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ABSTRACT

Bicycle design has not changed for a long time, as they are well-crafted for those

that possess the skills to ride, i.e., adults. Those learning to ride, however, often

need additional support in the form of training wheels. Searching for information

on the Web is much like riding a bicycle, where modern search engines (the bicycle)

are optimized for general use and adult users, but lack the functionality to support

non-traditional audiences and environments. In this thesis, we introduce a set of

training wheels in the form of a learning to rank model as augmentation for stan-

dard search engines to support classroom search activities for children (ages 6–11).

This new model extends the known listwise learning to rank framework through

the balancing of risk and reward. Doing so enables the model to prioritize Web

resources of high educational alignment, appropriateness, and adequate readability

by analyzing the URLs, snippets, and page titles of Web resources retrieved by a given

mainstream search engine. Experiments including an ablation study and comparisons

with existing baselines showcase the correctness of the proposed model. Outcomes of

this work demonstrate the value of considering multiple perspectives inherent to the

classroom setting, e.g., educational alignment, readability, and objectionability, when

applied to the design of algorithms that can better support children’s information

discovery.
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CHAPTER 1

INTRODUCTION

Children in elementary classrooms (Kindergarten–4th grade) often use search engines

(SE) to find Web resources needed to complete their school assignments [13, 105].

Among SE built specifically for children’s use in a classroom environment, we find

current solutions require regular maintenance, such as EdSearch1 and Kidtopia2.

EdSearch relies on manual curation of resources (e.g., text or media) to identify

educational ones. Kidtopia instead offers resources from a selection of white-listed

sites using Google’s Custom Search (GCS) platform, which utilizes the SafeSearch

feature to filter out pornographic resources. The white-listing via manual curation

restricts the sites to be both age-appropriate and educational, but as the Web grows

at a rapid rate, maintaining an up-to-date white-list becomes burdensome. Moreover,

children’s SE based on GCS are known to return less relevant results nearly 30% of

the time, trading relevance for safer results [42]. In addition to these inefficacies,

specialized SE must also overcome the barrier of adoption: children prefer to use the

popular mainstream options for SE, such as Google or Bing [32].

Mainstream SE are designed and optimized for adults, and therefore can overlook

unique factors that impact children using them. For instance, children face many

barriers related to query formulation, some of which researchers have attempted

1https://www.lumoslearning.com/llwp/edsearch.html
2https://www.kidtopia.info/
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to offer aid for [16, 82, 123]. In addition to well-studied barriers related to query

formulation, children also struggle to recognize what and how much information is

available online, seldom looking past the first six resources presented on a search

engine result page (SERP) [43]. Children also have trouble understanding the content

of retrieved resources due to the complexity of their texts, which leads to uncertainty

with relevant resource selection [7]. When turning to mainstream SE, children can also

be inadvertently exposed to resources that are inappropriate for their consumption.

This is an unfortunate side effect of functionality, like Google’s SafeSearch, offered

by mainstream SE primarily filtering pornography [131] and not accounting for other

potentially harmful content, e.g., violence. Safe search functionality also suffers from

over-filtering by preventing resources from being returned if they contain terms that

might be mistaken as inappropriate [12].

We aim to advance knowledge in the area of Information Retrieval (IR) for

children, and more specifically better enable children’s access to online information

via SE. As they grow, children require different levels of support from the SE they

interact with. As a starting point in our exploration, we focus on tailoring SERP

for specific audiences and contexts. To define the scope for our work, we turn to

the framework from [70] that allows for the comprehensive design and assessment of

search systems for children through four pillars. Defined for our work, these pillars are:

children aged 6–11 in grades Kindergarten–4 (K–4) as the user group, classrooms as

the environment, information discovery as the task, and re-ranking of resources to fit

audience and context as the strategy. Guided by the pillars, we introduce REdORank, a

novel re-ranking framework based on multi-perspective learning to rank (LTR) meant

to support children’s use of their preferred SE to complete classroom-related tasks.

REdORank builds on the demonstrated retrieval effectiveness of mainstream SE, as well
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as their ability to respond to any given query due to their large supply of indexed

pages [75]. Given a child’s search query, REdORank examines and re-ranks resources

retrieved by mainstream SE in a manner that those which align with educational

standards and are readable by children are ranked higher, whilst those that contain

material inappropriate for viewing by children in classrooms are pushed lower in the

result list.

For REdORank to learn how to prioritize resources to best suit our user group and

environment, it examines three distinct perspectives: readability, i.e., “the overall

effect of language usage and composition on readers’ ability to easily and quickly

comprehend the document” [85], educational alignment, and objectionability.

Educationally aligned resources are defined as those that align with the guidelines

presented in the Common Core State Standards (CCSS). These guidelines provide a

set of learning outcomes for each grade K–12 that students are expected to achieve.

For example, a grade 1 learning outcome from the CCSS states “Identify the main

topic and retell key details of a text” [63]. On the other hand, objectionable resources

are resources that contain content beyond pornography that is inappropriate for

children in a classroom. Both educational alignment and readability act as “reward”

perspectives, i.e., signals that should be optimized to increase the rank of a resource,

whereas objectionability serves as a “risk” perspective. A ranking strategy known as

multi-perspective LTR is employed where a ranking model learns a ranking function

that prioritizes resources for more than one perspective. By prioritizing resources

that align with the readability levels of our user group, REdORank benefits our target

audience as children that read over their reading level experience lower reading

comprehension [8].

Estimating grade levels of online resources is not a simple matter, given the broad
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range of formulas available for readability or grade level estimation. In addition,

there exists no consensus on which of the available formulas should be used for online

resources. Consequently, we examine formulas and leverage in REdORank the one

most effective for predicting the readability levels of resources targeting the reading

abilities of stereotypical 6–11 year olds.

Responding to our environment, REdORank considers the educational alignment of

resources and aims to promote those with educational value as previous research has

shown that ranking educational resources higher in search results has the potential to

increase learning efficiency [117]. REdORank determines educational alignment through

analyzing the URL and snippet of resources using text representation strategies such

as domain-specific embeddings and BERT [11, 33].

As previously stated, not everything on the Web is appropriate for children, which

brings us to the objectionability perspective. Preventing the display of inappropriate

results while also avoiding over-filtering results that may appear as objectionable but

are not, e.g., an article on breast cancer [42], requires a solution that goes beyond

safe search. Therefore, we go beyond pornography and consider other sources of

objectionability, such as violence, drugs, or guns. REdORank utilizes an approach that

applies a cost to a resource’s ranking based on a determined likelihood that a resource

is objectionable. By learning to simultaneously maximize resources with educational

alignment and readability, while minimizing those with objectionability, REdORank is

well suited to support children’s search activities in the classroom.

We posit that a LTR strategy can be augmented to simultaneously consider

multiple traits of online resources in order to yield a SERP that prioritize educationally

valuable and comprehensible resources while minimizing those that are objectionable.

To guide the work pertaining to these topics, this thesis addresses the following
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research questions:

1. Which readability formula simultaneously suits resource type, context needs,

and user group outlined for our task?

2. Do snippets along with URLs help identify educational resources? Does domain-

specific knowledge affect identification of educational resources?

3. Can topic-specific lexicons empower the identification of objectionable Web

resources?

4. Does the adaptation of an LTR model to account for multiple perspectives lead

to the prioritization of resources that are relevant to both children and the

classroom setting?

The primary contribution of this work is an LTR framework optimized on multiple

perspectives simultaneously for children’s search, which to the best of our knowledge

is the first such multi-perspective LTR framework. Further contributions include

a model to determine educational alignment of online resources, the identification

of a readability formula that is effective for calculating the reading level of online

resources, and a model that identifies objectionable resources beyond the limited scope

of safe search. Our work can help facilitate how children access educational content

online and thus supports classroom instruction. In fact, REdORank can be used in

conjunction with any SE, and when so combined can provide support for search as

learning among K–4th grade students [59, 120, 129]. The educational alignment model

has the potential to support teachers identifying online resources to leverage in the

classroom [39]. Finally, identifying a formula that accurately estimates the reading
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level of online resources could inform future design of recommender systems or other

online systems tailored to young readers [74].

The rest of this manuscript is organized as follows. In Chapter 2, we offer back-

ground information pertaining to LTR for Web search and discuss ranking strategies

that aim to support children’s use of SE. Thereafter, in Chapter 3, we detail the

design of REdORank; this is followed by the in-depth empirical analysis presented in

Chapter 4, which we conducted to verify the performance of our re-ranking framework

and to assess the need to include all perspectives in the ranking. Lastly, in Chapter

5, we present some concluding remarks, limitations, and future research directions

inspired by the work presented in this thesis.
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CHAPTER 2

RELATED WORK

In this chapter, we provide background information on LTR and discuss existing

ranking strategies that tailor the (retrieval and) ranking of resources for children.

2.1 Learning to Rank

LTR is a machine learning strategy that, when applied to Information Retrieval,

creates a task in which the goal is to automatically determine a ranking model using

training data, such that the model constructed can sort new resources using a learned

ranking function according to resources’ degrees of relevance, preference, or impor-

tance [79]. LTR can be expressed in terms of queries, labels, and resources. Given a

set of m queries Q = {q1, ..., qm}, there exists a set of k resources Rm = {rm,1, ..., rm,k}

for query in qm. Similarly, there exists a set of labels ym = {ym,1, ..., ym,k} for each

resourceRm. Let f(qm, rm,k) be a ranking function that calculates a ranking score for a

query-document pair, and let `(f ; qm, rm,k, ym,k) be a loss function for the prediction

of the function f over the query-document pair (qm, rm,k). The LTR problem can

then be defined as seeking to find the optimal ranking function fopt (in Equation 2.1)

through the minimization of the loss function over a labelled training set [76, 79, 52].

We depict the framework for this problem definition in Figure 2.1.
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Figure 2.1: Framework for problem definition of learning to rank [52].

fopt = argmin
∑
m

∑
k

`(f ; qm, rm,k, ym,k) (2.1)

Over time, advancements in LTR models have expanded on the loss function to

accept more than one resource as input. As a result, the following categorizations

for LTR models have arisen: pointwise, pairwise, or listwise [76], based on whether

a single resource, a pair of resources, or a list of resources, respectively, are operated

over during optimization of the loss function.

