researchers have applied the TM to explain 

the formation and motion of many interfaces, including precipitate/matrix interfaces, 

martensite/austenite interfaces, as well as compound and type I twins [1, 38, 39]. Type II 

twins, which play a dominant role in twinning evolution in many SMAs, pose a challenge 

for the TM description because of the irrational character of their twinning plane that 

results in an undefined distance between consecutive twinning planes. Recently, Pond et 

al. introduced a TM-based description for the formation of type II twins and implemented 

it for several material systems (e.g. α–Ur, NiTi) [40, 41]. Following these works, possible 

equilibrium structures of type II twins in Ni-Mn-Ga and Ni-Ti were proposed based on 
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the TM [42, 43]. Sehitoglu et al. [44] used a combined atomistic-topological approach to 

describe an equilibrium structure of type II twins in Ni-Ti. 

The TM provides a crucial bridge between TB structure and mobility, as it 

describes the twinned interface as an arrangement of TD defects whose nucleation and 

motion can be evaluated based on principles of the classical dislocation theory. 

Specifically, the mobility of a TD is directly related to the fundamental properties of the 

linear defect: the Burgers vector b and the core width δ, and potentially other interfacial 

properties, such as the step height h. For example, small Burgers vector and large core 

width are expected to promote high mobility of a linear defect. A fundamental feature of 

any twinning system is the twinning shear strain s. The TM indicates that the magnitude 

of s is related to the properties of a TD according to s = b / h [36]. Different materials, as 

well as different twinning systems within the same material, have significantly different 

twinning shear values [1]. In these cases, the twinning shear may strongly influence the 

twin boundary mobility. 

In this study we analyze the impact of topological parameters on the mobility of 

twin boundaries. The topological parameters derive from the crystal structure and 

orientation. To facilitate the crystallographic representation of twinning for modulated 

martensite in different SMAs, the TM adopts an approximated crystallographic structure 

that averages out the modulation. (e.g., an effective monoclinic unit cell in 10M Ni-Mn-

Ga, Refs [42, 45]). This approach is useful for defining and quantifying the topological 

parameters of the interface defects (e.g., b, h). In addition, it allows describing the lattice 

barrier for TB motion (see Section 4) by a simple periodic function with periodicity on 

the order of a single lattice spacing of the effective unit cell. By averaging out the lattice 
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modulation we disregard shuffles required to establish the correct structure. In the cases 

discussed here, particularly for type II twins in 10M Ni-Mn-Ga, shuffles are very small 

(substantially below the interatomic distance) and do not include the switching of atoms. 

In such cases, shuffle does not contribute significantly to twin boundary mobility [1]. 

In order to establish general relations between the structure of the TB (as 

described by the TM) and its mobility, the mechanisms of motions for twins in various 

materials must be clarified. In this context, a mechanism of motion is a description of a 

sequence of several sub-processes by which the TB propagates and an identification of 

the rate-limiting process. This knowledge allows the formulation of kinetic relations that 

quantify the velocity of the interface as a function of the thermodynamic driving force. 

The term driving force represents the sum of all tractions that act on a twin boundary 

through various types of external loads (e.g., mechanical, magnetic, electrical), as further 

explained in Section 2. The kinetic relation is the basic input for models describing the 

macroscopic mechanical response of materials due to twinning. 

Recently, Müllner analyzed the mechanisms of motions associated with 

nucleation of new TDs, focusing on the relations between the TM of type I and II 

boundaries and the resulting barriers for TD nucleation [11]. Faran and Shilo suggested 

analytical models for the kinetic relations of TB motion based on different mechanisms 

of motion [46, 47, 23]. These studies revealed a clear transition between slow and fast 

regimes of motion that takes place at driving forces much larger than the value related to 

the twinning stress [46–49]. The source for this transition is not yet fully explained. 

Specifically, it is unclear if this source is different for type I and II twin boundaries or if 

this transition is expected to appear in other SMA. 
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This paper is organized as follows: Section 3 presents several basic concepts that 

are essential for the analysis of TB motion in a variety of material systems, focusing on 

the definitions and application of the driving force and kinetic relations. Section 3 

contains a basic description of the structure of a twinning interface based on the TM. In 

Section 4 we present the energy barriers that are imposed by the lattice and resist the 

motion of the TB, which leads to the classification of different regimes of the twin 

boundary motion. Section 5 presents an analytical formulation of the activation energies 

of different processes that occur during the twin boundary motion. In Section 6 we focus 

our analysis on TB motion in the slow rate regime and identify the rate limiting process 

that determines the dynamics of different twin types. Further, we obtain explicit 

expressions for the twinning stress for the driving force regime where thermal activation 

dominates the kinetic relation and for the different nucleation energies that were 

developed in Section 5. In Section 7 we employ the insights presented in the previous 

sections to explain the available results for the motion of different twin types in different 

materials systems. Emphasis is given to results reported on ferromagnetic SMA 10M Ni-

Mn-Ga because TB motion in this system was widely investigated by several research 

groups with high quality single crystals. 

2. Definitions and Basic Concepts 

When discussing the motion of TBs, several basic concepts should be defined and 

clarified to allow for a general description that is valid for a variety of material systems. 

We start with the concept of the thermodynamic driving force (driving force in short) g, 

which is well known from the field of phase transformations, and represents the change 

in free energy due to the transformation from one state (or phase) to another [50–52]. For 
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the case of a TB, the thermodynamic driving force is the derivative of the TB energy U�TB 

(per unit area) with respect to the propagation coordinate z normal to the TB plane: 

g = – ∂
∂z

(U�TB)        (1) 

The driving force has the dimension of energy per unit volume. Equation (1) represents a 

continuum (macroscopic) model, and the definition of U�TB does not account for local 

atomistic effects such as the lattice potentials. The influence of the lattice periodicity on 

the TB energy is introduced in Section 4. A similar expression can be formulated for the 

case of a linear TD defect [53, 54] . 

The total energy U�TB contains several contributions, which represent the strain, 

electric (e.g., in ferroelectric crystals), and magnetic (e.g., in ferromagnetic crystals) 

energies that vary due to the TB propagation: 

U�TB = UTB
mech + UTB

elec + UTB
mag      (2) 

The use of the driving force is general and allows us to decouple the thermodynamic 

traction applied on a moving material defect from the overall mechanical state of the 

macroscopic crystal. For example, Equations (1) and (2) show that a ferromagnetic 

crystal subjected to an external magnetic field results in a non-zero driving force for TB 

motion, even if there is no mechanical load. In this case, the frequent use of the term 

magneto stress, which is equivalent to the effect of the magnetic driving force (UTB
mag in 

Equation (2)), is ambiguous since it is not a real mechanical stress and does not appear in 

the basic equations of force equilibrium over the macroscopic crystal. Furthermore, the 

general formulation of the driving force enables accounting for other effects, such as that 

of demagnetization energy (as in Refs. [47, 55]) or cases where the TB area is not 

constant. 
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The kinetic relation [51, 56] is a constitutive material law that correlates the 

velocity of an individual TB to the thermodynamic driving force. Different kinetic 

relations may arise for different ranges of the driving force, but all kinetic relations are 

determined by properties at the atomistic and mesoscopic scales. Kinetic relations serve 

as the basic input in models describing the overall twinning dynamics. Specifically, 

discrete twin boundary dynamic simulations, based on measured kinetic relations, have 

been demonstrated as a powerful tool for calculating the dynamic response of Ni-Mn-Ga 

actuators [57, 58]. Kinetic relations can be obtained experimentally by tracking the 

motion of individual TBs [46, 47] and can also be formulated analytically. To the latter 

end, one must identify the mechanism of motion and formulate the kinetic laws for the 

rate of this mechanism. Comparing experimental and analytical kinetic relations allows 

validating the assumptions taken during the analytical approach and extracting values of 

basic material properties [23, 47]. 

Another common term in the dynamics of twinning is the twinning stress, which 

is usually obtained from quasi-static uniaxial mechanical experiments at strain rates 

typically slower than 10-2 s-1 [59]. Under these conditions, the only non-zero term in 

Equation (2) is the mechanical energy, UTB
mech = –z ⋅ σTS ⋅ εs. Here, σTS is the twinning 

stress, which is typically measured along a <100> longitudinal direction of a single 

crystal cut with faces parallel to {100} planes of the parent cubic phase (e.g., Refs. [60, 

19, 61, 21]). εs is the corresponding longitudinal strain (i.e., along the same direction as 

σTS) associated with TB motion. For example, εs = 1 – c/a in tetragonal martensite. z is the 

propagation distance normal to the TB plane, to straddle a volume that is transformed due 
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to the TB motion. Since the twinning shear equals s = 2εs, the specific driving force gTS 

(energy / volume, Equation (1)) associated with the twinning stress is given by: 

gTS = σTS s
2

         (3) 

In cases where the mechanism of motion is thermally activated, the twinning stress σTS 

depends on the temperature and the applied strain rate (or TB velocity). Therefore, in 

general, the twinning stress is not identical to a barrier for the twin boundary motion. 

3. Topological Models for Twin Interfaces 

While the classical description of twinning predicts the twinning mode of a given 

lattice (see Section 1), this model does not establish the micro mechanisms of twinning. 

For instance, it does not provide insight into the formation mechanism and equilibrium 

structure of type II twins because the invariant plane K1 is irrational in this case [1]. The 

topological model proposed by Pond and Hirth [36, 37, 39, 40, 62] provides a framework 

to extensively characterize the defect contents of interfaces, including twinning [63, 64]. 

The model assumes the formation and growth of terraces separated by disconnections as 

the mechanism of formation and growth of twins. 

In compound and type I twins, the invariant plane of twinning, K1, is rational, and 

thus disconnections, (b, h), are rigorously defined in the interface [37]. For example, for a 

type I twin, the Burgers vector, b, of the disconnection is parallel/antiparallel to the shear 

direction, η1, and the step height, h, is equal to the interplanar spacing of the K1 plane. 

The Burgers vector quantifies the lattice displacement required for maintaining a 

coherent interface, and the step height quantifies the displacement of the interface 

accompanying the motion of the disconnection. In a relaxed condition, the lowest energy 

configuration of a TB is a flat K1 plane without any disconnections. 
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The twinning plane of type II twins is irrational, which poses intuitive (but not 

conceptual) difficulties in describing the topological structure of the interface. This has 

motivated several studies, both theoretical [40–42, 44] and experimental [65–69] in an 

attempt to unravel the equilibrium structure of a type II interface. These studies state that 

an irrational twinning plane possesses high energy, which promotes relaxation of the 

interface to various types of lower energy configurations. For example, experimental 

characterization using HRTEM images sometimes reveals a faceted structure [68, 69], 

while in other cases, the structure relaxes more randomly [65]. Macroscopically, the 

orientation of the relaxed twinning plane coincides with the irrational plane predicted by 

the classical theory of twinning. 

