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ABSTRACT 

 

This thesis identifies and fortifies against a critical vulnerability in industrial 

control system (ICS) security. A properly designed ICS security framework consists of a 

multi-layered approach starting with heavy fortifications in information technology and 

ending with control information of operational technology. Currently, ICS security 

frameworks lack visibility and place blind trust in devices at the lowest level of the 

control hierarchy. Attaining control data visibility at the lowest level of the control 

hierarchy is critical to increasing the resiliency of an ICS security posture. This thesis 

demonstrates how this data can be captured at the lowest level of the control hierarchy, 

and then synthesized with existing network and system data to form a more complete 

picture of operational technology’s behavior. 
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CHAPTER 1: INTRODUCTION 

Industrial control systems (ICSs) are used to control different forms of automation 

and are classified into two main categories. There are Supervisory Control and Data 

Acquisition (SCADA) systems and Distributed Control Systems (DCSs). Each type of 

control system has process defined inputs and outputs (I/O) which vary between different 

use cases and applications. SCADA systems tend to be used for the automated 

monitoring, flow, and distribution of necessary resources such as gas, electricity, water, 

and material. DCSs tend to be utilized when controlling an automatic physical process in 

an industrial control facility via Programmable Logic Controllers (PLCs).  

Together, these two types of systems comprise a large portion of ICSs found in an 

industrial control facility. Every control system relies on a controller receiving control 

inputs to produce control outputs which return feedback signals. The controller receives 

these feedback signals and adjusts the controls accordingly. This concept is known as a 

control feedback loop and is at the core of control system theory. Control inputs and 

outputs are also reported to a DCS, which orchestrates higher level control and 

organization between multiple control processes.  

Protecting a facility’s capital, employees, and intellectual property is of utmost 

importance. Therefore, the control systems entrusted with this duty, along with their 

communication channels, must be reliable and secured. Additionally, control systems, 

their supporting systems, and networks within the facility should be designed and 
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assembled to be resistant and resilient to component degradation, as well as various 

intrusions.  

System Thinking 

Industrial control facilities can be conceptualized as a system of systems. There 

are communication systems, computer systems, security systems, control systems, etc. At 

some point, each of these systems interact with each other within the facility and work 

together to deliver services. Fully understanding the ICS environment requires an 

understanding of how these systems interact with one another.  

First, many systems are structured with many different channels of feedback. The 

connectedness of systems means that they move together, rather than independent 

subsystems. Within human nature and different cultures, humans tend to think in terms of 

causality, where A causes B. However, that is not always the case as the universe is a 

very complex system of systems, where often B may also cause A [11].  

Second, all systems share common features. One such feature is the notion that 

the capability of an overarching system will be greater than the sum of all system 

components. Similarly, an understanding of system interfaces, components, and their 

relationships, can lead to a greater understanding of system performance and reliability.  

By understanding systems, security mechanisms can be implemented with greater 

wisdom to their cascading side effects with the rest of the system. This way, security 

features that are added to the whole security infrastructure can be more impactful by 

protecting the attack surface while adding less vulnerabilities. The concepts defined in 

system thinking are critical to understanding security challenges that modern ICS 

environments face and aid in forming holistic engineering solutions.  
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System Degradation & Security Threats 

Computer systems, network systems, security systems, and control systems all 

exist within the scope of an industrial control facility. This means that each of these 

systems are subject to system degradation over time, and failures can vary from memory 

cells not being freed, networking devices losing their speed or reliability, or erosion of a 

motor’s axle. Each of these types of component degradation can lead to system-wide 

degradation and, ultimately system-wide failures. Further, when lacking proper 

evaluation, these failures may be unexpected, causing problems ranging from minor 

inconveniences to catastrophic events. 

A common sign that systems may be degrading is that the systems’ performance 

and/or behavior lies outside the scope of the system boundaries. While these 

discrepancies may be mild in nature, they can signal the initial degradation of a 

component within the system. In control system environments, the consequences of 

failure can range from the halting of production to physical damage to loss of human life 

and capital.  Monitoring and recognizing when control systems start to degrade is 

essential. Detection of systems misbehavior can trigger corrective action. Critical 

components must be identified and well maintained while operating efficiently. Systems 

can be preemptively halted, inspected for degradation, and promptly repaired.  

However, degradation is not the only cause of failures within ICS environments. 

Another critical area of vulnerability comes from security threats. ICSs are used in many 

different industries and nations globally, and for this reason are exposed to a wide variety 

of types and severities of threats. The goals of these threat actors may vary, as do the 

tactics, techniques, and procedures (TTP) these threats follow. Intruders’ main goals tend 
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to be espionage, intellectual property theft, damage to capital or human life, or the 

shutting down of operations. Intruders could be industry rivals, criminal groups, 

disgruntled insiders, foreign adversaries, etc. These threats may be divided into three 

main categories: basic threats, advanced threats, or advanced persistent threats (APTs).  

Basic threats generally stem from amateurs who employ well-known and 

documented attacks such as social engineering, phishing attacks, or open-source attacks 

which may be found in the open environment of the internet. While social engineering 

attacks are considered simple or trivial, they are commonly used because human nature 

can be coerced with far less effort than computer technology. Advanced threats stem 

from developed hacker groups or industrial spies who may perform attacks such as 

distributed denial of service (DDoS) attacks, private data extraction, or extortion via the 

use of more sophisticated attacks. APTs tend to be sophisticated, organized, and well-

funded attackers. They are usually employed by international adversaries who leverage 

well-developed and cutting edge TTPs to perform new attacks which are referred to as 

zero-day attacks. APTs are constantly advancing since once a cutting-edge attack has 

been used, the attack vector loses value. The knowledge gained from the attack is 

released for defense purposes, thereby making it available to amateur attackers.  

Control Systems and Visibility 

While SCADA systems are important to the continual operation of an industrial 

control facility, most physical action resides within DCSs and their subcomponents. A 

typical DCS will oversee multiple control systems participating in one or many advanced 

control processes [6]. Within each control system governed by a DCS, multiple 

components are integrated to achieve the control of a physical process. Figure 1.1 [26] 
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depicts an example of a DCS layout where multiple control processes are working in 

parallel to achieve a goal of producing an output product from given input resources. 

There are programmable logic controllers (PLCs) that are responsible for the observation 

and control of a process. Such processes can include controlling the pressure inside of a 

tank, the flowrate through a pipe, or the temperature of an oven. The PLC manages these 

control outputs (pressure, flow, temperature, etc.) by sending an analog electrical signal 

(current or voltage) to an actuator such as a pump, heater, motor, etc. The PLCs are 

programmed with a control process that is oriented to control outputs, such as 

temperature, by driving the actuators.  

 
Figure 1.1 DCS Layout  

However, this can only be achieved by knowing the current state of the system via 

the usage of feedback signals. These feedback signals are returned from sensors that 

inform the PLC of the system status. Such signals can include the actual pressure, flow, 
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or temperature. With the known state of the system, the PLC can choose to adjust or 

maintain the electrical outputs that drive the actuators. This concept is known as a control 

feedback loop. Figure 1.2 depicts a typical control feedback loop.  

 
Figure 1.2 Control Feedback Loop 

One of the major challenges in protecting systems from degradation and cyber 

threats is the concept of system visibility. System visibility is the concept of truthfully 

knowing the state of a system with as little obfuscation as possible. In an environment 

where detecting degradation and cyber intrusions are important, having extensive 

visibility on a system is critical. However, when components degrade and attackers 

infiltrate, the veracity of returned data which is used to detect these events begins to 

erode. Sensors and PLCs may not report legitimate information when components 

degrade or have been compromised by an attacker. Degradation and infiltration are 

difficult to nearly impossible to detect, in part because security products do not collect 

and process operational technology (OT) data.  

To handle this paradoxical problem, a new solution must be derived that breaks 

the paradox and allows for system visibility even in this face of degradation and cyber 
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infiltration. This thesis contributes to the field of ICS security by presenting an additional 

method of data acquisition that increases ICS visibility and data resiliency. 

Thesis Topics 

This thesis identifies what requirements are needed to make these systems 

resilient and secure from anomalous device behavior, while limiting the false positive 

problem that plagues anomaly detection solutions. This thesis also discusses what the 

term resilient means in the context of ICS security, and thus give system administrators 

and security engineers a well-defined perspective on which to construct solid foundation 

upon which security mechanisms can be built.  

This thesis reviews some of the vulnerable aspects of industrial control systems 

infrastructure and provides infamous examples of exploits leveraged against these 

vulnerabilities. This thesis presents the best cybersecurity practices utilized by ICSs and 

critical infrastructure today. These practices consist of the removal of unwanted services, 

data integrity, secure communication protocols, authentication and authorization, 

intrusion detection systems, and network enclave.  

The remainder of this thesis discusses a new type of data acquisition and control 

monitoring system which may be employed at the lowest level of the control system 

hierarchy, the physical environment. APTs may have already infiltrated facility networks, 

infected PLCs, or compromised sensors or actuators. Additionally, control system 

components such as sensors and actuators may degrade over time causing undesirable 

system behavior. For this reason, this thesis recommends monitoring and recording the 

physical responses of a system through an out-of-band channel of information. By doing 

so, security systems gain visibility via an additional point of reference to detect degrading 
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systems and the intrusions of adversaries which may alter or disrupt control process 

behavior. This gap in intrusion detection has been recognized by researchers [2], and this 

problem is addressed in the pages to follow. 

Much of the work in the design and assembly of a data acquisition system is 

documented in the later chapters of the thesis. The proposed data acquisition system is 

capable of monitoring and recording the physical behavior of the systems under control. 

With an out-of-band channel of information, the data acquisition system may be 

employed as an additional lens and cross-reference to untrusted system signals. The data 

acquisition system’s data can be synthesized with in-band network and system data. This 

union of data may be used in the generation of alerts when discrepancies arise between 

information being reported from PLCs, and the data being reported from the data 

acquisition system. With such a system, system administrators can be alerted of 

anomalous events and detect device degradation and infiltration when either event occurs. 

With the data acquisition system, the previous statement holds true even if the existing 

control infrastructure (ie. PLC) is reporting illegitimate data.  

Layout of This Thesis 

To thoroughly address the issues raised by this thesis, the following chapters are 

structured in such a way as to give context to the proposed data acquisition system. 

Chapter 2 presents the previous research related to this thesis and highlights existing 

infrastructure, threats, and technology. Chapter 3 elaborates the broader context of this 

thesis and gives perspective to the proposed resilience-bolstering control monitoring 

system. Chapter 4 provides background into the underpinnings of the thesis involving 

system thinking and data resiliency. 
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The proposed data acquisition and control monitoring system is detailed in 

Chapter 5. Chapter 6 explains the hardware design of the proposed control monitoring 

system. The software design and some control monitoring results are presented in 

Chapter 7. Related future research and avenues of application are presented in Chapter 8. 

Summary and conclusions are presented in Chapter 9.  
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CHAPTER 2: PREVIOUS RESEARCH AND TECHNOLOGY 

Typical ICS Facility Structure 

While the ICS is the core of automation and production in a facility, large 

amounts of infrastructure exist to schedule, monitor, and supply all production processes 

taking place. As industrial control facilities grow more sophisticated, the communication, 

monitoring, and control is further abstracted for ease of management. For this reason, 

multiple network layers are usually implemented between the facility’s marketing or 

sales departments and the physical control processes. This ICS facility layout is known as 

the Purdue Model for Control Hierarchy and provides a more layered approach to 

facility-wide operation and security [5, 13, 14]. An example of an industrial control 

facility layout following the Purdue Model for Control Hierarchy is presented in Figure 

2.1 [30].  

Larger ICS facilities may need to communicate with other entities such as 

management, sales, and suppliers. To establish communication, an external network 

connection is required to allow communications between facilities, suppliers, and 

customers. The first layer of an ICS is an external network layer, where internet 

communication and security are handled. Once sales have been made, the production 

needs to be scheduled with the lower layers of the ICS facility to meet the demands of the 

customers in a timely fashion. This layer is typically known as the enterprise layer, and 

this is where highly abstracted systems allow enterprise users to manage resources and 

schedule production to meet demands. To meet the demands of the enterprise layer, 
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production schedules are achieved via the orchestration of engineers that understand the 

operation of ICSs and their capacities. This layer is known as the supervisory layer, 

where command and control of ICSs occurs to produce the desired quantity of product. 

With a plethora of facility-wide information available, engineers may operate control 

processes via some form of human-machine interface (HMI). 

Once control has been executed by the engineers at the supervisory layer, the 

control information is passed to the next layer. This layer is known as the field layer, 

where the control inputs direct the ICSs to perform their control processes on the given 

input resources. All the PLCs, sensors, and actuators exist here. These devices report 

real-time information about the status of the control processes taking place.  

The control layer is essentially a part of the field layer but is differentiated as the 

control or physical process layer due to its composition of physical system components. 

This is the layer where the physical processes are taking place, whether it be the 

controlling of the pressure in a tank, the temperature of a weld, the flow rate of fluid, etc. 

This thesis proposes that the control layer’s analog information may be extracted via an 

out-of-band data acquisition system whose data can be synthesized with existing in-band 

network data to gain visibility at the lowest level of the control hierarchy.  
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Figure 2.1 Purdue Model for Control Hierarchy 
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External Network 

The external network layer within an ICS facility is needed to communicate with 

external entities such as customers, suppliers, external management, and other businesses. 

The internet is a giant connected web, and bad actors around the globe can communicate 

and coordinate attacks against ICSs through this external facing network, making this 

layer the single largest threat to an ICS facility. Many protections are put in place to 

protect and isolate the internal facility networks from the external network. 

The most typical protection put in place is known as a demilitarized zone (DMZ). 

Figure 2.2 depicts the typical DMZ architecture and what services tend to reside in the 

zone. The DMZ is a subnetwork that stands between the external network and the internal 

network to filter out and verify all traffic entering the facility’s network domain [5, 13, 

14]. Firewalls, intrusion detection systems, email and web servers, web services, and 

other forms of network security are implemented inside the DMZ to serve as the first line 

of defense.  

 
Figure 2.2 DMZ Architecture 
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Enterprise Layer 

The enterprise layer or enterprise network is where all the information technology 

(IT) infrastructure for the management and corporate side of an industrial control facility 

resides. Typically, this enterprise network has access to the internet to make sales, contact 

suppliers, and other types of communication necessary to keep the facility running. Inside 

the enterprise layer, IT systems are leveraged schedule production, manage inventory, 

schedule OT maintenance, and other corporate tasks.  

Due to its external network connection, this layer’s connection to the internet has 

the largest attack surface and poses the largest cyber threat. For this reason, there is also a 

DMZ isolating network traffic into the supervisory and other lower network layers of the 

ICS facility. In addition to network isolation, there are a myriad of different security 

mechanisms that are implemented on the network and inside of all hosts and internet-

connected devices that reside on the network. Much of these topics will be explained in 

further detail in the section titled Best ICS Security Practices. The best approach involves 

addressing the attack surfaces that exist to implement mitigation and protection 

techniques, thereby providing the greatest amount of coverage. The goal is to leave 

attackers with minimal to zero available options.  

Supervisory Layer 

As the exterior layers of the ICS facility are peeled back, the shift from IT to OT 

technology occurs. The bridge between IT and OT technology mainly exists within the 

supervisory layer. IT is needed to receive scheduling, resource, and maintenance 

information from the enterprise layer. IT also reports production related statuses back to 

the enterprise layer, the OT is properly driven and capable of controlling processes inside 
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of the field layer. Lastly, IT gathers ICS status information and employs various methods 

of ICS security such as intrusion detection. 

One of the main OT systems used today is SCADA. As the name implies, SCADA 

retrieves status information about resource assets which may be scattered throughout a 

facility or even different geographic locations. In addition to resources location, SCADA 

systems keep track of the flow of resources and waste in and out of the industrial control 

facility. SCADA is responsible for the maintaining the processes of resource importing 

and waste removal that keep the facility afloat. By knowing both where resources are and 

how they are flowing, SCADA can oversee and operate control processes. However, 

SCADA systems are not responsible for the control processes which act upon the input 

materials to produce the outputs.  

The OT systems in the supervisory layer which handle the controlling of the 

control processes are DCSs. DCSs are responsible for controlling one to multiple control 

processes which consist of actuators, sensors, and one or more PLCs. DCSs are the 

entities responsible for reporting feedback information between dependent control 

systems, with the objective of aiding in the control of complex and interdependent control 

processes. To meet the needs of the different control process stages that occur throughout 

production, DCSs can reconfigure the PLCs and change their response characteristics.  

As with the enterprise layer, network intrusions may take place, therefore it is of 

utmost importance to isolate the field layer from the supervisory layer. Isolation is 

employed to stop intrusions from propagating further down the control hierarchy. A final 

DMZ is placed between these two layers to achieve isolation of the control network.   
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Field Layer 

The field layer of the industrial control facility is where control processes 

physically take place. All the PLCs, actuators, sensors, and transport mechanisms exist 

here. This layer receives OT information from the supervisory layer and orchestrates 

necessary control processes to produce output products. Normally, multiple dependent 

control processes are required to produce an output product. Each ICS and its subsystems 

are controlled by at least one PLC that is programmed and supervised by a DCS in the 

supervisory layer. The PLC relays process status information to maintain the flow of 

production between interdependent processes. Within the field layer exists the final layer 

of the control hierarchy, the control process layer.  

Control Process Layer 

The control process layer consists of all the physical devices involved in the 

production at the facility. Analog electrical signals, whether it be current or voltage, are 

generated to control actuators such as motors, and report control status information from 

sensors such as a thermometer. At this layer of the control hierarchy, few solutions exist 

for ensuring the physical security besides guns, guards, and gates. Additionally, very few 

systems can even detect degradation or infiltration. 

Considering the apparent control security deficiency, this thesis proposes that 

there is vital information within the physical control inputs and outputs that may be 

captured outside of the PLC. The physical signals can be captured and monitored by an 

out-of-band data acquisition system to detect when mechanisms in the control process 

layer have deteriorated or been compromised. Chapters 5 through 7 will detail the design 

and implementation of such a system. 
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Advanced Persistent Threats 

APTs are highly sophisticated and spanning networks of organized adversaries 

seeking to infiltrate the computer networks and systems of government, critical 

infrastructure, corporations, medical and academic institutions, etc. APTs tend to be 

either highly organized criminal groups or nation states who have plenty of time and 

resources to find ways into these targets [19]. APTs bring the advent of zero-day attacks 

that the world has never seen. The feature that separates APTs from other advanced 

attackers is their ability to remain unnoticed and undetected for long periods of time 

before making an attack. 

APTs will use all available resources at their disposal to intrude into a network, 

including social engineering attacks on humans, manufacturing or program defects in 

hardware or software, common features in operating systems, compromising supply 

chains, etc. Not only do these attacks require a plethora of manpower, resources, and 

sophistication, but each APT has a distinct mode of operation that is documented. APTs 

can reduce system complexity of large systems by strategically targeting the smaller and 

less complex functions within the system. These subsystems are broken down, 

understood, and leveraged in advanced attacks. The best way to vet against this pervasive 

threat is by taking on the perspective of an outside intruder and analyzing the system to 

find each element that may be corrupted, and therefore must be secured. In addition to 

securing the system elements, it is necessary to verify the security and integrity of third-

party vendors, supplies, and their networks.   
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ICS Cyber-Attacks 

Stuxnet 

The most notorious and discussed attacks leveraged against ICSs around the 

world is known as Stuxnet. Stuxnet is a dangerous computer worm that was discovered 

during a cyber-attack against the Iranian nuclear program in 2010 [7]. The worm enabled 

attackers to take control of multiple PLCs that were controlling nuclear centrifuges. The 

worm was designed to settle itself inside the host computer, and after a designated period, 

begin propagating to other hosts on the network in search of PLCs running the Siemens 

Step7 software. It then released its payload, altering the firmware running in a PLC. Once 

discovered, Stuxnet was found to have infected over 200,000 computers and destroyed a 

large portion of the Iranian nuclear program’s centrifuges.  

Stuxnet specifically targeted Windows based systems and exploited four zero-day 

operating system vulnerabilities [7]. Stuxnet has many propagation techniques, allowing 

it to spread laterally on a large computer network despite established securities. One 

method for self-replication was through taking advantage of an exploit allowing for auto-

execution of removable drives plugged in anywhere. Alternatively, the worm spread 

through local area network (LAN) connections by leveraging an exploit of the Windows 

Print Spooler which stores print jobs on the LAN. Another exploit Stuxnet leveraged was 

through the server-wide filesystem protocol known as server message block (SMB), 

which allowed Stuxnet to copy itself to other hosts. Lastly, Stuxnet copied and executed 

itself through network shared resources or SCADA database server connections.  

Once Stuxnet was on a host, it could begin searching for the Siemens Step7 

software, responsible for programming and running PLCs. If found, Stuxnet would copy 
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itself into Step7 projects to automatically execute when a project was loaded into a PLC. 