Regardless of the category they belong to, LTR models have been successfully

applied to various areas of IR, such as question answering [34], document retrieval

[79], recommendation [77, 96, 128], and, most prominently, Web search [81, 95]. When

used for Web search, models using listwise loss functions have been shown to be more

effective in terms of ranking accuracy and degree of certainty of ranking accuracy in

relation to the pointwise and pairwise counterparts [20, 118]. There exists a number

of well-known listwise-based models, including AdaRank [127], ListNet [20], ListMLE

[125], online-listMLE [80], SetRank [97], and U-Rank [30]. Each of these models

present a step towards advancing knowledge pertaining to LTR, yet all optimize their

respective ranking functions on a single relevance measure.
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In practice, the degree of relevance of a search result is not always established

based on a single trait. For instance, a user searching for a seafood restaurant for

dinner would consider location, price, and reputation as factors informing relevance.

Students searching for information on John Adams for a class assignment would

instead determine resource relevance by considering factors such as whether a resource

uses language they can understand, whether the John Adams being discussed is the

correct individual, and whether the resource discusses the aspect of John Adams

for which they are seeking information, i.e., information on his term as President

vs. information on his role during the American Revolution. To better align with

such real world scenarios, multi-objective LTR strategies that optimize loss functions

for multiple measures of relevance have been brought forth [18, 116, 122]. Carmel

et al. [21] use label aggregation to reduce a multi-objective problem to a single

objective one, followed by applying LambdaMART [19] to optimize for the aggregated

labels. Momma et al. [90] also make use of LambdaMART, combining Augmented

Lagrangian, a process of introducing an explicit Lagrange multiplier into the loss

function being optimized [93], to create a model that handles constrained optimiza-

tion by “iteratively solving unconstrained problems.” While these strategies expand

LTR from single objective to multi-objective, both still opt for a pairwise approach.

When accounting for multiple objectives, listwise approaches like AdaRank are rarely

considered. Given AdaRank’s applicability for Web tasks [20, 118], this is the LTR

variation we incorporate as part of REdORank’s design.
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2.2 Ranking Web Resources for Children

When seeking for information using mainstream SE, children tend to (i) explore

SERP produced in response to their queries using a sequential process from top to

bottom, and (ii) click higher-ranked results [35, 43, 50, 53]. As such, it is imperative

for these mainstream SE to prioritize retrieved resources relevant to the information

needs of children. Existing attempts to address this requirement include the work by

Miltsakaki [88], who sorts resources with respect to a user-defined reading level (for

middle and high school students) and the resource’s readability as calculated using

the Coleman-Liau Index [25] together with the LIX and RIX formulas [9]. Similarly,

Collins-Thompson et al. [26] re-rank results matching user reading levels inferred from

their search history.

Beyond readability, Gyllstrom and Moens [54] introduce AgeRank, a modified

version of PageRank that leverages websites for younger audiences, following the

premise that sites designed for children are more likely to link to other child-friendly

sites. Syed and Collins-Thompson [117] present a search algorithm that re-ranks

results for learning utility through an analysis of keyword density, assuming that a

user exposed to more keywords in fewer resources will learn information on a particular

subject more successfully. The aforementioned strategies prioritize resources using

only a single perspective, yet when serving a particular user group in a specific context,

considering only one perspective restricts the results that can be retrieved. We

hypothesize that by incorporating more perspectives, such as educational alignment

and readability, a more varied set of results can be provided that better serve the

user group and context.

Research pertaining to education-based ranking is rich, resulting in strategies



11

based on topic modelling, term clustering, quality indicators, and collaborative fil-

tering [101, 109, 111, 100]. Notable examples include the work by Marani [83], i.e.,

WebEduRank, who defines a teaching context (a representation of the requirements

and experiences of an instructor), which is used to rank learning objects to support

instructors. Estivill-Castro and Marani [41] also rank resources for instructors by

analyzing the suitability of a resource for teaching a concept. Acuña-Soto et al. [2]

consider students as part of their audience in their work to rank math videos using

a multi-criteria decision making framework. Unfortunately, as with readability and

child-friendliness, some of these works do not target children as the intended user

group, and the majority focus on a single perspective.

Focusing on children in an educational context, Usta et al. [121] train an LTR

model for a query-dependent ranking strategy aimed at prioritizing educational re-

sources for students in the 4th–8th grades. Through feature engineering, the authors

extract disjoint sets of features from the query logs of a Turkish educational platform

called Vitamin [120]: (i) query-document text similarity, (ii) query specific, (iii)

document specific, (iv) session based, and (v) query document click based. Unique

to this approach is that within the query specific and document specific groups are

domain-specific features such as the course, grade, and document type, e.g., lecture,

video, or text. This approach differs from ours in that the features used in training

a ranker uses data originating from a domain-specific SE that includes course and

grade information of the resources whereas we design a re-ranker that is SE agnostic,

allowing our re-ranker to be coupled with any generic SE. Additionally, the features

used by Usta et al. [121] include click data originating from children, which is not

readily or publicly available for our user group.

The strategy most closely related to REdORank is Korsce [87]. This multi-perspective
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strategy examines appropriateness, curriculum alignment, objectivity, and reading

comprehensibility of resources to identify those that best match 3rd – 5th grade

children searching in the classroom. Korsce treats resources as inappropriate if

they refer to pornography and hate-speech, but fails to account for other potentially

objectionable topics like alcohol or drugs. For curriculum alignment, the authors

adopt a topic modelling approach with Latent Dirichlet Allocation (LDA) as a way

to estimate the degree in which a resource is related to curriculum. This approach

follows a word-level and semantic space exploration of resources, but does not take into

account the contextual information that can be garnered from considering resource

text in its entirety.

When considering reading comprehension, Milton et al. [87] introduce a formula

that estimates a score based on the Flesch-Kincaid readability formula and a cosine

curve that penalizes resources whose readability level is beyond the expected grade

level of a user. There are two major gaps in this approach: (i) the selection of the

Flesch-Kincaid formula is based on popular use rather than empirical exploration,

which we conduct in our work, and (ii) the reading comprehension score requires the

knowledge of an expected grade for the user, which we cannot assume to know for

our user group as we are focusing on multiple different grades.

Furthermore, Korsce ranks resources according to a static set of optimal weights

[122]. These weights are manually chosen as the result of an empirical exploration

of near-optimal rankers, where the optimal ranker is determined qualitatively. The

selected ranker generates scores on a resource by resource basis (akin to pointwise LTR

methods), leading to relative rankings based on the calculated scores. Alternatively,

we utilize a listwise approach, allowing for absolute relevance comparisons between

the resources as all resources are considered at once instead of independently.
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CHAPTER 3

METHODOLOGY

In this chapter, we describe REdORank, a multi-perspective learning to rank (MP-

LTR) framework that re-ranks resources through examining in tandem the Readability,

Educational alignment, and Objectionability of each resource R retrieved by a main-

stream SE in response to a child’s query inquiring on classroom-related concepts.

Taking advantage of the retrieval power of mainstream SE and directly informed

by the aforementioned perspectives, REdORank identifies and prioritizes resources

intended for K–4 classrooms and students. As shown in Figure 3.1, REdORank consists

of three modules: the reward module, the risk module, and a balance module. Each

module serves a specific purpose in the overall framework.

Figure 3.1: The REdORank framework. REdORank re-ranks Web resources retrieved
from a mainstream SE in response to a child’s query formulated in a classroom setting
by balancing reward with risk.

The reward module determines the interaction between “positive” perspectives
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for resource analysis: readability and alignment with classroom curriculum. The risk

module looks at the interaction of “negative” perspectives that identify resources as

inappropriate for the user group. The balance module trades-off outputs of the risk

module (a value that acts as cost and therefore decreases resource prioritization) and

the reward module (a value meant to increase resource prioritization in the ranking)

resulting in a final ranking score by which resources are reordered.

3.1 Perspectives: From Theory to Practice

REdORank re-ranks online Web resources by reassessing them according to three

perspectives connected to children’s information seeking in the classroom. To properly

re-rank resources, we must quantify each perspective. In the remainder of this

section, we describe how we represent the educational alignment, readability, and

objectionability perspectives.

3.1.1 Readability

Readability is an important factor in supporting children’s Web search as text com-

plexity and therefore comprehension influences the degree to which a resource is

relevant to a user [8, 107]. This makes it imperative to take into account the text

complexity of retrieved resources when it comes to determining their position in a

SERP. This is a nontrivial problem. There exists a plethora of formulas for text

complexity estimation, from traditional ones based on shallow features, e.g., average

words per sentence, to more complex ones based on deep learning [14, 36, 45, 89].

Even so, there is still a lack of consensus as to which formula to use for the automatic

estimation of text complexity for Web texts.
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As the overall performance of REdORank is directly impacted by the choice of

readability formula, we evaluate several of them1 and juxtapose their aptitude for

readability assessment through assigning of grade levels based on their applicability

to our user group, to our resource type, and the ease of calculation. As a result,

the best suited formula in our analysis is Spache-Allen, which improves upon the

original Spache [113] formula by expanding the vocabulary used to determine “easy

words”. The Spache formula relies on a vocabulary for easy words comprised of 1,064

words. This vocabulary, however, only contains terms deemed easy for children to

comprehend, gathered in the 1970’s from news and magazine articles for adults [36].

Instead, Spache-Allen accounts for terminology children are exposed to online by

including 47,712 terms extracted from children’s websites; a list of terms originally

compiled in [82]. Moreover, Spache-Allen takes into consideration terminology that

children learn through instruction. For this, we turn to the 30,000 words in the

Age of Acquisition (AoA) dataset [68]. In the end, Spache-Allen, shown formally

as Equation 3.1, relies on a vocabulary to identify easy words that includes 65,669

unique terms.

Spache-Allen(T ) = (0.141× wT/sT ) + (0.086 ∗ dif(T )) + 0.839 (3.1)

where T is a text, and wT and sT are the number of words and sentences in T ,

respectively. The function dif(T ) determines the percentage of difficult words in T ,

where a word is deemed difficult if it does not appear in the augmented version of

easy words vocabulary.2

1We provide details of the empirical exploration and vocabulary expansion with respect to that
of the original Spache formula [113] in Section 4.1.

2https://github.com/Neelik/spache-allen-vocabulary
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REdORank determines the readability score Sread of R (Equation 3.2) based on

the estimation of readability determined using Spache-Allen, as applied to the

corresponding snippet RS.

Sread(R) = Spache-Allen(RS) (3.2)

3.1.2 Educational Resources

Resource prioritization by readability can help support children’s Web search. Yet,

on its own, this perspective can overlook the environment that is the focus of our

study, i.e., not all resources aligned with the reading abilities of children are suitable

for the classroom. Thus, in the design of REdORank we also consider the educational

value of resources, which we determine through a Web classification process.

