
FAIR AND EFFICIENT CONSENSUS PROTOCOLS FOR

SECURE BLOCKCHAIN APPLICATIONS

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computing, Cybersecurity

Boise State University

December 2021

by

Golam Dastoger Bashar

© 2021

Golam Dastoger Bashar

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Golam Dastoger Bashar

Dissertation Title: Fair and Efficient Consensus Protocols for Secure
BlockchainApplications

Date of Final Oral Examination: 18 October 2021

The following individuals read and discussed the dissertation submitted by student
Golam Dastoger Bashar, and they evaluated the student’s presentation and response
to questions during the final oral examination. They found that the student passed
the final oral examination.

Gaby G. Dagher Ph.D. Chair, Supervisory Committee

Nader Rafla Ph.D. Member, Supervisory Committee

Jidong Xiao Ph.D. Member, Supervisory Committee

The final reading approval of the dissertation was granted by Gaby G. Dagher Ph.D.,
Chair of the Supervisory Committee. The dissertation was approved by the Graduate
College.

DEDICATION

Dedicated to my family

iv

ACKNOWLEDGMENT

I would like to express my thanks and gratitude to my advisor Dr. Gaby Dagher, for

his continuous supervision, motivation, and extensive advice throughout the research.

His constant guidance, attention, and time is the reason I was able to proceed this far

and complete this research. In Dr. Gaby, I have discovered a person with the highest

level of professionalism and a kind heart. Along with his research, Dr. Gaby has also

inspired me with his towering personality. I am fortunate to be his student.

I am also incredibly thankful to my committee members, Dr. Nader Rafla and Dr.

Jidong Xiao, for their outstanding support and precious advice during this journey.

Last but not least, I would like to express my deepest gratitude to my parents.

Heartfelt thanks to my wife, Sabiha Alam, for being cooperative and for her constant

love, support, and motivation during my PhD journey. Finally, thanks to my sweet

daughter, Aliza for accelerating my happiness.

v

ABSTRACT

In blockchain technology, consensus protocols serve as mechanisms to reach agree-

ments among a distributed network of nodes. In this work, we propose three novel

protocols for permissioned, healthcare, and supply chain blockchain.

(1) Proof of Queue (PoQ), for private blockchains, combines the lottery strategy of

PoET with a specialized round-robin algorithm where each node has an equal chance

to become a leader with equal access. PoQ is relatively scalable without any collision.

Like PoET, PoQ uses Intel SGX, a Trusted Execution Environment, to generate a

secure random waiting time to choose a leader and fairly distribute the leadership role

to everyone on the network. Our analysis and experiments show that PoQ provides

significant performance improvements over PoET, and its fairness scales linearly with

the number of SGX nodes in the network.

(2) ACCORD, a quorum-based multi-leader protocol for health record manage-

ment that achieves fork-resistance, robustness, and scalability. ACCORD consists of

three distinct components: (a) an asynchronous quorum selection procedure to desig-

nate the creators of future blocks, (b) a block creation protocol run by the quorum to

prevent omissions in the presence of honest quorum members, and (c) a decentralized

arbitration protocol to ensure consensus by voting. We define the threat model and

perform security analysis on the protocol. We also implemented the protocol and

conducted experiments to demonstrate effectiveness of the protocol.

vi

(3) In response to the Drug Supply Chain Security Act (DSCSA), we introduce

Janus, a novel pharmaceutical track-and-trace system that utilizes blockchain and

cloning-resistant hologram tags to prevent counterfeits from entering the pharma-

ceutical supply chain. We designed a multi-quorum consensus protocol that achieves

load balancing across the network. We perform a security analysis to show robustness

against various threats and attacks. We implemented Janus, and the experimental

results show that the system is fair, scalable, and resilient.

vii

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGMENT . v

ABSTRACT . vi

LIST OF FIGURES . xiii

LIST OF TABLES . xv

1 INTRODUCTION . 1

1.1 Research Directions . 3

1.1.1 Research Direction I: Proof of Queue (PoQ) 3

1.1.2 Research Direction II: ACCORD 4

1.1.3 Research Direction III: JANUS 5

1.2 Organization . 7

2 LITERATURE REVIEW . 8

2.1 Taxonomy of Consensus Protocols . 11

2.2 Cryptocurrency Consensus Protocols 12

2.2.1 Proof of Work . 12

2.2.2 Proof of Stake . 14

viii

2.2.3 Proof of Burn . 16

2.2.4 Proof of Activity . 17

2.2.5 Proof of Capacity . 18

2.2.6 Proof of Importance . 18

2.2.7 Proof of Authority . 20

2.2.8 Proof of Elapsed Time . 20

2.2.9 Proof of Luck . 23

2.3 Comparative Evaluation of Consensus Protocols 23

2.3.1 Cryptocurrency platform . 23

2.3.2 TEE platform . 24

2.3.3 Healthcare platform . 26

2.3.4 Supply chain platform . 29

3 BACKGROUND . 32

3.1 SGX . 32

3.2 Abstract model of PoET . 33

3.3 Remote Attestation Architecture . 34

3.4 Holographic Encryption . 35

3.5 Blockchain Network Types . 36

3.6 Drug Supply Chain Security Act (DSCSA) 38

4 POQ: A CONSENSUS PROTOCOL FOR PRIVATE BLOCKCHAINS US-

ING INTEL SGX . 39

4.1 Introduction . 39

4.1.1 Notations . 41

ix

4.2 Consensus Protocol: PoQ . 41

4.2.1 Overview . 41

4.2.2 Principals: . 46

4.2.3 Protocols: . 46

4.3 Experimental Evaluation . 50

4.3.1 Goals . 50

4.3.2 Setup . 51

4.3.3 Throughput . 51

4.3.4 Scalability . 52

4.3.5 Fairness . 54

4.4 Conclusions . 54

5 ACCORD: A SCALABLE QUORUM-BASED CONSENSUS PROTOCOL

FOR HEALTHCARE BLOCKCHAIN . 56

5.1 Introduction . 56

5.2 Adversary model . 65

5.3 The ACCORD Protocol . 66

5.3.1 Mining Nodes . 66

5.3.2 Membership Service Authority 66

5.3.3 Data Propagation . 68

5.3.4 Quorum: A distributed-leader system 69

5.3.5 Quorum member selection algorithm 71

5.3.6 Greylisting . 73

5.3.7 Block structure . 75

5.3.8 Additive Signature . 77

x

5.3.9 Null Transaction . 78

5.3.10 Mempool . 79

5.3.11 Block Skeleton . 79

5.3.12 Communication in Block Creation 79

5.3.13 Block Creation Protocol . 80

5.4 Mining rules . 82

5.4.1 Block status definitions . 82

5.4.2 Voting Rules . 84

5.4.3 Multiple Accepted Blocks . 86

5.5 Experimental Evaluation . 87

5.5.1 Communication costs . 87

5.5.2 Fault Tolerance . 89

5.5.3 Manipulation in selection . 92

5.5.4 Miner Selection Distribution 95

5.6 Threat-Risk Assessment Model . 96

5.6.1 Fork Resistance . 97

5.6.2 Long-Range attack . 98

5.6.3 Future miners selection attack 98

5.6.4 Stalling the Network . 100

5.7 Security Analysis . 101

5.8 Conclusion . 103

6 JANUS: TOWARD PREVENTING COUNTERFEITS IN PHARMACEUTI-

CAL SUPPLY CHAINS UTILIZING A MULTI-QUORUM BLOCKCHAIN 104

6.1 Introduction . 104

xi

6.1.1 Contributions . 107

6.1.2 Limitations . 108

6.2 Proposed Solution . 109

6.2.1 System Overview . 109

6.2.2 Membership Service Authority 110

6.2.3 Notations . 110

6.2.4 Proposed Approach . 111

6.2.5 Consensus Protocol . 117

6.3 Experimental Evaluation . 119

6.3.1 Setup and Environment . 119

6.3.2 Fairness . 120

6.3.3 Scalability . 121

6.3.4 Resiliency Against Malicious Quorums 123

6.3.5 Communication Cost . 124

6.4 Threats, Attacks, and Security Model 125

6.5 Conclusion . 127

7 CONCLUSION . 128

REFERENCES . 130

xii

LIST OF FIGURES

2.1 Popular consensus protocols in cryptocurrency 10

2.2 Consensus protocols categorized based on blockchain’s type. 12

2.3 PoW Hash Model . 14

2.4 PoS Probability . 14

3.1 Interaction between enclave and untrusted part in an SGX. 33

3.2 Flow of execution in SGX application. 33

3.3 SGX Remote Attestation. 37

4.1 The various state of a node before becoming a leader. 45

4.2 Top level architectural diagram of the system. 48

4.3 Interactions corresponding to client-server communication in PoQ. . 50

4.4 Throughput comparison between PoQ and PoET. 53

4.5 Overview of bridging between AWT and AET in PoQ 53

4.6 A linear growth in experimentation over nodes. 54

5.1 A high level architectural diagram of ACCORD 62

5.2 The paths a node travels through its various states. 67

5.3 Selection process of quorum members (Algorithm 1). 72

5.4 Block structure . 77

5.5 Average communication overhead for skeleton blocks 89

xiii

5.6 Average communication overhead to build a Master block 89

5.7 Average block time given increasing network outages. 91

5.8 Percentage block corruption vs malicious control of mining pool. . . . 95

5.9 Distribution of quorum selection . 97

6.1 High-level overview of the JANUS . 109

6.2 Local and global fairness. 121

6.3 Scalability as nodes/transactions increase. 122

6.4 Potential percentage of malicious quorums forming. 124

6.5 Communication cost as nodes/transactions increase. 125

xiv

LIST OF TABLES

1.1 Targeted security properties across all research directions 7

2.1 Comparative evaluation of cryptocurrency consensus protocols. 22

2.2 Assessment of blockchain consensus protocols. 26

3.1 Comparison of SGX based system . 34

4.1 Summary of notation . 42

5.1 Feasibility study of blockchain over DDBMS in healthcare. 64

6.1 Table of notations. 110

xv

1

CHAPTER 1:

INTRODUCTION

As a society, we have become too dependent on computer technology. Computers and

other devices were introduced to be relied on, carry out tasks faster, act as projects,

and be available when requested. However, the set of devices that form the com-

puter network cannot be fully trusted, whether the components are local or global.

The distributed consensus mechanisms enable a group of entities to agree on a spe-

cific subject despite the failures of a limited number of components and asynchrony.

When consensus is achieved, we can build reliability in a network that has multiple

unreliable components. Online trade is based on trust among those who are involved

in the network. The participating parties often do not know whom they interact with;

thus, traditional online selling or exchange is a substantial risk. Here a third party

is trusted by the involved parties in a way that all of them will maintain details of

the transaction. By doing so, the system achieves authenticity, non-repudiation, and

integrity. However, trusted third parties are costly. Blockchain transfers this trust

from a third party to a decentralized system consisting of many nodes. In summary,

a blockchain is a database that keeps a record of all transactions that occurred within

the network and is replicated at each involving node. The principle of a blockchain is

to allow trusted computation among a set of mutually distrustful nodes. The idea of

blockchain was first presented by the famous bitcoin white paper written by Satoshi

2

[69], whose true identity remains unknown to date. Due to replications of the trans-

action to all participating nodes, blockchain maintains data integrity. The paramount

part of a blockchain is the consensus protocol, which confirms a common consent on

the ledger’s state and resiliency of the ledger. The goal of consensus protocols is to

authorize the globally accepted group of transactions. Simply, consensus protocol

ensures the steady operation of a blockchain system. In blockchain systems, consen-

sus protocols are the cornerstone of achieving security and scalability. They not only

enable nodes in the network to agree on the valid information that can be added to

the ledger while keeping all nodes synchronized, but they also establish the sequence

of order in which blocks (and consequently transactions) are affixed.

The most popular consensus protocol is proof of work (PoW) [69], which is broadly

chosen by cryptocurrencies like BTC (bitcoin) and ETH (Ethereum), and suffers from

large consensus delays and requires a large amount of computing power. As the BTC

network keeps growing, PoW has resulted in different performance bottlenecks and

sustainability problems. For example, BTC adopts PoW with a maximum transaction

capacity of 3-7 transactions per second (TPS), which greatly limits the application

prospect of PoW in actual payment. In contrast, the VISA has approximately 65,000

TPS with 50 million participants. However, PoW is known as an energy-hungry

protocol that consumes a massive amount of electricity. Due to these shortcomings,

researcher have been proposing many alternative consensus protocols such as Proof

of Stake (PoS) [56], Proof of Burn (PoB) [12], Proof of Activity (PoAc) [17], Proof of

Capacity (PoC) [39], Proof of Importance (PoI) [10], Proof of Authority (PoA) [33],

Proof of Elapsed Time (PoET) [28] [25], Proof of Luck (PoL) [66], etc. for the public,

private and consortium types of blockchain network. PoS (suffer from ‘bribe attack’,

3

‘nothing at stake’ problem and makes rich richer), PoB (wastes resources needlessly),

and PoET (collision problem) do not demand computation-intensive mining, thus

effectively reducing energy consumption. However, they are still way behind in terms

of TPS, fault tolerance, and security features. On the other hand, PoC (wasting

space) and PoAc requires a large amount of computation power which is a misuse of

resources. As a result, a number of researchers have been working to develop a fair,

scalable, and efficient consensus protocol for blockchain.

1.1 Research Directions

1.1.1 Research Direction I : PoQ: A Consensus Protocol for

Private Blockchains Using Intel SGX

Motivation. In leader-based consensus protocol, a node in the network has some

special power to propose the next block in the distributed network. Leader election

is an effective mechanism for enhancing efficiency, minimizing collaboration, oversim-

plified design architecture, and minimizing operations. A single leader-based system

can work more efficiently because they are only responsible for handling the next

block rather than establishing consensus. Undoubtedly, a single leader-based system

can minimize the communication cost and give better performance, which is desired

in a private blockchain.

Challenges and Concerns. Several traditional leader-based consensus protocols

exist in the sector of blockchain. Some protocols may be scalable to vast numbers

of nodes but suffer from poor throughput. However, none of the current protocols

can obtain the following characteristics altogether: higher throughput, scalability,

fairness, equitably distributed mining, and energy efficiency. On the other hand,

4

leader-based consensus can raise issues like failure modes or trust that can lead to

a more complex scenarios to evaluate the correctness of a system. However, a well-

designed leader-based protocol can handle the stale block issue effectively. A stale

block is an accurate, previously announced block that is not part of the longest

chain. A stale block appears at any time when more than one node announces a valid

block within a short duration. Some of the existing leader-based protocols are not

free from the collision either. A collision occurs when more than one node is eligible

to become a leader and attempts to create blocks simultaneously. Existing protocols

like Proof of Luck and Proof of Elapsed Time use special hardware called software

guard extension (SGX) to achieve minimal power consumption and fairly distributed

mining. To have these properties, a protocol is also needed to be designed using SGX.

RQ1. Can a trusted execution environment be utilized to design a leader-based

permissioned consensus protocol with high throughput, low energy consumption, and

equitably distributed mining?

1.1.2 Research Direction II: ACCORD: A Scalable Quorum-

based Consensus Protocol for Healthcare Blockchain

Motivation. Due to the nature of blockchain, it is feasible to implement it in a

sector other than cryptocurrency. Healthcare can be considered as a suitable example

for such a sector. The motivation for conducting this research is to analyze a model

based on blockchain technology and to share and store health data in a more secure

way by maintaining full privacy and giving the owner full control of his data. Patients

and hospitals must have a reliable mechanism for verifying and validating the actual

5

health data. A study in 2014 discovered that 15% of patients who visited a care

provider in the US documented that they had to bring test results to an appointment

individually, and 5% were required to have a repeated test due to the unavailability

of previous results [74].

Challenges and Concerns. Some of the main characteristics of a consensus proto-

col that needs to fit a medical blockchain are energy efficient, throughput consistent,

scalable, fork resistance, and fairness. According to [4], health records contain sensi-

tive data and are considered 10x more valuable to hackers than credit card informa-

tion, thus, the records should not be accessible to the public. Therefore, healthcare

consensus is unique from the case of cryptocurrency, which is public so that there is

no authentication scheme for participants. There are only two consensus protocols

that exist (to the very best of our knowledge) specifically for the healthcare domain.

Due to the characteristics of a healthcare blockchain, a quorum-based consensus pro-

tocol is a good-fit rather than a leader-based. Also, architecture for a quorum based

system has high complexity compared to a single leader as it concerns about other’s

node’s current state.

RQ2. Can we design a consensus protocol for a public-permissioned healthcare

blockchain that is fork-resistant, fair, and scalable?

1.1.3 Research Direction III: JANUS: Toward Preventing Coun-

terfeits in Pharmaceutical Supply Chains Utilizing a Multi-

Quorum Blockchain

Motivation. The consecutive issue of counterfeit drugs in the pharmaceutical in-

dustry has exposed the essence of blockchain in the supply chain. These illegitimate

6

products cause harm to end users and wreak havoc on the supply chain itself, costing

billions of dollars in profit loss. Also, the traditional drug supply ‘ chain manage-

ment suffers from several other issues such as no end-to-end visibility, delay, fraud,

etc. More specifically, the current pharmaceutical supply chain (PSC) suffers from a

lack of traceability, security, and transparency. These faults ultimately contribute to

the presence of illegitimate products in the market. The World Health Organization

(WHO) estimates that the presence of counterfeit products in the pharmaceutical

market can range anywhere from less than 1% in developed countries to over 10% in

some developing countries [73].

Challenges and Concerns. Starting November 2023, the Food and Drug Adminis-

tration (FDA) will demand stakeholders in the pharmaceutical supply chain to comply

with an act of guidelines called the Drug Supply Chain Security Act (DSCSA) [44].

The purpose of the DSCSA is to generate a computerized track-and-trace system for

drugs in the PSC. Holding an electronic system to track particular drugs throughout

the PSC can significantly decrease the number of counterfeits in the market. While

blockchain can be used to form this immutable electronic system, the challenge of

verification of physical products with digital data arises. It also poses the challenge

of ensuring end-to-end visibility.

RQ3. Can we design a consensus protocol for a pharmaceutical supply chain sys-

tem that prevents counterfeits from entering the system as well ensures integrity of

delivered products between stakeholders in the supply chain?

Table 1.1 presents an overview of targeted security properties across all research

directions.

7

Table 1.1: Targeted security properties accros all research directions. Sym-
bols: 3means yes, and � means not specified.

Fairness Fork
resistance

Collision
resistance

Fault
tolerance

RD I: PoQ 3 3 3 �
RD II: ACCORD 3 3 � 3

RD III: JANUS 3 3 � �

1.2 Organization
The dissertation is organized as follows:

• Chapter 2 is an in-depth literature review of the existing consensus protocols

in cryptocurrencies, healthcare, and supply-chain sector.

• Chapter 3 introduces the preliminaries required for the protocols to establish

the background knowledge needed for this dissertation work.

• Chapter 4 provides details of leader based consensus protocol for private blockchain

by utilizing SGX.

• Chapter 5 provides the proposed approach to address the problem discussed in

research direction II.

• Chapter 6 describes our proposed solution for supply chain management.

• Chapter 7 concludes our work followed by a discussion about future work.

8

CHAPTER 2:

LITERATURE REVIEW

Distributed computing systems often employ consensus protocols to help reach agree-

ments and make decisions. The concept of reaching consensus was originally moti-

vated by Leslie Lamport’s work in 1978. While he was working on event ordering in

a distributed computing system [58], he proposed a protocol that required all net-

work participants to ensure that decision-making consensus was reached. The next

landmark publication was in 1982 by Lamport et al. [60] who laid out the Byzantine

Generals Problem, in which a quorum of Byzantine generals surrounding an enemy

city depended on instant communications and a majority rule to execute military

plans. The problem is how each general agrees on the same decision whether to at-

tack or not, where some of them might be malicious, faulty, or disloyal. Each general

has the right to strike but an indifferent strike would be baneful. While Lamport’s

work was able to handle certain levels of malicious actors, it provided no solutions

to asynchronous communications. This shortcoming (termed the “Byzantine Fail-

ure”), was explored in 1985 by Fischer et al. [42] in which the generals were able

to communicate asynchronously. It mathematically described instances of delayed

messengers and proved that deterministic protocols could not reach consensus if the

communications were asynchronous. Castro and Liskov [24] expanded on this work

by describing how Byzantine Fault-Tolerant (BFT) protocols could be implemented

9

when nodes produce arbitrary data. BFT can manage approximately 33% of nodes

being adversarial. Martin and Alvisi [64] further whittled this scenario down in 2006,

describing cases in which consensus could be reached asynchronously in just two steps.

In 2008, through his Bitcoin whitepaper [69], Satoshi introduced blockchain and pro-

posed Proof of Work (PoW), the first fault-tolerant consensus protocol for blockchain,

and offered financial incentives to promote node honesty. Blockchain technology cuts

out the need for a third-party in many cases. It can be characterized as a peer-to-peer

(P2P) network in which participants maintain a ledger of previous transactions, and

cryptographically reference their ledger in successive transactions.

Depending on the use case, a blockchain can be either permissionless (public),

or permissioned (private or consortium). In a public blockchain, anyone can join

the network, send transactions, create and validate blocks. On the other hand, a

permissioned blockchain is operated by known nodes, who are legitimized to validate

a transaction. It can be treated as a closed system. Thus, it allows greater privacy

than a public blockchain, where the identity of users is detectable but the transactions

remain private. Hyperledger is a prominent example of a permissioned blockchain. A

consortium blockchain is partially private, functioning under the guidance of a group,

where access to the chain is determined by a group of pre-selected nodes, not an

individual.

Scope: In this work, we seek to explore prominent consensus protocols in the

top cryptocurrencies, discussing their use cases, as well as their relative weaknesses

and strengths. Figure 2.1 provides a summary of consensus protocols in the top 50

cryptocurrencies.

We draw from Conti et al. for their work in identifying and assessing threats

10

Consensus

Protocols

Number of

Cryptocurren

cies

PoW 17

PoS 10

PoA 1

PoAc 1

PoC 1

Hybrid 1

BFT 2

Others 14

PoS

PoA

PoAc

PoC

Hybrid

BFT

Others

00 250,000

My Assets

0

2

4

6

8

10

12

14

16

18

PoW PoS PoA PoAc PoC Hybrid BFT Others

N
u

m
b

e
r
 o

f
C

r
y

p
to

c
u

r
r
e
n

c
ie

s

Consensus Protocols

c

brid

hers

Figure 2.1: Consensus protocols in top 50 cryptocurrencies by market
capitalization from CoinMarketCap (April, 2019).

to the Bitcoin network [27]. We also rely on works from Baliga et al., who carried

out a comparative discussion of protocols’ security attributes and functionalities [11].

Besides, there exists three related works. In [21], the author provides an introduction

to consensus protocols while [20] focuses on quantitative analyses for some of them

and derive three key components of Bitcoin’s design. Last but not least, [13] provides

an overall picture of the most important consensus protocols and their working prin-

ciple. Our work covers large spectrum of existing consensus protocols and attempts

a comparative evaluation of their attributes. We believe that identifying a broader

set of protocols will allow for a deep comparative understanding of how blockchain

technology is being implemented today.

11

2.1 Taxonomy of Consensus Protocols
We examine the regulatory mechanisms that allow consensus protocols to func-

tion. In this work, we focus on cryptocurrency-related consensus protocols. Similar

to Bitcoin, Ethereum currently relies on PoW to achieve consensus about its trans-

actions. However, it plans to switch to a PoS algorithm called Casper which is

still in development. In Ethereum, miners who effectively solve the puzzle receive

Ether as a reward. EthHash is a PoW-based protocol performed by the Ethereum

network. It uses a different protocol than Bitcoin: the Greedy Heaviest Observed

Sub-Tree (GHOST) consensus protocol, a modified version of the Nakamoto consen-

sus, where the heaviest sub-tree wins rather than the longest chain. In the Casper

design, validator nodes are required to lock up a certain amount of tokens as a security

deposit, and they are then able to cast votes on upcoming blocks that are weighted

by their stake. This protocol avoids arbitrarily wasting electricity (as in PoW) and

is more decentralized. In the Casper algorithm, an attacker can be identified and

their deposit can be overthrown instantly. Besides that, the PoS falls mainly into

two categories: Chain-based and Byzantine Fault Tolerant (BFT). In chain-based,

validators are chosen pseudo-randomly, and given the privilege to validate the next

block. In Byzantine-style PoS, validators are randomly assigned the right to suggest

the next block and every validator casts their vote for a round and then multi-round

voting decides which block is ultimately affixed to the chain. Because consensus does

not rely on the length of the previous chain, it can be accomplished by validating a

block in each round. The taxonomy of cryptocurrency consensus protocols is shown

in Figure 2.2.

12

Figure 2.2: Consensus protocols categorized based on blockchain’s type.

2.2 Cryptocurrency Consensus Protocols

2.2.1 Proof of Work

The Proof of Work (PoW) concept existed before Bitcoin. It draws inspiration

from a 1993 work by two academics, Dwork and Naor, who described a protocol to

hinder spam by forcing email users to compute functions before sending an email

[38]. However, the term “Proof of Work” was first introduced in 1999 by Jakobsson

and Juels [52]. According to the Bitcoin white paper [70], PoW is a combination

of computational power and cryptography. It starts by picking out a mathematical

puzzle (also called challenge string (CS)), which miners repeatedly hash with a nonce

until the resulting hash starts with a certain number of zeros. When the right nonce

is found, the miner announces it to the whole network, where nodes can easily check

its correctness based on the values in the block. If it is correct, that particular node

receives a block reward, and the new block is appended to the public blockchain.

The difficulty of the puzzle increases proportionally to the amount of computing

power in the network. That is, more miners in the network makes it more difficult

to mine the next block. The hashing sequence is arbitrarily difficult and is known

as the difficulty rate. This hashing exercise is thought to ensure network security

because the burden of computational work represents an insurmountable challenge to

13

malicious actors.

The Computational difficulty is calculated at regular intervals. In Bitcoin, it is set

every 2016 blocks. PoW rewards miners that have modern, expensive and powerful

equipment (ASIC’s or GPU’s) since such hardware supports fast computation of hash-

ing. To increase their chances of finding the right hash, miners usually join mining

pools to team up and put their hashing power together and distribute the rewards

among them. However, the pooling approach could lead to the network becoming

more centralized. If some of the larger mining pools join together, they could start

accepting invalid transactions. If a group of miners acquires 51% of the overall hash-

ing power, it can practically control the blockchain. This type of attack is referred

to as the 51% attack, and would lead to the double-spending problem. That is, the

attacker could create multiple transactions with the same coins. Since the attacker

is spending more coins than available, these transactions should be deemed invalid.

