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ABSTRACT

Mafic eruptions, which are typically effusive to mildly explosive, can produce
much stronger explosive eruptions. Eruption style is determined by the ability of gas to
escape through the permeable network. If the permeability is sufficiently high to reduce
vesicle overpressure during ascent, the volatiles may escape from the magma, inhibiting
violent explosive activity. In contrast, if the permeability is sufficiently low to retain the
gas phase within the magma during ascent, bubble overpressure may drive magma
fragmentation. Rapid ascent rates may induce disequilibrium crystallization, increasing
viscosity and explosivity, and have consequences for the geometry of the vesicle network.
Quantitative vesicle texture analyses are commonly measured in 2D. However, 2D vesicle
analyses do not provide sufficient information about the internal vesicle structures for
permeability analysis. Here we use synchrotron X-ray computed microtomography of 10
pyroclasts from the 12.6 ka mafic Curacautin Ignimbrite (Llaima Volcano, Chile) to
reconstruct and quantify pyroclast textures in three dimensions. Our goal is to obtain 3D
measurements of porosity, bubble interconnectivity, bubble number density, and
geometrical properties of the porous media to investigate the role of magma degassing
processes at mafic explosive eruptions. We use an analytical technique to estimate
permeability and tortuosity by combing empirical relationships and pyroclasts vesicle
textures. We identified two populations of vesicles: (1) a convoluted connected vesicle
network produced by extensive coalescence of smaller vesicles (>99% of pore space), and

(2) a population of very small and completely isolated vesicles (<1% of porosity network).
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Bubble numbe2r density measurements are 1-29x10° bubbles per mm?, implying an
average decompression rate of 1.4 MPa/s under heterogeneous nucleation. We computed
tortuosities factor between 1.89 and 4.4, with higher values in the less vesicular samples.
Permeability ranges are between 3x107'% and 6.27x10"'> m?. 3D vesicle textures evidence
rapid ascent rates that induced high disequilibrium, promoting rapid syn-eruptive
crystallization of microlites and late vesiculation. We propose that the increase in viscosity
due to crystallization and vesiculation, combined with rapid ascent, inhibited outgassing
and increased bubble overpressures, leading to explosive fragmentation. We estimated that
a bubble overpressure greater than 5.2 MPa could have been sufficient to fragment the
Curacautin magma. Other mafic explosive eruptions report similar disequilibrium
conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium may

control the explosivity of mafic eruptions more generally.
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CHAPTER ONE: INTRODUCTION

Mafic eruptions, which are typically effusive to mildly explosive, are the most
common style of volcanism on Earth (Parfitt, 2004). However, mafic volcanoes can
produce much stronger, Plinian-style eruptions, capable of destructive pyroclastic currents
and widespread ash fall (La Spina et al., 2020). The most powerful examples include the
basaltic Plinian deposits of ~60 ka Fontana Lapilli and ~2 ka Masaya Triple Layer at
Masaya volcano in Nicaragua (Constantini et al., 2009; Constantini et al., 2010; Bamber et
al., 2020; Pérez et al., 2020); the 122 BC eruption of Etna, Italy (Coltelli et al., 1998;
Houghton et al., 2004; Sable et al., 2006); and the 1886 Tarawera eruption, New Zealand
(Houghton et al., 2004; Sable et al., 2006; Shea et al., 2017; Moitra et al., 2018).

In general, explosive eruptions are modulated by the conditions of volatile
exsolution that lead to vesiculation. Vesiculation is a process in which volatiles originally
dissolved in the magma exsolve into gas bubbles due to a decrease in the pressure-
dependent solubility during magma ascent (Yoshimura, 2019). The resulting bubbles
undergo decompression expansion, reducing the bulk mixture density of the magma and
enhancing buoyancy (Cassidy et al., 2018). As bubbles expand, they coalesce to form
permeable pathways connecting the dispersed volatile phase (Klug and Cashman, 1996).
If the resulting permeability is sufficiently high to reduce vesicle overpressure during
ascent, the volatiles may escape from the magma, limiting the chance of violent explosive
activity. In contrast, if the permeability is sufficiently low to maintain the gas phase trapped

within the magma during ascent, overpressure in bubbles may drive magma fragmentation,



producing an explosive eruption (Mueller et al., 2008; Degruyter at al., 2012; Cashman and
Scheu, 2015; Cassidy et al., 2018). The exsolution of volatiles within a magma is controlled
by decompression rate, the degree of volatile saturation, availability of nucleation sites,
surface tension, and viscosity of magma (Mangan et al., 2004; Cassidy et al., 2018).