Web resource classification is a well-explored area in Information Retrieval [56].

Recently, the field has seen an influx of research related to domain-specific classi-

fication, especially within the legal, financial, and medical domains [40, 60, 132].

Classification in the domain of education, however, remains relatively unexplored.

As a broad term, education applies to a variety of classification tasks. Prior work

includes classifying educational resources based on “the strength of the educative

resource [as] a property evaluated cumulatively by the target audience of the resource

(e.g., students or educational experts)” using a Support Vector Machine (SVM) [57].

This model, however, relies heavily on manually-annotated data and is applicable only

to computer science education. Xia [126] also uses an SVM to classify resources sup-

porting instruction, whereas EduBERT [24] detects college-level forum posts written

by struggling students. In general, efforts in this area classify resources for unspecified

age groups, adult students, limited subject areas, instructors, or institutional-level
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insights. There is a gap in the literature regarding recognizing educational Web

resources for children ages 6–11 in grades K–4.

Regardless of the domain, classifiers tend to rely on features inferred from HTML

page content [38, 114]. Processing full Web pages requires high computational power,

large data storage, and time to retrieve [104] as Web pages are often dynamic and

contain pictures, videos, or scripts in addition to text [105]. To address some of these

constraints, state-of-the-art approaches examine only URLs [49, 105]. Unfortunately,

URLs are not always comprised of meaningful tokens (i.e., valid terms), which may

cause misclassifications. Consider the URL https: // www. youtube. com/ watch?

v= pX3V9hoX1eM for a YouTube video by National Geographic For Kids related to

animals. In this case, meaningful tokens include “youtube” and “watch,” neither of

which indicates the child-friendliness of the corresponding resource.

Mindful of the aforementioned limitations, we rely on domain knowledge obtained

from Educational standards along with URL and descriptive text to inform the

recognition of children’s educational Web resources. Educational standards, such

as the United States’ CCSS and the Next Generation Science Standards (NGCS),

provide learning outcomes for K–4th grade students. In particular, we focus on

educational resources that inform on subjects for grades K–4th, such as language

arts, science, and social studies, described in CCSS, NGCS, and the Idaho Content

Standards (ICS).

As illustrated in Figure 3.2, BiGBERT, the Bidirectional Gated Recurrent Unit

(BiGRU) with BERT model we introduce to recognize educational Web resources

for children, has two main components: a URL and a snippet vectorizer. Given R,

BiGBERT first vectorizes its URL, combining the domain-specific embeddings from

Edu2Vec [11] with a BiGRU and a self attention layer. Shen et al. [112] show
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Figure 3.2: BiGBERT architecture (RU and RS denote the URL and snippet of a given
resource R, resp.).

that using summaries instead of full page content results in comparable classification

performance, thus we use snippets in place of full content. To vectorize R’s snippet,

BiGBERT fine tunes the transformer model BERT [33] using educational standards.

Lastly, BiGBERT concatenates the snippet and URL vectors and applies a softmax

function to determine the class of R.

URL Vectorizer. BiGBERT tokenizes R’s URL (RU) into a sequence of terms T

by splitting on non-alphanumeric symbols (e.g., periods, dashes and forward slashes)

and using SymSpell [47] to perform word segmentation as URLs tend to compound

words together (e.g., changing stackoverflow to stack overflow). Each token ti ∈ T

is mapped to its corresponding word embedding. If ti is not part of the embedding

dictionary, we attribute this to a possible misspelling or spelling variation, and thus

attempt a correction using a single edit distance operation (i.e., replacing, adding, or

removing a character). If ti is still not in the dictionary, we discard it to ensure only

meaningful tokens remain.

To learn a representation of RU , BiGBERT uses the Edu2Vec word embeddings

dictionary [11] as it incorporates domain knowledge from NGCS, CCSS, and ICS.

These standards serve as structured knowledge sources to identify terms, topics, and

subjects for K-4 grades, enabling BiGBERT to emphasize K-4 curriculum concepts in
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RU that may be overlooked by general-purpose pre-trained embeddings. Rather than

analyzing independent embeddings, we design BiGBERT to scrutinize context-sensitive

indicators from T . Inspired by Rajalakshmi and Aravindan [103] and in response to

URLs not following traditional language syntax, we examine groups of embeddings

(i.e., trigrams) using a Convolutional Neural Network (CNN)–a fast, effective, and

compact method [65] to generate feature vectors from trigrams. The convolution

results in a feature map Fmap=<F1,F2,...,Fx>, ∀f=1..x Ff=relu(w.xi:i+m−1+bu), where

the rectified linear function relu is applied to the dot product of a kernel w with a

window of embeddings xi:i+m−1 in T of size m=3; bu is a bias term. To explore long

distance dependencies of features that may appear far apart BiGBERT uses a BiGRU

network, as it captures context information in a forwards and backwards direction. A

self-attention layer then determines the importance of features identified by the CNN

and BiGRU. This is followed by a flatten and dense layer that yields a single feature

vector representation of RU of size 128, denoted as BiGvec.

Snippet Encoding. As snippets are a few sentences long, unlike URLs which are

at most a few words, we require a model that can scrutinize each snippet (RS) as a

whole. Hence, we incorporate the state-of-the-art transformer model BERT [33] into

BiGBERT’s design. BERT’s ability to process sequences up to a maximum size of 512

tokens enables BiGBERT to exploit the sequential, contextual information within RS

in its entirety. Additionally, BERT’s architecture consisting of 12 transformer blocks

and self-attention heads ensures the learning of rich contextual information from each

snippet. As such, we tokenize RS into a sequence of sentences, encode it to BERT’s

specifications, and use BERT to attain an aggregate feature vector representation of

size 768, denoted as BERTvec.

On domain-dependent tasks like the one we address here, BERT benefits from fine-
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tuning [115]. Thus, we adjust the traditional BERT to our definition of education by

exploiting established educational standards. We perform fine-tuning as described in

[115], training3 BERT embeddings as an educational text classifier by adding a linear

classification layer which uses binary cross entropy as loss and the Adam optimizer

with learning rate=1e−5.

Predicting Educational Alignment. To leverage evidence of educational align-

ment inferred from RU and RS, we concatenate BiGvec with BERTvec as BBvec.

Using a fully connected layer on BBvec with a softmax activation function, BiGBERT4

produces a probability distribution ŷ over each class, educational and not, such that

ŷ ∈ [0, 1].

The softmax function ensures that the sum of the probabilities per class is one.

Using BiGBERT, we define an educational alignment score Sedu for R (Equation 3.3).

As one of two “reward” perspectives, REdORank utilizes this score in the determination

of R’s relevance gain.

Sedu(R) = BiGBERT (RS, RU) (3.3)

3.1.3 Objectionable Resources

The Web contains an ever-growing collection of resources for users of many ages, ex-

perience, and knowledge levels. It is therefore anticipated for some of these resources

to be more attuned with some user groups than others. Given the user group and

environment that are the focus of this work, it becomes imperative for REdORank

3For fine-tuning we use 2,655 text passages from NGCS, CCSS, and ICS along with 2,725 from
the Brown corpus [17, 44].

4BiGBERT is trained using a batch size of 128, binary cross-entropy loss function, and RMSProp
optimizer [119] with momentum=0.2 and learning rate=0.001.
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to mitigate the risk of presenting resources towards the top of SERP that could

be deemed inappropriate. This is why REdORank incorporates an objectionability

perspective to its design.

Establishing what makes a Web resource objectionable for children in a classroom

setting is not trivial. Specialized SE built on the GCS platform (e.g., Kiddle and

KidRex) use the safe search feature to eradicate objectionable resources, but still

display promoted resources at the top of SERP in the form of advertisements. These

adverts can redirect children to different SERP without the safe search protection,

inadvertently exposing them to inappropriate material [42]. Safe search functionality

is not without fault as unsuitable resources can make it past its filters [37, 12].

For example, in response to the query “dog facts”, Google with SafeSearch enabled

retrieves a brewery website5. At the same time, there are websites that may appear

objectionable but are not, e.g., an article on breast cancer [42]. Preventing the display

of such results while also avoiding over-filtering is a difficult problem requiring a

solution that goes beyond safe search.

Patel and Singh [98] augment GCS filtering capability by also considering resources

containing hate speech or violence. Lee et al. [73] go even further, and filter content

referring to abortion, alcohol, tobacco, illegal affairs, drugs, gambling, marijuana,

pornography, violence, racism, and weapons. Unfortunately, their proposed filter-

ing strategies rely on click-through data, which seldom exists for our user group.

Milton et al. [87] introduce a click agnostic strategy to identify resources that are

inappropriate for the classroom. The strategy leverages lexicons to account for the

presence of sexually explicit and hate speech terms, in addition to misspelled terms,

in the content, meta-tags, and anchor-tags of resources. This strategy, however,

5https://www.flyingdog.com/
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treats as objectionable resources concerning pornography and hate speech, only two

of the several topics that can be considered inappropriate for the user group and

environment under study. Additionally, the full content of a resource is considered,

which can be time consuming to process when deployed in a live scenario.

Observant of the strengths and limitations of existing filtering strategies, we adopt

a simple, yet effective, technique for identifying resources deemed objectionable:

Judgebad. Given R, we first create a representation that captures its terminology

from various categories. Treating the identification of R as objectionable as a binary

classification task, we then employ a Random Forest model, which have been shown

to maintain effectiveness even when compared to recent neural solutions [28, 29].

Objectionable categories. To account for the large variety of objectionable

material present online, and inspired by prior strategies to detect objectionable re-

sources [87, 73], we treat as objectionable for children in the classroom resources

that relate to any category in ObjCat: Abortion, Drugs, Hate Speech, Illegal Af-

fairs, Gambling, Pornography, and Violence. Note that the Drugs category refers

to resources over-arching drugs, but also alcohol, tobacco, and marijuana. Further,

Violence focuses on violent content, as well as weapons ; Hate Speech accounts for

racism and hateful/offensive content.

As previously stated, for determining the likelihood of resources being objection-

able, we adopt a technique that scrutinizes their terminology and therefore requires

the existence of pre-defined lists of ‘objectionable’ terms. In the case of Pornography

and Hate Speech categories, we use the pre-defined lists used in [87], which are

sourced from Google’s archive6 and the Hate Speech Movement’s website7, respec-

6https://code.google.com/archive/p/badwordslist
7HateSpeechMovement.org
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tively. Unfortunately, there are no curated term lists associated with the remaining

categories in ObjCat. Thus, we generate them through a novel process called category

understanding via label name replacement [86].