However, if the attacker holds a majority of the hash power, such transactions could

be treated as valid transactions.

On the other hand, even if a miner successfully mined a new block, the block

award is not guaranteed. Let’s consider two honest miners A and B who solve a

puzzle at the same time and create a temporary fork in the blockchain network. In

this situation, the network needs to carry on with anyone of them. The network goes

with the chain that has done most of the work. Another weakness of PoW is the slow

confirmation rate. BTC, Ethereum, Litecoin and Bitcoin Cash that follow PoW have

7, 15, 56 and 60 transactions per second (TPS) respectively, compared to VISA with

24,000 TPS and PayPal, 193 TPS , which demotivates their use for e-commerce.

14

Figure 2.3: PoW Hash Model Figure 2.4: PoS Probability

2.2.2 Proof of Stake

Proof of Stake (PoS) was proposed on the bitcointalk forum back in 2011. In

PoS, one node is selected in a random way to validate the next block, which depends

on its wealth, also called “stake”. Here, consensus nodes are known as “validators”.

To qualify as a validator, a node must deposit a particular amount of coins to the

network as stake. The probability of being chosen to forge the next block depends on

the size of the vested coins like a linear correlation as shown in Figure 2.4. In PoS,

nodes mint or forge new blocks instead of mine. If any validator verifies a fraudulent

transaction then they loses a portion of his stake as a penalty which is higher than the

transaction fee, thus they gives up more than he earns. In this way, PoS demotivates

validator to do dishonest transactions. If any validator wants to leave the network,

his stake and the fees from the transaction will not be discharged immediately but

after a certain amount of time, because the network still needs to verify all the block

transactions that he did.

In PoS, not every validator goes for the new block thus the protocol uses signifi-

15

cantly less energy. No mining pool concept exists here, hence it is more centralized

compared to PoW and also does not require any expensive mining equipment. Peer-

coin and Nxt implemented by using pure PoS protocols. The TPS of PoS cryptocur-

rencies are relatively faster compared to PoW currency. BlackCoin and Novacoin

implement age-weighted PoS protocols in which staked tokens are more likely to be-

come validators based on the age of their deposit into an address. Under the PoS,

each coinage is seized in the term of “coin-day”, so occupying 100 coins for 100 days

is equal to 10000 coin-days. The value is reset to zero if the coins are utilized. A

node is considered as a validator by consuming its coinage. BlackCoin’s age-weighting

function is based on the given expression:

proofhash < coins× age× target (2.1)

Where, the target is the mandatory number of coins set by the network through

difficulty adjustment, age is the coinage, coins is the number of coins a validator has

used to be chosen and the proofhash is the unused output.

51% attack becomes impractical in PoS because of cryptocurrency’s value. In

PoW, this attack can be hard to detect since the hash power can be distributed

among different miners. However, it can be easily detected in PoS, since the market

can recognize that a large portion of coins have been bought and are in control of

a single entity. In PoS, a miner can mine both forks because it costs nothing; thus

choosing a wrong fork is not costly and at any time they can switch with the winning

fork. This can be lead to a problem called nothing at stake. Let’s assume party P1

sends some money to party P2 and in return, he wants something. P1 does an honest

and dishonest transaction. The honest transaction sends cryptocurrency to P2 and

16

dishonest sends cryptocurrency back to P1. For this, there will be a fork. As miners

can mine in both forks, if P1 is also a miner and does mining upon the dishonest fork,

it would still be validated even if it is dishonest. This specific problem has yet to be

overcome in Casper algorithms.

2.2.3 Proof of Burn

Proof of Burn (PoB) [13] is an alternative consensus protocol proposed by Ian

Stewart that requires a participant to burn a mined cryptocurrency to get privileges.

PoB tries to fix the power consumption issue of PoW and relies on its cryptocurrency,

which is called “bootstrapping” coins. A participant needs to send cryptocurrency to

an unspendable address which serves as the proof that the coins have been burned. By

doing this, those coins get out of circulation and can no longer be spent. Therefore,

PoB is often called PoW without energy waste. The principle of PoB is that the

miners burn the virtual currency tokens, to get the right to write new blocks in

proportion to the coin burned. Thus, the inventor cites an analogy “Burnt coins are

mining rig”. Burned coins are also documented on the blockchain, to ensure that the

coins cannot be turned to account again.

Stewart described two blockchain system in which users could irretrievably send

tokens from blockchain A to an “eater” address, and receive corresponding tokens

in blockchain B. The eater address would have a non-randomly generated a public

address and consequently have an unknown and unlikely-to-guess private key. Chain

B would then function as a network in which the chain A tokens operated as miners

with hashing power proportional to the token quantity and block height of the burn

transaction in chain A. The more coins a miner burns, the higher the chance he has of

being selected to mine the next block on the new currency’s blockchain. Several coins

17

are using PoB as a consensus protocol. Slimcoin (SLM), Counterparty (XCP) and

Triggers (TRIG) are the best-known examples. PoB is expensive for an individual

miner, however, it is considered as an investment for the future which leads to greater

stability. As there is no guarantee for a miner to recover the value of the coin burned,

PoB is a greater risk.

2.2.4 Proof of Activity

Proof of Activity (PoAc), first proposed in 2012 combines the idea of both PoW

and PoS. It acts as a middle ground between them, combining the computational

cost of PoW mining with the slimmed-down staking method of PoS consensus. The

mining part kicks off in the standard PoW process. Once a block is found, then

it follows PoS principals, where the new block only contains the header and the

address of the winner. Depending on the header details, a group of validators is

chosen randomly who are required to sign the new block. The more cryptocurrency

a validator owns, the more chances he has for being selected as a signer. After being

signed by all the validators, the newly founded block turns into a full-fledged block

and gets appended on the blockchain network. It requires the stakeholders to be

online at all times to participate, hence the activity part of the name which requires

continuous exchanging of data. Espers and Decred are only two coins that use PoAc.

Decred is considered a fully-implemented example of PoAc consensus. PoAc protocols

require high computational overhead during the PoW phase, and whoever has more

cryptocurrency still has a higher probability of getting into the signer’s list. However,

51% attack goes down dramatically because a successful attack requires the same

miner to control both 51% mining hash rate and a majority of the cryptocurrency.

18

2.2.5 Proof of Capacity

Proof of Capacity (PoC), also known as Proof of Space, requires a competitor to

pay something to get in the competition. The idea was devised by Dziembowski et

al. in the Proofs of Space whitepaper [39]. The concept of PoC is identical to PoW,

except instead of computation, storage is used. It differs from PoW by plotting which

is used to verify the block. In general, if a lottery reward based on matching the most

numbers on winning tickets, then the participant who fills his HDD with lots of lottery

tickets has a higher probability to win the lottery. The more solutions, the higher the

chance to win. Plotting uses a hash algorithm called Shabal, which is relatively slow.

Since it’s difficult to compute, the miner needs to compute and reserve the result on

the HDD before the competition begins. This procedure is called plotting the hard

drive. The next step is mining, consisting of miners reaching the solution, whoever

solves it first needs to mine the next block. Burstcoin already adopts PoC. Since it

does not require the involvement of CPUs and GPUs, it is naturally very low on power

usage. PoC uses HDD where data can be compromised. Anyone with a regular hard

drive can participate in this protocol which is 30 times more energy-efficient than

ASIC based mining. Everyone who has a hard drive can mine, even from a normal

android phone’s making the network more centralized. Here, no updated model of

HDD is required because an old HDD can store the same data as well as new ones.

2.2.6 Proof of Importance

Proof of Importance (PoI) was launched by the New Economy Movement (NEM)

in 2015. In the PoS, participants interested in saving instead of spending. But, PoI

rewards not only the largest amount holder but also how much they transact and with

whom they transact. That means PoI gives the priority to the person who directly

19

helps the economy and continuity of the blockchain. PoI demotivates the concept

of “rich gets richer”. Everyone in the network gets the chance to be rewarded based

on how much effort they put forth. Here, the method of adding new blocks to the

chain is called harvesting. An important score is assigned to each account on the

NEM network. This score will determine one’s ability to harvest within the network.

To be part of the score calculation, the user account needs a minimum of 10,000

XEM (cryptocurrency related to NEM) in his account. The current supply in the

circulation of XEM is 9 billion so it is not expensive to participate. As participation

grows, the 10,000 XEM threshold will be changed to accommodate the increase in

activity. After qualifying, a mathematical calculation will be used to determine the

current score in the system. Two important factors used in scoring are Net transfer

(transaction happen in the last 30 days, in-fact recent transaction weighted more

heavily) and currency that is vested for creating blocks. So the more transactions

associated with one’s account over a period, the higher the importance score. It’s not

like an individual has some addresses and passes XEM between them to increase his

score. The way it handles this is by lowering the importance score for those accounts

who send out and then receive XEM. Purchasing goods via XEM won’t increase the

importance score too. XEM has faster TPS than others. Since PoI is similar to PoS, it

does not require heavy computation and cost is relatively low since the only expense

is score calculation. Nothing at stake attack is possible because the creation of a

block costs no resources, wherever there is a fork, someone can freely create blocks

on both forks and 51% attack is possible. But when performing the attack in PoI,

the attacker needs to take into consideration the transaction activity involved with

their account in addition to the number of coins owned.

20

2.2.7 Proof of Authority

Gavin Wood, the co-founder of Ethereum, first termed Proof of Authority (PoA)

which is a permissioned based consensus protocol and considered as a modified version

of PoS. Here, one’s identity is staked while in PoS, one’s coins are staked. The true

identity of a person is validated through notaries where identity information shares

publicly and go through an on-chain verification using smart contracts. Due to a

background check it’s difficult to have a license in the notary. A participant needs

to invest his money as well as reputation to be a validator. PoA depends on a finite

number of validators that ensures more scalability and security. PoA is basically

designed for Ethereum which has faster block generation. It includes Hyperledger

and Ripple. Hyperledger follows PBFT. On the other hand, Ripple is using iterative

processes. PoA is super-centralized but efficient, compatible with private blockchain.

Since PoA is automated, heavy computation and regularly monitoring is not required.

Even a Raspberry Pi can be used to achieve most of this objective. Compared to other

protocols, the cost is relatively low since the required equipment is not expensive and

also does not require to communicate among the nodes to reach a consensus. PoA

is less vulnerable since it requires the validator’s account to be authentic. But when

staking, their real identity is at risk which acts as a barrier to acting maliciously.

PoA consensus protocol is utilized in Ethereum’s Kovan testnet and VeChainThor

blockchain network. Microsoft Azure is another example of where the PoA is being

implemented. PoA is a fast and high TPS.

2.2.8 Proof of Elapsed Time

Proof of Elapsed Time (PoET) is a consensus protocol that seeks to curb the

wasteful use of resources exhibited in PoW. Instead of wasting lots of energy, it

21

achieves consensus with a fair lottery system [25] to elect a validator node. It was

developed at Intel in early 2016 as part of their work on the Hyperledger project.

The PoET protocol is intended for a permissioned blockchain, in which participa-

tion is access-controlled, and in which node identity is disclosed before participation.

The backbone of the PoET protocol is Intel’s proprietary hardware, Intel SGX ,

which houses cryptographic primitives such as random number generator SGXRND.

Depending on the pillar of a fair lottery system, each node is equally likely to be a

winner. In PoET implementations, sgx_read_rand() functionality assigns a waiting

period to each participant and the node with the lowest waiting time becomes the

validator.

In general, each node will obtain a timer value from the trusted code and wait for

the obtained timer value. The node to finish first, add a new block to the blockchain

and broadcast the essential data to the network. The same procedure then replicates

for the finding of the next block. To join a PoET network, the participants must ini-

tialize their new key pair and send a join request to the network. Once the participant

has joined the network, they can opt to be involved in the lottery process. Random

times are allocated to each node, therefore all blockchain functionality is carried out

in a determinant process. The SGX hardware is also not run in a way that promotes

hashing competition, but it acts as the barrier to entry. PoET also measures every

participant’s lottery winning occurrences to determine malicious or suspicious nodes

and blacklist them. It also needs to confirm two things primarily that each node gets

the random time from TEE and it actually waits for that specified period. However,

the main concern of this protocol is it depends on SGX which is assembled by Intel,

so the dependency of PoET goes to Intel, a third party company.

22

T
ab

le
2.
1:

C
om

p
ar
at
iv
e
ev
al
u
at
io
n
of

at
tr
ib
u
te
s
am

on
g
cr
yp

to
cu
rr
en

cy
co
n
se
n
su
s
p
ro
to
co
ls
.

P
ro
of

of
..
.

T
yp

e
D
iffi

cu
lt
y

B
ar
ri
er

to
E
n
-

tr
y

P
la
tf
or
m

A
n
on

ym
ou

s
M
in
in
g

K
n
ow

n
Is
su
es

&
A
t-

ta
ck
s

W
or
k

P
ub

lic
D
iffi

cu
lt

M
in
in
g
ha

rd
w
ar
e

B
it
co
in
,

Zc
as
h,

E
th
er
eu
m
,

Li
te
co
in
,

B
it
co
in

SV

Y
es

Se
lfi
sh

m
in
in
g,

D
oS

,
Sy

bi
l[
95
]

S
ta
ke

P
ub

lic
E
as
y

St
ak

ed
to
ke
ns

E
th
er
eu
m
,

Te
zo
s,

P
ee
rc
oi
n,

E
O
S,

B
la
ck
-

C
oi
n,

G
ri
dc
oi
n,

N
ov
ac
oi
n

Y
es

N
ot
hi
ng

-a
t-
st
ak

e,
B
ri
be

,
P
re
-c
om

pu
ti
ng

,
Sh

or
t

&
lo
ng

ra
ng

e
at
ta
ck
s,

D
oS

,S
yb

il
B
u
rn

P
ub

lic
E
as
y

Ir
re
tr
ie
va
bl
e

co
in
s

Sl
im

co
in
,

Tr
ig
ge
rs
,

C
ou

nt
er

P
ar
ty

Y
es

N
on

e

A
ct
iv
it
y

P
ub

lic
D
iffi

cu
lt

St
ak

ed
to
ke
ns
,

M
in
in
g
ha

rd
w
ar
e

D
ec
re
d,

E
sp
er

Y
es

N
ot
hi
ng

-a
t-
st
ac
k

(v
er
y

lo
w

ch
an

ce
)

C
ap

ac
it
y

P
ub

lic
D
iffi

cu
lt

D
at
a
st
or
ag
e

B
ur
st
co
in
,
P
er
m
ac
oi
n,

B
it
To

rr
en
t

Y
es

M
al
ic
io
us

ha
rd

dr
iv
e

E
la
p
se
d

T
im

e
P
ri
va
te

E
as
y

In
te
l
SG

X
ha

rd
-

w
ar
e

E
xp

er
im

en
ta
ls

ta
ge

N
o

B
et
ra
ya
lo

ft
ru
st

A
u
th
or
it
y

P
ri
va
te

E
as
y

R
ep
ut
at
io
n

V
ec
ha

in
N
o

Id
en
ti
ty

di
sc
lo
se
d

Im
p
or
ta
n
ce

P
ub

lic
E
as
y

M
on

ey
R
ep
ut
a-

ti
on

N
E
M

Y
es

51
%
,N

ot
hi
ng

-a
t-
st
ak

e

L
u
ck

P
ri
va
te

E
as
y

In
te
l
SG

X
ha

rd
-

w
ar
e

N
on

e
N
o

Sy
bi
l

23

2.2.9 Proof of Luck

Proof of Luck (PoL), was introduced fairly recently to overcome the cost and

wastage of resources in mining Bitcoin and Ethereum using PoW. Current Intel CPUs

have a new set of instructions called SGX. It gives special permissions that allow us to

run code inside an environment that is secure and the execution cannot be modified

even by the operating system, BIOS or VMM. PoL is similar to PoET because it also

generates random numbers referred to as luck. Luck is selected by the participants and

participant with the highest number gets the winning block and termed is luckiest.

Since PoL requires secure computations that are dependent on the special instruction

set provided by Intel SGX, it acts as the barrier to entry. This also ensures that the

luckiest block was selected according to protocol [66]. In PoL, it is difficult to make

attacks. For example, attackers need to be lucky as well to make double-spending.

2.3 Comparative Evaluation of Consensus Protocols

2.3.1 Cryptocurrency platform

From the above description of various consensus protocols, we compare all the

protocols in terms of their network type, computation, power consumption, expense,

wastage of resources, platform (cryptocurrency), anonymous client and validators,

participation and known issues. We refer to some indexes to show its properties.

Public blockchain means, it is accessible by all, and on the other hand, private means it

has some restrictions. Computation is expressed by “difficult” or “easy”, which means

whether the protocol requires heavy computation or not. For anonymous mining, if a

protocol requires the identity to be disclosed then it is indexed as “no” otherwise “yes”.

Finally, based on various criteria, well-established protocols are vulnerable to some

24

attacks, such as 51% attack, DoS attack, Sybil attack, Short and Long-range attack,

Pre-computing attack, and Nothing-at-stake attack. A comparative evaluation of

cryptocurrency-based consensus protocols is shown in Table 2.1.

2.3.2 TEE platform

In recent years separate approaches are used to extend the performance of PoET .

Research has been conducted to achieve a good overall performance in a private envi-

ronment. In addition, there are existing related works that spotlight the perfections

behind the intention of Trusted Execution Environment (TEE) design. Hardware-

based TEE like ARM TrustZone (available on smartphones) or Trusted Platform

Module and Intel SGX (for x86-based computer) are generally obtainable in commod-

ity computing platforms. In the paper [25], authors provide remarks on the design of

Sawtooth. In order to reduce potential collision, they discussed waiting times need

to be longer. While [32] focusing on reducing the stale block rate by restricting the

number of nodes which they call PoET+. A stale block is an accurate, previously

announced block that does not belong as part of the longest chain. A stale block

appears at any time when more than one node announces a valid block within a short

duration. Proof of Luck (PoL) [66] is another consensus protocol based on TEE and

similar to PoET because it also generates random numbers from SGX into the block

referred to as ‘luck ’ of the block. The protocol selects the chain with the highest

accumulative luck as the winner and is determined the luckiest. The luckiest block

is then added to the chain. It will generate forks when the network is periodically

portioned because the partitions will ensure various largest accumulative luck. In [7],

the authors proposed Proof of TEE-Stake (PoTS), that leveraging functionality from

TEE for public blockchain, where each node in PoTS ensures the same structure to

25

bootstrap a TEE program. In [31], the authors explore the response of throughput

of PoET and propose a simple adjustment to it (they termed as “S − PoET ”) which

leads to a higher throughput as the network becomes larger. According to the au-

thors, if the shortest waitTime and another waitTime are conflicted by fewer than

the propagation delay then that will result in a stale block.

At the beginning, PoET was preferred to replace the PoW with the exception

of the longest-chain rule [92]. Due to its access control nature, it is most appropri-

ate for permissioned blockchains, where certain works will be executed on TEE by

certain authenticated nodes. Unlike permissionless, most permissioned blockchains

don’t require any rewards mechanism. Each consensus protocol is unique based on

the way it creates a block, discloses the evidence (block propagation), the procedure

of validation inside the network, and the rewards system for an honest effort. Ta-

ble 2.2 shows an assessment among some of the protocols designed for TEE based or

not. The throughput measurements derive from the complimentary white paper or

formal demonstration of the implementation of that protocol and indicate the scales

of fastness, i.e. high or low.

Due to dynamic QT in PoQ, all nodes are approximately given the same priority

to execute depending on its tier (A relationship engaging level between a set of nodes.

PoQ is a multi-tier approach to the early recognition of nodes and provides necessary

data to them), thus no nodes are left behind which leads to more speed in the system.

PoQ progresses in a round-robin way, wherein each round, a selected node within all

the nodes in the network will get a chance to reduce its waitTime and if it is successful

to reduce all its waitTime, then that particular node proposes the potential block (a

successive set of transactions). Thus, a node cannot get a total allocation of time

26

above its assigned time. We can say that PoET is suitable for a limited network

with small waitTime while in PoQ arrival time of a node puts great importance on

becoming the leader quickly as it maintains a dynamic queue that pushes the nodes

based on their arrival time. That means when a node appears in the network it

starts to compete with other nodes and the leadership cannot be predetermined. It is

suitable for a large number of participants, easy to implement, and also offers similar

average waitTime and average elapsed time for all its nodes. Due to no hashing is

required in PoQ, we can say it also saves energy too. As PoQ is suitable for private

blockchain network, it does not provide incentives for participants. To the very best

of our knowledge, no work has been done to make the lottery election system fairer

for PoET .

Table 2.2: Assessment of blockchain consensus protocols. Symbols for
binary values: 3 means yes, 7 means no. Symbols for non-binary values:
l means high, w means medium, ◦ means low and � indicates undefined
in the protocol white paper.

TypeConcensus
Protocols Public Private

Block
propagation

Block
Validation

TEE
based

Resource
consuming Rewards Nodes

execution
Throughput

(TPS) Fairness

Nakamoto
(BTC, Litecoin) 3 7 PoW PoW

(longest chain) 7 l 3 l ◦ l

Nakamoto
(Etheruem) 3 7

PoW
(Ethash)

PoW
(GHOST) 7 l 3 l ◦ l

PoET
(Hyperledger) 7 3

PoET
within TEE

TEE
certificate 3 ◦ � w l l

PoTS 3 7
PoTS-based

committee election
TEE,

eligibility 3 ◦ � � � �

Chain-based PoS
(Nxt) 3 7 PoS PoS

(longest chain) 7 w 3 � ◦ ◦

PoI
(XEM) 3 7

PoI
Harvesting

Importance
score 7 ◦ 3 w l l

PoL 7 3 PoL Longest total
value of luck 3 ◦ � w � l

PoQ 7 3
PoQ

within TEE
Completion of

wait time 3 ◦ 7 l l l

2.3.3 Healthcare platform

Permissioned blockchains are systems where only an authorized group of min-

ers are allowed to participate in the system. This contrasts with permissionless

27

blockchains, where anyone may participate without any certification or permission.

The most familiar instance of this category is Hyperledger and R3 Corda. The Hy-

perledger Project is a collection of independent blockchain frameworks and tools that

offer a wide variety of capabilities. Hyperledger Fabric is a blockchain system, initially

designed by IBM, has multiple variants to support a wide variety of implementation

requirements [49]. Other examples of permissioned consensus protocols are Proof of

Elapsed Time (PoET) [25] and Raft [72].

A permissioned blockchain is, by its very nature, more centralized than a per-

missionless blockchain [90][15]. This centralization allows the nodes in the consensus

protocol to have a comprehensive list of miners at all times. This ability allows for

more efficient and structured consensus protocols than permissionless systems can

currently provide [90]. However, for many purposes that call for blockchain, this

centralization is unacceptable due to the potential corruption of the central authori-

ties. In healthcare, with nominally reputable hospitals managing nodes, this kind of

centralization is generally considered to be acceptable [40].

A common approach that becomes available with a permissioned blockchain is the

concept of selecting a leader to create a block to reduce redundant block creation work

and reduce the number of competing blocks. There are many examples of leader-based

consensus protocols [24, 40, 59, 68]. The mechanisms behind these protocols vary

widely, but they mostly include three major components: leader selection, transaction

acquisition, and block creation and distribution.

The general premise is as follows: the client forwards transactions to a leader

chosen from the mining pool, then the leader sends out a block with those trans-

actions. This can result in a more energy-efficient system, as only the leader needs

28

to construct the block. However, leader-based consensus protocols may encounter

problems, as malicious leaders may manipulate the contents of their blocks to their

advantage. Many leader-based protocols have mitigations or solutions to this prob-

lem [24, 40], but they are often costly, requiring network-wide synchronizations [40].

Our design, ACCORD differs from these approaches since we do not select a sin-

gle leader. Instead, we divide the role of leader evenly between a group of nodes to

improve robustness and efficiency.

Healthcare is a field that is different from cryptocurrency, as cryptocurrency de-

mands a highly decentralized scheme and requires that anyone be able to participate

without having to get permission. Healthcare data is different, as it is naturally cen-

tralized and requires a certain amount of trust that it was created correctly (e.g.,

we assume that hospitals run their tests honestly and output the correct results).

Hospitals also wish to know whom they are treating. Therefore, a certain amount of

authentication and centralization is appropriate. Similar to [36][40][63][85][93], our

design requires an authentication scheme to manage identity on the network.

Blockchain technology can be used to support many sectors of the healthcare

system. A major use case of blockchain in healthcare is managing electronic health

records (EHR), a.k.a, personal health records (PHR). There are many examples of

work focusing on EHRs in blockchain [9, 30, 36, 40, 51, 53, 96]. There has been

a significant amount of research focusing on secure electronic creation, storage, and

management of EHR. Azaria et al. introduced MedRec [9], an Ethereum-based EMR

management system in which data permission and operations are recorded in the

blockchain. MedRec authenticates participants, store hashes for data integrity, and

use smart contracts to interface with providers to view data. MedRec aims to address

29

issues like response time in data access, interoperability, and better data quality

for healthcare research. On the other hand, Dubovitskaya et al. [36] introduced

a permissioned blockchain network that uses a cloud-based EMR sharing system

for cancer patients. Both of these works have been prototyped but have not been

implemented on a large scale. In Ivan’s work [51], the author outlined a public

blockchain, where patient healthcare data is encrypted but stored publicly, to create

a blockchain-based EHR system. In Zyskind et al. [96], the authors have described a

decentralized personal data management system that ensures users governance their

off-chain medical data (transfers ownership of health records to patients).

2.3.4 Supply chain platform

Many researchers have been studying numerous applications of blockchain since

Satoshi Nakamoto introduced the first implementation of blockchain in their famous

Bitcoin white paper [69]. Due to its immutable nature, the technology has proved

promising for different industries, including supply chains. In addition, it can be

exploited to benefit systems in a number of ways, such as boosting transparency

between stakeholders, building a decentralized system, and creating a traceable ledger.

