
INDUSTRIAL CONTROL SYSTEM DATA RESILIENCY

by

Daniel A. Bovard

A thesis

submitted in partial fulfillment

of requirements for the degree of

Master of Science in Electrical and Computer Engineering

Boise State University

August 2021

© 2021

Daniel A. Bovard

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Daniel A. Bovard

Thesis Title: Industrial Control System Data Resiliency

Date of Final Oral Examination: 11 March 2021

The following individuals read and discussed the thesis submitted by student Daniel A.
Bovard, and they evaluated the student’s presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Sing Ming Loo, PhD. Chair, Supervisory Committee

Charmaine C. Sample, DSc. Member, Supervisory Committee

Liljana Babinkostova, PhD. Member, Supervisory Committee

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the
Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATION

This thesis is dedicated…

To my father Robert, my role model in life, who has guided and inspired me to apply my

utmost effort, talents, and energy into each of life’s challenges, no matter how big or

small. Thank you for being a source of inspiration and strong foundation I can always

look up to for advice and support.

To my mother Jane, who has nurtured and cared for me in every stage of my life, giving

me motivation and strength in my times of weakness and despair. Thank you for being a

shoulder to lean on and reminding me to enjoy and honor the life God gave me by giving

more to the world than I receive.

To my fiancé Natalie, who throughout our journey together has supported all my

endeavors in my long-distance pursuit of my education and career. Thank you for your

unconditional love and support as we reach the end of our separation and move onto the

next act of our lives together.

v

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to the committee chairman and my

thesis advisor Dr. Sin Ming Loo. Thank you for the many opportunities, much guidance,

ideas, and mentorship in the pursuit of this research and my degree. Your support has

allowed me to succeed in both my education and my career sooner than I thought

possible.

I would like to thank Idaho National Laboratory and Dr. Charmaine Sample for

the internship and sponsorship while pursuing this research. Thank you for enabling me

to pursue this thesis and making my research efforts possible. I hope this research is of

benefit, and should the need arise, I look forward to the opportunity to assist in any

further developments.

I am grateful for the guidance of Mark Laverty in the production of the hardware

developed for this thesis. Thank you for your guidance and wisdom in electronics! Thank

you for helping me in addressing the power problems I struggled with daily. I was lucky

to have been able to work with you and benefit from your knowledge.

I would like to thank Dale Reese and Gavin Huggins of Idaho Scientific for my

internship and employment throughout this entire process. Thank you for giving me the

time and flexibility to properly finish my education.

Lastly, I want to thank my friends and colleagues who believed in me from the

beginning.

vi

ABSTRACT

This thesis identifies and fortifies against a critical vulnerability in industrial

control system (ICS) security. A properly designed ICS security framework consists of a

multi-layered approach starting with heavy fortifications in information technology and

ending with control information of operational technology. Currently, ICS security

frameworks lack visibility and place blind trust in devices at the lowest level of the

control hierarchy. Attaining control data visibility at the lowest level of the control

hierarchy is critical to increasing the resiliency of an ICS security posture. This thesis

demonstrates how this data can be captured at the lowest level of the control hierarchy,

and then synthesized with existing network and system data to form a more complete

picture of operational technology’s behavior.

vii

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vi

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1: INTRODUCTION .. 1

System Thinking .. 2

System Degradation & Security Threats ... 3

Control Systems and Visibility ... 4

Thesis Topics ... 7

Layout of This Thesis... 8

CHAPTER 2: PREVIOUS RESEARCH AND TECHNOLOGY 10

Typical ICS Facility Structure .. 10

External Network ... 13

Enterprise Layer ... 14

Supervisory Layer .. 14

Field Layer ... 16

Control Process Layer .. 16

Advanced Persistent Threats .. 17

viii

ICS Cyber-Attacks... 18

Stuxnet ... 18

Ukrainian Electrical Grid ... 19

Best ICS Cybersecurity Practices ... 20

Removal of Unnecessary Features .. 21

Data Integrity ... 22

Authentication & Authorization ... 29

Secure Communication Protocols ... 34

Intrusion Detection Systems ... 39

Network Enclave .. 46

Threat Modeling & Intelligence ... 48

MITRE ATT&CK Framework ... 49

Threat Intelligence ... 52

Detection & Analysis ... 52

Emulation .. 53

Assessments ... 54

CHAPTER 3: RESILIENT ICS DATA ... 56

The Proposed System .. 57

CHAPTER 4: CYBER RESILIENCY IN SYSTEMS & DATA 61

System Thinking.. 62

Cyber Resiliency ... 64

System Resiliency ... 67

Data Resiliency ... 68

ix

CHAPTER 5: DATA ACQUISITION SYSTEM ... 71

Example Design ... 71

Degradation & Infiltration .. 74

Degradation .. 74

Infiltration .. 76

System Integration ... 77

CHAPTER 6: HARDWARE DESIGN .. 80

Control Tap Overview.. 80

Amplifier Sensor Circuits ... 81

Current Sensor Circuit .. 83

Voltage Sensor Circuit .. 86

PWM Sensor Circuit .. 86

ADC Interface .. 88

CHAPTER 7: SOFTWARE DESIGN .. 94

ADC Reader API ... 96

PLC Reader API .. 98

Control Monitoring Process ... 99

CHAPTER 8: FUTURE RESEARCH ... 104

Artificial Intelligence & Machine Learning .. 104

FPGA Data Acquisition ... 105

CHAPTER 9: CONCLUSION ... 111

REFERENCES .. 115

APPENDIX A ... 119

x

APPENDIX B ... 126

APPENDIX C ... 134

xi

LIST OF FIGURES

Figure 1.1 DCS Layout..5

Figure 1.2 Control Feedback Loop ..6

Figure 2.1 Purdue Model for Control Hierarchy .. 12

Figure 2.2 DMZ Architecture .. 13

Figure 2.3 Disabling of Unused Features ... 22

Figure 2.4 Data Integrity System ... 29

Figure 2.5 EAP - Pre-Shared Key .. 33

Figure 2.6 TLS Handshake .. 38

Figure 2.7 Network-Based IDS.. 43

Figure 2.8 Host-Based IDS .. 45

Figure 2.9 ICS Network Enclave ... 48

Figure 2.10 ATT&CK Navigator Heat Map .. 51

Figure 3.1 Proposed Thesis Contribution ... 59

Figure 5.1 Water Tank Control System .. 72

Figure 5.2 Water Tank Control Loop ... 73

Figure 5.3 Recorded Control Process ... 74

Figure 5.4 Water Tank Control System with Monitor .. 79

Figure 6.1 Amplifier Sensor Circuit Block Diagram .. 81

Figure 6.2 Analog to Digital Conversion Process... 82

xii

Figure 6.3 Differential Amplifier Circuit ... 84

Figure 6.4 Current Amplification Stages ... 85

Figure 6.5 Current Sensor Amplifier Circuit ... 85

Figure 6.6 Voltage Sensing Amplifier Circuit ... 86

Figure 6.7 Pulse Width Modulation... 87

Figure 6.8 PWM Sensing Amplifier Circuit .. 88

Figure 6.9 Raspberry Pi GPIO Interface .. 89

Figure 6.10 Typical SPI Structure ... 90

Figure 6.11 ADC Chip Selecting Circuit ... 91

Figure 6.12 PCB and Raspberry Pi (front) ... 92

Figure 6.13 PCB and Raspberry Pi (back) ... 93

Figure 7.1 IDS Software Flow .. 95

Figure 7.2 BCM2835 SoC Block Diagram .. 96

Figure 7.3 ADC SPI Transaction Format... 97

Figure 7.5 Normal Control Process Behavior .. 102

Figure 7.4 Disturbed Control Process Behavior ... 102

Figure 7.6 Undetected Disturbance ... 103

Figure 7.7 False Control Process ... 103

Figure 8.1 FPGA Resources .. 106

Figure 8.2 FPGA Data Acquisition System ... 107

Figure 8.3 FPGA Block Design... 108

Figure 8.4 FPGA / PCB Connection .. 108

Figure 8.5 SPI Waveform ... 109

xiii

Figure 8.6 Serial Terminal Data Responses ... 109

xiv

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

AH Authentication Header

API Application Program Interface

APT Advanced Persistent Threat

CHAP Challenge Handshake Authentication Protocol

CLB Configurable Logic Block

CS Chip Select

DAC Digital-to-Analog Converter

DC Direct Current

DCS Distributed Control System

DDoS Distributed Denial of Service

DMZ Demilitarized Zone

DNS Domain Name System

DoS Denial of Service

EAP Extensible Authentication Protocol

ECC Error Correction Code

ESP Encapsulated Security Payload

xv

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

GPIO General Purpose Input/Output

HIDS Host-based Intrusion Detection System

HMAC Hash-Based Message Authentication Code

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IC Integrated Circuit

ICS Industrial Control System

IDS Intrusion Detection System

IETF Internet Engineering Task Force

I/O Inputs/Outputs

IP

(networking)

Internet Protocol

IP

(property)

Intellectual Property

IPSec Internet Protocol Security

IT Information Technology

LAN Local Area Network

MAC Message Authentication Code

xvi

MCU Microcontroller Unit

MISO Master Input / Slave Output

MITM Man-in-the-middle

MOSI Master Output / Slave Input

NIDS Network-based Intrusion Detection System

NTFS New Technology File System

OS Operating System

OSI Open Systems Interconnection

OT Operational Technology

OTP One-Time Password

PAP Password Authentication Protocol

PCB Printed Circuit Board

PID Proportional-Integral-Derivative

PLC Programmable Logic Controller

PSK Pre-Shared Key

PWM Pulse Width Modulation

RAID Redundant Array of Inexpensive Disks

SCADA Supervisory Control and Data Acquisition

SCLK System Clock

SMB Server Message Block

xvii

SPI Serial Peripheral Interface

SSH Secure Shell

TCP Transmission Control Protocol

TFA Two-Factor Authentication

TLS Transport Layer Security

VPN Virtual Private Network

WAN Wide Area Network

WPA Wifi-Protected Access

1

CHAPTER 1: INTRODUCTION

Industrial control systems (ICSs) are used to control different forms of automation

and are classified into two main categories. There are Supervisory Control and Data

Acquisition (SCADA) systems and Distributed Control Systems (DCSs). Each type of

control system has process defined inputs and outputs (I/O) which vary between different

use cases and applications. SCADA systems tend to be used for the automated

monitoring, flow, and distribution of necessary resources such as gas, electricity, water,

and material. DCSs tend to be utilized when controlling an automatic physical process in

an industrial control facility via Programmable Logic Controllers (PLCs).

Together, these two types of systems comprise a large portion of ICSs found in an

industrial control facility. Every control system relies on a controller receiving control

inputs to produce control outputs which return feedback signals. The controller receives

these feedback signals and adjusts the controls accordingly. This concept is known as a

control feedback loop and is at the core of control system theory. Control inputs and

outputs are also reported to a DCS, which orchestrates higher level control and

organization between multiple control processes.

Protecting a facility’s capital, employees, and intellectual property is of utmost

importance. Therefore, the control systems entrusted with this duty, along with their

communication channels, must be reliable and secured. Additionally, control systems,

their supporting systems, and networks within the facility should be designed and

2

assembled to be resistant and resilient to component degradation, as well as various

intrusions.

System Thinking

Industrial control facilities can be conceptualized as a system of systems. There

are communication systems, computer systems, security systems, control systems, etc. At

some point, each of these systems interact with each other within the facility and work

together to deliver services. Fully understanding the ICS environment requires an

understanding of how these systems interact with one another.

First, many systems are structured with many different channels of feedback. The

connectedness of systems means that they move together, rather than independent

subsystems. Within human nature and different cultures, humans tend to think in terms of

causality, where A causes B. However, that is not always the case as the universe is a

very complex system of systems, where often B may also cause A [11].

Second, all systems share common features. One such feature is the notion that

the capability of an overarching system will be greater than the sum of all system

components. Similarly, an understanding of system interfaces, components, and their

relationships, can lead to a greater understanding of system performance and reliability.

By understanding systems, security mechanisms can be implemented with greater

wisdom to their cascading side effects with the rest of the system. This way, security

features that are added to the whole security infrastructure can be more impactful by

protecting the attack surface while adding less vulnerabilities. The concepts defined in

system thinking are critical to understanding security challenges that modern ICS

environments face and aid in forming holistic engineering solutions.

3

System Degradation & Security Threats

Computer systems, network systems, security systems, and control systems all

exist within the scope of an industrial control facility. This means that each of these

systems are subject to system degradation over time, and failures can vary from memory

cells not being freed, networking devices losing their speed or reliability, or erosion of a

motor’s axle. Each of these types of component degradation can lead to system-wide

degradation and, ultimately system-wide failures. Further, when lacking proper

evaluation, these failures may be unexpected, causing problems ranging from minor

inconveniences to catastrophic events.

A common sign that systems may be degrading is that the systems’ performance

and/or behavior lies outside the scope of the system boundaries. While these

discrepancies may be mild in nature, they can signal the initial degradation of a

component within the system. In control system environments, the consequences of

failure can range from the halting of production to physical damage to loss of human life

and capital. Monitoring and recognizing when control systems start to degrade is

essential. Detection of systems misbehavior can trigger corrective action. Critical

components must be identified and well maintained while operating efficiently. Systems

can be preemptively halted, inspected for degradation, and promptly repaired.

However, degradation is not the only cause of failures within ICS environments.

Another critical area of vulnerability comes from security threats. ICSs are used in many

different industries and nations globally, and for this reason are exposed to a wide variety

of types and severities of threats. The goals of these threat actors may vary, as do the

tactics, techniques, and procedures (TTP) these threats follow. Intruders’ main goals tend

4

to be espionage, intellectual property theft, damage to capital or human life, or the

shutting down of operations. Intruders could be industry rivals, criminal groups,

disgruntled insiders, foreign adversaries, etc. These threats may be divided into three

main categories: basic threats, advanced threats, or advanced persistent threats (APTs).

Basic threats generally stem from amateurs who employ well-known and

documented attacks such as social engineering, phishing attacks, or open-source attacks

which may be found in the open environment of the internet. While social engineering

attacks are considered simple or trivial, they are commonly used because human nature

can be coerced with far less effort than computer technology. Advanced threats stem

from developed hacker groups or industrial spies who may perform attacks such as

distributed denial of service (DDoS) attacks, private data extraction, or extortion via the

use of more sophisticated attacks. APTs tend to be sophisticated, organized, and well-

funded attackers. They are usually employed by international adversaries who leverage

well-developed and cutting edge TTPs to perform new attacks which are referred to as

zero-day attacks. APTs are constantly advancing since once a cutting-edge attack has

been used, the attack vector loses value. The knowledge gained from the attack is

released for defense purposes, thereby making it available to amateur attackers.

Control Systems and Visibility

While SCADA systems are important to the continual operation of an industrial

control facility, most physical action resides within DCSs and their subcomponents. A

typical DCS will oversee multiple control systems participating in one or many advanced

control processes [6]. Within each control system governed by a DCS, multiple

components are integrated to achieve the control of a physical process. Figure 1.1 [26]

5

depicts an example of a DCS layout where multiple control processes are working in

parallel to achieve a goal of producing an output product from given input resources.

There are programmable logic controllers (PLCs) that are responsible for the observation

and control of a process. Such processes can include controlling the pressure inside of a

tank, the flowrate through a pipe, or the temperature of an oven. The PLC manages these

control outputs (pressure, flow, temperature, etc.) by sending an analog electrical signal

(current or voltage) to an actuator such as a pump, heater, motor, etc. The PLCs are

programmed with a control process that is oriented to control outputs, such as

temperature, by driving the actuators.

Figure 1.1 DCS Layout

However, this can only be achieved by knowing the current state of the system via

the usage of feedback signals. These feedback signals are returned from sensors that

inform the PLC of the system status. Such signals can include the actual pressure, flow,

6

or temperature. With the known state of the system, the PLC can choose to adjust or

maintain the electrical outputs that drive the actuators. This concept is known as a control

feedback loop. Figure 1.2 depicts a typical control feedback loop.

Figure 1.2 Control Feedback Loop

One of the major challenges in protecting systems from degradation and cyber

threats is the concept of system visibility. System visibility is the concept of truthfully

knowing the state of a system with as little obfuscation as possible. In an environment

where detecting degradation and cyber intrusions are important, having extensive

visibility on a system is critical. However, when components degrade and attackers

infiltrate, the veracity of returned data which is used to detect these events begins to

erode. Sensors and PLCs may not report legitimate information when components

degrade or have been compromised by an attacker. Degradation and infiltration are

difficult to nearly impossible to detect, in part because security products do not collect

and process operational technology (OT) data.

To handle this paradoxical problem, a new solution must be derived that breaks

the paradox and allows for system visibility even in this face of degradation and cyber

7

infiltration. This thesis contributes to the field of ICS security by presenting an additional

method of data acquisition that increases ICS visibility and data resiliency.

Thesis Topics

This thesis identifies what requirements are needed to make these systems

resilient and secure from anomalous device behavior, while limiting the false positive

problem that plagues anomaly detection solutions. This thesis also discusses what the

term resilient means in the context of ICS security, and thus give system administrators

and security engineers a well-defined perspective on which to construct solid foundation

upon which security mechanisms can be built.

This thesis reviews some of the vulnerable aspects of industrial control systems

infrastructure and provides infamous examples of exploits leveraged against these

vulnerabilities. This thesis presents the best cybersecurity practices utilized by ICSs and

critical infrastructure today. These practices consist of the removal of unwanted services,

data integrity, secure communication protocols, authentication and authorization,

intrusion detection systems, and network enclave.

The remainder of this thesis discusses a new type of data acquisition and control

monitoring system which may be employed at the lowest level of the control system

hierarchy, the physical environment. APTs may have already infiltrated facility networks,

infected PLCs, or compromised sensors or actuators. Additionally, control system

components such as sensors and actuators may degrade over time causing undesirable

system behavior. For this reason, this thesis recommends monitoring and recording the

physical responses of a system through an out-of-band channel of information. By doing

so, security systems gain visibility via an additional point of reference to detect degrading

8

systems and the intrusions of adversaries which may alter or disrupt control process

behavior. This gap in intrusion detection has been recognized by researchers [2], and this

problem is addressed in the pages to follow.

Much of the work in the design and assembly of a data acquisition system is

documented in the later chapters of the thesis. The proposed data acquisition system is

capable of monitoring and recording the physical behavior of the systems under control.

With an out-of-band channel of information, the data acquisition system may be

employed as an additional lens and cross-reference to untrusted system signals. The data

acquisition system’s data can be synthesized with in-band network and system data. This

union of data may be used in the generation of alerts when discrepancies arise between

information being reported from PLCs, and the data being reported from the data

acquisition system. With such a system, system administrators can be alerted of

anomalous events and detect device degradation and infiltration when either event occurs.

With the data acquisition system, the previous statement holds true even if the existing

control infrastructure (ie. PLC) is reporting illegitimate data.

Layout of This Thesis

To thoroughly address the issues raised by this thesis, the following chapters are

structured in such a way as to give context to the proposed data acquisition system.

Chapter 2 presents the previous research related to this thesis and highlights existing

infrastructure, threats, and technology. Chapter 3 elaborates the broader context of this

thesis and gives perspective to the proposed resilience-bolstering control monitoring

system. Chapter 4 provides background into the underpinnings of the thesis involving

system thinking and data resiliency.

9

The proposed data acquisition and control monitoring system is detailed in

Chapter 5. Chapter 6 explains the hardware design of the proposed control monitoring

system. The software design and some control monitoring results are presented in

Chapter 7. Related future research and avenues of application are presented in Chapter 8.

Summary and conclusions are presented in Chapter 9.

10

CHAPTER 2: PREVIOUS RESEARCH AND TECHNOLOGY

Typical ICS Facility Structure

While the ICS is the core of automation and production in a facility, large

amounts of infrastructure exist to schedule, monitor, and supply all production processes

taking place. As industrial control facilities grow more sophisticated, the communication,

monitoring, and control is further abstracted for ease of management. For this reason,

multiple network layers are usually implemented between the facility’s marketing or

sales departments and the physical control processes. This ICS facility layout is known as

the Purdue Model for Control Hierarchy and provides a more layered approach to

facility-wide operation and security [5, 13, 14]. An example of an industrial control

facility layout following the Purdue Model for Control Hierarchy is presented in Figure

2.1 [30].

Larger ICS facilities may need to communicate with other entities such as

management, sales, and suppliers. To establish communication, an external network

connection is required to allow communications between facilities, suppliers, and

customers. The first layer of an ICS is an external network layer, where internet

communication and security are handled. Once sales have been made, the production

needs to be scheduled with the lower layers of the ICS facility to meet the demands of the

customers in a timely fashion. This layer is typically known as the enterprise layer, and

this is where highly abstracted systems allow enterprise users to manage resources and

schedule production to meet demands. To meet the demands of the enterprise layer,

11

production schedules are achieved via the orchestration of engineers that understand the

operation of ICSs and their capacities. This layer is known as the supervisory layer,

where command and control of ICSs occurs to produce the desired quantity of product.

With a plethora of facility-wide information available, engineers may operate control

processes via some form of human-machine interface (HMI).

Once control has been executed by the engineers at the supervisory layer, the

control information is passed to the next layer. This layer is known as the field layer,

where the control inputs direct the ICSs to perform their control processes on the given

input resources. All the PLCs, sensors, and actuators exist here. These devices report

real-time information about the status of the control processes taking place.

The control layer is essentially a part of the field layer but is differentiated as the

control or physical process layer due to its composition of physical system components.

This is the layer where the physical processes are taking place, whether it be the

controlling of the pressure in a tank, the temperature of a weld, the flow rate of fluid, etc.

This thesis proposes that the control layer’s analog information may be extracted via an

out-of-band data acquisition system whose data can be synthesized with existing in-band

network data to gain visibility at the lowest level of the control hierarchy.