A flat twinning plane that lies along an irrational crystallographic plane is highly 

incoherent, since the two twins only share a common lattice direction but not a plane. The 

incoherency results in a high interfacial energy, and thus the atomistic structure of the 

type II TB is likely to relax to lower energy configurations [70]. A possible relaxed 

interface for a type II TB is the formation of a coherently faceted structure [71, 68, 44, 

42]. In this description (Figure 7.1), the TB forms facets that lie along low-index planes, 

separated by equally spaced steps that lie along another low-index plane. The “average” 

interface plane, formed by the facets and the steps, lies very close to the irrational 

twinning plane K1, calculated based on the classical theory of twinning. In general, while 

the low-index facet planes are common to both the parent and the twin, there is some in-

plane rotation of the lattices of the parent and the twin within this plane. This rotation 

results in a misfit of the parent and twin lattices in the facet plane. This misfit can be 

accommodated either by long range elastic strains, resulting in a fully-coherent interface, 
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or by an array of misfit screw dislocations, resulting in a coherently faceted interface. For 

some materials, e.g., Ni-Ti, the misfit screw dislocations coincide with the steps between 

facets, as demonstrated in Figure 7.1, thus forming an array of equally spaced misfit 

screw disconnections, characterized by a step height and a Burgers vector [44]. In other 

materials, such as Ni-Mn-Ga, the direction of the Burgers vector of the misfit dislocation 

results in steps that rotate the average plane formed by the faceted interface out of the 

irrational K1 plane [42]. Thus, for these materials, the description of the twin boundary as 

a coherently faceted structure is still an unsolved problem. 

At a scale larger than the equilibrium distance between adjacent disconnections (lo 

in Figure 7.1), which is on the order of few nm (Refs. [42, 44] and values in Table 7.2), 

the strain field produced by the array of dislocations is equal in magnitude but opposite in 

sign to the strain field produced by the misfit at the faceted interfaces. Thus, the two 

contributions cancel each other, resulting in zero long-range strains. In materials where 

the coherently faceted structure is possible, the array of equally spaced disconnections 

represents a low-energy configuration of the type II TB, and can thus serve as an 

equilibrium state. 
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Figure 7.1 Schematic illustration of a coherently faceted type II TB, showing the 
low index plane facets separated by an array of screw disconnections. b is the 

Burgers vector of a disconnection, ξ is the disconnection line direction and is (anti) 
parallel to the shear direction η1. The disconnections are equally spaced at a 

distance lo, such that the average interface plane coincides with the irrational K1 
twinning plane. 

4. Lattice Barriers for Twin Boundary Motion and Classifications of Different 

Regimes 

To define possible mechanisms of motion that lead to twin boundary propagation, 

we identify the energy barriers that resist each sub-process involved in the motion. Here, 

we present a general analysis that considers only the periodicity of the lattice as a source 

for energy barriers. Other, aperiodic barriers may arise due to interactions of the twin 

boundary with crystal defects, such as surface roughness, precipitates, dislocations, phase 

boundaries, and grain boundaries. The effects of these barriers depend on the specific 

problem and the quality of the crystal. The lattice barriers are shown in Figure 7.2 and the 

different sub-processes are summarized in Table 7.1. Two different barriers separate the 
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driving force scale into three regions. In each of these regions, different processes take 

place, resulting in different velocities through different kinetic relations.  

Compound and type I TBs are parallel to low-index lattice planes. Such interfaces 

are subjected to a lattice barrier that resists their motion as a flat plane. The periodicity of 

this barrier is equivalent to the lattice spacing of the low-index plane, dTB, and its 

amplitude is denoted as γTB (energy per unit area), as shown in Figure 7.2 (a). Type II 

twin boundaries, on the other hand, are characterized by an irrational twinning plane, 

which poses difficulties in realizing the role of a periodic lattice barrier that resists the 

propagation of the twin boundary as a flat plane. However, we note that the step height of 

disconnection on a type II interface has a discrete value. For Ni-Mn-Ga, the step height is 

of the same order of magnitude as dTB [42]. Moreover, the coherent facets that constitute 

the coherently faceted structure lie on low-index planes (Figure 7.1 and related 

discussion), and are thus subjected to a periodic lattice barrier. 

An additional periodic lattice barrier is associated with the motion of twinning 

disconnections. A disconnection line tends to lie along low-index lattice directions, even 

when the Burgers vector is irrational, e.g., in type I twins [42], and is thus subjected to a 

periodic lattice barrier that resists its glide, similarly to the Peierls barrier for the glide of 

ordinary dislocations. The periodicity of the Peierls barrier is the lattice spacing 

perpendicular to the disconnection line on the glide plane, dD, and its amplitude is 

denoted as ΓD (energy per unit length), as shown in Figure 7.2 (b). 
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Figure 7.2 Schematic description of the different lattice barriers for TB motion. 
The illustrations depict a TB with a rational twinning plane K1, as in compound and 
type I twins. (a) The lattice barrier for the motion of the TB as a flat plane along z 

direction. The barrier is characterized by an amplitude γTB (energy/ area) and 
periodicity dTB. The TB can also propagate via the glide of twinning disconnections 
on the rational twinning plane K1, along x direction. b, ξ are the Burgers vector and 
line direction of the disconnection, and η1 is the shear direction. (b) Peierls barrier 
for the glide of a disconnection. The barrier is characterized by an amplitude ΓD 

(energy/length) and periodicity dD. A kink-pair (KP) mechanism allows 
disconnection motion at driving force values that are smaller than the Peierls 

barrier. 
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Table 7.1 Sub-processes in the various ranges of the driving force (g) and TB 
velocity (vTB). The different ranges of the driving force are defined based on the 
magnitudes of the lattice barriers ΓD, γTB. 

Nucleation of disconnections 
 

Twin boundary motion 
as a flat plane 

 

 
Nucleation of kink-

pairs 

Disconnection glide 
as straight line 
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              D
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          0
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To evaluate the effects of the lattice barriers presented in Figure 7.2 on the motion 

of a TB, we introduce periodic functions that depict the energy landscapes of the lattice 

barriers, and add them to the total energy of the system. In Figure 7.3 and Figure 7.4 we 

plot the energy landscapes encountered by a moving TB and a moving TD for two ranges 

of the external driving force with respect to the lattice barrier amplitude. This 

representation corresponds to cases where the driving force is the input parameter and 

dictates the dynamics of the TB or TD through fundamental kinetic relations (see, e.g., 

Refs. [47, 48]). The analysis presented below shows that the energy landscapes are 

qualitatively similar for a moving TB and a TD, and thus the schematic plots in Figure 

7.3 and Figure 7.4 are valid to both defect types.  

For an existing TB, we express the change in energy per unit area UTB, as a 

function of the boundary position z, where z is the coordinate perpendicular to the 

boundary plane (Figure 7.2 (a)): 

UTB(z) = – g z + γTB sin2 �πz
dD

�      (4) 
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The first term in Equation (4) is the work per unit area associated with the motion of the 

TB under the driving force g along the coordinate z (identical to the continuum quantity 

U�TB(z) in Equation (1)). The second term in Equation (4) represents the periodic lattice 

barrier for TB motion (Figure7.2 (a)). Analysis of Equation (4) points to two different 

cases. In the driving force range g > go , where go = π γTB / dTB is the driving force 

associated with overcoming the lattice barrier γTB, the function UTB(z) decreases 

monotonically for all values of z (Figure 7.3). In this case, the driving force enables 

overcoming the lattice barrier, and the twin boundary moves as a flat plane. In this 

regime, the twin boundary motion is restricted only by the internal friction of the material 

and does not require a thermally activated process.  

If g < π γTB / dTB the twin boundary encounters a positive energy barrier (marked 

as UTB
bar in Figure 7.4) as it propagates from one potential well to the next. Therefore, 

motion in this range of the driving force necessitates nucleation of disconnections and 

their further glide. This motion type results in a slower advancement of the TB than the 

motion as a flat plane. For compound and type I twins, whose equilibrium topological 

structure does not contain disconnections, the nucleation requires overcoming an energy 

barrier via a thermally activated process, as discussed in Section 5.2. For type II twins, 

where disconnections are an inherent part of the equilibrium structure, there is a unique 

mechanism of athermal heterogeneous nucleation of disconnections at the surface, as we 

discuss in detail in Section 5.3. 

A similar analysis is applicable also for the motion of a disconnection. The 

change in energy (per unit length) of the disconnection is given by 

uD(x) = – g h x + ΓD sin2 �πx
dD

�      (5) 
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Here – g h x is the work per unit length associated with the motion of the disconnection 

along a distance x under the driving force g, x is the coordinate perpendicular to the 

disconnection line on the twinning plane (Figure 7.2 (b)), and h is the step height of the 

disconnection. The second term in Equation (5) represents the periodic lattice barrier for 

disconnection motion (Figure 7.2 (b)). 

When g > (π ΓD) / (dD h) in Equation (5), the function uD(x) decreases 

monotonically for all values of x (Figure 7.3) and the disconnection can propagate as a 

straight line in an athermal manner and its motion is restricted only by the internal 

viscosity (i.e., does not require a thermally activated process). Alternatively, when g < (π 

ΓD) / (dD h), the disconnection encounters a positive energy barrier, uD
bar, as it propagates 

from one potential well to the next (Figure 7.4). Following classical dislocation theory 

(see, e.g., p. 242 in Ref. [72]), motion of a disconnection in this range of the driving force 

is possible through nucleation of kink pairs on the disconnection line and the subsequent 

expansion of the kinks along the disconnection line (Figure 7.2 (b)). The kink pair 

mechanism for the advancement of a TD is reproduced in atomistic simulations of 

twinning in ferroelastics (see. e.g., Ref. [73]). 

The above discussion implies that under any value of the driving force there exists 

a mechanism of motion that can lead to the propagation of the TB, as summarized in 

Table 7.1. In practice, the actual movement mechanism of the TB may be 

indistinguishable in a specific type of experiment. For example, slow-rate mechanical 

tests apply a constant controlled strain rate on the sample. The stress reaches a plateau, 

denoted as the twinning stress, at a value at which the microscopic strain rate induced by 

the moving twin boundary is equal to the macroscopic strain rate. At stress levels smaller 
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than the twinning stress, the stress increases, but this does not mean that there is no twin 

boundary motion in this range. 