Researchers have been working on developing ways to use blockchain to improve

the pharmaceutical supply chain [6, 37, 16, 46, 67, 83]. The authors in [37] describe

how blockchain can be implemented in the traditional pharmaceutical supply chain

system to share information securely. Their proposed design used both local and

global blockchains for storing transactions between stakeholders in the network. The

local blockchains store transactions between stakeholders of the same type, while the

global blockchain stores transactions between the different types of stakeholders. In

order to establish consensus, transactions are generated and sent to a validation leader

30

to be checked. If the transaction is accepted as valid, the validation leader proposes

a new block for the remaining validators to vote on. The authors of [6] also utilized a

validation leader. However, instead of having both global and local blockchains, they

proposed creating a blockchain for each individual product. Products are tracked

and traced on the blockchain via near-field communication (NFC) tags. Both sys-

tems outlined in [37] and [6] came short of achieving true decentralization. Due to

the single-leader-based consensus protocol, their system is vulnerable, as a malicious

leader can decide the conclusive order of transactions [55]. Additionally, a single

leader can act as a single point of truth and thus a single point of failure. While both

[6] and [37] came short in their virtual processes, it is important to note that issues

in the pharmaceutical blockchain can occur in the physical aspect as well. To date,

the blockchain community has not reached a consensus on which method of labeling

products should be preferred to connect the physical product with the digital data on

the blockchain. Both [16] and [46] utilized quick response (QR) codes as the medium

to protect from counterfeit products entering the supply chain. The usage of radio

frequency identification (RFID) tags is applied in [67] and [83]. According to [50] and

[91], these tags are vulnerable to various attacks, especially cloning and modification

attacks. Additionally, RFID tags are vulnerable to privacy attacks as shown by [41].

Depending on the frequency band used, these tags can be read from distances rang-

ing from 1 to 100 meters [91]. RFID tags and QR codes are cost-efficient but utilize

simple technology that can be compromised in a matter of seconds. This poses a huge

threat to the PSC and can aid malicious parties in introducing counterfeit products

into the chain.

Recently, non-pharmaceutical fields have also started to focus on blockchain as

31

a potential improvement to their supply chain systems. Food and agriculture safety

is one sector that is gaining attention in commercial and academic projects. As of

now, most of the solutions are centralized and not free from fraud and tampering.

Hence, research has begun to propose different blockchain-based traceability schemes

in agri-food supply chain systems. Authors of [82] proposed a system utilizing the

Interplanetary File Storage System (IPFS) to store transactional data from the agri-

food supply chain while storing the hashes of that data in the Ethereum blockchain.

Only authorized users are allowed to participate in the network, which implements a

reputation-based system in order to establish additional trust between participants.

Their architecture suffers from some shortcomings. Currently, the system lacks a

means for returning items or providing refunds. Also, the reputation system has no

protection in place to prevent fake or biased reviews.

Blockchain can benefit the pharmaceutical industry as it offers three important

features: privacy, transparency, and traceability. Therefore, many researchers have

already designed various blockchain frameworks to utilize these properties. Authors

of [80] proposed the use of blockchain to keep a transparent ledger of activity for

the pharmaceutical research and development process. Transparency on the chain

would allow investors access to all previous stages of the research process. Similarly,

[61] designed a system in which pharmaceutical products were tracked throughout

the manufacturing stage. This can aid in the detection and tracking of counterfeit

products from pharmaceutical manufacturers.

32

CHAPTER 3:

BACKGROUND

3.1 SGX
Intel Software Guard Extension (SGX) is fully implemented in the CPU hardware

and yields a partial element to execute within an isolated environment, referred to

as an enclave [29]. Generally, SGX breaks down an application into two logical

segments: enclave and untrusted part (conventional application). Furthermore, an

SGX application can handle 5-20 enclaves. The code in the enclave is used to handle

the secret data. On the other hand, the remaining portion of the code, along with all

its modules, keeps in the untrusted part. Interaction within these two parts happens

via the call gate. A function call that enters the enclave from the untrusted portion is

called an Enclave CALL (ECALL). A call within the enclave to an untrusted portion

is called an Outside Call (OCALL). Figure 3.1 provides a high-level view of ECALL

and OCALL communication. By definition, an OCALL is made from within an

ECALL because an ECALL needs to enter the trusted portion. Figure 3.2 shows the

execution of an SGX application and the way SGX safeguards an enclave from any

envious program, including OS, BIOS, drivers, and firmware which pretends to steal

application secrets1.
1https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-

foundation

33

Figure 3.1: Interaction between enclave and untrusted part in an SGX
application.

Figure 3.2: Flow of execution in SGX application.

SGX depends on remote attestation to prove to remote users that the particular

portion of code is executing in a genuine SGX-enabled CPU [29]. It also presents

a reliable source of random number via its sgx_read_rand API which calls the

hardware-based pseudorandom generator (PRNG) over RDRAND on Intel CPUs.

Many researchers have already established that this random number generator is se-

cure and cannot be modified from outside the enclave [26]. Presently, C and C++

are supported by Intel’s Software Development Kit (SDK) which is available for both

Windows and Linux.

3.2 Abstract model of PoET
PoET is usually used on the permissioned blockchain networks to determine the

34

Table 3.1: Comparison of SGX based system. Symbols: l means fully-
provided, 7 means unsupported and � means unspecified.

E
ne
rg
y
effi

ci
en
t

H
ig
he
r

th
ro
ug

hp
ut

Sc
al
ab

ili
ty

PoET l � 7

PoL [66] l � 7

REM [94] 7 7 7

PoQ l l l

leaders of the block on a specific network. After joining the network, each node

must ask for a waitTime from an enclave and then wait for that randomly chosen

waitTime. A node who finishes the waitTime first – that is, the node with the shortest

wait time for an appropriate transaction block, establishes a remote attestation that

provides information for verification about its honesty, carries out a new block to

the blockchain, and announces the mandatory data to the network. To find the next

block, an identical procedure is required. By remote attestation, PoET ensures that

the nodes select a random waitTime (not purposely chosen a curtailed waitTime)

and the leader has actually waited the allocated waitTime.

3.3 Remote Attestation Architecture
Remote attestation (RA) is an exceptional property of Intel SGX, to establish a

secure environment between the server and the node (client) [54]. Simply in com-

puting, the term attestation means, a procedure to verify the identity of a software

and/or hardware. More specifically, RA is a medium to verify the interaction between

the software and the hardware that has been founded on a trustworthy platform. By

35

following remote attestation flow, a client enclave ensures three things: its identity,

its pureness (has not been altered), and a certain piece of code executing in a gen-

uine SGX-enabled CPU. A server sends a remote attestation request to a node and

it responds to the request by announcing information about the platform configu-

ration. Node executes the client code while the server runs the server’s side code.

Both parties are interacting over a network, which is not recognized to be part of

any side or secured. The whole operation contains fifteen steps with the server (also

called challenger) and the node. Figure 3.3 shows the interactions between the enti-

ties engaging in RA. It is worth mentioning that RA adopts a modified version of the

sigma protocol to support Diffie-Hellmann key exchange (DHKE) among the node

and the server. The sigma protocol is proof that consists of commitment, challenge,

and response. SCIFER [5] uses RA to verify the identity of users. Finally, we trust

Intel to execute SGX RA service correctly (similar to [5, 94]).

3.4 Holographic Encryption
By utilizing holographic encryption on the physical products in the PSC and

linking its data to the blockchain, we can provide a digital traceability scheme for

tracking from source to end consumers. This type of tagging system is resistant

to various attacks including cloning and modification attacks, making it a secure

choice for the pharmaceutical supply chain [62]. Authors of [75] introduced a process

for encrypting holographic information utilizing the expanded Diffie-Hellman (EDH)

algorithm. By utilizing this structure of holographic encryption on physical products

and storing the hashes in the blockchain, Janus can provide a digital traceability

scheme for tracking from source to end consumers.

36

Remote Attestation Protocol
1. In reply to the challenge request from the server, the node will do the following:

1a) Initialize the enclave by sgx_create_enclave (.., enclave_id, ..) and per-
form ECALL to go into the encalve.

1b) Initialize the RA flow by calling enclave_init_ra(enclave_id,..,b_pse,
context). Here, pse means platform service.

2. If b_pse is true then call sgx_create_pse_session() before establishing the RA and
key session.

3. Call sgx_ra_init(&sp_pub_key,b_pse,context) by passing the server’s public key.
Key is in little-endian byte order and must be hardcoded into enclave.

4. Close PSE session by sgx_close_pse_session().
5. Return context to the untrusted part from the enclave.
6. The untrusted part of the node call sgx_get_extended_epid_group_id() to get active

extended group ID (GID) of enhanced privacy group ID. EPID is an anonymous signature
scheme for attestation.

7. This is send to the server as a body of msg0.
7a) Verify by the server. If it is not valid, server terminate the attestation flow.

8. The untrusted part of the node calls sgx_ra_get_msg1(...,enclave-id,g_a) where
g_a is a public key of a node enclave and this enclave_id is going to be attested.

9. The untrusted Key Exchange (uKE) part of the node builds a message, msg1 that contains
g_a || GID.

10. Send msg1 to the server. All elements of msg1 are in little-endian byte order.
10a) Server translate all elements into little-endian order to check.

11. Server replies with msg2 that contains g_b, spid, quote-type, kdf-id, sigRL, etc. The
public key of the server, also known as g_b is based on NIST-256. Signature Revocation
List (sigRL), is a list of unfaithful signatures, signed by the revocation authority.

12. After receiving msg2, the untrusted part calls the function
sgx_ra_proc_msg2(context,enclave_id,sgx_ra_proc_msg2_trusted_t,
sgx_ra_proc_msg3_trusted_t, msg2, msg2_size, ...)
12a) By calling sgx_ra_proc_msg2, node builds msg3.

13. sgx_ra_proc_msg2() builds msg3 that contains mac, g_a, and platform security prop-
erty.

14. The node sends msg3 to the server and expect to get the attestation result.
15. Upon receiving msg3 from the node, the server will do the following:

15a) The server verifies the msg3 by calling
sgx_ra_proc_msg3_req(msg2,msg3_size,att_result_msg), to compare g_a
w.r.t. g_a of msg1 and verify the msg mac using sigma protocol (SMK).

15b) Send attestation result message to the node.
15c) The node will receive the result and checks the MAC using MK.

Protocol 3.1: Remote attestation

3.5 Blockchain Network Types
To ensure a safe and trusted blockchain network, there are varying levels of pri-

vacy that can be applied to the network. Commonly-used privacy levels are public,

37

Node enclave

Untrusted
Key Exchange

1 a Create enclave Node enclave

1 b Init itate RA by passing

and context

2Create SGX session
3Init ialize RA by passing

and the context
4Close session

5 Return context

6 Get extended epid group id

7 Send m sg0 that
contains epid

7 a Check the validity of epid

8 Get the g_a

9 Build m sg1 with g_a || GID

1 0 Send m sg1

1 0 a Verify m sg1

1 1 Send m sg2 with
relevant data

1 2 m sg2 received and
calls sgx_ra_proc_m sg2(...)

1 2 a Build m sg3

1 3 Transfer m sg3

1 4 Send m sg3

1 5 a Verify m sg3 by calling
sgx_ra_proc_m sg3_reg(...)

1 5 b Give result m sg

1 5 c Receive and check
MAC using MK

 PoQ Server PoQ Node

Figure 3.3: SGX Remote Attestation.

public-permissioned, and private. In a public blockchain network, transaction visibil-

ity is public and open to anyone. The most well-known implementation of a public

blockchain is the Bitcoin ledger [69]. We define public-permissioned blockchains to be

where the ledger is available to view by anyone, but participation requires authoriza-

tion. On the contrary, private blockchains preserve the most amount of privacy as they

38

cannot be viewed or contributed to without proper credentials. Private blockchains

are more applicable for sensitive systems such as health care or banking, where patient

and customer data is valuable and confidential [15].

3.6 Drug Supply Chain Security Act (DSCSA)
In 2013, Congress enacted the Drug Quality and Security Act, which introduced

the Drug Supply Chain Security Act (DSCSA). Its goal is to negate illegitimate

products from the pharmaceutical supply chain [44]. Stakeholders in the chain must

follow guidelines that will increase the security of the system. These guidelines include

electronic submission of transactions, annual proof of licensure of warehouses and

third-party logistics providers, and specific labeling rules [44]. In November 2023, the

DSCSA will be in full effect and stakeholders will be required to comply with its rules

and regulations. In compliance with the DSCSA, our system includes package-level

labeling that allows for a more strict track-and-trace system. Blockchain would be

an ideal solution for the pharmaceutical supply chain to seamlessly follow DSCSA

guidelines as it creates an immutable ledger of electronically-submitted transactions,

further providing a secure track-and-trace system.

39

CHAPTER 4:

POQ: A CONSENSUS PROTOCOL FOR PRIVATE

BLOCKCHAINS USING INTEL SGX

4.1 Introduction
At the core of any blockchain platform, there is a ledger that is maintained by a

trustless P2P network. Due to the untrustworthy nature of the network, there needs

to be a way for the nodes in the network to reach an agreement among them on

the valid transactions that can be appended to the ledger. Consensus protocols are

designed to handle faults in a distributed system and agreeing to a single version of the

truth by all nodes on the network. The most common types of consensus protocols are

leader election based and traditional Byzantine Fault Tolerance (BFT)-based. In a

leader election-based consensus, a leader is chosen randomly (by using a protocol) and

proposes final valid blocks. The BFT-based consensus is a more traditional method as

per rounds of votes. While existing protocols solve the consensus problem fairly well,

they also have their own shortcomings. A consensus protocol in a blockchain system

is typically required to support three properties: liveness (transactions are added to

the ledger in a reasonable time), consistency (all parties have the same view), and

fairness (all nodes are equally likely to mine the next block) [13].

Public blockchain networks (e.g. Bitcoin [69] and Ethereum [22]) that use proof

40

of work (PoW) [69], proof of capacity [39] or proof of activity [17], require a large

amount of computational power, which is a misuse of resources and limits transaction

throughput (usually expressed as transactions per second). On the other hand, proof

of stake [79] and proof of burn1 [13] are environment-friendly consensus protocols due

to the insignificant computation requirements; however, they suffer from the “rich get

richer” problem.

Private blockchains, on the other hand, require a centralized party (or a consor-

tium of them) to control who joins the system and at what capacity (mine, view,

transact, etc). Such reliance on the centralized party leads to a reduced cost for

reaching consensus, high transaction throughput, improved scalability to support new

nodes and services, and higher efficiency. In private blockchains, the level of access,

visibility, and execution can be controlled. Private blockchains are more appropriate

to a consortium of organizations, like the banking sector or the insurance industry,

where participation is selective with known identity and may operate under a shared

governance model [35]. Examples of private blockchains include Ripple (XRP) [81]

and Hyperledger [8]. The Hyperledger Sawtooth project was introduced by Intel as

a modular blockchain that uses Proof of Elapsed Time (PoET) consensus protocol

to implement a leader election lottery system [34, 25]. In PoET , each miner node

is randomly assigned a waitTime, and as soon as this waitTime expires, the specific

node creates and publishes the next block on the network [25]. The protocol acts as

a mix of first-come-first-serve (FCFS) and random lottery [87].

Contribution. In this paper, we propose a variant of PoET , we call it PoQ,

that regulates how nodes compete to finish their waitTime such that the average
1https://en.bitcoin.it/wiki/Proof_of_burn

41

wait time and number of leadership each node is assigned is approximately the same

across all nodes. Our goal is to optimize the performance of the network concerning

throughput and scalability. PoQ determines which node should execute its waitTime

when there are multiple run-able nodes in the queue. To achieve this, we introduce

the concept of dynamic Quantum Time (QT) indicating the amount of time a node

will get the chance to execute for a single pass, which has a major impact on resource

utilization and overall performance of the network. Some of the extended charac-

teristics that differentiate our work over others include fast transaction processing,

low energy consumption, fair distribution, and easy block verification (determinis-

tic). PoQ avoids high resource utilization and replaces it with a true randomized

system. Similar to PoET , PoQ uses execution environments in trusted hardware,

more specifically Intel SGX [29], to achieve consensus while preventing tampering.

Through the use of Intel SGX enabled CPUs, we enforce correct execution of code

and guarantee the “one node one machine” policy (to prevent Sybil attacks) for all

nodes in the network. We implemented PoQ in a distributed SGX environment, and

our analysis and experiment results show that PoQ provides significant performance

improvement over PoET.

4.1.1 Notations

Table 4.1 contains key notations that will be used throughout the chapter.

4.2 Consensus Protocol: PoQ

4.2.1 Overview

This paper introduces a modified version of PoET consensus protocol called PoQ

based on SGX. As part of this protocol, each participating node generates a random

42

Symbol Description
Q Queue
N SGX Node
E SGX Node enclave
S SGX Server
SGX t SGX time
SGXmin Minimum value of SGX t

SGXmax Maximum value of SGX t

SGXT SGX Table
Nn Number of active nodes in a

specific tier
Nid Node id generated by the

SGX Server
Ti Tier id for i-th node
Tr Total number of tiers avail-

able. This value is defined by
the SGX Server and is uni-
formly distributed

At(i) Arrival Time of i-th node
At Arrival Times from all nodes
ET Elapsed Time

Symbol Description
EndTime End Time
ST Starting Time
RT Remaining Time
AET Average Elapsed Time
WT Wait Time
AWT Average Wait Time
σ Standard deviation
Qt Quantum Time
QT Quantum Time of all nodes
Pk Public key
Sk Private key
NPk

Node public key
NSk Node private (secret) key

Table 4.1: Summary of notation used throughout this chapter

waitTime using the enclave E , called SGX time SGX t and waits for it to be expired.

After SGX t is finished, the node becomes the leader and is authorized to generate

the next block. The waitTime and leadership for each node will be approximately

the same after a certain period which achieves the equality issue of the consensus

protocol.

Random SGX t. In our protocol, when a node joins the network, it gets a range

from the server to generate a random waitTime, SGX t from its E . After having an

SGX t, the node needs to submit it to the server for further verification. To ensure

TEE platforms exists, nodes generally require to register with the hardware manu-

43

PoQ Server

Initialization. The server S establishes a public key directory of permitted nodes, creates an
empty Q (contains node id) and SGXT, and then starts listening to requests from nodes
interested to join the network.

Node Registration Register(NPk
, Sign(NPk

)). Upon receiving a registration request from a
node, the server performs the following:

1. Check whether NPk
exists in the public key directory. Otherwise terminate the

connection.

2. Check the validity of the signature. Otherwise terminate the connection.

3. Create an identification number, Nid.
4. Send an acknowledgment back to the node, along with Nid and SGXmax.

Attestation Remote_Att(SPk
).The server and a node jointly execute the RA protocol (Pro-

tocol 3.1): Sends a RA request to the client to establish a secure channel.

• The server gets some information from the node which helps to decide whether the
program functioning on the node is malicious or fair.

SGX Verification. V erify(SGX t). Upon receiving SGX t, which is a randomly generated
time by the node’s E from Nid, the server performs the following:

• Check whether SGX t is within the range [SGXmin,SGXmax]. Otherwise terminate
the connection.

• Add Nid to Q and build SGXT that has Qt and ST for all nodes based on available
information.

• Send meta-data (Nn, NAt
, NQT

, Tr, NRT) to Nid.

Status. Server will perform the following operation in meta-data:

• Continuously updates the SGXT, queue and dequeue the winner nodes to keep a
track.

• Broadcast the result to the network.

Protocol 4.1: PoQ Server side protocol.

facturer to set up RA services. For instance, Intel SGX RA service needs registration

with Intel Attestation Service (IAS)2. During manufacturing, each processor of SGX
2Intel, “Software sealing policies – intel® software guard extensions developer guide,” 2017.

[Online]. Available: https://software.intel.com/en-us/documentation/sgx-developer-guide

44

PoQ Node

1. The node signs its public key and then sends a node registration request
Register(NPk

, Sign(NPk
)) to S. Upon successful registration, the node receives an ac-

knowledgment with its Nid and SGXmax.

2. Initialized by the server, the node jointly executes the Remote_Att(SPk
) (Protocol 3.1)

with the server to ensures its identity and it is running on an Intel SGX enabled platform
without tampering.

3. The node performs the following steps in order to participate into the PoQ protocol:

(a) Generate a random SGX t from E within a range of [SGXmin,SGXmax].

(b) Broadcast and request V erify(SGX t) to S, hence gets meta-data that states in-
formation about the existing nodes in the network.

(c) Determine tier Ti it belongs to according to the following:

Ti =
⌈
Tr
SGX t
SGXmax

⌉
(4.1)

(d) Calculate the local Qt using the following formula:

Qt =

⌈∑Nn

i=1RT
Nn2

⌉
(4.2)

where Nn is the number of active nodes in the specific Ti.
(e) Obtain ST using the information from SGXT.

4. Once it gets ST , SGX t will be reduced for the calculated Qt.
While Remaining Time RT 6= 0, then:

(a) Generate a new Qt and determine the next ST .
otherwise:

i. A new block is propagated and the local leadership count is incremented by
one.

ii. Broadcast the winning result to S and announce new block.

5. To rejoin the network, steps 2 to 4 are repeated.

Protocol 4.2: Individual node side protocol.

is equipped with a key that is certified by Intel [5]. After successful verification, the

server adds the node id, Nid of that node to the queue, Q as it arrives. Subsequently,

45

the node determines which tier, Ti it belongs to and then calculates itsQt for that par-

ticular Ti for that time being which is equal to the amount of time it can be executed

for its first pass. If it remains in the waiting part of the Q and any node joins which

belong to its Ti then it needs to recalculate the Qt again based on available data. A

new node can also be added at the end of the Q. While a node is executing and a new

node joins that belongs to the same Ti it won’t affect the Qt of the executing node at

that moment. However, if the node is unable to finish the entire SGX t during that

pass of Qt, it will be popped up from the Q and added again at the end of it without

changing its Ti but this time it needs to recalculate the Qt for its next pass. Then,

the node who is in the starting point (starting time, ST = current time) of the Q will

get the chance to reduce its SGX t. After completion of each node’s Qt, the remaining

SGX t of the currently executing node is checked. A function “Time Left” keeps track

of the Remaining Time (RT) over SGX t after each pass and once it has zero as its

value, it will broadcast the result for claiming the leadership. A participating node is

required to finish all its SGX t to become the leader and propagates a new block. It

is worth mentioning that, the total waiting time of a node is not equal to its SGX t.

Figure 4.1: The various state of a node before becoming a leader.

46

4.2.2 Principals:

Our protocol consists of two phases: server and client. The initial step is reg-

istration. In this phase, nodes need to join the network for authentication. Nodes

are the major principals in the PoQ consensus protocol and rely on TEE. TEE can

generate an independent identical random digit, which cannot be controlled by an

advisory. RDRAND command is available in Intel SGX. Our design uses minimal

energy consumption and exploits the Intel SGX floor.

4.2.3 Protocols:

In the initial phase, Intel SGX plays a crucial part. Our protocol develops an

information flow between a local SGX and the server proposed in protocol 1 and 2.

Protocol 4.1 - Server side protocol. The server will always wait for a join

request from nodes, N . Whenever it gets a request, it calls Register(NPk
, Sign(NPk

))

method where it verifies the authentication with the directory of permitted public

keys, NPk
. If it is valid, the server generates an identification number, Nid, inserts it

into the Q and sends an acknowledgment to the newly joined node with the range of

the SGX t and Nid. Immediately after receiving SGX t from an node, N ′1, it calls the

V erify(SGX t) method where it checks the SGX t
′
1. If it does not fit in the range, it

aborts the connection. Thus, no node can go after the smallest number that is beyond

the range to generate too many blocks. After successful verification of SGX t
′
1, the

server stores the time when it’s submitted and treats it as its arrival time, At′1 of N ′1.

Then calculates Qt′1 according to its tier Ti and obtains the first starting time, ST ′1,

of that particular node N ′1. Then the server builds an SGX Table, SGXT based on

available data that contains the number of nodes, Nn, arrival time NAt , quantum

time, NQT
, and remaining SGX t for all active nodes NRT with numbers of tiers.

47

The server sends this meta-data to all active nodes. Thus, all Nid have access to

a similar database concurrently that server has, and almost every data will replicate

to all N which accelerates the speed of the network. The server always monitors

the scheme of finding a new leader. When a new leadership has been claimed, a

node N ′1, is supposed to announce that it has completed its SGX t
′
1, so that it is

considered as a leader and get appended to the blockchain and dequeued from the Q.

If that particular node wants to rejoin in the network its Nid will remain the same

with different credentials. Whenever a new node, N ′2, join or a node N ′1 leaves, the

server continuously updates the Q based on all available data. However, the server

can compute Average Elapsed Time, AET and Average Waiting Time, AWT by the

following formulas:

AET =
1

N

N∑
i=1

ET i (4.3)

AWT =
1

N

N∑
i=1

WT i (4.4)

Definition 1 Waiting Time. The inactive time of aNi after consider itsAti. Simply,

the amount of idle time WT i spent by a Ni in the Q before the last pass to finishes

its SGX ti for a single round can be calculated by Eq (4.6); where Ati refers to At of

Ni and SGX ti refers to the time generated from E of Ni. AWT is the average value

of wait time of N nodes and can be calculated by Eq.(4.4).

Definition 2 Elapsed Time. The entire time requires a Ni to become a leader. That

means the time elapsed between Ati of a Ni and its termination. Elapsed time for a

Ni can be calculated by Eq. (4.5); where WT i refers to WT of Ni and SGX ti refers

48

Figure 4.2: Top level architectural diagram of the system.

to the time generated from E of that Ni. The average elapsed time of N nodes AET

can be calculated by using Eq. (4.3).

Protocol 4.2 - Individual node side protocol. At first, a participant node

needs to register for joining the network. After joining, a local SGX acts as a client

node that requires to download the PoQ code and execute it. When a local SGX

connects to the server, it gets Nid and the range to generate a random SGX t (which is

subject to change subsequently after each round) from the trusted code inside E and

needs to submit it to the server for verification, which is done on the same platform.

If there is more than one node (N ′2, N ′′21) who produces SGX t at the same time then

they will be added into the Q as ascending order of Nid. If Q is null then Nid is

added at the front of Q. If Q is not null but the RT of the current executing node is

zero then Nid is added in FIFO manner, otherwise, Nid will insert into the Q after

the Nid of the executing node. Later, the node gets the SGXT from the server that

consists of its Qt, ST and At along with some meta-data (Nn, NAt , NQT
, Tr, NRT).