12

Figure 2.1 Purdue Model for Control Hierarchy

13

External Network

The external network layer within an ICS facility is needed to communicate with

external entities such as customers, suppliers, external management, and other businesses.

The internet is a giant connected web, and bad actors around the globe can communicate

and coordinate attacks against ICSs through this external facing network, making this

layer the single largest threat to an ICS facility. Many protections are put in place to

protect and isolate the internal facility networks from the external network.

The most typical protection put in place is known as a demilitarized zone (DMZ).

Figure 2.2 depicts the typical DMZ architecture and what services tend to reside in the

zone. The DMZ is a subnetwork that stands between the external network and the internal

network to filter out and verify all traffic entering the facility’s network domain [5, 13,

14]. Firewalls, intrusion detection systems, email and web servers, web services, and

other forms of network security are implemented inside the DMZ to serve as the first line

of defense.

Figure 2.2 DMZ Architecture

14

Enterprise Layer

The enterprise layer or enterprise network is where all the information technology

(IT) infrastructure for the management and corporate side of an industrial control facility

resides. Typically, this enterprise network has access to the internet to make sales, contact

suppliers, and other types of communication necessary to keep the facility running. Inside

the enterprise layer, IT systems are leveraged schedule production, manage inventory,

schedule OT maintenance, and other corporate tasks.

Due to its external network connection, this layer’s connection to the internet has

the largest attack surface and poses the largest cyber threat. For this reason, there is also a

DMZ isolating network traffic into the supervisory and other lower network layers of the

ICS facility. In addition to network isolation, there are a myriad of different security

mechanisms that are implemented on the network and inside of all hosts and internet-

connected devices that reside on the network. Much of these topics will be explained in

further detail in the section titled Best ICS Security Practices. The best approach involves

addressing the attack surfaces that exist to implement mitigation and protection

techniques, thereby providing the greatest amount of coverage. The goal is to leave

attackers with minimal to zero available options.

Supervisory Layer

As the exterior layers of the ICS facility are peeled back, the shift from IT to OT

technology occurs. The bridge between IT and OT technology mainly exists within the

supervisory layer. IT is needed to receive scheduling, resource, and maintenance

information from the enterprise layer. IT also reports production related statuses back to

the enterprise layer, the OT is properly driven and capable of controlling processes inside

15

of the field layer. Lastly, IT gathers ICS status information and employs various methods

of ICS security such as intrusion detection.

One of the main OT systems used today is SCADA. As the name implies, SCADA

retrieves status information about resource assets which may be scattered throughout a

facility or even different geographic locations. In addition to resources location, SCADA

systems keep track of the flow of resources and waste in and out of the industrial control

facility. SCADA is responsible for the maintaining the processes of resource importing

and waste removal that keep the facility afloat. By knowing both where resources are and

how they are flowing, SCADA can oversee and operate control processes. However,

SCADA systems are not responsible for the control processes which act upon the input

materials to produce the outputs.

The OT systems in the supervisory layer which handle the controlling of the

control processes are DCSs. DCSs are responsible for controlling one to multiple control

processes which consist of actuators, sensors, and one or more PLCs. DCSs are the

entities responsible for reporting feedback information between dependent control

systems, with the objective of aiding in the control of complex and interdependent control

processes. To meet the needs of the different control process stages that occur throughout

production, DCSs can reconfigure the PLCs and change their response characteristics.

As with the enterprise layer, network intrusions may take place, therefore it is of

utmost importance to isolate the field layer from the supervisory layer. Isolation is

employed to stop intrusions from propagating further down the control hierarchy. A final

DMZ is placed between these two layers to achieve isolation of the control network.

16

Field Layer

The field layer of the industrial control facility is where control processes

physically take place. All the PLCs, actuators, sensors, and transport mechanisms exist

here. This layer receives OT information from the supervisory layer and orchestrates

necessary control processes to produce output products. Normally, multiple dependent

control processes are required to produce an output product. Each ICS and its subsystems

are controlled by at least one PLC that is programmed and supervised by a DCS in the

supervisory layer. The PLC relays process status information to maintain the flow of

production between interdependent processes. Within the field layer exists the final layer

of the control hierarchy, the control process layer.

Control Process Layer

The control process layer consists of all the physical devices involved in the

production at the facility. Analog electrical signals, whether it be current or voltage, are

generated to control actuators such as motors, and report control status information from

sensors such as a thermometer. At this layer of the control hierarchy, few solutions exist

for ensuring the physical security besides guns, guards, and gates. Additionally, very few

systems can even detect degradation or infiltration.

Considering the apparent control security deficiency, this thesis proposes that

there is vital information within the physical control inputs and outputs that may be

captured outside of the PLC. The physical signals can be captured and monitored by an

out-of-band data acquisition system to detect when mechanisms in the control process

layer have deteriorated or been compromised. Chapters 5 through 7 will detail the design

and implementation of such a system.

17

Advanced Persistent Threats

APTs are highly sophisticated and spanning networks of organized adversaries

seeking to infiltrate the computer networks and systems of government, critical

infrastructure, corporations, medical and academic institutions, etc. APTs tend to be

either highly organized criminal groups or nation states who have plenty of time and

resources to find ways into these targets [19]. APTs bring the advent of zero-day attacks

that the world has never seen. The feature that separates APTs from other advanced

attackers is their ability to remain unnoticed and undetected for long periods of time

before making an attack.

APTs will use all available resources at their disposal to intrude into a network,

including social engineering attacks on humans, manufacturing or program defects in

hardware or software, common features in operating systems, compromising supply

chains, etc. Not only do these attacks require a plethora of manpower, resources, and

sophistication, but each APT has a distinct mode of operation that is documented. APTs

can reduce system complexity of large systems by strategically targeting the smaller and

less complex functions within the system. These subsystems are broken down,

understood, and leveraged in advanced attacks. The best way to vet against this pervasive

threat is by taking on the perspective of an outside intruder and analyzing the system to

find each element that may be corrupted, and therefore must be secured. In addition to

securing the system elements, it is necessary to verify the security and integrity of third-

party vendors, supplies, and their networks.

18

ICS Cyber-Attacks

Stuxnet

The most notorious and discussed attacks leveraged against ICSs around the

world is known as Stuxnet. Stuxnet is a dangerous computer worm that was discovered

during a cyber-attack against the Iranian nuclear program in 2010 [7]. The worm enabled

attackers to take control of multiple PLCs that were controlling nuclear centrifuges. The

worm was designed to settle itself inside the host computer, and after a designated period,

begin propagating to other hosts on the network in search of PLCs running the Siemens

Step7 software. It then released its payload, altering the firmware running in a PLC. Once

discovered, Stuxnet was found to have infected over 200,000 computers and destroyed a

large portion of the Iranian nuclear program’s centrifuges.

Stuxnet specifically targeted Windows based systems and exploited four zero-day

operating system vulnerabilities [7]. Stuxnet has many propagation techniques, allowing

it to spread laterally on a large computer network despite established securities. One

method for self-replication was through taking advantage of an exploit allowing for auto-

execution of removable drives plugged in anywhere. Alternatively, the worm spread

through local area network (LAN) connections by leveraging an exploit of the Windows

Print Spooler which stores print jobs on the LAN. Another exploit Stuxnet leveraged was

through the server-wide filesystem protocol known as server message block (SMB),

which allowed Stuxnet to copy itself to other hosts. Lastly, Stuxnet copied and executed

itself through network shared resources or SCADA database server connections.

Once Stuxnet was on a host, it could begin searching for the Siemens Step7

software, responsible for programming and running PLCs. If found, Stuxnet would copy

19

itself into Step7 projects to automatically execute when a project was loaded into a PLC.

Once inside of the PLC, Stuxnet utilized peer-to-peer LAN connections to update the

global status of the worm across all machines infected. Additionally, the virus took

advantage of privilege escalation vulnerabilities which allowed the PLC to contact

command and control servers and execute code. From there host information about the

PLCs and computers could be sent across a hypertext transfer protocol (HTTP)

connection to a server controlled by the attacker [7].

Stuxnet proved to be devastating to the field of industrial control, because of its

ability to leverage multiple vulnerabilities to replicate, execute code, modify programs,

and report back status information, all while hiding itself and bypassing security.

Ukrainian Electrical Grid

Another great example of an attack against ICS environments was the cyber-

attack on the Ukrainian Electrical Grid in 2015. In late December of 2015, power outages

across large regions of Ukraine were reported as multiple 100kV and 23.35kV

substations had been compromised and shut down due to an attack on the power

company’s SCADA systems. The outage lasted several hours before the power company

had to assume manual control of each of these substations, but at that point, the outages

had affected approximately 225,000 customers.

Like Stuxnet, the attacker was sophisticated and organized in their attack, leveraging

multiple exploits and vulnerabilities to infiltrate and maneuver the internal systems of the

power company. The attacker gained access through spear phishing emails and malware

known as BlackEnergy 3, which were embedded inside of Microsoft Word documents

that unsuspecting employees downloaded and viewed. Once the attacker had a foothold

20

inside of the IT portion of the power company, they were able to extract high-privilege

credentials to gain access to the SCADA and ICS networks [10].

Having the valid credentials gave the attacker a foothold. They then used a virtual

private network (VPN) connection including the valid credentials to enter the SCADA

and ICS networks. Once on the network, they either leveraged existing tools in the

environment or accessed commands from the human to machine interfaces (HMIs)

located at each of the substations. From there they were able to alter then delete system

records and logs to hide exact details on how the attack was performed. Lastly, the

attacker was able to shut down the electrical load systems all while performing a

telephone denial of service (DoS) attack against the call centers, stopping outage reports

from being received and acknowledged [10].

Best ICS Cybersecurity Practices

Industrial security, or security in general, requires an understanding of attack

vectors and attack surfaces. An attack vector is an avenue an attacker may take to gain

access to a computer network or host, or deliver a malicious payload. Systems may have

multiple attack vectors at different regions of the systems, such as network endpoints,

computer hosts, or even unsuspecting users. The assortment of all the system attack

vectors is known as an attack surface. The attack surface is always changing as system

components are modified and as new attacks are created and discovered. The defenses

include the disabling of unused features, data integrity mechanisms, authentication and

authorization systems, secure communication protocols, intrusion detection systems

(IDS), and network enclave. This chapter will cover some common attack vectors and

their defenses that comprise the typical ICS attack surface.

21

Removal of Unnecessary Features

The most basic form of security used today is the removal of attack vectors from a

system entirely. Doing so reduces the attack surface available and can be accomplished

by removing or deactivating unused features, processes, ports, or connections of PLCs,

computer networks, computer hardware systems, or software applications. Figure 2.3

depicts the disabling of unused features in an IDC environment. In a PLC, there may be

input and output ports that are not being used but are still enabled, thereby introducing an

avoidable attack vector into the control system. In a computer network, there may be

unused network internet protocol (IP) addresses, unused physical or virtual network

ports, or unnecessary subnetwork connections in place. In a computer system, there may

be several elements not in use, including operating system services, network or peripheral

ports, or even needless applications. In a software application, there may be entire

libraries linked into the program space when only a few functions are being used. For

each of these circumstances, the best practice is to remove unused mechanisms from the

system as they provide avenues for an adversary to gain access and control of critical

systems and infrastructure. This simple practice can drastically reduce the attack surface

of a system.

22

Figure 2.3 Disabling of Unused Features

Data Integrity

There are many attack vectors into hardware and software systems that involve

the unauthorized alteration of the data being used. From memory attacks to data

corruption, data integrity violations may be catastrophic to a computer system. In an ICS

facility, this may lead to attacker intrusion, program execution, or IP extortion. Therefore,

data integrity should be applied to every system and subsystem of the industrial control

system [17]. Data integrity practices are implemented in firmware, software, hardware,

memory storage, data communication, or file systems and operating systems.

Data integrity assurance functions within three scopes: integrity violation

avoidance, detection, and correction [17]. Avoidance is a practice of preventative action

meant to avoid certain types of data loss. Detection, the most common method of

23

integrity assurance, identifies when there have been modifications to data. Correction is

the act of repairing data which has been lost, modified, or damaged. By itself correction

is useless and requires some form of detection to know when it is necessary to repair the

damaged data. Normally, detection and correction go hand in hand, and avoidance is an

extra precaution to form a well-rounded data integrity assurance policy within a system.

Avoidance

There are several commonly used methods of data integrity violation avoidance,

each providing a unique guarantee of the integrity of data being stored or transmitted.

The first and most utilized method is read-only memory [17]. By preventing certain

portions of memory from being written over by programs or users, data integrity

violations may be prevented. However, this method does not prevent software or

hardware glitches from damaging data and bypassing these built-in operating system

protections.

Another robust method of avoiding data integrity violations is the implementation

of cryptographic filesystems [17]. By maintaining confidentiality in system data,

attackers have no feasible or predictable way of causing real damage without any

knowledge of the data being modified. Without a key to the encrypted data, it is

infeasible to start overwriting random portions of data in the hopes of causing a system

crash, failure, or security breach. Additionally, authentication can be performed on the

encrypted data via a hash function to check the integrity of the data. However, like read

only memory, these memory protections are not immune to software and hardware

glitches or failures which may cause losses in data or storage in incorrect locations.

24

A more modern approach to protecting file systems through data integrity

avoidance is the usage of transactional file systems. This method journals every system

action as a transaction which is logged to always maintain the system in a recoverable

state [17]. One great example of a transactional file system is known as New Technology

File Systems (NTFS). In NTFS, several mechanisms besides journaling are employed to

protect the system from unexpected data integrity violations, whether they be caused by a

user or malicious attacker, or by software or hardware glitches.

Detection

Data integrity violations may be avoided, but some of causes of data integrity

losses are unavoidable in computer systems [17]. While detecting cannot repair or

recover lost data, it is necessary to first detect integrity violations before they may be

corrected. Mirroring or checksumming the data are the most trivial ways of detecting

integrity violations. To mirror, a complete copy of the data is made, and the pieces of

data are compared byte by byte. To run a checksum, the data is served as an input to

some one-way function, and the output is compared to a precomputed result stored at the

end of a section of data. If any discrepancies arise, then there was a modification to the

data somewhere. However, not only are these methods inefficient, but they can only

indicate whether there is an integrity violation, and not which piece of data is corrupted.

Another common method used in error detection today is known as Cyclic Redundancy

Checks (CRC) where blocks of data are protected by the appending of extra sequences of

data. The CRC performs Frame Check Sequences (FRC) to detect errors on a frame-by-

frame basis. This method is used in determining which piece of data has been corrupted

25

without copying entire portions of data. It is much more efficient in terms of both time

and memory usage [17].

Integrity violation detection is also critical for network communications. If

messages are intercepted by an attacker, they may modify the data and perform a man-in-

the-middle (MITM) attack. A MITM attack is when an attacker gets between two

endpoints of communication to secretly steal information, and possibly relay false

information to the receiver. One common way of securing communications against

altered information is to use Error Correction Codes (ECC). ECCs are additional pieces

of redundant information about packets of data which are used to tell whether

modifications or errors have appeared in the received data [17]. While these methods are

good, they are not fool-proof, and attackers can very precisely modify packets of data to

trick ECCs into thinking they have received unmodified data. A more secure, but more

resource intensive way of securing communications is to use some form or encryption

and/or authentication. By encrypting the data being sent, you not only make the data

confidential, but the data can also be proven to authentic and unmodified. Cryptographic

hashing functions may be used to produce a message authentication code (MAC) which

is then appended to a message being sent. When the message is received, the MAC can

be regenerated by the party which has the key and compared to the MAC that was sent. If

the MACs are different, an integrity violation in the transmitted data has occurred [17].

Correction

Half of the battle in correcting integrity violations when they occur is the

detection, while the other half of the battle is correcting the data that has been damaged.

There are methods in which correction is performed, and there are also methods which

26

employ both detection and correction in the same algorithm. One of the most common

forms of integrity violation correction is achieved by the many implementations of

redundant arrays of inexpensive disks (RAID). RAID may be used to ensure the integrity

of a filesystem upon system bootup, but also ensures that the memory can be recreated if

one of the disks is attacked and vital data is lost. This method is known as RAID parity,

where additional parity codes are stored in each of the RAID disk, thus allowing

reconstruction of lost data when a violation is detected [17].

Another method of correcting and detecting data at the same time are ECCs,

which may be implemented in more than just communication protocols. Stored in ECCs,

there are at least three bits for every byte of information stored. While not memory

efficient, this method is able to detect as little as two-bit errors in each byte of data, and is

able to correct single-bit errors in the data. ECCs are commonly used in servers and

critical applications that cannot afford to lose large portions of data. Normally, to be able

to detect and correct N bits of information, the log2(N) bits are required to perform the

correction. There are many classes of ECCs, the most common being parity and

hamming-correction codes.

Forward Error Correction (FEC) is a form of ECC used on smaller portions of

information that may be used in memory, but are often used in lower-level

communication applications. In FEC, check bits are calculated on the transmitter side of

communication and are appended to a message to be checked on the receiver side. If any

differences are detected, the lost data can be reconstructed. FEC in its simplest form

sends redundant copies of packets across a channel. The most common forms of FEC are

hamming codes and Reed Solomon codes [17].

27

ICS Data Integrity

Within an industrial control facility there are many computer systems, network

connected devices, and PLCs which require many forms of data integrity checking. Data

integrity protection on these systems may be divided into three categories: firmware or

OS integrity, program and memory integrity, and communication integrity.

The first category of ICS system data integrity involves the firmware, or OS of

ICS systems. If any data is manipulated within the firmware on these systems, the system

could crash, vital information could be altered or damaged, or escalated permissions

could be given to an adversary. To avoid this, it is recommended to frequently verify the

integrity of firmware by using a verification tool that confirms the integrity by recreating

and verifying a digital signature which is only re-creatable by the owners of the device.

The second category of ICS system data integrity involves the programs and

memory storage of the systems running within the ICS. The functionality and reliability

of the PLC software depend on the integrity of the program and instruction data of the

program being run. If improper programming techniques are used, programs may become

weak to integrity violation attacks, which give attackers an avenue of control within the

systems. A sophisticated attack may be able to change program instructions or data,

causing improper behavior of the ICS system. To avoid this, many forms of integrity

checks are recommended. To protect the integrity of data being used by the system,

integrity checkers which verify integrity of the program before execution, and online

integrity checkers which scan before every critical read or write operation are

recommended.

28

The third area of ICS data integrity is the integrity of transient values being sent

to and received by an ICS system, which are used to make live decisions. This is more

challenging because the data is foreign to these systems. Integrity may be accomplished

by using secure communication protocols and live data integrity checking mechanisms.

These checks for data integrity and authenticity ensure the data being received is

legitimate and has not been tampered with.

By focusing on the data integrity of every system within an ICS, the system

boundaries become much stronger and it becomes much more difficult for a system to be

broken when its data has been altered by an adversary. Figure 2.4 depicts a simple

example of a computer system that performs data integrity checking on network

communications, data storage to external memory, PLC data and program integrity

checking, and lastly filesystem, integrity checking for the operating system.

29

Figure 2.4 Data Integrity System

Authentication & Authorization

Another vital piece of system security and resiliency is understood by asking the

questions: “Who are you?” and “Are you allowed this resource?”. These questions

encapsulate the critical security aspects of authentication and authorization.

Authentication is the act of verifying the identity of the origin of data or commands sent

and received inside and between system boundaries. Authorization is the act of checking

and verifying whether the origin of the data or commands may have access to information

30

or system functions. By controlling these security mechanisms, system boundaries

become much more secure and difficult to be breached by an attacker without necessary

credentials [5, 9, 13]. Authentication methods not only verify the origin of the data or

commands transmitted and received, but they also may be used to verify the integrity of

data that has been stored and later retrieved. Authorization also provides layered access to

systems so that only users with a need of access are granted it, reducing the overall attack

surface substantially. Together, authentication and authorization allow for secure access

to industrial control facility resources by legitimate users who should be using those

resources.

Authentication

The many different forms, methods, and applications of authentication are often

coupled with some form of confidentiality and data integrity. The origin of the data being

transmitted and seeking authentication is typically referred to as the claimant.

Authentication verifies the identity of the claimant by using one or many different

authentication factors [21]. The factors frequently used to authenticate the claimant are

the following:

1. Something the user knows: A password, PIN, or other piece of private

information held by the user.

2. Something the user owns: A hardware authenticator, a cellphone, software

certificate, or smartcard.

3. Something that qualifies the user: Something biologically unique to the user such

as a fingerprint, DNA sequence, or voice recognition.

31

4. Something the user can do: Used less commonly in digital systems, a signature or

physical gesture.

Added strength of authentication comes from combining the methods of

authentication and the strength of the underlying authentication methods themselves.

Using more than one form of authentication is often referred to as Two-Factor

Authentication (TFA). For example, if someone stole a password, but does not have the

relevant hardware authentication device such as a smartcard, then with TFA the attacker

is denied access. However, while passwords may be easy to implement in a system,

passwords have a few vulnerabilities such as being leaked, stolen, or brute forced. Since

passwords may be leaked, stolen, or brute forced, one workaround to this vulnerability is

to only use the password once. This type of authentication is known as a one-time

password (OTP).

In addition to logging into networks or gaining access to services on a network via

password authentication, there are also secure authentication protocols which may allow

the private communication of authentication credentials over an unsecure medium such

as the internet. One of the oldest authentication protocols, known as Password

Authentication Protocol (PAP), is not a secure authentication protocol because user

credentials are sent as unmodified plaintext over the network. An upgrade to PAP is

known as the Challenge Handshake Authentication Protocol (CHAP), where only

username credentials are sent over the network connection, then a unique challenge

message is generated and sent as a response to the client. The challenge message is then

appended to the password and sent through some form of hashing function, preferably a

keyed hashing function, to generate a MAC or hashed-based MAC (HMAC) which is

32

then sent back to the server. The server performs the same hash function to generate the

MAC/HMAC and compares it to the received message. If they are both the same, the user

has the correct password that was sent to the server in a secure fashion.