Once inside of the PLC, Stuxnet utilized peer-to-peer LAN connections to update the 

global status of the worm across all machines infected. Additionally, the virus took 

advantage of privilege escalation vulnerabilities which allowed the PLC to contact 

command and control servers and execute code. From there host information about the 

PLCs and computers could be sent across a hypertext transfer protocol (HTTP) 

connection to a server controlled by the attacker [7].  

Stuxnet proved to be devastating to the field of industrial control, because of its 

ability to leverage multiple vulnerabilities to replicate, execute code, modify programs, 

and report back status information, all while hiding itself and bypassing security.  

Ukrainian Electrical Grid 

Another great example of an attack against ICS environments was the cyber-

attack on the Ukrainian Electrical Grid in 2015. In late December of 2015, power outages 

across large regions of Ukraine were reported as multiple 100kV and 23.35kV 

substations had been compromised and shut down due to an attack on the power 

company’s SCADA systems. The outage lasted several hours before the power company 

had to assume manual control of each of these substations, but at that point, the outages 

had affected approximately 225,000 customers.  

Like Stuxnet, the attacker was sophisticated and organized in their attack, leveraging 

multiple exploits and vulnerabilities to infiltrate and maneuver the internal systems of the 

power company. The attacker gained access through spear phishing emails and malware 

known as BlackEnergy 3, which were embedded inside of Microsoft Word documents 

that unsuspecting employees downloaded and viewed. Once the attacker had a foothold 
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inside of the IT portion of the power company, they were able to extract high-privilege 

credentials to gain access to the SCADA and ICS networks [10]. 

Having the valid credentials gave the attacker a foothold. They then used a virtual 

private network (VPN) connection including the valid credentials to enter the SCADA 

and ICS networks. Once on the network, they either leveraged existing tools in the 

environment or accessed commands from the human to machine interfaces (HMIs) 

located at each of the substations. From there they were able to alter then delete system 

records and logs to hide exact details on how the attack was performed. Lastly, the 

attacker was able to shut down the electrical load systems all while performing a 

telephone denial of service (DoS) attack against the call centers, stopping outage reports 

from being received and acknowledged [10].  

Best ICS Cybersecurity Practices 

Industrial security, or security in general, requires an understanding of attack 

vectors and attack surfaces. An attack vector is an avenue an attacker may take to gain 

access to a computer network or host, or deliver a malicious payload. Systems may have 

multiple attack vectors at different regions of the systems, such as network endpoints, 

computer hosts, or even unsuspecting users. The assortment of all the system attack 

vectors is known as an attack surface. The attack surface is always changing as system 

components are modified and as new attacks are created and discovered. The defenses 

include the disabling of unused features, data integrity mechanisms, authentication and 

authorization systems, secure communication protocols, intrusion detection systems 

(IDS), and network enclave. This chapter will cover some common attack vectors and 

their defenses that comprise the typical ICS attack surface.  
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Removal of Unnecessary Features 

The most basic form of security used today is the removal of attack vectors from a 

system entirely. Doing so reduces the attack surface available and can be accomplished 

by removing or deactivating unused features, processes, ports, or connections of PLCs, 

computer networks, computer hardware systems, or software applications. Figure 2.3 

depicts the disabling of unused features in an IDC environment. In a PLC, there may be 

input and output ports that are not being used but are still enabled, thereby introducing an 

avoidable attack vector into the control system. In a computer network, there may be 

unused network internet protocol (IP) addresses, unused physical or virtual network 

ports, or unnecessary subnetwork connections in place. In a computer system, there may 

be several elements not in use, including operating system services, network or peripheral 

ports, or even needless applications. In a software application, there may be entire 

libraries linked into the program space when only a few functions are being used. For 

each of these circumstances, the best practice is to remove unused mechanisms from the 

system as they provide avenues for an adversary to gain access and control of critical 

systems and infrastructure. This simple practice can drastically reduce the attack surface 

of a system.  
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Figure 2.3 Disabling of Unused Features 

 
Data Integrity 

There are many attack vectors into hardware and software systems that involve 

the unauthorized alteration of the data being used. From memory attacks to data 

corruption, data integrity violations may be catastrophic to a computer system. In an ICS 

facility, this may lead to attacker intrusion, program execution, or IP extortion. Therefore, 

data integrity should be applied to every system and subsystem of the industrial control 

system [17]. Data integrity practices are implemented in firmware, software, hardware, 

memory storage, data communication, or file systems and operating systems.  

Data integrity assurance functions within three scopes: integrity violation 

avoidance, detection, and correction [17]. Avoidance is a practice of preventative action 

meant to avoid certain types of data loss. Detection, the most common method of 
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integrity assurance, identifies when there have been modifications to data. Correction is 

the act of repairing data which has been lost, modified, or damaged. By itself correction 

is useless and requires some form of detection to know when it is necessary to repair the 

damaged data. Normally, detection and correction go hand in hand, and avoidance is an 

extra precaution to form a well-rounded data integrity assurance policy within a system. 

Avoidance 

There are several commonly used methods of data integrity violation avoidance, 

each providing a unique guarantee of the integrity of data being stored or transmitted. 

The first and most utilized method is read-only memory [17]. By preventing certain 

portions of memory from being written over by programs or users, data integrity 

violations may be prevented. However, this method does not prevent software or 

hardware glitches from damaging data and bypassing these built-in operating system 

protections. 

Another robust method of avoiding data integrity violations is the implementation 

of cryptographic filesystems [17]. By maintaining confidentiality in system data, 

attackers have no feasible or predictable way of causing real damage without any 

knowledge of the data being modified. Without a key to the encrypted data, it is 

infeasible to start overwriting random portions of data in the hopes of causing a system 

crash, failure, or security breach. Additionally, authentication can be performed on the 

encrypted data via a hash function to check the integrity of the data. However, like read 

only memory, these memory protections are not immune to software and hardware 

glitches or failures which may cause losses in data or storage in incorrect locations.  



24 

 

A more modern approach to protecting file systems through data integrity 

avoidance is the usage of transactional file systems. This method journals every system 

action as a transaction which is logged to always maintain the system in a recoverable 

state [17]. One great example of a transactional file system is known as New Technology 

File Systems (NTFS). In NTFS, several mechanisms besides journaling are employed to 

protect the system from unexpected data integrity violations, whether they be caused by a 

user or malicious attacker, or by software or hardware glitches.  

Detection 

Data integrity violations may be avoided, but some of causes of data integrity 

losses are unavoidable in computer systems [17]. While detecting cannot repair or 

recover lost data, it is necessary to first detect integrity violations before they may be 

corrected. Mirroring or checksumming the data are the most trivial ways of detecting 

integrity violations. To mirror, a complete copy of the data is made, and the pieces of 

data are compared byte by byte. To run a checksum, the data is served as an input to 

some one-way function, and the output is compared to a precomputed result stored at the 

end of a section of data. If any discrepancies arise, then there was a modification to the 

data somewhere. However, not only are these methods inefficient, but they can only 

indicate whether there is an integrity violation, and not which piece of data is corrupted. 

Another common method used in error detection today is known as Cyclic Redundancy 

Checks (CRC) where blocks of data are protected by the appending of extra sequences of 

data. The CRC performs Frame Check Sequences (FRC) to detect errors on a frame-by-

frame basis. This method is used in determining which piece of data has been corrupted 
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without copying entire portions of data. It is much more efficient in terms of both time 

and memory usage [17]. 

Integrity violation detection is also critical for network communications. If 

messages are intercepted by an attacker, they may modify the data and perform a man-in-

the-middle (MITM) attack. A MITM attack is when an attacker gets between two 

endpoints of communication to secretly steal information, and possibly relay false 

information to the receiver. One common way of securing communications against 

altered information is to use Error Correction Codes (ECC). ECCs are additional pieces 

of redundant information about packets of data which are used to tell whether 

modifications or errors have appeared in the received data [17]. While these methods are 

good, they are not fool-proof, and attackers can very precisely modify packets of data to 

trick ECCs into thinking they have received unmodified data. A more secure, but more 

resource intensive way of securing communications is to use some form or encryption 

and/or authentication. By encrypting the data being sent, you not only make the data 

confidential, but the data can also be proven to authentic and unmodified. Cryptographic 

hashing functions may be used to produce a message authentication code (MAC) which 

is then appended to a message being sent. When the message is received, the MAC can 

be regenerated by the party which has the key and compared to the MAC that was sent. If 

the MACs are different, an integrity violation in the transmitted data has occurred [17].  

Correction 

Half of the battle in correcting integrity violations when they occur is the 

detection, while the other half of the battle is correcting the data that has been damaged. 

There are methods in which correction is performed, and there are also methods which 



26 

 

employ both detection and correction in the same algorithm. One of the most common 

forms of integrity violation correction is achieved by the many implementations of 

redundant arrays of inexpensive disks (RAID). RAID may be used to ensure the integrity 

of a filesystem upon system bootup, but also ensures that the memory can be recreated if 

one of the disks is attacked and vital data is lost. This method is known as RAID parity, 

where additional parity codes are stored in each of the RAID disk, thus allowing 

reconstruction of lost data when a violation is detected [17].  

Another method of correcting and detecting data at the same time are ECCs, 

which may be implemented in more than just communication protocols. Stored in ECCs, 

there are at least three bits for every byte of information stored. While not memory 

efficient, this method is able to detect as little as two-bit errors in each byte of data, and is 

able to correct single-bit errors in the data. ECCs are commonly used in servers and 

critical applications that cannot afford to lose large portions of data. Normally, to be able 

to detect and correct N bits of information, the log2(N) bits are required to perform the 

correction. There are many classes of ECCs, the most common being parity and 

hamming-correction codes.  

Forward Error Correction (FEC) is a form of ECC used on smaller portions of 

information that may be used in memory, but are often used in lower-level 

communication applications.  In FEC, check bits are calculated on the transmitter side of 

communication and are appended to a message to be checked on the receiver side. If any 

differences are detected, the lost data can be reconstructed. FEC in its simplest form 

sends redundant copies of packets across a channel. The most common forms of FEC are 

hamming codes and Reed Solomon codes [17].   
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ICS Data Integrity 

Within an industrial control facility there are many computer systems, network 

connected devices, and PLCs which require many forms of data integrity checking. Data 

integrity protection on these systems may be divided into three categories: firmware or 

OS integrity, program and memory integrity, and communication integrity.  

The first category of ICS system data integrity involves the firmware, or OS of 

ICS systems. If any data is manipulated within the firmware on these systems, the system 

could crash, vital information could be altered or damaged, or escalated permissions 

could be given to an adversary. To avoid this, it is recommended to frequently verify the 

integrity of firmware by using a verification tool that confirms the integrity by recreating 

and verifying a digital signature which is only re-creatable by the owners of the device.  

The second category of ICS system data integrity involves the programs and 

memory storage of the systems running within the ICS. The functionality and reliability 

of the PLC software depend on the integrity of the program and instruction data of the 

program being run. If improper programming techniques are used, programs may become 

weak to integrity violation attacks, which give attackers an avenue of control within the 

systems. A sophisticated attack may be able to change program instructions or data, 

causing improper behavior of the ICS system. To avoid this, many forms of integrity 

checks are recommended. To protect the integrity of data being used by the system, 

integrity checkers which verify integrity of the program before execution, and online 

integrity checkers which scan before every critical read or write operation are 

recommended.  
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The third area of ICS data integrity is the integrity of transient values being sent 

to and received by an ICS system, which are used to make live decisions. This is more 

challenging because the data is foreign to these systems. Integrity may be accomplished 

by using secure communication protocols and live data integrity checking mechanisms. 

These checks for data integrity and authenticity ensure the data being received is 

legitimate and has not been tampered with. 

By focusing on the data integrity of every system within an ICS, the system 

boundaries become much stronger and it becomes much more difficult for a system to be 

broken when its data has been altered by an adversary. Figure 2.4 depicts a simple 

example of a computer system that performs data integrity checking on network 

communications, data storage to external memory, PLC data and program integrity 

checking, and lastly filesystem, integrity checking for the operating system.  



29 

 

 
Figure 2.4 Data Integrity System 

Authentication & Authorization 

Another vital piece of system security and resiliency is understood by asking the 

questions: “Who are you?” and “Are you allowed this resource?”. These questions 

encapsulate the critical security aspects of authentication and authorization. 

Authentication is the act of verifying the identity of the origin of data or commands sent 

and received inside and between system boundaries. Authorization is the act of checking 

and verifying whether the origin of the data or commands may have access to information 
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or system functions. By controlling these security mechanisms, system boundaries 

become much more secure and difficult to be breached by an attacker without necessary 

credentials [5, 9, 13]. Authentication methods not only verify the origin of the data or 

commands transmitted and received, but they also may be used to verify the integrity of 

data that has been stored and later retrieved. Authorization also provides layered access to 

systems so that only users with a need of access are granted it, reducing the overall attack 

surface substantially. Together, authentication and authorization allow for secure access 

to industrial control facility resources by legitimate users who should be using those 

resources.  

Authentication 

The many different forms, methods, and applications of authentication are often 

coupled with some form of confidentiality and data integrity. The origin of the data being 

transmitted and seeking authentication is typically referred to as the claimant. 

Authentication verifies the identity of the claimant by using one or many different 

authentication factors [21]. The factors frequently used to authenticate the claimant are 

the following:  

1. Something the user knows: A password, PIN, or other piece of private 

information held by the user. 

2. Something the user owns: A hardware authenticator, a cellphone, software 

certificate, or smartcard. 

3. Something that qualifies the user: Something biologically unique to the user such 

as a fingerprint, DNA sequence, or voice recognition. 
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4. Something the user can do: Used less commonly in digital systems, a signature or 

physical gesture.  

Added strength of authentication comes from combining the methods of 

authentication and the strength of the underlying authentication methods themselves. 

Using more than one form of authentication is often referred to as Two-Factor 

Authentication (TFA). For example, if someone stole a password, but does not have the 

relevant hardware authentication device such as a smartcard, then with TFA the attacker 

is denied access. However, while passwords may be easy to implement in a system, 

passwords have a few vulnerabilities such as being leaked, stolen, or brute forced. Since 

passwords may be leaked, stolen, or brute forced, one workaround to this vulnerability is 

to only use the password once. This type of authentication is known as a one-time 

password (OTP).  

In addition to logging into networks or gaining access to services on a network via 

password authentication, there are also secure authentication protocols which may allow 

the private communication of authentication credentials over an unsecure medium such 

as the internet. One of the oldest authentication protocols, known as Password 

Authentication Protocol (PAP), is not a secure authentication protocol because user 

credentials are sent as unmodified plaintext over the network. An upgrade to PAP is 

known as the Challenge Handshake Authentication Protocol (CHAP), where only 

username credentials are sent over the network connection, then a unique challenge 

message is generated and sent as a response to the client. The challenge message is then 

appended to the password and sent through some form of hashing function, preferably a 

keyed hashing function, to generate a MAC or hashed-based MAC (HMAC) which is 
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then sent back to the server. The server performs the same hash function to generate the 

MAC/HMAC and compares it to the received message. If they are both the same, the user 

has the correct password that was sent to the server in a secure fashion.  

These primitive authentication protocols are insecure by today’s standards. For 

this reason, other advanced forms of authentication protocols have been developed, such 

as Extensible Authentication Protocol (EAP), which are embedded into different 

cryptographic communication protocols such as Secure Shell (SSH), Transport Layer 

Security (TLS), and WiFi-Protected Access (WPA). EAP is an authentication framework 

that provides many different authentication methods for different communication 

protocols. Additionally, EAP may be used on many different communication layers of the 

OSI model, whether they be the data link layer using network switches, the network layer 

using routers for a LAN, the transport layer over the internet using TCP/IP, or any of the 

other further abstracted layers. EAP provides different forms of authentication for wired 

and wireless communications from the client to a network device such as a router, and 

then finally to the server. EAP supports MAC or message digests authentication such as 

CHAP, certificate-based authentication methods such as TLS which require secure 

certificates to be installed on the client, or even OTP authentication methods. Figure 2.5 

depicts the authentication and establishment of secure communication channels between 

a peer and a server via the utilization of EAP Pre-Shared Key (PSK). Both the peer and 

the server have a PSK, which they use to create MACs from randomly generated 

numbers which are used to authenticate each other, and subsequently establish a secure 

communication channel.  
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Whatever the method taken, it is important to consider and weigh all the 

authentication options for an ICS facility since the facility combines many different 

systems together via network connections and different communication protocols.  

 
Figure 2.5 EAP - Pre-Shared Key 

Authorization 

Once the requesting client or incoming data has been authenticated, the process of 

authorization and access control may begin. Authorization and access control are the 

process of determining whether the authenticated client or data may gain access or 

complete transmission to an endpoint within the ICS. Certain clients and sources of data 

are not authorized to reach different endpoints in an ICS to reduce the overall risk 

associated with that endpoint. If the endpoint is a controller in a critical application, 

limited access is also critical. By doing this, attackers who have managed to gather low 

access credentials cannot have access to critical resources. By limiting access to all 
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endpoints within an ICS, a stronger security posture may be achieved, and risk associated 

with attacks from within may also be mitigated [5, 9, 13].  

Secure Communication Protocols 

As mentioned previously, data integrity and authentication are crucial parts of 

securing clients and data on the ICS network. In addition to these two cornerstones of 

secure communications, data confidentiality is the final cornerstone. All three of these 

cornerstones can be achieved by utilizing the many different secure communication 

protocols used in the field of cybersecurity today. 

A key aspect of secure communications is choosing the right secure 

communication protocols for given applications. Some forms of communication are 

duplex, some simplex, and others using some form of broadcasting to multiple clients. 

Securing communications involves many different components that aid in authentication, 

encryption, and data integrity. To be able to authenticate and encrypt data, some form of 

cryptographic key is needed, whether symmetric, asymmetric, public, or private. In 

addition to normal communications, there might be the need to create and distribute 

public-private key pairs in a secure way. All these capabilities may be achieved by 

utilizing one or many different secure communication protocols. As with most features of 

cybersecurity, there is a performance tradeoff due to the computational overhead of 

cryptographic calculations. This can be a challenge in ICS environments where data 

transfer is time sensitive, and a balance is usually found somewhere in the middle.  

Computer network communication is a layered approach, consisting of seven 

different layers referred to as the Open Systems Interconnection (OSI) Model. The seven 

layers of this model are network traffic abstractions starting from physical hardware and 
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building up into applications and their interface to a network. The seven layers are the 

physical, data link, network, transport, session, presentation, and application layers. The 

physical layer is the hardware layer where information is passed via some physical 

media. The data link layer is where physical addressing, such as MAC addressing, 

occurs. The network layer is where routing between computers on a LAN occurs via IP 

addresses. The transport layer is where communication between LAN networks occur 

forming wide area networks (WAN) via transport protocols such as TCP/IP. The session 

layer is where computer hosts establish communication sessions with endpoints on a 

network. The presentation layer is data encoding/decoding, encryption/decryption, and 

compression/decompression occur. Lastly, the application layer is where applications 

interface with the network via the other six layers. This section will be covering 

communication protocols associated with different layers of the OSI model.  

When considering the layered model of networking, it is important to note that 

higher abstracted layers cannot control what takes place in lower layers. For example, the 

transport layer cannot affect or secure communications at the data link layer. Due to this, 

transport layer security mechanisms would have no effect on an attack that took place at 

the data link layer. For this reason, secure communication protocols have been introduced 

at nearly every layer of the OSI model to employ a layered security approach in tandem 

with a layered networking model. 

IEEE 802.1X 

One of the most common forms of network security across all networks is data 

link layer security.  This type of security occurs between hosts on a local area network. 

Since data link layer security is implemented on the networking hardware, it is the lowest 
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possible level of network security achievable. One implementation of this is IEEE 

802.1X, which is a data link layer access control protocol. This protocol uses EAP to 

provide authentication mechanisms between physical hosts on a LAN. The protocol 

works for both LAN and wireless LAN (WLAN) connections on a network. The protocol 

offers optional data encryption. Data encryption does not often occur on the data link 

layer as it causes intense overhead on networking hardware, so encryption occurs on 

layers higher up on the OSI model. 

IPSec 

By itself, internet protocol (IP), which exists at the network layer, does not 

provide any security features, and was built for the raw functionality of transmitting 

information between networks. If a third party were to intercept the packet, they could 

retrieve critical information from the raw data, modify the data, or replay the data again 

later. To avoid this, Internet Protocol Security (IPSec) was developed by the Internet 

Engineering Task Force (IETF) in 1998 [4]. IPSec is a secure network layer security 

framework which encapsulates two protocols called Authentication Header (AH) and 

Encapsulated Security Payload (ESP). These two protocols perform authentication to 

verify authenticity and integrity of the data received and performs encryption to keep data 

confidential. IPSec is frequently used in many different network settings, whether 

network to network, host to host, or network to host, and is frequently used in 

establishing virtual private networks (VPNs) [4]. Additionally, IPSec has some features 

built into it that protect communications against replay attacks so that confidential data 

cannot be intercepted and sent multiple times to replay the same message.  
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TLS 

When communicating simple data or commands between servers and clients, a 

widely used communication protocol used to achieve this is known as Transport Layer 

Security (TLS). Originally known as Secure Sockets Layer (SSL), TLS was derived to 

secure TCP/IP communications over transport layer network communications. As 

suggested by the name, TLS is an example of a transport layer security protocol. TLS 

seeks to achieve confidentiality and authenticity in communications to prevent 

eavesdropping or tampering [16]. This is done by the utilization of public asymmetric key 

exchange to establish a private key configuration used in encryption and authentication. 