Many studies show that there is a link between mafic explosive volcanism, rapid
ascent, and syn-eruptive disequilibrium conditions in both the gas and solid phases (La
Spina et al., 2016; Polacci et al., 2018; Arzilli et al., 2019; Bamber et al., 2020; Namiki et
al., 2021). When decompression rate is high, the volatiles may not degas from the magma
under equilibrium conditions. Such disequilibrium degassing may lead to volatile
supersaturation, late vesiculation, and high bubble overpressures (Mangan and Sisson,
2000). Similarly, crystallization kinetics are controlled by water content, degassing, and
ascent rates (La Spina et al., 2016; Befus and Andrews, 2018; Arzilli et al., 2019). High
degrees of disequilibrium due to rapid ascent results in high crystal nucleation and growth
rates (Befus and Andrews, 2018). This increases the magma bulk viscosity and may further
prevent degassing, promoting the conditions necessary for explosive volcanism (Arzilli et
al., 2019).

The volatile and crystal textures of magmas are critical in determining their
rheology and eruptive behavior (Gonnermann and Manga, 2007). Rapid crystallization due
to disequilibrium degassing triggers profound rheological changes in ascending magmas
(Vona et al., 2011; Arzilli et al., 2019). Indeed, pyroclasts from mafic Plinian eruptions
typically display high microlite number densities (Murch and Cole, 2019), suggesting that
changes in rheology due to rapid crystallization may be responsible for triggering highly

explosive basaltic volcanism (Sable et al., 2006).



Pyroclasts from explosive eruptions record the state of the volatile phase in the
conduit prior fragmentation (Degruyter et al., 2010). Thus, pyroclasts vesicle textures can
be used to constrain magma permeability at the time of fragmentation, as well as ascent
rate and fragmentation conditions (Mueller et al., 2005; Toramaru, 2006; Polacci et al.,
2010). The most common approach to investigate vesicle texture is using 2D images via
scanning electron microprobe (SEM) on thin sections. However, this technique does not
provide sufficient information about the internal vesicle structures in 3D for permeability
analysis (Polacci et al., 2010; Giachetti et al., 2011). Even with 3D analysis, permeability
and tortuosity estimates often require lab measurements or numerical modeling, which may
not be an option due to pyroclast size (too small for lab permeameters) and computational
challenges to simulate a large enough volume to be representative.

The objective of this study is to use 3D X-ray microtomography reconstructions of
pyroclasts to measure porosities, bubble number density, vesicle interconnectivity and
geometrical properties of the porous media. We then develop an analytical technique to
estimate permeability and tortuosity by combing empirical relationships and pyroclasts
vesicle textures.

We focus on pyroclasts produced by the large volume 12.6 ka mafic explosive
eruption of Llaima volcano (38°41°45 S, 71°43°54 W), responsible for the extensive
Curacautin Ignimbrite (Fig. 1; Naranjo and Moreno, 1991; Marshall et al., in prep). The
Curacautin Ignimbrite is a massive, poorly sorted, and matrix-supported lapilli tuff. The
eruption produced four flow units of variable thickness with SiO content between 53 and
54.51 wt.% (Marshall et al., in prep). We collected samples stratigraphically (Units 1 —4)

from the most complete exposure, which is located southeast from the summit (Fig. 1).



Previous work shows that Curacautin pyroclasts are lapilli size, subrounded, micro-
vesicular with low phenocrysts contents (2-3%; Lohmar, 2008), but are rich in plagioclase
microlites (7.95-18.4x10° per mm’®. Fig. 2; Marshal et al., in prep). 2D analyses suggest
that vesicles shapes are controlled by an abundance of plagioclase microlites (Martel and
Iacono-marziano, 2015).

Here we report 3D results using X-ray microtomography of porosity, bubble
number density, surface areas, tortuosity, and permeability of pyroclast from the
Curacautin Ignimbrite. We then estimate decompression rates, the degree of coupling
between the gas phase and the magma, and the evolution of vesiculation during ascent to
investigate the role of magma degassing processes at mafic explosive eruptions. Finally,
we discuss the consequences of disequilibrium conditions and compare our results with

other basaltic explosive eruptions.
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Figure 2 SEM image of a pyroclast from the Curacautin Ignimbrite. (A)
Sample L1, Unit 1. (B) Sample L8, Unit 2. The vesicle shapes are controlled by the

high amount of plagioclase microlites.




CHAPTER TWO: METHODOLOGY
Sample Preparation

Collected pyroclasts were picked, cleaned, and sorted by density (Table 1; Marshall
et al., in prep.). We chose the mean and median density pyroclasts from each sample for
3D analysis and drilled 3.4 mm diameter cores for further X-Ray microtomography. The
mean pyroclast density for each sample was chosen for this study; if the mean pyroclast
was unavailable, we used the median density pyroclast for 3D analysis. Cores were
immersed in an ultrasonicator water bath for 25 minutes to remove powder produced by
coring, then dried in an oven at 95 °C.