If we consider there are only three nodes (N ′2, N ′′21, N ′3) in the network where N ′2, N ′′21

has same At and N ′3 join after two units of time, then the start time of N ′2 which is

ST ′(N ′2) immediately when it arrives and ST ′′(N ′′21) is after the amount of quantum

time of N ′2. The ST ′(N ′3) is the addition of all the nodes Qt left to execute, who are

49

in front of it in the Q at the moment it arrives. Based on all available information,

a particular node, N ′, can also calculate which Ti it belongs to, Qt′ of that specific

Ti and ST ′. For a specific tier whoever comes first will start first. When a new N is

added to a particular Ti, the Qt′ of that Ti is recalculated according to the available

updated information based on RT of all nodes in that Ti. When ST is equivalent

to the current time, nodes will execute to reduce its RT . When a node joins, the

amount of its RT is equivalent to its SGX t.

After a single pass, if a particular node, N ′1, is not able to finish its SGX t
′
1 as

a whole, RT ′1 will be updated by deducting the time spent on that pass and it will

put itself at the end of the updated queue, then calculates its next ST ′′1 and needs to

wait for another pass. If there is no N in the overall Q than the current node may

carry on. It is mentioned that, at any stage, for a particular N ′1, if SGX t
′
1 or RT ′n

is less than the Qt′Ti then the Qt′1 will be updated and assigned to the equal portion

of that specific RT ′n. If any node finishes its SGX t, then it will be withdrawn from

the Q and becomes the leader and the number of leadership is assigned to it will be

increased by one. Thus, a new block is propagated. Figure 4.2 elucidates the top-level

architecture of PoQ and figure 4.3 shows the inter-process communication between

the nodes and server. However, the node can compute its Elapsed Time and Wait

Time by the following formulas:

ET i = SGX ti +WT i (4.5)

WT i = EndTimei − (SGX ti +Ati) (4.6)

50

Node enclave

1

2 Verificat ion of

alt [ACK]

[e lse]

3 Respond with , , and

3 Term inate connect ion

re f
Rem ot e at t est at ion

4 Generate
and dest roy enclave

5 SendArrival Tim e

6 Verificat ion of

opt [Verif icat ion not successful]

Term inate connect ion

7 Insert to and

8 Send updated and

9 Determ ine , and

loop
[]

[e lse]

1 0 .1 Ask for updated

1 0 .2 Determ ine

1 1 Not ify the leadership

 PoQ Server PoQ Node

Figure 4.3: Interactions corresponding to client-server communication in
PoQ.

4.3 Experimental Evaluation

4.3.1 Goals

The design of a good consensus protocol must satisfy the following goals: (i) back-

ing up a large-scale network (ii) obtain a higher throughput, and (iii) achieve fairness.

51

To better motivate and illustrate our design, we performs these experiments to achieve

those goals throughout the experiments.

4.3.2 Setup

We built a prototype of PoQ to evaluate its performance. All practical experi-

ments performed below were done using a system equipped with SGX PSW 2.X of

version 2.5.100.2 and SGX SDK 2.X of version 2.5.100.2 which acts as a in-house

client-server network. The system has Windows 10 OS with the latest updates, In-

tel® Core™ i7-7567U processor (3.5 GHz to 4.0 GHz Turbo, Dual Core 4 MB cache,

28W TDP), 32GB RAM, 64 Mb Flash EEPROM, and 34.1 GB/s Max Memory Band-

width3. We assume that every full node is a potential validators.

4.3.3 Throughput

The purpose of this experiment is to measure and compare the throughput of PoQ

and PoET. We ran multiple experiments with different parameters. We measure the

number of leaderships per second for ten different nodes and three SGX t ranges:

[1,100], [1,500], and [1,1000]. In the baseline case, we assume that all nodes arrive

approximately at the same time: within the first two (Figure 4.4.a), ten (Figure 4.4.c),

and twenty (Figure 4.4.e) seconds . Then, we allow those ten nodes to join randomly

at different times within a certain range of At with the same Tr which is 5. We

ran each test 50 times where SGX t and At were generated randomly. The time

duration for each run for Figure 4.4.a and 4.4.b were 90 sec (At∈ [0,300]s), 450 sec

(At∈[0,1500]s) for Figure 4.4.c and 4.4.d, and 900 sec (At∈[0,3000]s) for Figure 4.4.e

and 4.4.f. In Figure 4.4, the graph with different arrival times deals with the average
3Max Memory Bandwith is the maximum rate at which data can be read from or stored into a

semiconductor memory by the processor (in GB/s).

52

result of tests where 20% of nodes leave the network randomly at any time after

becoming a leader at least once. Note that the protocol was slightly modified when

performed 20% nodes left. For baseline case, experiments were run with the same

settings as discussed above and the final result is averaged where node does not leave

the network. For comparison, we implement PoET and run the same experiments

with the same attributes to evaluate the performance with respect to PoQ.

By comparing PoQ with PoET in Figure 4.4, we observe that the throughput of

PoQ is higher in both cases: all nodes join approximately at the same time (baseline

case), and when they join at different times. The difference between the two protocols’

throughput could be as low as 0.3 (Figure 4.4.2) and as high as 3.5 (Figure 4.4.d).

4.3.4 Scalability

In this section, we evaluate the scalability of our protocol. We start with a network

of 2000 nodes then double the network size 5 times, raising to 10,000 nodes in the

last setting. In Figure 6.3 we keep the same parameters involved in Figure 4.4.a but

with a larger number of nodes. We ran the experiment only once until all the nodes

become exactly one leader. It should be noted that epoch time is longer (e.g., 100

seconds in 2000 nodes to 504 seconds in 10,000 nodes) since it requires relatively more

times when the total number of nodes increases.

By observing the graph we conclude thatAWT , AET for different sizes of network

increase linearly as the network size grows. We also measured RA which takes roughly

2ms and we did not consider it in result data.

53

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
 s

ec
)

Node ID

PoQ: SGXt: [1,100]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,100]

#Folds: 50

PoQ PoET

(a) Nodes start approximately at the same
time, At∈{0,2}s

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
se

c
)

Node ID

PoQ: SGXt: [1,100]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,100]

#Folds: 50

 PoQ PoET

(b) Nodes start at different time,
At∈{0,300}s

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
 s

ec
)

Node ID

PoQ: SGXt: [1,500]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,500]

#Folds: 50

PoQ PoET

(c) Nodes start approximately at the same
time, At∈{0,10}s

Nid

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
 s

e
c)

Node ID

PoQ: SGXt: [1,500]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,500]

#Folds: 50

PoQ PoET

(d) Nodes start at different time,
At∈{0,1500}s

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
 s

e
c)

Node ID

PoQ: SGXt: [1,100]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,100]

#Folds: 50

PoQ PoET

(e) Nodes start approximately at the same
time, At∈{0,20}s

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t
(#

L
ea

d
er

sh
ip

 /
 s

ec
)

Node ID

PoQ: SGXt: [1,1000]

#Tiers: 5

#Folds: 50

PoET: wait_time: [1,100]

#Folds: 50

PoQ PoET

(f) Nodes start at different time,
At∈{0,3000}s

Figure 4.4: Throughput evaluation results among ten nodes for PoQ and
PoET. Each data point in our plots is averaged over 50 independents mea-
surements.

0

50

100

150

200

250

300

350

400

2k 4k 6k 8k 10k

R
u

n
 T

im
e

#Nodes

PoQ: SGXt: [1,100]

#Tiers: 5

#Folds: 1

Avg SGXt AWT AET

Figure 4.5: Overview of bridging between AWT and AET in PoQ in re-
sponse to scalability (up to ten thousands of nodes).

54

4.3.5 Fairness

A consensus protocol is fair if a miner/validator with p share of the overall re-

source ratio can produce a block with a probability p. In this section, we trying

to measure the relation between the number of SGX machines a node has and the

number of leadership it can reach. We conducted this experiment with the same

parameter elaborated in Figure 4.4.a. We ran the experiment 50 times and the Fig-

ure 6.2 reported below are averaged over fifty independent runs. The graph shows

the cumulative average leadership of a validator who has a certain number of SGX

per node. The X-axis indicates the total number of SGX a node has and the Y-axis

shows the average leadership.

After running our experiments, described above, we observe that the probability of

being chosen to be a leader scaled linearly, in relation to the number of SGX machines

per node.

1

2

3

4

5

6

2 4 6 8 10

A
v

er
a

g
e

L
ea

d
er

sh
ip

#SGX / Node

PoQ: SGXt: [1,100]

#Tiers: 5

#Folds: 50

PoQ

Figure 4.6: A linear growth in experimentation over nodes.

4.4 Conclusions
In this work, we proposed Proof of Queue (PoQ), a leader based consensus proto-

col for private (permissioned) blockchains that utilizes Intel SGX to ensure all nodes

in the system honestly run trusted code to become a leader. PoQ maintains queues

55

for different tiers, keeps tracks of the quantum times executed by all nodes, and up-

dates the state changes to all nodes. PoQ is specifically designed to avoid the collision

in leader election than existing PoET protocol. Also, our protocol is suitable for a

large number of nodes with an enormous wait time. The design of PoQ shows that it

maintains approximately similar wait times and elapsed times for all the nodes. Fi-

nally, based on the simulation and large-scale evaluation of PoQ, we showed that no

nodes are left behind. We evaluate PoQ against three metrics; throughput, scalabil-

ity, and fairness. The results show that PoQ can offer enhanced scalability. Besides,

PoQ scales fairness linearly with SGX machines.

56

CHAPTER 5:

ACCORD: A SCALABLE QUORUM-BASED

CONSENSUS PROTOCOL FOR HEALTHCARE

BLOCKCHAIN

5.1 Introduction
In Electronic Health Record (EHR) systems, all health-related records are digi-

tized and independently stored in the hospital’s local database. However, a patient

may visit more than one medical institution for different needs or may be transferred

from one institution to another. The procedure of forwarding the data is often diffi-

cult and time consuming. A survey in 2014 found that 15% of patients who visited

a healthcare provider in the US reported having to bring test results to their ap-

pointment personally, and 5% needed to have a test or procedure repeated due to

the unavailability of prior results [74]. According to the US ONC Health IT1, in

2019, roughly half of US hospitals were considered interoperable, meaning they are

able to efficiently transfer medical records between each other. Even if those con-

cerns could be addressed, the security of health data needs to be considered as they

are primary targets to cyber attackers. Secure storage of patients’ health data is
1https://www.healthit.gov/sites/default/files/page/2021-02/Use-of-Certified-Health-IT-and-

Methods-to-Enable-Interoperability-by-U.S.-Non-Federal-Acute-Care-Hospitals-2019.pdf

https://www.healthit.gov/sites/default/files/page/2021-02/Use-of-Certified-Health-IT-and-Methods-to-Enable-Interoperability-by-U.S.-Non-Federal-Acute-Care-Hospitals-2019.pdf
https://www.healthit.gov/sites/default/files/page/2021-02/Use-of-Certified-Health-IT-and-Methods-to-Enable-Interoperability-by-U.S.-Non-Federal-Acute-Care-Hospitals-2019.pdf

57

paramount in healthcare. This data must, by ethics and law, be kept private. This,

compounded with the value of this data being far greater than financial information

like credit cards to cyber-attackers [4], requires a secure method to store and access

this data [18]. The importance of EHRs implies that they should not be consolidated

in one place where they can be attacked. Many existing EHR systems use Distributed

Database Management System (DDBMS), which has higher throughput and lower la-

tency than standard blockchain solutions but can be lacking in other areas, including

interoperability between hospitals and patients control of medical records. Table 5.1

shows a feasibility study of blockchain superiority over DDBMS.

Hospitals have many methods of storing medical information. According to the

CDC, in 2017, approximately 85% of hospitals use some form of EHR2. There is

no standard for EHR systems, so these systems are widely varied and manage data

in significantly different ways [1]. This leads to patient confusion as to where their

data is and how to access it [23]. EHRs are distributed among different medical

institution’s local databases. The sharing of EHRs over multiple institutions is a

complicated process [36]. This results in poor communication between hospitals.

From the patient’s point of view, this leads to repeated tests and procedures [45,

77, 88], which not only inflates their medical bills but also cause negative patient

outcomes. However, in a blockchain-based platform, patient records can show up as

a single list of consecutive care events, regardless of where these events occurred [76].

In March 2020, the US Department of Health and Human Services (HHS) created a

policy such that patients should be given control of their personal health data [48].

Therefore, we see it as desirable for the patient to have direct access to their EHRs.
2https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_ State.pdf

https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_State.pdf

58

With the help of blockchain technology, patients can be given control of their health

data. Blockchain technology can potentially realize these goals in the healthcare

sector to create a patient-centric system for EHR management.

For a blockchain network to be functional and secure, its nodes (i.e., hospitals)

must not conflict with the distributed ledger’s current state. This is achieved through

a consensus protocol. Consensus protocols are responsible for ensuring that the nodes

in the network agree that collections of records (called blocks) are valid and appro-

priately added to the distributed ledger. These blocks of digital records are im-

mutable and do not require trust [71]. Note that these records can be encrypted and

anonymized to maintain patient privacy. A secure consensus protocol allows hospitals

to be assured that their ledger is identical to other the hospitals’ ledger, preventing

omissions and tampering. As there are around 9,000 hospitals and clinics in the

United States3 and as many as 30 million transactions created per day [2], the speed

and efficiency of the consensus protocol are important in a healthcare blockchain.

Two of the most common consensus protocols in blockchain are Proof of Work

(PoW) and Proof of Stake (PoS). PoW [69] is the consensus protocol used by the

seminal work in blockchain. It allows for a permissionless mining system, which is

desirable in cryptocurrency. A miner can propose a block if they can solve a hard

puzzle, and the first miner to solve the puzzle associated with their block gets a

reward. This results in a processing power lottery, where whoever solves the puzzle

first gets the reward for solving the block.

However, this results in the PoW being an extremely energy inefficient consensus

protocol. It demands that miners purchase powerful hardware to have a meaningful
3https://www.aha.org/statistics/fast-facts-us-hospitals

https://www.aha.org/statistics/fast-facts-us-hospitals

59

impact. Also, security is an issue with PoW. Bitcoin, which uses PoW, is vulnerable

if only 25% of the computing power is controlled by an adversary [86]. Alternatively,

in PoS, there is no need to solve a hard puzzle, as validators can validate the next

block. A miner’s ability to mine a block is proportional to the stake they have in the

system. While this is more energy-efficient than PoW, PoS depends on the miners

having a stake. In a cryptocurrency setting, a participant’s stake can be determined

or purchased with the currency being exchanged. In other contexts, the determination

stake becomes unclear.

These consensus protocols allow any party to mine, which is not necessarily re-

quired or desired in a healthcare blockchain.

An alternative paradigm is where the miners must be known and approved to

mine. A popular consensus in this paradigm that has been used in the healthcare

sector is Practical Byzantine Fault Tolerance (PBFT) [84]. Currently, a version of

PBFT is using in Hyperledger Fabric [47]. PBFT works efficiently for a small network

size. However, due to the high communication overhead, PBFT does not scale well.

This is because each node must communicate with all other nodes at every step to

keep the network secure. As the amount of nodes scales upwards (increases as O(mn),

where m is the messages and n is the number of nodes), the communication burden

of this system becomes untenable. The system can continue functioning properly

with up to 33% corruption of the mining network. Delegated Proof of Stake (DPoS)

deals with a voting system where stakeholders outsource their work to a third-party.

Essentially, nodes can outsource their stake to a delegate who will propose blocks

and validate blocks. The voting power is proportional to the amount of stake that

each validator holds. Due to the centralization of mining power, DPoS is not suitable

60

for a healthcare blockchain [40]. According to the Hasselgren et al. survey [47], the

most commonly used consensus protocols in healthcare publications are PoW (21%)

and PBFT (15%). Unfortunately, this survey found that 41% did not explicitly state

which consensus protocol they use or recommend for their system.

Petersen et al. created a consensus protocol for a healthcare blockchain [76]. It

attempts to create a consensus by having all participating nodes agree on a block

with a coordinator. This system’s miner selection process, however, leaves much to

be desired. It requires a full network synchronization between each block to select

the next miner. This is not only inefficient as the network grows, but it also opens

the miner selection process to malicious action. If a malicious or malfunctioning

miner refuses to send their seed or sends it to only a subset of miners as the selection

closes, it could either stall the network or cause the network to disagree over who the

next miner is. This means that the system lacks robustness. Additionally, the block

creation process is open to the leader omitting transactions. If a hospital does not

send the elected miner any transactions, they are not required to sign or approve the

block. This could result in the miner ignoring a hospital’s transactions and claiming

they never received any messages from them, which allows the miner to omit that

hospital’s transactions. Requiring each node to participate in the production of a

block required a large amount of communication that scales with the number of

hospitals in the network. If a hospital is offline or malicious, they may not sign the

block, which could delay block creation and result in another expensive round of

communications to create another block. Also, linking a transaction to a hospital can

reduce the privacy of a transaction, making it more probable that a transaction can

be linked to a patient.

61

In MedBlock [40], Fan et al. designed a system that attempts to solve the com-

munication difficulties of PBFT with large network sizes. They created a form of

delegated PBFT, where hospitals are divided into regions. Each region elects a repre-

sentative to represent them in the larger network. These representatives then execute

PBFT among themselves. This aims to reduce network congestion and the higher

energy costs this congestion entails. However, this opens smaller clinics or hospitals

to malicious action. If the majority of a region wishes to suppress a node, there is

no obvious recourse within the protocol other than manual intervention (i.e., moving

the affected nodes out of the region or suspending the malicious nodes).

The current medical data infrastructure mostly depends on trusted third par-

ties. A public permissioned blockchain is a potential solution to this issue. A

blockchain can provide privacy, security, accessibility, and reliability of sensitive data.

A blockchain can also create an immutable chain of patient care events, regardless of

where these actions were carried out. These features imply the most acceptable type

of blockchain in healthcare would be a public permissioned blockchain.

We define a public permissioned blockchain to be a blockchain in which the ledger

is public, but the consensus protocol is permissioned. This allows for public verifia-

bility while still allowing for a more efficient consensus mechanism. In our context,

permission to mine is granted by the Membership Service Authority (MSA). The

MSA will grant permission to a party that has the credentials to join the mining

pool.

Picking an appropriate consensus protocol is important when developing a prac-

tical blockchain that is operable in the healthcare sector. There is a larger number of

potential miners that may be involved in the protocol than in many other systems.

62

Existing protocols may be appropriate for smaller systems, but may not provide the

features required for a medical system. Characteristics to identify the appropriate con-

sensus protocol for a permissioned blockchain include the following: fork resistance,

proportionate mining, transaction fairness, energy efficiency, and fault tolerance.

In this work, we propose a salable consensus protocol, named ACCORD that

avoids conflicts over forks and can withstand network outages. The protocol works

as follows: After a transaction is forwarded to the peer-to-peer network, ACCORD

utilizes a quorum-based consensus protocol to evenly distribute the responsibilities of

a single leader to multiple quorum members. We ensure the correctness of the block

by a threshold of the quorum members agreeing on the transactions before proposing

their block. For this block to be accepted by the network, it must be asynchronously

signed by a majority of the nodes in the network before it is added to the blockchain.

Figure 5.1 is a high level view of how data is processed by ACCORD. The main

characteristics of the ACCORD protocol are as follows:

The transactions propagate across the P2P

network

The quorum consolidates their received

transactions to form a block

The quorum signs the block and

broadcasts it to the P2P network

The network votes to accept the block
The new block is then added to the blockchain

Send transactions

to network

ACCORD

Figure 5.1: A high level architectural diagram of the system, showing the
path a transaction takes to be added to the blockchain.

63

• Fork-Resistance4: In honest execution, our protocol will not create forks. In

malicious execution, either one path is chosen that the network asynchronously

agrees on before future blocks are created or all the existing forks are abandoned

and a new quorum is selected to mine a replacement branch.

• Robustness: In the event of a network outage, our protocol can remain func-

tional or recoverable as long as more than 50% of the network’s total authorized

nodes are both honest and online.

• Scalability: Our protocol scaled linearly as it continues to produce blocks with

an increasing number of authorized mining nodes and transactions. Addition-

ally, an unbounded block size can result in an unlimited number of transactions

per block.

• Liveness and safety: Our consensus protocol offers the liveness and safety prop-

erty. A network that affirms liveness ensures a valid transaction will appear in

all honest node’s ledgers within a reasonable period.

In addition, ACCORD achieves fairness in miner selection and fairness in trans-

action addition. ACCORD is fair in miner selection because it ensures every miner is

selected with approximately the same frequency with a more even distribution than

random selection. ACCORD achieves fairness in transaction addition by requiring

that every honest node adds every transaction they are aware of to the block and by

ensuring there are regularly blocks that behave honestly.
4Fork resistance is not immunity to forks, where forks cannot occur. In fork-resistance, forks can

occur, but if one honest node accepts one fork, another honest node will not accept another.

64

Table 5.1: Feasibility study of blockchain over DDBMS in healthcare.

Decentralized and Accessibility

Patient data should belong to patients and it should not
be controlled by any central authority. Patients should be
able to view their records and easily grant access to another
provider.

Immutability, Privacy and
Security

In a DDBMS, an admin can execute four functions on data:
Create, Read, Update, and Delete (known as the CRUD
commands). On the other hand, traditional blockchains are
generally append-only structures, which means that users
can execute only create and read operations. This kind of
inflexibility gives security and permanence to EHRs.

Data provenance and Misuse

Data provenance allows for individual items (e.g. tests,
treatments) to be taken in a larger context, which can be
used to find errors in medical care. A blockchain can
maintain a complete history of the state of a patient’s
health records, where an admin in DDBMS can alter or
delete the data. Database admins require a high level of
trust that they will conduct their roles correctly, whereas
a blockchain requires a lower level of trust that can be
distributed across a large group.

Robustness and Durability

Blockchain has built-in robustness and durability
functionality. It does not suffer from a single point of failure
because a set of nodes interact towards keeping a secured
ledger, thus avoiding the issues that come with the data
being stored in a central service. This functionality becomes
expensive when it comes to DDBMS.

65

5.2 Adversary model
In our consensus protocol, ACCORD, there are five major groups of parties:

the transaction makers (e.g. doctors, hospitals), the mining nodes, the membership

authority, the peer-to-peer nodes, and external observers.

We assume that the transaction makers create the transactions honestly and do

not distribute any private data. However, we also assume that they are willing to

modify the data after the fact if given the opportunity. An example of this would

be a doctor attempting to alter lab results on the blockchain to avoid a malpractice

lawsuit.

We assume that the mining nodes are covert, meaning they are willing to violate

the protocol but are not willing to get caught. If they can drop transactions, cause a

slowdown, or gain leverage over the system while avoiding detection, they are willing

to do so. However, we assume they are malicious if they are capable of damaging the

network. Damage to the network includes the following: violating safety by convincing

separate honest nodes of conflicting states in the blockchain, extended outages of the

network, and extended periods of control over the network. Unless they are able to

cause damage to the network, they are unwilling to receive any off-chain punishment

for malicious action. Due to our quorum selection protocol (discussed in algorithm 1),

we also assume they are able to create a block that produces the exact results that

they want from the quorum selection protocol without detection if they have control

over the block creation (i.e. a malicious quorum can select specific future miners).

We also assume that a simple majority of the miners will behave honestly.

We assume the membership service authority (MSA) is semi-honest. They act

as a certificate authority and are not privy to any private data on the blockchain.

66

They will only authorize new miners if they are qualified. Note that one of our

recommended options is that the membership service authority is the whole mining

pool, able to act with a simple majority vote. This option leads to the semi-honesty

of the membership authority being reduced to the fact that a simple majority of the

mining nodes are honest.

External observers and peer-to-peer nodes that are not mining nodes are consid-

ered malicious. Peer-to-peer nodes, if allowed, require no permission to operate. They

are willing to spread disinformation and drop valid transactions if able.

5.3 The ACCORD Protocol

5.3.1 Mining Nodes

The mining network N consists of mining nodes {N1, N2, ..., Ni, ...N|N |}. Each

mining node will have identifying information on the blockchain, including a set of

public keys. These keys include a Ki standard key, which is a key on an elliptic

curve, and an Ai additive signature key. These keys will be used for any signatures

required. Since all nodes are aware of the other nodes’ public keys, any node can

produce a shared secret key with any other without the need for communication

using the Diffie-Hellman Key Exchange. The states of a mining node are shown in

Figure 5.2.

The credentials of all mining nodes are certified by the Membership Authority.

5.3.2 Membership Service Authority

Permissioned blockchains differ from permissionless blockchains in that only au-

thorized parties are allowed to participate in the consensus protocol. This means

that the network can control who is able to participate in the network. This type

67

Eligible
Miners

Quorum
Member Greylisted

Impeached

Removed
from

Network

Added to
network

β block timeout expired

Not selected Selected by Algorithm 1
Successfully mined a block

using Algorithm 2

Credentials revoked by MSA Credentials revoked by MSA

Greylist timeout expired

Impeached
by
network

Figure 5.2: The paths a node travels through its various states.

of blockchain requires some degree of centralization to control its membership. This

control is given to the membership service authority (MSA).

Before a party can join the network, they must contact the MSA to receive certi-

fication. The MSA is responsible for verifying a candidate’s credentials and, if valid,

certifying the candidate’s public key. The validity of a candidate’s credentials is

determined by factors outside the blockchain (e.g., their status as a hospital).

The MSA acts as a certificate authority (CA) within the blockchain. The MSA

certifies a node’s public key by creating a transaction to be added to the blockchain.

Once the transaction is added to the blockchain, the new node will be eligible to mine

and perform actions on the blockchain after β blocks to ensure that the addition of

the node does not allow manipulation of the miner selection process. β is defined in

Section 5.3.5. Once the node’s key is certified, they will use their appropriate key

to create any signatures required by the mining process. If a node requires their

key to be changed, the MSA can certify new keys by creating a transaction. If a

node is caught acting maliciously or wishes to withdraw from the network, the MSA

68

can release a transaction decertifying the node’s public key. With this approach, the

network can easily come to a consensus as to the complete list of valid miners for each

block simply by analyzing the blockchain. The MSA can put a block deadline n on

a membership transaction entering the blockchain, such that a block n that does not

include this transaction will be rejected by any honest node aware of the transaction.