These primitive authentication protocols are insecure by today’s standards. For

this reason, other advanced forms of authentication protocols have been developed, such

as Extensible Authentication Protocol (EAP), which are embedded into different

cryptographic communication protocols such as Secure Shell (SSH), Transport Layer

Security (TLS), and WiFi-Protected Access (WPA). EAP is an authentication framework

that provides many different authentication methods for different communication

protocols. Additionally, EAP may be used on many different communication layers of the

OSI model, whether they be the data link layer using network switches, the network layer

using routers for a LAN, the transport layer over the internet using TCP/IP, or any of the

other further abstracted layers. EAP provides different forms of authentication for wired

and wireless communications from the client to a network device such as a router, and

then finally to the server. EAP supports MAC or message digests authentication such as

CHAP, certificate-based authentication methods such as TLS which require secure

certificates to be installed on the client, or even OTP authentication methods. Figure 2.5

depicts the authentication and establishment of secure communication channels between

a peer and a server via the utilization of EAP Pre-Shared Key (PSK). Both the peer and

the server have a PSK, which they use to create MACs from randomly generated

numbers which are used to authenticate each other, and subsequently establish a secure

communication channel.

33

Whatever the method taken, it is important to consider and weigh all the

authentication options for an ICS facility since the facility combines many different

systems together via network connections and different communication protocols.

Figure 2.5 EAP - Pre-Shared Key

Authorization

Once the requesting client or incoming data has been authenticated, the process of

authorization and access control may begin. Authorization and access control are the

process of determining whether the authenticated client or data may gain access or

complete transmission to an endpoint within the ICS. Certain clients and sources of data

are not authorized to reach different endpoints in an ICS to reduce the overall risk

associated with that endpoint. If the endpoint is a controller in a critical application,

limited access is also critical. By doing this, attackers who have managed to gather low

access credentials cannot have access to critical resources. By limiting access to all

34

endpoints within an ICS, a stronger security posture may be achieved, and risk associated

with attacks from within may also be mitigated [5, 9, 13].

Secure Communication Protocols

As mentioned previously, data integrity and authentication are crucial parts of

securing clients and data on the ICS network. In addition to these two cornerstones of

secure communications, data confidentiality is the final cornerstone. All three of these

cornerstones can be achieved by utilizing the many different secure communication

protocols used in the field of cybersecurity today.

A key aspect of secure communications is choosing the right secure

communication protocols for given applications. Some forms of communication are

duplex, some simplex, and others using some form of broadcasting to multiple clients.

Securing communications involves many different components that aid in authentication,

encryption, and data integrity. To be able to authenticate and encrypt data, some form of

cryptographic key is needed, whether symmetric, asymmetric, public, or private. In

addition to normal communications, there might be the need to create and distribute

public-private key pairs in a secure way. All these capabilities may be achieved by

utilizing one or many different secure communication protocols. As with most features of

cybersecurity, there is a performance tradeoff due to the computational overhead of

cryptographic calculations. This can be a challenge in ICS environments where data

transfer is time sensitive, and a balance is usually found somewhere in the middle.

Computer network communication is a layered approach, consisting of seven

different layers referred to as the Open Systems Interconnection (OSI) Model. The seven

layers of this model are network traffic abstractions starting from physical hardware and

35

building up into applications and their interface to a network. The seven layers are the

physical, data link, network, transport, session, presentation, and application layers. The

physical layer is the hardware layer where information is passed via some physical

media. The data link layer is where physical addressing, such as MAC addressing,

occurs. The network layer is where routing between computers on a LAN occurs via IP

addresses. The transport layer is where communication between LAN networks occur

forming wide area networks (WAN) via transport protocols such as TCP/IP. The session

layer is where computer hosts establish communication sessions with endpoints on a

network. The presentation layer is data encoding/decoding, encryption/decryption, and

compression/decompression occur. Lastly, the application layer is where applications

interface with the network via the other six layers. This section will be covering

communication protocols associated with different layers of the OSI model.

When considering the layered model of networking, it is important to note that

higher abstracted layers cannot control what takes place in lower layers. For example, the

transport layer cannot affect or secure communications at the data link layer. Due to this,

transport layer security mechanisms would have no effect on an attack that took place at

the data link layer. For this reason, secure communication protocols have been introduced

at nearly every layer of the OSI model to employ a layered security approach in tandem

with a layered networking model.

IEEE 802.1X

One of the most common forms of network security across all networks is data

link layer security. This type of security occurs between hosts on a local area network.

Since data link layer security is implemented on the networking hardware, it is the lowest

36

possible level of network security achievable. One implementation of this is IEEE

802.1X, which is a data link layer access control protocol. This protocol uses EAP to

provide authentication mechanisms between physical hosts on a LAN. The protocol

works for both LAN and wireless LAN (WLAN) connections on a network. The protocol

offers optional data encryption. Data encryption does not often occur on the data link

layer as it causes intense overhead on networking hardware, so encryption occurs on

layers higher up on the OSI model.

IPSec

By itself, internet protocol (IP), which exists at the network layer, does not

provide any security features, and was built for the raw functionality of transmitting

information between networks. If a third party were to intercept the packet, they could

retrieve critical information from the raw data, modify the data, or replay the data again

later. To avoid this, Internet Protocol Security (IPSec) was developed by the Internet

Engineering Task Force (IETF) in 1998 [4]. IPSec is a secure network layer security

framework which encapsulates two protocols called Authentication Header (AH) and

Encapsulated Security Payload (ESP). These two protocols perform authentication to

verify authenticity and integrity of the data received and performs encryption to keep data

confidential. IPSec is frequently used in many different network settings, whether

network to network, host to host, or network to host, and is frequently used in

establishing virtual private networks (VPNs) [4]. Additionally, IPSec has some features

built into it that protect communications against replay attacks so that confidential data

cannot be intercepted and sent multiple times to replay the same message.

37

TLS

When communicating simple data or commands between servers and clients, a

widely used communication protocol used to achieve this is known as Transport Layer

Security (TLS). Originally known as Secure Sockets Layer (SSL), TLS was derived to

secure TCP/IP communications over transport layer network communications. As

suggested by the name, TLS is an example of a transport layer security protocol. TLS

seeks to achieve confidentiality and authenticity in communications to prevent

eavesdropping or tampering [16]. This is done by the utilization of public asymmetric key

exchange to establish a private key configuration used in encryption and authentication.

TLS is highly configurable and can use many different public key exchange methods for

the establishing of a session, and many different private key encryption methods for the

secure communication across networks.

Figure 2.6 depicts the typical TLS connection handshaking sequence. The client

requests a connection to a server in which cryptographic details about the client are

exchanged. The server then sends its public certificate, and the cipher suite is utilized.

The client then authenticates and verifies the server certificate. The client then sends its

own public certificate along with its private key. Once both the client and server are

finished verifying, a secure and authenticated communication channel is established in

which all messages are encrypted and authenticated.

38

Figure 2.6 TLS Handshake

SSH

In an ICS, there may arise the need for embedded systems and computers to

communicate with one another for the access of a terminal, file transfers, or application-

level transmission. This brings up grave security concerns because if these connections

were to be intercepted and compromised, the control of the entire system could be at risk.

To avoid this, Secure Shell (SSH) was developed in 1995 to protect against these types of

attacks. SSH is an application layer security protocol that is used for remote system

logins, command executions, and file transfers. Instead of sending login credentials,

commands, and files over the network in plaintext, all information sent and received is

encrypted, decrypted, and authenticated. This is achieved over TCP/IP protocol which

handles the initial public asymmetric key exchange and sets up the symmetric key

encryption and authentication configurations. This process is repeated periodically to

keep keys fresh and brute force resistant. Once this has been established, all further

39

information is encrypted, decrypted, and authenticated using the symmetric key to

prevent man-in-the-middle and brute force attacks.

HTTPS

If there is ever a need to communicate with websites hosted on the internet,

security is a huge concern because all communications are now leaving the ICS and

entering the wild west of the internet. However, while this should be avoided in most

cases, there are many different methods to securing internet communications. The most

widely used secure internet communication protocol is known as Hypertext Transfer

Protocol Secure (HTTPS). HTTPS is an example of an application layer security protocol

with which internet applications communicate. This is desirable for an ICS that is

controlled and governed by a central control facility that does not exist on the local ICS

network. HTTPS is secured by TLS, meaning the establishing of secure communications,

encryption, and authentication are handled by TLS in the transport layer, and then

presented to the application layer by HTTPS at endpoints of networks.

Intrusion Detection Systems

While protecting the communications and access into ICS technologies is of

extreme importance, it cannot be the only solution to protecting the system. Since

cybersecurity is a constant game of cat vs. mouse, the capabilities of industries and

attackers alike are becoming more sophisticated. To keep up with this game of cat vs.

mouse, it is obviously important to keep ICS security protocols and policies up to date. It

is also important to realize that ICS are never completely invulnerable to attacks and

intrusions. Extreme efforts have been made toward identifying abnormalities in network

communications and ICS behavior to detect intrusions when they are occurring, or if they

40

have already happened. These systems are typically known as Intrusion Detection

Systems (IDSs). These systems scan network traffic and internal system functions to

detect and prevent intrusions. Intrusion detection systems on the network side of an ICS

are known as Network-based IDS (NIDS) [8, 12, 14, 18]. Intrusion detection systems that

work on computers to scan system calls and resources are known as Host-based IDS

(HIDS) [8, 12, 14].

IDS Overview

For intrusion detection systems, there are two dimensions in which they are

classified. The first dimension is the medium in which the IDSs are implemented. The

second dimension is via the strategic implementation of intrusion detection. Within the

first dimension, IDSs are implemented on computer networks and computer hosts to form

network-based intrusion detection systems (NIDS) and host-based intrusion detection

systems (HIDS). The second dimension divides IDSs in terms of their implementation, in

which there are signature-based IDSs and anomaly-based IDSs [8]. In signature based

IDSs, sets of governing security policies are applied to all network traffic or system

function calls to log all behavior of users inside of the governed systems. If these users

breach the security policies based off known attack patterns, the activity is halted, and

system administrators are notified of the activity [18]. In anomaly based IDSs, the system

also scans and logs all network traffic and system function calls and usually, but not

always, employs some form of artificial intelligence or machine learning to detect

anomalies in the behaviors of certain network connections or users on the system [2]. If

these behaviors stray too far from a deemed normal behavior, the activity is labeled as

anomalous and activity is halted, and system administrators are notified. While there are

41

distinct differences in the different methods of intrusion detection, these systems can be

integrated into a single IDS for more coverage [20].

While traditional firewalls solutions can prevent most unwanted network traffic

into an ICS, it does not block all traffic as attackers have found many ways to get around

IDSs. IDSs are a great compliment to the overall security of an ICS as they provide

additional layers of protection and security policy governance. However, it is much more

difficult to achieve such a task in an ICS environment [2, 12]. ICSs have more tailored

needs due to the nature of the critical tasks being performed on site. Because ICS are

controlling critical and sometimes destructive processes, it is vital that any IDSs

employed by the ICS should be real-time and have the capability to detect intrusions as

they occur to prevent any damage or loss of information from occurring. Additionally,

since many of the devices running in an ICS are embedded devices, there are limited

computational resources available to perform IDS measures, and therefore must be made

lightweight on top of rigorous. Since ICS have a myriad of legacy hardware and software

technologies, they are weaker to attacks, harder to update, can break easier, and are

operated by insecure protocols. Due to these flaws of the legacy nature of ICSs, it is of

utmost importance to have highly configurable or tailored IDSs that are capable of

melding into current technologies and are capable of protecting older technologies.

Lastly, since ICS IDSs exist at the lowest level of the control hierarchy, it is more

difficult to employ a system with proper visibility to the physical control signals [2].

There are many different IDSs in existence today and choosing the right IDS is

critical to securing relevant systems depending on the application. Some IDSs are very

42

focused on one type of detection, while others attempt to fill the role of “jack of all

trades”.

Zeek

One of the more widely used IDSs in existence today is known as Zeek, which

has recently changed its name from Bro. Zeek is an open-source IDS that runs on Linux

OS. It specializes in sniffing and analyzing network traffic, classifying it as a NIDS.

However, it does not focus on just one type of intrusion detection scheme, as it is able to

employ both signature and anomaly-based detection techniques. Zeek, once deployed

onto a computer system or network server, can perform both offline and online analysis

of network traffic and is capable of being scaled out to very large or simple at home

networks, making it a perfect candidate for industrial applications. Zeek employs logging

of all activity of network traffic for analysis or network administrator forensics and

supports analysis on many different application layer protocols including File Transfer

Protocol (FTP), Domain Name System (DNS), HTTPS, TLS, and SSH. Above and

beyond scanning the protocols, Zeek has the capability of analyzing all file contents

introduced into the system via cryptographic hash computation for fingerprinting. In

addition to all these features, it has a lot of documentation and support for integrating into

whichever application you are seeking to protect.

Figure 2.7 depicts a NIDS and where it fits into a layout of a secured network.

Normally, the NIDS sits on the front-facing side of a network and scans all incoming and

outgoing traffic for signature and anomaly-based intrusions. When an intrusion sets off

any configured rules, an alert is generated for security administrators to review, and if

necessary, sever any connections with a potentially malicious source.

43

Figure 2.7 Network-Based IDS

Snort

Many open-source intrusion detection systems are combinations of smaller open-

source engines tailored to accomplish specific tasks. Snort is one of these smaller IDS

engines used for packet sniffing. Snort is a NIDS that excels at sniffing network traffic

and performing analysis and packet logging. Snort can be configured in three different

modes, Sniffer mode, Packet Logger mode, and NIDS mode. Sniffer mode reads network

packets and displays them to the user, while Packet Logger mode logs the packets to disk.

In NIDS mode, Snort will monitor and analyze network traffic based on a rule set defined

by the network administrator. Based on the rules, different actions are taken depending

on what threat has been identified. In NIDS mode, signature-based, protocol-based, and

anomaly-based analysis is performed on traffic coming into or leaving the network.

Custom rules can be configured by administrators to aid in traffic analysis and search for

specific patterns their adversary may use. This is particularly useful for ICS security

because very specific information should be moving between endpoints on a network,

and Snort allows for alerts or actions to be taken when one of these facility custom rules

has been breached.

44

OSSEC

In addition to integrating NIDS to protect networks, it is also vital to protect host

systems and applications with some form of HIDS. OSSEC is a widely used HIDS that is

open source and is compatible with many platforms. OSSEC is a HIDS comprised of

configurable components. OSSEC is managed from a central server inside the host

machine that can monitor agents which could be small programs or collections of

multiple programs running on the host. OSSEC monitors many different aspects of the

agents, such as their function calls to system functions, resource utilization, or

interactions with other processes. OSSEC also intercepts network traffic moving to and

from the host. System calls, resource utilization, network traffic, and inter-process

communications between agents on the host are logged into a central database to be

analyzed.

In addition to the monitoring of agents on the system, OSSEC can be configured

to periodically inspect files that agents are interacting with via a data integrity checking

process known as Syscheck. OSSEC also has the capability of scanning the host system

for any presence of a rootkit using a process called Rootcheck. A rootkit is a collection of

computer software designed to run silently on a computer and slowly cause damage

and/or leak information from a system. Using all the collected information, OSSEC

generates alerts via administrator-tailored rules and policies and helps to efficiently

police a system to detect and stop unwanted process behavior.

Figure 2.8 depicts a HIDS and where it fits into the scope of a computer host

system. The HIDS, like the NIDS, scans all communications going into and out of the

host. Additionally, the HIDS scans processes running on the host and ensures that inter-

45

process communications are not performing system calls they should not be or partaking

in any anomalous behavior. If so, the HIDS reports the behavior to a system administrator

who can in turn tell the host to shut down the potentially malicious processes or external

connections to the host.

Figure 2.8 Host-Based IDS

Security Onion

IDSs come in many flavors and configurations. It can be difficult for security

teams to set up and integrate the features of many different IDSs. In this circumstance, it

may be desirable for security teams to adopt an IDS security suite which houses and

integrates many different IDSs. One example of an IDS security suite used for protecting

an entire network is known as Security Onion, a Linux-based OS security platform.

Instead of installing and configuring each security tool one by one, Security Onion offers

different IDS security components that can be enabled, configured, and integrated

46

together seamlessly. Security Onion’s tools have the capability to analyze all the network

traffic moving on the network it is attached to. Security Onions can analyze the traffic for

intrusions, generate security alerts, perform corrective actions in response to alerts, and

log all actions into a database to profile each network endpoint. Security Onion offers a

couple NIDS to sniff all traffic moving onto the network to which it is attached, such as

Zeek and Snort. Additionally, Security Onion offers analyst tools that can be used by

network administrators to view the profiles of connections, network packets, transmitted

files, etc. Security Onion also can serve as a central point of communication for HIDS

running on each host on the network. Using HIDS such as OSSEC, alerts and logs can be

stored and sent to the central Security Onion server to alert system administrators of

suspicious behavior or intrusions occurring on hosts connected to the network.

Network Enclave

As seen in the section titled Typical ICS Facility Structure, each of the different

regions of the industrial control facility have isolated enterprise, supervisory, and field

networks. These network subregions are known as network enclaves. Network enclaves

are meant to restrict access to certain portions of the network to increase security and

reduce traffic on the same network channels. Each of these network enclaves have

different functional purposes and connectivity requirements. Network enclaves allow for

the separation of network resources and tailoring of what connectivity they have to the

rest of the facility [9, 13].

Network enclaves also allow for network resources to be distributed without any

interaction to unrelated enclaves. This improves network performance as network traffic

is distributed along branches of the network as opposed to all traffic moving through a

47

main branch. As described in the section titled Removal of Unnecessary Resources, the

removal of unnecessary resources is critical to reducing the attack surface of the system

being protected. By removing unnecessary connectivity via network enclaves, the attack

surface is reduced because attackers do not have as much facility to move laterally within

a large spanning network [9, 13]. Since the network traffic is distributed, attackers also

do not have the capability to listen to all traffic moving on the network, and only within

the enclave to which they have access.

While the large network enclaves have DMZs between them, such as the

enterprise layer and the supervisory layer, the network can be further divided into smaller

network enclave subregions within each of these larger layers. For example, the

management layer may have an accounting division, a resource planning division, a

marketing division, etc. Figure 2.9 depicts an example of a network enclave structure in

an ICS environment.

48

Figure 2.9 ICS Network Enclave

Threat Modeling & Intelligence

Due to the nearly infinite possible attack vectors known and unknown, the real

challenge to ICS security is knowing where to apply these security protections in a way

that makes a difference. Without any knowledge of what the attack surface looks like,

implementing secure communication protocols or integrating an IDS into a network may

result in nothing at all. Only by understanding the attack surface and threats to an ICS,

can protections be applied and make a difference. By bringing all the security elements

together, ICS network administrators are left with an abundance of tools and information,

but perhaps lack the knowledge and/or perspective of how to assemble, configure, and

maintain the security system. Security teams may be left without somewhere to build an

understanding of their attack surface, and subsequently the forming of a fortified security

posture.

49

However, there are many tools that have been developed for enterprise, corporate,

and industrial environments to combat against small, or potentially very large threats

such as APTs. Some of these tools might seem very intimidating to a smaller ICS facility

comprised of a few individuals, without a network team, who are responsible for securing

the facility to protect investments and intellectual property. An organization that does a

phenomenal job at distilling this information is known as the MITRE Corporation. The

MITRE ATT&CK Framework is an organized database that provides threat modeling,

detection, and mitigation capabilities for many different industries. The framework

details common APTs, their tactics, techniques, and procedures (TTP). The framework

also details methods of detecting and mitigating the impact these TTPs have in the event

of an attack. ATPs and their TTPs have been recorded and publicly posted so that the

world can learn from their actions, and how to protect against them in the future. With an

abundance of threats, attacks, and databases of logged attacker behavior, the MITRE

ATT&CK Framework presents all the information necessary for the protection of ICSs

with smaller network teams to large ICS facilities with large and sophisticated network

teams dedicated to attack, analysis, and defense [15].

MITRE ATT&CK Framework

The MITRE ATT&CK Framework was created in 2013 as an open-source tool to

document attacker tactics and methodologies, whether small or large. The Framework

offers a large database of 12 different tactics that ATPs perform to infiltrate networks and

perform actions once on the network [15]. The framework categorizes the tactics into 12

categories:

50

1. Initial Access – getting into a network

2. Execution – running malicious code

3. Persistence – maintaining a foothold

4. Privilege Escalation – attaining higher level permissions

5. Defense Evasion – avoiding detection

6. Credential Access – stealing account names and passwords

7. Discovery – understanding the environment

8. Lateral Movement – moving within the environment

9. Collection – gathering data of interest to meet their goal

10. Command and Control – communicating with/controlling compromised systems

11. Exfiltration – stealing critical data

12. Impact – manipulating/interrupting/destroying systems and data

Within the MITRE ATT&CK Database, there are a plethora of attack methods

within each category. Each type of industry, whether medical, industrial, or corporate,

has APTs that persistently attack them. Within each industry, the 12 categories contain

the TTPs used by ATPs and suggestions for mitigation techniques are made. With this

information, building an attack surface for the desired application becomes streamlined.

With tools such as their ATT&CK Navigator, a categorical matrix representation of an

attack surface can be visualized [15]. The levels of risk and security capability associated

with each threat can be used to generate heat maps of the attack surface to depict where

weaknesses lie. Figure 2.10 [28] depicts an example of a generated heat map.

There are four key uses cases that the framework offers in building a holistic

defense system [15]. The four main use cases of the Framework are:

51

1. Threat Intelligence – what threats and methodologies are present for the

application

2. Detection and Analysis – how to build detections and analysis tools for known

threats

3. Emulation – how to mimic known threats to increase extensiveness of

detection

4. Assessments – how to measure defenses and enable improvements in the

future

Figure 2.10 ATT&CK Navigator Heat Map

52

Threat Intelligence

Applying defenses for every type of threat or attack can be time consuming for an

organization, especially those with large amounts of resources such as an ICS facility. In

addition to the time required to address every type of threat, designing IDSs with rules

and policies for every single existing threat will result in a slow security system. If an

IDS applies each rule/policy for all network traffic, the system will be slow, inefficient,

and incapable of monitoring all traffic. For this reason, the ATT&CK Framework is well

suited for any organization who wants to employ a threat-informed defense where they

approach their defensive posture from a pragmatic and well-informed point of view. The

ATT&CK Framework enables organizations of any size to build their security tools

around threat intelligence on relevant threats and their TTPs [15].