TLS is highly configurable and can use many different public key exchange methods for 

the establishing of a session, and many different private key encryption methods for the 

secure communication across networks.  

Figure 2.6 depicts the typical TLS connection handshaking sequence. The client 

requests a connection to a server in which cryptographic details about the client are 

exchanged. The server then sends its public certificate, and the cipher suite is utilized. 

The client then authenticates and verifies the server certificate. The client then sends its 

own public certificate along with its private key. Once both the client and server are 

finished verifying, a secure and authenticated communication channel is established in 

which all messages are encrypted and authenticated.  
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Figure 2.6 TLS Handshake 

SSH 

In an ICS, there may arise the need for embedded systems and computers to 

communicate with one another for the access of a terminal, file transfers, or application-

level transmission. This brings up grave security concerns because if these connections 

were to be intercepted and compromised, the control of the entire system could be at risk. 

To avoid this, Secure Shell (SSH) was developed in 1995 to protect against these types of 

attacks. SSH is an application layer security protocol that is used for remote system 

logins, command executions, and file transfers. Instead of sending login credentials, 

commands, and files over the network in plaintext, all information sent and received is 

encrypted, decrypted, and authenticated. This is achieved over TCP/IP protocol which 

handles the initial public asymmetric key exchange and sets up the symmetric key 

encryption and authentication configurations. This process is repeated periodically to 

keep keys fresh and brute force resistant. Once this has been established, all further 



39 

 

information is encrypted, decrypted, and authenticated using the symmetric key to 

prevent man-in-the-middle and brute force attacks.  

HTTPS 

If there is ever a need to communicate with websites hosted on the internet, 

security is a huge concern because all communications are now leaving the ICS and 

entering the wild west of the internet. However, while this should be avoided in most 

cases, there are many different methods to securing internet communications. The most 

widely used secure internet communication protocol is known as Hypertext Transfer 

Protocol Secure (HTTPS). HTTPS is an example of an application layer security protocol 

with which internet applications communicate. This is desirable for an ICS that is 

controlled and governed by a central control facility that does not exist on the local ICS 

network. HTTPS is secured by TLS, meaning the establishing of secure communications, 

encryption, and authentication are handled by TLS in the transport layer, and then 

presented to the application layer by HTTPS at endpoints of networks.  

Intrusion Detection Systems 

While protecting the communications and access into ICS technologies is of 

extreme importance, it cannot be the only solution to protecting the system. Since 

cybersecurity is a constant game of cat vs. mouse, the capabilities of industries and 

attackers alike are becoming more sophisticated. To keep up with this game of cat vs. 

mouse, it is obviously important to keep ICS security protocols and policies up to date. It 

is also important to realize that ICS are never completely invulnerable to attacks and 

intrusions. Extreme efforts have been made toward identifying abnormalities in network 

communications and ICS behavior to detect intrusions when they are occurring, or if they 
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have already happened. These systems are typically known as Intrusion Detection 

Systems (IDSs). These systems scan network traffic and internal system functions to 

detect and prevent intrusions. Intrusion detection systems on the network side of an ICS 

are known as Network-based IDS (NIDS) [8, 12, 14, 18]. Intrusion detection systems that 

work on computers to scan system calls and resources are known as Host-based IDS 

(HIDS) [8, 12, 14].  

IDS Overview 

For intrusion detection systems, there are two dimensions in which they are 

classified. The first dimension is the medium in which the IDSs are implemented. The 

second dimension is via the strategic implementation of intrusion detection. Within the 

first dimension, IDSs are implemented on computer networks and computer hosts to form 

network-based intrusion detection systems (NIDS) and host-based intrusion detection 

systems (HIDS). The second dimension divides IDSs in terms of their implementation, in 

which there are signature-based IDSs and anomaly-based IDSs [8]. In signature based 

IDSs, sets of governing security policies are applied to all network traffic or system 

function calls to log all behavior of users inside of the governed systems. If these users 

breach the security policies based off known attack patterns, the activity is halted, and 

system administrators are notified of the activity [18]. In anomaly based IDSs, the system 

also scans and logs all network traffic and system function calls and usually, but not 

always, employs some form of artificial intelligence or machine learning to detect 

anomalies in the behaviors of certain network connections or users on the system [2]. If 

these behaviors stray too far from a deemed normal behavior, the activity is labeled as 

anomalous and activity is halted, and system administrators are notified. While there are 



41 

 

distinct differences in the different methods of intrusion detection, these systems can be 

integrated into a single IDS for more coverage [20]. 

While traditional firewalls solutions can prevent most unwanted network traffic 

into an ICS, it does not block all traffic as attackers have found many ways to get around 

IDSs. IDSs are a great compliment to the overall security of an ICS as they provide 

additional layers of protection and security policy governance. However, it is much more 

difficult to achieve such a task in an ICS environment [2, 12]. ICSs have more tailored 

needs due to the nature of the critical tasks being performed on site. Because ICS are 

controlling critical and sometimes destructive processes, it is vital that any IDSs 

employed by the ICS should be real-time and have the capability to detect intrusions as 

they occur to prevent any damage or loss of information from occurring. Additionally, 

since many of the devices running in an ICS are embedded devices, there are limited 

computational resources available to perform IDS measures, and therefore must be made 

lightweight on top of rigorous. Since ICS have a myriad of legacy hardware and software 

technologies, they are weaker to attacks, harder to update, can break easier, and are 

operated by insecure protocols. Due to these flaws of the legacy nature of ICSs, it is of 

utmost importance to have highly configurable or tailored IDSs that are capable of 

melding into current technologies and are capable of protecting older technologies. 

Lastly, since ICS IDSs exist at the lowest level of the control hierarchy, it is more 

difficult to employ a system with proper visibility to the physical control signals [2].  

There are many different IDSs in existence today and choosing the right IDS is 

critical to securing relevant systems depending on the application. Some IDSs are very 
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focused on one type of detection, while others attempt to fill the role of “jack of all 

trades”.  

Zeek 

One of the more widely used IDSs in existence today is known as Zeek, which 

has recently changed its name from Bro. Zeek is an open-source IDS that runs on Linux 

OS. It specializes in sniffing and analyzing network traffic, classifying it as a NIDS. 

However, it does not focus on just one type of intrusion detection scheme, as it is able to 

employ both signature and anomaly-based detection techniques. Zeek, once deployed 

onto a computer system or network server, can perform both offline and online analysis 

of network traffic and is capable of being scaled out to very large or simple at home 

networks, making it a perfect candidate for industrial applications. Zeek employs logging 

of all activity of network traffic for analysis or network administrator forensics and 

supports analysis on many different application layer protocols including File Transfer 

Protocol (FTP), Domain Name System (DNS), HTTPS, TLS, and SSH. Above and 

beyond scanning the protocols, Zeek has the capability of analyzing all file contents 

introduced into the system via cryptographic hash computation for fingerprinting. In 

addition to all these features, it has a lot of documentation and support for integrating into 

whichever application you are seeking to protect.  

Figure 2.7 depicts a NIDS and where it fits into a layout of a secured network. 

Normally, the NIDS sits on the front-facing side of a network and scans all incoming and 

outgoing traffic for signature and anomaly-based intrusions. When an intrusion sets off 

any configured rules, an alert is generated for security administrators to review, and if 

necessary, sever any connections with a potentially malicious source.  
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Figure 2.7 Network-Based IDS 

Snort 

Many open-source intrusion detection systems are combinations of smaller open-

source engines tailored to accomplish specific tasks. Snort is one of these smaller IDS 

engines used for packet sniffing. Snort is a NIDS that excels at sniffing network traffic 

and performing analysis and packet logging. Snort can be configured in three different 

modes, Sniffer mode, Packet Logger mode, and NIDS mode. Sniffer mode reads network 

packets and displays them to the user, while Packet Logger mode logs the packets to disk. 

In NIDS mode, Snort will monitor and analyze network traffic based on a rule set defined 

by the network administrator. Based on the rules, different actions are taken depending 

on what threat has been identified. In NIDS mode, signature-based, protocol-based, and 

anomaly-based analysis is performed on traffic coming into or leaving the network. 

Custom rules can be configured by administrators to aid in traffic analysis and search for 

specific patterns their adversary may use. This is particularly useful for ICS security 

because very specific information should be moving between endpoints on a network, 

and Snort allows for alerts or actions to be taken when one of these facility custom rules 

has been breached.  
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OSSEC 

In addition to integrating NIDS to protect networks, it is also vital to protect host 

systems and applications with some form of HIDS. OSSEC is a widely used HIDS that is 

open source and is compatible with many platforms. OSSEC is a HIDS comprised of 

configurable components. OSSEC is managed from a central server inside the host 

machine that can monitor agents which could be small programs or collections of 

multiple programs running on the host. OSSEC monitors many different aspects of the 

agents, such as their function calls to system functions, resource utilization, or 

interactions with other processes. OSSEC also intercepts network traffic moving to and 

from the host. System calls, resource utilization, network traffic, and inter-process 

communications between agents on the host are logged into a central database to be 

analyzed.  

In addition to the monitoring of agents on the system, OSSEC can be configured 

to periodically inspect files that agents are interacting with via a data integrity checking 

process known as Syscheck. OSSEC also has the capability of scanning the host system 

for any presence of a rootkit using a process called Rootcheck. A rootkit is a collection of 

computer software designed to run silently on a computer and slowly cause damage 

and/or leak information from a system.  Using all the collected information, OSSEC 

generates alerts via administrator-tailored rules and policies and helps to efficiently 

police a system to detect and stop unwanted process behavior.  

Figure 2.8 depicts a HIDS and where it fits into the scope of a computer host 

system. The HIDS, like the NIDS, scans all communications going into and out of the 

host. Additionally, the HIDS scans processes running on the host and ensures that inter-
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process communications are not performing system calls they should not be or partaking 

in any anomalous behavior. If so, the HIDS reports the behavior to a system administrator 

who can in turn tell the host to shut down the potentially malicious processes or external 

connections to the host.  

 
Figure 2.8 Host-Based IDS 

Security Onion 

IDSs come in many flavors and configurations. It can be difficult for security 

teams to set up and integrate the features of many different IDSs. In this circumstance, it 

may be desirable for security teams to adopt an IDS security suite which houses and 

integrates many different IDSs. One example of an IDS security suite used for protecting 

an entire network is known as Security Onion, a Linux-based OS security platform. 

Instead of installing and configuring each security tool one by one, Security Onion offers 

different IDS security components that can be enabled, configured, and integrated 
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together seamlessly. Security Onion’s tools have the capability to analyze all the network 

traffic moving on the network it is attached to. Security Onions can analyze the traffic for 

intrusions, generate security alerts, perform corrective actions in response to alerts, and 

log all actions into a database to profile each network endpoint. Security Onion offers a 

couple NIDS to sniff all traffic moving onto the network to which it is attached, such as 

Zeek and Snort. Additionally, Security Onion offers analyst tools that can be used by 

network administrators to view the profiles of connections, network packets, transmitted 

files, etc. Security Onion also can serve as a central point of communication for HIDS 

running on each host on the network. Using HIDS such as OSSEC, alerts and logs can be 

stored and sent to the central Security Onion server to alert system administrators of 

suspicious behavior or intrusions occurring on hosts connected to the network.  

Network Enclave 

As seen in the section titled Typical ICS Facility Structure, each of the different 

regions of the industrial control facility have isolated enterprise, supervisory, and field 

networks. These network subregions are known as network enclaves. Network enclaves 

are meant to restrict access to certain portions of the network to increase security and 

reduce traffic on the same network channels. Each of these network enclaves have 

different functional purposes and connectivity requirements. Network enclaves allow for 

the separation of network resources and tailoring of what connectivity they have to the 

rest of the facility [9, 13].  

Network enclaves also allow for network resources to be distributed without any 

interaction to unrelated enclaves. This improves network performance as network traffic 

is distributed along branches of the network as opposed to all traffic moving through a 
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main branch. As described in the section titled Removal of Unnecessary Resources, the 

removal of unnecessary resources is critical to reducing the attack surface of the system 

being protected. By removing unnecessary connectivity via network enclaves, the attack 

surface is reduced because attackers do not have as much facility to move laterally within 

a large spanning network [9, 13]. Since the network traffic is distributed, attackers also 

do not have the capability to listen to all traffic moving on the network, and only within 

the enclave to which they have access. 

While the large network enclaves have DMZs between them, such as the 

enterprise layer and the supervisory layer, the network can be further divided into smaller 

network enclave subregions within each of these larger layers. For example, the 

management layer may have an accounting division, a resource planning division, a 

marketing division, etc. Figure 2.9 depicts an example of a network enclave structure in 

an ICS environment.  
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Figure 2.9 ICS Network Enclave 

Threat Modeling & Intelligence 

Due to the nearly infinite possible attack vectors known and unknown, the real 

challenge to ICS security is knowing where to apply these security protections in a way 

that makes a difference. Without any knowledge of what the attack surface looks like, 

implementing secure communication protocols or integrating an IDS into a network may 

result in nothing at all. Only by understanding the attack surface and threats to an ICS, 

can protections be applied and make a difference. By bringing all the security elements 

together, ICS network administrators are left with an abundance of tools and information, 

but perhaps lack the knowledge and/or perspective of how to assemble, configure, and 

maintain the security system. Security teams may be left without somewhere to build an 

understanding of their attack surface, and subsequently the forming of a fortified security 

posture. 
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However, there are many tools that have been developed for enterprise, corporate, 

and industrial environments to combat against small, or potentially very large threats 

such as APTs. Some of these tools might seem very intimidating to a smaller ICS facility 

comprised of a few individuals, without a network team, who are responsible for securing 

the facility to protect investments and intellectual property. An organization that does a 

phenomenal job at distilling this information is known as the MITRE Corporation. The 

MITRE ATT&CK Framework is an organized database that provides threat modeling, 

detection, and mitigation capabilities for many different industries. The framework 

details common APTs, their tactics, techniques, and procedures (TTP). The framework 

also details methods of detecting and mitigating the impact these TTPs have in the event 

of an attack. ATPs and their TTPs have been recorded and publicly posted so that the 

world can learn from their actions, and how to protect against them in the future. With an 

abundance of threats, attacks, and databases of logged attacker behavior, the MITRE 

ATT&CK Framework presents all the information necessary for the protection of ICSs 

with smaller network teams to large ICS facilities with large and sophisticated network 

teams dedicated to attack, analysis, and defense [15].  

MITRE ATT&CK Framework 

The MITRE ATT&CK Framework was created in 2013 as an open-source tool to 

document attacker tactics and methodologies, whether small or large. The Framework 

offers a large database of 12 different tactics that ATPs perform to infiltrate networks and 

perform actions once on the network [15]. The framework categorizes the tactics into 12 

categories: 
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1. Initial Access   – getting into a network 

2. Execution                – running malicious code 

3. Persistence   – maintaining a foothold 

4. Privilege Escalation   – attaining higher level permissions 

5. Defense Evasion   – avoiding detection 

6. Credential Access   – stealing account names and passwords 

7. Discovery    – understanding the environment 

8. Lateral Movement        – moving within the environment 

9. Collection   – gathering data of interest to meet their goal 

10. Command and Control    – communicating with/controlling compromised systems  

11. Exfiltration   – stealing critical data 

12. Impact    – manipulating/interrupting/destroying systems and data 

Within the MITRE ATT&CK Database, there are a plethora of attack methods 

within each category. Each type of industry, whether medical, industrial, or corporate, 

has APTs that persistently attack them. Within each industry, the 12 categories contain 

the TTPs used by ATPs and suggestions for mitigation techniques are made. With this 

information, building an attack surface for the desired application becomes streamlined. 

With tools such as their ATT&CK Navigator, a categorical matrix representation of an 

attack surface can be visualized [15]. The levels of risk and security capability associated 

with each threat can be used to generate heat maps of the attack surface to depict where 

weaknesses lie. Figure 2.10 [28] depicts an example of a generated heat map. 

There are four key uses cases that the framework offers in building a holistic 

defense system [15]. The four main use cases of the Framework are: 
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1. Threat Intelligence – what threats and methodologies are present for the 

application 

2. Detection and Analysis – how to build detections and analysis tools for known 

threats 

3. Emulation – how to mimic known threats to increase extensiveness of 

detection 

4. Assessments – how to measure defenses and enable improvements in the 

future 

 
Figure 2.10 ATT&CK Navigator Heat Map 
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Threat Intelligence 

Applying defenses for every type of threat or attack can be time consuming for an 

organization, especially those with large amounts of resources such as an ICS facility. In 

addition to the time required to address every type of threat, designing IDSs with rules 

and policies for every single existing threat will result in a slow security system. If an 

IDS applies each rule/policy for all network traffic, the system will be slow, inefficient, 

and incapable of monitoring all traffic. For this reason, the ATT&CK Framework is well 

suited for any organization who wants to employ a threat-informed defense where they 

approach their defensive posture from a pragmatic and well-informed point of view. The 

ATT&CK Framework enables organizations of any size to build their security tools 

around threat intelligence on relevant threats and their TTPs [15]. 

Within the ATT&CK database, queries can be made into specific industries and 

their systems to build an attack surface based on the recorded TTPs of ATPs in that area. 

In the case of ICSs, MITRE has an entire website dedicated to threat intelligence for 

ICSs. From their website you can view the relevant APTs and the TTPs they have 

employed against ICS facilities worldwide.  

Detection & Analysis 

After performing threat intelligence, the next step is to choose and configure the 

IDSs in a facility network. Each system has its own configuration techniques and 

understanding the syntax and approaches of TTPs is necessary in putting up the detection 

mechanisms. There are many different open-source databases with the internet registries 

of these attacks to be studied and understood. MITRE themselves has their own 

ATT&CK Framework database for all submitted attacks under their recognized APTs. 
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Using this information, custom rules and policies can be applied to the IDSs within an 

organization [15]. 

In addition to configuring IDSs, MITRE offers suggestions on other types of 

detection and mitigation techniques for each TTP. For example, in the category of 

Impact, there exists the known technique of Firmware Corruption. The framework offers 

resources on how this has been performed and offers the detection mechanism of logging 

and monitoring all attempts to read/write to the BIOS. Within this TTP, there are three 

different mitigation techniques suggested: Boot Integrity, Privileged Account 

Management, and Software Updates.  

For each relevant category, the framework can be utilized to gather detection and 

mitigation techniques to build up the security mechanisms of an organization. With this 

information, organizations may begin to configure rules that define the behavior of their 

IDSs and form mitigation techniques to protect against the ATPs that exist in their 

industry. Once protections have been put in place, the IDSs and mitigation techniques can 

be developed further by red teams and blue teams within the organization [15]. Over 

time, a strong and holistic security posture can be formed. 

Emulation 

While ATPs behavior is documented and strong detection and mitigation 

techniques can be formed, ATPs are sophisticated and adaptive. ATPs often form new 

tactics to circumnavigate protections put in place to ward against their previous efforts. 

For this reason, it is important to get in the mind of an adversary and attempt to emulate 

their types of attacks. Red teams and blue teams can attempt to breach and defend their 

organizations systems to test the comprehensiveness of defenses and expose any 
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weaknesses. Without emulation, it is difficult to determine whether the detection and 

mitigation techniques are effective.  

While it is much more difficult to cover a lot of different emulations in a single 

organization, there exist tools to help the automation process of adversary emulation. An 

example of emulation tools that map well into the ATT&CK Framework is known as 

Atomic Red Team. It offers different tests which can execute automated attacks against 

an organization’s network to test the effectiveness of detection and mitigation techniques 

put in place. While they only focus on a singular attack technique, hence the name 

atomic, these tests are set up in such a way that they can be tested in sequence cover a 

wider area. Over time, network security teams can expand their covered attack surface 

greatly by taking a targeted approach towards emulating different attack techniques made 

by the APTs that are the biggest threats to their organization [15].  

Assessments 

The final major use case for the MITRE ATT&CK Framework is utilizing the 

framework to assess on an organization’s security posture. By doing an assessment on 

defenses, one may find areas that are lacking in security and make improvements. 

Assessments, like any of the other use cases for the Framework, can be utilized by any 

size of organization seeking to bolster security defenses. MITRE suggests assessments be 

taken in 3 incremental steps: 

1. Assess the coverage of defenses using the ATT&CK Navigator 

2. Identify the most vital gaps that exist in defense coverage 

3. Modify defenses to fill those security gaps 
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This process of repeated threat intelligence gathering and assessment should be 

periodically repeated because the capabilities of attackers are always evolving and 

growing stronger, and so should an organization’s defenses. By doing this, a heat map 

can be updated frequently to show improvements, and where general weaknesses lie in an 

organization’s security coverage. Once coverage has been assessed, organizations can 

begin creating priorities for implementing change [15]. Now that the organization knows 

where change should be implemented, detection and mitigation techniques can be 

created, and the cycle continues. 
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CHAPTER 3: RESILIENT ICS DATA 

To understand how this thesis fits in relation to ICS security, a larger perspective 

is required. Several concepts form the foundation of this thesis: system functions and 

interactions, adversaries and threats to industrial control, the thought process of 

adversaries, and modern ICS security practices. Each of these elements come together to 

form a more complete view of ICS system security, cyber resiliency, system/data-level 

resiliency, and how each can be addressed. This chapter proposes a data acquisition 

system with the main purpose of increasing resiliency, including cyber, system, and data. 