X-ray microtomography

X-Ray microtomography was performed on beamline 8.3.2 at the Advanced Light
Source, Lawrence Berkeley National Lab. 2D images were acquired over five sessions
between September 2017 and October 2018. Owing to differences in beam stability and
small changes in setup, scanning parameters varied slightly between sessions to optimize
image quality. Images were acquired with 25-30 keV monochromatic X-rays and 200
millisecond exposure times. 1025-2625 projections were imaged with a PCO edge camera,
a 5X Mitutoyo lens, and a 50 mm LuAG scintillator over a 180 degrees continuous rotation
of the sample. Isotropic pixel size was 1.3 microns. A subset of 5 samples were imaged
0.64 microns/pixel for comparison. Image reconstruction was performed with Xi-cam
(Pandolfi et al., 2018), including center of rotation optimization along with ring and outlier

removal.



3D reconstruction
Image processing, volume rendering, and geometric computations were generated
using the Dragonfly software, Version 2020.1.0.797 for Windows 10 (Object Research
Systems (ORS) Inc, Montreal, Canada, 2018; software available at

http://www.theobjects.com/dragonfly). All 2D and 3D images were extracted using the

Dragonfly software. We stacked 820 2D images per sample to reconstruct the 3D
microstructures. Due to the size of the resulting volume (22.2 GBs; Fig. 3A) and the
computational problems to process that amount of data, four cubic sub volumes of
820x820x820 pixels (~1.21 mm®) per sample were extracted as Volumes of Interest (VOI;
Figure 3C). These VOIs are large enough to be representative of the complexity and
heterogeneity of the samples, but small enough to not overwhelm the computing resources
available for this project (Baker et al., 2012; Degruyter et al., 2010). We selected four sub
volume locations vertically throughout each core sample to reduce ring errors (maximum
at the center of the sample) and avoid the cylindrical boundaries of the 2D images (Fig.
3A, Fig. 3B). Using four VOIs also provides a sensitivity analysis, enabling error

calculations.


http://www.theobjects.com/dragonfly

Figure 3 Image reconstructions and Volume of interest. (A) 3D reconstruction
of L4. Image was obtained stacking 820 reconstructed 2D X-ray microtomography
images (B) 2D orthogonal view from the top of the volume. The white dashed square
represents the area of interest used to generate a subvolume (C) 3D visualization of
sample L4(Figure 2), one of the four volumes of interest we extracted per sample.

In order to analyze and visualize the pore network, the VOIs were segmented using
Dragonfly’s segmentation toolkit. This process partitions the volume into groups of voxels
of'each phase of interest. For simplicity, we defined two phases of interest: pores and solid

rock. We utilized a segmentation criteria based on a brightness/grayscale histogram
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threshold, where the darker voxels correspond to bubbles or pores and the brighter ones
correspond to the solid phase (Fig. 4A). Commonly, this process leads to the generation of
artifacts and errors due to the heterogeneities in pixel brightness (Figure 4B; Baker et al.,
2012; Degruyter et al., 2010; Ketcham and Carlson, 2001; Ketcham, 2005; Shanti et al.,
2014). Thus, a cleaning procedure was performed using morphological operations, part of
Dragonfly’s segmentation toolkit, to “Erode”, “Dilate” and “Smooth”, effectively
removing artifacts such as islands and holes smaller than 9 voxels. This process was
repeated as many times as necessary until a clear, bimodal image was produced (confirmed
by a visual inspection, Fig. 4C). Once the segmentation was successful, we separated the
interconnected voxels from the isolated ones (Fig. 4D). Every connected or isolated pore
was counted and identified, followed by the computation of geometrical properties as

Volume and Surface Area (Appendix A.1).
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d
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Figure 4 (A) 2D view of a slice of one VOI (sample L4). Darker grey pixels

correspond to pores/vesicles, while the brighter ones correspond to the solid phase.

(B) Segmentation based on a brightness/grayscale histogram threshold. The
segmented phase in cyan color shows the artifacts in the form of islands and holes.