Within the ATT&CK database, queries can be made into specific industries and

their systems to build an attack surface based on the recorded TTPs of ATPs in that area.

In the case of ICSs, MITRE has an entire website dedicated to threat intelligence for

ICSs. From their website you can view the relevant APTs and the TTPs they have

employed against ICS facilities worldwide.

Detection & Analysis

After performing threat intelligence, the next step is to choose and configure the

IDSs in a facility network. Each system has its own configuration techniques and

understanding the syntax and approaches of TTPs is necessary in putting up the detection

mechanisms. There are many different open-source databases with the internet registries

of these attacks to be studied and understood. MITRE themselves has their own

ATT&CK Framework database for all submitted attacks under their recognized APTs.

53

Using this information, custom rules and policies can be applied to the IDSs within an

organization [15].

In addition to configuring IDSs, MITRE offers suggestions on other types of

detection and mitigation techniques for each TTP. For example, in the category of

Impact, there exists the known technique of Firmware Corruption. The framework offers

resources on how this has been performed and offers the detection mechanism of logging

and monitoring all attempts to read/write to the BIOS. Within this TTP, there are three

different mitigation techniques suggested: Boot Integrity, Privileged Account

Management, and Software Updates.

For each relevant category, the framework can be utilized to gather detection and

mitigation techniques to build up the security mechanisms of an organization. With this

information, organizations may begin to configure rules that define the behavior of their

IDSs and form mitigation techniques to protect against the ATPs that exist in their

industry. Once protections have been put in place, the IDSs and mitigation techniques can

be developed further by red teams and blue teams within the organization [15]. Over

time, a strong and holistic security posture can be formed.

Emulation

While ATPs behavior is documented and strong detection and mitigation

techniques can be formed, ATPs are sophisticated and adaptive. ATPs often form new

tactics to circumnavigate protections put in place to ward against their previous efforts.

For this reason, it is important to get in the mind of an adversary and attempt to emulate

their types of attacks. Red teams and blue teams can attempt to breach and defend their

organizations systems to test the comprehensiveness of defenses and expose any

54

weaknesses. Without emulation, it is difficult to determine whether the detection and

mitigation techniques are effective.

While it is much more difficult to cover a lot of different emulations in a single

organization, there exist tools to help the automation process of adversary emulation. An

example of emulation tools that map well into the ATT&CK Framework is known as

Atomic Red Team. It offers different tests which can execute automated attacks against

an organization’s network to test the effectiveness of detection and mitigation techniques

put in place. While they only focus on a singular attack technique, hence the name

atomic, these tests are set up in such a way that they can be tested in sequence cover a

wider area. Over time, network security teams can expand their covered attack surface

greatly by taking a targeted approach towards emulating different attack techniques made

by the APTs that are the biggest threats to their organization [15].

Assessments

The final major use case for the MITRE ATT&CK Framework is utilizing the

framework to assess on an organization’s security posture. By doing an assessment on

defenses, one may find areas that are lacking in security and make improvements.

Assessments, like any of the other use cases for the Framework, can be utilized by any

size of organization seeking to bolster security defenses. MITRE suggests assessments be

taken in 3 incremental steps:

1. Assess the coverage of defenses using the ATT&CK Navigator

2. Identify the most vital gaps that exist in defense coverage

3. Modify defenses to fill those security gaps

55

This process of repeated threat intelligence gathering and assessment should be

periodically repeated because the capabilities of attackers are always evolving and

growing stronger, and so should an organization’s defenses. By doing this, a heat map

can be updated frequently to show improvements, and where general weaknesses lie in an

organization’s security coverage. Once coverage has been assessed, organizations can

begin creating priorities for implementing change [15]. Now that the organization knows

where change should be implemented, detection and mitigation techniques can be

created, and the cycle continues.

56

CHAPTER 3: RESILIENT ICS DATA

To understand how this thesis fits in relation to ICS security, a larger perspective

is required. Several concepts form the foundation of this thesis: system functions and

interactions, adversaries and threats to industrial control, the thought process of

adversaries, and modern ICS security practices. Each of these elements come together to

form a more complete view of ICS system security, cyber resiliency, system/data-level

resiliency, and how each can be addressed. This chapter proposes a data acquisition

system with the main purpose of increasing resiliency, including cyber, system, and data.

Trust and vulnerability are common struggles for modern ICS security engineers.

Vetting data for trustworthiness is critical, as illegitimate data may be presented to

IDS/IPSs by adversaries or because of degrading devices. Perhaps an ATP has

compromised equipment in the field that is responsible for reporting information to an

IDS. This device could be a PLC with corrupted firmware, or a compromised or a

physically degraded or broken sensor or actuator. Anything that can report false

information may cause cascading side effects for functionality and system security. This

thesis seeks to provide a relevant solution to the pervasive issue of false information

within the control hierarchy.

There are other avenues of research that align with what this thesis proposes [24].

One such avenue is the application of additive layer manufacturing (ALM), where circuit

features and functionality are applied on top of one another, rather than the typical

subtractive silicon approaches. However, circuit modifications via 3D printing

57

technologies run the risk of adversarial interference. In the case where an adversary has

compromised an ALM control system, the adversary may have the ability to change

circuit topology and behavior. This is accomplished by interfering with the control

process, leading to cascading security concerns post-manufacturing. Dawson pursues the

formation of an IDS via an out-of-band data acquisition unit in a test environment [24].

This thesis expands on the research proposed by Dawson et al. [24] by designing and

demonstrating a data acquisition unit compatible with general ICS applications.

The Proposed System

This thesis provides the missing link in modern ICS security systems and attempts

to implement a device that provides increased visibility at the lowest level of the control

hierarchy. This device is a new type of data acquisition unit that may be deployed within

control processes for an out-of-band data channel control process I/O. The proposed

system monitors, records, and verifies control/sensor voltages/currents to verify the

legitimacy of data being reported back from the control system. If any of the control

process components are damaged or compromised, the data may not reflect reality, and

the proposed system addresses these concerns. For example, a damaged sensor may

report inaccurate data, or a compromised PLC may purposefully report false or

misleading data.

To address these issues the proposed data acquisition unit converts the physical

electrical signals of the control process out-of-band from the PLC. It then reports the

information to a network endpoint that contains an IDS/IPS as a form of verification of

in-band control process I/O values. The out-of-band and in-band data can be synthesized

and analyzed by the IDS/IPS to build trust in ICS data sources. If there are any

58

discrepancies in the data being collected, then the sources may be degrading, damaged, or

compromised. The IDS may alert security and system engineers to shut down systems

and address the discrepancy. Figure 3.1 depicts the proposed data acquisition system and

how it fits into the ICS model.

One application of this data acquisition system may have been of benefit during

the devastating ICS data subversion attack, Stuxnet. Compromised firmware within the

PLCs were forcing Iranian centrifuges to accelerate but were reporting false RPM back to

servers. If this data acquisition unit were installed at the electrical contacts of a centrifuge

control system, the visibility on the physical state of the system may have enabled an IDS

to detect the attack. By noticing a discrepancy in the data being reported to the IDS, an

alert could have been generated and security engineers could have halted systems before

the severe damage occurred.

59

Figure 3.1 Proposed Thesis Contribution

An additional application of this data acquisition system is for verification of

control process data used as training data for machine learning security algorithms. Some

machine learning algorithms are trained to understand normal control process behavior to

detect anomalies. If the systems used for training data are already compromised, the

algorithm will be taught the wrong lessons about reported typical behavior. Incorrect

training would render the AI system incapable of detecting anomalous behavior, causing

security problems in the future. Avoidance of compromised training data can be achieved

by verifying the legitimacy of the data through the cross reference of data acquired by the

proposed system.

60

There may be other data science applications for this data acquisition system.

However, the main purpose of this thesis is to propose a new tactic, technique, and

procedure for detecting anomalous or illegitimate data due to system degradation and

infiltration. In chapters 6 and 7, the electrical hardware and software design will be

discussed further to demonstrate how such a system is created, tested, and integrated into

modern ICS security systems.

61

CHAPTER 4: CYBER RESILIENCY IN SYSTEMS & DATA

Through observation of current security practices implemented in ICS facilities, it

is clear there is an extensive variety of cybersecurity technologies to thwart the efforts of

adversaries. All the protections are put in place to secure something within the ICS

facility whether it be credentials, intellectual property, or physical systems. In any case,

security engineers must fully understand the systems they are attempting to fortify as well

as the attack surfaces that exist. Much study, effort, and priority has been put into

securing and fortifying existing IT systems in an effort to prevent attackers from getting

into ICS networks initially. However, because of cases like Stuxnet where attackers have

managed to infiltrate a network, detecting the adversary, and protecting internal systems

becomes more difficult. This is an overarching relationship present between attackers and

defenders of ICS networks; with each new successful attack, stronger and more resilient

defenses must be devised.

For this reason, there can never be a completely fortified ICS network, and it must

be assumed that IT and OT systems are always at risk. The perceived attack surface

might be covered, but the growing interconnectedness of IT/OT systems always provides

opportunities for attackers to seep through the cracks. This chapter discusses

cybersecurity elements at a high level to exfoliate issues found within modern ICS

security systems. To begin, system thinking is used in threat intelligence considerations

and will be expounded upon, revealing its role in proper modern cybersecurity system

implementations [11]. The second portion of this chapter covers concepts of cyber

62

resiliency. Next, a discussion on system resiliency reveals broader implications related to

cyber resiliency and modern IT/OT security practices. Finally, this chapter discusses a

lacking element of cyber/system resiliency considerations in ICS security, data resiliency.

System Thinking

In the face of APTs and their relentless crusade against many industries,

cybersecurity personnel must think in terms of systems to have a more complete

understanding of the attack surface of IT/OT systems. One method of inspection which

offers an advantageous perspective of attack surfaces within whole systems is known as

“System Thinking”. System thinking requires a deconstruction of the system design into

its primary components, behavior, and purpose. When a system is broken down into its

fundamental elements, understanding their relation to the whole system becomes clearer.

This process aids in creating cybersecurity solutions that fit well into the system and do

not increase the attack surface elsewhere. This can be a time-consuming task as complex

systems are generally interconnected, and a complex system can have feedback where the

entire system interacts with itself [11]. Therefore, small changes to systems or security

may cause cascading consequences throughout the rest of the system. For example, a new

functionality may be introduced to an ICS that initially allows the system to perform

better or provide more security. However, unknown consequences may arise due to the

feature’s connections with other components of the system, possibly providing the

attacker a new avenue of entry into the system.

Every technological system has hardware and software components, hardware-

defined and software-defined behaviors, and an overall functionality goal. The

components may consist of processors, transducers, routers, programs, operating systems,

63

etc. The behaviors originate from how the software and hardware components are

connected, integrated, or programmed. Components and behaviors come together to

complete the system and to achieve an ultimate outcome whether it be maintaining the

pressure in a tank, calculating credit score, or sending messages across the world.

Every system has an overarching structure which is known as the system

hierarchy; the system may have subsystems, and those systems may have subsystems of

their own [11]. Viewing the system as hierarchical offers an advantageous perspective

over the system when trying to identify and protect the attack surface of a system. This is

especially true because this method of functional decomposition is exactly how ATPs

find vulnerabilities within large and complex systems. Every layer of the hierarchy,

whether it be the main system or the most simple and low-level subsystem, has an attack

vector associated with it. By increasing the complexity, breadth, or depth of the system

hierarchy, more attack vectors are exposed ultimately growing the attack surface.

The process of observing and addressing security at the hierarchical level is

known as “security in depth”. Every piece of the system may offer an avenue for

attackers to enter the system, so it is critical that every layer of the system be addressed

for attack vectors and suitable corresponding security protections [9, 12, 13]. The security

in depth approach addresses a wide range of security concerns, from malware to

educating system operators and users. Chapter 2 describes different types of protections

and security practices for IT/OT computer systems and networks in depth.

Unfortunately, modern ICS practices are often lacking in protection and

verification of the physical systems processes that exist at the lowest level of the control

system hierarchy. The concepts of cyber, system, and data resiliency can address these

64

concerns. There are many definitions of resiliency with respect to systems and their

applications. Researchers have often used multiple attributes to encompass what

“resilient” means with respect to the given application. Some sources claim that

resiliency is the ability to rebound back from a failure, while others claim resiliency is the

ability to withstand the forces that cause system failure [1, 5]. For the concept of

resiliency, more definitions provide a broader context and encourage a well-planned

cybersecurity approach.

Cyber Resiliency

A high-level concept of cyber resiliency provides a framework for breaking down

resiliency in the cybersecurity environment. NIST defines cyber resiliency as “the ability

to anticipate, withstand, recover, and adapt from adverse conditions, stress, attacks, or

compromises on systems that use or are enabled by cyber resources” [22]. The goals of

cyber resilient systems are the following [22]:

1. Anticipate: Maintain a state of informed preparedness for adversity.

2. Withstand: Continue essential mission or business functions despite

adversity.

3. Recover: Restore mission or business functions during and after adversity.

4. Adapt: Modify mission or business functions and/or supporting

capabilities to predicted changes in the technical, operational, or threat

environments.

Within the context of these goals, here are eight objectives listed by NIST that aid

in the forming of cyber resilient systems, and they are the following [22]:

65

1. Prevent: Preclude the successful execution of an attack or the realization of

adverse conditions.

2. Prepare: Maintain a set of realistic courses of action that address predicted or

anticipated adversity.

3. Continue: Maximize the duration and viability of essential mission or business

functions during adversity.

4. Constrain: Limit damage from adversity.

5. Reconstitute: Restore as much mission or business functionality as possible after

adversity.

6. Understand: Maintain useful representations of mission and business

dependencies and the status of resources with respect to possible adversity.

7. Transform: Modify mission or business functions and supporting processes to

handle adversity and address environmental changes more effectively.

8. Re-Architect: Modify architectures to handle adversity and address environmental

changes more effectively.

Within these definitions are a few objectives that pertain to the proposed data

acquisition system introduced in Chapter 3. First and foremost, the data acquisition

system’s main goal is to aid in the prevention (1) and constraining (4) of adversity via

degradation and infiltration of ICS OT. Prevention and constraining of adversity are

achieved through an understanding (6) of system level signals through increased visibility

of the electrical behavior of ICS processes. This understanding, achieved through

increased visibility, stems from the re-architecture (8) of the ICS environment. This re-

66

architecture is what this thesis proposes, the integration of an out-of-band data acquisition

system at the control process level.

The specific implementation of cyber resiliency differs between applications, and

along with the defined objectives NIST additionally lists techniques that can be

interpreted and applied. The listed techniques in [22] are Adaptive Response, Analytic

Monitoring, Contextual Awareness, Coordinated Protection, Deception, Diversity,

Dynamic Positioning, Non-Persistence, Privilege Restriction, Realignment, Redundancy,

Segmentation, Substantiated Integrity, and Unpredictability [22].

The cyber resiliency techniques that apply to the data acquisition system are the

following [22]:

1. Analytic Monitoring: Monitor and analyze a wide range of properties and

behaviors on an ongoing basis and in a coordinated way.

2. Contextual Awareness: Construct and maintain current representations of

the posture of missions or business functions considering threat events and

courses of action.

3. Substantiated Integrity: Ascertain whether critical system elements have

been corrupted.

These three techniques apply directly to the proposed data acquisition system. The

data acquisition system can be integrated into existing ICS analytic monitoring systems

such as IDSs, widening the range of system signal inputs. In addition to widening the

range of inputs, the data acquisition system provides out-of-band data channels which

give both contextual awareness and increased visibility to the electrical behavior of

control processes. By integrating the data acquisition system into existing analytic

67

monitoring systems, and gaining increased contextual awareness via increased visibility,

a greater level of data integrity can be achieved. By comparing in-band and out-of-band

channels of ICS data, discrepancies may point to degraded or corrupted system

components.

System Resiliency

In the context of ICSs, a framework known as the R4 framework of resilience

provides description of what resiliency is in the context of systems [3]. The four

attributes listed are robustness, redundancy, resourcefulness, and rapidity.

1. Robustness: the ability of systems, system elements, and other units of

analysis to withstand disaster forces without significant degradation or loss of

performance

2. Redundancy: the extent to which subsystems, system elements, or other units

are sustainable, that is, capable of satisfying functional requirements, if

significant degradation or loss of functionality occurs

3. Resourcefulness: the ability to diagnose and prioritize problems and to initiate

solutions by identifying and mobilizing material, monetary, informational,

technological, and human resources

4. Rapidity: the capacity to restore functionality in a timely way, containing

losses and avoiding disruptions

The R4 framework tends to be thoroughly implemented in IT environments.

Robustness is achieved via the implementation of systems which employ authentication

and authorization to ensure system resources are given to entrusted users. Those systems

also ensure a network enclave that separates and isolates network regions and provides

68

data integrity methods to ensure the transmission and storage of untampered data.

Redundancy is achieved via backup servers and hosts which maintain service in the event

of system crashes, and through storage of redundant data as backups. Resourcefulness is

achieved via the implementation of intrusion detection systems which can analyze

network traffic for bad actors and allow network administrators to shut down or deploy

resources when problems arise. As a result of proper implementation of the first three

attributes, rapidity can be achieved by network administrators, allowing timely isolation

where problems arise and containing the problem locally to avoid cascading problems

throughout the facility.

Data Resiliency

 IDSs and mitigation systems are implemented through many different means to

meet the diverse demands of infrastructure. Some examples previously mentioned

include the monitoring of network and host behavior, reduction of access, cryptographic

methods, etc. However, the same considerations cannot be directly applied to OT where

physical processes take place. In typical ICS security applications, emphasis has been

placed on the fortification of systems in IT and the availability of OT information [5]. As

a result, there is less focus on OT security and OT system/data resiliency. However, if an

attacker has already infiltrated both IT and OT systems in examples such as Stuxnet, it

becomes difficult to detect an attack due to compounding data subversion and

obfuscation techniques [7, 10]. These types of attacks successfully obfuscate the reality

of what is happening in the physical domain of systems.

For modern ICS environments, the system and its operation are only as resilient as

the data they use. From the IT perspective, the common cybersecurity practices do their

69

best to keep transmitted and stored data resilient. However, from the OT perspective,

there is usually trust placed in the data returned from the PLCs. System engineers can

frequently check the integrity of the programs and data within PLCs and may conclude

that these devices are not compromised. Misplaced trust can cause substantial problems,

as in the case of Stuxnet. The malware was stored in a rootkit, where program integrity

checking does not work and therefore the data cannot be trusted. For this reason, it is

important to apply the R4 framework to OT in the same capacity as IT [3].

Of the four attributes to the R4 framework, redundancy is scarce in modern OT

security practices. Significant trust is placed in field devices, which may have already

been compromised and may be returning illegitimate data. Unfortunately, PLCs may be

infected, or sensors and actuators may be compromised unknowingly during

manufacturing by a third-party. This also feeds directly into the issue of contextual

awareness deficiencies described in [22]. Without context of the data being received, a

complete picture of the behavior of ICS OT cannot be formed.

To regain trust lost by incomplete visibility in ICS field devices, a new method

must be devised which can address the areas of deficiency. This thesis proposes a new

type of out-of-band ICS data acquisition system that aids in the verification of in-band

data being processed by control system and security technology. The data acquisition

system is designed to offer increased control process visibility via an additional

perspective on the physical processes being controlled. This additional data can be used

to verify the legitimacy of ICS data and build trust with the data sources in the ICS

environment. Without any visibility of ICS data available to check on the physical

70

environment, data subversion and data poisoning attacks will remain a large threat to the

protection and operation of the systems which are the life and blood of ICS facilities.

71

CHAPTER 5: DATA ACQUISITION SYSTEM

To demonstrate the proposed data acquisition system, an example design was

created, assembled, and integrated into an existing control system. The acquisition unit

was tapped into the example design’s electrical signals to gather, record, and monitor the

behavior of the system. This chapter will cover the layout of the example design, some

system failures due to degradation or infiltration, the layout of the data acquisition

system, and the integration of the data acquisition system into the control system.

Example Design

For this thesis, a simple four-tank water flow control system was utilized to

demonstrate the capabilities of a data acquisition system. For the purposes of

demonstration, only one of the four tanks was used. Figure 5.1 is a diagram of the water

tank control system. The system actuator is a water valve which controls the flow rate of

water into a water tank. The system sensor is a pressure sensor that returns the water

pressure inside the tank back to the PLC. The water valve is controlled by the PLC and

opens or closes the water valve to control the flow rate of water being poured into the

water tank. The bottom of the water tank has a fixed size drain where water empties into

a reservoir that houses the water pumps. The flow rate out of the drain is proportional to

the water pressure inside of the tank, which is proportional to the water level of the tank.

The PLC firmware was designed to control the level inside of the water tank via the

control feedback loop. The value of water pressure inside of the tank and the desired

water level inside of the tank are used by the PLC to drive the water valve to a position.

72

While the system is simple, it is enough to demonstrate the different types of sensors,

actuators, and control mechanisms that can be monitored for deterioration or

compromised behavior. Figure 5.2 depicts the control loop for the water tank system.

Figure 5.1 Water Tank Control System

The control mechanisms are implemented within the PLC via a proportional,

integral, and derivative (PID) controller. The PID controller accepts the desired tank level

and the current tank pressure as inputs and is responsible for driving the position of the

water valve whether fully closed, fully open, or somewhere in between. By controlling

the water valve position, the PLC also controls the flow rate of water into the tank. The

entire control system is implemented digitally. This means the PID controller is based in

software, and all analog inputs are digitized and stored in the internal PLC register space.