Though the existence of the MSA requires a higher level of trust compared to a

completely decentralized permissionless blockchain, this level of trust does not need

to be absolute in a single party. There is no requirement that the MSA be a single

party or external to the mining pool. The MSA could be a consortium of parties from

within and outside of the network or even the entire mining pool. By distributing

the role of MSA across multiple parties, it reduces the level of trust required for each

party by increasing the number of parties that must be corrupted to corrupt the

network. If the MSA is the mining pool, where an MSA transaction is valid if signed

by a majority of the mining pool, then the trust of the MSA is reduced to the same

level of trust that exists within the mining pool, which is that simple majority of the

mining network behaves honestly.

Authentication protocols between MSA and nodes (i.e., determining valid creden-

tials) are not investigated in this work, as it is beyond our scope of this paper.

5.3.3 Data Propagation

Our system relies uses a peer-to-peer network to transfer information across the

network. This information includes transactions, blocks, and votes. All nodes within

the mining pool participate in the network as peer-to-peer nodes. Optionally, other

observers of the network may be allowed to participate in the peer-to-peer network

but will not participate in the mining process. Any transactions or blocks received

69

by a node will be verified by that node before propagation.

A node that receives a valid transaction that has not appeared in a block (an

unconfirmed transaction) will add this transaction to theirmempool. If a node receives

a block Bn but does not have a previous block Bn−k, then they will request Bn−k from

the sender of Bn.

We assume that the peer-to-peer network operates correctly with up to 50% cor-

ruption of the mining network. Messages will always propagate across the network in

less than target block time α, regardless of corruption or network failures up to 50%.

However it is not guaranteed that every node will receive every message.

5.3.4 Quorum: A distributed-leader system

In a single leader consensus protocol, the leader needs to present a block to the

rest of the nodes in the network. This approach has a few pitfalls which make it

untenable for our security goals. Either the leader has control of the contents of the

block, or the block creation process requires validation by a large number of nodes in

the network. In the first case, the main issue is that this leader can effortlessly omit

transactions and potentially release multiple blocks. In the second case, the protocol

becomes inordinately expensive due to the amount of communication required as the

network grows. Additionally, if our protocol is to avoid costly leader elections, a

malicious leader may potentially gain the ability to influence the choice of future

leaders. This could allow a subgroup of the network to take control of the mining

process.

To mitigate this, ACCORD distributes the role of leader to a group of nodes

called a quorum. Rather than having one leader decide which transactions to include

or exclude, each of the quorum members provide a set of transactions they wish to

70

be added to the new block. The quorum members then perform a union operation on

these sets of transactions to determine the content of a master block,MB, which is

to be the next block. A block is valid if more than a threshold δ of quorum members

validate the block by signing it. The members of this quorum should only sign if

all the transactions they expect are in the block. This reduces the ability of any

individual node to omit transactions or manipulate the block. Algorithm 5 describes

our quorum-based block creation protocol.

Definition 3 Quorum. A quorum is a group of q nodes that is currently allowed to

build a block on behalf of the network.

The members of a quorum are selected using the quorum selection protocol, de-

scribed in section 5.3.5.

Though our protocol does not require a specific quorum size q or threshold δ, we

used the following formulas to define our value:

δ = max(d0.8 ∗ qe, b0.9 ∗ qc) (5.1)

q = dlog2(|N |)e+ 1 (5.2)

If a quorum Q fails to produce a block within a specified time or performs a

detectable malicious action, the other nodes will impeach them, voting them out and

allowing a new quorum to take over. This process is automatic and discussed further

in the Voting Rules section (section 5.4). If multiple quorums fail to mine the next

block and get impeached, the threshold δ can be reduced to make the block building

process easier. We decrease the threshold by two every third impeachment for that

71

block, with a minimum threshold of dq/2e + 1. This allows us to achieve reasonable

block times during major network outages, as seen in Section 5.5.2.

With the help of quorums, we can avoid high communication, and due to the small

size of it, we can achieve higher throughput in the network.

5.3.5 Quorum member selection algorithm

In ACCORD, quorum members are selected by Algorithm 1. The purpose of this

algorithm is to ensure that honest quorums are regularly selected in the presence of

large malicious coalitions within the mining pool. We endeavor to do this without the

need for a network-wide synchronization while also preventing too much foreknowl-

edge of the quorum roster, as a malicious quorum member may attack their honest

quorum counterparts to corrupt them or steal their keys given indefinite time.

This algorithm takes the list of all eligible miners and the headers of the βth and

(β + 1)th previous blocks to determine the next quorum. The eligibility of miners

is described in Section 5.3.6. We define β as the number of blocks in a cycle of

miner selection. A larger β allows miners provides greater robustness against large-

scale malicious action. The downside is that a larger β requires nodes to keep more

blocks in active memory and reduces the responsiveness of alterations to the mining

pool (adding new nodes or removing malicious ones, as discussed in Section 5.3.2,

while also allowing more time for nodes to potentially corrupt their fellow quorum

members. We recommend a β of 7, as it provides decent robustness and limits the

time it takes to convince another node to go malicious or coordinate an attack on

them to approximately 70 minutes. Algorithm 1 will be used to deterministically

select the quorum through a selection function. Figure 5.3 illustrates the quorum

selection process.

72

random
Select

List of

eligible minersFN2

FN1

FN5

FN6

...

...

...

FN98

FN100

...

H() H()

select
Priority

s1 s2

FN77

FN11

random
Select

FN70

FN13

FN32

FN6

FN2

FN12

FN31

FN77

FN11

FN13

FN70

FN32

FN12

FN2

FN6

FN31

n−1n−2n−(β−2)n−(β−1)n−β

Quorum

n−(β+1)

...

Remaining

Miners

Remaining

Miners

Figure 5.3: Selection process of quorum members (Algorithm 1).

First, any node that has been eligible to mine (e.g., not greylisted) for γ blocks

are set aside to be selected as miners at the head of a quorum Q. This priority list

defined by γ ensures that everyone mines fairly regularly. γ is best defined as a · (n
q
).

We use a = 1.5.

After these high-priority nodes are extracted, the remaining nodes for the quorum

are selected. The header of the βth previous block is hashed with the list of eligible

miners to create seed s1. s2 is similarly derived using the header of the (β + 1)th

previous block. s1 is then used to randomly choose half of the remaining miners

needed for the quorum and adds them to Q. Then, s2 selects nodes from the mining

pool and adds them to Q until Q is full. This process ensures that the choices made

by the earlier block are not affected by the choices of the later block.

73

The network will be aware of the complete roster of Q when they become aware of

the (β+1)th previous block. This process allows each node to determine the quorum

roster independently, as there is no requirement to communicate with the network

beyond propagation of the blocks. If Q is impeached, the quorum selection process is

repeated using the two blocks previous to the seeds that chose Q, the (β− 1)th block

and (β − 2)th block, moving back two blocks every time there is an impeachment5.

This new quorum will include the impeachment as part of their block as justification

for mining.

While a round-robin approach is popular for leader selection in many protocols,

we believe that with a large enough group, it can lead to some security issues. When

a network consists of over 5000 nodes, specific future quorums can be known days in

advance, which gives a malicious group enough time to potentially coerce or attack

these future quorum members in an effort to compromise them. Nodes may even

form coalitions based on their positions in the round-robin with miners near them.

We believe that reducing the amount of time a quorum is known and randomizing its

roster can be beneficial, as it increases the difficulty of such an attack.

5.3.6 Greylisting

Greylisting is a mechanism to prevent miners from being selected to mine in a

quorum multiple times in quick succession. When a miner mines a block as a member

of a quorum Q, they will be added to the greylist and will not be eligible for selection

by the Algorithm 1 until they are removed.

If primary quorum Q is impeached and an alternate quorum Q′ produces the

block, Q′ will be added to the greylist and Q will not. However, the impeachment
5If this happens early in the history of the blockchain, the seeds can be cycled if headers before

the genesis block are called for.

74

can not be allowed to alter how the next β quorums are selected. Q′ addition to the

greylist is deferred by β blocks as though they have not yet mined a block. These

nodes can be selected to mine within the next β blocks and may even be selected

as priority miners. Q will be ineligible to mine for β blocks, but they will not be

greylisted. When this non-greylisted period of ineligibility ends, members of Q are

returned to the list of eligible miners as though they were never greylisted. This

means they may be immediately selected as a priority quorum member as though

they were never made ineligible. The delay in the event of impeachment is to ensure

that Q’s impeachment has no impact on how quorums are selected outside of Q’s

defined influence.

In our analysis, we found that the greylist should consist of approximately 33%

of the mining pool at any given time. Any excess nodes should be removed from the

greylist if the list exceeds 33% of the nodes, following a FIFO structure. Greylisted

nodes should still sign to accept blocks, propagate blocks, and potentially sign im-

peachment if warranted.

The main purpose of greylisting is to prevent a small malicious subset of the

mining pool from being capable of taking control of the mining process. Since future

quorums are selected by two blocks created by previous quorums, these two previous

quorums have the ability to essentially select the future quorum. If the malicious

party gets lucky enough to randomly gain control of β consecutive blocks, this could

lead to them continually selecting their own members for mining duty. By having the

greylist (and the priority miners), a malicious subgroup will be unable to select their

members indefinitely. Another advantage of greylisting is to allow nodes to have a

period of time where they do not need to maintain perfect liveness. For example,

75

after a quorum member mines and is greylisted, they can perform maintenance on

their mining machine safely, knowing they will not be selected to a quorum in the

near future.

5.3.7 Block structure

In our protocol, the block structure consists of a block header H, metadata, trans-

action section, signature section, and the signatures from the quorum members σQ.

All included transactions will have their content and signatures separated. The con-

tent will be placed in the transaction section, and the signatures will be placed in

the signature section. The block header is the SHA-256 hash of the metadata and

transaction sections. The quorum members sign the hash of H concatenated with the

hash of the signature section. Figure 5.4 illustrates the structure of a block.

Since H is used to select future quorum members, it is important that H be

resistant to manipulation. To this end, we have created a system where there can

only be one block header for a block containing a specific set of transactions mined

by a specific quorum. This means that H is only dependent on the list of included

transactions.

The metadata contains information about the structure of the block. This includes

the number of transactions, the size of the sections, and the block header of the

previous block. It also contains a list of identifiers for the members of the quorum (e.g.,

their public keys or identification numbers). If this block was created by a quorum

selected due to impeachment, the metadata would also include a justification J ,

which is essentially the impeachment of the previous quorum. The network signature

associated with J will be included in the signature section. These signatures will be

aggregated using the methods discussed in Section 5.3.8 to save space.

76

The transaction section includes two types of transactions: bookkeeping trans-

actions and content transactions. The bookkeeping transactions are transactions

related to the mining process, including MSA transactions to add and remove miners

from the network. Included among these transactions are the quorum members’ null

transactions, discussed in Section 5.3.9. This group of transactions is expected to be

small, possibly only consisting of the null transactions. They are sorted by transac-

tion header at the beginning of the transaction section. The content transactions are

the transactions containing the data that the blockchain is intended to distribute,

(e.g., encrypted anonymous healthcare information). It will generally be the largest

section, potentially containing thousands of transactions per block. The transactions

in these sections are internally sorted by transaction header to ensure that the block

header is solely dependent on the set of transactions included.

The signature section will include the signatures of the transactions in the same

order or structure that they appear in the transaction section. The signatures are not

included in H, as one transaction could potentially have multiple valid signatures. To

prevent manipulation of H in this manner, we do not include the signature section in

H.

In this blockchain, there is no defined size limit imposed on the blocks. In-

stead, quorum members attempt to add every valid transaction they are aware of

to the block. This is a desired rule because every transaction should be added to the

blockchain in a timely manner. This allows the number of transactions the network

is able to process to be independent from the structure of the block or the consensus

protocol.

The genesis blocks are the first β blocks. These blocks can be created by the MSA.

77

The first genesis block has no previous block header and contains the bookkeeping

transactions to add the initial miners. The next β − 1 blocks are standard blocks

except that they are created by the MSA, and they contain no transactions. These

blocks form the beginning of the entire system from which the future blocks will be

built.

A block is valid if it conforms to the rules of the blockchain for a block in its

position. These rules include:

• All contained transactions are valid.

• The block structure is correct.

• The metadata is accurate.

• The block is signed by a valid quorum.

Block Header (Hash)

Metadata

Transaction Section
Bookkeeping

Tx1, Tx2, … Txk
Content

Txk+1, Txk+2, … Txn

Signature Section

σ(Tx1), σ(Tx2), …σ(Txn)

 Quorum signatures

Size of sections

Prev Hash

Quorum IDs

Justification (J)

Figure 5.4: Block structure. The grey portions will be used in the Quorum
Selection Protocol (Algorithm 1).

5.3.8 Additive Signature

Due to the number of signatures that need to be collected and maintained, it is

important that these signatures be condensed. To this purpose, the voting signatures

78

will be aggregatable signatures to allow compression of the votes into one signature,

accompanied with a bitmap to show who signed in the aggregate signature. Any

arbitrary non-cooperative aggregate signature scheme will work, so we will employ

the signature scheme created by Boneh et.al. [19]. To use this scheme (or many similar

schemes), each signed message should be unique, so the messages can be appended

with Ki, their standard public key. Node Ni will sign these messages using Ai.

5.3.9 Null Transaction

In our protocol, quorum members are selected using block headers from earlier in

the blockchain. To ensure that each participating quorum member has an impact on

the block header, they will be required to produce an empty null transaction for their

block. Given a previous block header Hn−1, there must be only one possible valid null

transaction per node to prevent free manipulation of the block header. Additionally,

this null transaction must be infeasible to forge without the node’s private key. This

is accomplished using a modified key image technique [78]. Let Ki be quorum member

i’s standard public key, si be their private key, and Hp be a hash-to-point function.

Then, quorum member i’s key image Ii is defined as follows:

Ii = si ·Hp(Ki|Hn−1) (5.3)

Each party’s null transaction will only contain Ii and proof that Ii is well-formed

given the party’s credentials. A Zero-Knowledge Proof of Diffie-Hellman pair will be

used. The proof will act as the signature for this transaction and will have no impact

on the block header Hn, as it will be in the signature section of the block. A quorum

member must provide a null transaction to sign the block.

79

5.3.10 Mempool

A node’s mempool is where a node stores all valid unconfirmed transactions they

have received. Upon receiving a transaction, the node verifies the transaction and

adds it to the mempool. When a new valid block B is received by a node, all of

the transactions in B are removed from that node’s mempool. Each node maintains

its own mempool. While a node is assigned to a quorum, it takes a snapshot of the

mempool for use in the creation of the new block B. While a node is a member of a

quorum, they continue to receive transactions, but these transactions are not added

to the block B, as discussed in the Section 5.3.11.

5.3.11 Block Skeleton

A block skeleton is a list of transaction headers that a quorum has in their mem-

pool and wishes to add to the block. A node’s block skeletons act as a commitment

to the list of transactions the node possesses. Upon receiving a block skeleton, fellow

quorum members can use it to determine which transactions they need to request to

build the completed block. The purpose of the block skeleton is to ensure that no

malicious member of the quorum can create a transaction to modify the block header

in a predictable way, which prevents the malicious node from influencing quorum

selection. Block skeletons do not contain null transactions.

5.3.12 Communication in Block Creation

In our block creation protocol, each party attempts to create a direct secure line

of communication between themselves and the other quorum members. Every party

has a public key on the blockchain, so the execution of the Diffie-Hellman protocol

is trivial and requires no communication between the nodes to create a shared key.

80

If a node cannot, for any reason, create a secure line of communication between

themselves and another node, they can arrange for their messages to be forwarded

by other quorum members or another node in the network. All messages from one

quorum member to another should be signed by the sender, and the receiver should

be responded to each message with a signed receipt.

If a quorum member Pi is attempting to send a message to another quorum mem-

ber Pj and the direct communication fails (meaning they do not receive a receipt),

they will broadcast their message to the rest of the quorum, asking them to forward

the message. If they still do not receive a receipt, they will broadcast their message

to the peer-to-peer network. The nodes on the peer-to-peer network will attempt to

forward the message to Pj, who is then expected to broadcast a receipt to the peer-

to-peer network, to be forwarded to Pi. The broadcast to the peer-to-peer network

is to ensure that Pj cannot claim that Pi never sent a message that Pj chose not to

respond to.

If a quorum member Pi is waiting for a specific message, they will send requests

for the missing message to be forwarded to them to the other quorum members. After

enough time has passed before, Pi will treat the respective parties Pj as absent or

offline and attempt to continue with the protocol. While Pi is waiting, they will still

respond to messages appropriately. This is also called requesting.

5.3.13 Block Creation Protocol

Before we begin the block creation protocol, Algorithm 1 is used to choose a

quorum Q = {P1, P2, ..., Pi, ..., Pq}.

The protocol starts with each Pi creating a block skeleton SBi as a manifest of

the transactions in their mempool. Pi creates a commitment JSBiK and sends JSBiK

81

to the other nodes Pj in Q. Pi now waits to receive JSBjK from all Pj. After this,

Pi opens their commitment to each Pj, sending them SBi and waiting to receive all

SBj.

Once Pi has the skeleton blocks SBj from all Pj, Pi will create a null transaction

for this block and broadcast it to Q. Pi then identifies the transactions from the SBj

that Pi does not possess. They then send a message requesting these transactions

from Pj. If a requested transaction appears in multiple SBj’s, Pi will first request the

transaction from the first node to their right in the quorum list6, treating the quorum

list as cyclical7. Pi now waits to receive all Pj’s null transactions and all requested

transactions.

Upon receiving all expected transactions, they are ready to construct the master

block MB. Each party should have the ability to construct MBi locally following

the block structure rules discussed in Section 5.3.7. When Pi locally creates aMBi,

they need to ensure that all Pj generated identical MBj’s. This can be ensured by

exchanging the block headerMHi with all other Pj. If there exist multiple distinct

MHj, then the members of Q will exchange their blocks to find any discrepancies.

If these discrepancies can be solved with forwarded messages, then the deviating Pj’s

can correct their blocks and produce an agreed-upon block header Hn. If, after this,

at least δ members of Q agree on a block, they will continue without the dissenting

quorum members. If Pi agrees with Hn, Pi will validate the block by signing their

block as stated in Section 5.3.7. Pi should only sign at most one block to succeed Bn−1

and refuse to sign any alternates that appear in the future. When the block header

has more than δ signatures, Pi will add the quorum signatures σQ to the block Bn and
6(e.g. if Pi+1 and Pi+2 both have the transaction, Pi will first ask Pi+1)
7Pq+j is the same as Pj

82

broadcast Bn to the peer-to-peer network. Bn will be asynchronously validated by the

network while the next quorum works to produce Bn+1. Qn sends Bn directly to Qn+1,

Q′n+1, and Q′n, where Q′x is the quorum responsible to mine if Qx is impeached, so

that they can start working as soon as possible. If Qn+1 or Q′n+1 has not received Bn

within an expected time period, they will send a request to the peer-to-peer network

asking for the block. Qn should endeavour to release Bn approximately α time after

receiving Bn−1
Algorithm 1 Quorum members selection
To create a quorum to mine block n:
Input: list of x eligible miners FN u = [FN1, FN2, ..., FNk], quorum size q, priority threshold γ,
and block headers Hn−β and Hn−(β−1)

1: s1 ← h(Hn−β |FN u)
2: s2 ← h(Hn−(β−1)|FN u)
3: remove any impeached miners from FN u

• If |FN u| < q, reset FN u to its original state.

4: Q ← {}
5: Select priority nodes: Select all nodes FN i from FN u where the last instance of FN i being

removed from the greylist was before block n− γ. Add at most q of these nodes to quorum Q.
6: s1 selects quorum members: Q Q ∪ randomSelect(FN u,

⌈
q−|Q|

2

⌉
, s1)

7: s2 selects quorum members: Q Q∪ randomSelect(FN u, q − |Q|, s2)
8: return Q

5.4 Mining rules

5.4.1 Block status definitions

A block B created by a quorum Q can exist in several different states in the view

of an honest node.

Definition 4 Pending. B is pending if it has neither been accepted nor abandoned.

Definition 5 Accepted: B is accepted if at least
⌊
|N |
2

⌋
+1 of N have signed to accept

B and all blocks previous to B.

83

Algorithm 2 Building a Block Bn
Input: A set of unconfirmed valid transactions (mempool) and a quorum Q of q nodes,
{P1, P2, ...Pi, ...Pq}, with a required signing threshold of δ, and a time limit tlimit.
Output: A valid block or null if fails. If Q is impeached, abort the protocol

Overview: Pi is a member of Q. This protocol takes the mempools of the nodes in Q and combines
them to form a block.
1: Initialization. Pi creates a skeleton block SBi with all available transaction headers from their

mempool.
2: Pi creates a commitment JSBiK = fcomm(SBi, κi)). // κi is a randomly generated key
3: broadcast(Pi,Q, JSBiK) // Pi exchanges commitments JSBiK with all Pj
4: request(Pi,Q, JSBjK)
5: Pi creates their null transaction Ii.
6: broadcast(Pi,Q, (SBi, κi), broadcast(Pi,Q, Ii) // Pi opens commitment JSBiK for all Pj
7: request(Pi,Q, (SBj , κj)), request(Pi,Q, Ij)
8: Pi verifies JSBjK with SBj and κj . If any Pj produces a bad SBj or fail to produce or properly

open their commitment JSBjK, they are omitted from the mining process.
9: Pi verifies all Ij ’s using their included proofs. If Ij is invalid, Pj are omitted from the mining

process.
10: Pi creates the skeleton master block SMB

⋃q
l←1 SBl

11: for all transactions Tx ∈ SMB − SBi do
12: request(Pi,Q, Tx) // All transactions in SMB that Pi does not know
13: end for
14: Pi creates the master blockMB // Pi includes all transactions from SMB and all Ij
15: H′n ← block_hash(MBi) // Pi hashes the parts of the block used in the block header.
16: MHi ← full_block_hash(MBi) // Pi creates the hash they intend to sign.
17: broadcast(Pi,Q,MHi)
18: request(Pi,Q,MHj)
19: let z the size of the largest group in Q broadcasting the sameMH
20: if z = q then
21: Bn ←MBi
22: Hn ← H′n
23: else if z < q then
24: broadcast(Pi,Q,MBi)
25: request(Pi,Q,MBj)
26: while telapsed < tlimit or z < δ do
27: Attempt to reconcile differences using message log to create Bn. If there is evidence Pj per-

formed malicious actions (e.g. creating multiple SBj), their malicious action is broadcasted
to Qn and their contributions to the block are omitted.

28: end while
29: end if
30: if MBi = Bn then
31: σi = block_signPi(MBi)
32: broadcast(Pi,Q, σi)
33: end if
34: request(Pi,Q, σj)
35: let z′ ← the number of valid signatures ofMH
36: if (z′ ≥ δ) then
37: Add all σj to Bn
38: else
39: return null
40: end if
41: return Bn

84

Definition 6 Abandoned: B from Q is abandoned if:

1. a competing block B′ has become well-established or

2. Q has been impeached and B has not been well-established.

Definition 7 Well-established: Bn is well-established if a chain of at least β′ consec-

utive accepted blocks (Bn+1, Bn+2, ... Bn+β′) are appended to it.8

When Bn is released by Qn, it is pending to all nodes that receive it. The quorum

Qn+1 will operate assuming Bn will not be abandoned.

5.4.2 Voting Rules

In our system, there are multiple situations where a node Ni in N will be expected

to vote. When Ni votes, they will release a unique standardized message and sign

it using their additive signature key Ai. This message is dependent on what they

are voting on. The two major causes of voting in our protocol are block accepting

and impeachment. A similar approach can be used if N is the MSA to create MSA

transactions.

Block acceptance procedure. When Ni receives a valid block Bn, they wait for

time α to ensure Bn propagates and there is no competing B′n, from the same quorum.

If, after waiting α time, Ni has receives no conflicting blocks created by Qn and Qn

has not been impeached, Ni will vote to accept Bn. Ni votes by creating a message

MA ← (accept_flag|MHn|Ki), where accept_flag is a constant flag to identify

block acceptance,MHn is the full block header of Bn, and Ki is Ni’s standard key.

MA is then signed and broadcasted to the network.
8The number of blocks can be equivalent to the quorum selection block cycle β, meaning β′ = β,

but this is not a requirement.

85

Ni may sign a block Bn where previous blocks have not been accepted yet. How-

ever, Ni should not sign Bn if Bn−b0.5·β′c has not been accepted, Ni should wait until

Bn−b0.5·β′c is accepted. This prevents a buildup of unconfirmed blocks while preventing

the potential of a well-established fork.

Node Ni should not vote to accept multiple blocks from the same quorum. Any

node Nj that votes for multiple blocks from the same quorum has committed a de-

tectable malicious action and will be punished. However, Ni voting for acceptance of

a block from Qn does not prevent Ni voting for the impeachment of Qn.

If Qn has been impeached, Ni should not sign any blocks appended to Qn’s block

Bn unless Bn is well-established.

The purpose of waiting for time α (i.e., propagation) before voting is to make it

improbable that an honest node Ni voted for Bn and another honest node Nj voted

for a competing block B′n from the same quorum.

Impeachment. Impeachment is the process by which N can remove malicious or

defective quorums. There are three cases when Ni votes to impeach Qn.

The first case is if a node Ni has not received a valid block from quorum Qn

within 2 ·α time of receiving Bn−1. If Qn was selected due to impeachment, Ni waits

for 3 · α time after they signed the previous impeachment, assuming the previous

impeachment was successful, before signing the next impeachment.

The second case is if Ni has received multiple valid blocks (B1
n, B2

n...) from Qn

with none of them being accepted within time 3 · α, Ni will vote to impeach Qn.

The quorum’s malicious actions are clear to the network and would likely result in

some form of punishment (e.g., expulsion from the network), even if they are not

impeached.

86

The third case is if Ni has signed the block Bn, but Bn has not been accepted for

a period of 2 ·α. This could occur if there is a required MSA transaction with a block

deadline of n that Ni is not aware, and this transaction is not present in the Bn.

Ni will create a message MI = (impeachment_flag|MHn−1|Qn|c|Ki), where

impeachment_flag is a constant flag to identify impeachment, MHn−1 is the full

header of the previous block, c is the number of previous impeachments on quorums

creating a block onMHn−1, andKi is Ni’s standard public key. MI is then signed and

broadcasted to the network. Quorum members can vote for their own impeachment.