We use websites from Alexa Top Sites [6] known to belong to categories appearing

in ObjCat as our corpus for generating the term lists. For each category, excluding

Pornography and Hate Speech, the occurrence of the category name (as well as sub-

category names, if available) within a website from the corpus is masked and a pre-

trained BERT encoder is used to produce a contextualized vector representation h

with the masked category name. BERT’s masked language model (MLM) head

produces a probability distribution that a term w from within BERT’s vocabulary

will occur at the location of the masked category name.

Terms can occur in different contexts within the same corpus. Thus, terms in the

extracted vocabulary are ranked by their probability of occurrence (Equation 3.4),

and by how many times each term can replace a category name in the corpus while

maintaining context.

p(w | h) = Softmax (W2 σ (W1h+ b)) (3.4)

where σ(·) is the activation function; W1, W2, and b are learned parameters for the

masked language prediction task, pre-trained within BERT.

As in [86], we select the top 100 terms per category (or the entire list if less than

100 are extracted) as the final representative term list that captures contextually

similar and synonymous terms associated with the corresponding categories.

Snippet representation. Due to the complexities of gathering, the computing

resource, and storage needs for processing the full content of Web pages (Section
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3.1.2), we use snippets as a proxy for the full page content.

We represent R with a collection of 16 text-based features extracted from its snip-

pet. Seven of these features account for the prevalence (i.e., frequency of occurrence)

of objectionable terms in RS. For each category oc in ObjCat, we calculate the term

prevalence, i.e., TP (RS, oc), as in Equation 3.5.

TP (RS, oc) =

∑
t∈TLoc

tf(t, RS)

|RS|
(3.5)

where TLoc is the term list for oc, t is a term in TLoc, and tf(·) is a function that

calculates the number of times t appears in RS. Serving as a normalization factor,

|RS| is the length of RS after tokenization, punctuation & stop word removal, and

lemmatization (using the NLTK8 Python library).

We also consider the coverage of objectionable terminology in RS, using seven

features that account for scenarios where a term could be misconstrued as objec-

tionable depending on context. For example, “breast” could occur frequently in a

biology resource that is itself not objectionable; it can also appear in a pornographic

resource. For each category oc, we calculate objectionable term coverage in RS, i.e.,

TCov(RS, oc), using Equation 3.6.

TCov(RS, oc) =

∑
t∈TLoc

δ (t, RS)

| TLoc |
(3.6)

where TLoc and t are as defined in Equation 3.5, δ(t, RS) is 1 if t occurs at least once

in RS and 0 otherwise, and |TLoc|, which is the total number of terms in TLoc, acts

as a normalization factor.

We explicitly account for misspelled terms, as producers of objectionable online

8https://www.nltk.org/
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content are known to introduce intended misspellings as an attempt to bypass safe

search filters [87]. We look at the prevalence of misspelled terms in Rs–how often

misspellings occur in Rs–using Equation 3.7.

MP (Rs) =

∑
t∈RS

β (t, Rs)

|RS|
(3.7)

where t is a term in RS, β(t, RS) is 1 if t is a misspelling and 0 otherwise, and |RS|

is a normalization factor representing the length of RS. We use the Enchant9 library

to identify misspelled terms as it wraps many existing spellchecking libraries, such as

Ispell, Aspell, and MySpell.

Lastly, we look at the coverage of misspellings using Equation 3.8.

MC(Rs) =

∑
t∈RSu

γ (t, TLall)∑
t∈RSu

β (t, Rs)
(3.8)

where β(.) is defined as in Equation 3.7, t is a term in RSu, which is the set of unique

terms in RS, TLall is the set of terms resulting from merging the term list for each

category in ObjCat, and γ(.) evaluates to 1 if t is identified as a misspelling and it

occurs in TLall, and 0 otherwise.

Objectionability detection. Based on its effectiveness in similar classification

tasks [87], we use the Random Forest model to identify objectionable resources. Using

the feature representation of R as input, a trained Random Forest model10 produces as

output a binary probability distribution ŷ over each class–objectionable and not–such

that ŷ ∈ [0, 1] for R. To serve as the sensitivity score exploited by the risk module,

we define Sbad as the probability value of R being associated with the objectionable

class (Equation 3.9).

9https://abiword.github.io/enchant/
10Max leaf node, min leaf samples, and min sample split are set to 32. Max depth is set to 8.
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Sbad(R) = Judgebad(RS) (3.9)

3.2 REdORank: From Theory to Practice

REdORank is powered by the LTR algorithm, AdaRank [127], as it is one of the

more prevalent algorithms in LTR research [48, 69, 78, 84]. AdaRank uses a listwise

approach (defined in Section 2.1), which is the most effective in terms of ranking

accuracy when used for Web search [20, 118].

3.2.1 AdaRank

AdaRank is a boosting algorithm wherein a collection of weakly-defined rankers are

linearly combined to create an overall ranker that is more accurate than any of the

individual weak rankers. A weak ranker is defined as as ht = Pt(i)E(π(qi,di, xk),

where qi ∈ Q is a set of queries, di ∈ Dq is a ranked list of documents per query, yi is

the ground truth for document di, x1, ..., xk are the feature representations for each

document, E is an evaluation measure, and P1(i) = 1
|Q| is an initial weight.

Given a set of training data {qi, di, yi}, AdaRank takes an iterative approach such

that at each iteration t ∈ T , a set of weak rankers are initialized with the current

weights, a ranking permutation (π(·)) is predicted and evaluated, and the weights are

updated. The pseudocode for this process is outlined in Algorithm 1.

Like all LTR algorithms, AdaRank learns a ranking function through the opti-

mization of an evaluation measure. The metric most commonly-used for optimization

is Normalized Discounted Cumulative Gain (NDCG) [64, 79]. The goal of NDCG

is to measure the agreement between a predicted ranked list and the ground truth
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Algorithm 1 AdaRank Algorithm, reproduced from [127].

Input: S = {(qi,di, yi)}mi=1, and parameters E and T .
Initialize P1(i) = 1

m
.

For t = 1, · · ·, T

• Create weak ranker ht with weighted distribution Pt on training data S.

• Choose αt

at =
1

2
· ln

∑m
i=1 Pt(i){1 + E(π(qi,di, ht),yi)}∑m
i=1 Pt(i){1− E(π(qi,di, ht),yi)}

• Ceate ft

ft(
−→x ) =

t∑
k=1

αkhk(−→x )

• Update Pt+1

Pt+1 =
exp{−E(π(qi,di, ft),yi)}∑m
j=1 exp{−E(π(qj,dj, ft),yj)}

End For
Output ranking model f(−→x ) = fT (−→x )).

for a query q. The “Gain” in NDCG is the relevance gain, or the benefit of showing

relevant resources higher in the ranking. The relevance gain of each resource retrieved

in response to a query is determined based on its position in a ranked list, as in

Equation 3.10.

gi = 2reli − 1 (3.10)

where gi is the relevance gain of the ith resource in a ranked list, and reli is the

corresponding relevance ground truth.

The “Discount” portion of NDCG is a penalization applied to resources that are

relevant, yet they appear lower in a ranked list. It is necessary to ensure that this

discount is not too steep, to account for persistent users that are more likely to explore
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deeper into ranked lists [64]. As such, NDCG employs a logarithmic discount based

on a resource’s position in a ranked list, as seen in Equation 3.11.

di = log(ranki + 1) (3.11)

where di is the discount for the ith resource in a ranked list, and ranki is the position

of the ith resource in said ranking.

When considering a ranked list in response to a query q, the “Cumulative” aspect

comes into play as the accumulation of discounted gains, beginning at the top of

the ranked list until a particular position. Formally, this is known as Discounted

Cumulative Gain (DCG) and is defined as in Equation 3.12.

DCG@k(q) =
k∑

i=1

gi
di

(3.12)

where k is a cutoff value, i.e., the number of resources examined in a list, i is a position

in the ranking, and gi and di are as defined in Equations 3.10 and 3.11, respectively.

Accounting for the need to measure agreement across an entire list where the

number of relevant documents may vary, DCG must be “Normalized”, resulting in

NDCG, calculated as in Equation 3.13.

NDCG@k(q) =
k∑

i=1

DCG@k(q)

IDCG@k(q)
(3.13)

where k, i, and DCG@k(q) are as defined in Equation 3.12, and IDCG@k(q) is the

DCG as calculated for a perfect, i.e., “ideal”, ranked list, up to position k.

The benefit of NDCG is its ability to account for various degrees of relevance, due

to the manner in which relevance gain is determined. Unlike more traditional counter-
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parts for ranking that examine a single relevance value, REdORank considers multiple

signals for relevance of a resource, namely the educational alignment and readability.

Additionally, NDCG does not account for explicit signals of non-relevance, such as

the objectionability of a resource. Therefore, we seek to expand NDCG to account

for additional relevance and non-relevance signals.

3.2.2 Multi-Perspective Optimization with Cost Sensitivity

The goal of a search system is to retrieve resources from a collection that have the

highest relevance with regards to a user’s query. In some cases, these collections

contain resources that are not meant to be seen by all users, such as private medical

documents or, in the case of a government system, top secret missives. These types

of resources are known as sensitive resources. As a way to avoid presenting sensitive

materials in response to online inquiries, Sayed and Oard [110] introduced an extended

version of the DCG metric, called Cost Sensitive Discounted Cumulative Gain (CS-

DCG). This new metric (Equation 3.14), introduces a cost penalty, or a risk factor,

for displaying a sensitive document within a ranking of retrieved resources.

CS −DCGk =
k∑

i=1

gi
di
− ci (3.14)

where k, gi, and di are defined as in Equation 3.12, and ci is the sensitivity cost of

showing a sensitive document at rank position i.

Incorporating CS-DCG into an LTR model such as AdaRank empowers the model

to learn to rank sensitive documents lower than those that are not sensitive. This

aligns with what we seek to do with the objectionability perspective of REdORank:

eradicate from top ranking positions those resources that can be perceived as sensitive
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for the user group and environment that are the focus of our work. Thus, instead of

depending upon the traditional NDCG when training its LTR re-ranker, REdORank

uses CS-DCG for optimization purposes. In this case, we use as the sensitivity cost

ci Sbad (Equation 3.9).