Trust and vulnerability are common struggles for modern ICS security engineers. 

Vetting data for trustworthiness is critical, as illegitimate data may be presented to 

IDS/IPSs by adversaries or because of degrading devices. Perhaps an ATP has 

compromised equipment in the field that is responsible for reporting information to an 

IDS. This device could be a PLC with corrupted firmware, or a compromised or a 

physically degraded or broken sensor or actuator. Anything that can report false 

information may cause cascading side effects for functionality and system security. This 

thesis seeks to provide a relevant solution to the pervasive issue of false information 

within the control hierarchy.  

There are other avenues of research that align with what this thesis proposes [24]. 

One such avenue is the application of additive layer manufacturing (ALM), where circuit 

features and functionality are applied on top of one another, rather than the typical 

subtractive silicon approaches. However, circuit modifications via 3D printing 
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technologies run the risk of adversarial interference. In the case where an adversary has 

compromised an ALM control system, the adversary may have the ability to change 

circuit topology and behavior. This is accomplished by interfering with the control 

process, leading to cascading security concerns post-manufacturing. Dawson pursues the 

formation of an IDS via an out-of-band data acquisition unit in a test environment [24]. 

This thesis expands on the research proposed by Dawson et al. [24] by designing and 

demonstrating a data acquisition unit compatible with general ICS applications. 

The Proposed System 

This thesis provides the missing link in modern ICS security systems and attempts 

to implement a device that provides increased visibility at the lowest level of the control 

hierarchy. This device is a new type of data acquisition unit that may be deployed within 

control processes for an out-of-band data channel control process I/O. The proposed 

system monitors, records, and verifies control/sensor voltages/currents to verify the 

legitimacy of data being reported back from the control system. If any of the control 

process components are damaged or compromised, the data may not reflect reality, and 

the proposed system addresses these concerns. For example, a damaged sensor may 

report inaccurate data, or a compromised PLC may purposefully report false or 

misleading data.  

To address these issues the proposed data acquisition unit converts the physical 

electrical signals of the control process out-of-band from the PLC. It then reports the 

information to a network endpoint that contains an IDS/IPS as a form of verification of 

in-band control process I/O values. The out-of-band and in-band data can be synthesized 

and analyzed by the IDS/IPS to build trust in ICS data sources. If there are any 
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discrepancies in the data being collected, then the sources may be degrading, damaged, or 

compromised. The IDS may alert security and system engineers to shut down systems 

and address the discrepancy. Figure 3.1 depicts the proposed data acquisition system and 

how it fits into the ICS model. 

One application of this data acquisition system may have been of benefit during 

the devastating ICS data subversion attack, Stuxnet. Compromised firmware within the 

PLCs were forcing Iranian centrifuges to accelerate but were reporting false RPM back to 

servers. If this data acquisition unit were installed at the electrical contacts of a centrifuge 

control system, the visibility on the physical state of the system may have enabled an IDS 

to detect the attack. By noticing a discrepancy in the data being reported to the IDS, an 

alert could have been generated and security engineers could have halted systems before 

the severe damage occurred. 
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Figure 3.1 Proposed Thesis Contribution 

 
An additional application of this data acquisition system is for verification of 

control process data used as training data for machine learning security algorithms. Some 

machine learning algorithms are trained to understand normal control process behavior to 

detect anomalies. If the systems used for training data are already compromised, the 

algorithm will be taught the wrong lessons about reported typical behavior. Incorrect 

training would render the AI system incapable of detecting anomalous behavior, causing 

security problems in the future. Avoidance of compromised training data can be achieved 

by verifying the legitimacy of the data through the cross reference of data acquired by the 

proposed system. 
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There may be other data science applications for this data acquisition system. 

However, the main purpose of this thesis is to propose a new tactic, technique, and 

procedure for detecting anomalous or illegitimate data due to system degradation and 

infiltration. In chapters 6 and 7, the electrical hardware and software design will be 

discussed further to demonstrate how such a system is created, tested, and integrated into 

modern ICS security systems. 
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CHAPTER 4: CYBER RESILIENCY IN SYSTEMS & DATA 

Through observation of current security practices implemented in ICS facilities, it 

is clear there is an extensive variety of cybersecurity technologies to thwart the efforts of 

adversaries.  All the protections are put in place to secure something within the ICS 

facility whether it be credentials, intellectual property, or physical systems. In any case, 

security engineers must fully understand the systems they are attempting to fortify as well 

as the attack surfaces that exist. Much study, effort, and priority has been put into 

securing and fortifying existing IT systems in an effort to prevent attackers from getting 

into ICS networks initially. However, because of cases like Stuxnet where attackers have 

managed to infiltrate a network, detecting the adversary, and protecting internal systems 

becomes more difficult. This is an overarching relationship present between attackers and 

defenders of ICS networks; with each new successful attack, stronger and more resilient 

defenses must be devised. 

For this reason, there can never be a completely fortified ICS network, and it must 

be assumed that IT and OT systems are always at risk. The perceived attack surface 

might be covered, but the growing interconnectedness of IT/OT systems always provides 

opportunities for attackers to seep through the cracks. This chapter discusses 

cybersecurity elements at a high level to exfoliate issues found within modern ICS 

security systems. To begin, system thinking is used in threat intelligence considerations 

and will be expounded upon, revealing its role in proper modern cybersecurity system 

implementations [11]. The second portion of this chapter covers concepts of cyber 
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resiliency. Next, a discussion on system resiliency reveals broader implications related to 

cyber resiliency and modern IT/OT security practices. Finally, this chapter discusses a 

lacking element of cyber/system resiliency considerations in ICS security, data resiliency.  

System Thinking 

In the face of APTs and their relentless crusade against many industries, 

cybersecurity personnel must think in terms of systems to have a more complete 

understanding of the attack surface of IT/OT systems. One method of inspection which 

offers an advantageous perspective of attack surfaces within whole systems is known as 

“System Thinking”. System thinking requires a deconstruction of the system design into 

its primary components, behavior, and purpose. When a system is broken down into its 

fundamental elements, understanding their relation to the whole system becomes clearer. 

This process aids in creating cybersecurity solutions that fit well into the system and do 

not increase the attack surface elsewhere. This can be a time-consuming task as complex 

systems are generally interconnected, and a complex system can have feedback where the 

entire system interacts with itself [11]. Therefore, small changes to systems or security 

may cause cascading consequences throughout the rest of the system. For example, a new 

functionality may be introduced to an ICS that initially allows the system to perform 

better or provide more security. However, unknown consequences may arise due to the 

feature’s connections with other components of the system, possibly providing the 

attacker a new avenue of entry into the system.  

Every technological system has hardware and software components, hardware-

defined and software-defined behaviors, and an overall functionality goal. The 

components may consist of processors, transducers, routers, programs, operating systems, 
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etc. The behaviors originate from how the software and hardware components are 

connected, integrated, or programmed. Components and behaviors come together to 

complete the system and to achieve an ultimate outcome whether it be maintaining the 

pressure in a tank, calculating credit score, or sending messages across the world. 

Every system has an overarching structure which is known as the system 

hierarchy; the system may have subsystems, and those systems may have subsystems of 

their own [11]. Viewing the system as hierarchical offers an advantageous perspective 

over the system when trying to identify and protect the attack surface of a system. This is 

especially true because this method of functional decomposition is exactly how ATPs 

find vulnerabilities within large and complex systems. Every layer of the hierarchy, 

whether it be the main system or the most simple and low-level subsystem, has an attack 

vector associated with it. By increasing the complexity, breadth, or depth of the system 

hierarchy, more attack vectors are exposed ultimately growing the attack surface.  

The process of observing and addressing security at the hierarchical level is 

known as “security in depth”. Every piece of the system may offer an avenue for 

attackers to enter the system, so it is critical that every layer of the system be addressed 

for attack vectors and suitable corresponding security protections [9, 12, 13]. The security 

in depth approach addresses a wide range of security concerns, from malware to 

educating system operators and users. Chapter 2 describes different types of protections 

and security practices for IT/OT computer systems and networks in depth.   

Unfortunately, modern ICS practices are often lacking in protection and 

verification of the physical systems processes that exist at the lowest level of the control 

system hierarchy. The concepts of cyber, system, and data resiliency can address these 
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concerns. There are many definitions of resiliency with respect to systems and their 

applications. Researchers have often used multiple attributes to encompass what 

“resilient” means with respect to the given application. Some sources claim that 

resiliency is the ability to rebound back from a failure, while others claim resiliency is the 

ability to withstand the forces that cause system failure [1, 5]. For the concept of 

resiliency, more definitions provide a broader context and encourage a well-planned 

cybersecurity approach. 

Cyber Resiliency 

A high-level concept of cyber resiliency provides a framework for breaking down 

resiliency in the cybersecurity environment. NIST defines cyber resiliency as “the ability 

to anticipate, withstand, recover, and adapt from adverse conditions, stress, attacks, or 

compromises on systems that use or are enabled by cyber resources” [22]. The goals of 

cyber resilient systems are the following [22]: 

1. Anticipate: Maintain a state of informed preparedness for adversity. 

2. Withstand: Continue essential mission or business functions despite 

adversity. 

3. Recover: Restore mission or business functions during and after adversity. 

4. Adapt: Modify mission or business functions and/or supporting 

capabilities to predicted changes in the technical, operational, or threat 

environments.  

Within the context of these goals, here are eight objectives listed by NIST that aid 

in the forming of cyber resilient systems, and they are the following [22]: 
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1. Prevent: Preclude the successful execution of an attack or the realization of 

adverse conditions. 

2. Prepare: Maintain a set of realistic courses of action that address predicted or 

anticipated adversity.  

3. Continue: Maximize the duration and viability of essential mission or business 

functions during adversity. 

4. Constrain: Limit damage from adversity.  

5. Reconstitute: Restore as much mission or business functionality as possible after 

adversity. 

6. Understand: Maintain useful representations of mission and business 

dependencies and the status of resources with respect to possible adversity. 

7. Transform: Modify mission or business functions and supporting processes to 

handle adversity and address environmental changes more effectively. 

8. Re-Architect: Modify architectures to handle adversity and address environmental 

changes more effectively. 

Within these definitions are a few objectives that pertain to the proposed data 

acquisition system introduced in Chapter 3. First and foremost, the data acquisition 

system’s main goal is to aid in the prevention (1) and constraining (4) of adversity via 

degradation and infiltration of ICS OT. Prevention and constraining of adversity are 

achieved through an understanding (6) of system level signals through increased visibility 

of the electrical behavior of ICS processes. This understanding, achieved through 

increased visibility, stems from the re-architecture (8) of the ICS environment. This re-



66 

 

architecture is what this thesis proposes, the integration of an out-of-band data acquisition 

system at the control process level.  

The specific implementation of cyber resiliency differs between applications, and 

along with the defined objectives NIST additionally lists techniques that can be 

interpreted and applied. The listed techniques in [22] are Adaptive Response, Analytic 

Monitoring, Contextual Awareness, Coordinated Protection, Deception, Diversity, 

Dynamic Positioning, Non-Persistence, Privilege Restriction, Realignment, Redundancy, 

Segmentation, Substantiated Integrity, and Unpredictability [22]. 

The cyber resiliency techniques that apply to the data acquisition system are the 

following [22]: 

1. Analytic Monitoring: Monitor and analyze a wide range of properties and 

behaviors on an ongoing basis and in a coordinated way. 

2. Contextual Awareness: Construct and maintain current representations of 

the posture of missions or business functions considering threat events and 

courses of action. 

3. Substantiated Integrity: Ascertain whether critical system elements have 

been corrupted. 

These three techniques apply directly to the proposed data acquisition system. The 

data acquisition system can be integrated into existing ICS analytic monitoring systems 

such as IDSs, widening the range of system signal inputs. In addition to widening the 

range of inputs, the data acquisition system provides out-of-band data channels which 

give both contextual awareness and increased visibility to the electrical behavior of 

control processes. By integrating the data acquisition system into existing analytic 
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monitoring systems, and gaining increased contextual awareness via increased visibility, 

a greater level of data integrity can be achieved. By comparing in-band and out-of-band 

channels of ICS data, discrepancies may point to degraded or corrupted system 

components. 

System Resiliency 

In the context of ICSs, a framework known as the R4 framework of resilience 

provides description of what resiliency is in the context of systems [3]. The four 

attributes listed are robustness, redundancy, resourcefulness, and rapidity. 

1. Robustness: the ability of systems, system elements, and other units of 

analysis to withstand disaster forces without significant degradation or loss of 

performance 

2. Redundancy: the extent to which subsystems, system elements, or other units 

are sustainable, that is, capable of satisfying functional requirements, if 

significant degradation or loss of functionality occurs 

3. Resourcefulness: the ability to diagnose and prioritize problems and to initiate 

solutions by identifying and mobilizing material, monetary, informational, 

technological, and human resources 

4. Rapidity: the capacity to restore functionality in a timely way, containing 

losses and avoiding disruptions 

The R4 framework tends to be thoroughly implemented in IT environments. 

Robustness is achieved via the implementation of systems which employ authentication 

and authorization to ensure system resources are given to entrusted users. Those systems 

also ensure a network enclave that separates and isolates network regions and provides 
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data integrity methods to ensure the transmission and storage of untampered data. 

Redundancy is achieved via backup servers and hosts which maintain service in the event 

of system crashes, and through storage of redundant data as backups. Resourcefulness is 

achieved via the implementation of intrusion detection systems which can analyze 

network traffic for bad actors and allow network administrators to shut down or deploy 

resources when problems arise. As a result of proper implementation of the first three 

attributes, rapidity can be achieved by network administrators, allowing timely isolation 

where problems arise and containing the problem locally to avoid cascading problems 

throughout the facility.  

Data Resiliency 

 IDSs and mitigation systems are implemented through many different means to 

meet the diverse demands of infrastructure. Some examples previously mentioned 

include the monitoring of network and host behavior, reduction of access, cryptographic 

methods, etc. However, the same considerations cannot be directly applied to OT where 

physical processes take place. In typical ICS security applications, emphasis has been 

placed on the fortification of systems in IT and the availability of OT information [5]. As 

a result, there is less focus on OT security and OT system/data resiliency. However, if an 

attacker has already infiltrated both IT and OT systems in examples such as Stuxnet, it 

becomes difficult to detect an attack due to compounding data subversion and 

obfuscation techniques [7, 10]. These types of attacks successfully obfuscate the reality 

of what is happening in the physical domain of systems.  

For modern ICS environments, the system and its operation are only as resilient as 

the data they use. From the IT perspective, the common cybersecurity practices do their 
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best to keep transmitted and stored data resilient. However, from the OT perspective, 

there is usually trust placed in the data returned from the PLCs. System engineers can 

frequently check the integrity of the programs and data within PLCs and may conclude 

that these devices are not compromised. Misplaced trust can cause substantial problems, 

as in the case of Stuxnet. The malware was stored in a rootkit, where program integrity 

checking does not work and therefore the data cannot be trusted. For this reason, it is 

important to apply the R4 framework to OT in the same capacity as IT [3].  

Of the four attributes to the R4 framework, redundancy is scarce in modern OT 

security practices. Significant trust is placed in field devices, which may have already 

been compromised and may be returning illegitimate data. Unfortunately, PLCs may be 

infected, or sensors and actuators may be compromised unknowingly during 

manufacturing by a third-party. This also feeds directly into the issue of contextual 

awareness deficiencies described in [22]. Without context of the data being received, a 

complete picture of the behavior of ICS OT cannot be formed.  

To regain trust lost by incomplete visibility in ICS field devices, a new method 

must be devised which can address the areas of deficiency. This thesis proposes a new 

type of out-of-band ICS data acquisition system that aids in the verification of in-band 

data being processed by control system and security technology. The data acquisition 

system is designed to offer increased control process visibility via an additional 

perspective on the physical processes being controlled. This additional data can be used 

to verify the legitimacy of ICS data and build trust with the data sources in the ICS 

environment. Without any visibility of ICS data available to check on the physical 
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environment, data subversion and data poisoning attacks will remain a large threat to the 

protection and operation of the systems which are the life and blood of ICS facilities. 
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CHAPTER 5: DATA ACQUISITION SYSTEM 

To demonstrate the proposed data acquisition system, an example design was 

created, assembled, and integrated into an existing control system. The acquisition unit 

was tapped into the example design’s electrical signals to gather, record, and monitor the 

behavior of the system. This chapter will cover the layout of the example design, some 

system failures due to degradation or infiltration, the layout of the data acquisition 

system, and the integration of the data acquisition system into the control system.  

Example Design 

For this thesis, a simple four-tank water flow control system was utilized to 

demonstrate the capabilities of a data acquisition system. For the purposes of 

demonstration, only one of the four tanks was used. Figure 5.1 is a diagram of the water 

tank control system. The system actuator is a water valve which controls the flow rate of 

water into a water tank. The system sensor is a pressure sensor that returns the water 

pressure inside the tank back to the PLC. The water valve is controlled by the PLC and 

opens or closes the water valve to control the flow rate of water being poured into the 

water tank. The bottom of the water tank has a fixed size drain where water empties into 

a reservoir that houses the water pumps. The flow rate out of the drain is proportional to 

the water pressure inside of the tank, which is proportional to the water level of the tank. 

The PLC firmware was designed to control the level inside of the water tank via the 

control feedback loop. The value of water pressure inside of the tank and the desired 

water level inside of the tank are used by the PLC to drive the water valve to a position. 
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While the system is simple, it is enough to demonstrate the different types of sensors, 

actuators, and control mechanisms that can be monitored for deterioration or 

compromised behavior. Figure 5.2 depicts the control loop for the water tank system. 

 
Figure 5.1 Water Tank Control System 

The control mechanisms are implemented within the PLC via a proportional, 

integral, and derivative (PID) controller. The PID controller accepts the desired tank level 

and the current tank pressure as inputs and is responsible for driving the position of the 

water valve whether fully closed, fully open, or somewhere in between. By controlling 

the water valve position, the PLC also controls the flow rate of water into the tank. The 

entire control system is implemented digitally. This means the PID controller is based in 

software, and all analog inputs are digitized and stored in the internal PLC register space. 

Analog I/O conversion is performed by analog-to-digital converters (ADCs) and digital-

to-analog converters (DACs) inside of the PLC. 
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Figure 5.2 Water Tank Control Loop 

 
The control system input, the water tank level, was designed to be an oscillating 

process in which the water tank level oscillates from 25% to 75% full over the period of 

an hour. To get the control system to track this water tank level with reasonable accuracy, 

the PID controller underwent a PID tuning process in which the different proportional, 

integral, and derivative gains are incrementally adjusted to meet the control system 

response requirements. By tuning the gains on the controller, a responsive water tank 

system was derived that is capable of closely tracking the desired water tank level. Figure 

5.3 depicts the recorded sinusoidal control process over the course of approximately two 

hours. This data was recorded via the data acquisition system and depicts the behavior of 

the water tank control output responding to the sinusoidal input.  
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Figure 5.3 Recorded Control Process 

 
Degradation & Infiltration 

In the age of cybersecurity, it can be easy to attribute failures that arise in the 

control system environment to the infiltration and attacks of an adversary. While this is 

an important concern, there also exists the possibility that the control system is degrading 

and breaking down. This section will detail the challenges in identifying and diagnosing 

failures when and after they occur and will give perspective into how the proposed data 

acquisition system may aid in this effort. With IDSs employed today, degradation and 

infiltration have become incredibly difficult to detect once introduced to the system. This 

thesis proposes an addition to the lowest level of the control hierarchy within this data 

acquisition system. This is done with the goal of offering increased visibility to physical 

devices that may be degrading or compromised. 

Degradation 

Within any control system, there are physical parts that electrically operate and 

perform work. In these environments, physical components are prone to degradation. 

Degradation may lead to undefined behavior that is difficult to anticipate and identify. If 
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a degrading component is not repaired, the system may sustain damages or fail entirely. 

The reason identification of degradation is such a challenge for system engineers is 

related to how control status signals are reported in the control environment. A PLC 

reports digital status information to the control network. Actuators and sensors return 

analog status information to the PLC which digitizes it. Due to the transient nature of this 

data transfer, if degradation interferes with status reporting anywhere along the chain of 

information flow, it may be difficult for system engineers to identify if and where a 

problem exists. 

Manufacturers tend to perform extensive degradation analysis on their products. 