 

Figure 7.3 Energy profile of a twin boundary UTB (energy/area, Equation (4)) or 
twinning disconnection uD (energy / length, Equation (5)), for the case that the 

driving force g (energy/volume) is larger than the lattice barrier. The dashed green 
line represents the work associated with the motion of the TB (– g z in Equation (4)) 

or the disconnection (– g h x in Equation (5)). The normalized coordinates z/dTB, 
x/dD represent the directions normal to the TB plane and TD line, respectively (as in 

Figure 7.2). 
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Figure 7.4 Energy profile of a twin boundary UTB (energy/area, Equation (4)) or 
twinning disconnection uD (energy / length, Equation (5)), for the case that the 

driving force g (energy/volume) is smaller than the lattice barrier. The dashed green 
line represents the work associated with the motion of the TB (– g z in Equation (4)) 

or the disconnection (– g h x in Equation (5)). The normalized coordinates z/dTB, 
x/dD represent the directions normal to the TB plane and TD line, respectively (as in 
Figure 7.2). The magnitude of the barrier for TB or disconnection motion associated 
with the lattice potential is marked as UTB

bar and uD
bar, respectively. The energy gained 

due to the local advancement of the TB or the disconnection is labeled as UTB
gain and 

uD
gain, respectively (see discussion on the different energy terms in Section 5.1 and 

5.2). 

5. Activation Energies for Nucleation Process 

In Section 4 we identified two nucleation processes associated with different 

mechanisms of TB motion, namely the nucleation of disconnections and the nucleation of 

kink pairs on disconnections. Next, we formulate analytical expressions for the 

corresponding activation energies of these nucleation processes and discuss their 

relevance to the motion of the different type of TBs. Here, we distinguish three 

nucleation processes: the first analyzes the nucleation of kink-pairs on an existing 
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disconnection line. This mechanism is required for the glide of a disconnection and thus, 

it is applicable to all twin types. The second process is the homogenous nucleation of 

disconnection loops that is relevant mainly to compound and type I twins. The third 

process is the heterogenous nucleation of disconnections at the surface that is unique to 

the relaxed structure of type II twins. 

In the following analysis, we employ isotropic elasticity for evaluating the 

energies of individual disconnections and disconnection arrays. This provides simple 

analytical expressions that can be quantified and compared between different material 

systems. Yet, isotropic elasticity assumes that the shear stiffness is identical in all 

directions, which is not the case for elastically anisotropic martensitic SMAs. In order to 

account for this, we associate the shear stiffness μ in the isotropic formulation with the C’ 

elastic modulus of the austenite phase near the martensitic transformation temperature, 

and not with the isotropic shear modulus G (see values in Table 7.2, Table 7.3, and 

similar discussion in Ref. [11]). 

5.1 Homogeneous Nucleation of Kink Pairs on Disconnection Lines 

When the driving force is smaller than the Peierls barrier for disconnection glide 

(i.e., g < (π ΓD) / (dD h)), the glide of a disconnection requires the nucleation and 

expansion of kinks. This allows part of the disconnection to locally overcome the energy 

barrier uD
bar, as illustrated in Figure 7.4. Based on the theory of dislocation kinks (Ref. 

[72], page 242), we consider the homogenous nucleation of a kink-pair on an existing 

disconnection line. 

The activation energy for the homogenous nucleation of a kink-pair with a kink 

separation y is expressed by: 
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QKP = uD
bar y + EKP

self(y)       (6) 

Here, uD
bar is the energy per unit length required to overcome the periodic Peierls potential 

of the disconnection and is equal to the first maximum of the disconnection energy uD(x) 

(given by Equation (5)), calculated at x = dD / 2 (see Figure 7.4): 

uD
bar= uD(x = d/2) = ΓD – g h dD

2
      (7) 

EKP
self(y) in Equation (6) is the self-energy of the kink-pair and is generally given by: 

EKP
self = 2 ef – eint

y
        (8) 

where, ef and eint are formation and interaction energies, respectively. Under the 

approximation of isotropic elasticity, the two energies scale as ef ~ μb2dD  and eint ~ 

μb2dD
2 (see Ref. [72], page 244) , where μ is the shear stiffness. 

Both terms in Equation (6) are positive and increase as y increases. Further, after 

the nucleation, if y is too small, the attraction forces between the two kinks results in an 

annihilation of the kinks. Therefore, we must find the minimal value of y for which the 

nucleated kink-pair tends to grow, i.e., to increase the value of y. For this purpose, we 

express the energy of an existing kink-pair, for which x = dD, as a function of y: 

EKP
existing(x = dD) = uD

gain y + EKP
self(y) = – g h dD y + EKP

self(y)   (9) 

Here, uD
gain is the first minima of the energy of the disconnection uD (Figure 7.4). At x = 

dD, the periodic lattice barrier (2nd term in Equation (5)) is zero, and thus: 

uD
gain(x = dD) = – g h dD       (10) 

The critical length of the kink pair yc is obtained by finding the first extremum of 

Equation (9), i.e., solving ∂EKP
self

∂y
�
x = dD

 = 0, which provides: 
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yc = �
eint

g h dD
         (11) 

And thus, Equation (6) becomes: 

QKP = �ΓD – g h dD
2

�  + �2ef – eint
y

�      (12) 

Under the conditions of thermally activated motion (i.e., g < (π ΓD) / (dD h)), both 

bracketed terms in Equation (12) are positive, and thus the total activation energy QKP is 

always positive. This implies that kink-pair nucleation is not a spontaneous process, and 

requires some finite activation energy. As we show in Section 7.3, in some twin types and 

material systems the magnitude of QKP is comparable to the thermal energy even near     

0 K. Thus, a finite concentration of kinks is expected to be always present on the 

disconnection line even under zero driving force (see also Ref. [74]). At the same time, 

TB motion requires annihilation of existing kinks and nucleation of fresh kink-pairs. The 

rate of the later process is determined by the driving force g. 

5.2 Thermally Activated Homogeneous Nucleation of Disconnection Loops 

In compound and type I twins, the equilibrium structure of the twin boundary is a 

flat interface that coincides with a low index plane. Thus, when the driving force is lower 

than the barrier for twin boundary motion as a flat plane, i.e., g < (π ΓD) / (dD h), twin 

boundary motion requires the nucleation of disconnections on the TB plane. We consider 

nucleation of disconnection loops in the bulk or nucleation of half-loops at the surface, 

under the application of an external driving force g. This nucleation process is consistent 

with the recent description of an evolving topology of type I and compound twins under 

non-zero loading conditions (see Ref. [75]). 
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The analytical approach is similar to that employed for the nucleation of kink-

pairs, in Section 5.1. The activation energy for the nucleation of a disconnection loop 

with a radius r is expressed by: 

QDL = UTB
bar πr2 + EDL

self(r)       (13) 

The first term on righ-hand side of Equation (13) , UTB
bar πr2, represents the energy 

required to move the disconnection loop across the lattice barrier perpendicular to the 

twinning plane under the application of an external driving force g (Figure 7.4 and also in 

Ref. [47]). The magnitude of the barrier (energy per unit length) is given by 

UTB
bar = γTB –  g dTB

2
 = dTB �go

π
 – g

2
�      (14) 

where we substituted γTB = dTB go / π. 

The barrier UTB
bar is positive within the relevant range of the driving force g < (π 

γTB/dTB). The second term in Equation (13) EDL
self(r) represents the self-energy of the 

disconnection loop. The magnitude of EDL
self(r) may depend on the type of nucleation 

process. Heterogeneous nucleation of a disconnection loop, for example at crystal 

defects, may result in a negligibly small value of EDL
self(r). This in turn, may lead to a 

negligibly small activation energy QDL. However, given that the equilibrium structure of 

compound and type I twins contains no disconnections, continuous motion of the TB at a 

scale larger than the lattice scale requires nucleation events that occur regardless of the 

TB position within the crystal, i.e., not just in some few specific locations of crystal 

defects. Thus, we consider here the case of a homogenous nucleation, for which the 

activation energy given by Equation (13) is always positive and increases as r increases. 
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After the nucleation event, if r is too small, the attraction forces between 

segments of the disconnection loop will result in an annihilation of the loop. Therefore, 

we find the minimal value of r for which the nucleated disconnection loop tends to grow, 

i.e., to increase the value of r. For this purpose, we express the energy of an existing 

disconnection loop with radius r: 

EDL
existing(r) = UTB

gain πr2 + EDL
self(r)      (15) 

Equation (15) describes the energy of a loop that has already “surpassed” the activation 

energy QDL (expressed in Equation (13)). Thus, UTB
gain ≡ UTB(z = dTB) represents the first 

minima of UTB and it has a negative value (see Equation (4) and Figure 7.4 in Section 4). 

This distinguishes Equation (15) from Equation (13), where UTB
bar represents the first 

maxima of UTB, and it has a positive value. Further, the lattice potential (second term in 

Equation (4)) is zero at z = dTB. Thus, Equation (15) becomes: 

EDL
existing(r) = – g dTB πr2 + EDL

self(r)      (16) 

The self-energy of the disconnection loop EDL
self(r) can be expressed using the 

energy per unit length of the disconnection loop, qD(r): 

EDL
self(r) = 2πr qD(r)        (17) 

Equation (16) has a maximal value at r = rc. For r < rc, ∂EDL
existing / ∂r > 0, which means 

that such a loop will collapse and disappear. For r > rc, ∂EDL
existing / ∂r < 0, which means 

that such a nucleated loop will grow and increase its radius. Thus, only loops with r > rc 

contribute to the propagation of the twin boundary. For loops with r ≥ rc, the minimal 

value of the activation energy is obtained by substituting r = rc in Equation (13). The 

energy per unit length of the disconnection loop qD(r) is a slow-varying function of r that 
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changes as ln(r). For simplicity, Faran and Shilo [47] assumed that qD(r) can be taken as 

a constant. Thus, solving ∂EDL
existing / ∂r = 0 for rc under these conditions results in: 

rc = qD
g dTB

         (18) 

The substitution of Equation (18) in Equation (13) provides an expression for the 

activation energy for the nucleation of a stable disconnection loop: 

QDL = π qD
2

g dTB
 � 3

2
 + γTB

g dTB
�  ≈ 

π �0.5μb2�
2

g dTB
 � 3

2
 + γTB

g dTB
�    (19) 

In the second equality in Equation (19) we introduced a rough approximation based on 

isotropic elasticity for the line energy of the disconnection qD ≈ 0.5μb2 (see page 169, 

Eqn. 6-51 in Ref. [72]). 

The nucleation of a disconnection half-loop on the surface can be treated 

similarly, resulting in activation energy that is half the value expressed by Equation (19). 