(C) Final view of the cleaning process after using morphological operations as

“Erode”, “Dilate” and “Smooth” to remove artifacts shown in (B). (D) 2D view of
the separation of vesicles. Every color represents a single vesicle. The golden color
represents one single convoluted vesicle.
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Quantification of 2D and 3D vesicle textures in terms of vesicularity (volumetric
fraction of vesicles), bubble number densities (number of vesicles per unit volume), vesicle
volume, surface areas, and connectivity (volume fraction of connected vesicles) were
performed with the same software (Table 1, Appendix A.1). Additionally, we extracted 3D
visualizations of the skeletonization (Fig. 5D), segmented phases (Fig. 5B), and separated
phases (Fig. 5C). The final 3D segmented volumes were extracted as 2D 8-bit binary

images for further tortuosity analysis.
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Figure 5 3D visualization of L4. All three volumes have the same size. (A) 3D
reconstruction of L4. (B) Segmentation of the porous media represented in cyan
color. (C) Separation of interconnected vesicles. Every color represents a single

bubble. (D) 3D visualization of the skeletonization of sample L4. The purple matrix

represents the medial axis of the pore network. The convoluted shape and the
chaotic distribution of the final structure make it very difficult to calculate classic
tortuosity.
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3D Tortuosity factor
Tortuosity factors (7*) were calculated using the MatLab application TauFactor
(Cooper et al., 2016). TauFactor calculates the changes in diffusive transport produced by
convolutions and heterogeneities of the interconnected porous media (Eq. 1; Backeberg et
al., 2017; Cooper et al., 2016). Equation (1) calculates effective diffusivity (Desr) in terms

of tortuosity factor,
€
Defr = Do — (1)

where Dy is the intrinsic diffusivity of the conductive phase and ¢ is the volume fraction of
the porous phase. TauFactor calculates the directional tortuosity factor along three
mutually perpendicular axes of interconnected “diffusive phases” (or porous phases)
through a 3D volume generated by stacking binary or trinary 2D images (Appendix A.3)
It is important to note that tortuosity factor and tortuosity () are two different
parameters, although both characterize the relationship between the geometry and length
of interconnected phases. In porous media, tortuosity is defined as the ratio between the
flow-path length and a straight line length in the direction of flow, which has been
commonly used to quantify flow, or diffusion along porous media (Suman and Ruth, 1993;
Shanti et al., 2014; Backeberg et al., 2017; Cooper et al., 2016). Tortuosity is measured
from skeletonized data using finite element analysis or finite difference calculation on
meshed data (Shanti et al., 2014). Unfortunately, the skeletonization of the porous network
of our samples are too complex and chaotic for this kind of operation (Fig. 5D). As such,
a tortuosity factor calculation is better suited for modelling more complex pore networks

such as those in our clasts (Backeberg et al., 2017; Cooper et al., 2016).
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In a system where the cross-sectional area of the flow path remains constant,
tortuosity factor is equal to the square of tortuosity (Eq. 2; Tjaden et al., 2016; Backeberg
et al., 2017).

T ~ 72 )
The Tortuosity factor and tortuosity both increase as pathways become more contorted.
Both parameters approach 1 when the cross-sectional area of the flow pathways remains
constant and the direction of flow follows the axis that is orthogonal to that cross-sectional
area (Backeberg et al., 2017).

TauFactor also computes 2D volume fractions, 3D phase volume fraction
(vesicularity), effective diffusivity (D.fy), directional percolation, tortuosity factor (77),
and a provides a visual representation of the flux during steady state (Appendix A.3).

Permeability calculations

One of the most widely used relationships between permeability and tortuosity is
the Kozeny-Carman relation (Yokoyama and Takeuchi, 2009; Matyka and Koza, 2001;
Farquharson et al., 2015; Berg, 2014; Bernard et al., 2007; Wei et al., 2018)

ky = -2 3)

cT2S2

where ki is the Darcian permeability, given by the porosity (¢), tortuosity (7), the surface
area per unit volume (S) and the Kozeny constant (c). Bernabe et al. (2010) defines two
simplified Kozeny constants: a crack-controlled media where ¢ = 12; and a pore-controlled
media where ¢ = 8 (Farquharson et al., 2015). We use ¢ = 8 due to the nature of the porous
network. Given the complexity of the porous media and the low variation in the cross-
sectional area of the flow path, we combined Eq. (2) and Eq. (3) to find a relationship

between permeability and tortuosity factor (Eq. 4):
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4

~
cT*S?