CS-DCG accounts for objectionable resources, but still only considers a single sig-

nal for relevance gain. In the context of our work, however, it is imperative to leverage

the influence that both educational alignment and readability have into determining

the relevance of a given resource. It is not sufficient to simply linearly combine the

respective grade level and educational alignment scores, Sedu and Sread, computed

in Sections 3.1.2 and 3.1.1, respectively. Instead, it is important to understand the

interdependence between these two scores in terms of dictating relevance gain.

To model the connection between educational alignment and readability we take

inspiration from a weighting scheme core to Information Retrieval: TF-IDF. TF (or

term frequency) captures the prominence of a term within a resource, whereas IDF

(or inverse document frequency) characterizes the “amount of information carried by

a term, as defined in information theory” [27] and is computed as a proportion of the

size of a collection over the number of resources in the collection in which the term

appears. In our case, this weighting scheme acts as a sort of “mixer” for the traits

that inform relevance. Intuitively, we treat Sedu as representative of the content of

R (in terms of matching the classroom setting) and readability as the discriminant

factor with respect to resources considered for ranking purposes. Given the often

high readability levels of online resources [10, 12], we use 13 as the readability level

representative of the collection, and therefore use it as the max readability in the

numerator for IDF. With this in mind, the mixer score for R informed by the two

aforementioned signals of relevance is computed as in Equation 3.15.
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mixer(R) = Sread(R)× log2(
13

Sedu(R)
) (3.15)

By incorporating multiple signals of relevance into the determination of relevance

gain, and the expansion of DCG with a cost-sensitivity factor, we have defined an

updated metric that serves to ensure REdORank explicitly learns to respond to the

user group, task and environment requirements, by prioritizing resources that align

with our user group and environment, while preventing the presentation high in the

ranking of retrieved resources that are objectionable for our environment.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we describe the experiments we conducted in order to answer our

research questions. We begin by assessing the the correctness of the readability

formula that is part of the design of REdORank, as well as the performance of the

proposed strategies for detection of educational and objectionable resources. This

enable us to show that the methodologies considered to account for each of our

perspectives are sound. We then assess the overall design of REdORank, via both

an ablation study and comparison with baseline counterparts. Along the way, we

provide in-depth analysis of the results for each experiment.

4.1 Finding a Readability Formula Fitting Web Resources

There is no readability formula that is the default when estimating the complexity

of texts. Thus, it is essential that we empirically examine formulas in an effort to

identify the one best suited for determining the level of complexity of Web resources.

In our examination, we look at the efficacy of readability formulas for their originally

intended purpose: the estimation of reading level of published texts, i.e., books and

news articles. We then investigate how the formulas perform when applied to the

text snippets of Web resources. Through comparison of the results in each medium,

books and Web, we select the formula best suited for our audience and context.
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We begin our exploration with traditional readability formulas, as they are simple

to compute and are broadly adopted [51, 82]. Traditional formulas also require

less data than the machine and deep learning solutions and are freely accessible,

supporting the open availability intended for REdORank. Initially, we look at (i)

Coleman-Liau Index (Equation 4.1), as it was designed for digital texts, and to be

easily calculated automatically [25], (ii) Flesch-Kincaid (Equation 4.2) [66], as it is a

well-known formula that has been employed to estimate complexity of Web resources

focusing primarily on upper-elementary to secondary grade levels [15], and (iii) Spache

Readability Formula (Spache for short, Equation 4.3) [113], intended for texts targeted

to readers in grades 1–3. The latter relies on a static vocabulary of 1,064 words that

are considered easy for children to comprehend. Each of these three formulas were

designed to estimate the reading level of published materials, e.g., books or news and

magazine articles.

Coleman-Liau(R) = (0.058× |lR|)− (0.296× |sR|)− 15.8 (4.1)

where R is a given resource, |lR| is the number of letters in R and |sR| represents the

number of sentences in R.

Flesch-Kincaid(R) = (0.39× slR) + (11.8× spwR)− 15.59 (4.2)

where slR represents the average sentence length of R and spwR represents the number

of syllables per word in R.

Spache(R) = (0.141× wR/sR) + (0.086 ∗ dif(R)) + 0.839 (4.3)
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where wR and sR are the number of words and sentences in R, respectively. The

function dif(R) determines the percentage of difficult words in R, where a word is

deemed difficult if it does not appear in the “easy words” vocabulary1.

Although there are many datasets that can be used to assess the performance

of readability formulas, to the best of our knowledge, none was designed for Web

resources, our target audience, or labelled specifically with grade levels. With that in

mind, we created our own, denoted TextComp that is comprised of 4,860 instances of

the form <text sample, grade label, source>. We explicitly included in TextComp

samples of resources from printed and digital mediums allowing us to probe the

applicability of different formulas for our target audience and context. Samples in

TextComp are distributed as follows:

• 235 book excerpts extracted from the appendices of the CCSS [62], each asso-

ciated with a range of grade levels. We opt to use the minimum grade level

from these ranges as the label, as children reading below their reading level

experience less difficulty with comprehension versus when reading above their

reading level [7].

• 2,084 books from Reading A-Z (RAZ) labeled with their corresponding reading

level2.

• 2,541 Web resources from the Idaho Digital Learning Alliance (IDLA), a col-

lection of online course materials serving K-12 students [5], each associated with

a grade pre-determined by expert educators.

1https://github.com/cdimascio/py-readability-metrics/blob/master/readability/

data/spache_easy.txt
2RAZ uses a 26-letter scale assigned by experts for readability [72]. To enable fair comparison

across formulas, these letter labels are mapped grade labels ranging from Kindergarten to 6th grade,
using the conversion table provided by RAZ [71].
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To quantify the performance of each formula F considered in our exploration, we

rely on Error Rate (ER), computed as in Equation 4.4. We determine significance

of our results using the Kruskal-Wallis H-test [67] with a p<0.05. Unless otherwise

stated, all results reported in the rest of this section are significant.

ER(F ) =
1

|TextComp|
∑

d∈TextComp

| ˆTCd,F − TCd| (4.4)

where |TextComp| is the size of TextComp, d is an instance in TextComp, TCd

is the known grade for d, and ˆTCd,F is the grade level of d estimated using F .

To attain a base understanding of how each formula performs when applied to their

original target resource, we compute the ER using the 2,319 books in TextComp.

As shown in Figure 4.1, the Coleman-Liau Index exhibits a lower error rate than

Flesch-Kincaid and Spache at the 9th grade level and above. Interestingly, even

though it is a commonly-used formula [15], Flesch-Kincaid produces the largest ER

across grade level when estimating the complexity of books. Spache is the least error

prone for K–6th grade, thus best aligning with our audience (K-4).

To validate if this performance translates to Web resources, we repeat the same

experiment using the Web resources in TextComp. Much like for books, Spache

is the least error prone formula for grades 1–4 & 6–8 (see Figure 4.1). In contrast

to books, Flesch-Kincaid fares better for 8th and 10th grade Web resources, with

Coleman-Liau performing best for the remaining grades. Outcomes from the pre-

sented analysis serve as indication of Spache being the formula best suited for the

task at hand: estimating grade levels of Web resources targeting young searchers.

Regardless of its effectiveness for our audience and context, we note that Spache’s

vocabulary is limited and was last updated in the 1970s. As language changes
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Figure 4.1: ER distribution across different grades for traditional readability formulas.

over time [106], an outdated vocabulary may not capture easy terms for children in

today’s world, potentially leading the formula to misleadingly estimate the complexity

of a text. The New Dale-Chall formula [22] increased the vocabulary considered

by the original Dale-Chall formula [31] from 763 to 3,000 in the 1990s seeking to

update the formula in response to a new set of passages with assigned grade levels

for comparison to determine difficulty of texts, known as “criterion passages”, for

the development of readability formulas [36]. These insights inspired us to pursue

an extended version of Spache’s vocabulary. Madrazo Azpiazu et al. [82] already

considered enhancing Spache’s original vocabulary list, by including a dictionary

of 48,000 non-stop lemmatized terms the authors extracted from children-related

websites (Sven) as part of the vocabulary considered by the formula. The enhanced

formula was successfully used to determine if a query was child-like. However, this

enhancement relied on word frequency analysis of child-related websites and assumed

that terms added to the vocabulary would be understood by children, which may



37

not always be the case. With the intent of including vocabulary that children learn

through instruction, we take advantage of the Age of Acquisition (AoA) dataset.

This dataset contains acquisition ratings in the form of ages, ranging from 1–17

years, for ∼30,000 English words [68], which we use to augment the original Spache

vocabulary, specifically including terms from AoA with an average age of acquisition

equal to or below 11 years as this aligns with our target audience. We further

examine an augmentation of Spache that expands the original vocabulary with all

of the words in AoA, as well as having the AoA words serve as the sole supporting

vocabulary. We posit that there is a benefit to simultaneously considering terminology

that children have been exposed to through websites as well as terminology that has

been taught, therefore we explore the combining of the original Spache vocabulary

with the combined terms from AoA and the dictionary from [82].

Following the same experimental procedure used for the comparison of the Flesch-

Kincaid, Coleman-Liau, and Spache formulas, we compare the ER of the modified

Spache formulas. First, we examine how each performs using book resources in

TextComp, the results of which can be seen in Figure 4.2. The Spache formula

using the original easy words vocabulary is more error prone than when using the

extended vocabularies. While the differences in ER differences are less pronounced

for the formulas using the extended vocabularies, when the vocabulary incorporates

Sven, the error rate is the lowest for grades K–5th. We attribute this benefit to

Sven being specifically tailored to words used by children, whereas Spache’s original

vocabulary is a list of general terms deemed easy to understand. There is no significant

difference in ER when applied to Grade 6 resources. Looking again at Figure 4.2, we

see a similar trend for Web resources, with the formula yielding the lowest error rates

for resources below the 6th grade being the version of Spache using Sven + AoA
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Full(i.e., Spache-Allen). From this experiment, we see that expanding the original

Spache vocabulary has a positive effect on the ER.

(a) ER for Spache and Spache-Allen.

(b) ER for variations of Spache using AoA and Sven.

Figure 4.2: Distribution of ER for Spache-inspired formulas across grades.
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Which readability formula simultaneously suits resource type, context

needs, and user group outlined for our task? (RQ1) Given our focus is on

children in grades K–4th and the significantly reduced ER of the Spache formula

with the Sven + AoA Full vocabulary, we deem this extended version, defined as

Spache-Allen in Equation 3.1, as the most suitable to be included in the design of

REdORank.

4.2 Detecting Educational Web Resources

The identification of online resources that align with common learning outcomes for

K–4 students among those considered for re-ranking is a key part of REdORank. To

do so, we introduced BiGBERT (Section 3.1.2), a deep learning classification model.