Analog I/O conversion is performed by analog-to-digital converters (ADCs) and digital-

to-analog converters (DACs) inside of the PLC.

73

Figure 5.2 Water Tank Control Loop

The control system input, the water tank level, was designed to be an oscillating

process in which the water tank level oscillates from 25% to 75% full over the period of

an hour. To get the control system to track this water tank level with reasonable accuracy,

the PID controller underwent a PID tuning process in which the different proportional,

integral, and derivative gains are incrementally adjusted to meet the control system

response requirements. By tuning the gains on the controller, a responsive water tank

system was derived that is capable of closely tracking the desired water tank level. Figure

5.3 depicts the recorded sinusoidal control process over the course of approximately two

hours. This data was recorded via the data acquisition system and depicts the behavior of

the water tank control output responding to the sinusoidal input.

74

Figure 5.3 Recorded Control Process

Degradation & Infiltration

In the age of cybersecurity, it can be easy to attribute failures that arise in the

control system environment to the infiltration and attacks of an adversary. While this is

an important concern, there also exists the possibility that the control system is degrading

and breaking down. This section will detail the challenges in identifying and diagnosing

failures when and after they occur and will give perspective into how the proposed data

acquisition system may aid in this effort. With IDSs employed today, degradation and

infiltration have become incredibly difficult to detect once introduced to the system. This

thesis proposes an addition to the lowest level of the control hierarchy within this data

acquisition system. This is done with the goal of offering increased visibility to physical

devices that may be degrading or compromised.

Degradation

Within any control system, there are physical parts that electrically operate and

perform work. In these environments, physical components are prone to degradation.

Degradation may lead to undefined behavior that is difficult to anticipate and identify. If

75

a degrading component is not repaired, the system may sustain damages or fail entirely.

The reason identification of degradation is such a challenge for system engineers is

related to how control status signals are reported in the control environment. A PLC

reports digital status information to the control network. Actuators and sensors return

analog status information to the PLC which digitizes it. Due to the transient nature of this

data transfer, if degradation interferes with status reporting anywhere along the chain of

information flow, it may be difficult for system engineers to identify if and where a

problem exists.

Manufacturers tend to perform extensive degradation analysis on their products.

Their findings are generally published in a reliability report or datasheet which details the

common causes of failure and provides a predicted life expectancy of the device. Detailed

in this report are many different statistical figures which combined form a reliability

model. One of the key figures in this report is known as the Mean Time Between Failure

(MTBF), which essentially gives the predicted duration of time between failures of a

device. Another key figure is the Mean Time to Repair (MTTR). These figures come

together to form the calculation for availability which is defined as:

𝐴𝐴 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)⁄

𝐴𝐴:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Devices are designed so their availability is very close to one but are never

perfect. For example, in Allen Bradley ControlLogix controllers, their anticipated MTBF

is predicted to be at least 1 million hours and is often greater. With an advertised MTTR

of 10 hours, that results in a high availability of 0.99999.

76

While devices are designed to have very high availability, these figures are

calculated based on typical operating environments. If any of the devices are operating in

anything outside of a typical environment, the predicted MTBF is going to be smaller,

and failures should be prepared for and anticipated.

Infiltration

If an adversary has compromised any of the devices in the control hierarchy, data

being reported in the chain of information flow may be illegitimate and hiding failures as

an attack is in progress. While the example design is simple and houses a small number

of components, there are still a few attack vectors present.

The first method of infiltration compromises either the firmware or the hardware

of the PLC. The firmware can be altered via a network intrusion into the ICS facility in

which malicious code is introduced to the PLC. Introduced malicious code may give the

adversary control over the device and data reporting, visibility over the control process,

the ability to move laterally on the control network. The PLC may have been

compromised during the manufacturing process or in transit, where an adversary may

have infiltrated the third-party vendor to introduce malicious code and/or hardware

modifications to the PLC.

Once the PLC has been compromised, the adversary may gain complete control

over the device. With complete control, the attacker may force devices to report false

control status information and perform a data subversion attack. A data subversion attack

is a circumstance where false status information is reported while control processes are

driven to unstable operating conditions to cause failures and damage. This type of attack

was performed via the Stuxnet computer worm against the Iranian nuclear program.

77

Another type of intrusion would be the introduction of malicious hardware

modifications into the actuators and sensors sold by third-party vendors [25]. If the

attackers were to introduce malicious hardware into the sensors or actuators, then the

adversary might be able to perform a data subversion attack.

System Integration

The addition of a data acquisition system at the physical layer of the control

hierarchy will offer visibility to combat the challenges that device degradation and

compromise introduce. The proposed system is designed to be installed between any PLC

and the sensors/actuators. The data acquisition system converts the electrical I/O signals,

current or voltage, into digital values that are returned to the control network. This

additional out-of-band channel of data can be used as a cross-reference to the in-band

control data being reported via the standard flow of information from the PLC. If a

discrepancy exists in any of the control signal data channels, such as the water valve

position or water tank level, system engineers can halt the process and investigate the

inconsistency before damage occurs.

Chapter 6 details the electrical design of the data acquisition system. The function

of the data acquisition system is to convert arbitrary control I/O signals into an

appropriate range that can be digitized by an ADC. Once digitized, the values can be

retrieved via a serial data interface on a microcontroller.

Control processes are sensitive and designed around a system’s physics, therefore

interfering with the control system’s electrical behavior can be devastating. The proposed

data acquisition system is also designed to have negligible impact on the electrical

behavior via the implementation of a high impedance amplifier circuit. The high

78

impedance is designed to stop any control system power from leaking into the data

acquisition system. Additionally, the data acquisition system is designed to be highly

configurable and compatible with different forms of control signals, whether they be

current controlled, voltage controlled, or PWM controlled.

The ADC circuit is the second portion of the data acquisition system. The ADC

circuit is designed to have a microcontroller interface to select and retrieve the digitized

value of an I/O signal. The software running on the microcontroller asserts a signal to

select which control I/O signal it wants to retrieve, and the ADC circuit returns the

specified data. Both the high impedance amplifier circuit and the ADC circuit were

designed and manufactured onto a single printed circuit board (PCB). This PCB can be

mounted onto a microcontroller for easy integration.

The final portion of the data acquisition system is the microcontroller and its

software, which are used to extract real-time I/O data. An example software design was

created to demonstrate the capabilities of the data acquisition hardware. Chapter 7 details

the software design of the hardware device driver and a simple data monitoring system.

The hardware device driver reads the control I/O signal values via a serial interface on

the control tap circuit.

For purposes of demonstration, a simple data monitoring system was

implemented that compares the control tap values with values retrieved from the PLC.

Realistically, the data acquisition from the system and PLC would be transmitted to a

network endpoint containing an IDS to aid in the detection of anomalous behavior. If any

discrepancies are detected, alerts could be generated to halt production and investigate

79

the source of the error. Figure 5.4 depicts where the proposed control monitor would fit

into the example control system design.

If any alerts are generated, system administrators and engineers could investigate

the cause and backtrack to determine the cause of the system deviation. This gives the

administrators and engineers an additional point of reference to understand where the

problem lies: whether it is a compromised hardware device and/or program, or simply a

degrading device in the field.

Figure 5.4 Water Tank Control System with Monitor

80

CHAPTER 6: HARDWARE DESIGN

Control Tap Overview

Monitoring and tracking of the analog I/O signals from sensors and actuators are

normally performed by the PLC. However, a beneficial feature the control tap circuit

provides is an out-of-band avenue of data at the physical layer of the control hierarchy.

By obtaining the analog signals on an out-of-band channel from the PLC and its network

connection, security administrators have a second point of reference with which to

compare in-band I/O values. This comparison may enable security administrators and

engineers to detect discrepancies between the channels, which could be a sign of system

degradation or infiltration.

To record the analog signals and use them in the digital world, the signals must be

converted from analog to digital values. While this may seem like a trivial task, the

electrical design of the data acquisition unit must not interfere with the control system.

This chapter describes the design process of the data acquisition circuitry that produces a

digital value which can be utilized by data scientists and security teams. The electrical

design consists of a few amplifier circuits that condition the control I/O electrical signals

within a range of voltages that can be converted to a digital value by an ADC. Each

amplifier circuit will contain different electrical and amplification stages. The electrical

and amplification stages are linked in series and the final amplification stage is presented

to the input terminal of an ADC. All amplification stages, ADCs, and power supplies

81

come together to form an amplifier sensor circuit. The flow of information from ICS

control I/O to out-of-band data is presented in Figure 6.1.

Figure 6.1 Amplifier Sensor Circuit Block Diagram

One challenge in the design of the amplifier circuitry is preventing electrical

interference with the physical control process. Each of the actuators and sensors send and

receive electrical signals to perform the control and command of the physical process. If

these electrical signals are modified in transit to their destinations, then the control

process will be disrupted. Control processes are designed around the physics of the

control system and must not change how the system electrically behaves. To prevent this,

the amplifier circuits were designed to have high input impedance. By doing so,

negligible current (and subsequently power) leaks into the control tap circuit.

Amplifier Sensor Circuits

There are a few different amplifier circuits that may be required, depending on the

type of electrical I/O signals utilized by the control system application. A control system

may have current controlled, voltage controlled, or pulse-width modulation (PWM)

82

controlled I/O. For this reason, the data acquisition system features amplifier circuits

compatible with each of these different forms of electrical control.

Typically, there are industry-accepted ranges of electrical signals used in ICSs.

The first and most common type of electrical control signal used in the ICS industry is

low power current, typically ranging from either 4 mA to 20 mA or 0 mA to 20 mA. The

second most common type of electrical control signal used is voltage which can typically

range from -10V to 10V, 0V to 5V, 0V to 10V, etc. The final type of electrical control

signal is low power PWM which typically has voltage levels of 0V and 5V with a varying

duty cycle.

ADCs will convert an analog signal to digital value based on a reference voltage,

VREF. If an ADC produces digital values with N bits, then numbers from 0 to 2N – 1 will

represent the input analog voltage from 0V to VREF. The number 0 would represent 0V

and the number 2N – 1 would represent the reference voltage VREF. The analog to digital

conversion process is presented in Figure 6.2 [27], where the analog signal u(t) is

converted to a digital signal D with N bits.

Figure 6.2 Analog to Digital Conversion Process

83

Sometimes a control system may not utilize the full electrical range when

controlling a device. If the output of the amplifier circuit utilizes a portion of the voltage

range of 0V to VREF , then the output of the ADC will not utilize the full digital resolution

of N bits. This is suboptimal, and cases like this occur frequently. For example, a heater

may only require a 3V to 6V range while the entire control system has a 0V to 10V

supply. In this case, only 30% of the digital space would be utilized by the ADC. For this

reason, each amplifier circuit on the control tap is designed to have modular amplification

stages to fine tune the output voltage based on the input criterium of the ICS application.

Current Sensor Circuit

Before the current inputs and outputs of a control system can be converted to a

digital value and measured, they must be converted to a voltage. To achieve this, a

resistor can be placed in series with the I/O signal to measure the voltage drop across it.

By using Ohm’s law V = IR, current can be calculated by modifying the equation to I =

V/R. However, placing a resistor in series with the load may alter the electrical behavior

of the control system, which is unacceptable. To avoid this, using a very small resistor in

comparison to the load will add negligible change to the total resistance while still

allowing measurement of the voltage across the resistor.

Amplifying the differential voltage across the resistor will require a differential

amplifier circuit to produce an output voltage referenced to ground. This setup could

convert a 0 mA to 20 mA signal into a 0 V to 4V output signal. Figure 6.3 depicts a

differential amplifier circuit and its gain equation. If the control system is using a smaller

range of the total current range, for example 10 mA to 15 mA the of 0 mA to 20 mA, then

a second differential amplifier circuit is required produce the same 0V to 4V output

84

signal. This is done via a second differential amplification stage. In this second stage, the

lower end of the voltage range is subtracted from the input and then amplified. The

circuit was designed to produce a final output that is within the acceptable range of

voltages for the ADC. Figure 6.4 depicts the current amplification stages performed by

the control tap circuit before producing a digitized value.

Figure 6.3 Differential Amplifier Circuit

Figure 6.5 depicts each of the sub circuits of the current sensing circuit. The first

electrical circuit is the sensing resistor in series with the control system load. The second

electrical circuit is a voltage divider network that divides the voltages on either side of

the sensing resistor. This voltage division is performed due to the electrical limits of

amplifiers. Amplifiers are rated for maximum voltages, and because the ICS application

may be using voltages that exceed these limits, voltage division may be required.

Additionally, the voltage divider network is implemented using high impedance resistors

to maintain the high impedance of the control tap circuit. After the voltage divider

network, the divided voltages are input into buffer amplifier circuits. These amplifiers are

electrically isolating due to their naturally large impedance and ability to buffer the

85

control system from the sensing circuit. The outputs of the buffer amplifier circuits are

the positive and negative inputs to the first differential amplifier stage. The output of the

first amplifier stage is the positive input to the second amplifier stage, and the negative

input is an adjustable voltage supply that subtracts the low ended voltage before

amplification. Finally, the second stage differential amplifier output is connected to an

ADC.

Figure 6.4 Current Amplification Stages

Figure 6.5 Current Sensor Amplifier Circuit

86

In summary, there are five different electrical or amplification stages used in the

current sensing circuit to produce an output voltage within an acceptable range for an

ADC. This circuit was designed to be configurable for different ICS applications without

impacting the control process due to high input impedance.

Voltage Sensor Circuit

The voltage sensing circuit follows the same principles as the current sensing

circuit. The main difference between the two circuits is that there is no sensing resistor or

buffer amplifiers to measure a voltage across the resistor. Instead, a voltage is already

provided, and the first stage of amplification is a standard single-ended amplifier. The

voltage divider network and second amplification stage of the voltage sensing circuit is

identical to the current sensing circuit. Figure 6.6 depicts the visibly simpler voltage

sensing circuit.

Figure 6.6 Voltage Sensing Amplifier Circuit

PWM Sensor Circuit

The PWM sensing circuit follows the same principles as the prior two circuits.

The PWM signal needs to be averaged before conversion to an analog representation of

the duty cycle. Because of this, there is a distinct difference in the PWM sensing circuit

87

from the other two circuits. Instead of a first stage of amplification, the PWM signal goes

through a second order low-pass filter to integrate the signal to an average value. Figure

6.7 depicts how a PWM signal and its varying duty cycles can be averaged to a stable

output voltage.

Figure 6.7 Pulse Width Modulation

Once the voltage has been averaged out, the output of the filter can be sent into

the second stage of amplification. The voltage divider network and second stage of the

PWM sensing circuit is identical to the prior two circuits. Figure 6.8 depicts the PWM

sensing circuit who’s first amplification stage is notably different than the previous two

circuits.

88

Figure 6.8 PWM Sensing Amplifier Circuit

ADC Interface

Once the desired ranges of voltages are received from the chosen sensor amplifier

circuit, the values can be digitized by an ADC circuit and retrieved by a microprocessor.

The chosen microcontroller for the thesis proposal was a Raspberry Pi 4, which has a 40-

pin general purpose input/output (GPIO) interface for serial communication and general-

purpose digital control. The Raspberry Pi 4 also has a dedicated serial peripheral interface

(SPI) hardware unit which can be configured and controlled through software via a

hardware driver. The microcontroller can assert selection pins to select which ADC to

read from via a chip selecting circuit. All the circuitry, from sensing circuits to ADCs and

their chip selecting circuit, was designed and manufactured onto a printed circuit board

(PCB). Once assembled, the PCB can be mounted onto the Raspberry Pi’s 40-pin GPIO

interface for easy integration. This 40-pin interface and the pinout functionality is

presented in Figure 6.9 [29].

89

Figure 6.9 Raspberry Pi GPIO Interface

SPI protocol is a serial communication protocol in which a master unit can

communicate with one or many slave devices to read from or write to. Figure 6.10

depicts the common structure of an SPI master unit connected to SPI slave(s). SPI has 4

different digital inputs and outputs: the system clock (SCLK), slave select (SS), master

output / slave input (MOSI), master input / slave output (MISO). The clock signal drives

the protocol and serves as the heartbeat to time each SPI transaction. The slave select is

used to activate the slave with which the master is communicating. Lastly, the

MISO/MOSI lines are used for duplex communication between the master and the slave.

The only difference in between the SPI structure depicted in Figure 6.10 and the

Raspberry Pi 4’s SPI interface is that the SPI interface on the Raspberry Pi 4 only has a

singular slave select pin, meaning it is only capable of selecting a singular slave. For this

reason, the ADC interface must also have a slave selecting circuit that can select as many

slaves as it needs. The PCB is equipped with 4 of each type of sensing circuit, meaning

90

there are 12 ADC slaves on the board. To accommodate the need of 12 different slave-

select pins, a chip selecting circuit was devised.

Figure 6.10 Typical SPI Structure

This chip selecting circuit takes in 4 GPIO select signals, and a 4x16 decoder

allows for the selecting of all 12 ADCs. The ADCs being used have active LOW slave

select pins, meaning when the slave select line is 0V, the slave is active. The 4x16

decoder uses active LOW selecting to meet these requirements. Figure 6.11 depicts the

layout of the designed ADC chip selecting circuit.

91

Figure 6.11 ADC Chip Selecting Circuit

This chip selecting circuit only allows for a single ADC to be controlling the

MISO data bus at any given moment. When the master wants data from a slave, it will

assert the necessary selecting pins and supply the SCLK to the slave devices. When this

occurs, the activated slave will return its digitized value to the master over the MISO line

one bit at a time. For example, if the Raspberry Pi 4 wants data from ADC number 7, it

will assert the slave select pins {SEL3, SEL2, SEL1, SEL0} = ‘0 1 1 1’ (7 in binary) and

send the SCLK signal until the transaction has been completed.

The front and back of the PCB described in this chapter are presented on the next

two pages in Figures 6.12 and 6.13. The schematics of the PCB design are included in

Appendix A.

92

Figure 6.12 PCB and Raspberry Pi (front)

93

Figure 6.13 PCB and Raspberry Pi (back)

94

CHAPTER 7: SOFTWARE DESIGN

While the front end of the system is based in hardware, the remainder of the

proposed data acquisition system is configured in software. For purposes of

demonstration, a mock IDS process was designed to exhibit the capabilities of the data

acquisition system. There are 3 main processes that are responsible for performing the

data acquisition, monitoring, and detection of anomalous behavior.

The first process reads and formats the serial data retrieved from an ADC before

handing it off to the next process. A hardware driver communicates with the hardware via

an SPI interface which is configured before any transactions take place. This serves as an

application program interface (API) to any process that wants to retrieve out-of-band data

from the hardware via requests and responses.

The second process performs in-band data reads from a PLC via the ModBus

protocol and has a very similar function to the ADC hardware driver. The ModBus reader

process connects to a PLC over a TCP/IP network connection and reads register data

from the PLC’s internal register space. This process serves as an API to any process that

wants to retrieve in-band data from the PLC via requests and responses.

The third process is a control monitoring process that interfaces with the two

aforementioned processes. This process interfaces with both APIs to make read requests

from designated ADCs or PLC registers. The process receives the responses of incoming

data from the two APIs and performs simple control monitoring by comparing the data to

each other. The control monitoring contains a file of a recorded normal process behavior.

The process performs comparisons on the ADC data, PLC data, and known process

95

behavior data. In comparing these channels of data, discrepancies may arise. This process

has settings to configure what level of discrepancies to trigger the generation of security

alerts. Figure 7.1 depicts the control process flow and paths for inter process

communication.

In a real ICS environment, the IDSs employed are sophisticated and

interconnected. The main purpose of this thesis is to understand the importance of, and to

demonstrate increased control system hardware visibility via the data acquisition system.

If data scientists should find the data acquisition system of benefit for their systems, they

must determine how the data acquisition system can be integrated into their existing IDS

infrastructure.

Figure 7.1 IDS Software Flow

The source code for each of the processes described in the next sections are

included in Appendix B.

96

ADC Reader API

The Raspberry Pi 4 comes equipped with a system on a chip (SoC), the

BCM2835, which has many different integrated subsystems. Figure 7.2 depicts the

BCM2835 SoC block diagram which details the CPU, GPU, memory, and some key

peripherals typically used in embedded environments. The ADC reader API was written

in C to access the SPI hardware driver libraries written for the BCM2835 SoC. This

library is open source and can configure the settings of the SPI hardware peripheral. Once

configured the library can read from and write to slaves via the designated SPI pins on

the 40-pin GPIO header.

Figure 7.2 BCM2835 SoC Block Diagram

First, the API configures all the SPI settings. The process initializes all BCM2835

peripherals such as the SPI module and performs error handling if any of these

initialization steps were to fail. Second, the process performs the configuration of the

initialized SPI module. Once SPI has been configured, the process begins a polling mode

97

where it waits for SPI transaction requests from another process. When a request is

received, the ADC Reader API fulfills the request by reading from the appropriate ADC

and responding with the formatted data.

The ADC reader retrieved data from the appropriate ADC by asserting the GPIO

selection pins associated with the ADC. Once asserted, the SPI driver is activated to read

the raw serial data from the ADC over the MISO line. The ADCs are 12 bits, but the data

that is received from the ADCs is contained in two 8-bit packets. The ADCs used were

MCP3201s, and their datasheet details the format in which the data is received [23]. To

make use of the received data, it must be modified to extract the 12 bits from the

combined 16-bit data packet. Figure 7.3 depicts the formatting of the 16-bit data packet

obtained from the MCP3201 datasheet.

Figure 7.3 ADC SPI Transaction Format

Additionally, the SPI drivers are only capable of performing 8-bit SPI

transactions, meaning two separate SPI transactions must occur to read from the full

buffer inside the ADC. Based on this format, the first 8-bit buffer, buffer[0], will contain

98

the upper byte coming from the ADC. The second 8-bit buffer, buffer[1], will contain the

lower byte coming from the ADC. Once the data has been retrieved, it needs to be

converted to the 12-bit number that was originally stored inside the ADC. The bottom of

Figure 7.3 depicts the logical operations used to perform this conversion (<< N is logical

shift left by N bits. >> N is logical shift right by N bits. | is bitwise OR. & is bitwise

AND.)