Decompression and discharge rates
We use the bubble number density decompression rate meter proposed by
Toramaru (2006) to calculate decompression rates (dP/d¢) from volumetric bubble number
densities (Ny) for basaltic magmas under heterogeneous nucleation (Eq. 5; Shea, 2017;

Toramaru, 2006):

2

ar _ ( Ny, )5 5
dt  \5(+3.5)x103 )

Additionally, if we assume a cylindrical conduit geometry, we can estimate mass
discharge rates (m) as a function of bulk magma density (p,,), decompression rate,

pressure gradient in the conduit (dP/dz), and conduit radius (r) (Shea, 2017):

N 5 . R

dz dt

We approximate the pressure gradient in the conduit with the magmastatic gradient.
For a mafic magma at 1200°C, dP/dz=0.026 MPam ' (Cas and Simmons, 2018). We used
the bulk magma density (p,,) (i.e. melt +vesiclestcrystals) as the average density of our
pyroclasts for Unit 1, pp, e ~ 1290 kg m~3(Marshall et al., in prep.). For the radius, we
considered that Plinian eruptions require larger conduits radius, between 10 and 150 m, to
explain the relationship between mass discharge and decompression rates (Shea, 2017). As

such, we calculated three discharge rates for radii of 25, 50 and 100 m.
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Forchheimer and Stokes numbers
We calculated the Stokes and Forchheimer numbers for Unit 1 following Degruyter
et al. (2012) equations to validate and compare our results with the Plinian phase of the
May 18, 1980 eruption of Mount St. Helens (MSH 1980, Degruyter et al., 2012). The
Stokes number (St) is a non-dimensional number that represents the ratio of the magma
response time scale and the gas phase characteristic flow time (Eq. 7):

Pmkq

St = 42 %

Uo

where p,, is the bulk magma density, k; is the Darcian permeability, L, is the viscosity of
the gas phase, r is the conduit radius, and Uy is the velocity. Velocity is calculated as the
ratio between the mean decompression rate and the magmastatic gradient in the conduit.
When St is small, magma and gas are coupled and ascend at the same velocity, preventing
degassing. For larger St, the degree of coupling decreases inducing degassing (Degruyter
et al., 2012; La Spina et al., 2017). In contrast, the Forchheimer number (Fo) corresponds
to the ratio of the inertial and viscous term in the Forchheimer’s law (Eq. 9; Degruyter et

al., 2012; La Spina et al., 2017):

kU,
Fo = Pgor1Up ®)
kaug
P,
Pg0 = = )

where pgo is the density of the gas phase and ko is the inertial permeability. The density of

the gas phase is calculated using the Eq (9), where Py is the pressure in the conduit at a
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certain depth and R is the specific gas constant. The inertial permeability is calculated using
the Gonnermann et al. (2017) relationship between Darcian and Inertial permeabilities (Eq
10):

loglo(kz) = 1.353 loglo(kl) + 8.175 (10)

For small Fo, outgassing is controlled by the viscous permeability (Darcian). For

larger Fo, the inertial permeability dominates (Degruyter et al., 2012; La Spina et al., 2017).

In order to obtain Fo and St values, we assumed that the temperature in the conduit
is constant. We used a temperature of 1100 °C (1375 K), which represents the mean
temperature for the Curacautin Ignimbrite pre-eruptive magma (Lohmar, 2008). Gas
viscosity and velocity throughout the conduit are assumed constant as well, while conduit
radius and reference depth are variable between 25 and 100 m, and between 100 and 1000

m, respectively. Parameters used for Fo and St computations are summarized in Table 3.



19

CHAPTER THREE: RESULTS
Reconstruction and measurements of vesicle textures in 3D

We analyzed 40 VOIs from 10 representative pyroclasts, 4 VOIs per sample. The
reconstructed volumes obtained using synchrotron X-ray microtomography allow us to
visualize and quantify the vesicle network of Llaima pyroclasts in 3D (Fig. 6). All samples
show high vesicle interconnectivity and no signs of preferential vesicle elongation. There
are two main populations of vesicles: (1) a contorted connected vesicle network produced
by coalescence of smaller vesicles (>99% of porosity network, yellow color in Fig. 6A,
and (2) a population of very small and completely isolated vesicles (<1% of porosity
network; Fig. 6B). Isolated vesicles present multiple shapes with no evidence of high
sphericity or preferential elongation.

Quantitative textural parameters as 2D and 3D vesicularities, bubble number
densities (BND) and specific surface area are summarized in Table 1. Individual 3D
measurements of vesicularities are shown in Fig. 7A; the 2D ranges are represented by the
error bars. Average 3D vesicularities, correlated stratigraphically in Fig. 8 A, and BND are
presented in Table 1. The BND results correspond to less than 1% of the total vesicle phase

(Fig. 6B). No correlation between BND and vesicularity is observed.
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Figure 6 (A) 3D visualization of L4 vesicle network and isolated vesicles. Every
color represents 1 single vesicle, where the yellow color represents the main
convoluted connected vesicle network. All voids correspond to the solid phase. (B)
3D visualization of L4 isolated vesicles. Every color represents one single vesicle.
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Figure 7 (A) 3D vesicularities measurements of the 4 VOIs per sample. Error

bars correspond to 2D vesicularity ranges. (B) 2D vesicularity variability of one L4
sample marked in red. Maximum and minimum values represented in (A) as error
bars.

