
GENERATING TEST INPUTS FROM STRING

CONSTRAINTS WITH AN AUTOMATA-BASED

SOLVER

by

Marlin Roberts

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2021

© 2021
Marlin Roberts

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Marlin Roberts

Thesis Title: Generating Test Inputs from String Constraints with an Automata-
Based Solver

Date of Final Oral Examination: 9th June 2021

The following individuals read and discussed the thesis submitted by student
Marlin Roberts, and they evaluated the presentation and response to questions
during the final oral examination. They found that the student passed the final
oral examination.

Elena Sherman, Ph.D. Chair, Supervisory Committee

James Buffenbarger, Ph.D. Member, Supervisory Committee

Bogdan Dit, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Elena Sherman, Ph.D.,
Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

ACKNOWLEDGMENTS

I would like to thank the faculty and staff of the Boise State University Com-

puter Science Department, whose professionalism and dedication made this pos-

sible. I would like to thank my committee members, Dr. James Buffenbarger,

and Dr. Bogdan Dit, for their support. Finally, a special acknowledgment for

my advisor, Dr. Elena Sherman. She is an inspiration and shining example of

"Excellence in Education."

iv

ABSTRACT

Software testing is an integral part of the software development process. To

test certain parts of software, developers need to identify inputs that reach those

parts. Data and control dependencies make this a non-trivial task, and as the

complexity of software increases it becomes more difficult to manually derive such

inputs. Due to complex data manipulations, this process is even more challenging

for programs with string inputs, such as security applications. Thus, automated

reachability test input generation for string data types is an important research

area.

Symbolic Execution is a path-sensitive static program analysis technique that

can automatically generate conditions for inputs that reach a given program lo-

cation. Commonly, such conditions are encoded as automata that describe a set of

strings at that location. Automata result from string operations applied to inputs

along that path. However, these automata do not necessarily correspond to string

inputs that result in string values at the program location. To find those input

values, we need to undo the effects of string operations through backward analysis.

The intricate relationships between symbolic string values complicate this process.

These relationships are due to non-injective string operations and data-flow

dependencies of string values.

v

This thesis presents a novel method for test input generation for automata-

based string constraints. It uses single-track automata along with novel computa-

tional techniques to perform inverse string operations. Empirical evaluations on

a set of benchmarks have shown this method to be effective in solving automata-

based string constraints from real-world applications.