If Bn gets accepted and the impeachment on Q does not reach a majority, then

node Ni should accept Bn. If Bn gets accepted and the impeachment on Q succeeds,

then node Ni should reject Bn unless Bn is well-established.

If Ni is part of Q′n, the quorum selected in the event of Qn’s impeachment, Ni can

start to work with other members of Q′n before Qn’s impeachment to decrease their

response time in the event of impeachment.

It is important to note that impeachment is not necessarily the result of malicious

action by Qn. For example, Qn may fail if fewer than δ of them are online due to

a network or power outage. Any impeachment, however, should result in an investi-

gation outside the blockchain to determine whether any malicious action took place.

Such an investigation can consult the message transcripts from our protocol.

5.4.3 Multiple Accepted Blocks

Due to the delay of α time before voting, it is highly unlikely that two honest nodes

will sign to accept two competing blocks Bn and B′n from the same Qn. However,

it is theoretically possible for this to occur. If honest nodes divide their votes on a

large scale, it is possible that both blocks may get a majority of the votes due to

87

malicious double voting (i.e., a node voting for multiple blocks). If Ni views multiple

competing blocks as accepted, Ni will vote to impeach Qn, rejecting all Qn’s blocks

unless one of them is well-established. For multiple blocks to become well-established,

this attack would have to occur on β′ consecutive blocks. The probability of this is

highly improbable without a breakdown of the peer-to-peer network (e.g., a partition)

or majority corruption of the mining pool. Additionally, double voting is an easily

detectable malicious action and would result in punishment.

5.5 Experimental Evaluation
In this section, we evaluate the performance of our protocol in different simulation

scenarios. These include analyzing communication benchmarks within the quorum,

robustness against non-responsive miners, an analysis of an attempt to control the

mining process, and miner selection distribution.

5.5.1 Communication costs

To determine the communication overhead of our consensus protocol, we will first

measure the overhead within the quorum, then measure the communication overhead

of the entire network. We will do this by measuring the messages required by the

consensus that is not required for the basic functioning of the blockchain. For example,

we measure the costs of transferring skeleton blocks and voting but not the cost of

transferring transactions, as the transactions would have to be communicated in any

consensus protocol.

To measure the communication costs within the quorum, we conducted multiple

groups of experiments with varying network sizes and the number of transactions.

We measured the number of messages required for a quorum to create a block and

88

used this to calculate the total size of all the messages. We ran multiple experiments

with different parameters. We measure the average size of the different types of

messages sent with respect to transactions and network size. We assumed that a list

of transactions exists in the network, and the probability that a given node has any

given transaction is 80%. We ran these experiments with three methods of handling

the variables. First, we changed the number of transactions while keeping the network

constant at 5000 nodes. Second, we increased the size of the network while keeping

the transactions constant at 8000. Finally, we had a more realistic scenario where

the network size and number of transactions scale together such that the number of

transactions is 1.5 times the size of the network.

We assume in this context that the nodes are behaving honestly and there are no

network errors. The values are measured as the total communication of one node in

the quorum.

Figures 5.5 [a-c] shows the communication overhead of the exchange of skeleton

blocks in MB. Figure 5.5 (a) shows that as the number of transactions increases, the

size of the communications associated with the exchange of skeleton blocks scales

linearly. In Figure 5.5 (b) we hold the number of transactions constant. By observing

the graph, we can conclude that the average bandwidth used to exchange skeleton

blocks appears to only increase when the size of the quorum is increased. In Figure 5.5

(c), the trends seen in Figure 5.5 (a) and Figure 5.5 (b) are apparent and there does

not appear to be any emergent complexity.

Figures 5.6[a-c] show similar trends, but the scaling of these graphs shows these

communications are negligible compared to the skeleton blocks.

89

0

1

2

3

4

5

1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

A
v
g

M

B
/n

o
d

e

Number of Tx (×1000)

Newtork size = 5000

Pr[node has Tx] = 0.8

(a) Scaling Tx

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

A
v

g
 M

B
/n

o
d

e

Network Size (×1000 nodes)

#Tx's = 8000

Pr[node has Tx] = 0.8

(b) Scaling network size

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

A
v

g
 M

B
/n

o
d

e

Network Size (×1000 nodes)

#Tx's = 𝒩 ⋅ 𝟏. 𝟓
Pr[node has Tx] = 0.8

(c) Scaling network size
and Tx

Figure 5.5: Average communication overhead per node from skeleton
blocks with different number of transactions and nodes.

0

2

4

6

8

10

12

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

A
v

g
 K

B
/n

o
d

e

Number of Tx (×1000)

Requests Receipts Signatures

Newtork size = 5000

Pr[node has Tx] = 0.8

(a) Scaling Tx

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

A
v

g
 K

B
/n

o
d

e

Network Size (×1000 nodes)

Requests Receipts Signatures

#Tx's = 8000

Pr[node has Tx] = 0.8

(b) Scaling network size

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

A
v

g
 K

B
/n

o
d

e

Network Size (×1000 nodes)

Requests Receipts Signatures

#Tx's = 𝒩 ⋅ 𝟏. 𝟓
Pr[node has Tx] = 0.8

(c) Scaling network size
and Tx

Figure 5.6: Average communication overhead per node of smaller messages
within quorum to build a Master block.

5.5.2 Fault Tolerance

In a distributed system, failures of nodes in the network are commonplace and a

concern for the robustness of the system. A node failing to participate in the net-

work could be due to a power or internet outage, an attack, or a simple malicious

act by the node. These issues are not a theoretical concern (e.g., Gmail has power

outages every couple of years [57]). Therefore we assume that any node can face an

unexpected technical problem at any time. Furthermore, it is probable that if one

node has a technical problem, many other nodes may be facing the same technical

problem simultaneously. These fault tolerance experiments show the robustness of

90

our consensus protocol against different percentages of inactive nodes. We measure

robustness by measuring average block times with different signing thresholds. We

assume that the peer-to-peer network is still able to function with a maximum propa-

gation time α = 10 minutes. We assume that the nodes that are active in the network

are behaving honestly in this context.

Figure 5.7 depicts the fault tolerance of different configurations of the protocol,

namely the number of nodes initially required to sign a block. In this setup, if the

attempts to mine the next block have three consecutive impeachments, then the

number of quorum signatures required to mine this block is reduced by two without

reducing the number of required signatures to below a simple majority.

The x-axis indicates the total percentage of nodes in the network that are tem-

porally unavailable (e.g., power outage, malicious behavior), and y-axis shows the

average time in minutes required to form a functioning quorum. We ran our experi-

ment with 10,000 iterations of a 10 block experiment. This is because in the event of

a major outage or a node repeatedly not responding, and the MSA can temporarily

remove the node from the mining pool and continue with the protocol. This should

be achievable within generally be done within 10 blocks.

Figure 5.7(a) shows how the network responds to small outages of less than 10%.

If we required every node in a quorum to sign a block, the average block time increases

to untenable levels very quickly, taking almost an hour with a 10% network outage.

The average time is significantly improved by requiring only 14 quorum signatures.

This improved even further by only requiring 13 quorum signatures, reducing the

average block time to less than 15 minutes to create a block with a 10% outage.

While the block time is improved by reducing the signing threshold further, the effect

91

has apparent diminishing returns, and this reduction would make certain other attacks

easier (see Section 5.5.3).

Figure 5.7(b) shows the recoverability of the system given larger outages of up

to 50% − 1 of the network. Note that failure of more than 50% − 1 of the network

would prevent the network from functioning. With any of the initial required signature

settings, the block creation becomes intolerably slow for long-term use, but the system

remains recoverable, with the 10 block run lasting no longer than 40 hours, at which

point it can return to normal operation.

We observe from Figure 5.7 (a) and (b), the average block time is significantly

increased, but the network still technically functional. Note that this block slowdown

does not reduce the average throughput of transactions on the blockchain, as the size

of blocks is unbounded, so a block that takes 60 minutes is, on average, 6 times larger

than a block that takes 10 minutes.

0

10

20

30

40

50

60

70

80

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

A
v

g
 b

lo
c
k

 t
im

e
(m

in
)

% of nodes down in the network

15 14 13 12 11 10

Network size: 10000

Quroum size: 15

Blocks: 10

Trials: 10,000

(a) Blocktime up to 10% nodes un-
available

0

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50%

A
v

g
 b

lo
c
k

 t
im

e
 (

m
in

)

% of nodes down in the network

15 14 13 12 11 10

Network size: 10000

Quroum size: 15

Blocks: 10

Trials: 10.000

(b) Blocktime up to (50%− 1) nodes
unavailable

Figure 5.7: Average block time given increasing network outages. α = 10
minutes.

92

5.5.3 Manipulation in selection

A common concern with miner selection schemes that rely on aspects of the block

to select future miners is that it potentially gives malicious miners the ability to select

future miners, which could allow these malicious miners to take control of the system

by repeatedly selecting members of their group to mine. With this experiment, we

intend to show that our protocol is resistant to such an attack.

We conducted this experiment assuming a network size of 10,000 mining nodes

and a quorum size of 15, and we chose β = 7. We assume that if the quorum is

malicious, then they can select a block header that will produce a specific ordering of

nodes of their choosing. We modeled this by replacing the standard selection process

for headers created by a malicious quorum with a simple selection of nodes. We also

assume that, at the beginning of the experiment, the malicious group spontaneously

gained control of β consecutive blocks, enough to cycle their control of the system. We

ran this experiment with all the valid threshold settings, similar to the experiment

in subsection 5.5.2. Finally, we compared our two seed models with an equivalent

single seed model. Our test involved selecting 100,000 quorums, and we ran this test

5 times and averaged the results.

The strategy employed by the different versions of this protocol are as follows: On

the single seed version, if the (n − β)th quorum is malicious, they will attempt to

make quorum n a malicious quorum with the minimum possible number of malicious

nodes. They will prioritize malicious nodes that have most recently left the greylist

(low priority nodes). They will then fill the rest of the quorum with honest nodes

that have least recently been on the greylist (higher priority nodes). If there are too

many honest nodes that have priority (at least q − δ nodes) or too few malicious

93

nodes are available, they will be unable to take control of quorum n and instead fill

the quorum with only higher priority honest nodes to improve the probability that

their malicious group will regain control in the future.

On the two seed versions, a single quorum has less control, needing control of

the n − β and n − (β − 1) quorums to control quorum n. If they have control of

both quorums, they will select nodes as in the single seed version. If they control

the (n − β) quorum but not the n − (β − 1) quorum, they will fill their half of the

selection with low priority malicious nodes to increase the probability that block n

will be malicious as long as there are not too many honest priority nodes. If they

control quorum n − (β − 1) and not n − β, they will take control of quorum n if

they are able. Their ability depends on whether the priority miners and the miners

selected by quorum n − β include fewer than q − δ honest nodes and If, in any of

these cases, they do not have enough eligible nodes to produce a malicious quorum,

they will fill the quorum with higher priority honest nodes.

It is important to note that while this strategy is not optimal, it to be a reasonable

strategy to show that such an attack on our system is not trivial.

Figure 5.8(a) shows that requiring too low of a threshold makes the protocol too

vulnerable to this attack, with the worst case of a threshold of 9 in the quorum caus-

ing the honest nodes to lose control at 15% malicious nodes. The results improve as

the threshold increases, requiring that the malicious group use more of their mem-

bership per block and reducing their ability to clean the priority list of honest nodes.

Figure 5.8(a) demonstrates that the single seed version generally allows the malicious

group to have far greater control of the mining process up to a breaking point. This

can be seen by the dotted lines representing the single seed version consistently being

94

significantly greater than the solid line of the same color, but both lines reaching

100% control at the same point.

On Figure 5.8(b), we remove the experimental runs where the percentage of con-

trolled quorums ended up above 20% to get a better look at our recommended thresh-

old settings as network corruption approaches 50%. This shows that the two seed

versions of our recommended δ = b0.9 ∗ qc = 13 threshold produces results roughly

equivalent to the more secure thresholds, whereas its single seed counterpoints have

approximately 4% of the blocks created being created by the malicious group. This,

combined with our robustness experiments in Subsection 5.5.2, leads us to recommend

this threshold.

We should note that when the malicious nodes were given control, they managed

to keep control on our recommended settings for approximately 680 consecutive blocks

at 50%−1, or 4.7 days with a 10 minute block time. However, it is important to note

that on none of the trials of the two-seeded version did the adversary manage to take

control of the mining process on its own, even at 50%−1. This is due to the fact that

the two-seed process prevents a takeover of the quorums in chunks. In the single seed

version, the malicious group is able to take control of one-βth of the network if they

randomly gain control a single block for as long as they have members who can fill

the positions and are not forced out by honest priority nodes. There taking control

is as simple as randomly being selected β times. In the two seed version, a randomly

selected malicious quorum results in this quorum having partial influence over two

blocks instead of complete control over one, meaning they are unlikely to perpetuate

their control unless they randomly get control of multiple consecutive blocks in a row.

The probability of gaining control decreases with the two-seeded version as the period

95

increases.

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

%
 b

lo
ck

s
co

n
tr

o
ll

ed

% malicious nodes

1 seed

2 seed

Seeds Threshold
8
9
10
11

12
13
14
15

(a) All thresholds

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

%
 b

lo
c
k

s
co

n
tr

o
ll

ed

% malicious nodes

1 seed

2 seed

Seeds Threshold
12
13

14
15

(b) Trimmed thresholds

Figure 5.8: Percentage block corruption vs malicious control of mining
pool. The solid line is our protocol, whereas the dotted line is an equivalent
single seeded version, similar to existing work.

5.5.4 Miner Selection Distribution

To quantitatively analyze the models in terms of fairness, we designed and con-

ducted several simulation experiments to observe the miner selection distribution. We

endeavored to create a quorum selection protocol that, under honest conditions, will

select every node to a quorum with approximately the same frequency. The assump-

tions we made for the experiments are as follows: All nodes are available at all times.

Each participant is honest.

Figure 5.9(a) reported below is showing that the distribution of our protocol and

a random selection. The x-axis represents the nodes based on their rank, meaning

they are sorted by the number of times they mined. The y-axis indicates the number

of times these nodes mined. We ran this experiment 1000 times, where each run

simulated 1000 quorum selections. On each run, the nodes are ranked by the number

of times they were selected to a quorum. The trials were averaged by rank to produce

the graph.

96

Our quorum selection protocol produces more balanced results than random se-

lection. This can be seen by observing that at every rank, our protocol assigned

nodes to the quorum closer to the average than the random selection. At every point,

our protocol produced results in values 50% closer to the average than the random

selection.

Figure 5.9(b) is a larger scale simulation of the quorum selection protocol. We

simulated the protocol with several variations up to the point where the average

number of times a node was selected was 200. We then ran this simulation 100 times

and averaged the results by rank. We repeated this with larger network sizes. Fig-

ure 5.9(b) shows that the size of the network does not appear to affect the fairness

of the selection process. It also shows that Algorithm 1 provides a much more even

distribution on average when compared to random selection. Additionally, we ana-

lyzed the two major components of Algorithm 1 that impact selection distribution:

the priority miners and the greylist. It appears that our fairness is mostly driven by

the existence of the priority miners due to its enforcement of a pseudo-round-robin

style of quorum selection. However, the greylisting does improve fairness as compared

to random selection.

5.6 Threat-Risk Assessment Model
Consensus protocols for blockchains have certain common security vulnerabilities

that need to be addressed. Below, we highlight a few of these vulnerabilities and our

mitigations of these vulnerabilities.

97

250

260

270

280

290

300

310

320

330

340

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#
 o

f
ti

m
es

 M
in

e

Nodes (sorted by number of blocks mined)

Algorithm 1 Random Average

#Iterations: 1000

#Trials: 1000

Qurorum size: 6

(a) Frequency of quorum selection
with 20 nodes.

(b) Distribution of quorum selection
with increasing network size.

Figure 5.9: Distribution of quorum selection

5.6.1 Fork Resistance

Though a perfect immunity to forks is infeasible in a blockchain system, our

protocol makes forks highly improbable in an honest setting, as well as making the

network able to efficiently resolve forks in a malicious setting. We achieve this through

four major procedures in our work: Quorum selection protocol , the block creation

protocol, the block acceptance procedure, and the impeachment procedure.

Our quorum selection protocol (Algorithm 1) only selects one quorum to mine

at any given time. This prevents multiple different quorums from creating blocks

simultaneously and causing disagreement on the network. This protocol also helps to

prevent forks by ensuring that if quorum Qn created multiple blocks then the next

quorum Qn+1 would be responsible for appending to each of these competing blocks.

Our block creation protocol (Algorithm 5) requires δ signature from quorum members

to produce blocks. It would require significant corruption of the quorum for them to

be able to release multiple valid blocks.

The block acceptance procedure (Section 5.4.2) ensures that even if a quorum

98

releases multiple blocks, that it is highly improbable that different competing blocks

will gain votes from honest nodes. Impeachment (Section 5.4.2) ensures that if a

quorum releases multiple blocks, then network does not need to choose between these

blocks (potentially resulting in a tie or no consensus) and can remove the malicious

quorum.

5.6.2 Long-Range attack

In the Long-Range attack, an adversary gains enough control of the mining net-

work at a certain block in the past. This allows them to write a new history of the

blockchain, creating a fork from that point. Proof of Stake (PoS) is a consensus

protocol that can suffer from this attack. In our system, this would theoretically be

done if the adversary acquired enough private keys from miners who were members

of the mining pool at that block. If the attacker accumulates the majority of the

private keys, they may rerun the consensus protocol and write a new history of the

blockchain from that point. As a countermeasure, our protocol has the concept of

well-establishment, which is a rolling checkpoint system. From the perspective of a

node or observer who has observed the blockchain between the block that is attacked

and the time of attack, no one can reverse the blockchain before the last checkpoint.

It should be noted that it is highly unlikely that the adversary could have enough

transactions to carry their fork into the future as long as the transactions depend

on other transactions’ positions in the blockchain, meaning they would be unable to

deceive participants who own transactions on the blockchain.

5.6.3 Future miners selection attack

In leader selection protocols where the leader’s block is used to select future lead-

ers, there is a concern that a malicious leader can manipulate their block to select a

99

new leader that they want rather than a random one. In the context of our protocol,

this action would involve quorum members or the quorum as a whole to manipulate

the block so that it would select future leaders favorable to them. We have several

mitigations for this issue.

Our system uses blocks that are designed so that a set of transactions can only

result in one block header Hn. An honest quorum member Pi attempts to add all

of the transactions from their mempool to the block Bn and expects all the valid

transactions from the skeleton blocks created by the other quorum members to be

added to Bn as well. Additionally, Pi expects null transaction from each participating

member of Qn, not releasing their null transaction until all parties have committed

to their skeleton blocks. Therefore, the ability of a minority of the Qn to manipulate

the Bn is limited, as the honest majority would not sign a block with omissions. This

means that a block will not be manipulated by intentional omissions unless at least

δ nodes in the Qn are malicious.

If the adversary controls at least δ members of Qn, we assume they have full

control ofQn. We assume they can perfectly select a set of transactions such that their

block header selects their choice of nodes to future quorums within the scope of their

header. This alone, however does not provide them with the ability to reliably create

a malicious quorum, as each header selects half of two quorums Qn+β and Qn+(β−1)

rather than one full quorum. To make Qn+β malicious with certainty, Qn and Qn+1

must both be malicious. Even if these two consecutive quorums are malicious, they

will not be able to maintain control of the system (assuming β > 2). If Qn and

Qn+1 are both malicious, then they are able to control Qn+β, but no other quorums.

This shows a diminishing of malicious control of one quorum every β blocks. Even if

100

the malicious group controls β − 1 consecutive quorums, their control of the system

diminishes by one consecutive block every β blocks. To be able to maintain control,

the malicious group would have to gain control of β consecutive quorums, which is

highly improbable, even with 50%− 1 corruption of the network.

In the unlikely event that the adversary controls β consecutive quorums, the

malicious group will have control over the system for a number of blocks. This

time is limited, however, due to priority miners and the greylist. Even with 50%− 1

corruption with the malicious adversary using our malicious strategy on a network

with our recommended settings, they were unable to maintain control of the network

for more than a a couple days and never spontaneously gained control on their own.

This is because they were unable to prevent honest nodes from obtaining priority.

Additionally, to maintain control for any time, the malicious adversaries must be able

to saturate the greylist with malicious nodes so that the malicious nodes entering the

greylist are beign replace by malicious nodes leaving the greylist.

5.6.4 Stalling the Network

An alternative strategy for a malicious adversary is to create perpetual impeach-

ments. The goal is to create a chain of non-functional quorums that are impeached

and replaced with other non-functional quorums. This is done by ensuring each quo-

rum has sufficient malicious membership to prevent the creation of a valid block.

This is prevented by changing which quorums select the block when an impeachment

occurs. To cause perpetual impeachment, the malicious group must have controlled

consecutive quorums leading up to the current block with no network membership

changes. Controlling these quorums implies a large number of malicious nodes would

have to be in the greylist and would be ineligible to participate in such an attack. Ad-

101

ditionally, as the number of impeachments increases, the number of malicious nodes

required to invalidate a block increases, therefore this attack would not be permanent.

5.7 Security Analysis
We will now provide a formal analysis to show that a minority in the quorum Qn

with q members cannot exercise significant control over the block header Hn.

Proposition 1 If a selected quorum Qn with malicious membership q′ < δ broadcasts

a valid block Bn within their round n, then no member of Qn can broadcast another

valid block B′n in round n such that Bn 6= B′n.

Proof. A valid block Bn must be signed by at least δ members of Qn. The honest

Qn members, who compose at least q − (δ − 1) members in the Qn, would be in

communication and will, as a group, only sign one Bn. Therefore, the remaining q′

members would be incapable of creating a valid B′n if Bn is valid, as Bn is signed by

δ members of Q.

To create a valid block B′n without the participation of the honest members of

Qn, the malicious members must either forge their signatures or find a block with an

identicalMH. Both of these strategies are infeasible, as they depend on solving hard

problems.

Proposition 2 If a quorum Qn with malicious membership q′ < δ is selected and

releases a valid block Bn, then any valid Tx proposed by an honest member of Qn will

exist in Bn.

Proof. Assume Pi is an honest node and has transaction Tx in their mempool.

Pi creates a skeleton block SBi, which includes Tx’s transaction header. Pi sends

102

SBi to all members of Qn, including the other honest nodes. The honest nodes will

request Tx if they do not possess it. After verifying Tx, they will include Tx in their

master block and produce a block Bn. If the malicious nodes attempt to exclude

Tx, they will be creating a different block B′n. The parties now compare theirMHi.

P (MHn =MH′n|Bn 6= B′n) is negligible
(
' 1√

2129

)
, assuming a secure hash function

with strong collision resistance. Since the honest nodes will not signMH′n, the block

that does not contain Tx will not be valid.

Proposition 3 If a quorum Qn with malicious membership q′ < δ is selected, the

ability of the malicious group to alter the block header Hn of a valid Bn is limited to∑q
k=q−δ

(
q′

q−k

)
possibilities.

Proof. Assuming that a set of transactions can only result in one Hn, the only

mechanism to change Hn would be to change the set of transactions. Since each

quorum member is expected to produce a null transaction and there exists one valid

null transaction per quorum member, the contents of block Bn are unknown to the

malicious parties before the beginning of the protocol. Therefore, the adversary

does not have the ability to alter their entries in their block skeletons to produce

predictable changes in the Hn, as the null transactions are not released until the

parties are committed to their skeleton block. The malicious parties, therefore, have

only one point at which they can choose between different block headers. This point

is when the honest nodes distribute their transactions. At this point, the adversary

can know the full contents of Bn and can examine variants if combinations of their

controlled parties are omitted. Essentially, the parties are able to choose either to

continue with the protocol (and distribute their transactions) or stop participating.

103

Of the malicious group, up to q − δ can stop participating and Bn can still be valid.

Therefore, the number of block headers they can choose from is
∑q

k=q−δ
(
q′

q−k

)
.

5.8 Conclusion
In this work, we have presented , a robust and efficient consensus protocol that

can support the scale and critical nature of healthcare information. Our protocol

achieves fairness with a miner selection protocol that does not require a network-wide

synchronization and is capable of handling a large number of nodes. Finally, based on

the extensive experimental evaluations, we determine it capable of functioning during

major network outages and also capable of resisting attempts to manipulate the miner

selection protocol. We also provide threat risk assessment model and security analysis

of the proposed consensus protocol.

104

CHAPTER 6:

JANUS: TOWARD PREVENTING

COUNTERFEITS IN PHARMACEUTICAL

SUPPLY CHAINS UTILIZING A

MULTI-QUORUM BLOCKCHAIN

6.1 Introduction
A supply chain is a network of linked stakeholders that process a product and pass

it either up or down the chain [65]. In the pharmaceutical industry, prescription drugs

are manufactured and ultimately passed down to an end user, typically a patient or

a hospital. Major stakeholders in the pharmaceutical supply chain typically include

suppliers, manufacturers, warehouses, distributors, pharmacies, and end users.

The Institute for Supply Management (ISM) conducted research in 2020 to survey

global supply chains on the impact of COVID-19. Towards the end of March 2020,

95% of organizations in the survey reported that they already experienced disruptions

as a result of the pandemic, or were expected to [3]. This shows how modern sup-

ply chains have been weakened. More specifically, the current pharmaceutical supply

chain (PSC) suffers from a lack of traceability, security, and transparency. These

faults ultimately contribute to the presence of illegitimate products in the market.

105

An illegitimate product can be any of the following: (1) a counterfeit product, (2)

an adulterated product, (3) a product that is a part of a fraudulent transaction, or

(4) a product otherwise deemed a hazard to users that is not fit to be dispensed [43].

Illegitimacy in the market in the form of counterfeits is arguably one of the most

impactful to the PSC. The World Health Organization (WHO) estimates that the

presence of counterfeit products in the pharmaceutical market can range anywhere

from less than 1% in developed countries to over 10% in some developing countries

[73]. These illegitimate products affect stakeholders throughout the chain. The indus-

try suffers a net loss from production due to these faulty drugs entering the market.

More urgently, counterfeit products can end up seriously harming or causing death

to end users.