Their findings are generally published in a reliability report or datasheet which details the 

common causes of failure and provides a predicted life expectancy of the device. Detailed 

in this report are many different statistical figures which combined form a reliability 

model. One of the key figures in this report is known as the Mean Time Between Failure 

(MTBF), which essentially gives the predicted duration of time between failures of a 

device. Another key figure is the Mean Time to Repair (MTTR). These figures come 

together to form the calculation for availability which is defined as: 

𝐴𝐴 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)⁄  

𝐴𝐴:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴;     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹;     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

Devices are designed so their availability is very close to one but are never 

perfect. For example, in Allen Bradley ControlLogix controllers, their anticipated MTBF 

is predicted to be at least 1 million hours and is often greater. With an advertised MTTR 

of 10 hours, that results in a high availability of 0.99999.  
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While devices are designed to have very high availability, these figures are 

calculated based on typical operating environments. If any of the devices are operating in 

anything outside of a typical environment, the predicted MTBF is going to be smaller, 

and failures should be prepared for and anticipated. 

Infiltration 

If an adversary has compromised any of the devices in the control hierarchy, data 

being reported in the chain of information flow may be illegitimate and hiding failures as 

an attack is in progress. While the example design is simple and houses a small number 

of components, there are still a few attack vectors present.  

The first method of infiltration compromises either the firmware or the hardware 

of the PLC. The firmware can be altered via a network intrusion into the ICS facility in 

which malicious code is introduced to the PLC. Introduced malicious code may give the 

adversary control over the device and data reporting, visibility over the control process, 

the ability to move laterally on the control network. The PLC may have been 

compromised during the manufacturing process or in transit, where an adversary may 

have infiltrated the third-party vendor to introduce malicious code and/or hardware 

modifications to the PLC.  

Once the PLC has been compromised, the adversary may gain complete control 

over the device. With complete control, the attacker may force devices to report false 

control status information and perform a data subversion attack. A data subversion attack 

is a circumstance where false status information is reported while control processes are 

driven to unstable operating conditions to cause failures and damage. This type of attack 

was performed via the Stuxnet computer worm against the Iranian nuclear program. 
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Another type of intrusion would be the introduction of malicious hardware 

modifications into the actuators and sensors sold by third-party vendors [25]. If the 

attackers were to introduce malicious hardware into the sensors or actuators, then the 

adversary might be able to perform a data subversion attack.  

System Integration 

The addition of a data acquisition system at the physical layer of the control 

hierarchy will offer visibility to combat the challenges that device degradation and 

compromise introduce. The proposed system is designed to be installed between any PLC 

and the sensors/actuators. The data acquisition system converts the electrical I/O signals, 

current or voltage, into digital values that are returned to the control network. This 

additional out-of-band channel of data can be used as a cross-reference to the in-band 

control data being reported via the standard flow of information from the PLC. If a 

discrepancy exists in any of the control signal data channels, such as the water valve 

position or water tank level, system engineers can halt the process and investigate the 

inconsistency before damage occurs. 

Chapter 6 details the electrical design of the data acquisition system. The function 

of the data acquisition system is to convert arbitrary control I/O signals into an 

appropriate range that can be digitized by an ADC. Once digitized, the values can be 

retrieved via a serial data interface on a microcontroller.  

Control processes are sensitive and designed around a system’s physics, therefore 

interfering with the control system’s electrical behavior can be devastating. The proposed 

data acquisition system is also designed to have negligible impact on the electrical 

behavior via the implementation of a high impedance amplifier circuit. The high 
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impedance is designed to stop any control system power from leaking into the data 

acquisition system. Additionally, the data acquisition system is designed to be highly 

configurable and compatible with different forms of control signals, whether they be 

current controlled, voltage controlled, or PWM controlled.  

The ADC circuit is the second portion of the data acquisition system. The ADC 

circuit is designed to have a microcontroller interface to select and retrieve the digitized 

value of an I/O signal. The software running on the microcontroller asserts a signal to 

select which control I/O signal it wants to retrieve, and the ADC circuit returns the 

specified data. Both the high impedance amplifier circuit and the ADC circuit were 

designed and manufactured onto a single printed circuit board (PCB). This PCB can be 

mounted onto a microcontroller for easy integration.  

The final portion of the data acquisition system is the microcontroller and its 

software, which are used to extract real-time I/O data. An example software design was 

created to demonstrate the capabilities of the data acquisition hardware. Chapter 7 details 

the software design of the hardware device driver and a simple data monitoring system. 

The hardware device driver reads the control I/O signal values via a serial interface on 

the control tap circuit.  

For purposes of demonstration, a simple data monitoring system was 

implemented that compares the control tap values with values retrieved from the PLC. 

Realistically, the data acquisition from the system and PLC would be transmitted to a 

network endpoint containing an IDS to aid in the detection of anomalous behavior. If any 

discrepancies are detected, alerts could be generated to halt production and investigate 
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the source of the error. Figure 5.4 depicts where the proposed control monitor would fit 

into the example control system design. 

If any alerts are generated, system administrators and engineers could investigate 

the cause and backtrack to determine the cause of the system deviation. This gives the 

administrators and engineers an additional point of reference to understand where the 

problem lies: whether it is a compromised hardware device and/or program, or simply a 

degrading device in the field.  

 
Figure 5.4 Water Tank Control System with Monitor 
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CHAPTER 6: HARDWARE DESIGN 

Control Tap Overview 

Monitoring and tracking of the analog I/O signals from sensors and actuators are 

normally performed by the PLC. However, a beneficial feature the control tap circuit 

provides is an out-of-band avenue of data at the physical layer of the control hierarchy. 

By obtaining the analog signals on an out-of-band channel from the PLC and its network 

connection, security administrators have a second point of reference with which to 

compare in-band I/O values. This comparison may enable security administrators and 

engineers to detect discrepancies between the channels, which could be a sign of system 

degradation or infiltration.  

To record the analog signals and use them in the digital world, the signals must be 

converted from analog to digital values. While this may seem like a trivial task, the 

electrical design of the data acquisition unit must not interfere with the control system. 

This chapter describes the design process of the data acquisition circuitry that produces a 

digital value which can be utilized by data scientists and security teams. The electrical 

design consists of a few amplifier circuits that condition the control I/O electrical signals 

within a range of voltages that can be converted to a digital value by an ADC. Each 

amplifier circuit will contain different electrical and amplification stages. The electrical 

and amplification stages are linked in series and the final amplification stage is presented 

to the input terminal of an ADC. All amplification stages, ADCs, and power supplies 
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come together to form an amplifier sensor circuit. The flow of information from ICS 

control I/O to out-of-band data is presented in Figure 6.1. 

 
Figure 6.1 Amplifier Sensor Circuit Block Diagram 

 
One challenge in the design of the amplifier circuitry is preventing electrical 

interference with the physical control process. Each of the actuators and sensors send and 

receive electrical signals to perform the control and command of the physical process. If 

these electrical signals are modified in transit to their destinations, then the control 

process will be disrupted. Control processes are designed around the physics of the 

control system and must not change how the system electrically behaves. To prevent this, 

the amplifier circuits were designed to have high input impedance. By doing so, 

negligible current (and subsequently power) leaks into the control tap circuit.  

Amplifier Sensor Circuits 

There are a few different amplifier circuits that may be required, depending on the 

type of electrical I/O signals utilized by the control system application. A control system 

may have current controlled, voltage controlled, or pulse-width modulation (PWM) 
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controlled I/O. For this reason, the data acquisition system features amplifier circuits 

compatible with each of these different forms of electrical control.  

Typically, there are industry-accepted ranges of electrical signals used in ICSs. 

The first and most common type of electrical control signal used in the ICS industry is 

low power current, typically ranging from either 4 mA to 20 mA or 0 mA to 20 mA. The 

second most common type of electrical control signal used is voltage which can typically 

range from -10V to 10V, 0V to 5V, 0V to 10V, etc. The final type of electrical control 

signal is low power PWM which typically has voltage levels of 0V and 5V with a varying 

duty cycle.  

ADCs will convert an analog signal to digital value based on a reference voltage, 

VREF. If an ADC produces digital values with N bits, then numbers from 0 to 2N – 1 will 

represent the input analog voltage from 0V to VREF.  The number 0 would represent 0V 

and the number 2N – 1 would represent the reference voltage VREF. The analog to digital 

conversion process is presented in Figure 6.2 [27], where the analog signal u(t) is 

converted to a digital signal D with N bits.  

 
Figure 6.2 Analog to Digital Conversion Process 
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Sometimes a control system may not utilize the full electrical range when 

controlling a device. If the output of the amplifier circuit utilizes a portion of the voltage 

range of 0V to VREF , then the output of the ADC will not utilize the full digital resolution 

of N bits. This is suboptimal, and cases like this occur frequently. For example, a heater 

may only require a 3V to 6V range while the entire control system has a 0V to 10V 

supply. In this case, only 30% of the digital space would be utilized by the ADC. For this 

reason, each amplifier circuit on the control tap is designed to have modular amplification 

stages to fine tune the output voltage based on the input criterium of the ICS application.  

Current Sensor Circuit 

Before the current inputs and outputs of a control system can be converted to a 

digital value and measured, they must be converted to a voltage. To achieve this, a 

resistor can be placed in series with the I/O signal to measure the voltage drop across it. 

By using Ohm’s law V = IR, current can be calculated by modifying the equation to I = 

V/R. However, placing a resistor in series with the load may alter the electrical behavior 

of the control system, which is unacceptable. To avoid this, using a very small resistor in 

comparison to the load will add negligible change to the total resistance while still 

allowing measurement of the voltage across the resistor. 

Amplifying the differential voltage across the resistor will require a differential 

amplifier circuit to produce an output voltage referenced to ground. This setup could 

convert a 0 mA to 20 mA signal into a 0 V to 4V output signal. Figure 6.3 depicts a 

differential amplifier circuit and its gain equation. If the control system is using a smaller 

range of the total current range, for example 10 mA to 15 mA the of 0 mA to 20 mA, then 

a second differential amplifier circuit is required produce the same 0V to 4V output 
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signal. This is done via a second differential amplification stage. In this second stage, the 

lower end of the voltage range is subtracted from the input and then amplified. The 

circuit was designed to produce a final output that is within the acceptable range of 

voltages for the ADC. Figure 6.4 depicts the current amplification stages performed by 

the control tap circuit before producing a digitized value.   

 
Figure 6.3 Differential Amplifier Circuit 

 
Figure 6.5 depicts each of the sub circuits of the current sensing circuit. The first 

electrical circuit is the sensing resistor in series with the control system load. The second 

electrical circuit is a voltage divider network that divides the voltages on either side of 

the sensing resistor. This voltage division is performed due to the electrical limits of 

amplifiers. Amplifiers are rated for maximum voltages, and because the ICS application 

may be using voltages that exceed these limits, voltage division may be required. 

Additionally, the voltage divider network is implemented using high impedance resistors 

to maintain the high impedance of the control tap circuit. After the voltage divider 

network, the divided voltages are input into buffer amplifier circuits. These amplifiers are 

electrically isolating due to their naturally large impedance and ability to buffer the 
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control system from the sensing circuit. The outputs of the buffer amplifier circuits are 

the positive and negative inputs to the first differential amplifier stage. The output of the 

first amplifier stage is the positive input to the second amplifier stage, and the negative 

input is an adjustable voltage supply that subtracts the low ended voltage before 

amplification. Finally, the second stage differential amplifier output is connected to an 

ADC.  

 
Figure 6.4 Current Amplification Stages 

 
Figure 6.5 Current Sensor Amplifier Circuit 
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In summary, there are five different electrical or amplification stages used in the 

current sensing circuit to produce an output voltage within an acceptable range for an 

ADC. This circuit was designed to be configurable for different ICS applications without 

impacting the control process due to high input impedance.  

Voltage Sensor Circuit 

The voltage sensing circuit follows the same principles as the current sensing 

circuit. The main difference between the two circuits is that there is no sensing resistor or 

buffer amplifiers to measure a voltage across the resistor. Instead, a voltage is already 

provided, and the first stage of amplification is a standard single-ended amplifier. The 

voltage divider network and second amplification stage of the voltage sensing circuit is 

identical to the current sensing circuit. Figure 6.6 depicts the visibly simpler voltage 

sensing circuit. 

 
Figure 6.6 Voltage Sensing Amplifier Circuit 

PWM Sensor Circuit 

The PWM sensing circuit follows the same principles as the prior two circuits. 

The PWM signal needs to be averaged before conversion to an analog representation of 

the duty cycle. Because of this, there is a distinct difference in the PWM sensing circuit 
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from the other two circuits. Instead of a first stage of amplification, the PWM signal goes 

through a second order low-pass filter to integrate the signal to an average value. Figure 

6.7 depicts how a PWM signal and its varying duty cycles can be averaged to a stable 

output voltage. 

 
Figure 6.7 Pulse Width Modulation 

 
Once the voltage has been averaged out, the output of the filter can be sent into 

the second stage of amplification. The voltage divider network and second stage of the 

PWM sensing circuit is identical to the prior two circuits. Figure 6.8 depicts the PWM 

sensing circuit who’s first amplification stage is notably different than the previous two 

circuits. 
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Figure 6.8 PWM Sensing Amplifier Circuit 

ADC Interface 

Once the desired ranges of voltages are received from the chosen sensor amplifier 

circuit, the values can be digitized by an ADC circuit and retrieved by a microprocessor. 

The chosen microcontroller for the thesis proposal was a Raspberry Pi 4, which has a 40-

pin general purpose input/output (GPIO) interface for serial communication and general-

purpose digital control. The Raspberry Pi 4 also has a dedicated serial peripheral interface 

(SPI) hardware unit which can be configured and controlled through software via a 

hardware driver. The microcontroller can assert selection pins to select which ADC to 

read from via a chip selecting circuit. All the circuitry, from sensing circuits to ADCs and 

their chip selecting circuit, was designed and manufactured onto a printed circuit board 

(PCB). Once assembled, the PCB can be mounted onto the Raspberry Pi’s 40-pin GPIO 

interface for easy integration. This 40-pin interface and the pinout functionality is 

presented in Figure 6.9 [29]. 
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Figure 6.9 Raspberry Pi GPIO Interface 

SPI protocol is a serial communication protocol in which a master unit can 

communicate with one or many slave devices to read from or write to.  Figure 6.10 

depicts the common structure of an SPI master unit connected to SPI slave(s). SPI has 4 

different digital inputs and outputs: the system clock (SCLK), slave select (SS), master 

output / slave input (MOSI), master input / slave output (MISO). The clock signal drives 

the protocol and serves as the heartbeat to time each SPI transaction. The slave select is 

used to activate the slave with which the master is communicating. Lastly, the 

MISO/MOSI lines are used for duplex communication between the master and the slave.  

The only difference in between the SPI structure depicted in Figure 6.10 and the 

Raspberry Pi 4’s SPI interface is that the SPI interface on the Raspberry Pi 4 only has a 

singular slave select pin, meaning it is only capable of selecting a singular slave. For this 

reason, the ADC interface must also have a slave selecting circuit that can select as many 

slaves as it needs. The PCB is equipped with 4 of each type of sensing circuit, meaning 
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there are 12 ADC slaves on the board. To accommodate the need of 12 different slave-

select pins, a chip selecting circuit was devised.  

 
Figure 6.10 Typical SPI Structure 

 
This chip selecting circuit takes in 4 GPIO select signals, and a 4x16 decoder 

allows for the selecting of all 12 ADCs. The ADCs being used have active LOW slave 

select pins, meaning when the slave select line is 0V, the slave is active. The 4x16 

decoder uses active LOW selecting to meet these requirements. Figure 6.11 depicts the 

layout of the designed ADC chip selecting circuit.  
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Figure 6.11 ADC Chip Selecting Circuit 

This chip selecting circuit only allows for a single ADC to be controlling the 

MISO data bus at any given moment. When the master wants data from a slave, it will 

assert the necessary selecting pins and supply the SCLK to the slave devices. When this 

occurs, the activated slave will return its digitized value to the master over the MISO line 

one bit at a time. For example, if the Raspberry Pi 4 wants data from ADC number 7, it 

will assert the slave select pins {SEL3, SEL2, SEL1, SEL0} = ‘0 1 1 1’ (7 in binary) and 

send the SCLK signal until the transaction has been completed.  

The front and back of the PCB described in this chapter are presented on the next 

two pages in Figures 6.12 and 6.13. The schematics of the PCB design are included in 

Appendix A.  
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Figure 6.12 PCB and Raspberry Pi (front) 
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Figure 6.13 PCB and Raspberry Pi (back)
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CHAPTER 7: SOFTWARE DESIGN 

While the front end of the system is based in hardware, the remainder of the 

proposed data acquisition system is configured in software. For purposes of 

demonstration, a mock IDS process was designed to exhibit the capabilities of the data 

acquisition system. There are 3 main processes that are responsible for performing the 

data acquisition, monitoring, and detection of anomalous behavior.  

The first process reads and formats the serial data retrieved from an ADC before 

handing it off to the next process. A hardware driver communicates with the hardware via 

an SPI interface which is configured before any transactions take place. This serves as an 

application program interface (API) to any process that wants to retrieve out-of-band data 

from the hardware via requests and responses.  

The second process performs in-band data reads from a PLC via the ModBus 

protocol and has a very similar function to the ADC hardware driver. The ModBus reader 

process connects to a PLC over a TCP/IP network connection and reads register data 

from the PLC’s internal register space. This process serves as an API to any process that 

wants to retrieve in-band data from the PLC via requests and responses.  

The third process is a control monitoring process that interfaces with the two 

aforementioned processes. This process interfaces with both APIs to make read requests 

from designated ADCs or PLC registers. The process receives the responses of incoming 

data from the two APIs and performs simple control monitoring by comparing the data to 

each other. The control monitoring contains a file of a recorded normal process behavior. 

The process performs comparisons on the ADC data, PLC data, and known process 
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behavior data. In comparing these channels of data, discrepancies may arise. This process 

has settings to configure what level of discrepancies to trigger the generation of security 

alerts. Figure 7.1 depicts the control process flow and paths for inter process 

communication. 

In a real ICS environment, the IDSs employed are sophisticated and 

interconnected. The main purpose of this thesis is to understand the importance of, and to 

demonstrate increased control system hardware visibility via the data acquisition system. 

If data scientists should find the data acquisition system of benefit for their systems, they 

must determine how the data acquisition system can be integrated into their existing IDS 

infrastructure.  

 
Figure 7.1 IDS Software Flow 

The source code for each of the processes described in the next sections are 

included in Appendix B.  
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ADC Reader API 

The Raspberry Pi 4 comes equipped with a system on a chip (SoC), the 

BCM2835, which has many different integrated subsystems. Figure 7.2 depicts the 

BCM2835 SoC block diagram which details the CPU, GPU, memory, and some key 

peripherals typically used in embedded environments. The ADC reader API was written 

in C to access the SPI hardware driver libraries written for the BCM2835 SoC. This 

library is open source and can configure the settings of the SPI hardware peripheral. Once 

configured the library can read from and write to slaves via the designated SPI pins on 

the 40-pin GPIO header.  

 
Figure 7.2 BCM2835 SoC Block Diagram 

First, the API configures all the SPI settings. The process initializes all BCM2835 

peripherals such as the SPI module and performs error handling if any of these 

initialization steps were to fail. Second, the process performs the configuration of the 

initialized SPI module. Once SPI has been configured, the process begins a polling mode 
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where it waits for SPI transaction requests from another process. When a request is 

received, the ADC Reader API fulfills the request by reading from the appropriate ADC 

and responding with the formatted data.  

The ADC reader retrieved data from the appropriate ADC by asserting the GPIO 

selection pins associated with the ADC. Once asserted, the SPI driver is activated to read 

the raw serial data from the ADC over the MISO line. The ADCs are 12 bits, but the data 

that is received from the ADCs is contained in two 8-bit packets. The ADCs used were 

MCP3201s, and their datasheet details the format in which the data is received [23]. To 

make use of the received data, it must be modified to extract the 12 bits from the 

combined 16-bit data packet. Figure 7.3 depicts the formatting of the 16-bit data packet 

obtained from the MCP3201 datasheet.  

 
Figure 7.3 ADC SPI Transaction Format 

Additionally, the SPI drivers are only capable of performing 8-bit SPI 

transactions, meaning two separate SPI transactions must occur to read from the full 

buffer inside the ADC.  Based on this format, the first 8-bit buffer, buffer[0], will contain 
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the upper byte coming from the ADC. The second 8-bit buffer, buffer[1], will contain the 

lower byte coming from the ADC. Once the data has been retrieved, it needs to be 

converted to the 12-bit number that was originally stored inside the ADC. The bottom of 

Figure 7.3 depicts the logical operations used to perform this conversion ( << N is logical 

shift left by N bits. >> N is logical shift right by N bits. | is bitwise OR. & is bitwise 

AND. )  

PLC Reader API 

The PLC used in the test control system environment is the Allen-Bradley (AB) 

Micro 850. The PLC and its internal control process were configured and programmed 

using the free to use Connected Components Workbench developed by Rockwell 

Automation. Besides configuring the control process, the user can configure where 

different control process constants, variables, and control I/O is stored in its internal 

register space. The PLC Reader API was written to fulfill read requests to the PLC by 

retrieving register data via the ModBus protocol. Since ModBus is the industry standard 

protocol in the ICS environment for communicating with different control entities, it is 

also the protocol that defines the register space that the user can configure.  