vi

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xii

LIST OF ABBREVIATIONS . xiv

LIST OF SYMBOLS . xv

1 Introduction . 1

1.1 Symbolic Execution . 2

1.1.1 Symbolic Variables . 2

1.1.2 Symbolic Expressions . 3

1.1.3 Path Conditions . 4

1.1.4 Solving Integer Constraints . 4

1.1.5 Symbolic String Models . 5

1.1.6 Symbolic String Operations . 7

1.1.7 String Predicates . 8

vii

1.1.8 Solving String Constraints . 8

1.1.9 Inverse String Operations . 9

1.2 Motivating Example . 10

1.3 Challenges . 13

1.4 Solver Characteristics . 14

1.5 Thesis Statement . 15

2 Background and Related Work . 17

2.1 String Models . 17

2.2 Solvers . 22

2.3 Constraint Solving . 24

3 Approach . 27

3.1 Backward Analysis . 29

3.1.1 Constraint Graph . 29

3.1.2 Transposed Constraint Graph . 30

3.1.3 Graph Traversal . 31

3.1.4 Fallback Sequence . 32

3.1.5 Node Evaluation . 33

3.1.6 Sound and Complete Operations . 37

3.1.7 Handling Over-Approximation . 38

3.1.8 Maintaining Related Values . 40

3.1.9 Termination . 44

3.1.10 Complexity . 44

3.1.11 Limitations . 45

3.2 Inverse String Operations . 45

viii

3.2.1 Formal Definitions and Algorithms . 46

4 Implementation . 57

4.1 Inverse String Operation Classes . 59

4.2 Solver . 60

4.3 Integration with Symbolic Pathfinder . 61

5 Evaluation . 63

5.1 Correctness . 63

5.1.1 Correctness Results . 68

5.2 Practicality . 73

5.2.1 Results . 74

5.3 Scalability . 81

5.4 Validity . 83

5.5 Summary . 83

6 Conclusion . 85

REFERENCES . 87

ix

LIST OF TABLES

2.1 Popular String Constraint Solvers . 22

4.1 Metrics for Initial and Current Codebase . 58

4.2 Major Dependencies . 59

4.3 String and Inverse String Operations . 60

5.1 Test Case Properties . 68

5.2 Correctness Results . 69

5.3 Benchmark Properties . 73

5.4 Benchmark Timing Ratios - Series One . 75

5.5 Benchmark Timings - Series Two . 77

5.6 Benchmark Timings - Series Three . 79

5.7 Effect of Alphabet Size on Test Case 10ab . 82

x

LIST OF FIGURES

1.1 Symbolic Execution with Integer Inputs . 3

1.2 Symbolic Execution with String Input . 3

1.3 Bounded vs. Acyclic Automata, Σ = {A-Z}, 0 ≤ k ≤ 2 6

1.4 Acyclic Automata for Concrete and Symbolic String Variables S1, S2 6

1.5 Removal of Concrete String from Concatenation Result 7

1.6 Motivating Example, Concatenation of Symbolic Strings 11

1.7 Concatenation of Symbolic Strings and Application of Predicate 11

1.8 Attempting to Determine S1, S2 with Substring Operation 12

2.1 Simple Finite State Automata . 18

2.2 Bounded vs. Acyclic-Automata . 19

2.3 Over-Approximation with Unbounded-Automata 20

2.4 Avoiding Over-Approximation with Acyclic-Automata 20

2.5 Related Inputs . 25

3.1 Constraint Graph . 29

3.2 Transposed Constraint Graph . 30

3.3 Inverse Node with Solution Set . 31

3.4 Input Nodes and Solution Sets . 36

xi

3.5 Sound and Complete Inverse Operation . 38

3.6 Handling Over-Approximation . 40

3.7 Handling Related Inputs . 43

4.1 Input Generator Components . 58

4.2 Symbolic Pathfinder Data Flow . 61

4.3 Example SPF Input and Output . 62

4.4 Test Case Constraint Graph . 62

5.1 Non-Injective and Unsound Operations Test Case Code 64

5.2 Non-Injective and Unsound Operations Constraint Graph 65

5.3 Multiple Outgoing Edges Test Case Code . 65

5.4 Multiple Outgoing Edges Constraint Graph . 66

5.5 Multiple Inputs Test Case Code . 66

5.6 Multiple Inputs Constraint Graph . 67

5.7 Test Flow . 67

5.8 Related Unsound Operations Test Code . 71

5.9 Related Unsound Operations Constraint Graph 72

5.10 Box Plot of Series One Runtime Ratio . 76

5.11 Box Plot of Series Two Runtimes . 78

5.12 Box Plot of Series Three Runtimes . 80

5.13 Growth in Runtime of Selected Test Cases . 82

xii

LIST OF ALGORITHMS

1 Traverse Function . 32

2 Evaluate Function for Predicate Nodes . 34

3 Evaluate Function for Input Nodes . 35

4 Evaluate for Sound and Complete Inverse Operations 37

5 Evaluate for Over-Approximating Inverse Operations 39

6 Evaluate Function for Related Value Operations 42

7 Algorithm for invConcat() . 47

8 Algorithm for invDelete() . 48

9 Algorithm for invDeleteCharAt() . 49

10 Algorithm for invInsert() . 49

11 Algorithm for invReplace() . 50

12 Algorithm for invReverse() . 51

13 Algorithm for invToLowerCase() . 52

14 Algorithm for invToUpperCase() . 53

15 Algorithm for invSubstring(start, end) 54

16 Algorithm for invSubstring(start) . 55

17 Algorithm for invTrim() . 56

xiii

LIST OF ABBREVIATIONS

SPF – Symbolic Pathfinder

SE – Symbolic Execution

PC – Path Conditions

SAT – Satisfiable

UNSAT – Unsatisfiable

FSA – Finite State Automata

SMT – Satisfiability Modulo Theory

TCG – Transposed Constraint Graph

xiv

LIST OF SYMBOLS

A Finite State Automata

L(A) Language of Finite State Automata

Σ Alphabet of Finite State Automata

k Length of String Accepted by Finite State Automata

ε Empty String

xv

1

SECTION 1

INTRODUCTION

Once relegated to a brief ad-hoc effort, software testing has become a well-established

systematic software development process. Primary factors driving the adoption of

testing are the increased cost of software defects that can cause security breaches

and failures of safety critical systems. As software testing became an integral part

of software development, software bacame more complex with intricate data and

control dependencies. This has caused an increase in the test case generation effort,

and in-particular identifying test cases that reach specific locations in code. With

simpler software it was feasible for a programmer to reason about test inputs that

reach program locations, however with complex software the programmers require

automated approaches to aid in generating test inputs for code reachability.

In response to these challenges, researchers leverage static program analysis

techniques such as Symbolic Execution (SE) [5,12] to generate test inputs [5,7,17],

detect security vulnerabilities, and find program defects. When used to generate

inputs, SE helps with finding a feasible path to the targeted location, which needs

to be executed by a test. However, it remains difficult to analyze and generate

test cases for programs that manipulate variables of complex data types such as

strings, and have variables entangled in non-trivial computations.