PLC Reader API

The PLC used in the test control system environment is the Allen-Bradley (AB)

Micro 850. The PLC and its internal control process were configured and programmed

using the free to use Connected Components Workbench developed by Rockwell

Automation. Besides configuring the control process, the user can configure where

different control process constants, variables, and control I/O is stored in its internal

register space. The PLC Reader API was written to fulfill read requests to the PLC by

retrieving register data via the ModBus protocol. Since ModBus is the industry standard

protocol in the ICS environment for communicating with different control entities, it is

also the protocol that defines the register space that the user can configure.

The ModBus register space region is defined as a range of registers typically

starting from address 0 and counting to 65,535. The first 10,000 (00001 – 09999)

registers are write-only registers that are allocated for output driver switches which are

digital outputs that activate and deactivate different physical components such as motors,

relays, or valves. The second 10,000 (10001 – 19999) registers are read-only registers

that are allocated for digital input contacts that store status information of different

physical components. The third 10,000 (20001 – 29999) registers are read-only registers

99

that are allocated for analog inputs which hold the digitized values of feedback

information being used for control, such as pressure level, speed, temperature, etc. The

fourth 10,000 (30001 – 39999) registers are write-only registers that are allocated for

analog outputs that drive the control process to perform physical actions such as

operating a motor or increasing the temperature inside of a vessel.

Since the Raspberry Pi 4 has ethernet and wireless communication abilities, it can

be connected to the same network as the PLC. The PLC Reader process uses this network

connection to read the internal register space and fulfill read requests in a similar fashion

as the ADC reader process. The PLC reader process is configured with the static IP

address of the PLC and the proper register address range for the control signals inside of

the PLC.

The PLC Reader process is simple, was written in Python, and makes use of a

library called “uModBus”. The PLC reader process configures and establishes a network

socket connection to the PLC. Once connected, it then enters its main program loop

where it waits for a Modbus read request that it can initiate to the PLC. Once receiving

the data back from the PLC, the process fulfills the request by responding with the

internal register data.

Control Monitoring Process

The control monitoring process compares the PLC control process data, the data

acquisition system’s data, and a record known control process. This is accomplished in

real-time by requesting data from the PLC and ADC APIs. Periodically, the process

requests data from both the PLC and out-of-band data acquisition unit and then records

the data. Using this data, the process stores a constantly updated array of data recorded

100

from the PLC and data acquisition unit. The width of this array, and a few other

parameters such as error tolerance and error count tolerance are configurable and can be

used to tighten or loosen conditions required to generate an alert.

The control monitoring process starts by priming the sliding time window with

data from each of the input locations including: the control tap, the PLC, and the known

control process. Once the window of time has been filled, the control monitoring process

begins by comparing each of the time-series inputs with one another. In the case of the

example control system, the primary control variable is the water level of the tank. The

control process compares the both the control tap and PLC values to each other with the

known control process. If any of the compared values exceed the tolerance boundaries, an

alert is generated and handed off to the security alert process.

Figure 7.4 depicts normal control process behavior without any disturbances to

the control signals. Figure 7.5 depicts the normal control process behavior with an added

disturbance in the system which is picked up by the data acquisition unit and PLC. In this

case, the control monitoring system generates alerts signaling to the administrator alert

process that both the data acquisition unit and PLC have returned control signals that

deviate from the normal control process behavior.

In addition to normal and disturbed process behavior, the data acquisition unit

was able to detect instances where the PLC was reporting false information. Figure 7.6

depicts an instance where a harsh disturbance was applied to the control system, yet the

PLC reported normal behavior. Figure 7.7 depicts an instance where the PLC reported a

completely different behavior than the physical control process behavior. In this case, the

PLC reported a sinusoidal process while the control system followed a sawtooth

101

behavior. In both cases, the data acquisition system was able to detect a discrepancy in

the false information presented by the PLC and the physical system behavior.

102

Figure 7.4 Normal Control Process Behavior

Figure 7.5 Disturbed Control Process Behavior

103

Figure 7.6 Undetected Disturbance

Figure 7.7 False Control Process

104

CHAPTER 8: FUTURE RESEARCH

Artificial Intelligence & Machine Learning

The main purpose of this Masters’ thesis is to propose and demonstrate a new data

acquisition system at the lowest level of the control hierarchy. Integrating this data

acquisition into a larger and more sophisticated IDS is outside the scope of this thesis.

The control monitoring software implemented in this thesis is rudimentary and for

demonstrative purposes. Realistically, industrial control facilities have more sophisticated

real-time IDSs which involve databases of historic behavior, rule sets, and some form of

machine learning (ML) with artificial intelligence (AI). By training some form of AI

algorithm with known and expected behavior, industrial control facilities can detect and

prevent attacks when they are occurring in real time by detecting anomalous behavior.

IDSs are frequently used in signature-based environments such as networks or on

operating systems. However, for the purposes of protecting the physical control

processes, there have been studies and implementations of IDSs that train AI to detect

anomalous behavior at the control process level. The control process signals are digitized

inputs and outputs that are being controlled by PLCs in the Field Layer. By training AI

with many instances of this control process data, the AI can detect small to large

deviations from the expected behavior.

Unfortunately, this intrusion detection model begins to deteriorate when trust in

the training data and real-time data is compromised. In attacks such as data poisoning or

data subversion, control process data being returned from the PLCs can be illegitimate

105

and cause problems in the training and detection phases of the AI/ML IDS model. If the

data is compromised, it may cause the AI/ML algorithms to misclassify unwanted

behavior. This can cause detection problems because the AI within the IDS has been

trained to classify improper behavior as expected and normal. In addition to data

poisoning during the training phase, component degradation and data subversion attacks

during the detection phase may cause data to be illegitimate and appear normal while

failures occur. In this circumstance, the IDS receiving illegitimate data may not be able to

detect the unwanted behavior.

For this reason, the work of this thesis may be of use in the field of AI/ML [3].

This out-of-band channel of control process information recorded at the control process

layer may be leveraged as an additional input to these AI/ML algorithms. By having in-

band and out-of-band data acquisition channels, increased visibility may enable AI/ML

algorithms to detect small discrepancies in the channels of data, signaling component

degradation or a data subversion attack. Additionally, the data acquisition system can be

used to verify the legitimacy of the data used in the training of AI/ML algorithms. By

integrating the proposed data acquisition system into existing ICS IDSs , ICS security

may be bolstered increasing system visibility and data resiliency.

FPGA Data Acquisition

The proposed data acquisition system introduces new vulnerabilities to the ICS

network. The microcontroller performing data acquisition is running software on an

operating system or bare metal resources. This exposes avenues on the ICS network by

which attackers may inject code to compromise the out-of-band data acquisition system.

An approach that would fix this problem would be to design the entire data acquisition

106

system in hardware. In an architecture entirely comprised of hardware, there would be no

avenues by which the attacker could inject malware into the data acquisition system.

A versatile method of implementing a hardware data acquisition unit is via the

utilization of a field programmable gate array (FPGA). FPGAs are reconfigurable

hardware units that are commonly used in hardware prototyping or hardware systems that

require functional flexibility and low cost. FPGAs are equipped with many different

types of resources that are used to implement custom hardware logic and computational

solutions repeatedly on the same chip. Within FPGA’s there are configurable logic blocks

(CLBs), I/O blocks, memory blocks, interconnect lines, etc. Configurable logic blocks are

used to implement user logic. I/O blocks are used to transport data in and off the FPGA

chip. Memory blocks are used for data storage. Lastly, interconnect lines are used to

connect and route these resources together to form a complete hardware design. Figure

8.1 highlights these commonly used resources.

Figure 8.1 FPGA Resources

107

For purposes of demonstration, a simple FPGA data acquisition unit was designed

and integrated with the PCB described in Chapter 6. The FPGA board used in this

demonstration was the Digilent Nexys4 DDR FPGA board. The FPGA hardware design

was specifically created to replace the data acquisition functionality of the Raspberry Pi

microcontroller. In the example design, a serial universal asynchronous receive/transmit

(UART) connection is made through the FPGA. This connection is used to send data

packets containing the desired number of the ADC. Once the packet is received by the

FPGA, the FPGA logic asserts the necessary chip selecting signals to activate the desired

ADC. Once the ADC is selected, the FPGA design uses the SPI protocol to retrieve the

data packet from the ADC. Once the data is acquired, it is returned to the PC host over

the serial UART connection. Figure 8.2 depicts the layout of the FPGA data acquisition

system. Figure 8.3 depicts the block design programmed into the FPGA.

Figure 8.2 FPGA Data Acquisition System

108

Figure 8.3 FPGA Block Design

Figure 8.4 shows the connections made between the PC, the FPGA board, and the

PCB. The USB UART connection is on the left of the green FPGA board. The GPIO and

SPI signals were connected from the FPGA board to the PCB using jumper cables.

Figure 8.4 FPGA / PCB Connection

109

Figure 8.5 depicts an oscilloscope capture of the SPI clock (yellow), and the SPI

data packet (blue). Figure 8.6 depicts the data being returned to the PC via the serial

connection and displayed in a terminal. While the design is very simple, the main purpose

of this demonstration was to show how an FPGA could replace the microcontroller in the

data acquisition system. In doing so there is no operating system or software running in

the entire design.

Figure 8.5 SPI Waveform

Figure 8.6 Serial Terminal Data Responses

110

However, there are many improvements that can be made to this hardware design.

The FPGA development board has unnecessary peripheral interfaces and resources

equipped that could potentially expose vulnerabilities to the design. This design can be

improved by integrating the FPGA chip onto the PCB to keep the data acquisition unit

tightly coupled to a single board. Lastly, since ICS environments and all their

components exist on an ICS network, the final improvement would be modifying the

FPGA design to make it an ethernet capable device. This modification would allow IDSs

to query data from a secure out-of-band data acquisition source. The FPGA design,

referred to as a bitstream, could be stored on a non-volatile memory source on the PCB

allowing the FPGA to be loaded with the secure hardware design when the device is

powered up. Using this approach, the entire data acquisition system would exist on a

single board that requires a single 5V power supply.

111

CHAPTER 9: CONCLUSION

Industrial Control Systems (ICSs) play a large role in modern civilization,

whether it be through the manufacturing of products, or the maintenance of critical

infrastructure. ICS and the facilities that house them are complex and interconnected,

allowing for sophisticated control of processes that keep civilization moving forward.

Due to the significant investments of both capital and intelligence to form ICSs and their

facilities, protection from external forces is required. These external forces range from

unavoidable erosions of system components over time to the malicious actions of APTs.

The fortification of ICS facilities and their internal systems has been an ongoing effort

since the conception of the ICS. ICS cybersecurity is a topic that appears limitless in

depth, with new developments made every year to increase the strength and resiliency of

cybersecurity systems that protect ICS technology.

Over the course of decades, best cybersecurity practices have been established.

Each practice aims at addressing an existing attack vector, and together the best practices

seek to fortify the entire attack surface of ICSs and the facilities that house them. This

thesis covered various best practices, such as the removal of unnecessary features, data

integrity, authentication & authorization, secure communication protocols, intrusion

detection systems (IDSs), and network enclave. In the face of an abundance of

cybersecurity practices, finding the best path forward based on the given application can

be intimidating and time-consuming. The MITRE ATT&CK Framework was devised to

112

give industries a way to perform threat intelligence, threat mitigation, and assessments on

their fortifications.

However, despite the intense efforts to protect ICSs and their systems from

intrusion, APTs manage to seep through the cracks with near limitless time and money to

support their endeavors. In cyber-attacks such as Stuxnet, the ICS community was faced

with new challenges because existing cybersecurity practices were inadequate, and the

adversary remained undetected even when the attack was taking place. Since

cybersecurity is no silver bullet, flaws in defenses will always exist, and a focus on

making ICS systems resilient has become an increasingly important topic in recent years.

Addressing the topic of resiliency is an ongoing effort, as the term resiliency is

defined differently depending on the given application. Researchers have attempted to

define resiliency in many ways, such as cyber resiliency and system resiliency. Within

each definition there exists different goals, objectives, and techniques by which resiliency

is achieved. Within modern ICS cybersecurity practices, many of these goals and

objectives are achieved by the given techniques. However, one challenge the ICS

community is currently faced with relates to system visibility and contextual awareness.

Current ICS cybersecurity practices place emphasis on fortifying information

technology (IT) around ICSs. Actively scanning for internal threats within ICS

environments requires an availability of control status information from operational

technology (OT). However, if operational technology has degraded over time, or been

infiltrated by an adversary, control status information may be skewed or outright false.

Since the protection mechanisms put in place require information from potentially

degrading or corrupted sources, a paradox arises.

113

This thesis investigated the topics of system thinking and data resiliency to give

context into what might be done to break this paradox. A mechanism that can provide

visibility and contextual awareness to physical control process information is proposed.

The introduction of an out-of-band data acquisition system residing at the physical

control process level may solve some of the issues relating to system visibility. By

acquiring data from an out-of-band channel, a direct view of the system level behavior

can be utilized by modern ICS cybersecurity solutions such as IDSs. The introduction of

a data acquisition system allows for the verification of in-band sources of ICS data, such

as data returned from programmable logic controllers (PLCs). Due to this, trust is not

inherently placed in devices that are subject to degradation and infiltration.

This thesis detailed the electrical design of the data acquisition unit. The unit was

designed to be applied to different types of control signals (e.g. current-controlled,

voltage-controlled, and PWM-controlled). This thesis also demonstrated the software

design and system integration of the data acquisition system in a simplified testbed

consisting of a water tank control system. The application of the proposed data

acquisition unit is up to security engineers in ICS applications.

By integrating the proposed system into modern ICS cybersecurity applications,

cyber, system, and data resiliency may be achieved. The cybersecurity application of

real-time anomaly-based IDSs may benefit from an out-of-band data source. This out-of-

band data source can be a step of verification and validation of data used in artificial

intelligence (AI) and machine learning (ML) algorithms within IDSs.

The integration of a data acquisition such as the one proposed in this thesis could

bolster security for OT within the physical environment, which is something that is

114

lacking in modern ICS security. With increased visibility, computer worms such as

Stuxnet would have a much more difficult time slipping under the radar as the electrical

signals are closely monitored within the physical environment. Malware infections within

PLCs that enable data subversion and data poisoning attacks could be stifled and nearly

impossible to perform as analog electrical signals cannot be hacked like bits and bytes. In

order to combat the seemingly bottomless resources of APTs, it is imperative that the ICS

community adopts creativity with its cybersecurity approaches. The idea proposed within

this thesis breaches the normal digital approach to solve a digital problem. In doing so,

this thesis synthesizes the analog world with the digital world to form a cohesive security

posture within the ICS environment.

By itself, the data acquisition unit is just a hunk of silicon and metal. The power

of such a unit lies in the hands of the engineers and scientists. For those who wish to

bolster the security of the infrastructure that fuels the forward motion of modern

civilization, the work within this thesis offers an avenue forward, and hopefully it

inspires future developments in the field of ICS security.

115

REFERENCES

[1] R. Anderson, J. Benjamin, V. Wright, and L. Quinones, “Cyber-Informed

Engineering,” Idaho Falls, Idaho, 2017.

[2] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan, and N. Meskin,

“Cybersecurity for industrial control systems: A survey,” arXiv, no. November,

2020.

[3] M. Bishop, C. Sample, S.M. Loo, “Resilient Data,” 2020 Resil. Week, pp. 1–10,

2020.

[4] B. K. Chawla, O. P. Gupta, and B. K. Sawhney, “A Review on IPsec and SSL

VPN,” Int. J. Sci. Eng. Res., vol. 5, no. 11, pp. 21–24, 2014.

[5] D. Dolezilek, D. Gammel, and W. Fernandes, “Complete IEC 61850 Protection

and Control System Cybersecurity Is So Much More Than Device Features Based

on IEC 62351 and IEC 62443,” 10th Annu. Prot. Autom. Control World Conf., no.

June, 2019.

[6] M. Emadadeen, “Process Control in the Chemical Industries, Distributed Control

Systems,” pp. 132–145, 2002.

[7] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” Symantec Secur.

Response, vol. 14, no. February, pp. 1–69, 2011.

[8] FSabahi and AMovaghar, “Intrusion detection: A survey,” Proc. - 3rd Int. Conf.

Syst. Networks Commun. ICSNC 2008 - Incl. I-CENTRIC 2008 Int. Conf. Adv.

Human-Oriented Pers. Mech. Technol. Serv., no. May, pp. 23–26, 2008, doi:

10.1109/ICSNC.2008.44.

[9] C. Hale, “Security in depth,” ISACA J., vol. 3, pp. 45–51, 2018.

116

[10] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the Cyber Attack on the

Ukrainian Power Grid Defense Use Case,” Electr. Inf. Shar. Anal. Cent., p. 36,

2016.

[11] D. H. Meadows, Thinking in Systems. 2009.

[12] Michael Horkan, “Challenges for IDS / IPS Deployment in Industrial,” Inf. Secur.

Read. Room, 2015.

[13] L. Obregon, “Information Security Reading Room Secure Architecture for

Industrial Control Systems,” 2020.

[14] Pacific Northwest National Laboratory, “Secure data transfer guidance for

industrial control and SCADA systems,” Rep. to US Dep. Energy, PNNL-20776,

no. September, 2011.

[15] A. Pennington, A. Applbaum, K. Nickels, T. Schulz, B. Strom, and J. Wunder,

“Getting Started with ATT&CK,” pp. 1–45, 2019.

[16] T. Salman and R. Jain, “A survey of protocols and standards for internet of

things,” arXiv, vol. 1, no. 1, 2019, doi: 10.34048/2017.1.f3.

[17] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage:

Techniques and applications,” StorageSS’05 - Proc. 2005 ACM Work. Storage

Secur. Surviv., pp. 26–36, 2005, doi: 10.1145/1103780.1103784.

[18] R. Srivastava, “Survey of Current Network Intrusion Detection Techniques,” vol.

3, no. 6, pp. 27–33, 2013.

[19] K. Stouffer, J. Falco, and K. Scarfone, “Guide to Industrial Control Systems (ICS)

Security Recommendations of the National Institute of Standards and

Technology,” NIST Spec. Publ., pp. 1–157, 2007.

[20] W. Yu, Y. Wang, and L. Song, “A two stage intrusion detection system for

industrial control networks based on ethernet/IP,” Electron., vol. 8, no. 12, 2019,

doi: 10.3390/electronics8121545.

117

[21] S. Zulkarnain, S. Idrus, E. Cherrier, and C. Rosenberger, “A Review on

Authentication Methods,” Aust. J. Basic Appl. Sci., no. August 2015, pp. 95–107,

2013.

[22] Ross, Ron, et al. “Developing Cyber Resilient Systems: A Systems Security

Engineering Approach.” NIST Special Publication 800-160, vol. 2, Nov. 2019,

doi:10.6028/NIST.SP.800-160v2.

[23] Microchip Corporation, “MCP3201 - 2.7V 12-Bit A/D Converter with SPI Serial

Interface,” MCP3201 datasheet, September 1998 [Revised August 2011].

[24] Dawson, Joel, et al. “Control-Theory-Informed Feature Selection for Detecting

Malicious Tampering in Additive Layer Manufacturing Processes” Proceedings of

the 16th International Conference on Cyber Warfare and Security, February 2021,

pp. 55–64 doi:10.34190/IWS.21.036.

[25] The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies. (n.d.).

Retrieved April 26, 2021, from https://www.bloomberg.com/news/features/2018-

10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-

companies

[26] Distributed Control System - Basic Elements & Features of DCS. (2020, May 11).

Retrieved April 26, 2021, from https://www.elprocus.com/distributed-control-

system-features-and-elements/

[27] Analog to digital converter - How ADC Works and Types? (2021, March 09).

Retrieved April 26, 2021, from https://microcontrollerslab.com/analog-to-digital-

adc-converter-working/

[28] DeTT&CT: Mapping your blue team to MITRE ATT&CK™. (2021, February 22).

Retrieved April 26, 2021, from https://www.mbsecure.nl/blog/2019/5/dettact-

mapping-your-blue-team-to-mitre-attack

[29] GPIO. (n.d.). Retrieved April 26, 2021, from

https://www.raspberrypi.org/documentation/usage/gpio/

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.elprocus.com/distributed-control-%20system-features-and-elements/
https://www.elprocus.com/distributed-control-%20system-features-and-elements/
https://microcontrollerslab.com/analog-to-digital-adc-converter-working/
https://microcontrollerslab.com/analog-to-digital-adc-converter-working/
https://www.raspberrypi.org/documentation/usage/gpio/

118

[30] Hurd, C., & McCarty, M. (2017, June 12). INL - A Survey of Security Tools for the

Industrial Control System Environment. Retrieved April 26, 2021, from

https://www.osti.gov/servlets/purl/1376870

119

APPENDIX A

PCB Schematic

120

121

122

123

124

125

126

APPENDIX B

Source Code

127

ADC Reader Program

/*
 * Description: adc_reader.c
 * This program reads and returns 12-bit values from 12 ADCs.