5.3 Athermal Heterogeneous Nucleation of Disconnections at the Surface 

The topological structure of a coherently faceted type II boundary is inherently 

different from that of compound and type I, and contains a dense, ordered array of screw, 

misfit relieving disconnections (Figure7.1 and related discussion in Section 3). The 

disconnection array is preserved during motion of the interface. Thus, different 

nucleation mechanisms of disconnections are required to account for the motion of type 

II twins. In this section, we discuss a mechanism that enables athermal generation of 

disconnections on a type II TB. We evaluate and verify our analytical formulations by 

inserting material parameters for two representative material systems (10M Ni-Mn-Ga 

and Ni-Ti, see Table 7.2), in which type II twins play a significant role and the coherently 

faceted structure of the TB is well established. 
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We propose the following mechanism for the motion of a coherently faceted type 

II interface (Figure 7.5). The twin boundary contains a regular disconnection array (as 

shown also in Figure7.1) in which the disconnection lines are parallel to the free surfaces. 

The parallelism assumption is valid for example when samples are cut with all faces 

along {100}. This is the case essentially for all published experimental results (e.g., Refs. 

[18, 19, 21–23, 26, 31, 32, 46, 49, 54, 60]). Under an applied driving force, the slow-rate 

motion of this boundary (from top to bottom) involves two processes. One is the 

collective glide (from left to right in Figure 7.5) of the disconnection array that advances 

the twin boundary perpendicular to its plane. Here we consider conditions under which 

the applied driving force enables disconnection glide over the Peierls barrier. As the 

disconnections reach the right surface they are emitted to the surface. Thus, a second 

process is required to occur simultaneously to maintain the topological structure and the 

motion of the TB: the nucleation of disconnections on the left surface. Next, we discuss 

conditions under which disconnections nucleate athermally.  

Due to the disconnection glide, there is a region close to the left surface that 

becomes depleted of disconnections. The typical thickness of this region xo is much larger 

than the equilibrium spacing lo between disconnections in the array (as we show next). 

Therefore, this region is subjected to misfit elastic strains (as discussed in Section 3) that 

are not accommodated by the disconnections array. The misfit strain builds up energy 

that grows with increasing xo. The tendency to reduce the elastic energy in this region 

results in a restoring force that pulls the array of disconnections back towards the left 

side. This force is not to be confused with the image force, which is caused due to the 
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self-strain field of the disconnection. The tendency to reduce the elastic energy also 

encourages nucleation of disconnections on the left surface. 

Recalling the low-energy configuration of the TB structure, presented in Section 

3, we assume that the equilibrium distance lo between disconnections is maintained 

during the motion of the array. This means that under an external driving force gTS (that 

corresponds to the twinning stress) all disconnections move approximately the same 

distance xo, leaving a region with a width xo near the left surface that is depleted of 

disconnections Figure 7.5 (b). After a disconnection is nucleated on the left surface, 

Figure 7.5 (c), it moves to the right and joins the array of disconnections with equilibrium 

distance lo. The array of equally spaced disconnections forms a strain field that cancels 

out the misfit strain across the interface, except at the depleted region. Due to the misfit-

strain in the depleted region, the separation distance between the few furthermost 

disconnections at the left side of the array is larger than lo. As we show later, this does not 

alter the main results of our analysis, because lo << xo << L, where L is the width of the 

crystal. 
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Figure 7.5 Schematic description of the equilibrium coherently faceted type II 
interface (inset (a)), that contains an array of left-handed screw disconnections, 

which are marked with an inverted ‘S’. L marks the width of the crystal. Under an 
applied driving force, the disconnections move to the right (green arrows), 

transforming material from the top variant to the bottom (the green area in inset 
(b)), leading to the advancement of the TB downwards (direction marked by the 
vertical black arrow). The collective motion of the disconnection array creates a 
“depleted” region of length xo close to the left surface (inset (b)). To maintain the 

coherently faceted structure, disconnections nucleate at the left surface and 
propagate to the right (inset (c)). The position xD marks the location of a newly 

nucleated disconnection relative to the left surface. (d) A schematic illustration of 
the depleted region xo close to the surface with a representation of the 

disconnections (large S with Burgers vector b) and coherency dislocations (small s 
with Burgers vector dbmis). Image defects maintain zero stresses on the free surface 

(the vertical black line). 

In the following, we calculate the elastic energy due to the misfit strain. Further, 

we develop an expression for the equilibrium value of xo and show that the misfit strain at 

the depleted region results in an additional energy term that promotes nucleation of 

disconnections at this surface. We develop an expression for the resulting activation 

energy and show that the term originated from the misfit strain may be dominant, thus 
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promoting athermal nucleation. Then, we develop an expression for the equilibrium value 

of xo and estimate xo for Ni-Ti and Ni-Mn-Ga. Further, we show that misfit strain at the 

depleted region results in an additional energy term that promotes nucleation of 

disconnections at this surface. We develop an expression for the resulting activation 

energy and show that the term originated from the misfit strain may be dominant, as is 

the case for Ni-Mn-Ga.  

The strain field caused by the misfit shear in the region xo is equivalent to a strain 

field caused by an infinite array of equally-spaced coherency screw dislocations with an 

infinitesimal Burgers vector dbmis = εo dx, such that the continuous integration of all 

Burgers vectors results in εo xo [64, 65]. The concept of coherency dislocations at an 

interface was introduced by Olson and Cohen (see, e.g., Refs. [77, 78]), and was 

successfully applied by Speck et al. in modeling coherency strain at film/substrate 

interfaces of ferroelastic materials [79, 80]. To maintain a zero stress near the left surface, 

we consider an equivalent array of image dislocations with a Burgers vector of the same 

size as the coherency dislocations but an opposite direction. The elastic energy associated 

with the coherency dislocations, per unit length perpendicular to the plane shown in 

Figure 7.5, can be expressed as [79–81]: 

Eelastic
coh.disl. = μ (εoxo)2

4π
 ln �4L

xo
�  ≅ C μ (εoxo)2     (20) 

where L is typically on the order of 1 mm and C is a constant on the order of unity. 

The work associated with the motion of the TB under the driving force gTS, per 

unit length perpendicular to the plane shown in Figure7.5, is given by 

WTB L ≅ – gTS L xo sin θ       (21) 
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Here, xo L sinθ is the area (in the x – z plane) subjected to twinning reorientation due to 

the propagation of all disconnections in the array by a distance xo, where θ is the angle 

between the TB and the rational twinning plane (Figure 7.5 (b)).  

To calculate the equilibrium value of xo, we minimize the overall energy (per unit 

length perpendicular to the viewing plane of Figure 7.5) that includes the elastic energy 

in the depleted region, given by Equation (20), and the work expressed in Equation (21), 

i.e., 

∂�C μ (εoxo)2 – gTS L xo sin θ�

∂xo
 = 0       (22) 

This results in: 

xo
eq = gTS L sin θ

2C μ εo2
         (23) 

A substitution of material parameters listed in Table 7.2 and C = 1, L = 1 mm in Equation 

(23) provides xo
eq ≅ 3 µm for Ni-Mn-Ga and xo

eq ≅ 35 µm for Ni-Ti. These values satisfy 

the model assumption, lo << xo << L, as xo is larger than lo by few orders of magnitude 

and smaller than L by few orders of magnitude. 

Next, we consider the lastly nucleated disconnection with a Burgers vector b, 

located at a distance xD < xo from the left surface, as illustrated in Figure 7.5 (d). This 

disconnection is subjected to several interaction forces as it travels along x. The resultant 

force per unit length perpendicular to the plane shown in Figure 7.5, is given by: 

 F = μ b
2π

 � ∫ εo
xD – x

 dx0
–xo

 – ∫ εo
xD – x

 dx xo
0 �  – μ b2

2π 2xD
+FPK – FPeierls  (24) 

The first two terms in Equation (24) represent the sum of interaction forces between the 

left-handed screw disconnection b located at xD and the array of coherency dislocations 

dbmis = εo dx located at 0 < x < xo. The image forces are accounted for by considering an 
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equivalent array of image coherency dislocations dbmis = – εo dx at –xo < x < 0, as shown 

in Figure 7.5 (d). The term μ b2

2π 2xD
 in Equation (24) is the image force of the disconnection 

b. FPK is the Peach-Koehler force under the driving force gTS, and FPeierls represents the 

resisting Peierls force acting on the moving disconnection by the lattice. 

Our analysis considers conditions under which the driving force is sufficient to 

propagate the other disconnections along the TB. This means that the Peach-Koehler 

force is equal to, or greater than, the resisting Peierls force. Because we analyze a case 

where the resultant force on the lastly nucleated disconnection is always positive, we 

assume that FPK = FPeierls. Interaction forces due to the other disconnections in the array 

along the TB (not visible in Figure 7.5 (d)) are not included in Equation (24) because, as 

stated earlier, at length scales larger than lo their strain field is canceled by the strain field 

of the misfit at the interface in their vicinity. 

Solving the integrals and adding the disconnection’s image force term in Equation 

(24) results: 

 F = μ b εo
2π

 �ln ��xo
xD

�
2

 – 1�  – b
2εoxD

�      (25) 

At the nucleation event xD << xo. In this region, the natural logarithmic term in Equation 

(25) is a slowly varying positive function, while the last term in Equation (25) is negative 

and its magnitude increases rapidly as xD decreases.  The lower limit for xD is taken as a 

single lattice spacing a, below which elasticity theory fails and the interaction forces 

described by Equations (24) and (25) remain nearly constant. Taking xD = a, and inserting 

the values in Table 7.2, we obtain ln ��xo
xD

�
2

 – 1� ≅ 20 for both Ni-Mn-Ga and Ni-Ti (the 
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slow varying logarithmic term “alleviates” the one order of magnitude difference in xo). 

In addition, b
2εoa

 ≤ 3.5 for both materials, resulting in: 

 F ≅ (20 – 3.5) μ b εo
2π

 = 8.25 μ b εo
π

      (26) 

This indicates that in the range relevant for the nucleation event, xD << xo the force F is 

always positive and pushes the disconnection towards the right side. Consequently, the 

self-energy ED
self of the disconnection that nucleates at the surface (i.e., at xD ≅ a) is 

negative and is given by: 

ED
self = Y ∫ –F dxD xD

0 = – Y a 8.25 μ b εo
π

     (27)  

where Y is the disconnection length in the direction perpendicular to the plane shown in 

Figure 7.5. 

Next, we use this result to evaluate the activation energy for the heterogenous 

nucleation process. In Section 5.2 (Equation (13)) we obtained a general expression for 

the activation energy for nucleation of a disconnection loop, QDL. Similarly, the 

activation energy for nucleation of a linear disconnection, QD, is given by: 

QD = UTB
bar A + ED

self        (28)  

Here A ≅ Y a is the area of the TB that has been reoriented by the formation of the 

disconnection at xD ≅ a, and UTB
bar is the energy barrier imposed by the lattice potential, as 

expressed in Equation (14). 