Beginning November 2023, the Food and Drug Administration (FDA) will require

stakeholders (except for end users) in the PSC to comply with an act of guidelines

called the Drug Supply Chain Security Act (DSCSA) [44]. The goal of the DSCSA

is to create an electronic track-and-trace system for products in the PSC. In 2023,

when the legislature is in full effect, stakeholders will be required to transmit all sup-

ply chain communications electronically and track their products at the individual

package level [43]. Having an electronic system to track individual products through-

out the PSC can significantly reduce the number of counterfeits in the market. The

emerging applications of blockchain technology could be utilized to form an elec-

tronic, immutable, and decentralized system that provides traceability, security, and

transparency through blockchain’s inherent nature.

While blockchain can be used to form this immutable electronic system, the chal-

lenge of verification of physical products with digital data arises. It also poses the

106

challenge of ensuring end-to-end visibility. Current stakeholders in the PSC usually

have their own local databases that store supply chain data which others in the PSC

cannot access. By eliminating blind spots in the current system, end-to-end visibil-

ity can increase stakeholders’ trust in the system and can also lead to any errors in

the chain getting caught earlier on. Furthermore, blockchain maintains a ledger to

provide sufficient tracking information that all involved stakeholders have access to,

resulting in better coordination between the parties.

Researchers have already proposed blockchain-based solutions to modernize the

PSC [6, 37]. Authors of [6] designed a system in which blocks are proposed when

stakeholders in the chain initiate actions within the PSC (e.g., a warehouse sending

out a shipment). For a block to be approved and added to their blockchain, a lead

validator node must randomly select mining nodes from the network to validate it.

Each package in the chain should have a near-field communication (NFC) tag, which

holds product details, a counter, and a tag ID. Tags are read by receiving parties (e.g.,

a warehouse getting a shipment from a manufacturer) and checked to ensure that the

product data and number of reads on the tag are correct. While NFC tags may be a

beneficial aspect to connect the physical data of the PSC to its virtual blockchain, it

is worth mentioning the security risks that they may pose. While NFC tags do require

a relatively close scanning distance, they can still be easily scanned by almost anyone,

and data stored on them can be read and potentially stolen. Furthermore, data on

NFC tags can be overwritten. This could pose great threats to the PSC. Authors

of [37] also propose the use of lead validator and regular validator nodes. However,

in their system, the lead validator is responsible for the validation of transactions as

well as the proposal of a block. Having a single leader in this position (that is solely

107

responsible for transaction validation) is a step towards centralization and requires

more trust to rely on that node fully.

The objective of this paper is to design a trustless and scalable system for the phar-

maceutical supply chain that: (1) achieves end-to-end visibility to prevent counterfeit

drugs from entering the market and efficiently identify issues in the PSC process,

(2) employs a decentralized decision-making protocol which eliminates the need for

the stakeholders to trust each other while increasing their trust in the process, and

(3) uses a quorum-based consensus protocol to ensure scalability. Our system, called

Janus 1, utilizes an cloning-resistant hologram tagging system that helps stakeholders

trace products through the chain to confirm authenticity. It exploits the immutable

nature of blockchain to increase transparency, security, and traceability while being

fair, random, and scalable. It is targeted at the pharmaceutical industry because

of these traits, as well as the fact that it complies with the DSCSA, which will be

fully-enforced in November 2023 [44]. Our design ensures a tight link between the

sequential steps in the physical supply chain process and the virtual blockchain, which

is beneficial to complex markets such as the PSC.

6.1.1 Contributions

Our contributions in this paper are as follows:

1. We propose a novel blockchain-based pharmaceutical track-and-trace system,

named Janus, that prevents counterfeits from entering the pharmaceutical sup-
1We decided to name our system after the Roman myth of Janus: God of beginnings and

ends [89]. Janus was portrayed having two faces: one facing forward and one facing back. We believe
this to be an appropriate link to our research, as blockchain is an immutable ledger that allows users
to build forward but also look back at previous blocks/transactions. Our system Janus utilizes this
backtracking ability to provide a means of tracing a product back to a stakeholder. This aids in
determining authenticity of a product.

108

ply chain and ensures secure delivery between stakeholders.

2. Our design prevents any stakeholder in the system from introducing counterfeit

products into the pharmaceutical market. We achieve this by utilizing nested

hologram tags that identify where individual items are in the chain, providing

end-to-end transparency of products in the system.

3. To maintain the security of the system, we introduce an equitable multi-quorum

consensus protocol that achieves load-balancing among stakeholders of different

types while maintaining fairness among stakeholders of the same type.

4. We implemented our system, including the multi-quorum consensus protocol.

The results showed that Janus is fair amongst stakeholders concerning mining

contribution, and it is scalable with respect to a linear increase of nodes and

transactions in the network.

6.1.2 Limitations

While end users, such as patients, are certainly stakeholders in the pharmaceutical

supply chain, our model does not include them in the network. The network is

designed to be private-permissioned, meaning only authorized nodes can join and

view the blockchain and network activity. This means that end users would not have

the ability to personally track their product’s origin, limiting transparency at the

patient level. Instead, our system relies on complete trust between the end user and

their pharmacy.

While Janus prevents stakeholders from acting dishonestly and claiming they

never received a shipment when they actually did, there is always the potential for

109

honest mistakes, such as losing packages in delivery. This is a limitation of Janus,

as it does not have steps in place to detect or resolve these types of errors.

6.2 Proposed Solution

6.2.1 System Overview

Janus provides a decentralized way to authenticate products in the pharmaceu-

tical supply chain while preventing counterfeits from entering the market. To connect

the physical aspects of the supply chain to the virtual data of the blockchain, Janus uti-

lizes hologram tags that hold critical information about the package that the tag oc-

cupies. This information can be used down the supply chain to identify a product

and verify its legitimacy. After a physical inspection, the receiver is responsible for

generating a transaction that notifies the network that the shipment has arrived. All

transactions in the network are assigned to their appropriate quorums, as explained in

section 6.2.4. These quorums are responsible for validating transactions and adding

them to a proposed block. Once transactions have been validated, a separate quorum

votes on the validity of the proposed block, thus determining whether or not the block

should be added to the blockchain.

Quorum1

Manufacturer

(M)

Warehouse

(W)

Distributors

(D)
Pharmacy

(P)
End user

(E)

Shipping Entity Shipping Entity Shipping Entity

Tx1

Tx2

Tx3

Tx4

Tx5

Tx6

Proposed Block

Stage 1 Stage 2 Stage 3

Quorum2 Quorum3

Figure 6.1: High-level overview of the system flow in which products move
from stage to stage until they reach the end user.

110

6.2.2 Membership Service Authority

Our system uses a membership service authority (MSA) to ensure the integrity

of the members in the network. The MSA is not a single entity in our design, thus

not a single point of trust. We suggest that the MSA instead consist of all members

in the network. The MSA certifies a potential network node’s public key by creating

a transaction that active members in the network can verify. Once the new entity is

approved and has an eligible key, it can contribute to the network as an authorized

member.

6.2.3 Notations

Table 6.1 contains key notations that will be used throughout the chapter.

Symbol Definition

PSC Pharmaceutical Supply Chain
M Manufacturer
W Warehouse
D Distributor
P Pharmacy
E Shipping Entity

TID Tag ID
PID Product ID
S Source Stakeholder
F Destination Stakeholder
Tx Transaction
t Hologram Tag
p Package
T ′x Set of Proposed Transactions
Q Quorum
q Number of Nodes
TH Transaction Headers
BQ Block Quorum

Table 6.1: Table of notations.

111

6.2.4 Proposed Approach

Our proposed architecture establishes a trading and transmission mechanism to

allow secure exchange between authorized entities in the PSC. The proposed model

reflects a layered architecture that is categorized into two layers: physical and virtual.

The physical layer manages the cooperation between entities for physical prod-

ucts. These communications include the exchanging of goods along with proof of an

auditable delivery (i.e., signed transactions). To track and trace the products, each

package has a hologram tag. Tags are generated and placed by manufacturers onto

each product. Once a product is created and ready to ship out, a tag is generated,

holding the following information: tag ID (TID), product ID (PID), the product’s

National Drug Code (NDC), serial number, lot number, expiration date, and a list

of descendent tags nested inside the tagged container. By having the descendant tag

information in the parent tag, stakeholders can see which packages to expect inside

a shipment. This nested system also allows stakeholders at any step in the chain to

trace their product back to an authorized manufacturer, proving authenticity.

When a delivery arrives at its destination, the first phase is for the receiver to

do a physical check on the shipment: (1) check the box for any obvious physical

tampering, (2) check that the hologram tag has not been tampered with (i.e., the tag

has been re-applied or ripped, indicating that the box has been opened or tampered

with), and (3) scan the tag to ensure that the contents of its shipment are correct

(check previous transaction’s details, specifically PID and TID).

After receiving a shipment, the destination stakeholder initiates a transaction

signifying that the shipment has been received. Transactions are aspects of the virtual

layer, providing the essential connection between the physical data of the PSC and

112

the virtual data on the blockchain.

Algorithm 3 provides a step-by-step procedure of the processes that occur during

each stage in the supply chain. In Figure 6.1, there are three primary stages: one

from Manufacturer (M) to Warehouse (W), one from W to Distributor (D), and one

from D to Pharmacy (P). In steps 1-11, the source stakeholder S fulfills an order

made by the destination stakeholder D. If S is a manufacturer, they are responsible

for creating and placing all hologram tags that belong in the shipment and generating

a transaction verifying that the order has been fulfilled. Otherwise, S just creates

the transaction. Either way, the transaction gets broadcast to the whole network N

for its appropriate quorum to validate. If the transaction is valid, it is added to a

proposed block. Otherwise, it is rejected. In steps 12-19, S hands off the shipment to

shipping entity E for delivery to D. A copy of the first transaction made in step 4 is

created and signed by E, signifying the successful pickup of the delivery. This signed

transaction is broadcast to N and its appropriate quorum validates it. Just as in

steps 8-11, it is added to a proposed block if deemed valid, and rejected if determined

invalid. In steps 20-32, E makes the delivery to D and D must perform a physical

check to ensure there has been no obvious tampering. If the inspection passes, D

scans the hologram tag on the shipment, crosschecks the data, and generates a signed

transaction σTx,D notifying that the shipment has been received successfully by D.

This transaction is validated by its appropriate quorum and added to a proposed

block if valid.

Transactions.The blockchain will be made up of different types of transactions,

primarily:

Definition 8 Source Transactions. A transaction Tx is a source transaction if it is

113

Algorithm 3 Source-to-Destination Stage Delivery Process
Input: source stakeholder S, destination stakeholder D, shipping entity E, transaction Tx, outer-
most hologram tag t1, and the physical shipment/package itself p.
Output: σTx,D.
1: D places order to S for product
2: if S is a manufacturer:
3: S generates t for each product and package in the order:

t {tag ID, product ID, national drug code, serial number, lot number, expiration date,
metadata}

4: S generates signed transaction σTx,S = Sigs(Tx) indicating that the order from D has been
fulfilled

5: Tx ← {source ID, destination ID, product data, data of t1}
6: σTx,S is broadcast to N
7: Quorum validates σTx,S

8: if σTx,S is invalid:
9: break
10: else:
11: σTx,S is added to proposed block and S proceeds to Step 12
12: S gives shipment to E for delivery to D
13: E generates signed transaction σTx,E = SigE(σTx,S) to notify that p is in the delivery stage to
D

14: σTx,E is broadcast to N
15: Quorum validates σTx,E

16: if σTx,E is invalid:
17: break
18: else:
19: σTx,E is added to proposed block and E proceeds to Step 20
20: E arrives at the facility of D with p
21: D must perform a physical check to ensure that p has not been obviously tampered with
22: if p is noticeably tampered with:
23: break
24: else:
25: D continues to Step 26
26: D scans t1 and generates signed transaction σTx,D = SigD(σTx,E) signifying that p has been

received by D
27: return σTx,D to N
28: Quorum validates σTx,D
29: if σTx,D is invalid:
30: break
31: else:
32: σTx,D is added to block and D proceeds to Step 33
33: Repeat Step 1 through Step 33 until product has reached the pharmacy level

114

generated and signed by a source stakeholder S in a stage (σTx,S). �

Definition 9 Shipping Transactions. A transaction Tx is a shipping transaction

signifying that a shipment has been sent out if it is a source transaction signed by a

shipping entity E in a stage (σTx,E). �

Definition 10 Destination Transactions. A transaction Tx is a destination trans-

action signifying that a delivery has been made to its destination if it is a shipping

transaction signed by a destination stakeholder D in a stage (σTx,D). �

All transactions consist of the source (S), destination (D), tag information of the

outer tag (T i), and the signature of the stakeholder initiating the transaction. If a

transaction is generated but has no destination, the responsibility of validation will

fall on the quorum of the highest order. For example, if W generates a transaction

that is not about a product shipping out and therefore has no destination, validation

will be done by Quorum 3, as defined in Section 6.2.4.

A transaction or proposed block must receive 2/3 valid votes from its quorum to

be deemed valid.

Validation. Validation differs between transactions and blocks. To verify transac-

tions generated as a product enters the chain, responsible quorums must check that S

and D are both authorized addresses in the system, as well as check that the signature

on the transaction comes from an authorized entity in the network. To verify transac-

tions indicating that E is transporting a delivery, the S and D must match those on

the previous transaction, and the signature of E must be an authorized member of the

network. For transactions indicating an order has been delivered to its destination,

115

quorums must check that the new signature matches the destination of the original

transaction and belongs to an authorized entity on the network. Members must also

crosscheck the TID and the PID with the original transaction/order to ensure that

the data matches.

Blocks are validated differently than transactions. Block quorum BQ is responsible

for computing the hash of the previous block in the chain and comparing it to the

hash in the proposed block’s header. If the hashes match and all quorum member

signatures in the signature section are from authorized nodes, the block is considered

valid.

Quorums. Our system takes advantage of the use of multiple quorums in order

to achieve fairness, randomness, and scalability. In our system, there should be N-1

quorum types, where N represents the number of stakeholder types in the network.

Since we consider M, W, D, P, and E as primary stakeholders contributing to the

network, four types of quorums would be formed. In reference to this model, we

consider the following quorums:

Quorum 1: a quorum that consists of M, W, and E nodes

Quorum 2: a quorum that consists of W, D, and E nodes

Quorum 3: a quorum that consists of D, P, and E nodes

Quorum 4: a special block quorum BQ that can consist of any stakeholder type

in the network

Quorums are assigned to mine on their respective transactions. For example,

Quorum 1 described above would be assigned to mine transactions that take place

between M, W, and E. By having stakeholders mine on transactions of their own

type, our system achieves local and global fairness. We define local fairness as the

116

fairness amongst stakeholders of the same type and global fairness as the fairness

across the network amongst stakeholders of different types. For further explanation

and implementation of local and global fairness, see Section 6.3.2.

As mentioned earlier, Quorum 4 is unique as it can consist of any stakeholder

types in the network. This quorum, unlike others which validate transactions, is

responsible solely for block validation.

All quorum members are selected randomly via our random-selection algorithm,

which utilizes the hash of the previous block. This algorithm ensures local fairness

between stakeholders in the same quorum pools. Entities that generate transactions

will be responsible for running the random-selection algorithm. Because the algorithm

relies on the hash of the previous block, all quorum members calculated will be the

same even if multiple entities run it simultaneously.

Quorum member selection is outlined in Algorithm 4. To create quorum Q, we

first take the hash of the previous block. Our random-selection algorithm is performed

using the number of nodes in the network n, the list of eligible miners in each quorum

selection pool G where G = [g1, g2, ..., gk], and the block header of the previous block

in the chain Hr. The algorithm randomly selects log(G) nodes to join a quorum.

Algorithm 4 Quorum Members Selection
Input: list of eligible miners G, number of nodes in the network n, seed s1, and block header Hr of
the previous block
1: Q ← {}
2: s1 ← h(Hr)
3: Q ← randomSelect(n, G, s1)
4: return Q

Block Architecture. Each block in the chain will consist of a header, a body, and

a signature section. The block’s header will contain the hash of the previous block

117

as well as the timestamp of the current block’s creation. The body will hold all of

the valid transactions of the current block. Below the body, the signature section will

hold the signatures of the quorum members that validated the transactions.

Block Validation. Block quorum BQ must check that the block has proper struc-

ture, as well as compute the hash of the previous block and use it to run the selection

algorithm. They can then check to make sure that all quorum members responsible

for validating the transactions in the proposed block are authorized and participating

honestly. In order for a block to be added to the blockchain, a minimum of 2/3 valid

votes are required from BQ.

6.2.5 Consensus Protocol

Blockchain requires a consensus protocol — a technique for establishing a single

version of the records of transactions approved by the majority of participants. As

our proposed design relies on a permissioned type blockchain where all nodes are

known, a malicious participant would be discovered if it exercised to alter the chain

in an unacceptable way. Therefore public consensus protocols such as Proof of Work

(PoW) [69], Proof of Stake (PoS) [14], and Delegated Proof of Stake (DPoS) [14] are

not perfect solutions. Some popular consensus protocols for private blockchain sys-

tems are Practical Byzantine Fault Tolerance (PBFT), Tendermint, and Hyperledger

Fabric.

Many researchers and blockchain developers have started to focus on creating fair,

scalable, and efficient consensus protocols that fit different use-cases. For example,

[6] designed a protocol based on Tendermint to be used in the pharmaceutical supply

chain. It relies on random selection for validator nodes, promoting fairness and some

118

degree of decentralization. While their protocol does have lead-validator nodes, they

are responsible only for randomly-selecting log(n) validator nodes and broadcasting

proposed blocks. Validators must go through two rounds of voting to reach consensus:

pre-voting and pre-committing. At each round, responses from 2/3 of the log(n)

validators must be received. After the pre-committing round, responses are counted

and the final decision to reject or append the block to the blockchain is made.

In [37], a lead validator node was also proposed in the consensus protocol. How-

ever, in their design, the leader was responsible for proposing blocks as well as broad-

casting them to the regular validators. These validators then check the validity of

the block proposed by their leader, responding with a 0 to signify an invalid vote

or a 1 to signify a valid vote. Whichever response receives more than half the votes

determines if a block is added or rejected. Thus, for a lead validator to push a block

to the chain, it must receive over 50% valid votes.

Our proposed consensus protocol relies on votes from authorized quorum members

and does not use leader nodes. Instead, different quorums for each transaction type as

well as a quorum designated for block validation vote to reach consensus on decisions

regarding the blockchain. This provides a decentralized and trustless system.

Reaching Consensus. To reach consensus, our design requires all members of a

quorum to place a vote of valid or invalid. The final decision is based on all responses

received. A minimum of 2/3 valid votes is required for approval of any decision

regarding the blockchain.

Algorithm 5 gives a step-by-step overview of how blocks are created and validated.

In steps 1-3, quorum members view and share transactions that appear in their mem-

pools. Quorum member Qi requests the transactions from all other members’ mem-

119

pools, with all other members being Qj. By requesting each other’s transactions,

they can assure everyone has the same view. In steps 4-5, quorum members create a

dummy block including all valid transactions from mempools of all members. Trans-

actions missing in the dummy block are also then requested from others, as per steps

6-7. Once all transactions have been received, Qi follows steps 8-10 and builds a full

drafted block and hashes it to create a signed hash of the drafted block. It is then

broadcast to the quorum and requests the signed hashes of drafted blocks created by

the remaining members in the network to complete steps 11-12. If the hashed draft

block achieves the threshold of 2/3 valid votes, members append their signatures and

forward it to the block quorum responsible for validation. If the block achieves at

least 2/3 of signatures from the block quorum, it is added to the main chain as per

step 19.

6.3 Experimental Evaluation

6.3.1 Setup and Environment

All of our experiments were performed using a Windows 64-bit machine running

Windows 10 Pro. The machine has an Intel i7-4810MQ CPU and 16GB of RAM. Our

tests were written in C++ and compiled and executed in Windows Visual Studio.

Because C++ cannot natively accommodate numbers as large as the standard 256-

bit hash, we used the first 1/4 of the previous block hash to compute the quorum

members. The full source code can be accessed here 2.

The following subsections describe and observe the results of the experiments we

performed to test the fairness and scalability of our system, as well as the likelihood of
2https://drive.google.com/drive/folders/1IozLEXLQ5esLj-bIzo7ZCAOw5XfEnxnJ?usp=sharing

120

Algorithm 5 Building and Mining a Block Bn
Input: A set of transactions T ′x with authorized signatures that have not yet been added to the
chain, a quorum Q of q nodes, and a threshold of δ where δ is 2/3, and a time limit tlimit.
Output: If successful, a valid block is generated. Otherwise, it will return null.

1: Initialization. Members of Q take all headers of transactions TH that exist in their mempool.
2: broadcast(Qi,Q, JT HiK)
3: request(Qi,Q, JT HjK)
4: Qi verifies JT HjK. If any Qj produces a falsified T Hj , that transaction is rejected.
5: Qi creates a dummy block DB that contains all valid transactions from their mempool and all
Qj mempools
DB ←

⋃q
i←1 T Hij

6: for all transactions T ′x ∈ DB − T Hi do
7: request(Qi,Q, T ′x)
8: end for
9: Qi builds a drafted block DRB
10: Hn ← block_hash(DRBi)
11: Qi generates HnQi

by appending its signature onto Hn
12: broadcast(Qi,Q,HnQi

)
13: request(Qi,Q,HnQj

)

14: if Hn achieves δ:
All members of Q append their signatures onto DRB and forward it to the block quorum BQ.

15: else:
16: Repeat Step 2 through Step 12.

if telapsed < tlimit
17: break
18: broadcast(Q,BQ,HnQi

)
19: if HnQi

achieves majority of the signatures from BQ:
It will be added to the main chain

20: else:
Null

a malicious quorum forming. We have also provided the results of the communication

cost evaluation of our system.

6.3.2 Fairness

In this experiment, we assess the fairness of our algorithm on two scales: local and

global. Local fairness refers to the balance of work amongst stakeholders of the same

type, while global fairness refers to the load-balancing achieved across the system as

a whole.

To test the fairness of our system, we assume there are four primary stakeholder

121

types, each represented with 20 nodes on the x-axis, while the y-axis represents the

number of times a node was selected. Three quorums are generated in each iteration.

We ran the test 5,000 times to simulate the generation of 5,000 blocks in the network,

for a total of 15,000 quorums.

Figure 6.2: Local and global fairness.

Figure 6.2 illustrates the results of the fairness experiment. We observe that each

stakeholder has a linear projection regardless of their type, where nodes were selected

roughly the same number of times throughout the 5,000 trials. This indicates that

we achieve local fairness. Looking at the graph as a whole, we can also see that our

system achieves global fairness because certain stakeholders are selected for quorums

more frequently than others. Warehouses and distributors are involved in double

the transactions, justifying why they are selected roughly 1,200 times versus 600 like

manufacturers and pharmacies. Thus, our algorithm accomplishes the task of being

globally fair amongst stakeholders across the network.

6.3.3 Scalability

Scalability is crucial for an efficient system, especially one the size of the phar-

maceutical supply chain. To assess the scalability of our design, we consider a linear

122

increase in the number of nodes and transactions in the network.

To test the scalability of Janus, we track the runtime in seconds (y-axis) that it

takes for quorums in networks with different numbers of nodes (x-axis) to synchronize

their transaction information when there are a large number of transactions. We ran

this test 100 times, each iteration recording responses for networks with 1,000 to 5,000

nodes sharing 2,000 to 8,000 transactions.

Figure 6.3 graphs the results of our scalability experiment. We observe a slight

increase in runtime as the number of nodes progresses from 1,000 to 3,000 for all

numbers of transactions. After our system reached 3,000 nodes, it began to level

off. This is because quorum size for the subsequent networks is the same. Our graph

shows a gradual increase in runtime that is consistently proportional between network

size (number of nodes) and number of transactions. Thus, our system is proven to be

scalable.

Figure 6.3: Scalability as nodes/transactions increase.

123

6.3.4 Resiliency Against Malicious Quorums

To prove the security of our algorithm, we performed an experiment to test re-

siliency against malicious quorums. To assess the resiliency, we consider that a per-

centage of nodes in the network are malicious to determine the frequency in which

malicious quorums are formed.

To test resiliency against malicious quorums, we consider an increasing percent-

age of malicious nodes in the network (x-axis) and examine how it affects the total

percentage of malicious quorums formed (y-axis). This experiment was repeated 100

times, considering 10%, 15%, 20%, 25%, and 30% malicious nodes in the network.

Figure 6.4 visualizes the results of our experiment. We observe that as the number

of malicious nodes in the network increases, the percentage of malicious quorums

increases exponentially. Based on this observation, it’s fair to assume that the larger

the network, the less probable a malicious quorum is to form (in comparison to

smaller networks). When around 23% of nodes in a network are malicious, we define

a threshold where the percentage of malicious quorums forming ranges from 0% to

1%. After this threshold, the percentage begins to increase exponentially. We want

our network to remain 23% malicious or less to ensure no more than 1% malicious

quorums are formed, which is a reasonable expectation in a permissioned network like

ours.

This graph represents the case in which a regular quorum is malicious, but the

block quorum is honest (or vice versa). It is worth mentioning that the probability

of both types of quorums being malicious is exponentially lower.

124

Figure 6.4: Potential percentage of malicious quorums forming.

6.3.5 Communication Cost

To evaluate the communication cost of Janus, we first examined the cost of

transactions in the network. Figure 6.5 visualizes the transactional cost in terms

of average megabytes (MB) per quorum (y-axis) depending on the total number of

transactions (x-axis). We ran this evaluation simulating networks of 2000, 4000, and

8000 nodes transmitting 2000 to 16000 transactions. We chose these network sizes in

order to establish the transaction costs at different common quorum sizes. To build a

draft block that is the same for all quorum members, we assume that the probability

of any given node having any given transaction is at least 65%.

We observe that more nodes in a network results in longer processing times. As

anticipated, it takes longer to process the same number of transactions in larger

networks, as they require communication with more nodes.

Regardless of network size, communication cost will increase linearly as the num-

125

ber of transactions increases. This contributes to the scalability of Janus, showing

that it can handle as many nodes as possible without drastically affecting communi-

cation cost.

Figure 6.5: Communication cost as nodes/transactions increase.

6.4 Threats, Attacks, and Security Model
Evaluating the security of consensus protocols is challenging due to the variation

of attacks encountered by blockchain systems. Threat modeling is a simple study

directed by most researchers to systematically approach cyber threats and recognize

potential system security concerns in advance.