 * The program first initializes the SPI module on the BCM2835

processor on the Raspberry Pi.
 * The main program loop waits for stdin unsiged integer (0 - 11),

and returns selected ADC
 * value over stdout.
 *
 * Author:
 * Daniel Bovard ... (danielbovard@u.boisestate.edu)
 */

#include "../deps/bcm2835/bcm2835.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

#define SEL0 22
#define SEL1 23
#define SEL2 24
#define SEL3 25
#define STRB 27

/* Signal interupt declarations */
int terminate = 0;
int status;

/* In/Out pipe declarations */
int fifoFd;
int bytesRead;
const char* adcFifo = "tmp/adcFifo";
char inStr[5], outStr[5];

/* ADC transfer declarations */
uint8_t sel;
uint8_t* buf;
uint16_t value;

/* Function prototypes */
void init_device();
void handle_sigint(int signal_number);
int check_sigint();
void chip_select(uint8_t sel);

int main()
{
 /* Initialize SIGINT (ctrl+c) handler */
 struct sigaction sa;
 memset(&sa, 0, sizeof(struct sigaction));
 sa.sa_handler = handle_sigint;
 sigaction(SIGINT, &sa, NULL);

 /* Initialize device */
 init_device();

 // Allocate memory space for ADC data
 buf = malloc(2*sizeof(uint8_t));

 // Main program loop
 while(1)
 {

128

 // Clear input buffer
 memset(&inStr, 0, sizeof(inStr));

 sleep(1);

 // Open named FIFO pipe 'adcFifo' in read mode
 fifoFd = open(adcFifo, O_RDONLY);
 if (fifoFd == -1)
 {
 printf("Failed to open adcFifo.\n");
 return -1;
 }

 do
 {
 // Read selection number from input pipe
 bytesRead = read(fifoFd, inStr, sizeof(inStr));

 status = check_sigint();
 if(status) return status;
 }
 while (bytesRead == 0); // Exit loop when data is read

 // Close pipe
 close(fifoFd);

 // Open named FIFO pipe 'adcFifo' in write mode
 fifoFd = open(adcFifo, O_WRONLY);
 if (fifoFd == -1)
 {
 printf("Failed to open adcFifo.\n");
 return -1;
 }

 // Select chip
 sel = atoi(inStr);
 chip_select(sel);

 // SPI read from selected ADC
 bcm2835_spi_transfern(buf, 2);

 // Deassert Chip Select
 chip_select(15);

 // Extract 12 bits from 16 bit packet
 value = (((buf[0] << 8) | (buf[1])) >> 1) & 0x0FFF;
 //printf("ADC %d data: %d\n", sel, value);
 snprintf((char*)&outStr, sizeof(outStr), "%d", value);

 // Write ADC data to output pipe
 write(fifoFd, outStr, strlen(outStr)+1);

 // Close pipe
 close(fifoFd);

 status = check_sigint();
 if(status) return status;

 }
 return 1;
}

void init_device()
{
 // Initialize low-level BCM2835 functionality
 if(!bcm2835_init())
 {
 printf("Error initializing BCM2835.\n");
 return;
 }

129

 // Initialize BCM2835 SPI modules
 if(!bcm2835_spi_begin())
 {
 printf("Error intializing BCM2835 SPI module.\n");
 return;
 }

 // Configure SPI0 Channel
 bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST); // MSB

first is only mode supported by SPI0
 bcm2835_spi_setDataMode(BCM2835_SPI_MODE0); //

Rising edge enabled clock, samples at middle of data bit
 bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_16384); // 16384 =

15.25878906kHz on Rpi2, 24.4140625kHz on RPI3
 bcm2835_spi_chipSelect(BCM2835_SPI_CS0); // Using CS0

as chip select
 bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 1); // CS0 is

active HIGH

 // Init GPIO signals
 bcm2835_gpio_fsel(SEL0, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_set_pud(SEL0, BCM2835_GPIO_PUD_UP);
 bcm2835_gpio_fsel(SEL1, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_set_pud(SEL1, BCM2835_GPIO_PUD_UP);
 bcm2835_gpio_fsel(SEL2, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_set_pud(SEL2, BCM2835_GPIO_PUD_UP);
 bcm2835_gpio_fsel(SEL3, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_set_pud(SEL3, BCM2835_GPIO_PUD_UP);
 bcm2835_gpio_fsel(STRB, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_set_pud(STRB, BCM2835_GPIO_PUD_UP);
 chip_select(15);
}

void chip_select(uint8_t sel)
{
 // Assert GPIO signals per input select
 if (sel & 0x01) bcm2835_gpio_set(SEL0);
 else bcm2835_gpio_clr(SEL0);
 if (sel & 0x02) bcm2835_gpio_set(SEL1);
 else bcm2835_gpio_clr(SEL1);
 if (sel & 0x04) bcm2835_gpio_set(SEL2);
 else bcm2835_gpio_clr(SEL2);
 if (sel & 0x08) bcm2835_gpio_set(SEL3);
 else bcm2835_gpio_clr(SEL3);
 // Generous set up time
 usleep(1);
 // Assert Strobe for input latching
 bcm2835_gpio_set(STRB);
 // Strobe Pulse
 usleep(1);
 // Deassert Strobe for input latching
 bcm2835_gpio_clr(STRB);
}

void handle_sigint(int signal_number)
{
 if (signal_number == SIGINT)
 {
 terminate = 1;
 }
}

int check_sigint()
{
 if (terminate)
 {
 bcm2835_spi_end();
 return 1;
 }
 else return 0;
}

130

PLC Reader Program

import socket
import numpy as np
from umodbus import conf
from umodbus.client import tcp
from time import sleep
import csv

PLC_ADDR = '192.168.1.101'
PLC_PORT = 502

conf.SIGNED_VALUES = True
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((PLC_ADDR, PLC_PORT))

plcFifo = "tmp/plcFifo"

while(True):

 fifoFd = open(plcFifo, 'r')
 plcAddr = fifoFd.read()
 fifoFd.close()

 # Perform modbus request
 try:
 message = tcp.read_input_registers(slave_id=0,

starting_address=int(plcAddr), quantity=1)
 response = tcp.send_message(message, sock)

 # Stdout transfer response packet

 fifoFd = open(plcFifo, 'w')
 plcAddr = fifoFd.write(str(int(response[0])))
 fifoFd.close()

 except (KeyboardInterrupt, SystemExit):
 print()
 sock.close()
 break

131

Control Monitor Process

import numpy as np
import os
import csv
import matplotlib.pyplot as plt
import signal
import sys
from time import sleep

SAMPLE_TIME = 5
MINUTE = 60
WINDOW_TIME = MINUTE*60
WINDOW_SIZE = int(WINDOW_TIME/SAMPLE_TIME)
MAX = 4095
PROC_VAL_TOL = int(0.10 * MAX)
A2D_VAL_TOL = int(0.05 * MAX)
PLC_MODE = True

PROCESS_PATH = "data/sinewave_process.csv"
TANK_ADC_ADDR = 0
TANK_PLC_ADDR = 25

adcFifo = "tmp/adcFifo"
plcFifo = "tmp/plcFifo"

adc_tank_list = []
plc_tank_list = []

def signal_handler(sig, frame):
 print("Process terminated.")
 print("Performing cleanup...")

 os.remove("tmp/adcFifo")
 if PLC_MODE:
 os.remove("tmp/plcFifo")

 global adc_tank_list

 adc_tank_csv = np.array(adc_tank_list).reshape(len(adc_tank_list), 1)

 print(adc_tank_csv)

 with open("data/adc_process.csv", 'w') as file:

 writer = csv.writer(file)

 writer.writerows(adc_tank_csv)

 file.close()

 sys.exit(0)

def create_pipes():
 try:
 os.mkfifo(adcFifo, mode=0o666)
 except OSError:
 print("Failed to create ADC FIFO")

 if PLC_MODE:
 try:
 os.mkfifo(plcFifo, mode=0o666)
 except OSError:
 print("Failed to create PLC FIFO")

def read_adc_value(select):

 fifoFd = open(adcFifo, 'w')
 fifoFd.write(str(int(select)))
 fifoFd.close()

132

 fifoFd = open(adcFifo, 'r')
 adcVal = fifoFd.read()
 fifoFd.close()

 return int(adcVal.rstrip('\x00'))

def read_plc_value(addr):

 fifoFd = open(plcFifo, 'w')
 fifoFd.write(str(int(addr)))
 fifoFd.close()

 fifoFd = open(plcFifo, 'r')
 plcVal = fifoFd.read()
 fifoFd.close()

 return int(plcVal)

def update_list(val_list, val):
 val_list.append(val)
 if(len(val_list) > WINDOW_SIZE):
 val_list.pop(0)

def linear_fit(y_coords):
 length = len(y_coords)
 x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME)
 coeffs = np.polyfit(x_coords, y_coords, 1)
 return coeffs

def plot_samples(fig, axw1, axs2, axs3, y_coords1, y_coords2, y_coords3, lin_fit):
 length = len(y_coords1)
 x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME)

 axs1.cla()
 axs2.cla()
 axs3.cla()
 axs1.scatter(x_coords, y_coords1)
 axs2.scatter(x_coords, y_coords2)
 axs3.scatter(x_coords, y_coords3)

 if(lin_fit):
 coeffs1 = linear_fit(y_coords1)
 coeffs2 = linear_fit(y_coords2)
 coeffs3 = linear_fit(y_coords3)

 lin_fit1 = np.zeros(length)
 lin_fit2 = np.zeros(length)
 lin_fit3 = np.zeros(length)

 for i in range(length):
 lin_fit1[i] = coeffs1[1] + i*SAMPLE_TIME*coeffs1[0]
 lin_fit2[i] = coeffs2[1] + i*SAMPLE_TIME*coeffs2[0]
 lin_fit3[i] = coeffs3[1] + i*SAMPLE_TIME*coeffs3[0]

 axs1.plot(x_coords, lin_fit1, 'r')
 axs2.plot(x_coords, lin_fit2, 'r')
 axs3.plot(x_coords, lin_fit3, 'r')

 fig.canvas.draw()

def upload_process(path):
 control_process = []
 i = 0
 with open(path, 'r') as ipc_file:
 ipc_reader = csv.reader(ipc_file, delimiter=',')
 for row in ipc_reader:
 if i != 0:
 control_process.append(int(row[1]))

133

 i+=1

 return control_process

def monitor_signals(path):

 fig, axs = plt.subplots(1,1, figsize=(15,7))
 fig.show()
 fig.canvas.draw()

 control_process = upload_process(path)

 print(WINDOW_SIZE)
 j = 0

 while(True):

 update_list(adc_tank_list, read_adc_value(TANK_ADC_ADDR))
 if PLC_MODE:
 update_list(plc_tank_list, read_plc_value(TANK_PLC_ADDR))

 sleep(SAMPLE_TIME)
 # Plot control process
 plot_process(fig, axs, adc_tank_list, plc_tank_list) #,

control_process[j:j+WINDOW_SIZE])

 j += 1

 print("Process detection complete.")
 return

def plot_process(fig, axs, analog, digital): #, expected):
 length = len(analog)

 a2d_low = np.zeros(len(analog))
 a2d_high = np.zeros(len(analog))
 x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME)

 for i in range(len(analog)):
 a2d_low[i] = digital[i] - A2D_VAL_TOL
 a2d_high[i] = digital[i] + A2D_VAL_TOL

 axs.cla()
 plt.title("Tank Level Monitor")
 axs.plot(x_coords, analog, 'r', label="Analog from ADC")
 axs.plot(x_coords, digital, 'm', label="Digital from PLC")
 axs.plot(x_coords, a2d_low, 'c--', label="A-D Tolerance Threshold")
 axs.plot(x_coords, a2d_high, 'c--')
 axs.legend()

 fig.canvas.draw()

def main_process():

 create_pipes()

 signal.signal(signal.SIGINT, signal_handler)

 monitor_signals(PROCESS_PATH)

Main Process
main_process()

134

APPENDIX C

FPGA Design

135

Data Acquisition Top

--
-- Engineer: Daniel Bovard
--
-- Create Date: 04/11/2021 11:52:01 AM
-- Design Name: Data Acquisition System
-- Module Name: daq_top - rtl
-- Target Devices: XC7A100T-CSG324
-- Tool Versions: Vivado 2019.1
-- Description:
-- Data acquisition unit for IDS ICS Thesis.
--
-- Can recieve serial UART packets and parse hexadecimal numbers from them.
-- Based on recieved number, GPIO pins are strobed to set a 4x16 decoder
-- external to the FPGA. Once GPIO is set, SPI data packets are retrieved
-- from a selected external ADC. Data packet is parsed and sent back over
-- the UART serial connection.
--
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity daq_top is
 port (
 gpio_sel : out std_logic_vector(3 downto 0);
 gpio_strb : out std_logic;

 miso : in std_logic;
 sclk : out std_logic;

 rx : in std_logic;
 tx : out std_logic;

 gpio_led : out std_logic_vector(3 downto 0);
 flash_led : out std_logic_vector(3 downto 0);

 err : out std_logic;

 clk : in std_logic;
 rst_n : in std_logic
);
end daq_top;

architecture rtl of daq_top is

component daq_controller is
 generic (
 C_AXI_AWIDTH : integer := 4;
 C_AXI_DWIDTH : integer := 32;
 C_SPI_DWIDTH : integer := 16
);
 port (
 m_axi_uart_araddr : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
 m_axi_uart_arready : in std_logic;
 m_axi_uart_arvalid : out std_logic;
 m_axi_uart_awaddr : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
 m_axi_uart_awready : in std_logic;
 m_axi_uart_awvalid : out std_logic;
 m_axi_uart_bresp : in std_logic_vector(1 downto 0);
 m_axi_uart_bready : out std_logic;
 m_axi_uart_bvalid : in std_logic;
 m_axi_uart_rdata : in std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
 m_axi_uart_rready : out std_logic;
 m_axi_uart_rresp : in std_logic_vector(1 downto 0);
 m_axi_uart_rvalid : in std_logic;
 m_axi_uart_wdata : out std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
 m_axi_uart_wready : in std_logic;

136

 m_axi_uart_wstrb : out std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0);
 m_axi_uart_wvalid : out std_logic;

 gpio_sel : out std_logic_vector(3 downto 0);
 gpio_strb : out std_logic;

 spi_enable : out std_logic;
 spi_busy : in std_logic;
 spi_rxdata : in std_logic_vector(C_SPI_DWIDTH - 1 downto 0);

 err : out std_logic;

 clk : in std_logic;
 rst_n : in std_logic
);
end component;

component spi_master is
 generic(
 slaves : integer := 4; --number of spi slaves
 d_width : integer := 2); --data bus width
 port(
 clock : IN STD_LOGIC; --system clock
 reset_n : IN STD_LOGIC; --asynchronous reset
 enable : IN STD_LOGIC; --initiate transaction
 cpol : IN STD_LOGIC; --spi clock polarity
 cpha : IN STD_LOGIC; --spi clock phase
 clk_div : IN INTEGER; --system clock cycles

per 1/2 period of sclk
 miso : IN STD_LOGIC; --master in, slave out
 sclk : OUT STD_LOGIC; --spi clock
 busy : OUT STD_LOGIC; --busy / data ready

signal
 rx_data : OUT STD_LOGIC_VECTOR(d_width-1 DOWNTO 0)); --data received
end component;

component axi_uartlite_0
 port (
 s_axi_aclk : in std_logic;
 s_axi_aresetn : in std_logic;
 interrupt : out std_logic;
 s_axi_awaddr : in std_logic_vector(3 downto 0);
 s_axi_awvalid : in std_logic;
 s_axi_awready : out std_logic;
 s_axi_wdata : in std_logic_vector(31 downto 0);
 s_axi_wstrb : in std_logic_vector(3 downto 0);
 s_axi_wvalid : in std_logic;
 s_axi_wready : out std_logic;
 s_axi_bresp : out std_logic_vector(1 downto 0);
 s_axi_bvalid : out std_logic;
 s_axi_bready : in std_logic;
 s_axi_araddr : in std_logic_vector(3 downto 0);
 s_axi_arvalid : in std_logic;
 s_axi_arready : out std_logic;
 s_axi_rdata : out std_logic_vector(31 downto 0);
 s_axi_rresp : out std_logic_vector(1 downto 0);
 s_axi_rvalid : out std_logic;
 s_axi_rready : in std_logic;
 rx : in std_logic;
 tx : out std_logic
);
end component;

component BUFG is
port (
 I : in std_logic;
 O : out std_logic
);
end component;

component OBUF is

137

port (
 I : in std_logic;
 O : out std_logic
);
end component;

constant C_AXI_AWIDTH : integer := 4;
constant C_AXI_DWIDTH : integer := 32;
constant C_SPI_DWIDTH : integer := 16;

signal m_axi_uart_araddr : std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
signal m_axi_uart_arready : std_logic;
signal m_axi_uart_arvalid : std_logic;
signal m_axi_uart_awaddr : std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
signal m_axi_uart_awready : std_logic;
signal m_axi_uart_awvalid : std_logic;
signal m_axi_uart_bresp : std_logic_vector(1 downto 0);
signal m_axi_uart_bready : std_logic;
signal m_axi_uart_bvalid : std_logic;
signal m_axi_uart_rdata : std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
signal m_axi_uart_rready : std_logic;
signal m_axi_uart_rresp : std_logic_vector(1 downto 0);
signal m_axi_uart_rvalid : std_logic;
signal m_axi_uart_wdata : std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
signal m_axi_uart_wready : std_logic;
signal m_axi_uart_wstrb : std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0);
signal m_axi_uart_wvalid : std_logic;

signal spi_enable : std_logic;
signal spi_busy : std_logic;
signal spi_rxdata : std_logic_vector(C_SPI_DWIDTH - 1 downto 0);

signal gpio_sel_i : std_logic_vector(3 downto 0);
signal flash_count : unsigned(31 downto 0) := (others => '0');
signal flash_led_i : std_logic_vector(3 downto 0);

signal sclk_i : std_logic;

begin

flash_led_p : process (clk)
begin
 if (rising_edge(clk)) then
 flash_count <= flash_count + 1;
 end if;
end process;

flash_led(3) <= flash_count(26);
flash_led(2) <= flash_count(25);
flash_led(1) <= flash_count(24);
flash_led(0) <= flash_count(23);

daq_controller_i : daq_controller
generic map (
 C_AXI_AWIDTH => C_AXI_AWIDTH,
 C_AXI_DWIDTH => C_AXI_DWIDTH,
 C_SPI_DWIDTH => C_SPI_DWIDTH
)
port map(
 m_axi_uart_araddr => m_axi_uart_araddr,
 m_axi_uart_arready => m_axi_uart_arready,
 m_axi_uart_arvalid => m_axi_uart_arvalid,
 m_axi_uart_awaddr => m_axi_uart_awaddr,
 m_axi_uart_awready => m_axi_uart_awready,
 m_axi_uart_awvalid => m_axi_uart_awvalid,
 m_axi_uart_bresp => m_axi_uart_bresp,
 m_axi_uart_bready => m_axi_uart_bready,
 m_axi_uart_bvalid => m_axi_uart_bvalid,
 m_axi_uart_rdata => m_axi_uart_rdata,
 m_axi_uart_rready => m_axi_uart_rready,
 m_axi_uart_rresp => m_axi_uart_rresp,

138

 m_axi_uart_rvalid => m_axi_uart_rvalid,
 m_axi_uart_wdata => m_axi_uart_wdata,
 m_axi_uart_wready => m_axi_uart_wready,
 m_axi_uart_wstrb => m_axi_uart_wstrb,
 m_axi_uart_wvalid => m_axi_uart_wvalid,

 gpio_sel => gpio_sel_i,
 gpio_strb => gpio_strb,

 spi_enable => spi_enable,
 spi_busy => spi_busy,
 spi_rxdata => spi_rxdata,

 err => err,

 clk => clk,
 rst_n => rst_n
);

spi_master_i : spi_master
generic map (
 slaves => 1,
 d_width => 16
)
port map (
 clock => clk,
 reset_n => '1',
 enable => spi_enable,
 cpol => '0',
 cpha => '0',
 clk_div => 100,
 miso => miso,
 sclk => sclk_i,
 busy => spi_busy,
 rx_data => spi_rxdata
);

axi_uartlite_0_i : axi_uartlite_0
 PORT MAP (
 s_axi_aclk => clk,
 s_axi_aresetn => rst_n,
 interrupt => open,
 s_axi_awaddr => m_axi_uart_awaddr,
 s_axi_awvalid => m_axi_uart_awvalid,
 s_axi_awready => m_axi_uart_awready,
 s_axi_wdata => m_axi_uart_wdata,
 s_axi_wstrb => m_axi_uart_wstrb,
 s_axi_wvalid => m_axi_uart_wvalid,
 s_axi_wready => m_axi_uart_wready,
 s_axi_bresp => m_axi_uart_bresp,
 s_axi_bvalid => m_axi_uart_bvalid,
 s_axi_bready => m_axi_uart_bready,
 s_axi_araddr => m_axi_uart_araddr,
 s_axi_arvalid => m_axi_uart_arvalid,
 s_axi_arready => m_axi_uart_arready,
 s_axi_rdata => m_axi_uart_rdata,
 s_axi_rresp => m_axi_uart_rresp,
 s_axi_rvalid => m_axi_uart_rvalid,
 s_axi_rready => m_axi_uart_rready,
 rx => rx,
 tx => tx
);

gpio_led0_obuf_i : OBUF
port map (
 I => gpio_sel_i(0),
 O => gpio_led(0)
);

gpio_led1_obuf_i : OBUF
port map (

139

 I => gpio_sel_i(1),
 O => gpio_led(1)
);

gpio_led2_obuf_i : OBUF
port map (
 I => gpio_sel_i(2),
 O => gpio_led(2)
);

gpio_led3_obuf_i : OBUF
port map (
 I => gpio_sel_i(3),
 O => gpio_led(3)
);

gpio_sel0_obuf_i : OBUF
port map (
 I => gpio_sel_i(0),
 O => gpio_sel(0)
);

gpio_sel1_obuf_i : OBUF
port map (
 I => gpio_sel_i(1),
 O => gpio_sel(1)
);

gpio_sel2_obuf_i : OBUF
port map (
 I => gpio_sel_i(2),
 O => gpio_sel(2)
);

gpio_sel3_obuf_i : OBUF
port map (
 I => gpio_sel_i(3),
 O => gpio_sel(3)
);

sclk_obuf_i : OBUF
port map (
 I => sclk_i,
 O => sclk
);
end rtl;