Substituting Equation (14) (for UTB
bar ) and Equation (27) (for ED

self) into Equation 

(28) provides 

QD = Y a dTB �go
π

 – g
2

 – 8.25 μ b εo
π

�      (29) 
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Recalling that b/h = s, and that the periodicity of the lattice potential approximately 

equals the disconnection step height (i.e., dTB ≈ h), we obtain the following expression for 

the activation energy for the nucleation of a disconnection at the surface. 

QD = Y a h �go
π

 – g
2

 – 8.25 μ s εo
π

�      (30)  

In cases where 8.25 μ εo s > go, QD in Equation (30) is negative for any value of the 

applied driving force g, indicating that this nucleation process can occur athermally. This 

condition is determined only by material properties and can be evaluated based on the 

values listed in Table 7.2. For 10M Ni-Mn-Ga, 8.25 μ εo s ≅ 20 ⋅ 106 J/m3, and is larger 

than go ≅ 85 ⋅ 103 J/m3 by several orders of magnitude (see Ref. [47]). For Ni-Ti, 8.25 μ 

εo s ≅ 500 ⋅ 106 J/m3, indicating that this nucleation process can occur athermally if γTB < 

30 mJ/m2 (recall that go = π γTB / dTB). Such a value of γTB is comparable to atomistic 

calculations reported by Sehitoglu et al. [70]. 

We now re-evaluate the model assumption that the equilibrium distance lo 

between disconnections is maintained during the motion of the array, such that all 

disconnections move approximately the same distance xo, leaving a region with a 

thickness xo depleted of disconnections. To hold this assumption, the lastly nucleated 

disconnection has to be subjected to a positive force (Equation (25)), until it meets the 

other disconnections in the array. The force is indeed positive for all values of xD smaller 

than xo / √2. For larger values of xD, Equation (25) predicts that the net force on the 

disconnection becomes negative. However, when the disconnection reaches a value of Dx  

that is on the order of xo, it can be regarded as being part of the disconnection array that 

composes the TB. This is in accordance with our previous comment, stating that the 

leftmost disconnections in the array are spread apart a distance that is larger than the 
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equilibrium value lo. This relaxation has a minor effect on the elastic energy estimated by 

Equation (20) and hence on the estimated value of xo
eq provided by Equation (23). 

Further, the exact value of xo has a minor effect on the evaluation of the force F (using 

Equation (25)) in the range, xD << xo, relevant for the nucleation event. We disregard 

these effects in the current treatment. 

Table 7.2 Typical material parameters for type II twins in 10M Ni-Mn-Ga and 
Ni-Ti. 

 10M Ni-Mn-Ga NiTi 

μ (GPa) * ~2 [11, 84] ~5 [85, 86] 

εo 0.0092 [42] 0.049 [44]  

s 0.127 [42] 0.280 [44] 

θ 4.12° [42] 10.11° [44] 

lo (nm) ≈ 6 [42] ≈ 4 [44] 

a (nm) ≈ 0.6 [18]  ≈ 0.4 [87] 

|b| (nm) 0.023 [42] 0.071 [44] 

gTS (J/m3) 1.3⋅104 [88]  ~ 3⋅106 [70] ** 

xo
eq (μm) ~3 [Equation (23)] ~35 [Equation (23)] 

* Value of shear stiffness μ in the isotropic elasticity formulation is related to the elastic 
constant C’. 

** Value is estimated based on the twinning stress σTS ≅ 20 MPa [71, 89] 
 

Finally, because the model relies on nucleation at the surface, we evaluate the 

case of sub-mm size samples, e.g., micropillars, where surface to volume ratio is much 

larger compared to ordinary mm-size crystals. In particular, the relation lo << xo << L (see 

Equation (23)) remains valid even for values of L that are on the order of a few tens of 
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microns (typical to micropillars). Thus, the increase in twinning stress observed in some 

10M Ni-Mn-Ga micropillars can be associated with the presence of defects that hinder 

TB motion, and result from the unique fabrication process of the pillar [82, 83]. In case 

the crystal size is further decreased, such that our model assumptions are no longer valid, 

we expect the twinning stress to increase, because the proposed mechanism of athermal 

disconnection nucleation may not be relevant in such scales. 

6. Kinetic relations for TB Motion, Rate-Limiting Processes and Twinning Stress 

In this section, we formulate relations between the different activation energies 

developed in Section 5 and the measured quantities that represent the mobility of the 

different types of TBs, and in particular the twinning stress. This analysis relies on the 

kinetic relation, which provides an analytical expression for the velocity of a TB as a 

function of the driving force, and is dictated by the rate limiting process of the overall TB 

motion. We focus on TB motion in the low driving force range, and discuss separately 

the situations of compound and type I twins (Section 6.2, which is based on the analysis 

in Sections 5.1 and 5.2) and type II twins (Section 6.3, which is based on Section 5.3). 

6.1 Kinetic Relations 

To study the kinetic relations, the twin boundary velocity vTB has to be measured 

under different values of the driving force. This is in contrast to measuring the twinning 

stress, which occurs at a constant value, gTS, of the driving force. Kinetic measurements 

were performed mainly on the 10M Ni-Mn-Ga material system, using μs–scale pulsed 

magnetic field experiments, as reported by Faran and Shilo [46, 47] and by Saren et al 

[48, 89]. Recently, fast TB motion in 10M Ni-Mn-Ga was also studied by short ms–scale 

force pulses [90–92]. 
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Faran and Shilo [46, 47] measured the kinetic relations in a systematic manner by 

applying magnetic pulses with controlled values of the driving force and tracking the 

motion of a discrete twin boundary. They captured the kinetic relations for twin boundary 

motion in 10M Ni-Mn-Ga over wide ranges of driving force and TB velocity. For both 

type I and II twins, they found a clear transition between two types of kinetic relations, as 

is explained herein.  

For the thermally activated regime of TB motion (i.e. at low driving force), an 

exponential type kinetic relation for the twin boundary velocity vTB can be assigned: 

vTB(g) = vo exp �- Q(g)
n k T

�       (31) 

In Equation (31) vo is a temperature-independent pre-exponent term, Q(g) is the 

activation energy of the rate limiting process, which is a function of the driving force g, 

and n is a parameter that represents the dimension of the problem (following the analysis 

of Avrami in Refs. [93, 94]). For example, for the nucleation of a two-dimensional 

disconnection loop, n = 3, while for nucleation of a linear kink n = 2. 

In slow rate experiments, where a constant deformation rate is applied, the 

average velocity of an individual TB vTB
(TS) (i.e., the velcoity associated with the measured 

twinning stress property) is determined by the number of moving twin boundaries in the 

sample and the applied strain-rate (e.g., Ref. [88]). Therefore, the set value of the velocity 

vTB
(TS) in Equation (31) determines the twinning stress σTS or the related value of the driving 

force, gTS = σTS s/2 (Equation (3)), at which TB motion occurs, via: 

 Q�gTS� = n k T ln � vo

vTB
(TS)�       (32) 
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As we show in the next sections, for type I twins, the activation energy corresponds to 

QDL (see Section 6.2) while for type II it corresponds to QKP (see Section 6.3). 

In the study by Faran and Shilo on 10M Ni-Mn-Ga [46, 47], it was found that 

above some transition value of the driving force gT, the kinetic relation had the form 

vTB ∝ �g2 – gT
2        (33) 

indicating a process that is resisted by viscous forces. Similar types of viscous-controlled 

kinetic relations were suggested for data measured in other material systems such as Cu-

Al-Ni [95] and gadolinium molybdate [96]. 

Faran and Shilo [46, 47] suggested that the transition at gT is attributed to 

overcoming the lattice barrier for the motion of the TB as a flat plane, γTB (as shown in 

Table 7.1), resulting in athermal motion of the TB. According to that interpretation, the 

transition driving force is directly related to the lattice barrier via 

gT = go = π γTB
dTB

         (34) 

For type I twins in 10M Ni-Mn-Ga, the transition driving force was go = 105 kJ/m3 [47], 

relating to a stress of approximately 1.75 MPa, i.e., about twice the twinning stress for 

this type of twin [23]. For type II twins, the transition driving force was go = 85 kJ/m3 

[47] related to a stress of approximately 1.4 MPa, i.e., ten times the twinning stress for 

this twin type [23].  

6.2 Motion of Compound and Type I Twins in the Low Driving Force Range 

The rate limiting process for the motion of compound and type I twins in the slow 

velocity range is either the nucleation of kink pairs or nucleation of disconnection loops. 

The two processes are characterized by their activation energies QKP and QDL, given by 

Equation (12) in Section 5.1 and Equation (19) in Section 5.2, respectively.  
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In order to evaluate which energy dominates, we consider the ratio between the 

two activation energies at a driving force equivalent to the twinning stress, i.e., at gTS = 

σTS s/2. Specifically, we use an under-estimation of QDL (by neglecting the positive γTB 

term in Equation (19)) and consider only the dominant term 2ef in the expression for QKP 

(Equation (12)). This results in: 

QDL
QKP

 ≥ 3
2

 
π �0.5 μb2�

2

gTS dTB
 � 1

2ef
�       (35) 

Using an isotropic approximation for the formation energy of a kink 2ef ≈ μ b2 dD  (see 

Section 5.1), and substituting gTS = σTS s/2, b = h s and h ≈ dD ≈ dTB, we obtain  

QDL
QKP

 ≥ s μ
σTS

         (36) 

The ratio μ / σTS is typically several orders of magnitude larger than unity for all material 

systems and the value of s  is typically on the order of 0.1 (see, e.g., values in Table 7.2, 

Table 7.3). Thus, we can conclude that for the lower driving force range, the activation 

energy QDL is much larger than QKP. 

The above discussion implies that in the thermally activated regimes, the 

nucleation of disconnection loops is the rate-limiting step in the overall motion of the TB 

for compound and type I twins. Even if the driving force does not allow overcoming the 

Peierls barrier for disconnection glide, i.e., g < (π ΓD) / (dD h), the thermally activated 

disconnection glide is still a faster process than the thermally activated disconnection 

nucleation, because QDL >> QKP. Thus, inserting QDL (Equation (19)) as the activation 

energy in the kinetic relation for compound and type I twins (Equation (32)) results in: 

QDL�gTS� ≈ π μ2 s3 dTB
3

2 σTS
 �3

2
 + 2 γTB

σTS s dTB
� =3 k T ln � vo

vTB
(TS)�    (37) 

Here we used the relations gTS = σTS s/2 and b = h s ≈ dTB s. 