To ensure that the outcomes of BiGBERT, that directly impact the performance

of REdORank, can serve as an effective signal of relevance, we undertake a robust

evaluation of BiGBERT, which we discuss below.

4.2.1 Experimental Set-up

To evaluate the performance of BiGBERT we conduct an ablation study to demonstrate

that each component–URL vector, snippet vector, and domain knowledge infusement–

is necessary for BiGBERT to identify educationally aligned resources. Additionally,

we conduct a comparison with similar classification models to contextualize the

performance of BiGBERT.

An in-depth exploration of the literature in this area reveals that there is no

dataset we can use to assess the performance of models that determine the educa-

tional alignment of Web resources. Thus, we build one, which we call EduSites,
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using URLs (with text in English) from Alexa Top Sites [6]–based on the well-known

Open Directory Project (ODP) [23, 92]. We treat as educational the 1,273 URLs in

subcategories Pre-School and School Time from Kids & Teens. We also randomly

select 3,998 non-educational URLs uniformly distributed among Adult, Business,

Recreation, and Games. To validate that labels in EduSites align (or not) with

our definition of educational, an education expert annotated a representative sample

(n = 527). As in [94], we calculate the accuracy between the two annotations (Alexa

vs. expert) per sample, obtaining an inter-annotator agreement of 94.7%.

For performance assessment, we use Accuracy, a common classification metric,

along with False Positive (FPR) and False Negative (FNR) ratios, to offer insights

on the type of misclassified resources. A false-positive is a resource marked as

educational, that is not. A false-negative is the opposite, an educational resource

marked as non-educational. Significance of results is determined with McNemar’s

test, p<0.05.

To the best of our knowledge, there are no domain-specific classifiers that we can

use to contextualize BiGBERT’s performance. Thus, we optimize and adapt several

classifiers to detect K–4 Web resources:

1. BoW [49], a bag-of-words model that computes cosine similarity between a

vectorized resource URL and ODP category descriptions to determine the re-

source’s respective category (note that we use the text of learning outcomes

from educational standards in lieu of category descriptions).

2. BGCNN [105], a model based on a BiGRU with a CNN which identifies child-

friendly URLs.
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3. BERT4TC [130], a text classifier that uses a BERT encoder to perform topic

and sentiment classification,.

4. Hybrid-NB [1], a hybrid model which examines both URL and content of

websites to determine their target audience (i.e., Algerian users). Reported

results for BGCNN and BERT4TC are the average of 5-fold cross validation.

Besides the aforementioned classifiers, we explore variations of BiGBERT, where

U, S, and E indicate when BiGBERT examines only URLs, snippets, and infuses educa-

tional information, respectively. Via an ablation study, we showcase the contributions

of the URL and snippet vectorizers towards BiGBERT’s overall architecture.

4.2.2 Results and Discussion

We offer below an analysis of the results of the experiments conducted to assess the

design of BiGBERT. We summarize these results in Table 4.1.

Table 4.1: Performance analysis of BiGBERT (ablation study along with experiments
related to comparisons with counterparts). The suffixes -U and -S indicate model
applied to URL and snippet only, resp.; -E indicates model augmented with edu-
cational data. * and † significant w.r.t. BiGBERT and non-educational counterpart,
resp. Significance determined with McNemar’s test, p<0.05.

Row Type Models Accuracy FPR FNR

1 Baseline BoW .7205 * .115 .796

2
State-of
the-art

BGCNN .8399 * .073 .432
3 BERT4TC .9353 * .041 .140
4 Hybrid-NB .8600 * .145 .123

5

Ablation
Study

BiGBERT-U .8276 * .073 .484
6 BiGBERT-U-E .8287 * † .072 .483
7 BiGBERT-S .9374 * .027 .175
8 BiGBERT-S-E .9334 * .038 .155
9 BiGBERT-U-S .9381 * .035 .146

10 BiGBERT .9533 † .027 .106
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Reports in [105] showcase the effectiveness of only examining URLs to identify

sites as child-friendly. This motivates us to study the applicability of the approach

for detecting educational Web resources targeting K–4 populations. The accuracy

of BoW does not surpass the 75% mark attained via a naive baseline (one always

predicting non-educational due to the unbalanced nature of our dataset). BGCNN,

BiGBERT-U, and BiGBERT-U-E outperform more traditional models with accuracy

rates in the low 80 percentile. We attribute the increase in performance to the fact

that state-of-the-art models do not assume URL token independence, unlike BoW.

Results from our analysis indicate that when semantic and context-rich information

is available, URLs are a valuable source to inform classification. The number of

misclassified educational resources in this case, however, is high. In fact, nearly half

of educational samples, which comprise 25% of our data, are labelled non-educational

(see respective FNR). This leads us to investigate additional information sources that

can contribute to the classification process.

As content analysis is a staple of classification, it is logical to consider knowl-

edge inferred from snippets to better support the classification of K–4 educational

Web resources. This is demonstrated by significant performance improvements of

Hybrid-NB, BiGBERT-U-S, and BiGBERT over counterparts solely looking at URLs

(BoW and BGCNN). BiGBERT significantly outperforms hybrid models in accuracy

and FPR. Fewer false positives means lower likelihood for potentially inappropriate

sites being labelled educational, which is of special importance given the domain and

audience of our work. The results suggest that snippets, combined with URLs, do help

identify educational resources. However, the higher FNR of BiGBERT-U-S compared

to Hybrid-NB, again points to the misclassification of educational resources. This

can be seen on samples like www. sesamestreet. org , recognized as educational by
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Hybrid-NB but overlooked by BiGBERT-U-S. This would suggest that the lack of

explicit domain knowledge is a detriment to BiGBERT-U-S.

The accuracy of BiGBERT increases when using Edu2Vec and fine-tuned BERT

embeddings (rows 9 vs 10 in Table 4.1). To determine whether the improvement is the

result of explicitly infusing educational knowledge into the classification process, we

compare BiGBERT-U and BiGBERT-S with educationally-augmented counterparts. Our

experiments reveal a significant decrease in FPR and FNR between BiGBERT-U and

BiGBERT-U-E; non significant between BiGBERT-S and BiGBERT-S-E. Unlike for URL

variations, BiGBERT-S-E’s performance improved only in FNR after augmentation.

We attribute this to the relatively small training set used for fine-tuning in comparison

to the initial pre-training set for BERT, leading to less new contextual information

learned by the standard transformer model. Nonetheless, the significant increases in

accuracy and decreases in FPR and FNR for BiGBERT when compared to BiGBERT-U-S

suggest that domain-specific knowledge can have a positive effect on the classification

of educational resources. This is illustrated by the URL www. xpmath. com , a site

to support math education in grades 2nd–9th, that is labelled non-educational by

BiGBERT-U-S, yet it is correctly recognized as educational by BiGBERT.

Do snippets along with URLs help identify educational resources? Does

domain-specific knowledge affect identification of educational resources

(RQ2) From the results presented thus far, it emerges that indeed both URLs and

snippets are required to adequately portray the educational alignment of resources.

Moreover, by explicitly infusing domain-knowledge into the design of BiGBERT, the

range of educational resources identified expands as compared to simply using tradi-

tional BERT. Overall, in light of the success BiGBERT has at identifying K–4 educa-

tional resources while minimizing false negatives and false positives, we deem BiGBERT
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as suitable to be included in the design of REdORank. By optimizing on the output

of BiGBERT as a relevance signal, REdORank is able to address our environment and

audience.

4.3 Identifying Objectionable Resources

REdORank is designed to demote Web resources that are objectionable for children in

the classroom context. Given that REdORank relies on Judgebad (introduced in Section

3.1.3) to identify these types of resources, it is imperative to verify its reliability to

avoid error propagation. Thus, we undertake an in-depth analysis of performance,

which we discuss below.

4.3.1 Experimental Set-up

To the best of our knowledge, there does not exist a labelled dataset with coverage

for all categories within ObjCat, therefore we construct one: ObjSet. This dataset,

extracted from the Alexa Top Sites directory, is comprised of 10,006 samples of the

form <snippet, URL, label>, where label is 1 for objectionable samples, and 0

otherwise. We treat as objectionable 2,096 resources for which their corresponding

Alexa category name contains as a substring one of the ObjCat category and sub-

category names. The remaining 7,910 additional resources from Alexa serve as non-

objectionable counterparts. By selecting non-objectionable resources in a roughly 4:1

ratio to objectionable, we simulate a real world setting where objectionable resources

will make up a smaller portion of SERP.

To measure performance, we use Accuracy, FPR, and FNR. In this case, a

false-positive is a resource marked as objectionable but is not. A false-negative is
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the opposite, an objectionable resource marked as non-objectionable. Further, we

compare and contrast Judgebad with that of a number of counterpart models, each

adopting a different strategy for identifying objectionable resources. Through this

comparison we gain insights and contextualize how Judgebad performs with respect

to existing solutions.

• MNB. A bag-of-words Multinomial Naive-Bayes model that computes the TF-

IDF for the resource descriptions provided by ODP to determine the resource’s

respective class.

• BERT4TC [130]. A text classifier that uses the state-of-the-art BERT en-

coder coupled with a multi-layer perceptron to perform topic and sentiment

classification.

• AWESSOME [1]. A framework that combines the VADER sentiment lexicon

[61] with BERT to predict the sentiment intensity of sentences.

• KSAppropriateness [87]. Focused on the same user group and environment,

this model leverages a curated lexicon to analyze term frequency and term

proportion within the content of a Web resource determine appropriateness.

To ensure a fair comparison among models, ObjSet is divided into a training

and test set using an 80/20 split and all snippets are pre-processed in the same

manner: tokenized, punctuation removed, and lemmatized. Significance of results is

determined with McNemar’s test, p<0.05.
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4.3.2 Results and Discussion

As shown in Table 4.2, Judgebad achieves an accuracy score of 84.9%–a rate that

exceeds the expected performance of a majority classifier (79%) given the data dis-

tribution in ObjSet. Probing deeper on Judgebad’s performance, we observe that,

interestingly, Judgebad has a higher FPR than FNR. We attribute the false negatives,

i.e., those that are marked as non-objectionable when they are objectionable, to the

shorter length of some ObjCat lexicons, as such a lexicon provides less possibility of

clear representation for a given category. This is visible upon manual inspection by

resources related to alcohol and tobacco, a sub-category of Drugs, being mislabelled

as non-objectionable. The Drugs lexicon has a total of 100 terms, of which only

21 relate to alcohol and tobacco. A manual inspection of missed objectionable

resources reveals that in some situations Judgebad correctly identifies resources as

objectionable that have a label of non-objectionable, but are not appropriate for

children in a classroom. For example, consider www.kids-in-mind.com, an online

platform providing reviews of the content of films (gore, adult language, nudity,

etc.) so parents can make decisions about what films to show their children, or

www.casinocity.com, a directory site of casino and gambling related reviews and

games. Both samples are labeled as non-objectionable as per Alexa’s descriptions,

yet, neither is a site suitable for children in a classroom setting. From cases like this,

we argue that Judgebad is accomplishing its intended goal.