The ModBus register space region is defined as a range of registers typically 

starting from address 0 and counting to 65,535. The first 10,000 (00001 – 09999) 

registers are write-only registers that are allocated for output driver switches which are 

digital outputs that activate and deactivate different physical components such as motors, 

relays, or valves. The second 10,000 (10001 – 19999) registers are read-only registers 

that are allocated for digital input contacts that store status information of different 

physical components. The third 10,000 (20001 – 29999) registers are read-only registers 
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that are allocated for analog inputs which hold the digitized values of feedback 

information being used for control, such as pressure level, speed, temperature, etc. The 

fourth 10,000 (30001 – 39999) registers are write-only registers that are allocated for 

analog outputs that drive the control process to perform physical actions such as 

operating a motor or increasing the temperature inside of a vessel. 

Since the Raspberry Pi 4 has ethernet and wireless communication abilities, it can 

be connected to the same network as the PLC. The PLC Reader process uses this network 

connection to read the internal register space and fulfill read requests in a similar fashion 

as the ADC reader process. The PLC reader process is configured with the static IP 

address of the PLC and the proper register address range for the control signals inside of 

the PLC.  

The PLC Reader process is simple, was written in Python, and makes use of a 

library called “uModBus”. The PLC reader process configures and establishes a network 

socket connection to the PLC. Once connected, it then enters its main program loop 

where it waits for a Modbus read request that it can initiate to the PLC. Once receiving 

the data back from the PLC, the process fulfills the request by responding with the 

internal register data.   

Control Monitoring Process 

The control monitoring process compares the PLC control process data, the data 

acquisition system’s data, and a record known control process. This is accomplished in 

real-time by requesting data from the PLC and ADC APIs. Periodically, the process 

requests data from both the PLC and out-of-band data acquisition unit and then records 

the data. Using this data, the process stores a constantly updated array of data recorded 
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from the PLC and data acquisition unit. The width of this array, and a few other 

parameters such as error tolerance and error count tolerance are configurable and can be 

used to tighten or loosen conditions required to generate an alert.  

The control monitoring process starts by priming the sliding time window with 

data from each of the input locations including: the control tap, the PLC, and the known 

control process. Once the window of time has been filled, the control monitoring process 

begins by comparing each of the time-series inputs with one another. In the case of the 

example control system, the primary control variable is the water level of the tank. The 

control process compares the both the control tap and PLC values to each other with the 

known control process. If any of the compared values exceed the tolerance boundaries, an 

alert is generated and handed off to the security alert process.  

Figure 7.4 depicts normal control process behavior without any disturbances to 

the control signals. Figure 7.5 depicts the normal control process behavior with an added 

disturbance in the system which is picked up by the data acquisition unit and PLC. In this 

case, the control monitoring system generates alerts signaling to the administrator alert 

process that both the data acquisition unit and PLC have returned control signals that 

deviate from the normal control process behavior.  

In addition to normal and disturbed process behavior, the data acquisition unit 

was able to detect instances where the PLC was reporting false information. Figure 7.6 

depicts an instance where a harsh disturbance was applied to the control system, yet the 

PLC reported normal behavior. Figure 7.7 depicts an instance where the PLC reported a 

completely different behavior than the physical control process behavior. In this case, the 

PLC reported a sinusoidal process while the control system followed a sawtooth 
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behavior. In both cases, the data acquisition system was able to detect a discrepancy in 

the false information presented by the PLC and the physical system behavior.  
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Figure 7.4  Normal Control Process Behavior 

 
Figure 7.5  Disturbed Control Process Behavior 
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Figure 7.6  Undetected Disturbance 

 

 
Figure 7.7 False Control Process 
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CHAPTER 8: FUTURE RESEARCH 

Artificial Intelligence & Machine Learning 

The main purpose of this Masters’ thesis is to propose and demonstrate a new data 

acquisition system at the lowest level of the control hierarchy. Integrating this data 

acquisition into a larger and more sophisticated IDS is outside the scope of this thesis. 

The control monitoring software implemented in this thesis is rudimentary and for 

demonstrative purposes. Realistically, industrial control facilities have more sophisticated 

real-time IDSs which involve databases of historic behavior, rule sets, and some form of 

machine learning (ML) with artificial intelligence (AI). By training some form of AI 

algorithm with known and expected behavior, industrial control facilities can detect and 

prevent attacks when they are occurring in real time by detecting anomalous behavior.  

IDSs are frequently used in signature-based environments such as networks or on 

operating systems. However, for the purposes of protecting the physical control 

processes, there have been studies and implementations of IDSs that train AI to detect 

anomalous behavior at the control process level. The control process signals are digitized 

inputs and outputs that are being controlled by PLCs in the Field Layer. By training AI 

with many instances of this control process data, the AI can detect small to large 

deviations from the expected behavior.  

Unfortunately, this intrusion detection model begins to deteriorate when trust in 

the training data and real-time data is compromised. In attacks such as data poisoning or 

data subversion, control process data being returned from the PLCs can be illegitimate 
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and cause problems in the training and detection phases of the AI/ML IDS model. If the 

data is compromised, it may cause the AI/ML algorithms to misclassify unwanted 

behavior. This can cause detection problems because the AI within the IDS has been 

trained to classify improper behavior as expected and normal. In addition to data 

poisoning during the training phase, component degradation and data subversion attacks 

during the detection phase may cause data to be illegitimate and appear normal while 

failures occur. In this circumstance, the IDS receiving illegitimate data may not be able to 

detect the unwanted behavior. 

For this reason, the work of this thesis may be of use in the field of AI/ML [3]. 

This out-of-band channel of control process information recorded at the control process 

layer may be leveraged as an additional input to these AI/ML algorithms. By having in-

band and out-of-band data acquisition channels, increased visibility may enable AI/ML 

algorithms to detect small discrepancies in the channels of data, signaling component 

degradation or a data subversion attack. Additionally, the data acquisition system can be 

used to verify the legitimacy of the data used in the training of AI/ML algorithms. By 

integrating the proposed data acquisition system into existing ICS IDSs , ICS security 

may be bolstered increasing system visibility and data resiliency.  

FPGA Data Acquisition 

The proposed data acquisition system introduces new vulnerabilities to the ICS 

network. The microcontroller performing data acquisition is running software on an 

operating system or bare metal resources. This exposes avenues on the ICS network by 

which attackers may inject code to compromise the out-of-band data acquisition system. 

An approach that would fix this problem would be to design the entire data acquisition 
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system in hardware. In an architecture entirely comprised of hardware, there would be no 

avenues by which the attacker could inject malware into the data acquisition system. 

A versatile method of implementing a hardware data acquisition unit is via the 

utilization of a field programmable gate array (FPGA). FPGAs are reconfigurable 

hardware units that are commonly used in hardware prototyping or hardware systems that 

require functional flexibility and low cost. FPGAs are equipped with many different 

types of resources that are used to implement custom hardware logic and computational 

solutions repeatedly on the same chip. Within FPGA’s there are configurable logic blocks 

(CLBs), I/O blocks, memory blocks, interconnect lines, etc. Configurable logic blocks are 

used to implement user logic. I/O blocks are used to transport data in and off the FPGA 

chip. Memory blocks are used for data storage. Lastly, interconnect lines are used to 

connect and route these resources together to form a complete hardware design. Figure 

8.1 highlights these commonly used resources.  

 
Figure 8.1 FPGA Resources 
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For purposes of demonstration, a simple FPGA data acquisition unit was designed 

and integrated with the PCB described in Chapter 6. The FPGA board used in this 

demonstration was the Digilent Nexys4 DDR FPGA board. The FPGA hardware design 

was specifically created to replace the data acquisition functionality of the Raspberry Pi 

microcontroller. In the example design, a serial universal asynchronous receive/transmit 

(UART) connection is made through the FPGA. This connection is used to send data 

packets containing the desired number of the ADC. Once the packet is received by the 

FPGA, the FPGA logic asserts the necessary chip selecting signals to activate the desired 

ADC. Once the ADC is selected, the FPGA design uses the SPI protocol to retrieve the 

data packet from the ADC. Once the data is acquired, it is returned to the PC host over 

the serial UART connection. Figure 8.2 depicts the layout of the FPGA data acquisition 

system. Figure 8.3 depicts the block design programmed into the FPGA.  

 
Figure 8.2 FPGA Data Acquisition System 
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Figure 8.3 FPGA Block Design 

Figure 8.4 shows the connections made between the PC, the FPGA board, and the 

PCB. The USB UART connection is on the left of the green FPGA board. The GPIO and 

SPI signals were connected from the FPGA board to the PCB using jumper cables.  

 
Figure 8.4 FPGA / PCB Connection 
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Figure 8.5 depicts an oscilloscope capture of the SPI clock (yellow), and the SPI 

data packet (blue). Figure 8.6 depicts the data being returned to the PC via the serial 

connection and displayed in a terminal. While the design is very simple, the main purpose 

of this demonstration was to show how an FPGA could replace the microcontroller in the 

data acquisition system. In doing so there is no operating system or software running in 

the entire design.  

 
Figure 8.5 SPI Waveform 

 
Figure 8.6  Serial Terminal Data Responses 
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However, there are many improvements that can be made to this hardware design. 

The FPGA development board has unnecessary peripheral interfaces and resources 

equipped that could potentially expose vulnerabilities to the design. This design can be 

improved by integrating the FPGA chip onto the PCB to keep the data acquisition unit 

tightly coupled to a single board. Lastly, since ICS environments and all their 

components exist on an ICS network, the final improvement would be modifying the 

FPGA design to make it an ethernet capable device. This modification would allow IDSs 

to query data from a secure out-of-band data acquisition source. The FPGA design, 

referred to as a bitstream, could be stored on a non-volatile memory source on the PCB 

allowing the FPGA to be loaded with the secure hardware design when the device is 

powered up. Using this approach, the entire data acquisition system would exist on a 

single board that requires a single 5V power supply.  
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CHAPTER 9: CONCLUSION 

Industrial Control Systems (ICSs) play a large role in modern civilization, 

whether it be through the manufacturing of products, or the maintenance of critical 

infrastructure. ICS and the facilities that house them are complex and interconnected, 

allowing for sophisticated control of processes that keep civilization moving forward. 

Due to the significant investments of both capital and intelligence to form ICSs and their 

facilities, protection from external forces is required. These external forces range from 

unavoidable erosions of system components over time to the malicious actions of APTs. 

The fortification of ICS facilities and their internal systems has been an ongoing effort 

since the conception of the ICS. ICS cybersecurity is a topic that appears limitless in 

depth, with new developments made every year to increase the strength and resiliency of 

cybersecurity systems that protect ICS technology.  

Over the course of decades, best cybersecurity practices have been established. 

Each practice aims at addressing an existing attack vector, and together the best practices 

seek to fortify the entire attack surface of ICSs and the facilities that house them. This 

thesis covered various best practices, such as the removal of unnecessary features, data 

integrity, authentication & authorization, secure communication protocols, intrusion 

detection systems (IDSs), and network enclave. In the face of an abundance of 

cybersecurity practices, finding the best path forward based on the given application can 

be intimidating and time-consuming. The MITRE ATT&CK Framework was devised to 
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give industries a way to perform threat intelligence, threat mitigation, and assessments on 

their fortifications. 

However, despite the intense efforts to protect ICSs and their systems from 

intrusion, APTs manage to seep through the cracks with near limitless time and money to 

support their endeavors. In cyber-attacks such as Stuxnet, the ICS community was faced 

with new challenges because existing cybersecurity practices were inadequate, and the 

adversary remained undetected even when the attack was taking place. Since 

cybersecurity is no silver bullet, flaws in defenses will always exist, and a focus on 

making ICS systems resilient has become an increasingly important topic in recent years. 

Addressing the topic of resiliency is an ongoing effort, as the term resiliency is 

defined differently depending on the given application. Researchers have attempted to 

define resiliency in many ways, such as cyber resiliency and system resiliency. Within 

each definition there exists different goals, objectives, and techniques by which resiliency 

is achieved. Within modern ICS cybersecurity practices, many of these goals and 

objectives are achieved by the given techniques. However, one challenge the ICS 

community is currently faced with relates to system visibility and contextual awareness.  

Current ICS cybersecurity practices place emphasis on fortifying information 

technology (IT) around ICSs. Actively scanning for internal threats within ICS 

environments requires an availability of control status information from operational 

technology (OT). However, if operational technology has degraded over time, or been 

infiltrated by an adversary, control status information may be skewed or outright false. 

Since the protection mechanisms put in place require information from potentially 

degrading or corrupted sources, a paradox arises.  
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This thesis investigated the topics of system thinking and data resiliency to give 

context into what might be done to break this paradox.  A mechanism that can provide 

visibility and contextual awareness to physical control process information is proposed. 

The introduction of an out-of-band data acquisition system residing at the physical 

control process level may solve some of the issues relating to system visibility. By 

acquiring data from an out-of-band channel, a direct view of the system level behavior 

can be utilized by modern ICS cybersecurity solutions such as IDSs. The introduction of 

a data acquisition system allows for the verification of in-band sources of ICS data, such 

as data returned from programmable logic controllers (PLCs). Due to this, trust is not 

inherently placed in devices that are subject to degradation and infiltration. 

This thesis detailed the electrical design of the data acquisition unit. The unit was 

designed to be applied to different types of control signals (e.g. current-controlled, 

voltage-controlled, and PWM-controlled). This thesis also demonstrated the software 

design and system integration of the data acquisition system in a simplified testbed 

consisting of a water tank control system. The application of the proposed data 

acquisition unit is up to security engineers in ICS applications. 

By integrating the proposed system into modern ICS cybersecurity applications, 

cyber, system, and data resiliency may be achieved. The cybersecurity application of 

real-time anomaly-based IDSs may benefit from an out-of-band data source. This out-of-

band data source can be a step of verification and validation of data used in artificial 

intelligence (AI) and machine learning (ML) algorithms within IDSs.  

The integration of a data acquisition such as the one proposed in this thesis could 

bolster security for OT within the physical environment, which is something that is 
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lacking in modern ICS security. With increased visibility, computer worms such as 

Stuxnet would have a much more difficult time slipping under the radar as the electrical 

signals are closely monitored within the physical environment. Malware infections within 

PLCs that enable data subversion and data poisoning attacks could be stifled and nearly 

impossible to perform as analog electrical signals cannot be hacked like bits and bytes. In 

order to combat the seemingly bottomless resources of APTs, it is imperative that the ICS 

community adopts creativity with its cybersecurity approaches. The idea proposed within 

this thesis breaches the normal digital approach to solve a digital problem. In doing so, 

this thesis synthesizes the analog world with the digital world to form a cohesive security 

posture within the ICS environment.  

By itself, the data acquisition unit is just a hunk of silicon and metal. The power 

of such a unit lies in the hands of the engineers and scientists. For those who wish to 

bolster the security of the infrastructure that fuels the forward motion of modern 

civilization, the work within this thesis offers an avenue forward, and hopefully it 

inspires future developments in the field of ICS security.   
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APPENDIX A 

PCB Schematic 
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APPENDIX B 

Source Code 
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ADC Reader Program 

/* 
 * Description: adc_reader.c 
 *   This program reads and returns 12-bit values from 12 ADCs.  
  
 *   The program first initializes the SPI module on the BCM2835 

processor on the Raspberry Pi. 
 *              The main program loop waits for stdin unsiged integer (0 - 11), 

and returns selected ADC 
 *              value over stdout. 
 *    
 * Author: 
 *   Daniel Bovard ... (danielbovard@u.boisestate.edu) 
 */ 
 
#include "../deps/bcm2835/bcm2835.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
#include <signal.h> 
#include <fcntl.h> 
#include <sys/stat.h> 
#include <sys/types.h> 
 
#define SEL0 22 
#define SEL1 23 
#define SEL2 24 
#define SEL3 25 
#define STRB 27 
 
/* Signal interupt declarations */ 
int terminate = 0; 
int status; 
 
/* In/Out pipe declarations */ 
int fifoFd; 
int bytesRead; 
const char* adcFifo = "tmp/adcFifo"; 
char inStr[5], outStr[5]; 
 
/* ADC transfer declarations */ 
uint8_t sel; 
uint8_t* buf; 
uint16_t value; 
 
/* Function prototypes */ 
void init_device(); 
void handle_sigint(int signal_number); 
int  check_sigint(); 
void chip_select(uint8_t sel); 
 
int main() 
{      
    /* Initialize SIGINT (ctrl+c) handler */ 
    struct sigaction sa; 
    memset(&sa, 0, sizeof(struct sigaction)); 
    sa.sa_handler = handle_sigint; 
    sigaction(SIGINT, &sa, NULL); 
 
    /* Initialize device */ 
    init_device(); 
 
    // Allocate memory space for ADC data 
    buf = malloc(2*sizeof(uint8_t)); 
  
    // Main program loop 
    while(1) 
    { 



128 

 

 // Clear input buffer 
 memset(&inStr, 0, sizeof(inStr)); 
  
 sleep(1); 
  
 // Open named FIFO pipe 'adcFifo' in read mode 
 fifoFd = open(adcFifo, O_RDONLY); 
 if (fifoFd == -1) 
 { 
     printf("Failed to open adcFifo.\n"); 
     return -1; 
 } 
   
 do 
 { 
     // Read selection number from input pipe 
     bytesRead = read(fifoFd, inStr, sizeof(inStr)); 
      
     status = check_sigint(); 
     if(status) return status;      
 } 
 while (bytesRead == 0); // Exit loop when data is read 
  
 // Close pipe 
 close(fifoFd);  
  
 // Open named FIFO pipe 'adcFifo' in write mode 
 fifoFd = open(adcFifo, O_WRONLY); 
 if (fifoFd == -1) 
 { 
     printf("Failed to open adcFifo.\n"); 
     return -1; 
 } 
   
 // Select chip 
 sel = atoi(inStr); 
 chip_select(sel); 
  
 // SPI read from selected ADC  
 bcm2835_spi_transfern(buf, 2); 
  
 // Deassert Chip Select 
 chip_select(15); 
  
 // Extract 12 bits from 16 bit packet 
 value = (((buf[0] << 8) | (buf[1])) >> 1) & 0x0FFF; 
 //printf("ADC %d data: %d\n", sel, value); 
 snprintf((char*)&outStr, sizeof(outStr), "%d", value); 
  
 // Write ADC data to output pipe 
 write(fifoFd, outStr, strlen(outStr)+1); 
  
 // Close pipe 
 close(fifoFd);  
  
 status = check_sigint(); 
 if(status) return status; 
         
    } 
    return 1; 
} 
 
void init_device() 
{ 
    // Initialize low-level BCM2835 functionality 
    if(!bcm2835_init()) 
    { 
 printf("Error initializing BCM2835.\n"); 
 return; 
    } 
  



129 

 

    // Initialize BCM2835 SPI modules 
    if(!bcm2835_spi_begin()) 
    { 
 printf("Error intializing BCM2835 SPI module.\n"); 
 return; 
    } 
  
    // Configure SPI0 Channel 
    bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);   // MSB 

first is only mode supported by SPI0 
    bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);    // 

Rising edge enabled clock, samples at middle of data bit 
    bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_16384); // 16384 = 

15.25878906kHz on Rpi2, 24.4140625kHz on RPI3  
    bcm2835_spi_chipSelect(BCM2835_SPI_CS0);    // Using CS0 

as chip select 
    bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 1);  // CS0 is 

active HIGH 
  
    // Init GPIO signals 
    bcm2835_gpio_fsel(SEL0, BCM2835_GPIO_FSEL_OUTP); 
    bcm2835_gpio_set_pud(SEL0, BCM2835_GPIO_PUD_UP);     
    bcm2835_gpio_fsel(SEL1, BCM2835_GPIO_FSEL_OUTP); 
    bcm2835_gpio_set_pud(SEL1, BCM2835_GPIO_PUD_UP); 
    bcm2835_gpio_fsel(SEL2, BCM2835_GPIO_FSEL_OUTP); 
    bcm2835_gpio_set_pud(SEL2, BCM2835_GPIO_PUD_UP); 
    bcm2835_gpio_fsel(SEL3, BCM2835_GPIO_FSEL_OUTP); 
    bcm2835_gpio_set_pud(SEL3, BCM2835_GPIO_PUD_UP); 
    bcm2835_gpio_fsel(STRB, BCM2835_GPIO_FSEL_OUTP); 
    bcm2835_gpio_set_pud(STRB, BCM2835_GPIO_PUD_UP); 
    chip_select(15); 
} 
 
void chip_select(uint8_t sel) 
{ 
    // Assert GPIO signals per input select 
    if (sel & 0x01) bcm2835_gpio_set(SEL0); 
    else               bcm2835_gpio_clr(SEL0); 
    if (sel & 0x02) bcm2835_gpio_set(SEL1); 
    else               bcm2835_gpio_clr(SEL1); 
    if (sel & 0x04) bcm2835_gpio_set(SEL2); 
    else               bcm2835_gpio_clr(SEL2); 
    if (sel & 0x08) bcm2835_gpio_set(SEL3); 
    else               bcm2835_gpio_clr(SEL3); 
    // Generous set up time 
    usleep(1); 
    // Assert Strobe for input latching 
    bcm2835_gpio_set(STRB); 
    // Strobe Pulse  
    usleep(1); 
    // Deassert Strobe for input latching 
    bcm2835_gpio_clr(STRB);   
} 
 
void handle_sigint(int signal_number) 
{ 
    if (signal_number == SIGINT) 
    { 
        terminate = 1; 
    } 
} 
 
int check_sigint() 
{ 
    if (terminate) 
    { 
 bcm2835_spi_end(); 
 return 1; 
    } 
    else return 0; 
} 
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PLC Reader Program 

import socket 
import numpy as np 
from umodbus import conf 
from umodbus.client import tcp 
from time import sleep 
import csv 
 