173 

 

Typically, the value of vTB
(TS) is smaller than vo by many orders of magnitude. 

Therefore, a change of vTB
(TS) by an order of magnitude results in a minor change of 

ln �vo vTB
(TS)⁄ �, which is often undetectable due to the inherent stress fluctuations and 

insufficient repeatability that are common in such experiments. For example, based on 

intermediate-rate experiments performed on 10M Ni-Mn-Ga single crystals, Faran and 

Shilo extracted the value vo = 6.6 m/s for type I boundary [47]. A typical twin boundary 

velocity in a slow rate experiment is vTB
(TS) = 10-5 m/s [97]. For these values, a change of 

vTB
(TS) by an order of magnitude results in a change of QDL by 17%, which is comparable to 

the variations of the approximately plateau stress during the experiment. Thus, the 

estimation of the term ln �vo vTB
(TS)⁄ � ≈ 13.4 can be assumed to be valid in most SMAs. 

Inserting this approximation in Equation (37) results in: 

π μ2 s3 dTB
3

2 σTS
 �3

2
 + 2 γTB

σTS s dTB
�  = 40 k T      (38) 

Equation (38) allows estimating the magnitude of the twinning stress σTS, and its 

temperature dependence, provided that the material properties μ, s, dTB, γTB are known. 

We note that a measured value for γTB is available only for 10M Ni-Mn-Ga. 

6.3 Motion of Type II Twins in the Low Driving Force Range 

In Section 5.3 we presented a mechanism of motion for type II TBs, which results 

from the topological structure of this twin type. Our analyses identified that 

heterogeneous nucleation of disconnections at the surface is essential for TB motion, and 

an expression for the activation energy for such a nucleation process was formulated in 

Equation (30). Further, we showed that for certain materials, such as Ni-Mn-Ga, the 

expression for the activation energy obtains negative values for any value of the applied 
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driving force, implying that nucleation of disconnections occurs athermally. In these 

materials the twinning stress of type II TBs is related solely to the glide of 

disconnections. This is in contrast to the case of compound and type I TBs, for which 

disconnection nucleation is the rate limiting step that determines the twinning stress 

(Section 6.1). 

Similar to the motion of ordinary dislocations, disconnection glide proceeds 

through the nucleation and expansion of kink-pairs, where nucleation is typically the rate 

limiting step. Consequently, for a type II TB, the thermally activated kinetic relation 

(Equation (31)) is dictated by the activation energy for the nucleation of kink-pairs (QKP 

in Equation (12)). The combination of these two expressions, and by substituting g = gTS, 

results in: 

QKP�gTS� ≈ �ΓD – gTS h dD

2
�  yc + �2ef – eint

yc
�  = 2 k T ln � vo

vTB
(TS)�  (39) 

An estimation for the amplitude of the disconnection’s Peierls barrier ΓD can be obtained 

from the condition g > (π ΓD) / (dD h) that defines the driving force range of athermal 

disconnection glide, i.e., the driving force required to overcome the Peierls barrier ΓD at T 

= 0 K. Thus, we can write  

ΓD ≤ gTS(T = 0 K) dD h / π       (40) 

By inserting the expression for ΓD (Equation (40)) and yc (Equation (11) in Section 5.1) 

into Equation (30) and rearranging, we obtain: 

�gTS(T = 0 K)

π gTS(T)
 – 3

2
�  �gTS(T) eint h dD + 2ef = 2 k T ln � vo

vTB
(TS)�   (41) 

Here, gTS (T) represents the driving force associated with the twinning stress at a 

temperature T > 0 K. Equation (41) may have various solutions for gTS (T), depending on 
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the ratio between 2 k T ln�vo vTB
(TS)⁄ � and 2ef. In Section 7.3 we discuss experimental data 

measured for 10M Ni-Mn-Ga in light of this analysis. 

7. Comparison of Model Predictions to Experimental Results 

The identification of the different nucleation processes required for TB motion 

and their associated activation energies (Section 5), as well as the identification of the 

rate limiting processes for different twin types (Section 6) allows us to quantitatively 

evaluate our predictions and compare them to experimental results for TB motion. 

Because the analysis presented in this paper considers only the lattice barrier as the 

source for the twinning stress, comparison to experiments is meaningful primarily for 

data measured on high quality single crystals, where the effects of other barriers is 

negligible. For example, grown Ni-Ti single crystals typically include nanoscale 

Titanium carbides and Ni-rich precipitates, which strongly influence the mobility of the 

TB’s (see, e.g., [17]). Thus, twinning stress values measured in such cases are expected to 

be higher than our predictions. 

In the following sections we discuss results from slow-rate deformation 

experiments with strain rates below about 10-2 s-1, which have been studied extensively 

for various shape memory alloys. These low strain rates correspond to the small driving 

force regime. The primary measured parameter that characterizes TB motion within this 

regime of motion is the twinning stress (defined in Section 2).  Available experimental 

values for the twinning stress raise several questions, which we address in the following 

sections by employing the equations developed in Section 6. 

In Section 7.1 we explain why the twinning stress at room temperature of type II 

twins is much smaller than that of type I twins in the same material. In Section 7.2 we 
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employ Equation (38) to predict the values of the twinning stress of compound and type I 

twins in different materials, and compare our predictions to experimental data. In 

addition, we reason the measured temperature dependence of the twining stress (available 

mainly for 10M Ni-Mn-Ga).  In Section 7.3, we reason the unique temperature 

insensitivity of type II twinning stress, as demonstrated by very low values measured for 

10M Ni-Mn-Ga down to near zero temperatures. 

7.1 Differences in Twinning Stress between Twin Types 

Available experimental data reveals a large difference between the measured 

twinning stress of conjugate type I and type II twins in the same alloy, the latter being 

significantly smaller. This is the case, for example, in 10M Ni-Mn-Ga, where differences 

as high as one order of magnitude are commonly reported between the twinning stress of 

conjugate type I and type II twins [18]. Similar relations were reported for conjugate type 

I and type II twins in Cu-Al-Ni [19, 31] and in Ni-Ti [17, 98, 99].  

The term conjugate twins implies that the classical twinning elements of both 

twins, i.e., twinning planes K1, K2, twinning directions η1, η2, and twinning shear s, obey 

K1
II = K2

I , K2
II = K1

I , η1
II = η2

I , η2
II = η1

I , and sI = sII. Thus, the twinning shears of both types 

are identical. Moreover, variations in lattice parameters that directly affect the magnitude 

of the twinning shear, as well as the value of the shear stiffness are identical in the two 

twin types. The TM shows that the magnitudes of the Burgers vector and the step height 

of a disconnection in “conjugate” type I and type II twins, are nearly equal (e.g., the 

calculations performed for 10M Ni-Mn-Ga in [42]). Thus, by discussing differences in 

the twinning stress between “conjugate” twins in the same alloy we separate the effect of 

the topological structure of the TB that dictates the rate limiting mechanism of motion, 
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from the impact of material properties (e.g., shear stiffness twinning shear and lattice 

spacing), which are discussed in Section 7.2. 

The different topological structures of type I and type II twins (Section 3) lead to 

different rate limiting mechanisms during TB motion (Sections 5 and 6). On the one 

hand, the motion of type I TB is determined by the rate of homogenous nucleation of 

disconnection loops on the low index boundary plane, with an activation energy QDL. On 

the other hand, the motion of a coherently faceted type II TB is determined by the rate at 

which disconnections glide on the same low index planes. For type II TBs, disconnection 

glide is dictated by the nucleation rate of kink-pairs, with an activation energy QKP. As 

we showed in Section 6.2, QDL >> QKP for a given material system. Thus, the activiation 

energy for type II TB motion (which is QKP) is much smaller than the activation energy 

for type I TB motion (which is QDL). This implies that the twinning stress of a type II 

twins is much lower than that of type I and the temperature dependence is much weaker, 

in agreement with experiemmntal observations. 

7.2 Twinning Stress of Compound and Type I Twins 

The twinning stress of compound and type I twins in a given material can be 

approximated based on Eq. (38), provided that the properties , , ,TB TBs dµ γ  are known. 

We first analyze the situation in which the term containing TBγ  in Eq. (38) is much 

smaller than 3/2, and can thus be neglected (which is the case for 10M Ni-Mn-Ga). This 

results in a simplified expression for the twinning stress: 

σTS ≅ 3 π
160 k T

 dTB
3  μ2 s3 = β μ2 s3      (42) 

The value of the lattice spacing for twinning dTB is similar for different SMA, and can be 

taken as dTB = 0.2 nm for all materials. Under these conditions, Equation (42) predicts a 
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linear relation between the twinning stress σTS and the product μ2 s3, with a 

proportionality factor β = (3π) / (160 k T) dTB
3. This relation, for the twinning stress at the 

room temperature, is plotted as the solid black line in Figure 7.6 using logarithm scaling 

of the variables. In this representation, the straight-line has a slope of 1 and it intercepts 

the vertical axis at β.  

Experimental data for different materials is also plotted in Figure 7.6, using the 

same logarithm scaling. The values of μ and s used for plotting the data for each twinning 

system and material were reported in the literature and are given in Table 7.3. The dashed 

line in Figure 7.6 presents the relation express in Equation (42) with a proportionality 

factor β’ = 0.64 β that best fits the experimental data. The relatively small difference 

between β and β’ can be attributed to the estimations we took in Equation (37), e.g., the 

value of 13.4 assigned to the term ln�vo vTB
(TS)⁄ �, or the factor 0.5 in the isotropic 

approximation qD ≈ 0.5 μ b2.  

The good fit to a linear dependence of the measured twinning stress with the 

product μ2 s3 (dashed line in Figure 7.6, R-squared larger than 0.99) strengthens the 

validity of our analysis. In addition, it implies that our assumption 2γTB (σTS s dTB)⁄  ≤ 

3 2⁄  is valid in most materials. Recalling that gTS = σTS s/2 (Equation (3)) and go = π γTB / 

dTB (Equation (34)), the relation 2γTB (σTS s dTB)⁄  ≤ 3 2⁄  implies that go ≤ 5 gTS. This 

means that for most materials2 a transition from thermal activated motion to fast athermal 

 

2 Equation (42) does not apply to materials for which the nucleation of disconnection loops is not the rate 
limiting mechanism. For example, for face-centered cubic (austenitic, twin-induced plasticity, TWIP) steel 
μ2s3 is in the order of 104 GPa2 and Equation (42) predicts a twinning stress about three orders of 
magnitude higher than actual values. In these materials, substantial deformation by slip precedes the onset 
of twinning. Twin nucleation results from dislocation reactions at sites of high dislocation density and 
strong stress concentrations. The stress concentrations result from dislocation pileups of dozens or 
hundreds of dislocations. Accordingly, dislocation reactions resulting in partial (twinning) dislocations and 
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TB motion is expected to occur at stress values equal or smaller than 5 times the twinning 

stress. Measured values of go and gTS in 10M Ni-Mn-Ga comply with this condition (see 

discussion in Section 6.1). 