To contextualize Judgebad’s performance, we compare it to that of several related

models. MNB exhibited very similar performance to Judgebad, in terms of FPR

and FNR. Interestingly, there a significant difference in the accuracy of the two

models. Delving into which resources were misclassified, there are some differences
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Table 4.2: Evaluation of objectionable classification models using ObjSet. *
indicates significance w.r.t. Judgebad determined by McNemar’s test with Bonferroni
Correction, p<0.05.

Model Accuracy FPR FNR

Judgebad 0.849 0.038 0.574
MNB 0.856* 0.002 0.679
BERT4TC 0.209* 1.0 0.0
AWESSOME 0.209 1.0 0.0
KSAppropriateness 0.209 1.0 0.0

to be found. Manually inspecting the misclassifications, we found that MNB tends

to misidentify websites known to contain sexual content. We connect these misses

to the lack of vocabulary depth present in a bag-of-words model. Surprisingly,

BERT4TC, AWESSOME, and KSAppropriateness act as a minority classifier, always

assigning objectionable labels to resources. With the 4:1 distribution of ObjSet, the

expectation was for BERT4TC to learn to classify non-objectionable materials. We

ascribe the unexpected result to overfitting, in the sense that the model learned

representations of the terms in objectionable resources as clear identifiers regardless

of their presence or context in non-objectionable counterparts. With BERT serving

as an internal component for AWESSOME, we similarly attribute this overfitting

behavior to AWESSOME. We ascribe the performance of KSAppropriateness to the

combination of reduced features considered (only looking at sexually explicit and hate

speech terms) and the uneven distribution of the data.

Can topic-specific lexicons empower the identification of objectionable

Web resources? (RQ3) The use of extended lexicons on topics inappropriate

for a classroom, beyond pornography and hate speech, provide additional lenses for

Judgebad to discern what is and is not objectionable. Overall, given the demonstrated
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performance of Judgebad, we deem it suitable to include in the design of REdORank.

4.4 Re-ranking Web Resources with REdORank

Thus far, we have shown the applicability of solutions for identifying the educational

alignment, readability, and objectionability of resources. Using these perspectives

together, REdORank seeks to re-rank resources to support children searching in a

classroom environment by balancing the evidence of resources being inappropriate,

and therefore a risk, with the evidence that resources are educational and readable,

and therefore rewarding or beneficial. To validate that the design of REdORank

answers our research question and thus meets this goal, we undertake a comprehensive

evaluation which we discuss in the remainder of this section.

4.4.1 Experimental Set-up

There exist datasets for the evaluation of ranking models based on LTR, such as the

MQ2007 and MQ2008 sets [102] or the OHSUMED set [58]. Unfortunately, there

is no LTR dataset comprised of queries, resources, and “ideal” labels pertaining to

our user group and environment. In addition, none of the existing datasets include

known objectionable resources, which are a must in order to explicitly assess the

validity of REdORank’s design. In light of these two facts, we construct our own

dataset RankSet.

The construction of datasets for information retrieval tasks often follows the

Cranfield paradigm [124]. For ranking tasks, this process involves beginning with

known “ideal” resources. The title of each resource is used as a query to trigger the

retrieval of other resources in order to produce a ranked list. The ideal resource is
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always positioned at the top of the ranking, as it is treated as the ground truth.

The remaining top-N ranked resources (excluding the one originating the search, if

available) are used to complete the ranked list. The Cranfield paradigm enables the

construction of RankSet to ensure an ideal resource is in the top position for every

query. However, REdORank also aims to push objectionable resources lower in the

rankings. To enable evaluation of this aspect of REdORank, we append at the bottom

of the list a known “bad” resource.

To act as the ideal resources for RankSet, we use a collection of 9,540 articles with

known reading levels and educational value targeted for children on a variety of topics

from NewsELA [91]. For bad resources, we turn to ObjSet (Section 4.3.1). Following

the Cranfield paradigm, we use the ideal article titles as queries and using Google’s

API we retrieve up to 20 resources, their titles, search snippets, and rank positions

(we drop queries that lead to no resources or resources with missing content). We

assign relevance labels of 2 to the ideal resources, 0 to the known “bad” resources, and

1 to all other resources retrieved from Google. This results in RankSet containing

a total of 2,617 queries and 46,881 resources.

To demonstrate the correctness of REdORank’s design and its applicability, we

undertake an ablation study. REdORank utilizes AdaRank as the underlying LTR

algorithm with the expanded CS-DCG metric for optimization. To validate and

examine how (i) the expansion of the optimization metric from the more traditional

NDCG, and (ii) the incorporation of objectionability as a sensitivity cost, affect its

overall performance, we compare REdORank to AdaRank optimized with the standard

NDCG metric. Each model is configured with variations that utilize each perspective

as standalone features. To further contextualize the performance of REdORank, we

perform a comparison with a two other models: (i) LambdaMART, a popular listwise
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LTR model that utilizes Multiple Additive Regression Trees [46], with the overall

ranking function being the linear combination of regression trees, and (ii) Korsce

[87], a model designed to rank resources that align with 3rd to 5th grade educational

curriculum, are comprehensible for children in that same grade range, are objective in

content (i.e., not based in opinion), and are appropriate for the classroom, described

in detail in Section 2.2. We treat LambdaMART as a baseline, whereas Korsce

(matching our user group, environment, and context) is a state-of-the-art counterpart.

To measure performance, we use NDCG@10 and Mean Reciprocal Rank (MRR).

MRR seeks to spotlight the average ranking position of the first relevant item. In

our case, we find it particularly important to position objectionable resources very

low among retrieved results. Therefore, we also compute an alternative version of

MRR, in which rather than accounting for the first relevant (ideal) item, we account

for the position of the first objectionable item. We call this MRRBad, where a lower

value indicates better performance. Significance of results is verified using a two-tailed

student t-test with p<0.05; all results reported and discussed in the rest of this section

are significant unless stated otherwise.

4.4.2 Results and Discussion

We begin our evaluation of adapting LTR to children searching in the classroom by

looking at how a known listwise LTR algorithm, AdaRank, optimized for a standard

ranking metric (NDCG), performs when trained to rank according to our chosen

perspectives, educational alignment, readability, and objectionability. We train vari-

ations of AdaRank with each perspective, educational alignment, readability, and

objectionability each acting as a single feature. We refer to these variations with the

suffixes -E, -R, and -O, respectively. We train the same set of variations for REdORank
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with the addition of ones that use the mixer (described in Section 3.2.2) to combine

the educational alignment and readability perspectives into a single feature. We refer

to these with the suffixes -M, where the mixed values are the only feature, and -MER

where the mixed values are used alongside the individual perspectives. Results of the

experiments are presented in Tables 4.3 and 4.4.

We first look at each individual perspective as a feature for AdaRank. As an-

ticipated, AdaRank-O performed the worst, as seen by the lower NDCG and MRR

scores as well as the higher MRRBad. We attribute this to the fact that AdaRank-O

is optimizing for the “risk” perspective, and thus learning to potentially prioritize

the known bad resource above the known ideal. When optimizing on the “reward”

perspectives, AdaRank-E and AdaRank-R perform better than AdaRank-O. These

models place objectionable resources around the 10th position according to MRRBad,

while ranking the ideal ones around the 5th position, according to MRR (Rows 1–3

in Table 4.3). This is indicative of these models learning to focus on the types of

resources well-suited for our user group and environment. When putting all of the

features together, AdaRank outperforms each of the individual variations, indicating

the value of each perspective in determining relevance.

So far, we have showcased that the design choices for considering risk and reward

perspectives in a re-ranking task are well-founded. However, we surmise that the

AdaRank models are learning to rank objectionable resources lower as a beneficial

side-effect of optimizing on the educational alignment and readability. To account for

objectionable as an explicit signal of cost, and to balance that risk with the reward

of the other perspectives, we turn to REdORank, optimized for nCS-DCG.

For REdORank-E, REdORank-R, and REdORank-O, we see similar performances to

those of their AdaRank counterparts (Rows 5–7 and 2–4 in Table 4.3, respectively).
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Table 4.3: Performance of REdORank and ablation variations using RankSet. The
suffixes -R, -E, -O indicate Readability only, Educational only, and Objectionable
only, respectively. -M indicates the use of the mixer for educational alignment and
readability, and -MER indicates the use of the mixer with -E and -R. * indicates
significance w.r.t. REdORank and bold indicates best performing for each metric.

Row Algorithm
Optimization
Metric

NDCG MRR MRRBad

1 AdaRank NDCG 0.778* 0.226* 0.097*
2 AdaRank-E NDCG 0.765* 0.209 0.110*
3 AdaRank-R NDCG 0.774* 0.222 0.101*
4 AdaRank-O NDCG 0.675* 0.148* 0.537*
5 REdORank-E nCS-DCG 0.765* 0.209 0.110*
6 REdORank-R nCS-DCG 0.774* 0.222 0.101*
7 REdORank-O nCS-DCG 0.675* 0.148* 0.537*
8 REdORank-M nCS-DCG 0.765* 0.209 0.110*
9 REdORank-MER nCS-DCG 0.777 0.218 0.089*
10 REdORank nCS-DCG 0.779 0.228 0.097

This further highlights that the perspectives matter. We posit that the intercon-

nection of educational alignment and readability will serve as a beneficial composite

signal for the relevance of a resources. For this reason, we utilize the mixer described

in Section 3.2.2 to combine the two perspectives. Surprisingly, REdORank-M per-

forms worse in all metrics when compared to REdORank-R, and performs the same

as REdORank-E. To fully investigate whether this combined perspective could provide

value to the re-ranking, we created REdORank-MER. Lending credence to the idea

of incorporating a combined perspective, REdORank-MER outperformed each of the

individual perspective variations. While this variation performed significantly better

than REdORank in terms of MRRBad, it performed worse for the other two metrics.