2

This work investigates approaches that improve test input generation for Java

String manipulating programs using SE techniques. Before explaining challenges

that this work addresses, the next section details the SE approach to test input

generation for Java string programs. It starts with an overview of SE testing and

continues with modeling sets of strings as automata.

1.1 Symbolic Execution

SE is a path-sensitive static program analysis technique that simulates the ex-

ecution of a program on symbolic inputs. In general, the process consists of

interpreting the code to determine the values that variables may take and deter-

mining the condition (or constraint) that defines a path. To use it as a white-box

test case generator, a SE engine sends that constraint to a solver and asks to

return a satisfiable solution. An overview of the process follows, starting with the

introduction of symbolic variables.

1.1.1 Symbolic Variables

Figures 1.1 and 1.2 present examples of SE on Java methods with integer and

string inputs, respectively. SE treats program input variables as symbolic values

by using Symbolic Variables to represent all possible concrete values that a program

input variable may take. Figure 1.1b shows the assignment of symbolic variables

to integer arguments x and y at the top of the symbolic execution tree: (x ← X)

and (y ← Y). Figure 1.2b shows similar assignments for strings s1, s2 and s3.

3

1 public void intEx (int x, int y) {
2 x = x + 1;
3 y = y - 1;
4 if ((x + y) >= 2) {
5 // true branch
6 } else {
7 // false branch
8 }
9 }

(a) Method with integer inputs

1: x←X; y←Y; X,Y∈Z

F T

2: PC2←true; x←X+1; y←Y

3: PC3←true; x←X+1; y←Y-1

4: PC4←true; x←X+1; y←Y-1
(x + y) >= 2

7: PC7←(X+1)+(Y-1)<2 5: PC5←(X+1)+(Y-1)≥2

(b) Symbolic Execution Tree

Figure 1.1: Symbolic Execution with Integer Inputs

1 public void strEx (String s2) {
2 String s1 = "B";
3 String s3 = s1.concat(s2);
4 if (s3.startsWith("BA")) {
5 // true branch
6 } else {
7 // false branch
8 }
9 }

(a) Method with string input

1: PC1←true; s2←S2, Σ = {A-Z}, k = 2

F

T

2: PC2←true; s1←S1, S1←‘B’, concrete value

3: PC3←true; s3←S3, S3←S1.concat(S2)

4: PC4←true; s3.startsWith(“BA”)

7: PC7←¬S3.startsWith(“BA”)

5: PC5←S3.startsWith(“BA”)

(b) Symbolic Execution Tree

Figure 1.2: Symbolic Execution with String Input

1.1.2 Symbolic Expressions

When SE encounters Domain Operations, such as integer addition or string con-

catenation, it creates new Symbolic Expressions by applying those operations to

symbolic variables or existing symbolic expressions. The program statement on line

2 of Figure 1.1a, (x = x + 1), results in the symbolic expression and assignment

(x ← X + 1) shown in Figure 1.1b. String concatenation on line 3 of Figure 1.2a

produces the symbolic expressions on line 3 of 1.2b.

4

1.1.3 Path Conditions

SE maintains a propositional symbolic formula known as the Path Condition (PC).

The PC represents the constraints that must be satisfied to execute the path

followed by SE. The PC is a conjunction of symbolic predicates, and initially

set to true: PCn ← true, where n is a program location. When evaluating a

conditional statement, SE conjoins a symbolic predicate to the PC based on the

conditional expression, branch taken and current symbolic state. Figure 1.1b shows

the results of evaluating the statement (if ((x + y) >= 2)) with (x ← X + 1)

and (y← Y −1). The true branch PC is (PC5 ← true ∧ ((X+1)+(Y −1)) ≥ 2))

and the false branch PC is (PC7 ← true ∧ ((X + 1) + (Y − 1)) < 2)). The

initial true value is eliminated from the PC when it is simplified. The evaluation

of the statement on line 4 of Figure 1.2a produces (PC5←S3.startsWith(“BA”))

and (PC7←¬S3.startsWith(“BA”)) for true and false, respectively (where ¬ is the

negation symbol).

1.1.4 Solving Integer Constraints

Once a PC is constructed, SE uses a Constraint Solver, or simply Solver, to

determine:

• Whether a PC evaluates to true (the PC is satisfiable, or SAT) or false (the

PC is unsatisfiable, or UNSAT). A PC is SAT if there is a solution that

evaluates its formula to true, otherwise it is UNSAT. A SAT PC means that

the path explored by SE is feasible (or reachable). Note that this type of

analysis determines if constraints can be satisfied and does not necessarily

find satisfiable assignments.