In a rough approximation, at which the temperature effect on the shear modulus 

and twinning stress is ignored, Equation (42) predicts that the temperature variation of 

twinning stress of compound and type I twins follows an inverse 1/T relation. Data 

reported in Ref. [32] for a type I twin in 10M Ni-Mn-Ga revealed a linear increase in the 

twinning stress as the temperature decreases (Figure 7.7). Data measured over a wider 

range of at least 100 degrees in 10M Ni-Mn-Ga [30, 34, 100] showed a variation that can 

be interpreted as σTS ∝ 1/T (Figure 7.7). A similar dependence was recently reported for 

compound twins in Ni-Mn-Ga-Co-Cu [101] and type I twins in 4M Ni-Mn-Sn alloy [21]. 

These observations rely on measurements taken over a relatively narrow temperature 

range of about 40 degrees.  

The calculated temperature dependence according to Equation (42), with μ and s 

takes as their room temperature values, for type I twin in 10M Ni-Mn-Ga is plotted in 

Figure 7.7 (blue dashed line), showing a weaker dependence on temperature compared to 

the measured data. We can reason this difference by considering the effects of the 

temperature on product μ2 s3. Both the shear stiffness (again we refer to μ as the elastic 

constant C’) [102–104], and the twinning strain [105] increase as the temperature is 

decreased, and thus amplify the 1/T dependence in Equation (42). In addition, for 

materials in which 2γTB (σTS s dTB)⁄  is comparable to 3/2, the dependence of γTB on the 

 

disconnections occur at stresses several orders of magnitude below the stress predicted by Equation (42) 
[101]. 
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temperature (as was reported in Ref. [106]) also contributes to the temperature effect on 

the twinning stress. 

Table 7.3 Material properties and measured data used for plotting (in Figure 
7.6) the room temperature twinning stress of type I and compound twins in several 
materials. 

 10M  
Ni-Mn-Ga 

NM 
Ni-Mn-Ga 

Cu-Al-Ni Cu-Al-
Ni 

BaTiO3 NiTi 

Twin type Type I Compound Compound Type I Compound Compound 

μ (GPa) 2 
[11, 84] 

2 
[11, 84] 

9.14 
[31] 

9.14 
[31] 

50 
[107] 

5 
[85, 86] 

s 0.127 
[42] 

0.36 
[108] 

0.074 
[31, 109] 

0.26 
[31] 

0.0109 
[6] 

0.2385 
[44] 

σTS (MPa) 
(exp.) 

0.8 
[18] 

11 
[110, 111] 

2 
[19] 

> 100 
[31] 

0.25 

[6] 

25 
[17] 
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Figure 7.6 Twinning stress at room temperature versus the product μ2 s3 for 
compound and type I twins in several SMA systems, presented on logarithm scales. 
Data for different alloys were taken from Table 7.3. The dashed grey line is a linear 
fit to the experimental data, exhibiting R2 > 0.99. The solid black line represents the 

calculated relation given by Equation (42). 

 

Figure 7.7 Temperature variation of the twinning stress of type I twin in 10M Ni-
Mn-Ga. Experimental data is taken from Refs. [32, 34]. The dashed blue line 
represents the 1/T dependence obtained from Equation (42), using the room 

temperature values of μ and s listed in Table 7.3.  
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7.3 Twinning Stress of Type II Twins 

Information on the twinning stress of type II TBs is available mainly for Cu-Al-Ni 

and 10M Ni-Mn-Ga, the latter being extensive and measured on high quality single 

crystals over a large temperature range. In the following, we discuss data obtained for 

10M Ni-Mn-Ga, which reveals two interesting behaviors: (1) an extremely small 

twinning stress of approximately 0.25 MPa at 1.7 K and (2) a modest temperature 

sensitivity of the twinning stress over a range of 300 K (see Figure 7.8). 

In Section 6.3, we obtained an expression for the temperature dependence of the 

driving force associated with the twinning stress (Equation (41)). We assumed that the 

type II TB motion follows an exponential type kinetic relation (Equation (31)), which is 

dictated by the activation energy for the nucleation of kink-pairs QKP (Equation (12)). 

This approach is valid in case the activation energy QKP is smaller than the thermal 

energy, and resulted in: 

�gTS(T = 0 K)

π gTS(T)
 – 3

2
�  �gTS(T) eint h dD + 2ef = 2 k T ln � vo

vTB
(TS)�   (43) 

The data presented in Figure 7.8 indicates that for 10M Ni-Mn-Ga, (gTS (T = 0 K)) 

/ ( π. gTS(T)) < 3/2 over the temperature range 0 < T ≤ 300 K. Thus, if Equation (43) is 

valid then 2ef should be larger than 2kT ln�vo vTB
(TS)⁄ �, for any temperature up to T ≅ 300 

K. Recalling that 2ef  ≅ μ b2 dD ≅ μ s2 dD
3 (the first equality follows page 244, Eqn. 8-47 

in Ref. [72], and the second equality is obtained by taking b = h s ≈ dD s) and plugging 

typical material parameters for type II twins in 10M Ni-Mn-Ga (Table 7.2), yields 2ef  ≅ 

2.5⋅10-22 J. Thus, already for temperatures as low as T = 10 K, the term 2ef (which 

determines the magnitude of the activation energy) is smaller than the thermal energy 

term, 2kT(T = 10 K) ln�vo vTB
(TS)⁄ � ≈ 30kT(T = 10 K) ≅ 4⋅10-21 J. This implies that for 10M Ni-



183 

 

Mn-Ga, the description of the nucleation-controlled kinetics of type II TB motion by an 

exponential relation (Equation (31), which leads to the formualtion of Equation (43)) is 

not valid. Moreover, because the activation energy for nucleation of kink pairs is 

comparable to the thermal energy even at very low temperatures, thermally activated 

disconnection glide, which is weakly dependent on temperature and proceeds at very low 

stress, is possible down to very low temperatures. This agrees with the experimental data 

in Figure 7.8. 

In other materials, the magnitude of 2ef  is larger than the value for 10M Ni-Mn-

Ga (e.g., in Cu-Al-Ni it is ~20 times larger). However, there is no experimental data on 

the value of σTS(T = 0 K) in other materials, and it may be much larger than the value at 

room temperature, such that (gTS (T = 0 K)) / ( π. gTS(T)) > 3/2, and 2ef >> kT over a wide 

temperature range. Under these conditions the analysis leading to Equation (43) is valid. 

In such cases, the twinning stress of type II TB is also expected to be larger than the 

extremely low values measured for 10M Ni-Mn-Ga.  
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Figure 7.8 Temperature variation of the twinning stress of type II twins in 10M 
Ni-Mn-Ga. Experimental data is taken from Refs. [30, 32]. The temperature 

dependence is substantially weaker than that of the conjugate type I twins (Figure 
7.7). 

8. Summary 

This paper combines the TM descriptions for the equilibrium structures of TB in 

SMA with an analysis of energy barriers and mechanisms of motion. This unified 

approach provides a general analysis of TB motion and explains experimental findings on 

TB motion in different SMA systems, in particular in the slow rate regime of TB motion. 

We identify the topological, structural aspects that control the rate limiting mechanisms 

of motion of different twin types, and deduce quantitative predictions for the magnitude 

and temperature dependency of the twinning stress of different twin types. 

The slow rate motion of TB is controlled by different rate-limiting processes, 

which are dictated by the equilibrium topological structure of the TB interface. For type 

II twins, we discuss the case of a coherently faceted interface, which contains an ordered 



185 

 

array of equally spaced twinning disconnections. We show that for this low-energy 

relaxed structure, the nucleation of new disconnections at the crystal’s surface, which is 

essential for maintaining the lateral propagation of the TB, can proceed athermally, even 

at very low temperatures. This explains the lower twinning stress of type II twin relative 

to its value in the conjugate type I twin, as reported for various materials. In addition, it 

accounts for the extremely low twinning stress value of type II TB in 10M Ni-Mn-Ga 

measured at temperatures close to absolute zero. 

In compound and type I twins, the equilibrium boundary structure does not 

contain disconnections. Thus, the rate-limiting step for the motion of the entire TB is the 

thermally activated nucleation of disconnection loops, resulting in an exponential type 

kinetic relation. We formulate an expression for the activation energy for nucleation of 

disconnection loops, and use it to obtain an analytical prediction for the magnitude of the 

twinning stress. We show that the main material properties that control the twinning 

stress are the shear modulus μ and the twinning shear s, and obtain a dependence that 

follows σTS ∝ μ2 s3. This dependence is in excellent agreement with reported twinning 

stress in several materials, e.g., Ni-Mn-Ga, Cu-Al-Ni, Ni-Ti and BaTiO3. 
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CHAPTER EIGHT: SUMMARY OF WORK AND CONTRIBUTIONS 

8.1 Summary of Work 

This dissertation aims to clarify the high mobility and low yield stress of type II 

TBs in shape memory alloys. Our primary objective is a structural characterization of 

TBs in SMAs because the structure and properties of materials are inherently related, and 

one directly affects the other. We extensively characterize the structure of TBs and their 

junctions using the CM of twinning and the TM of extended defects. After establishing 

the structure of various defects, we analyze the energy barriers for the motion of TBs and 

establish an analytical kinetic relation. 

The formation and the equilibrium structure of type II TBs has posed a problem 

for the scientific community. In 2019, Pond, Hirth, and coworkers proposed to describe 

the formation mechanism of type II twins with the TM of extended defects, consistent 

with the CM of twinning [44, 45]. We implement the TM to establish the equilibrium 

defect structure of type I and type II twins in NMG alloys. Furthermore, we also identify 

the characteristic features of defects that lead to the growth of twins and the movement of 

TBs. Among the insights we gain from the structural characterization of defects are (i) 

that type II TBs may form a coherently faceted structure and (ii) that in NMG such a 

coherent faceting is not possible. This result implies that type II TBs do not encounter a 

periodic potential for their motion, unlike type I and coherently faceted type II TBs. 