This highlights that the explicit consideration of a sensitivity cost factor, alongside

multiple perspectives of relevance, has beneficial affects on re-ranking resources for

children searching in the classroom.



53

Table 4.4: Performance of REdORank and baselines using RankSet. * indicates
significance w.r.t.REdORank and bold indicates best performing for each metric.

Algorithm
Optimization

Metric
NDCG MRR MRRBad

LambdaMART NDCG 0.784 0.228 0.081*
Korsce N/A 0.753* 0.209 0.163*
REdORank nCS-DCG 0.779 0.228 0.097

The results so far have shown that the design for REdORank is well-founded.

To attain a better understanding of how REdORank performs, we also compare it

to both a state-of-the-art counterpart, Korsce, and a baseline LTR algorithm, in

LambdaMART. The results of these two models ranking the resources in RankSet

can be seen in Table 4.4. We see that REdORank performs significantly better than

Korsce for all metrics. This is visually represented in Figure 4.3. We attribute the

difference in performance to the fact that Korsce ranks in a pointwise, weighted

objective manner. That is, for each resource, each perspective score is multiplied

by an empirically determined weight, and then added together to create the ranking

score. In contrast, REdORank learns a single dynamic weight that accounts for each

perspective simultaneously as opposed to individually. LambdaMART learns to rank

by optimizing on pairwise comparisons of documents. Surprisingly, LambdaMART

performs significantly better than REdORank for the RankSet. While this was

unexpected, as listwise LTR algorithms have been shown to be more effective when

applied to Web search [20, 118], we attribute the discrepancy in performance to the

structure of the dataset. RankSet only contains a single ideal resource, which

a pairwise algorithm is more likely to “locate” by nature of directly comparing

documents. On the other hand, REdORank is more likely to miss the ideal resource as

it does not explicitly compare each resource to every other one, but rather considers
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their relevance in a relative manner within the list. In real-world scenarios, where

more than one ideal resource is likely to be in a single list, a listwise approach is

better suited to the re-ranking task.

Figure 4.3: NDCG@10 for different re-ranking models using RankSet.

Does the adaptation of an LTR model to account for multiple per-

spectives lead to the prioritization of resources that are relevant to both

children and the classroom setting? (RQ4) Given its visibly higher lower bound

on NDCG@10 over its counterparts (as seen in Figure 4.3), its successful performance

regarding ranking known educational and readable resources high in the rankings, and

its expected generalizability to real-world re-ranking scenarios, we consider the design

of REdORank to be an appropriate model for providing re-ranking to search systems

supporting children’s search activity in the classroom.
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CHAPTER 5

CONCLUSION

The work presented in this thesis advances Information Retrieval for Children–centered

on the design, development, and assessment of strategies that enable children’s online

information discovery. This research area is of particular importance due to the

ubiquitousness of search engines (SE), and the fact that children are considered

non-traditional users, as the vast majority of the academic and commercial efforts

in this area target adults. Given the broad range of children’s search skills when

it comes to searching [50], and the wide range of inquiries children turn to SE for,

particularly with the ongoing COVID-19 pandemic, we explicitly scoped our work

to focus on children ages 6–11 using Web search tools in the classroom context. To

better support this user group, we presented a novel re-ranking strategy, REdORank,

that serves as training wheels for facilitating children’s identification of resources that

are relevant to their information needs.

Responding to findings reported in the literature regarding the manner in which

children search, e.g., their propensity to fixate on top-ranked results [50, 53], as well as

the manner in which SE respond to children’s queries [13, 12], e.g., offering resources

children cannot comprehend, REdORank examines resources retrieved by commercial

SE–preferred by children–and prioritizes them in a manner that those best suited

for the context and user group at hand are ranked higher. To do so, REdORank
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appraises resources based on three perspectives: educational alignment, readability,

and objectionability. By combining of all of these perspectives, REdORank ensures

that SE can better respond to children’s search behavior by balancing the risk and

reward value of resource content.

With educational alignment, the goal is to prioritize resources that support learn-

ing. Even if resources are educational, for their content to be of value, it must

be readable and therefore comprehensible. To that end, REdORank looks at the

readability of resources. Unfortunately, not all resources online are meant for, or even

appropriate for, children to engage with in a classroom context. As such, REdORank

incorporates the objectionability perspective so it can position such resources lower

in the ranking where they are less likely to be seen and engaged with by children.

An in-depth analysis of REdORank revealed that a multi-perspective LTR model is

an effective solution to re-rank resources for children in the classroom. Through the

experiments conducted, we can conclude that the deliberate inclusion of perspectives

connected to a particular user group and environment can benefit the performance

of a model in the re-ranking of resources retrieved from a mainstream SE. In fact,

explicitly considering signals of “negative” perspectives, and balancing them with

“positive” signals of relevance provides significant improvements in performance.

Integral to REdORank’s ability to re-rank resources, we discovered that URLs and

snippets provided an effective proxy for the classification of an online resource as

educational, or not. Based on the ablation study conducted with REdORank, we

also found that snippets are useful in the identification of resources as objectionable.

Finally, from the readability standpoint, we noticed that considering a vocabulary

more carefully tailored to contemporary language and adjusted to children’s age of

acquisition of terms can improve estimation of readability for online resources targeted
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towards children.

As a result of an extensive empirical exploration to determine the validity of each of

the perspectives informing REdORank’s design, the following additional contributions

emerged: BiGBERT, a classification model to identify educationally aligned Web re-

sources through an ensemble deep learning approach; and Judgebad, a lexicon-based

classification model for identifying online resources objectionable for children in a

classroom context. In addition to these classification models, we introduce a new

readability formula that is effective at estimating the readability of online resources.

Through the course of our work, a number of limitations and pathways for fur-

ther research came to light. Spache-Allen is designed and evaluated only on its

applicability to estimate the readability of English language resources. However, the

Web is world-wide and covers many different domains of information. Therefore,

performing a similar empirical exploration involving different domains, e.g., legal or

medical, as well as multilingual readability formulas may provide further valuable

insights for the many areas of research interested in text understanding, particularly

Natural Language Processing (NLP). REdORank leverages readability as an internal

feature, based on Spache-Allen, which only looks at text resources to estimate their

readability. In the future, we plan to expand this perspective to consider other

methods of readability estimation that account for the presence of additional media

elements, e.g., images and charts on web pages. Another limitation is the lack of

consideration of a users’ prior knowledge on a subject. Future work investigating the

connection between pre-existing topical knowledge and readability estimation can

bridge this gap and further align supporting tools such as REdORank with their target

user groups.

When exploring objectionable resources, we followed existing state-of-the-art ap-
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proaches and treated all categories in ObjCat as unquestionably objectionable. How-

ever, children do not necessarily require a one-size-fits all solution. For instance,

content that is objectionable for a 4th grader may not be so for a 12th grader.

We recognize this as a limitation of Judgebad, and suggest increasing granularity

of identifying what is and is not objectionable for children of various ages.

Additional limitations involve RankSet, the dataset used for assessing the pro-

posed re-ranking model, which is constructed based on the Cranfield paradigm. As

such, the dataset is limited to only a single ideal resource in response to each query.

Unfortunately, having only a single ideal resource is not indicative of real world

SERP, thus leading us to pursue further studies on the performance of REdORank

in a realistic environment. With that, immediate next steps include a user study

involving the examination of children’s search behavior when using a search system

with and without REdORank.

Outcomes from this thesis have implications for researchers investigating children’s

Web search. REdORank is a step towards adapting mainstream SE to classroom

use, yet still it focuses only on specific perspectives to inform relevance gain. It is

worth researching the benefits of combining additional relevance signals, from sources

beyond the text of a resource, such as where the resource comes from, or who wrote

it. Such factors contribute to the credibility of a resource. Unfortunately, children

are known to not judge the credibility of online resources [55], making credibility a

valuable extra perspective to bring into the fold for re-rankers. This can be achieved

quickly and effectively using the mixer strategy employed by REdORank (Section 3.2.2)

which enables the simultaneous aggregation of multiple scores into a single one.

While this mixer is currently used for “reward” perspectives, it can be replicated for

“risk” perspectives as well. For example, children struggle to identify if something is
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misinformation or not [99]. As a result, they may consider a misinformation resource

as credible. By extending the cost to include perspectives beyond objectionability,

such as misinformation, REdORank can prioritize resources that are grounded in fact.

Ongoing research in Human-Computer Interaction has explored how visual el-

ements of a SERP affect children’s interactions with results [3, 4]. REdORank can

provide further avenues of exploration regarding how to identify the type of resources

and visual elements that can serve as visual clues. For example, a small book icon

with a number inside can be added alongside the display of a result on a traditional

SERP to indicate the reading level of a resource. Similarly, an icon representing a

small schoolhouse could be added to indicate that a resource is of educational value.

Through the addition of visual elements rooted in the traits considered during the

ranking process, transparency of search systems can increase. Users can be offered a

glimpse behind the curtain into how a particular system works. This can impact the

ease of use and understandability of a system. Additionally, such visual elements can

benefit users learning to search by providing, over time, a visible connection between

ranked resources and the query that searchers can use to improve query formulation.

REdORank is a tangible step towards designing an adaptive search tool for children.

Perhaps most impactful, is the possibility of using REdORank to support the searching

to learn portion of the search as learning paradigm. Searching to learn is the act of

seeking information to gain new knowledge within an educational setting [13, 108],

which aligns very well with the purpose of REdORank given the effectiveness for

identifying, and propensity to rank higher, Web resources of educational value.
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APPENDIX A

DATA FOR EXPERIMENTS

• AoA – Collection of vocabulary terms labelled with the ages at which children

acquire understanding of them [68]. Used in design of Spache-Allen (Section

3.1.1).

• EduSites – Collection of online resources extracted from Alexa’s Top Sites by

Category directory that are educational for children (Section 4.2).

• ObjSet – Collection of online resources extracted from Alexa’s Top Sites by

Category directory that are objectionable for children, i.e., resources that fall

within the categories described in Section 4.3.

• RankSet – Collection of ranked search results in response to queries sourced

from NewsELA article titles (Section 4.4).

• Sven + AoA Full – Combination of the terms in AoA and Sven. Used in

design of Spache-Allen (Section 3.1.1).

• Sven – Dictionary of terms extracted from children-related websites for the

work done in [82]. Used in design of Spache-Allen (Section 3.1.1).
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• TextComp – Collection of book and web resources labelled with a reading

level in the form of a grade at which a child is able to read the corresponding

resource (Section 4.1).