5

• If there are satisfiable assignments of variables in the PC that correspond to

the concrete input values that execute that program path. This is the basis

of test input generation using SE.

In order to produce a solution for the true branch (PC5) in the example given

in Figure 1.1, the solver must solve the inequality ((X + 1) + (Y − 1)) ≥ 2) for

the symbolic variables X and Y . For X, subtracting (Y − 1) from both sides of

the inequality yields ((X + 1) ≥ 2− (Y − 1)). Since X was modified by a domain

operation (addition), the solver performs the inverse operation (subtraction) in

order to isolate X: ((X+1)−1 ≥ 2−(Y −1)−1), which simplifies to (X ≥ 2−Y).

If the inequalities for X and Y cannot be solved, the PC for that branch becomes

UNSAT and the path is marked as infeasible, otherwise it is SAT. The inequalities

in this example can be satisfied with X = 1, Y = 1. When using these values as

inputs for x and y, the program executes the true branch.

Solving integer constraints systematically is possible because the inverses of

integer operations are well defined. Addition and subtraction have an inverse

relationship as do multiplication and division. Clearly, the algebra for solving

integer inequalities is well established. However, the theory of strings is not as

well developed and cannot guarantee for string operations to have inverses. Thus,

making it difficult to design generic algorithms for solving string constraints.

Before examining the problems related to automata-based string constraint

solving, the automata-based string model is introduced.

1.1.5 Symbolic String Models

A Symbolic String Model (or simply String Model) is the construct used to model a

set of strings. Since the number of possible values a symbolic string can take grows

6

exponentially with length, storing these values as a set of concrete strings is not

feasible. While Section 2.1 presents a detailed comparison of constructs used to

model strings, two types of automata commonly used for this purpose are discussed

here: bounded and acyclic. Figure 1.3 presents a comparison of bounded and

acyclic automatons for a string Σ = {A-Z}, 0 ≤ k ≤ 2. The bounded-automaton in

Figure 1.3a is more compact, because it tracks the string length separate from the

automaton. The acyclic-automata enforces string length by construction. Previous

research on evaluating automata types for modeling strings in SE has shown that

acyclic-automata reduce over-approximation (discussed in Section 1.4) in string

operations [16]. Since accuracy is essential to the efficiency of test case generation,

this work focuses on the acyclic-automata model. From this point on, references

to automata assume acyclic-automata, and all references to string models assume

acyclic-automata string models.

q0 0 ≤ k ≤ 2

A-Z

(a) Bounded Automata

q0 q1 q2
A-Z A-Z

(b) Acyclic Automata

Figure 1.3: Bounded vs. Acyclic Automata, Σ = {A-Z}, 0 ≤ k ≤ 2

s q1
B

(a) S1: Concrete Value ‘B’

s q1 q2
A-Z A-Z

(b) S2: Σ = {A-Z}, k = 2

Figure 1.4: Acyclic Automata for Concrete and Symbolic String Variables S1, S2

As further examples of acyclic models, Figure 1.4 shows acyclic-automata

models for strings S1 and S2. Figure 1.4a shows S1 with the single (or concrete)

7

value "B". Figure 1.4b shows S2 of length (k) = 2 and alphabet (Σ) = {A-Z}.

The example shown in Figure 1.2 uses strings S1 and S2 as defined in Figure 1.4.

The next subsection explains string operations.

1.1.6 Symbolic String Operations

The example in Figure 1.2 includes concatenation of S1 and S2. Since S1 and S2

can represent more than one string value, the result of this operation is the cross

product of the sets S1 and S2. For example, if strings prefix = {a, b} and suffix

= {c, d}, prefix.concat(suffix) results in the strings {ac, ad, bc, bd}. Figure 1.5a

shows the result of S1.concat(S2), which is assigned to S3. It is important to note

that while the automaton in Figure 1.5a represents all possible values of string S3

at that location, the automaton cannot distinguish between the "B" and string S2:

it has aggregated the states and transitions. Next, SE encounters a conditional

statement at line 4 and applies the predicate to determine the PC for each branch.

s q1 q2 q3
B A-Z A-Z

(a) S3=S1.concat(S2)

s q1 q2 q3
B A A-Z

(b) S3.startsWith("BA")

s q1 q2
A A-Z

(c) S3.startsWith("BA").substring(S1.length())

Figure 1.5: Removal of Concrete String from Concatenation Result

8

1.1.7 String Predicates

The predicate in the conditional statement at line 4 of Figure 1.2 is the Java string

method startsWith("BA") applied to string S3. Post-predicate string values for

S3 in the true branch all start with "BA", with all other pre-predicate string values

executing the false branch. Figure 1.5b shows the automaton for S3 on the true

branch. Note that all possible values for S3 on the true branch fail to execute the

true branch if used as input values: The string "B" concatenated with strings that

begin with "BA" results in strings that start with "BB", which execute the false

branch instead.