Average specific surface area calculations, defined as the ratio between the surface
area and the volume (Maroofet al., 2020), are also presented in Table 1. These values were
calculated for the contorted connected phase that represents the 99% of the vesicle phase
(Fig. 6A, yellow interconnected vesicle). No correlation with vesicularity or BND is
observed.

Tortuosity factor

Tortuosity factors were calculated using the MATLAB application TauFactor,

which quantifies the apparent decrease in diffusive transport resulting from convolutions

of the flow paths through porous media (Cooper et al., 2016). We compute tortuosities
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factors in three orthogonal directions following the axis of our cubic VOIs. Results are
presented in Table 1 and correlated stratigraphically in Fig. 8B. We observe low directional
variability, implying that there is no preferential path direction for the gas flux. We also
observe an inverse relationship between vesicularity and tortuosity, and a strong direct

correlation with specific surface area (Appendix A.1).
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Permeability calculations

Darcian Permeabilities were calculated using Eq. (4) and assuming a pore-
controlled medium (c = 8; Bernabe et al., 2010; Farquharson et al., 2015). Similar to the
tortuosity factor calculations, we computed permeability values in three orthogonal
directions following the axis of our cubic VOIs. Computations of average Darcian
permeability are presented in Table 2 and correlated stratigraphically in Figure 8C. These
results have an inverse correlation with tortuosity, a direct correlation with vesicularity,
and a strong inverse correlation with the specific surface area. We calculated inertial
permeabilities using the Darcian permeability results and the Eq. (11) (Gonnermann et al.,
2017). Average values of inertial permeabilities are also presented in Table 2, and present
similar correlations to Darcian permeabilities.

Decompression and discharge rates

Due to the large amount of microlites and the absence of glass in our samples (Fig.
2), we propose a heterogeneous nucleation regime for the formation of the small isolated
vesicles (Fig. 6B). Therefore, we calculated decompression rates using the Eq. (5) proposed
by Toramaru (2006) for basaltic magmas under heterogeneous nucleation (Shea, 2017).
Decompression rates for all samples range from 0.36 to 2.60 MPa s (Table 2; Fig. 8D).
Figure 9, which compares our results with other basaltic eruptions (Toramaru, 2006; Shea,
2017), shows that the estimated decompression rates for the Curacautin magma are close
to decompression rates calculated for Tarawera 1886AD and Etna 122BC. Finally, in order
to calculate and contrast discharge rates with other basaltic eruptions, we use Eq. (6) for

three different conduit radius (Table 2 and Fig. 8E).
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Figure 9 Decompression rates (MPa/s) vs BND (mm?) for Units 1-4 using Eq. 6
(Toramaru, 2006; Shea, 2017). The blue line corresponds to the equation shown in
the top left corner. Historic basaltic eruptions extracted from Shea, 2017.
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Forchheimer and Stokes numbers

We calculated Fo and St number for Unit 1 following equations 7, 8, 9, and 10
using the reference parameters in Table 3 (Degruyter et al., 2012; La Spina et al., 2017).
The (St, Fo) results for Unit 1 overlap with the (St, Fo) values for the 1980 Mount St.
Helens (MSH) Plinian eruption reported by Degruyter et al. (2012) (Fig. 10). Both areas
are in the low St and high Fo regions, indicating that the magma and gas were coupled,
ascending at the same velocity, and the outgassing was turbulent (Degruyter et al., 2012).
Higher permeabilities resulted in higher and lower values of St and Fo, respectively,
increasing the outgassing efficiency but not enough to decouple the gas phase from the
magma. Conversely, lower permeabilities resulted in lower and higher values of St and Fo,
respectively, enhancing the coupling between magma and the gas phase. Figure 10 shows

how increasing certain parameters influence the St and Fo numbers.



Table 3 Reference parameters and results for calculation of Stokes and

Forchheimer numbers.

Parameter Symbol Value(s) Unit
Decompression rate® dP/dt 1.37 MPa s’
Magmastatic gradient® dP/dz 0.0265 MPa m’!
Darcian permeability® ki 9.5 10"*-9.37 x 10" m?
Inertial permeability? ko 3.6%107-1.8 X107 m

Bulk magma density® Pm 1290 kg m?
Gas viscosity' g 0.000015 Pas
Mean velocity® Uy 51.698 ms’!
Reference temperature” T 1375 K
Specific gas constant’ R 401.4 Tkg'K!
Conduit radius r 25-100 m
Reference depth z 100 - 1000 m
Reference gas preassure Py 4.177 -41.770 Pa
Forcheimer number Fo 7.52%10% - 3.8%10* -