We identify two threats: (1) quorum misbehaviour: a timing fault due to a miner

transmitting self-contradictory blocks at the same time, and (2) denial of service:

an omission weakness due to quorum members bypassing signing or announcing a

transaction.

We find it important to also mention two key attacks that quorum models may

be vulnerable to: eclipse attacks and random manipulation attacks. Eclipse attacks

126

can devastate a system by allowing an adversarial quorum member to attack other

quorum members. Here, the malicious quorum member can monopolize all of the

victim’s incoming and outgoing connections, hence separating the victim from the

rest of its quorum members. In this way, the adversary can modify the victim’s

view of the draft block. The malicious node could target multiple quorum members

simultaneously.

Randomness manipulation attacks occur when a malicious quorum makes at-

tempts to permutate the order of all transactions until it is confirmed that a malicious

quorum will be formed in the future. The probability can be dramatically decreased

if we choose the seed as a concatenation of the hash of the previous block and hash

of the previous to previous block in Algorithm 4.

Proposition 4 If a selected quorum has malicious nodes < δ in a round, then all

malicious nodes will add all the valid Tx to its block in that round.

Proof. Assume the majority of the members are honest, then honest members will

receive the valid Tx from others. Due to the majority, any invalid Tx forwarded by

the malicious node will be discarded.

Let’s consider the following situation: A dishonest member does not accept a

block within a pre-defined waiting period, but all honest members send their votes

to the draft block. As long as δ is satisfied, then all honest peers will make the same

update of their blockchain.

Proposition 5 Assume one of the proposing quorum Qn is faulty in a round. If

majority of other quorums remain honest, then it is impossible for them to add invalid

blocks to their blockchain in the same round.

127

Proof. In Janus, a draft block is appended to the main chain if and only if the

block quorum accepts it. As far as majority of this quorum remain honest, no invalid

blocks can be added in case of other becomes malicious.

6.5 Conclusion
We have proposed a pharmaceutical-specific blockchain system that utilizes cloning-

resistant hologram tags to aid in the prevention of counterfeit products from entering

the pharmaceutical market. We evaluated Janus against three metrics: fairness, scal-

ability, and resiliency. Based on our implementation and large scale evaluation of the

system, we have shown that our design maintains approximately similar workloads

between all stakeholders, is scalable for large networks such as the pharmaceutical sup-

ply chain, and is resilient against malicious quorums. We conclude that blockchain

technology has the potential to make the supply chain management system more

transparent, traceable, and resilient.

128

CHAPTER 7:

CONCLUSION

In this dissertation, we performed extensive research on distributed consensus pro-

tocols and proposed three different protocols especially for private, healthcare, and

supply chain domains. By the experimental evaluation of our approaches, we observe

that fairness and effectiveness are the two exceptional properties for designing secure

consensus protocols in blockchain applications.

In chapter 2, we elaborate related work that has been done over the years in

the field of our dissertation research. We discuss the advantages and disadvantages

of existing consensus protocols in the public, private, healthcare, and supply chain

domain. We also present a comparative evaluation of the existing protocols related

to cryptocurrencies.

In chapter 3, we presented and discussed the background knowledge needed for

this dissertation work. We explain TEE, SGX, the abstract model of PoEt, remote

attestation, and DSCSA policy.

In chapter 4, we propose our solution for building a consensus protocol that

achieves higher throughput and is free from the collision. We evaluate our proto-

col against three metrics: throughput, scalability, and fairness. Finally, based on

the simulation and large-scale evaluation, we conclude that our protocol outperforms

intel’s PoET in terms of throughput.

129

In chapter 5, we propose a novel permissioned multi-leader (quorum-based) con-

sensus protocol that achieves fork-resistance, robustness, and scalability that can

support the sheer scale and critical nature of healthcare information. Subsequently,

based on the comprehensive evaluations we discovered it could remain functional dur-

ing significant network interruptions and capable of resisting attempts to manipulate

the miner selection protocol. We also provide a threat risk assessment model and

security analysis of the proposed consensus framework.

In chapter 6, we propose a pharmaceutical-specific blockchain system that uses

cloning-resistant hologram tags to prevent counterfeit products from entering the

pharmaceutical market. Our implementation shows that our design keeps relatively

comparable workloads between all stakeholders, is scalable for comprehensive net-

works, and is resilient against malicious quorums.

In a nutshell, we propose in this dissertation three different consensus protocols,

and evaluate their overall performance based on metrics such as throughput, scala-

bility, fairness, as shown in Table 1.1.

Looking Ahead. Designing and deploying a consensus protocol is a challenging task

as it requires the analysis of various essential issues such as resiliency against node

failures, malicious behavior of nodes, fork resistance, and transaction ordering. It

would be interesting to explore how to determine the unique features of a consensus

protocol that would be a good fit for all sectors and be used as a mainstream consensus

protocol. As future work, we plan to modify the node-side protocol of PoQ by

adjusting the quantum time depending on the time left of executing nodes to optimize

the overall fairness of the protocol. Also, ACCORD could theoretically be extended

by investigating how to make the selections of the quorum selection protocol only

130

known to the quorum until block creation to prevent DDOS attacks. In JANUS, it

would be interesting to explore how to utilize blockchain to securely handle returns

at any stage from a destination to a source throughout the pharmaceutical supply

chain.

131

BIBLIOGRAPHY

[1] Why EHR data interoperability is such a mess in 3 charts, Oct 2018. [Online;

accessed 9. Feb. 2021].

[2] Change Healthcare: enterprise blockchain with 30 million transactions per day

- Ledger Insights - enterprise blockchain, Feb 2019. [Online; accessed 28. Jan.

2021].

[3] Can blockchain rescue from supply chain disruptions due to covid-19?, Dec

2020. Available at https://www.devdiscourse.com/article/technology/

1043874-can-blockchain-rescue-from-supply-chain-disruptions-due-to-covid-19.

[4] Medical records 10x more valuable to hackers than credit card information: Cy-

bersecurity issues in healthcare have fallen to criticism lately in light of rising

data breaches, notably the hacked server at Franklin, Tenn.-based Community

Health Systems which compromised protected health information of 4.5 million

patients., Nov 2020. [Online; accessed 17. Nov. 2020].

[5] Mansoor Ahmed and Kari Kostiainen. Identity aging: Efficient blockchain con-

sensus. 2018.

[6] Naif Alzahrani and Nirupama Bulusu. Block-Supply Chain: A New Anti-

Counterfeiting Supply Chain Using NFC and Blockchain. In Proceedings of the

https://www.devdiscourse.com/article/technology/1043874-can-blockchain-rescue-from-supply-chain-disruptions-due-to-covid-19
https://www.devdiscourse.com/article/technology/1043874-can-blockchain-rescue-from-supply-chain-disruptions-due-to-covid-19

132

1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, page

30–35. Association for Computing Machinery, 2018.

[7] Sébastien Andreina, Jens-Matthias Bohli, Ghassan O. Karame, Wenting Li, and

Giorgia Azzurra Marson. Pots - a secure proof of tee-stake for permissionless

blockchains. IACR Cryptology ePrint Archive, 2018:1135, 2018.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. Hyperledger fabric: a distributed operating

system for permissioned blockchains. In Proceedings of the thirteenth EuroSys

conference, pages 1–15, 2018.

[9] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:

Using blockchain for medical data access and permission management. In 2016

2nd International Conference on Open and Big Data (OBD), pages 25–30. IEEE,

2016.

[10] LM Bach, Branko Mihaljevic, and Mario Zagar. Comparative analysis of

blockchain consensus algorithms. In 2018 41st International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), pages 1545–1550. IEEE, 2018.

[11] Arati Baliga. Understanding blockchain consensus models. In Persistent. 2017.

[12] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. Sok : Consensus in the age of

blockchains. 2017.

133

[13] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of

blockchains. 2017.

[14] G. Bashar, G. Hill, S. Singha, P. Marella, G. G. Dagher, and J. Xiao. Contex-

tualizing consensus protocols in blockchain: A short survey. In 2019 First IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems

and Applications (TPS-ISA), pages 190–195, 2019.

[15] Golam Dastoger Bashar, Alejandro Anzola Avila, and Gaby G Dagher. Poq:

A consensus protocol for private blockchains using intel sgx. In International

Conference on Security and Privacy in Communication Systems, pages 141–160.

Springer, 2020.

[16] B. M. A. L. Basnayake and C. Rajapakse. A blockchain-based decentralized

system to ensure the transparency of organic food supply chain. In 2019 In-

ternational Research Conference on Smart Computing and Systems Engineering

(SCSE), pages 103–107, 2019.

[17] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activity:

Extending bitcoin’s proof of work via proof of stake [extended abstract] y. ACM

SIGMETRICS Performance Evaluation Review, 42(3):34–37, 2014.

[18] Arpan Bhattacharjee, Shahriar Badsha, Abdur R Shahid, Hanif Livani, and

Shamik Sengupta. Block-phasor: A decentralized blockchain framework to en-

hance security of synchrophasor. In 2020 IEEE Kansas Power and Energy Con-

ference (KPEC), pages 1–6. IEEE, 2020.

134

[19] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifi-

ably encrypted signatures from bilinear maps. In International Conference on the

Theory and Applications of Cryptographic Techniques, pages 416–432. Springer,

2003.

[20] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. Research perspectives and challenges for bitcoin

and cryptocurrencies (e.v.). IACR, 2015.

[21] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of

blockchains. Master’s thesis, The University of Guelph, 2016.

[22] Vitalik Buterin et al. Ethereum: A next-generation smart contract and decen-

tralized application platform. 7, 2014.

[23] Kelly Caine, Spencer Kohn, Carrie Lawrence, Rima Hanania, Eric M Meslin,

and William M Tierney. Designing a patient-centered user interface for access

decisions about ehr data: implications from patient interviews. Journal of general

internal medicine, 30(1):7–16, 2015.

[24] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.

[25] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On

security analysis of proof-of-elapsed-time (poet). In SSS, 2017.

[26] Xusheng Chen and Shixiong Zhao. Scalable, efficient, and consistent consensus

for blockchains, 2018.

135

[27] Mauro Conti, E Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. A survey

on security and privacy issues of bitcoin. IEEE Communications Surveys &

Tutorials, 20(4):3416–3452, 2018.

[28] Amie Corso. Performance analysis of proof-of-elapsed-time (poet) consensus in

the sawtooth blockchain framework. 2019.

[29] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology

ePrint Archive, 2016(086):1–118, 2016.

[30] Gaby G Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu Marella.

Ancile: Privacy-preserving framework for access control and interoperability of

electronic health records using blockchain technology. Sustainable cities and

society, 39:283–297, 2018.

[31] Hung Dang, Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi. Chain of trust:

Can trusted hardware help scaling blockchains? ArXiv, abs/1804.00399, 2018.

[32] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. Towards scaling blockchain systems via sharding. In Pro-

ceedings of the 2019 International Conference on Management of Data, SIGMOD

’19, pages 123–140, New York, NY, USA, 2019. ACM.

[33] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, An-

drea Margheri, and Vladimiro Sassone. Pbft vs proof-of-authority: applying the

cap theorem to permissioned blockchain. 2018.

[34] Vikram Dhillon, David Metcalf, and Max Hooper. The hyperledger project. In

Blockchain enabled applications, pages 139–149. Springer, 2017.

136

[35] Omar Dib, Kei-Leo Brousmiche, Antoine Durand, Eric Thea, and Elyes Ben

Hamida. Consortium blockchains: Overview, applications and challenges. Inter-

national Journal On Advances in Telecommunications, 11(1&2), 2018.

[36] Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu, Michael Schumacher, and

Fusheng Wang. Secure and trustable electronic medical records sharing using

blockchain. In AMIA annual symposium proceedings, volume 2017, page 650.

American Medical Informatics Association, 2017.

[37] Sanjeev Kumar Dwivedi, Ruhul Amin, and Satyanarayana Vollala. Blockchain

based secured information sharing protocol in supply chain management system

with key distribution mechanism. Journal of Information Security and Applica-

tions, 54:102554, 2020.

[38] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.

In Advances in Cryptology, pages 139–147, 1993.

[39] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. Proofs of space. In Annual Cryptology Conference, pages 585–605.

Springer, 2015.

[40] Kai Fan, Shangyang Wang, Yanhui Ren, Hui Li, and Yintang Yang. Medblock:

Efficient and secure medical data sharing via blockchain. Journal of medical

systems, 42(8):136, 2018.

[41] Nilgun Fescioglu-Unver, Sung Hee Choi, Dongmok Sheen, and Soundar Kumara.

Rfid in production and service systems: Technology, applications and issues.

Information Systems Frontiers, 17, 01 2014.

137

[42] Michael J. Fischer, Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. pages 1–7, 1983.

[43] Food and Drug Administration. Title II of the Drug

Quality and Security Act, 2014. Available at https://

www.fda.gov/drugs/drug-supply-chain-security-act-dscsa/

title-ii-drug-quality-and-security-act.

[44] Food and Drug Administration. FDA In Brief: FDA pro-

vides new guidance to further enhance the security of pre-

scription drugs in the U.S. supply chain, Jun 2021. Avail-

able at https://www.fda.gov/news-events/press-announcements/

fda-brief-fda-provides-new-guidance-further-enhance-security-prescription-drugs-us-supply-chain.

[45] F Greer, C McLean, and TE Graham. Caffeine, performance, and metabolism

during repeated wingate exercise tests. Journal of applied physiology, 85(4):1502–

1508, 1998.

[46] Ijazul Haq and Olivier Muselemu. Blockchain Technology in Pharmaceutical

Industry to Prevent Counterfeit Drugs. International Journal of Computer Ap-

plications, 180:8–12, 03 2018.

[47] Anton Hasselgren, Katina Kralevska, Danilo Gligoroski, Sindre A Pedersen, and

Arild Faxvaag. Blockchain in healthcare and health sciences—a scoping review.

International Journal of Medical Informatics, 134:104040, 2020.

[48] Of Health and U. S. Department Human Services. HHS Finalizes Historic Rules

to Provide Patients More Control of Their Health Data. HHS, Mar 2020.

https://www.fda.gov/drugs/drug-supply-chain-security-act-dscsa/title-ii-drug-quality-and-security-act
https://www.fda.gov/drugs/drug-supply-chain-security-act-dscsa/title-ii-drug-quality-and-security-act
https://www.fda.gov/drugs/drug-supply-chain-security-act-dscsa/title-ii-drug-quality-and-security-act
https://www.fda.gov/news-events/press-announcements/fda-brief-fda-provides-new-guidance-further-enhance-security-prescription-drugs-us-supply-chain
https://www.fda.gov/news-events/press-announcements/fda-brief-fda-provides-new-guidance-further-enhance-security-prescription-drugs-us-supply-chain

138

[49] J. P. Howard and M. E. Vachino. Blockchain compliance with federal crypto-

graphic information-processing standards. IEEE Security Privacy, 18(1):65–70,

2020.

[50] Jun Huang, Xiang Li, Cong-Cong Xing, Wei Wang, Kun Hua, and Song Guo.

DTD: A Novel Double-Track Approach to Clone Detection for RFID-Enabled

Supply Chains. IEEE Transactions on Emerging Topics in Computing, 5(1):134–

140, 2017.

[51] Drew Ivan. Moving toward a blockchain-based method for the secure storage

of patient records. In ONC/NIST Use of Blockchain for Healthcare and Re-

search Workshop. Gaithersburg, Maryland, United States: ONC/NIST, pages

1–11, 2016.

[52] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols

(extended abstract). pages 258–272, 1999.

[53] Shan Jiang, Jiannong Cao, Hanqing Wu, Yanni Yang, Mingyu Ma, and Jianfei

He. Blochie: a blockchain-based platform for healthcare information exchange.

In 2018 ieee international conference on smart computing (smartcomp), pages

49–56. IEEE, 2018.

[54] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.

Intel® software guard extensions: Epid provisioning and attestation services.

White Paper, 1:1–10, 2016.

[55] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness

for byzantine consensus. IACR Cryptol. ePrint Arch., 2020:269, 2020.

139

[56] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference, pages 357–388. Springer, 2017.

[57] Alexis Kleinman. Gmail And Google Drive Are Experiencing Issues, And Nat-

urally People Are Complaining About It On Twitter (UPDATE: It’s Fixed).

HuffPost, Dec 2017.

[58] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

[59] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[60] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-

erals problem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 4(3):382–401, 1982.

[61] Fátima Leal, Adriana E. Chis, Simon Caton, Horacio González–Vélez, Juan M.

García–Gómez, Marta Durá, Angel Sánchez–García, Carlos Sáez, Anthony

Karageorgos, Vassilis C. Gerogiannis, Apostolos Xenakis, Efthymios Lallas,

Theodoros Ntounas, Eleni Vasileiou, Georgios Mountzouris, Barbara Otti, Pene-

lope Pucci, Rossano Papini, David Cerrai, and Mariola Mier. Smart Pharma-

ceutical Manufacturing: Ensuring End-to-End Traceability and Data Integrity

in Medicine Production. Big Data Research, 24:100172, 2021.

[62] Ling Li. Technology designed to combat fakes in the global supply chain. Business

Horizons, 56(2):167–177, 2013.

140

[63] Xiaoguang Liu, Ziqing Wang, Chunhua Jin, Fagen Li, and Gaoping Li. A

blockchain-based medical data sharing and protection scheme. IEEE Access,

7:118943–118953, 2019.

[64] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Trans-

actions on Dependable and Secure Computing, 3(3):202–215, July 2006.

[65] John T. Mentzer, William DeWitt, James S. Keebler, Soonhong Min, Nancy W.

Nix, Carlo D. Smith, and Zach G. Zacharia. Defining Supply Chain Management.

Journal of Business logistics, 22(2):1–25, 2001.

[66] Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. Proof of luck:

An efficient blockchain consensus protocol. In Proceedings of the 1st Workshop

on System Software for Trusted Execution, SysTEX ’16. ACM, 2016.

[67] Saikat Mondal, Kanishka P. Wijewardena, Saranraj Karuppuswami, Nitya Kriti,

Deepak Kumar, and Premjeet Chahal. Blockchain Inspired RFID-Based Infor-

mation Architecture for Food Supply Chain. IEEE Internet of Things Journal,

6(3):5803–5813, 2019.

[68] Takuro Nakagawa and Naohiro Hayashibara. Energy efficient raft consensus

algorithm. In International Conference on Network-Based Information Systems,

pages 719–727. Springer, 2017.

[69] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[70] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Avail-

able at https://bitcoin.org/bitcoin.pdf.

https://bitcoin.org/bitcoin.pdf

141

[71] Cong T Nguyen, Dinh Thai Hoang, Diep N Nguyen, Dusit Niyato, Huynh Tuong

Nguyen, and Eryk Dutkiewicz. Proof-of-stake consensus mechanisms for future

blockchain networks: fundamentals, applications and opportunities. IEEE Ac-

cess, 7:85727–85745, 2019.

[72] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}

14), pages 305–319, 2014.

[73] World Health Organization. Counterfeit Medicines: an update on estimates

15 November 2006, 2006. Available at https://www.who.int/medicines/

services/counterfeit/impact/TheNewEstimatesCounterfeit.pdf.

[74] Vishal Patel. A framework for secure and decentralized sharing of medical imag-

ing data via blockchain consensus. Health informatics journal, 25(4):1398–1411,

2019.

[75] Yang Peng, Tomoyuki Nagase, Toshiki Kanamoto, Tsutomu Zeniya, and Shan

You. A Virtual Optical Holographic Encryption System Using Expanded Diffie-

Hellman Algorithm. IEEE Access, 9:22071–22077, 2021.

[76] Kevin Peterson, Rammohan Deeduvanu, Pradip Kanjamala, and Kelly Boles. A

blockchain-based approach to health information exchange networks. In Proc.

NIST Workshop Blockchain Healthcare, volume 1, pages 1–10, 2016.

[77] Lauren C Ramsay, Sarah A Buchan, Robert G Stirling, Benjamin J Cowling,

Shuo Feng, Jeffrey C Kwong, and Bryna F Warshawsky. Retracted article: The

https://www.who.int/medicines/services/counterfeit/impact/TheNewEstimatesCounterfeit.pdf
https://www.who.int/medicines/services/counterfeit/impact/TheNewEstimatesCounterfeit.pdf

142

impact of repeated vaccination on influenza vaccine effectiveness: a systematic

review and meta-analysis. BMC medicine, 15(1):1–18, 2017.

[78] Nicolas van Saberhagen. Monero white paper. Oct 2013.

[79] Fahad Saleh. Blockchain without waste: Proof-of-stake. 2018.

[80] M. Schöner, Dimitris Kourouklis, P. Sandner, E. Gonzalez, and Jonas Förster.

Blockchain Technology in the Pharmaceutical Industry. 2017.

[81] David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consen-

sus algorithm. Ripple Labs Inc White Paper, 5(8), 2014.

[82] Affaf Shahid, Ahmad Almogren, Nadeem Javaid, Fahad Ahmad Al-Zahrani,

Mansour Zuair, and Masoom Alam. Blockchain-Based Agri-Food Supply Chain:

A Complete Solution. IEEE Access, 8:69230–69243, 2020.

[83] Michail Sidorov, Ming Tze Ong, Ravivarma Vikneswaren Sridharan, Junya Naka-

mura, Ren Ohmura, and Jing Huey Khor. Ultralightweight Mutual Authenti-

cation RFID Protocol for Blockchain Enabled Supply Chains. IEEE Access,

7:7273–7285, 2019.

[84] Harish Sukhwani, José M Martínez, Xiaolin Chang, Kishor S Trivedi, and

Andy Rindos. Performance modeling of pbft consensus process for permissioned

blockchain network (hyperledger fabric). In 2017 IEEE 36th Symposium on Re-

liable Distributed Systems (SRDS), pages 253–255. IEEE, 2017.

[85] Fei Tang, Shuai Ma, Yong Xiang, and Changlu Lin. An efficient authentication

scheme for blockchain-based electronic health records. IEEE access, 7:41678–

41689, 2019.

143

[86] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft

replication. In International workshop on open problems in network security,

pages 112–125. Springer, 2015.

[87] Abdul Wahab and Waqas Mehmood. Survey of consensus protocols, 2018.

[88] Jo Waller, Kirsten McCaffery, Henry Kitchener, James Nazroo, and Jane Wardle.

Women’s experiences of repeated hpv testing in the context of cervical cancer

screening: a qualitative study. Psycho-Oncology: Journal of the Psychological,

Social and Behavioral Dimensions of Cancer, 16(3):196–204, 2007.

[89] Donald L. Wasson. Janus, Feb 2015. Available at https://www.worldhistory.

org/Janus/.

[90] Karl Wüst and Arthur Gervais. Do you need a blockchain? In 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT), pages 45–54. IEEE, 2018.

[91] Qinghan Xiao, Thomas Gibbons, and Hervé; Lebrun. RFID Technology, Secu-

rity Vulnerabilities, and Countermeasures. In Yanfang Huo and Fu Jia, editors,

Supply Chain, chapter 19. IntechOpen, Rijeka, 2009.

[92] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. A survey of dis-

tributed consensus protocols for blockchain networks, 2019.

[93] Manaf Zghaibeh, Umer Farooq, Najam Ul Hasan, and Imran Baig. Shealth: A

blockchain-based health system with smart contracts capabilities. IEEE Access,

8:70030–70043, 2020.

https://www.worldhistory.org/Janus/
https://www.worldhistory.org/Janus/

144

[94] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse.

REM: Resource-efficient mining for blockchains. In 26th USENIX Security Sym-

posium (USENIX Security 17), Vancouver, August 2017. USENIX Association.

[95] Lijing Zhou, Licheng Wang, and Yiru Sun. CP-consensus: a Blockchain Protocol

Based on Synchronous Timestamps of Compass Satellite. IACR, 2017:1059, 2017.

[96] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to

protect personal data. In 2015 IEEE Security and Privacy Workshops, pages

180–184. IEEE, 2015.

	Dedication
	Acknowledgment
	Abstract
	List of figures
	List of tables
	Introduction
	Research Directions
	Research Direction I: Proof of Queue (PoQ)
	Research Direction II: ACCORD
	Research Direction III: JANUS

	Organization

	Literature Review
	Taxonomy of Consensus Protocols
	Cryptocurrency Consensus Protocols
	Proof of Work
	Proof of Stake
	Proof of Burn
	Proof of Activity
	Proof of Capacity
	Proof of Importance
	Proof of Authority
	Proof of Elapsed Time
	Proof of Luck

	Comparative Evaluation of Consensus Protocols
	Cryptocurrency platform
	TEE platform
	Healthcare platform
	Supply chain platform

	Background
	SGX
	Abstract model of PoET
	Remote Attestation Architecture
	Holographic Encryption
	Blockchain Network Types
	Drug Supply Chain Security Act (DSCSA)

	PoQ: A Consensus Protocol for Private Blockchains Using Intel SGX
	Introduction
	Notations

	Consensus Protocol: PoQ
	Overview
	Principals:
	Protocols:

	Experimental Evaluation
	Goals
	Setup
	Throughput
	Scalability
	Fairness

	Conclusions

	ACCORD: A Scalable Quorum-based Consensus Protocol for Healthcare Blockchain
	Introduction
	Adversary model
	The ACCORD Protocol
	Mining Nodes
	Membership Service Authority
	Data Propagation
	Quorum: A distributed-leader system
	Quorum member selection algorithm
	Greylisting
	Block structure
	Additive Signature
	Null Transaction
	Mempool
	Block Skeleton
	Communication in Block Creation
	Block Creation Protocol

	Mining rules
	Block status definitions
	Voting Rules
	Multiple Accepted Blocks

	Experimental Evaluation
	Communication costs
	Fault Tolerance
	Manipulation in selection
	Miner Selection Distribution

	Threat-Risk Assessment Model
	Fork Resistance
	Long-Range attack
	Future miners selection attack
	Stalling the Network

	Security Analysis
	Conclusion

	Janus: Toward Preventing Counterfeits in Pharmaceutical Supply Chains Utilizing a Multi-Quorum Blockchain
	Introduction
	Contributions
	Limitations

	Proposed Solution
	System Overview
	Membership Service Authority
	Notations
	Proposed Approach
	Consensus Protocol

	Experimental Evaluation
	Setup and Environment
	Fairness
	Scalability
	Resiliency Against Malicious Quorums
	Communication Cost

	Threats, Attacks, and Security Model
	Conclusion

	Conclusion
	References