1.1.8 Solving String Constraints

When SE determines a symbolic expression for a string, it performs the string

operations to determine possible values of the program variable at that location.

At conditional statements, SE applies the predicate to restrict these values and

determine if a branch is feasible. If there are possible values, then the PC for that

branch is UNSAT, which means that the branch cannot be executed on that path.

Even though SE generates possible values for strings taking a branch, those

values cannot serve as inputs reaching that branch, because string operations

applied to inputs modify their initial values. These string operations must be

"undone," i.e., "inverted" in order to generate inputs from string values at the

branch outcome.

9

1.1.9 Inverse String Operations

To generate values for S2 that execute the true branch, the concatenation must

be "undone" with Inverse String Operations. An inverse string operation has an

inverse relationship with a corresponding string operation. For example, a string

operation that inserts a character at an index can be "inverted" with one that

deletes the character at that index. Inverse string operations may be defined

in terms of existing string operations, as + and − for integers, or may require

custom algorithms that modify the string model elements. This work assumes

that all string operations of the string constraint solver are available for defining

inverse string operations.

Note that when referring to a Java string method specifically, the term method

is used. The text uses the term operations when it refers to a string operation on

an automaton. The string operations model the Java string methods, and have

corresponding inverse string operations.

In the example given in Figure 1.5, it is possible to define inverse concatenation

using the Java string method substring(int start), which returns the substring

from index start to the end of the string. Since S1 a concrete value, it has a single

length which can be referenced with S1.length(). Combining these methods yields

S2 = S3.substring(S1.length()). Figure 1.5c shows the result: an automaton

that accepts strings of length 2 which start with "A". This auomaton accepts all

strings that make s2 successfully reach the true branch.

10

1.2 Motivating Example

In the previous string example, two factors facilitate the straightforward imple-

mentation of the inverse concatenation:

The solver can determine the length of S1 - Since S1 is concrete with a known

length (1), the solver removes the correct number of characters from S3 to find S2.

The inverse operation is expressed in terms of an existing string operation - This

eliminates the need to design new operations.

However, making minor changes to the previous string example significantly

increases the complexity of the string constraint. Figure 1.6 presents this example,

with the following modifications:

The concatenation arguments are both symbolic string inputs - The inputs (s1←S1),

(s2←S2) are defined Σ = {A-Z} and 1 ≤ k ≤ 2. Now the solver must account for

ranges of input lengths.

The predicate is now contains("BAA") - Applying this predicate to the concate-

nation result creates a complex automaton with several accepting paths.

The goal is to compute values for inputs s1 and s2 that reach the true branch

of the conditional statement at line 3. The PC for this branch is

PC4←S3.contains(“BAA”). Figure 1.7 shows S1 and S2, each contributing either 1

or 2 characters to the concatenated result which is the automaton with length 2

≤ k ≤ 4 shown in Figure 1.7b.

Figure 1.7c shows the result of applying predicate contains("BAA"). Since a

minimum of 3 characters in a string are required to make the predicate evaluate

11

1 public void strEx (String s1, String s2) {
2 String s3 = s1.concat(s2);
3 if (s3.contains("BAA")) {
4 // true branch
5 } else {
6 // false branch
7 }
8 }

(a) Method with string inputs

1: PC1←true; s1←S1, s2←S2, Σ = {A-Z}, 1 ≤ k ≤ 2

F T

2: PC2←true; s3←S3, S3←S1.concat(S2)

3: PC3←true; s3.contains(“BAA”)

6: PC6←¬S3.contains(“BAA”)

4: PC4←S3.contains(“BAA”)

(b) Symbolic Execution Tree

Figure 1.6: Motivating Example, Concatenation of Symbolic Strings

s q1 q2
A-Z A-Z

(a) S1, S2: Σ = {A-Z}, 1 ≤ k ≤ 2

s q1 q2 q3 q4
A-Z A-Z A-Z A-Z

(b) S3=S1.concat(S2)

s

q1 q2 q3 q4

q5 q6 q7

A,C-Z
B A A

B
A

B

A
A-Z

(c) S3.contains(“BAA”)

Figure 1.7: Concatenation of Symbolic Strings and Application of Predicate

to true, the result has a range of lengths: 3 ≤ k ≤ 4. In this example, designing

an inverse conatenation is complicated by the following factors:

12

S1 and S2 represent strings of various lengths - The inverse concatenation needs

to account for 4 combinations of lengths of S1 and S2: (S1: k = 1, S2: k = 1),

(S1: k = 1, S2: k = 2), (S1: k = 2, S2: k = 1), (S1: k = 2, S2: k = 2).