140

Data Acquisition Controller

--
-- Engineer: Daniel Bovard
--
-- Create Date: 04/11/2021 11:52:01 AM
-- Design Name: Data Acquisition System
-- Module Name: daq_controller - rtl
-- Target Devices: XC7A100T-CSG324
-- Tool Versions: Vivado 2019.1
-- Description:
-- Data acquisition controller for IDS ICS Thesis.
--
-- The controller orchestrates the entire data acquisition process.
-- First the controller polls the Xilinx AXI UARTLite LogiCORE IP
-- for valid data packets. From there it parses the packets, asserts
-- the GPIO, retrieves the SPI data packet, and returns the data
-- back to the PC via the UART LogiCORE IP.
--
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity daq_controller is
 generic (
 C_AXI_AWIDTH : integer := 4;
 C_AXI_DWIDTH : integer := 32;
 C_SPI_DWIDTH : integer := 16
);
 port (
 m_axi_uart_araddr : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
 m_axi_uart_arready : in std_logic;
 m_axi_uart_arvalid : out std_logic;
 m_axi_uart_awaddr : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0);
 m_axi_uart_awready : in std_logic;
 m_axi_uart_awvalid : out std_logic;
 m_axi_uart_bresp : in std_logic_vector(1 downto 0);
 m_axi_uart_bready : out std_logic;
 m_axi_uart_bvalid : in std_logic;
 m_axi_uart_rdata : in std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
 m_axi_uart_rready : out std_logic;
 m_axi_uart_rresp : in std_logic_vector(1 downto 0);
 m_axi_uart_rvalid : in std_logic;
 m_axi_uart_wdata : out std_logic_vector(C_AXI_DWIDTH - 1 downto 0);
 m_axi_uart_wready : in std_logic;
 m_axi_uart_wstrb : out std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0);
 m_axi_uart_wvalid : out std_logic;

 gpio_sel : out std_logic_vector(3 downto 0);
 gpio_strb : out std_logic;

 spi_enable : out std_logic;
 spi_busy : in std_logic;
 spi_rxdata : in std_logic_vector(C_SPI_DWIDTH - 1 downto 0);

 err : out std_logic;

 clk : in std_logic;
 rst_n : in std_logic
);
end daq_controller;

architecture rtl of daq_controller is

constant C_UART_RX_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "0000";
constant C_UART_TX_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "0100";
constant C_UART_SR_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "1000";

141

constant C_UART_CR_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "1100";

-- ASCII to Hex parser for numbers 0 through F
function parse_rx_uart (data: std_logic_vector(7 downto 0)) return

std_logic_vector is
begin
 case data is
 when x"30" => return x"00";
 when x"31" => return x"01";
 when x"32" => return x"02";
 when x"33" => return x"03";
 when x"34" => return x"04";
 when x"35" => return x"05";
 when x"36" => return x"06";
 when x"37" => return x"07";
 when x"38" => return x"08";
 when x"39" => return x"09";
 when x"41" => return x"0A";
 when x"61" => return x"0A";
 when x"42" => return x"0B";
 when x"62" => return x"0B";
 when x"43" => return x"0C";
 when x"63" => return x"0C";
 when x"44" => return x"0D";
 when x"64" => return x"0D";
 when x"45" => return x"0E";
 when x"65" => return x"0E";
 when x"46" => return x"0F";
 when x"66" => return x"0F";
 when others => return x"FF";
 end case;
end parse_rx_uart;

type digits_t is
 record
 d3 : std_logic_vector(3 downto 0);
 d2 : std_logic_vector(3 downto 0);
 d1 : std_logic_vector(3 downto 0);
 d0 : std_logic_vector(3 downto 0);
 end record;

function parse_digits (data: std_logic_vector(11 downto 0)) return digits_t is
 variable remainder : integer;
 variable temp : integer;
 variable digits : digits_t;
begin
 temp := to_integer(unsigned(data)) / 1000;
 remainder := to_integer(unsigned(data)) mod 1000;
 digits.d3 := std_logic_vector(to_unsigned(temp, digits.d3'length));
 temp := remainder / 100;
 remainder := remainder mod 100;
 digits.d2 := std_logic_vector(to_unsigned(temp, digits.d2'length));
 temp := remainder / 10;
 remainder := remainder mod 10;
 digits.d1 := std_logic_vector(to_unsigned(temp, digits.d1'length));
 digits.d0 := std_logic_vector(to_unsigned(remainder, digits.d0'length));

 return digits;
end parse_digits;

type state_t is (INIT,
 CLR_RX,
 CLR_TX,
 RX_POLL, -- Poll for valid Rx Data
 RX_VALID,
 RX_READ,
 RX_DATA,
 GPIO_SET,
 GPIO_STROBE_H,
 GPIO_STROBE_L,
 SPI_READ,

142

 SPI_WAIT,
 TX_DATA,
 ERROR);

type reg_t is
 record
 state : state_t;
 uart_rx_data : std_logic_vector(7 downto 0);
 gpio_clr : boolean;
 digit_count : integer;
 strobe_count : integer;
 aw : boolean;
 w : boolean;
 b : boolean;
 end record;

constant INIT_REG : reg_t := (state => INIT,
 uart_rx_data => (others => '0'),
 gpio_clr => false,
 digit_count => 5,
 strobe_count => 0,
 aw => false,
 w => false,
 b => false);

signal r, r_in : reg_t := INIT_REG;
signal gpio_sel_i : std_logic_vector(3 downto 0);
signal digits : digits_t;

begin

m_axi_uart_wstrb <= (others => '1');

gpio_sel <= gpio_sel_i;

comb_p : process (m_axi_uart_arready, --
 m_axi_uart_awready,--
 m_axi_uart_bvalid,--
 m_axi_uart_rvalid,--
 m_axi_uart_wready,--
 spi_busy,
 rst_n,
 r) is --
 variable v : reg_t;
begin

 -- Output defaults
 v := r;
 m_axi_uart_araddr <= (others => '0');
 m_axi_uart_arvalid <= '0';
 m_axi_uart_awaddr <= (others => '0');
 m_axi_uart_awvalid <= '0';
 m_axi_uart_bready <= '0';
 m_axi_uart_rready <= '0';
 m_axi_uart_wdata <= (others => '0');
 m_axi_uart_wvalid <= '0';
 gpio_strb <= '0';
 spi_enable <= '0';
 err <= '0';
 gpio_sel_i <= gpio_sel_i;

 case r.state is
 when INIT =>
 v := INIT_REG;
 v.state := CLR_RX;

 when CLR_RX =>
 m_axi_uart_awaddr <= C_UART_CR_ADDR;
 m_axi_uart_wdata <= x"00000002"; -- Rst RX FIFO

 if (r.aw = false) then

143

 m_axi_uart_awvalid <= '1';
 end if;
 if (r.w = false) then
 m_axi_uart_wvalid <= '1';
 end if;
 if (r.b = false) then
 m_axi_uart_bready <= '1';
 end if;

 if (m_axi_uart_awready = '1') then
 v.aw := true;
 end if;
 if (m_axi_uart_wready = '1') then
 v.w := true;
 end if;
 if (m_axi_uart_bvalid = '1') then
 v.b := true;
 if (m_axi_uart_bresp /= "00") then
 v.state := ERROR;
 end if;
 end if;

 if ((r.aw = true) and (r.w = true) and (r.b = true)) then
 v.state := CLR_TX;
 v.aw := false;
 v.w := false;
 v.b := false;
 end if;

 when CLR_TX =>
 m_axi_uart_awaddr <= C_UART_CR_ADDR;
 m_axi_uart_wdata <= x"00000001"; -- Rst TX FIFO

 if (r.aw = false) then
 m_axi_uart_awvalid <= '1';
 end if;
 if (r.w = false) then
 m_axi_uart_wvalid <= '1';
 end if;
 if (r.b = false) then
 m_axi_uart_bready <= '1';
 end if;

 if (m_axi_uart_awready = '1') then
 v.aw := true;
 end if;
 if (m_axi_uart_wready = '1') then
 v.w := true;
 end if;
 if (m_axi_uart_bvalid = '1') then
 v.b := true;
 if (m_axi_uart_bresp /= "00") then
 v.state := ERROR;
 end if;
 end if;

 if ((r.aw = true) and (r.w = true) and (r.b = true)) then
 v.state := RX_POLL;
 v.aw := false;
 v.w := false;
 v.b := false;
 end if;

 when RX_POLL =>
 m_axi_uart_araddr <= C_UART_SR_ADDR;
 m_axi_uart_arvalid <= '1';
 if (m_axi_uart_arready = '1') then
 v.state := RX_VALID;
 end if;

 when RX_VALID =>

144

 m_axi_uart_rready <= '1';
 if (m_axi_uart_rvalid = '1') then
 if (m_axi_uart_rresp /= "00") then
 v.state := ERROR;
 elsif (m_axi_uart_rdata(7 downto 4) /= "0000") then
 v.state := ERROR;
 elsif (m_axi_uart_rdata(0) = '1') then
 v.state := RX_READ;
 else
 v.state := RX_POLL;
 end if;
 end if;

 when RX_READ =>
 m_axi_uart_araddr <= C_UART_RX_ADDR;
 m_axi_uart_arvalid <= '1';
 if (m_axi_uart_arready = '1') then
 v.state := RX_DATA;
 end if;

 when RX_DATA =>
 m_axi_uart_rready <= '1';
 if (m_axi_uart_rvalid = '1') then
 v.uart_rx_data := parse_rx_uart(m_axi_uart_rdata(7 downto 0));
 v.state := GPIO_SET;
 end if;

 when GPIO_SET =>
 if (r.gpio_clr = false) then
 gpio_sel_i <= x"F";
 else
 gpio_sel_i <= r.uart_rx_data(3 downto 0);
 end if;

 if(r.strobe_count /= 50) then -- let gpio signals settle
 v.strobe_count := r.strobe_count + 1;
 else
 v.strobe_count := 0;
 v.state := GPIO_STROBE_H;
 end if;

 when GPIO_STROBE_H =>
 gpio_strb <= '1';
 -- Decoder chip requires a strobe of at least 250ns (25 clks) in width
 if(r.strobe_count /= 50) then
 v.strobe_count := r.strobe_count + 1;
 else
 v.strobe_count := 0;
 v.state := GPIO_STROBE_L;
 end if;

 when GPIO_STROBE_L =>

 if(r.strobe_count /= 50) then
 v.strobe_count := r.strobe_count + 1;
 else
 v.strobe_count := 0;
 if (r.gpio_clr = false) then
 v.gpio_clr := true;
 v.state := GPIO_SET;
 else
 v.gpio_clr := false;
 v.state := SPI_READ;
 end if;
 end if;

 when SPI_READ =>
 spi_enable <= '1';
 if (spi_busy = '1') then
 v.state := SPI_WAIT;

145

 end if;

 when SPI_WAIT =>
 if (spi_busy = '0') then
 v.state := TX_DATA;
 digits <= parse_digits(spi_rxdata(12 downto 1));
 end if;

 when TX_DATA =>
 m_axi_uart_awaddr <= C_UART_TX_ADDR;
 if (r.digit_count = 5) then
 m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d3;
 elsif (r.digit_count = 4) then
 m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d2;
 elsif (r.digit_count = 3) then
 m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d1;
 elsif (r.digit_count = 2) then
 m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d0;
 elsif (r.digit_count = 1) then
 m_axi_uart_wdata(7 downto 0) <= x"0A"; -- Newline
 else
 m_axi_uart_wdata(7 downto 0) <= x"0D"; -- Carraige Return
 end if;

 if (r.aw = false) then
 m_axi_uart_awvalid <= '1';
 end if;
 if (r.w = false) then
 m_axi_uart_wvalid <= '1';
 end if;
 if (r.b = false) then
 m_axi_uart_bready <= '1';
 end if;
 if (m_axi_uart_awready = '1') then
 v.aw := true;
 end if;
 if (m_axi_uart_wready = '1') then
 v.w := true;
 end if;
 if (m_axi_uart_bvalid = '1') then
 v.b := true;
 if (m_axi_uart_bresp /= "00") then
 v.state := ERROR;
 elsif (r.digit_count /= 0) then
 v.digit_count := r.digit_count - 1;
 else
 v.state := RX_POLL;
 v.digit_count := 5;
 end if;
 end if;

 if ((r.aw = true) and (r.w = true) and (r.b = true)) then
 v.aw := false;
 v.w := false;
 v.b := false;
 end if;

 when ERROR =>
 v.state := ERROR;
 err <= '1';

 when others =>
 v.state := INIT;

 end case;

 if (rst_n = '0') then
 v.state := INIT;
 end if;

 r_in <= v;

146

end process;

sync_p : process(clk)
begin
 if (rising_edge(clk)) then
 r <= r_in;
 end if;
end process;

end rtl;

147

SPI Master

--
-- Engineer: Daniel Bovard
--
-- Create Date: 04/11/2021 11:52:01 AM
-- Design Name: Data Acquisition System
-- Module Name: spi_master - rtl
-- Target Devices: XC7A100T-CSG324
-- Tool Versions: Vivado 2019.1
-- Description:
-- SPI Master module for IDS ICS Thesis.
-- This module was derived from the open source model provided by Digikey:
-- https://forum.digikey.com/t/spi-master-vhdl/12717
--
-- This SPI Master is responsible for providing a slave with an SPI SCLK
-- and retrieving a data packet over the MISO line. Since slave selecting
-- is performed via an external 4x16 decoder, the slave select functionality
-- was removed from this module.
--
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity spi_master is
 generic(
 slaves : integer := 4; --number of spi slaves
 d_width : integer := 2); --data bus width
 port(
 clock : in std_logic; --system clock
 reset_n : in std_logic; --asynchronous reset
 enable : in std_logic; --initiate transaction
 cpol : in std_logic; --spi clock polarity
 cpha : in std_logic; --spi clock phase
 clk_div : in integer; --system clock cycles

per 1/2 period of sclk
 miso : in std_logic; --master in, slave out
 sclk : out std_logic; --spi clock
 busy : out std_logic; --busy / data ready

signal
 rx_data : out std_logic_vector(d_width-1 downto 0)); --data received
end spi_master;

architecture logic of spi_master is
 type machine is(ready, execute); --state machine data

type
 signal state : machine; --current state
 signal clk_ratio : integer; --current clk_div
 signal count : integer; --counter to trigger

sclk from system clock
 signal clk_toggles : integer range 0 to d_width*2 + 1; --count spi clock

toggles
 signal rx_buffer : std_logic_vector(d_width-1 downto 0); --receive data buffer
 signal last_bit_rx : integer range 0 to d_width*2; --last rx data bit

location
 signal sclk_i : std_logic;

begin

 sclk <= sclk_i;

 process(clock, reset_n)
 begin

 if(reset_n = '0') then --reset system
 busy <= '1'; --set busy signal
 rx_data <= (others => '0'); --clear receive data port

148

 state <= ready; --go to ready state when reset is exited

 elsif(clock'event and clock = '1') then
 case state is --state machine

 when ready =>
 busy <= '0'; --clock out not busy signal
 rx_buffer <= (others => '0');
 if(clk_div = 0) then --check for valid spi speed
 clk_ratio <= 1; --set to maximum speed if zero
 count <= 1; --initiate system-to-spi clock counter
 else
 clk_ratio <= clk_div; --set to input selection if valid
 count <= clk_div; --initiate system-to-spi clock counter
 end if;
 sclk_i <= cpol; --set spi clock polarity
 clk_toggles <= 0; --initiate clock toggle counter
 last_bit_rx <= d_width*2 + conv_integer(cpha) - 1; --set last rx data

bit
 --user input to initiate transaction
 if(enable = '1') then
 busy <= '1'; --set busy signal
 state <= execute; --proceed to execute state
 else
 state <= ready; --remain in ready state
 end if;

 when execute =>
 busy <= '1'; --set busy signal

 --system clock to sclk ratio is met
 if(count = clk_ratio) then
 count <= 1; --reset system-to-spi clock counter
 if(clk_toggles = d_width*2 + 1) then
 clk_toggles <= 0; --reset spi clock toggles counter
 else
 clk_toggles <= clk_toggles + 1; --increment spi clock toggles

counter
 end if;

 --spi clock toggle needed
 if(clk_toggles <= d_width*2) then
 if (sclk_i = '0') then
 sclk_i <= '1';
 else
 sclk_i <= '0';
 end if;
 end if;

 --receive spi clock toggle
 if((clk_toggles < last_bit_rx + 1) and (sclk_i = '0')) then
 rx_buffer <= rx_buffer(d_width-2 downto 0) & miso; --shift in

received bit
 end if;

 --end of transaction
 if(clk_toggles = d_width*2 - 1) then
 busy <= '0'; --clock out not busy signal
 rx_data <= rx_buffer; --clock out received data to output port
 state <= ready; --return to ready state
 else --not end of transaction
 state <= execute; --remain in execute state
 end if;

 else --system clock to sclk ratio not met
 count <= count + 1; --increment counter
 state <= execute; --remain in execute state
 end if;

 end case;
 end if;

149

 end process;
end logic;

150

Xilinx AXI UARTLite LogiCORE IP Configuration

151

Project Constraint File

ICS IDS Nexys4 DDR Project Constraint file

Clock signal

set_property -dict {PACKAGE_PIN E3 IOSTANDARD LVCMOS33} [get_ports clk]

create_clock -period 10.000 -name sys_clk -waveform {0.000 5.000} -add [get_ports

clk]

LEDs

set_property -dict {PACKAGE_PIN H17 IOSTANDARD LVCMOS33} [get_ports err]

set_property -dict {PACKAGE_PIN J13 IOSTANDARD LVCMOS33} [get_ports

{flash_led[0]}]

set_property -dict {PACKAGE_PIN N14 IOSTANDARD LVCMOS33} [get_ports

{flash_led[1]}]

set_property -dict {PACKAGE_PIN R18 IOSTANDARD LVCMOS33} [get_ports

{flash_led[2]}]

set_property -dict {PACKAGE_PIN V17 IOSTANDARD LVCMOS33} [get_ports

{flash_led[3]}]

set_property -dict {PACKAGE_PIN V15 IOSTANDARD LVCMOS33} [get_ports {gpio_led[0]}]

set_property -dict {PACKAGE_PIN V14 IOSTANDARD LVCMOS33} [get_ports {gpio_led[1]}]

set_property -dict {PACKAGE_PIN V12 IOSTANDARD LVCMOS33} [get_ports {gpio_led[2]}]

set_property -dict {PACKAGE_PIN V11 IOSTANDARD LVCMOS33} [get_ports {gpio_led[3]}]

##Buttons

set_property -dict {PACKAGE_PIN C12 IOSTANDARD LVCMOS33} [get_ports rst_n]

##Pmod Headers

152

##Pmod Header JB

set_property -dict {PACKAGE_PIN D14 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[0]}]

set_property -dict {PACKAGE_PIN F16 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[1]}]

set_property -dict {PACKAGE_PIN G16 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[2]}]

set_property -dict {PACKAGE_PIN H14 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[3]}]

set_property -dict {PACKAGE_PIN E16 IOSTANDARD LVCMOS33} [get_ports gpio_strb]

set_property -dict {PACKAGE_PIN F13 IOSTANDARD LVCMOS33} [get_ports miso]

set_property -dict {PACKAGE_PIN G13 IOSTANDARD LVCMOS33} [get_ports sclk]

##USB-RS232 Interface

set_property -dict {PACKAGE_PIN C4 IOSTANDARD LVCMOS33} [get_ports rx]

set_property -dict {PACKAGE_PIN D4 IOSTANDARD LVCMOS33} [get_ports tx]

	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	System Thinking
	System Degradation & Security Threats
	Control Systems and Visibility
	Thesis Topics
	Layout of This Thesis

	CHAPTER 2: PREVIOUS RESEARCH AND TECHNOLOGY
	Typical ICS Facility Structure
	External Network
	Enterprise Layer
	Supervisory Layer
	Field Layer
	Control Process Layer

	Advanced Persistent Threats
	ICS Cyber-Attacks
	Stuxnet
	Ukrainian Electrical Grid

	Best ICS Cybersecurity Practices
	Removal of Unnecessary Features
	Data Integrity
	Avoidance
	Detection
	Correction
	ICS Data Integrity

	Authentication & Authorization
	Authentication
	Authorization

	Secure Communication Protocols
	IEEE 802.1X
	IPSec
	TLS
	SSH
	HTTPS

	Intrusion Detection Systems
	IDS Overview
	Zeek
	Snort
	OSSEC
	Security Onion

	Network Enclave

	Threat Modeling & Intelligence
	MITRE ATT&CK Framework
	Threat Intelligence
	Detection & Analysis
	Emulation
	Assessments

	CHAPTER 3: RESILIENT ICS DATA
	The Proposed System

	CHAPTER 4: CYBER RESILIENCY IN SYSTEMS & DATA
	System Thinking
	Cyber Resiliency
	System Resiliency
	Data Resiliency

	CHAPTER 5: DATA ACQUISITION SYSTEM
	Example Design
	Degradation & Infiltration
	Degradation
	Infiltration

	System Integration

	CHAPTER 6: HARDWARE DESIGN
	Control Tap Overview
	Amplifier Sensor Circuits
	Current Sensor Circuit
	Voltage Sensor Circuit

	PWM Sensor Circuit
	ADC Interface

	CHAPTER 7: SOFTWARE DESIGN
	ADC Reader API
	PLC Reader API
	Control Monitoring Process

	CHAPTER 8: FUTURE RESEARCH
	Artificial Intelligence & Machine Learning
	FPGA Data Acquisition

	CHAPTER 9: CONCLUSION
	REFERENCES
	APPENDIX A
	PCB Schematic

	APPENDIX B
	Source Code
	ADC Reader Program
	PLC Reader Program
	Control Monitor Process

	APPENDIX C
	FPGA Design
	Data Acquisition Top
	Data Acquisition Controller
	SPI Master
	Xilinx AXI UARTLite LogiCORE IP Configuration
	Project Constraint File