Stokes number St 3.68%10% - 1.67%107 -

“Average value for Unit 1. ®From Cas and Simmons (2018). “Range of Darcian permeability
results for Unit 1 using Eq. 4. YInertial Permeability ranges using Eq.10 (Gonnermann et al.,
2017). *Average density for Unit 1 from Marshall et al. (in prep). “From Degruyter et al. (2012);
La Spina et al. (2017). #Ratio between the mean decompression rate and the magmastatic
gradient. "Mean temperature for the Curacautin Ignimbrite pre-eruptive magma (Lohmar, 2008).
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CHAPTER FOUR: DISCUSSION

The 3D reconstructions allow us to investigate the pyroclast textures in detail and
extract valuable information, including vesicularity, surface areas, interconnectivity, and
number of vesicles, all of which are more challenging to interpret in 2D slices. For example,
we observe an average variation of ~13% for the 2D vesicularities considering all our VOIs
(Fig. 7). That variation decreases to less than ~3% if we compare the 3D vesicularity
between the four VOIs per sample (Table 1). This increment of accuracy suggests that the
VOI selected for this research is sufficient to account for the major textural variabilities of
our samples. In addition, we observe a vesicle network with more than 99%
interconnectivity in all our samples, something that would be impossible to conclude with
2D section analyses. This argument also applies to BND calculations, where it is harder to
discern if a vesicle is connected or not, especially under the presence of a convoluted
vesicle network that looks more disconnected in 2D (Fig. 2; Fig. 6).

BND results suggest that the magma rose at fast decompression rates, similar to
other basaltic explosive eruptions reported in the literature (Shea, 2017). Specifically, Unit
1 shows an average decompression rate of 1.4 MPa s (Eq. 5), similar to the 1.5 and 2.0
MPa s reported for Tarawera 1886AC and Etna 122BC, respectively (Figure 9; Shea,
2017). Although the lack of more samples for Unit 2, 3 and 4 add additional uncertainty
to the results, their decompression rates show a similarly rapid ascent behavior. We

estimate average discharge rates between 1.6x10% and 2.2x10° kg s (Fig. 8E; Eq. 6), close
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to the 1.4x10% kg s and 5-8.5x10® kg s! reported for Fontana Lapilli Masaya 60ka and
Etna 122BC, respectively (Shea, 2017).

The presence of two populations of vesicles implies that there were at least two
events of bubble nucleation and growth in the magmatic system. We assume that the first
vesiculation event occurred deeper in the conduit. Decompression expansion likely caused
bubble growth and some degree of coalescence. Such vesiculation would have enhanced
the buoyancy of the bulk magma, driving magma acceleration (Cassidy et al., 2018).

The formation of the second population of vesicles (~1% of isolated vesicles; Fig
6B) might be the result of a syn-eruptive or late stage crystallization of microlites induced
by rapid ascent rates (La Spina et al., 2016). Decompression experiments show that rapid
ascent rates lead to high degrees of disequilibrium, promoting rapid nucleation of
plagioclase microlites at shallow depths (Brugger and Hammer, 2010; Befus and Andrews,
2018). Our samples are rich in microlites, with microlite number densities between of 7.95-
18.4x108® plagioclase microlites per mm® (Marshall et al., in prep; Table 1), evidencing
high degrees of disequilibrium crystallization. We infer that microlite nucleation shifted
the solubility conditions of the remaining melt (Hajimirza et al., 2021), causing a second,
late-stage exsolution event that formed the smaller and isolated vesicles. Simultaneously,
rapid crystallization of microlites would have restricted bubble expansion of the first
population of vesicles forcing them to grow toward each other resulting in a tortuous
vesicle network structure (99% interconnectivity) controlled by the geometry of
plagioclase microlites (Fig. 2; Arzilli et al., 2019; deGraffenried et al., 2019). This
contorted vesicle network shape and abundance of microlites between vesicles would limit

the diffusion of the remaining dissolved volatiles to existing bubbles and provide sites for
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heterogeneous nucleation, leading the nucleation of the disconnected group of vesicles
(Hajimirza et al., 2021).

Fo and St calculations for Unit 1 (Eq. 8 and 9) suggest that the gas phase was
coupled with the magma during ascent, similar to the Plinian phase of the 1980 MSH
eruption (Degruyter et al., 2012). We propose that despite the well-connected network of
vesicles promoted by crystallization (e.g., Lindoo et al., 2017), the high viscosity of the
magma hindered the growth of pathways for gas transport through the convoluted vesicle
network leading to the coupling of the gas with the magma during ascent. The restricted
growth and coalescence, in addition to the late bubble nucleation event, may have
generated enough overpressure to the system to lead to brittle fragmentation of the magma
(Gonnermann and Manga, 2007). Given the evidence for rapid ascent rates, shear-induced
fragmentation may also have played a role.