Using substring operation as inverse for concat introduces spurious strings - The

substring operation in the previous example produces a solution containing only

strings that execute the target path. An over-approximating inverse operation

introduces Spurious strings that do not execute the desired path. Using the

substring operation as before with the same lengths (S1: k = 1, S2: k = 2)

results in spurious strings. In this case both the starting and ending indexes of

the desired substrings are specified: (S1 = S3.contains(“BAA”).substring(0,1)) and

(S2 = S3.contains(“BAA”).substring(1,3)). The result for S1 in Figure 1.8a accepts

"A" and the result for S2 in Figure 1.8b accepts "AA". However, using s1 = "A",

s2 = "AA" does not execute the desired path. While this solution does contain

the single correct result for lengths (S1: k = 1, S2: k = 2), (s1 = "B" and s2 =

"AA"), it also contains 51 spurious combinations.

s q1
A-Z

(a) S1 = S3.contains(“BAA”).substring(0,1)

s q1 q2
A,B A

(b) S2 = S3.contains(“BAA”).substring(1,3)

Figure 1.8: Attempting to Determine S1, S2 with Substring Operation

The resulting automaton lost information about S1 and S2 - Due to inability to

determine which states and transitions correspond to each target and argument,

13

programming a new precise inverse operation to separate them is difficult.

S1 and S2 are dependent - The concatenation of S1 and S2 introduces dependencies

between their values in that choosing a test input value for one may affect valid

choices for the other. Choosing values for independent variables can be done

without regard for other variables.

1.3 Challenges

These specific problems of generating test inputs for string manipulating programs

can be categorized into the following challenges.

Modeling Inverse String Operations - Some inverse string operations can be

defined in terms of existing automata string operations. An example of an in-

verse relationship between Java methods are insert(int offset, char c) and

delete(int start, int end). In this case, the delete method can be used as the

inverse of the insert method. Since the solver knows the length (1) and the position

(offset) of the inserted element, it can call delete(offset, (offset + 1)) to

invert the insert operation. However, the method insert(int offset, String str)

cannot be modeled with existing operations. If the argument str represents a single

string value, such as "AB", then the length can be determined and we can model

the inverse operation with delete(int start, int end). This is because we

know about the position and length of the argument. If the argument str is not

concrete, but instead represents string values of more than one length, this naive

approach fails. Thus, new inverse operations should be provided.

Handling Non-Injective Functions - Some string operations are non-injective,

14

meaning they do not have a 1:1 relationship between each input and output. An

example of a non-injective function is the method delete(int start, int end).

To invert the delete operation, the solver can determine the location and length

of the deleted characters, but cannot determine what was deleted. Performing the

delete operation on multiple unique strings may produce the same output, hence

making it impossible to determine the relation between the result and the original

strings of the delete operation.

Maintaining Dependencies and Relationships - Reaching a given point during

execution may depend on the values and relationships of multiple variables. All of

them must be solved and relationships between the values maintained. An input

can be used in different locations, or be related to itself such as a string being

concatenated with itself.

Before presenting the thesis statement, it is important to define solver character-

istics and how they contextualize computed solutions.

1.4 Solver Characteristics

A sound constraint solver does not report a PC is UNSAT when it is SAT. In other

words, if a PC has a solution, a sound solver finds it, i.e., it does not report any

false negatives. However, a sound solver may report an UNSAT PC as being SAT,

termed a false positive, due to Over-approximation of the solution set in order to

make operations closed. Over-approximation occurs when a solution contains all

concrete values that satisfy a PC, as well as some that do not.

A complete solver never reports an UNSAT PC as SAT. In other words, if

a PC has no solution, a complete solver never reports one. It can also be said

15

that a complete solver never reports false positives. However, a complete solver

may miss a solution and report a SAT PC as UNSAT, a false negative. This

is Under-approximation, which occurs when a solution contains only values that

satisfy a PC but contains a subset of all such values.

Some amount of over-approximation (false positives) can be tolerated, and some

string constraint solvers allow for over-approximation in order to ensure a sound

solution [19]. These approaches may produce a solution such as the one presented

in Figure 1.8 since it does produce the valid combination of inputs for the chosen

lengths (S1 = "B", S2 = "AA"). However, that is the only valid combination out

of the 52 possible, which is a considerable number of false positives.

In general, it is impossible for a solver to be both sound and complete for

undecidable problems such as the satisfiability of a string PC [3]. The focus of this

work is to demonstrate practical methods that can produce sound and complete

solutions within certain contexts, such as within the length of input strings.

1.5 Thesis Statement

A complete test input generator for Java string programs can be implemented

using symbolic execution with an acyclic-automata based string constraint solver

that accurately models inverse string operations and ensures consistency between

dependent solutions.