PLC_ADDR = '192.168.1.101' 
PLC_PORT = 502 
 
conf.SIGNED_VALUES = True 
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
sock.connect((PLC_ADDR, PLC_PORT)) 
 
plcFifo = "tmp/plcFifo" 
 
 
while(True): 
     
    fifoFd = open(plcFifo, 'r') 
    plcAddr = fifoFd.read() 
    fifoFd.close() 
     
    # Perform modbus request 
    try: 
        message = tcp.read_input_registers(slave_id=0, 

starting_address=int(plcAddr), quantity=1) 
        response = tcp.send_message(message, sock) 
         
        # Stdout transfer response packet 
         
        fifoFd = open(plcFifo, 'w') 
        plcAddr = fifoFd.write(str(int(response[0]))) 
        fifoFd.close() 
         
        
    except (KeyboardInterrupt, SystemExit): 
        print() 
        sock.close() 
        break 
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Control Monitor Process 

import numpy as np 
import os 
import csv 
import matplotlib.pyplot as plt 
import signal 
import sys 
from time import sleep 
 
SAMPLE_TIME = 5 
MINUTE = 60 
WINDOW_TIME = MINUTE*60 
WINDOW_SIZE = int(WINDOW_TIME/SAMPLE_TIME) 
MAX = 4095 
PROC_VAL_TOL = int(0.10 * MAX) 
A2D_VAL_TOL  = int(0.05 * MAX) 
PLC_MODE = True 
 
PROCESS_PATH = "data/sinewave_process.csv" 
TANK_ADC_ADDR = 0 
TANK_PLC_ADDR = 25 
 
adcFifo = "tmp/adcFifo" 
plcFifo = "tmp/plcFifo" 
 
adc_tank_list = [] 
plc_tank_list = []     
 
def signal_handler(sig, frame): 
    print("Process terminated.") 
    print("Performing cleanup...") 
     
    os.remove("tmp/adcFifo") 
    if PLC_MODE: 
       os.remove("tmp/plcFifo") 
     
    global adc_tank_list 
     
    adc_tank_csv = np.array(adc_tank_list).reshape(len(adc_tank_list), 1) 
     
    print(adc_tank_csv) 
     
    with open("data/adc_process.csv", 'w') as file: 
         
        writer = csv.writer(file) 
         
        writer.writerows(adc_tank_csv) 
         
        file.close() 
         
    sys.exit(0) 
     
def create_pipes(): 
    try: 
        os.mkfifo(adcFifo, mode=0o666) 
    except OSError: 
        print("Failed to create ADC FIFO") 
         
    if PLC_MODE: 
        try: 
            os.mkfifo(plcFifo, mode=0o666) 
        except OSError: 
            print("Failed to create PLC FIFO") 
 
def read_adc_value(select): 
     
    fifoFd = open(adcFifo, 'w')     
    fifoFd.write(str(int(select))) 
    fifoFd.close() 
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    fifoFd = open(adcFifo, 'r') 
    adcVal = fifoFd.read()     
    fifoFd.close() 
         
    return int(adcVal.rstrip('\x00')) 
 
 
def read_plc_value(addr): 
     
    fifoFd = open(plcFifo, 'w')     
    fifoFd.write(str(int(addr))) 
    fifoFd.close() 
  
    fifoFd = open(plcFifo, 'r') 
    plcVal = fifoFd.read() 
    fifoFd.close() 
     
    return int(plcVal) 
 
def update_list(val_list, val): 
    val_list.append(val) 
    if(len(val_list) > WINDOW_SIZE): 
        val_list.pop(0) 
  
def linear_fit(y_coords): 
    length = len(y_coords) 
    x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME) 
    coeffs = np.polyfit(x_coords, y_coords, 1) 
    return coeffs 
     
def plot_samples(fig, axw1, axs2, axs3, y_coords1, y_coords2, y_coords3, lin_fit): 
    length = len(y_coords1) 
    x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME)     
     
    axs1.cla() 
    axs2.cla() 
    axs3.cla() 
    axs1.scatter(x_coords, y_coords1) 
    axs2.scatter(x_coords, y_coords2) 
    axs3.scatter(x_coords, y_coords3) 
     
    if(lin_fit):         
        coeffs1 = linear_fit(y_coords1) 
        coeffs2 = linear_fit(y_coords2) 
        coeffs3 = linear_fit(y_coords3) 
     
        lin_fit1 = np.zeros(length) 
        lin_fit2 = np.zeros(length) 
        lin_fit3 = np.zeros(length) 
     
        for i in range(length): 
            lin_fit1[i] = coeffs1[1] + i*SAMPLE_TIME*coeffs1[0] 
            lin_fit2[i] = coeffs2[1] + i*SAMPLE_TIME*coeffs2[0] 
            lin_fit3[i] = coeffs3[1] + i*SAMPLE_TIME*coeffs3[0] 
         
     
        axs1.plot(x_coords, lin_fit1, 'r')     
        axs2.plot(x_coords, lin_fit2, 'r') 
        axs3.plot(x_coords, lin_fit3, 'r') 
     
    fig.canvas.draw() 
     
def upload_process(path): 
    control_process = [] 
    i = 0 
    with open(path, 'r') as ipc_file: 
        ipc_reader = csv.reader(ipc_file, delimiter=',') 
        for row in ipc_reader: 
            if i != 0: 
                control_process.append(int(row[1])) 
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            i+=1 
                 
    return control_process 
 
def monitor_signals(path): 
     
    fig, axs = plt.subplots(1,1, figsize=(15,7)) 
    fig.show() 
    fig.canvas.draw() 
 
    control_process = upload_process(path) 
     
    print(WINDOW_SIZE) 
    j = 0 
     
    while(True): 
         
        update_list(adc_tank_list, read_adc_value(TANK_ADC_ADDR))         
        if PLC_MODE: 
            update_list(plc_tank_list, read_plc_value(TANK_PLC_ADDR)) 
        
        sleep(SAMPLE_TIME) 
        # Plot control process 
        plot_process(fig, axs, adc_tank_list, plc_tank_list) #, 

control_process[j:j+WINDOW_SIZE])         
         
        j += 1 
         
         
    print("Process detection complete.") 
    return 
 
def plot_process(fig, axs, analog, digital): #, expected): 
    length = len(analog) 
     
    a2d_low = np.zeros(len(analog)) 
    a2d_high = np.zeros(len(analog)) 
    x_coords = np.arange(0, length*SAMPLE_TIME, SAMPLE_TIME) 
       
    for i in range(len(analog)): 
        a2d_low[i]  = digital[i] - A2D_VAL_TOL 
        a2d_high[i] = digital[i] + A2D_VAL_TOL 
     
    axs.cla() 
    plt.title("Tank Level Monitor") 
    axs.plot(x_coords, analog,   'r', label="Analog from ADC") 
    axs.plot(x_coords, digital,  'm', label="Digital from PLC") 
    axs.plot(x_coords, a2d_low,  'c--', label="A-D Tolerance Threshold") 
    axs.plot(x_coords, a2d_high, 'c--') 
    axs.legend() 
     
    fig.canvas.draw() 
 
def main_process(): 
     
    create_pipes() 
     
    signal.signal(signal.SIGINT, signal_handler) 
         
    monitor_signals(PROCESS_PATH) 
     
     
     
# Main Process 
main_process() 
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APPENDIX C 

FPGA Design  
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Data Acquisition Top 

---------------------------------------------------------------------------------- 
-- Engineer: Daniel Bovard 
--  
-- Create Date: 04/11/2021 11:52:01 AM 
-- Design Name: Data Acquisition System 
-- Module Name: daq_top - rtl 
-- Target Devices: XC7A100T-CSG324 
-- Tool Versions: Vivado 2019.1 
-- Description:  
--      Data acquisition unit for IDS ICS Thesis. 
-- 
--      Can recieve serial UART packets and parse hexadecimal numbers from them. 
--      Based on recieved number, GPIO pins are strobed to set a 4x16 decoder 
--      external to the FPGA. Once GPIO is set, SPI data packets are retrieved 
--      from a selected external ADC. Data packet is parsed and sent back over 
--      the UART serial connection. 
--  
---------------------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity daq_top is 
  port ( 
    gpio_sel           : out std_logic_vector(3 downto 0); 
    gpio_strb          : out std_logic; 
     
    miso               : in  std_logic; 
    sclk               : out std_logic; 
     
    rx                 : in  std_logic; 
    tx                 : out std_logic; 
         
    gpio_led           : out std_logic_vector(3 downto 0);     
    flash_led          : out std_logic_vector(3 downto 0); 
     
    err                : out std_logic;    
           
    clk                : in  std_logic; 
    rst_n              : in  std_logic 
  ); 
end daq_top; 
 
architecture rtl of daq_top is 
    
component daq_controller is 
  generic ( 
    C_AXI_AWIDTH : integer := 4; 
    C_AXI_DWIDTH : integer := 32; 
    C_SPI_DWIDTH : integer := 16 
  ); 
  port ( 
    m_axi_uart_araddr  : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
    m_axi_uart_arready : in  std_logic; 
    m_axi_uart_arvalid : out std_logic; 
    m_axi_uart_awaddr  : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
    m_axi_uart_awready : in  std_logic; 
    m_axi_uart_awvalid : out std_logic; 
    m_axi_uart_bresp   : in  std_logic_vector(1 downto 0); 
    m_axi_uart_bready  : out std_logic; 
    m_axi_uart_bvalid  : in  std_logic; 
    m_axi_uart_rdata   : in  std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
    m_axi_uart_rready  : out std_logic; 
    m_axi_uart_rresp   : in  std_logic_vector(1 downto 0); 
    m_axi_uart_rvalid  : in  std_logic; 
    m_axi_uart_wdata   : out std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
    m_axi_uart_wready  : in  std_logic; 
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    m_axi_uart_wstrb   : out std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0); 
    m_axi_uart_wvalid  : out std_logic; 
     
    gpio_sel           : out std_logic_vector(3 downto 0); 
    gpio_strb          : out std_logic; 
     
    spi_enable         : out std_logic; 
    spi_busy           : in  std_logic; 
    spi_rxdata         : in  std_logic_vector(C_SPI_DWIDTH - 1 downto 0); 
     
    err                : out std_logic; 
     
    clk                : in  std_logic; 
    rst_n              : in  std_logic 
     ); 
end component; 
                                                         
component spi_master is                                  
  generic(                                               
    slaves  : integer := 4;  --number of spi slaves      
    d_width : integer := 2); --data bus width            
  port(                                                  
    clock   : IN     STD_LOGIC;                             --system clock 
    reset_n : IN     STD_LOGIC;                             --asynchronous reset 
    enable  : IN     STD_LOGIC;                             --initiate transaction 
    cpol    : IN     STD_LOGIC;                             --spi clock polarity 
    cpha    : IN     STD_LOGIC;                             --spi clock phase 
    clk_div : IN     INTEGER;                               --system clock cycles 

per 1/2 period of sclk 
    miso    : IN     STD_LOGIC;                             --master in, slave out 
    sclk    : OUT    STD_LOGIC;                             --spi clock 
    busy    : OUT    STD_LOGIC;                             --busy / data ready 

signal 
    rx_data : OUT    STD_LOGIC_VECTOR(d_width-1 DOWNTO 0)); --data received 
end component;                                           
 
component axi_uartlite_0 
  port ( 
    s_axi_aclk : in std_logic; 
    s_axi_aresetn : in std_logic; 
    interrupt : out std_logic; 
    s_axi_awaddr : in std_logic_vector(3 downto 0); 
    s_axi_awvalid : in std_logic; 
    s_axi_awready : out std_logic; 
    s_axi_wdata : in std_logic_vector(31 downto 0); 
    s_axi_wstrb : in std_logic_vector(3 downto 0); 
    s_axi_wvalid : in std_logic; 
    s_axi_wready : out std_logic; 
    s_axi_bresp : out std_logic_vector(1 downto 0); 
    s_axi_bvalid : out std_logic; 
    s_axi_bready : in std_logic; 
    s_axi_araddr : in std_logic_vector(3 downto 0); 
    s_axi_arvalid : in std_logic; 
    s_axi_arready : out std_logic; 
    s_axi_rdata : out std_logic_vector(31 downto 0); 
    s_axi_rresp : out std_logic_vector(1 downto 0); 
    s_axi_rvalid : out std_logic; 
    s_axi_rready : in std_logic; 
    rx : in std_logic; 
    tx : out std_logic 
  ); 
end component; 
 
component BUFG is 
port ( 
  I : in std_logic; 
  O : out std_logic 
); 
end component; 
 
component OBUF is 
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port ( 
  I : in std_logic; 
  O : out std_logic 
); 
end component; 
 
constant C_AXI_AWIDTH : integer := 4;  
constant C_AXI_DWIDTH : integer := 32; 
constant C_SPI_DWIDTH : integer := 16; 
 
signal m_axi_uart_araddr  : std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
signal m_axi_uart_arready : std_logic; 
signal m_axi_uart_arvalid : std_logic; 
signal m_axi_uart_awaddr  : std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
signal m_axi_uart_awready : std_logic; 
signal m_axi_uart_awvalid : std_logic; 
signal m_axi_uart_bresp   : std_logic_vector(1 downto 0); 
signal m_axi_uart_bready  : std_logic; 
signal m_axi_uart_bvalid  : std_logic; 
signal m_axi_uart_rdata   : std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
signal m_axi_uart_rready  : std_logic; 
signal m_axi_uart_rresp   : std_logic_vector(1 downto 0); 
signal m_axi_uart_rvalid  : std_logic; 
signal m_axi_uart_wdata   : std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
signal m_axi_uart_wready  : std_logic; 
signal m_axi_uart_wstrb   : std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0); 
signal m_axi_uart_wvalid  : std_logic; 
 
signal spi_enable         : std_logic; 
signal spi_busy           : std_logic;                                                  
signal spi_rxdata         : std_logic_vector(C_SPI_DWIDTH - 1 downto 0); 
 
signal gpio_sel_i : std_logic_vector(3 downto 0); 
signal flash_count : unsigned(31 downto 0) := (others => '0'); 
signal flash_led_i : std_logic_vector(3 downto 0); 
 
signal sclk_i : std_logic; 
 
begin 
 
flash_led_p : process (clk) 
begin 
  if (rising_edge(clk)) then 
    flash_count <= flash_count + 1; 
  end if; 
end process; 
 
flash_led(3) <= flash_count(26); 
flash_led(2) <= flash_count(25); 
flash_led(1) <= flash_count(24); 
flash_led(0) <= flash_count(23); 
 
daq_controller_i : daq_controller 
generic map ( 
  C_AXI_AWIDTH => C_AXI_AWIDTH, 
  C_AXI_DWIDTH => C_AXI_DWIDTH, 
  C_SPI_DWIDTH => C_SPI_DWIDTH 
) 
port map( 
    m_axi_uart_araddr  =>  m_axi_uart_araddr, 
    m_axi_uart_arready =>  m_axi_uart_arready, 
    m_axi_uart_arvalid =>  m_axi_uart_arvalid, 
    m_axi_uart_awaddr  =>  m_axi_uart_awaddr, 
    m_axi_uart_awready =>  m_axi_uart_awready, 
    m_axi_uart_awvalid =>  m_axi_uart_awvalid, 
    m_axi_uart_bresp   =>  m_axi_uart_bresp, 
    m_axi_uart_bready  =>  m_axi_uart_bready, 
    m_axi_uart_bvalid  =>  m_axi_uart_bvalid, 
    m_axi_uart_rdata   =>  m_axi_uart_rdata, 
    m_axi_uart_rready  =>  m_axi_uart_rready, 
    m_axi_uart_rresp   =>  m_axi_uart_rresp, 
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    m_axi_uart_rvalid  =>  m_axi_uart_rvalid, 
    m_axi_uart_wdata   =>  m_axi_uart_wdata, 
    m_axi_uart_wready  =>  m_axi_uart_wready, 
    m_axi_uart_wstrb   =>  m_axi_uart_wstrb, 
    m_axi_uart_wvalid  =>  m_axi_uart_wvalid, 
     
    gpio_sel           => gpio_sel_i, 
    gpio_strb          => gpio_strb, 
                        
    spi_enable         => spi_enable, 
    spi_busy           => spi_busy, 
    spi_rxdata         => spi_rxdata, 
                        
    err                => err, 
                        
    clk                => clk, 
    rst_n              => rst_n 
); 
 
spi_master_i : spi_master 
generic map ( 
  slaves  => 1,     
  d_width => 16 
) 
port map ( 
  clock   => clk, 
  reset_n => '1', 
  enable  => spi_enable, 
  cpol    => '0', 
  cpha    => '0', 
  clk_div => 100, 
  miso    => miso, 
  sclk    => sclk_i, 
  busy    => spi_busy, 
  rx_data => spi_rxdata 
); 
 
axi_uartlite_0_i : axi_uartlite_0 
  PORT MAP ( 
    s_axi_aclk    => clk, 
    s_axi_aresetn => rst_n, 
    interrupt     => open,     
    s_axi_awaddr  => m_axi_uart_awaddr,  
    s_axi_awvalid => m_axi_uart_awvalid, 
    s_axi_awready => m_axi_uart_awready, 
    s_axi_wdata   => m_axi_uart_wdata,   
    s_axi_wstrb   => m_axi_uart_wstrb,   
    s_axi_wvalid  => m_axi_uart_wvalid,  
    s_axi_wready  => m_axi_uart_wready,  
    s_axi_bresp   => m_axi_uart_bresp,   
    s_axi_bvalid  => m_axi_uart_bvalid,  
    s_axi_bready  => m_axi_uart_bready,  
    s_axi_araddr  => m_axi_uart_araddr,  
    s_axi_arvalid => m_axi_uart_arvalid, 
    s_axi_arready => m_axi_uart_arready, 
    s_axi_rdata   => m_axi_uart_rdata,   
    s_axi_rresp   => m_axi_uart_rresp,  
    s_axi_rvalid  => m_axi_uart_rvalid,  
    s_axi_rready  => m_axi_uart_rready,  
    rx            => rx, 
    tx            => tx 
  ); 
 
gpio_led0_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(0), 
  O => gpio_led(0) 
); 
 
gpio_led1_obuf_i : OBUF 
port map ( 
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  I => gpio_sel_i(1), 
  O => gpio_led(1) 
); 
 
gpio_led2_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(2), 
  O => gpio_led(2) 
); 
 
gpio_led3_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(3), 
  O => gpio_led(3) 
); 
 
gpio_sel0_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(0), 
  O => gpio_sel(0) 
); 
 
gpio_sel1_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(1), 
  O => gpio_sel(1) 
); 
 
gpio_sel2_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(2), 
  O => gpio_sel(2) 
); 
 
gpio_sel3_obuf_i : OBUF 
port map ( 
  I => gpio_sel_i(3), 
  O => gpio_sel(3) 
);   
 
sclk_obuf_i : OBUF 
port map ( 
  I => sclk_i, 
  O => sclk 
); 
end rtl; 
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Data Acquisition Controller 