As a preliminary validation, our permeability calculations indicate that our samples
are similar to those of other explosive eruptions (Fig. 11). Additionally, our results fall
within the wide empirical bounds provided by Mueller et al. (2005) for explosive volcanic
rocks and are consistent with collected data from pyroclasts from explosive eruptions
(Degruyter et al., 2012; Wright et al., 2009). Our values are similar to those measured on
samples generated experimentally in crystallizing and vesiculating basaltic andesites
(Lindoo et al., 2017). In order to assign a degree of accuracy to our work and given the
small size of pyroclast available for this research, we propose further experimental
validation of our methodology using other volcanic products, sufficiently large in size for

traditional permeameters, or Lattice-Boltzmann simulations (Degruyter et al., 2010).
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Following the methods of Mueller et al. (2008), we calculate the minimum bubble

overpressure needed to lead fragmentation (APx)

APfr = a‘/k—i% (11)

where a and o are constants equal to 8.21x10° MPa m™!, and 1.54 MPa, respectively. Our
results show that a bubble overpressure greater than 5.2 MPa could have been sufficient to
fragment the Curacautin magma (Fig. 12; Table 2).

Lastly, low variations in the stratigraphic sequence (Fig. 8) support the assertion of
Marshall et al (in prep.) that the Curacautin Ignimbrite is the result of one eruptive event

with perhaps several discrete explosive pulses, resulting in the four flow units.
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Figure 11 Porosity vs Darcian permeability results. Black dots correspond to the
values calculated for the 12.6 ka Curacautin Ignimbrite (Eq. 4). The blue region
represents data collection of pyroclasts for effusive eruptions, the red region
represents data collection of pyroclasts for explosive eruptions (Degruyter et al.,
2012; Wright et al., 2009). The area between the dash lines correspond to the
Mueller et al. (2005) model for explosive eruptions.
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2008). Red stars represent our results for permeability and porosity.
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CHAPTER FIVE: CONCLUSIONS

We focus on the 12.6 ka explosive mafic eruption at Llaima Volcano, Chile, that
resulted in an extensive ignimbrite. The objective of this study was to use 3D X-ray
microtomography reconstructions of pyroclasts to measure porosities, bubble number
density, vesicle interconnectivity, and geometrical properties of the porous media. We use
these textures to constrain vesicle tortuosity, permeabilities, decompression rates, the
degree of coupling between the gas phase and the magma, and the evolution of vesiculation
during ascent. The analytical calculations provide an approach for quantifying the
permeability and tortuosity of pyroclasts vesicle networks in samples too small to use
laboratory techniques (e.g., permeameter).

The 3D geometrical parameters extracted from X-ray microtomography analyses
provides high degrees of accuracy than using 2D approaches, allowing us to accurately
characterize the texture of our pyroclasts. Even though the relationship between tau factor
and tortuosity is not well constrained yet, tau factor produced a reasonable approximation
of tortuosity for the complex and convoluted vesicle networks of our pyroclasts without
requiring high computational power. In order to validate the methodology used in this
research, we propose further experimental research using bigger pyroclast products to
compare X-ray microtomography permeabilities with permeameter calculations.

Our 3D vesicle texture results evidence rapid ascent rates that induced

disequilibrium crystallization of microlites during ascent. The increase in microlite content
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shifted the solubility of the remaining magma causing a second vesiculation, completely
disconnected from the existing vesicle network. Simultaneously, microlite crystallization
confined bubbles during expansion, enhancing bubble coalescence (connectivity). This
crystallization event forced bubbles to grow toward each other, resulting in the convoluted
interconnected vesicle network. At this stage, volatile phase was coupled with the magma
inhibiting outgassing and promoting an increase in bubble overpressure. Our permeability
and vesicularity results suggest that a minimum bubble overpressure of 5.2 MPa was
required to induce fragmentation of the magma.

The conditions that led to explosive mafic volcanism at Llaima Volcano are similar
to other basaltic explosive eruptions (Tarawera 1886AC, Etna 122BC and Fontana Lapilli
Masaya 60ka). Our results provide further evidence that mafic explosive volcanism at
Llaima volcano, as well as other mafic centers, is driven by rapid magma ascent. Rapid
ascent induces disequilibrium crystallization conditions and rapid crystallization of
microlites. Crystallization increased viscosity of the magma, inhibiting gas escape. We
suggest that future work should focus on the evaluation of rheology evolution due to
nucleation and growth of microlites during ascent, the mechanism behind the initiation and
evolution of the vesicle network, and the conditions that lead to coupling of the gas and

magma, promoting explosive behavior.
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