This work aims to address the following research questions that support this

statement:

• RQ1 Can all inverse string operations be accurately modeled? In answer-

16

ing this question we investigate over-approximation and the use of existing

string operations, as well as methods for implementing those that cannot be

modeled with existing string operations.

• RQ2 How to maintain the dependencies while solving for inputs? Since

single-track automata cannot model relationships between strings, we inves-

tigate techniques to maintain these relationships.

• RQ3 Is the solution practical and effective? We evaluate whether the meth-

ods can be used with real-world programs and their effectiveness at finding

test inputs.

This rest of this thesis is organized as follows:

Section 2 introduces string models, constraints and solvers. It provides an overview

of current solvers and contrasts them with the proposed solver.

Section 3 presents the backward analysis algorithms. It details the inverse string

operations and how the different node types are evaluated. This section answers

the first two research questions on modeling inverse string operations and handling

dependencies.

Section 4 Details implementation of the proposed solver, inverse string operations

and its integration with Symbolic Pathfinder.

Section 5 presents empirical evaluations of this inverse solver framework and

provides answers to the last research question on practicality and effectiveness.

Section 6 concludes this thesis by summarizing the findings and proposing future

research that focuses on the efficiency of this framework.

17

SECTION 2

BACKGROUND AND RELATED WORK

2.1 String Models

A string is a finite sequence of symbols, chosen from a finite set of symbols

(alphabet, Σ), with a non-negative length (k ∈ N0). A string with length k =

0 is the empty string (ε). String models represent the set of possible strings a

string variable may take. As discussed in Section 1.1.5, the size of a string set

grows exponentially with length, making it infeasible to represent it explicitly as a

set of concrete strings. To mitigate this issue, a different representation is required

that encodes a set of strings efficiently and updates its structure without undue

computational cost.

A Finite State Automata (FSA) meets such requirements. An FSA is a state-

transisitional system where transitions (edges) are labeled with a symbol from the

alphabet Σ. A path in an FSA represents a sequence of symbols, i.e., a string.

The formal definition for deterministic finite state automata, a type of FSA, is the

quintuple (Q, Σ, E, q0, F) where:

• Q is a finite set of states, Q 6= ∅

18

• Σ is a finite set of symbols called the alphabet, Σ 6= ∅

• E is the set of edges, E : (q, c, p)|q, p ∈ Q, c ∈ Σ

• q0 is the start state, q0 ∈ Q

• F is the set of accepting states, F ⊆ Q

The language L of an FSA A is the set of strings accepted by the FSA, L(A).

A string is accepted if there exists a path in A from the starte state q0 to an

accepting state. Figure 2.1 gives an example of a simple FSA that encodes strings

of lengths one and two over the alphabet A-Z. This work uses the word automaton

to reference FSA.

q0 q1 q2
A-Z A-Z

Σ={A-Z}, 1≤k≤2

Figure 2.1: Simple Finite State Automata

Various types of automata are used to model strings. A majority of research

on automata-based string models manipulate unbounded-automata [4,9,18,20–22].

Unbounded-automata are space efficient because they contain cycles, i.e., when a

state can have a path to itself. This allows an unbounded-automaton with finite

states to represent infinitely many strings. Unbounded-automata do not encode

information about length, so there is no inherent mechanism to prevent endless

traversal of a cycle, which test case generation requires for better precision. In

order to represent strings of finite length, i.e., to create bounded-automata, a sep-

arate mechanism to enforce bounds is added to the unbounded model. Figure 2.2a

19

presents a bounded-automaton for string S1, Σ={A-Z}, 0≤k≤2. This automaton

requires only one state and transition, with the length tracked separately.

q0 0≤k≤2

A-Z

S1, Σ={A-Z}, 0≤k≤2

(a) Bounded-Automata

q0 q1 q2
A-Z A-Z

S1, Σ={A-Z}, 0≤k≤2

(b) Acyclic-Automata

Figure 2.2: Bounded vs. Acyclic-Automata

In contrast to the bounded-automata, acyclic-automata do not contain cycles,

and maintain bounds on length internally. Acyclic-automata are not as space

efficient as bounded-automata, as Figure 2.2b shows the acyclic-automaton for

string S1 requires three states and two transitions. Since an acyclic-automaton

has no cycles and a finite number of states, its language is finite.

Another consideration is that applying a string operation to a bounded-automata

string model can lead to over-approximation. This is due to the fact that the

bounded-automata does not encode length internally [8,16]. Figure 2.3 presents an

example from [8] when bounded-automata over-approximates operations. Figure

2.3a shows the unbounded-automaton for strings S1, S2, Σ={A-Z}, 1≤k≤2. Then,

after concatenate(S1, S2), a new automaton is produced as shown in Figure 2.3b.