---------------------------------------------------------------------------------- 
-- Engineer: Daniel Bovard 
--  
-- Create Date: 04/11/2021 11:52:01 AM 
-- Design Name: Data Acquisition System 
-- Module Name: daq_controller - rtl 
-- Target Devices: XC7A100T-CSG324 
-- Tool Versions: Vivado 2019.1 
-- Description:  
--      Data acquisition controller for IDS ICS Thesis. 
-- 
--      The controller orchestrates the entire data acquisition process. 
--      First the controller polls the Xilinx AXI UARTLite LogiCORE IP 
--      for valid data packets. From there it parses the packets, asserts 
--      the GPIO, retrieves the SPI data packet, and returns the data 
--      back to the PC via the UART LogiCORE IP. 
--  
---------------------------------------------------------------------------------- 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity daq_controller is 
  generic ( 
    C_AXI_AWIDTH : integer := 4; 
    C_AXI_DWIDTH : integer := 32; 
    C_SPI_DWIDTH : integer := 16 
  ); 
  port ( 
    m_axi_uart_araddr  : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
    m_axi_uart_arready : in  std_logic; 
    m_axi_uart_arvalid : out std_logic; 
    m_axi_uart_awaddr  : out std_logic_vector(C_AXI_AWIDTH - 1 downto 0); 
    m_axi_uart_awready : in  std_logic; 
    m_axi_uart_awvalid : out std_logic; 
    m_axi_uart_bresp   : in  std_logic_vector(1 downto 0); 
    m_axi_uart_bready  : out std_logic; 
    m_axi_uart_bvalid  : in  std_logic; 
    m_axi_uart_rdata   : in  std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
    m_axi_uart_rready  : out std_logic; 
    m_axi_uart_rresp   : in  std_logic_vector(1 downto 0); 
    m_axi_uart_rvalid  : in  std_logic; 
    m_axi_uart_wdata   : out std_logic_vector(C_AXI_DWIDTH - 1 downto 0); 
    m_axi_uart_wready  : in  std_logic; 
    m_axi_uart_wstrb   : out std_logic_vector((C_AXI_DWIDTH/8) - 1 downto 0); 
    m_axi_uart_wvalid  : out std_logic; 
     
    gpio_sel           : out std_logic_vector(3 downto 0); 
    gpio_strb          : out std_logic; 
     
    spi_enable         : out std_logic; 
    spi_busy           : in  std_logic; 
    spi_rxdata         : in  std_logic_vector(C_SPI_DWIDTH - 1 downto 0); 
     
    err                : out std_logic; 
     
    clk                : in  std_logic; 
    rst_n              : in  std_logic 
     ); 
end daq_controller; 
 
architecture rtl of daq_controller is 
 
constant C_UART_RX_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "0000"; 
constant C_UART_TX_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "0100"; 
constant C_UART_SR_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "1000"; 
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constant C_UART_CR_ADDR : std_logic_vector(C_AXI_AWIDTH - 1 downto 0) := "1100"; 
 
-- ASCII to Hex parser for numbers 0 through F  
function parse_rx_uart (data: std_logic_vector(7 downto 0)) return 

std_logic_vector is 
begin 
  case data is 
    when x"30"  => return x"00"; 
    when x"31"  => return x"01"; 
    when x"32"  => return x"02"; 
    when x"33"  => return x"03"; 
    when x"34"  => return x"04"; 
    when x"35"  => return x"05"; 
    when x"36"  => return x"06"; 
    when x"37"  => return x"07"; 
    when x"38"  => return x"08"; 
    when x"39"  => return x"09"; 
    when x"41"  => return x"0A"; 
    when x"61"  => return x"0A"; 
    when x"42"  => return x"0B"; 
    when x"62"  => return x"0B"; 
    when x"43"  => return x"0C"; 
    when x"63"  => return x"0C"; 
    when x"44"  => return x"0D"; 
    when x"64"  => return x"0D"; 
    when x"45"  => return x"0E"; 
    when x"65"  => return x"0E"; 
    when x"46"  => return x"0F"; 
    when x"66"  => return x"0F"; 
    when others => return x"FF";  
  end case;   
end parse_rx_uart; 
 
type digits_t is 
  record 
  d3 : std_logic_vector(3 downto 0); 
  d2 : std_logic_vector(3 downto 0); 
  d1 : std_logic_vector(3 downto 0); 
  d0 : std_logic_vector(3 downto 0); 
  end record; 
   
function parse_digits (data: std_logic_vector(11 downto 0)) return digits_t is 
  variable remainder : integer; 
  variable temp      : integer; 
  variable digits    : digits_t; 
begin   
  temp := to_integer(unsigned(data)) / 1000; 
  remainder  := to_integer(unsigned(data)) mod 1000; 
  digits.d3 := std_logic_vector(to_unsigned(temp, digits.d3'length)); 
  temp := remainder / 100; 
  remainder := remainder mod 100; 
  digits.d2 := std_logic_vector(to_unsigned(temp, digits.d2'length)); 
  temp := remainder / 10; 
  remainder := remainder mod 10; 
  digits.d1 := std_logic_vector(to_unsigned(temp, digits.d1'length)); 
  digits.d0 := std_logic_vector(to_unsigned(remainder, digits.d0'length)); 
   
  return digits;   
end parse_digits; 
 
type state_t is (INIT, 
                 CLR_RX, 
                 CLR_TX, 
                 RX_POLL,  -- Poll for valid Rx Data 
                 RX_VALID, 
                 RX_READ,  
                 RX_DATA,  
                 GPIO_SET, 
                 GPIO_STROBE_H, 
                 GPIO_STROBE_L, 
                 SPI_READ, 
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                 SPI_WAIT, 
                 TX_DATA, 
                 ERROR); 
 
type reg_t is 
  record 
    state    : state_t; 
    uart_rx_data  : std_logic_vector(7 downto 0); 
    gpio_clr : boolean; 
    digit_count : integer; 
    strobe_count : integer; 
    aw : boolean; 
    w : boolean; 
    b : boolean; 
  end record;                 
 
constant INIT_REG : reg_t := (state => INIT,  
                              uart_rx_data => (others => '0'),  
                              gpio_clr => false, 
                              digit_count => 5, 
                              strobe_count => 0, 
                              aw => false, 
                              w => false, 
                              b => false); 
 
signal r, r_in : reg_t := INIT_REG; 
signal gpio_sel_i : std_logic_vector(3 downto 0); 
signal digits : digits_t; 
 
begin 
 
m_axi_uart_wstrb <= (others => '1'); 
 
gpio_sel <= gpio_sel_i; 
 
comb_p : process (   m_axi_uart_arready, -- 
                     m_axi_uart_awready,-- 
                     m_axi_uart_bvalid,-- 
                     m_axi_uart_rvalid,-- 
                     m_axi_uart_wready,-- 
                     spi_busy, 
                     rst_n, 
                     r) is        --                         
  variable v : reg_t; 
begin 
   
  -- Output defaults 
  v := r; 
  m_axi_uart_araddr  <= (others => '0'); 
  m_axi_uart_arvalid <= '0'; 
  m_axi_uart_awaddr  <= (others => '0'); 
  m_axi_uart_awvalid <= '0'; 
  m_axi_uart_bready  <= '0'; 
  m_axi_uart_rready  <= '0'; 
  m_axi_uart_wdata   <= (others => '0');   
  m_axi_uart_wvalid  <= '0'; 
  gpio_strb          <= '0'; 
  spi_enable         <= '0'; 
  err                <= '0'; 
  gpio_sel_i         <= gpio_sel_i; 
   
  case r.state is 
    when INIT => 
      v := INIT_REG; 
      v.state := CLR_RX; 
       
    when CLR_RX => 
      m_axi_uart_awaddr  <= C_UART_CR_ADDR; 
      m_axi_uart_wdata   <= x"00000002"; -- Rst RX FIFO 
       
      if (r.aw = false) then 
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        m_axi_uart_awvalid <= '1'; 
      end if; 
      if (r.w = false) then 
        m_axi_uart_wvalid  <= '1'; 
      end if; 
      if (r.b = false) then 
        m_axi_uart_bready <= '1'; 
      end if; 
       
      if (m_axi_uart_awready = '1') then 
        v.aw := true; 
      end if; 
      if (m_axi_uart_wready = '1') then 
        v.w := true; 
      end if; 
      if (m_axi_uart_bvalid = '1') then 
        v.b := true; 
        if (m_axi_uart_bresp /= "00") then 
          v.state := ERROR; 
        end if; 
      end if; 
       
      if ((r.aw = true) and (r.w = true) and (r.b = true)) then 
        v.state := CLR_TX; 
        v.aw := false; 
        v.w := false; 
        v.b := false; 
      end if; 
     
    when CLR_TX => 
      m_axi_uart_awaddr  <= C_UART_CR_ADDR; 
      m_axi_uart_wdata   <= x"00000001"; -- Rst TX FIFO 
       
      if (r.aw = false) then 
        m_axi_uart_awvalid <= '1'; 
      end if; 
      if (r.w = false) then 
        m_axi_uart_wvalid  <= '1'; 
      end if; 
      if (r.b = false) then 
        m_axi_uart_bready <= '1'; 
      end if; 
       
      if (m_axi_uart_awready = '1') then 
        v.aw := true; 
      end if; 
      if (m_axi_uart_wready = '1') then 
        v.w := true; 
      end if; 
      if (m_axi_uart_bvalid = '1') then 
        v.b := true; 
        if (m_axi_uart_bresp /= "00") then 
          v.state := ERROR; 
        end if; 
      end if; 
       
      if ((r.aw = true) and (r.w = true) and (r.b = true)) then 
        v.state := RX_POLL; 
        v.aw := false; 
        v.w := false; 
        v.b := false; 
      end if; 
                
    when RX_POLL => 
      m_axi_uart_araddr  <= C_UART_SR_ADDR; 
      m_axi_uart_arvalid <= '1'; 
      if (m_axi_uart_arready = '1') then 
        v.state := RX_VALID; 
      end if;         
       
    when RX_VALID => 
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      m_axi_uart_rready <= '1'; 
      if (m_axi_uart_rvalid = '1') then 
        if (m_axi_uart_rresp /= "00") then 
          v.state := ERROR; 
        elsif (m_axi_uart_rdata(7 downto 4) /= "0000") then 
          v.state := ERROR; 
        elsif (m_axi_uart_rdata(0) = '1') then 
          v.state := RX_READ;  
        else 
          v.state := RX_POLL; 
        end if; 
      end if; 
     
    when RX_READ => 
      m_axi_uart_araddr  <= C_UART_RX_ADDR; 
      m_axi_uart_arvalid <= '1'; 
      if (m_axi_uart_arready = '1') then         
        v.state := RX_DATA;   
      end if;  
     
    when RX_DATA => 
      m_axi_uart_rready <= '1'; 
      if (m_axi_uart_rvalid = '1') then 
        v.uart_rx_data := parse_rx_uart(m_axi_uart_rdata(7 downto 0)); 
        v.state   := GPIO_SET; 
      end if;    
       
    when GPIO_SET =>       
      if (r.gpio_clr = false) then 
        gpio_sel_i   <= x"F"; 
      else 
        gpio_sel_i   <= r.uart_rx_data(3 downto 0); 
      end if; 
       
      if(r.strobe_count /= 50) then -- let gpio signals settle 
        v.strobe_count := r.strobe_count + 1; 
      else 
        v.strobe_count := 0; 
        v.state := GPIO_STROBE_H; 
      end if; 
       
      when GPIO_STROBE_H => 
      gpio_strb <= '1'; 
      -- Decoder chip requires a strobe of at least 250ns (25 clks) in width 
      if(r.strobe_count /= 50) then 
        v.strobe_count := r.strobe_count + 1; 
      else 
        v.strobe_count := 0; 
        v.state := GPIO_STROBE_L; 
      end if; 
       
    when GPIO_STROBE_L => 
     
      if(r.strobe_count /= 50) then 
        v.strobe_count := r.strobe_count + 1; 
      else 
        v.strobe_count := 0; 
        if (r.gpio_clr = false) then 
          v.gpio_clr := true; 
          v.state    := GPIO_SET; 
        else 
          v.gpio_clr := false; 
          v.state    := SPI_READ; 
      end if; 
      end if; 
       
         
    when SPI_READ => 
      spi_enable <= '1'; 
      if (spi_busy = '1') then 
        v.state := SPI_WAIT; 
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      end if; 
       
    when SPI_WAIT => 
      if (spi_busy = '0') then 
        v.state := TX_DATA; 
        digits <= parse_digits(spi_rxdata(12 downto 1)); 
      end if; 
       
    when TX_DATA =>  
      m_axi_uart_awaddr  <= C_UART_TX_ADDR; 
      if (r.digit_count = 5) then        
        m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d3; 
      elsif (r.digit_count = 4) then 
        m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d2; 
      elsif (r.digit_count = 3) then 
        m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d1; 
      elsif (r.digit_count = 2) then 
        m_axi_uart_wdata(7 downto 0) <= x"3" & digits.d0; 
      elsif (r.digit_count = 1) then 
        m_axi_uart_wdata(7 downto 0) <= x"0A"; -- Newline 
      else 
        m_axi_uart_wdata(7 downto 0) <= x"0D"; -- Carraige Return 
      end if; 
       
      if (r.aw = false) then 
        m_axi_uart_awvalid <= '1'; 
      end if; 
      if (r.w = false) then 
        m_axi_uart_wvalid  <= '1'; 
      end if; 
      if (r.b = false) then 
        m_axi_uart_bready <= '1'; 
      end if;       
      if (m_axi_uart_awready = '1') then 
        v.aw := true; 
      end if; 
      if (m_axi_uart_wready = '1') then 
        v.w := true; 
      end if; 
      if (m_axi_uart_bvalid = '1') then 
        v.b := true; 
        if (m_axi_uart_bresp /= "00") then 
          v.state := ERROR; 
        elsif (r.digit_count /= 0) then 
          v.digit_count := r.digit_count - 1; 
        else 
          v.state := RX_POLL; 
          v.digit_count := 5; 
        end if; 
      end if; 
       
      if ((r.aw = true) and (r.w = true) and (r.b = true)) then 
        v.aw := false; 
        v.w := false; 
        v.b := false; 
      end if;  
         
    when ERROR => 
      v.state := ERROR; 
      err <= '1'; 
       
    when others => 
      v.state := INIT; 
       
  end case; 
   
  if (rst_n = '0') then 
    v.state   := INIT; 
  end if; 
   
  r_in <= v; 
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end process; 
 
sync_p : process(clk) 
begin 
  if (rising_edge(clk)) then 
    r <= r_in; 
  end if; 
end process; 
 
end rtl; 
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SPI Master 

---------------------------------------------------------------------------------- 
-- Engineer: Daniel Bovard 
--  
-- Create Date: 04/11/2021 11:52:01 AM 
-- Design Name: Data Acquisition System 
-- Module Name: spi_master - rtl 
-- Target Devices: XC7A100T-CSG324 
-- Tool Versions: Vivado 2019.1 
-- Description:  
--      SPI Master module for IDS ICS Thesis. 
--      This module was derived from the open source model provided by Digikey: 
--      https://forum.digikey.com/t/spi-master-vhdl/12717 
-- 
--      This SPI Master is responsible for providing a slave with an SPI SCLK 
--      and retrieving a data packet over the MISO line. Since slave selecting 
--      is performed via an external 4x16 decoder, the slave select functionality 
--      was removed from this module. 
--  
---------------------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity spi_master is 
  generic( 
    slaves  : integer := 4;  --number of spi slaves 
    d_width : integer := 2); --data bus width 
  port( 
    clock   : in     std_logic;                             --system clock 
    reset_n : in     std_logic;                             --asynchronous reset 
    enable  : in     std_logic;                             --initiate transaction 
    cpol    : in     std_logic;                             --spi clock polarity 
    cpha    : in     std_logic;                             --spi clock phase 
    clk_div : in     integer;                               --system clock cycles 

per 1/2 period of sclk 
    miso    : in     std_logic;                             --master in, slave out 
    sclk    : out    std_logic;                             --spi clock 
    busy    : out    std_logic;                             --busy / data ready 

signal 
    rx_data : out    std_logic_vector(d_width-1 downto 0)); --data received 
end spi_master; 
 
architecture logic of spi_master is 
  type machine is(ready, execute);                           --state machine data 

type 
  signal state       : machine;                              --current state 
  signal clk_ratio   : integer;                              --current clk_div 
  signal count       : integer;                              --counter to trigger 

sclk from system clock 
  signal clk_toggles : integer range 0 to d_width*2 + 1;     --count spi clock 

toggles 
  signal rx_buffer   : std_logic_vector(d_width-1 downto 0); --receive data buffer 
  signal last_bit_rx : integer range 0 to d_width*2;         --last rx data bit 

location 
  signal sclk_i      : std_logic; 
     
begin 
 
  sclk <= sclk_i; 
 
  process(clock, reset_n) 
  begin 
 
    if(reset_n = '0') then        --reset system 
      busy <= '1';                --set busy signal 
      rx_data <= (others => '0'); --clear receive data port 
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      state <= ready;             --go to ready state when reset is exited 
 
    elsif(clock'event and clock = '1') then 
      case state is               --state machine 
 
        when ready => 
          busy <= '0';             --clock out not busy signal 
          rx_buffer <= (others => '0'); 
          if(clk_div = 0) then     --check for valid spi speed 
            clk_ratio <= 1;        --set to maximum speed if zero 
            count <= 1;            --initiate system-to-spi clock counter 
          else 
            clk_ratio <= clk_div;  --set to input selection if valid 
            count <= clk_div;      --initiate system-to-spi clock counter 
          end if; 
          sclk_i <= cpol;            --set spi clock polarity 
          clk_toggles <= 0;        --initiate clock toggle counter 
          last_bit_rx <= d_width*2 + conv_integer(cpha) - 1; --set last rx data 

bit 
          --user input to initiate transaction 
          if(enable = '1') then        
            busy <= '1';             --set busy signal 
            state <= execute;        --proceed to execute state 
          else 
            state <= ready;          --remain in ready state 
          end if; 
 
        when execute => 
          busy <= '1';        --set busy signal 
           
          --system clock to sclk ratio is met 
          if(count = clk_ratio) then         
            count <= 1;                     --reset system-to-spi clock counter 
            if(clk_toggles = d_width*2 + 1) then 
              clk_toggles <= 0;               --reset spi clock toggles counter 
            else 
              clk_toggles <= clk_toggles + 1; --increment spi clock toggles 

counter 
            end if; 
             
            --spi clock toggle needed 
            if(clk_toggles <= d_width*2) then  
              if (sclk_i = '0') then 
                sclk_i <= '1'; 
              else 
                sclk_i <= '0'; 
              end if; 
            end if; 
             
            --receive spi clock toggle 
            if((clk_toggles < last_bit_rx + 1) and (sclk_i = '0')) then  
              rx_buffer <= rx_buffer(d_width-2 downto 0) & miso; --shift in 

received bit 
            end if; 
                        
            --end of transaction 
            if(clk_toggles = d_width*2 - 1) then    
              busy <= '0';             --clock out not busy signal 
              rx_data <= rx_buffer;    --clock out received data to output port 
              state <= ready;          --return to ready state 
            else                       --not end of transaction 
              state <= execute;        --remain in execute state 
            end if; 
           
          else        --system clock to sclk ratio not met 
            count <= count + 1; --increment counter 
            state <= execute;   --remain in execute state 
          end if; 
 
      end case; 
    end if; 
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  end process;  
end logic; 
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Xilinx AXI UARTLite LogiCORE IP Configuration 
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Project Constraint File 

## -------------------------------------------------------------------------------

----- 

## ICS IDS Nexys4 DDR Project Constraint file  

## -------------------------------------------------------------------------------

----- 

 

# Clock signal 

set_property -dict {PACKAGE_PIN E3 IOSTANDARD LVCMOS33} [get_ports clk] 

create_clock -period 10.000 -name sys_clk -waveform {0.000 5.000} -add [get_ports 

clk] 

 

## LEDs 

 

set_property -dict {PACKAGE_PIN H17 IOSTANDARD LVCMOS33} [get_ports err] 

 

set_property -dict {PACKAGE_PIN J13 IOSTANDARD LVCMOS33} [get_ports 

{flash_led[0]}] 

set_property -dict {PACKAGE_PIN N14 IOSTANDARD LVCMOS33} [get_ports 

{flash_led[1]}] 

set_property -dict {PACKAGE_PIN R18 IOSTANDARD LVCMOS33} [get_ports 

{flash_led[2]}] 

set_property -dict {PACKAGE_PIN V17 IOSTANDARD LVCMOS33} [get_ports 

{flash_led[3]}] 

 

set_property -dict {PACKAGE_PIN V15 IOSTANDARD LVCMOS33} [get_ports {gpio_led[0]}] 

set_property -dict {PACKAGE_PIN V14 IOSTANDARD LVCMOS33} [get_ports {gpio_led[1]}] 

set_property -dict {PACKAGE_PIN V12 IOSTANDARD LVCMOS33} [get_ports {gpio_led[2]}] 

set_property -dict {PACKAGE_PIN V11 IOSTANDARD LVCMOS33} [get_ports {gpio_led[3]}] 

 

##Buttons 

 

set_property -dict {PACKAGE_PIN C12 IOSTANDARD LVCMOS33} [get_ports rst_n] 

 

##Pmod Headers 
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##Pmod Header JB 

 

set_property -dict {PACKAGE_PIN D14 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[0]}] 

set_property -dict {PACKAGE_PIN F16 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[1]}] 

set_property -dict {PACKAGE_PIN G16 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[2]}] 

set_property -dict {PACKAGE_PIN H14 IOSTANDARD LVCMOS33} [get_ports {gpio_sel[3]}] 

set_property -dict {PACKAGE_PIN E16 IOSTANDARD LVCMOS33} [get_ports gpio_strb] 

set_property -dict {PACKAGE_PIN F13 IOSTANDARD LVCMOS33} [get_ports miso] 

set_property -dict {PACKAGE_PIN G13 IOSTANDARD LVCMOS33} [get_ports sclk] 

 

##USB-RS232 Interface 

 

set_property -dict {PACKAGE_PIN C4 IOSTANDARD LVCMOS33} [get_ports rx] 

set_property -dict {PACKAGE_PIN D4 IOSTANDARD LVCMOS33} [get_ports tx] 
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