Furthermore, the tilt-boundary of type II twins can kink to reduce the interfacial energy, 

leading to more effortless motion and, thus, high mobility of TB in NMG. 
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One of the characteristic features of type II TBs is that a serrated interfacial 

structure arises in its vicinity, as shown by Seiner et al. [65]. We study the properties of 

the serrated interface and identify a chain of quadruple junction lines (QJLs) responsible 

for such a structure. Implementing the principle of symmetry compensation and the CM 

of twinning, we identify the arrangement of TBs around QJLs. We identify NC twins in 

NMG, a rarely reported defect in other materials; the CM recognizes NC twins. However, 

no instances of such interfaces have been known until recently. The analysis of QJLs 

shows that two (1r0)m NC TBs and two (110)m compound TBs terminate at the junction. 

These QJLs have no long-range rotational displacement field, as identified by performing 

sequential products of OR across the TB. QJLs formed by the TBs mentioned above are 

always defect-free, independent of the lattice parameters of the crystal. 

The probability that four TBs meet at a line to form a QJL without external 

driving force is reasonably low. Triple junction lines (TJLs), on the other hand, form 

when two TBs meet and are a much likelier defect arrangement. In NMG, TJLs carry a 

rotational displacement field, and disclinations accommodate the rotational misfit at the 

junction. TJLs accommodate three variants and given that there are four variants in the 

present case, four different TJLs are feasible, each with a unique disclination strength: 

ω1, −ω1, ω2, −ω2, where ω1 = 0.18° and ω2 = 0.36° in NMG. The TBs that meet at a line 

to form TJLs are each a unique twin mode: we have (110)m and (1r0)m TBs, as in QJLs, 

and the third TB that meets at a line is either (100)m or (010)m. The two different 

disclination magnitudes, ω1 and ω2, are a function of whether (100)m or (010)m TB meets 

at the TJL.  
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Disclinations are high-energy line defects whose stress field diverges. 

Nonetheless, four unique disclinations forming a series of TJLs screen each other's stress 

field and form a stable configuration. We estimate the strain energy of the TJLs with a 

disclination quadrupole approximation. The quadrupole arrangement screens the long-

range stresses of the disclinations but not entirely the short-range displacement field. The 

net strain energy scales as the function of the separation distance of defects [66–69]. 

Thus, as the defects approach larger length scales (i.e. for coarser twins), two TJLs may 

coalesce to form a QJL and reduce the system's overall energy. QJLs formed this way 

will retain the overall misorientation as before the coalescence. 

At the sub-micron scale, Seiner et al. [65] reported regions with three variants 

accommodated by twinning: two variants interrelated by (110)m twinning abuts a (100)m 

or (010)m boundary separating a homogeneous region. This boundary is composed of a 

chain of TJLs, each located along a line where TBs meet. Its defect structure is equivalent 

to a series of disclination dipoles. A chain of TJLs carrying an array of disclination 

dipoles corresponds to a wall of edge dislocations, equivalent to a tilt-wall. The rotational 

field of the tilt-wall is partitioned across the interface, and the total misorientation 

depends on whether the interface is constrained or unconstrained. The total rotation of the 

interface depends only on the density of (110)m twin microstructure. The strain energy is 

a function of three variables: the density of TJLs, the magnitude of disclination, and the 

arm length of the dipoles. The dependence of strain energy on the separation distance of 

defects (dipole arm length) helps explain why these TJLs are only observed at the sub-

micron length scale. 
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While the formation mechanism of QJLs and TJLs has not been established, the 

energetics study of QJLs and TJLs suggests a QJL may form by the union of two TJLs. 

QJLs accommodate all four variants and are defect-free. TJLs have rotational misfits and 

require a system of disclination quadrupole to accommodate four variants. The energy of 

this system is a logarithmic function of the distance between TJLs. Consequently, the 

QJLs we observe in the millimeter-scale range may have been formed by the union of 

TJLs, as it vanishes the energy of disclination quadrupole system. However, the influence 

of type II twins is still unclear for the occurrence of a chain of QJLs in its vicinity. 

Topological modeling of defect-junction formation mechanism and in-situ TEM and 

HRTEM experiments tracking the formation of junctions will help understand this 

characteristic feature of type II twins. 

Another aspect of twinning is the rate at which the TB propagates. Here we set up 

the kinetic relation, i.e., we establish TB velocity as a function of the total driving force. 

Knowledge of the kinetic relation allows prediction of the dynamic behavior of SMAs 

under various kinds of loading. In 2014, Faran and Shilo reported experimental kinetic 

relations in NMG over a wide range of driving forces [24]. They demonstrated for type I 

and type II twins the existence of transitional stress (not the same as twinning stress), 

beyond which the TB velocity increases rapidly, signifying a change in the TB motion 

mechanism. 

The transition driving force, denoted go, and equivalent to transitional stress is a 

vital parameter to attain high-speed actuation and other dynamic behaviors. One of our 

goals is to find a non-destructive simple method to measure this transition stress for each 

unique SMA sample. With an in-house built solenoid-based loading system that produces 
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a high-impact pulsed mechanical load, we concurrently measure the load and sample 

displacement and also recorded TB motion using a high-frame-rate camera. We clean the 

data and plot two figures: TB velocity vs. driving force and sample displacement velocity 

vs. driving force. Our analysis demonstrates that the trend in these two plots are similar, 

and one can predict the transition stress by following only the sample displacement 

velocity vs. driving force plot. Our work shows that one can identify the transition 

driving force, go, for each unique sample by performing a simple non-destructive pulsed 

loading test by tracking the sample displacement and load [70]. 

Faran and Shilo's analytical kinetic relation (2014) does not distinguish between 

type I and type II TBs [25]. Furthermore, the model does not predict why type II TBs are 

mobile near absolute zero temperature, i.e., follow athermal kinetics, but type I TBs are 

not. Consequently, we extend the model to incorporate the structural differences between 

type I and type II twins with the goal to elucidate the mechanism of TB motion and its 

temperature dependence. We show that the 2014 kinetic relation is consistent with 

compound and type I TBs based on their interface structure. In 2021, we further validate 

the model by correctly predicting the twinning stress (at room temperature) as a 

logarithmic function of μ2s3, where μ is the shear modulus, and s is the twinning shear 

[71]. The rate-limiting process for the twinning stress (equivalent to gTS) is the nucleation 

rate of the disconnection loop. The transition driving force, go, is attributed to 

overcoming the lattice barrier for the motion of the TB as a flat plane. 

For type II TBs, our structural characterization of the irrational interface [71, 72] 

provides a basis for characterizing its kinetic relations. We show the feasibility of 

irrational type II TBs to relax into a coherently faceted interface, for example, in NiTi. 
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Such structures have a rational terrace plane and a periodic array of disconnections acting 

as ledges to compensate for the misfit strain. In a relaxed state, the spacing of the 

disconnections array is such that the average habit plane is almost parallel to the irrational 

interface, K1, as predicted by the CM of twinning. Analysis of potential barriers based on 

the structure of a coherently faceted interface informs that the disconnections nucleate 

athermally to compensate for the misfit strain as the disconnections array that is already 

present moves synchronously. Thus, the rate-limiting process for the twinning stress, gTS, 

is the nucleation rate of kink pairs in disconnections; expansion of kink pairs requires less 

energy than their nucleation. The activation energy for the nucleation of kink-pairs is 

significantly smaller than that of the disconnection loop; the thermal energy of about 4 

Kelvin is still enough for kink-pairs expansion and TB motion, as observed 

experimentally for type II twins. The transition stress, go, for type II TBs is associated 

with overcoming the barrier for the glide of disconnections as a straight line. 

Our work establishes the defect structure of junctions and TBs in shape memory 

alloys, especially NMG alloys. Structural characterization of the interface predicts the 

low twinning stress associated with type II twins and the high mobility of type II TBs, 

which is practically insensitive to temperature. We establish the kinetic relation of TBs 

for compound, type I, and coherently faceted type II twins.  

8.2 Outstanding Questions 

While extensive work has been done to establish the structure and kinetics of TBs, 

especially in NMG alloys, new research questions emerge. Such questions include the list 

given here. 
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1. Pond and Hirth suggested that the formation of type I and conjugate type 

II twins is a competitive process; type II TBs form if the disconnections 

formed in the conjugate type I TBs are not mobile. In NMG, non-

conjugate type I and type II appear simultaneously. How does the 

modulated structure of NMG affect such behavior? 

2. Armstrong et al. [73, 74] showed that a densely twinned microstructure 

homogeneously distributes the stress field and improves the 

reproducibility and fatigue life of NMG devices under dynamic loading. 

Single crystals with one or few TBs, on the other hand, have stochastic 

twin evolution that quickly deteriorates the performance of NMG devices.  

How does the interaction of disconnections in densely twinned material 

affect the TB dynamics and improve the performance of MSMA samples? 

3. While we have characterized the defect structure of QJLs and TJLs, their 

origin and formation mechanism are not understood. In particular, it is not 

evident that four TBs meet in one line. What is the formation mechanism 

of QJLs, and why do QJLs form in the presence of type II twins only? 

4. We establish the rate-limiting mechanism and kinetic-relation of 

coherently faceted type II TBs. However, we show that NMG cannot relax 

into a coherently faceted structure and does not follow the kinetics 

established for the terrace-ledges interface. What is the kinetic relation of 

irrational type II TBs? Are these interfaces more mobile than coherently 

faceted type II TBs? 
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8.3 Future Work 

In this section, we suggest some studies, which may provide answers to questions 

raised in Section 8.2. 

1. Since we neglected the modulation present in NMG, the actual atomic 

positions vary systematically from those assumed in this work. The 

shuffling accompanying the disconnections for mirror symmetry-related 

type I twins in the topological analysis may provide information about 

why the disconnections pile up in one case but not the other, i.e., explain 

why non-conjugate type I and type II twins form in NMG.  

2. In dense twin microstructures, each disconnection interacts with many 

other disconnections. Computational simulations, specifically dislocation 

dynamics simulations, may provide information on how the twin density 

impacts the response of the material to external stimuli such as a 

mechanical load or a magnetic field. 

3. The current analysis of QJLs and TJLs does not cover the formation 

mechanism of these defects. Topological analysis of defect interactions 

leading to the formation of QJLs and TJLs will help with the 

understanding of the formation mechanisms of these junctions and NC 

twins. Furthermore, the theory can be validated by capturing the formation 

mechanism using in-situ TEM and SEM experiments. 

4. We show that type II TBs form a coherently faceted structure in NiTi but 

not in NMG, which are inherently irrational. While experimental kinetic 

relations of NMG are established [24, 28, 48, 64, 70], such work has not 
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been done with NiTi. Experiments to establish kinetic relations for NiTi 

will help clarify the origin of the different properties of coherently faceted 

and inherently irrational type II TBs. 
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