Since the possible values for S1 and S2 are {A, AA, BA}, the concatenate operation

should result in the values {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA}.

However, the bounded-automaton in Figure 2.3b accepts the additional values

{ABAA, ABBA, BBAA}. This over-approximation is caused by the lack of length

information in the bounded-automata. In contrast, the example in Figure 2.4 of

20

acyclic-automata concatenation from [8] shows that a larger acyclic-automaton

accepts the correct strings {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA}.

q0 q1 1≤k≤2

B A

A

B

S1, S2: Σ={A-Z}, 1≤k≤2, values={A,AA,BA}

(a) Unbounded-Automata S1, S2

q0 q1 q2 2≤k≤4

B B A

A A

B

result: Σ={A-Z}, 2≤k≤4, values={A,AAA,ABA,BAA,AAAA,AABA,BAAA,BABA,ABAA,ABBA,BBAA}

(b) Unbounded-Automaton Concatenate (S1, S2)

Figure 2.3: Over-Approximation with Unbounded-Automata

q0

q1

q2

q3

A

B

A

A

S1, S2: Σ={A-Z}, 1≤k≤2, values={A,AA,BA}

(a) Acyclic-Automata S1, S2

q0

q1

q2

q3

q4 q6

q5

q7

A

B

A

A A
A

B
A

B

A

B

result: Σ={A-Z}, 2≤k≤4, values={AA,AAA,ABA,BAA,AAAA,AABA,BAAA,BABA}

(b) Acyclic-Automata Concatenate (S1, S2)

Figure 2.4: Avoiding Over-Approximation with Acyclic-Automata

21

Several works of Bultan et al. [18,19] use multi-track automata to model sets of

strings. In particular, STRANGER [20] represents symbolic strings as multi-track

automata implemented as Multi-terminal Binary Decision Diagrams [6] (MTBDD)

using MONA [13]. Other examined works employ fixed-size, ordered, lists of bits

called bit-vectors [11, 14, 23] to encode strings, and research indicates bit-vector

string models demonstrate performance advantages compared to automata string

models [15]. This work focuses on simple, single track automata as a method for

representing strings.

22

2.2 Solvers

Advances in research on string constraints resulted in addtional string constraint

solvers supporting diverse analyses. While a comprehensive examination of all

available solvers is outside the scope of this thesis, Table 2.1 presents popular

string constraint solvers and relevant to this work properties. The Model column

describes the type of string model used: automata, bit-vector, or if the solver is

axiom-based. The Type column contains the supported constraint types, where

mixed indicates that the solver supports a wider range of constraints than the

combination of string and integer constraints. The Semantics column contains the

language whose string operation semantics the solver implements. The Application

column presents the targeted task used in the solver evaluation.

Table 2.1: Popular String Constraint Solvers

Solver Model Type Semantics Applications
Z3-str, Z3 [23] axiom-

based
mixed SMT-LIB general

mixed-constraint
STRANGER [20,22] automata String PHP vulnerability detection
Redelinghuys
et.al. [15]

automata
and bit-
vector

String,
Int

Java model comparisons,
verification

JST [4] automata String,
Int

Java input generation,
verification

HAMPI [11] bit-
vector

String Web, C vulnerability, bug
finding

CVCS4 [14] bit-
vector

mixed SMT-Like general
mixed-constraint

The work presented by Redelinghuys et al. [15] compares automata and bit-

vector based symbolic string models. While the work focuses on this comparison,

it provides insights into the relative merit of the two most widely used types of

23

string models.

The string constraint solver Z3-str [23] implements semantics of the SMT-

LIB [2] string theory, which might differ from semantics of a particular program-

ming language. This solver is integrated into the Satisfiability Modulo Theory

(SMT) solver Z3. SMT solvers convert a formula in a particular theory into

Boolean satisfiability formula that are then passed to a satisfiability (SAT) solver.

SMT solvers handle mixed-constraints by first solving constraints in one theory and

then substituting these solutions for variables in constraints for another theory.

This process continues until all solvers compute solutions consistent with each

other.

CVCS4 [14] is a mixed-constraint SMT solver. However, unlike other SMT

solvers, it incorporates techniques for solving string constraints that do not rely

upon reduction to satisfiability problems.

HAMPI [11] operates on string constraints that express membership in regular

and fixed-size context-free languages. It converts these constraints into bit-vector

logic, which is then passed to a solver that supports bit-vector theory. In this

regard, HAMPI acts as a pre-processor for other solvers.

Designed for vulnerability detection in PHP code, STRANGER [20] performs

forward and backward data-flow analysis with automata over control-flow graphs.

STRANGER uses a fixed-point solving algorithm that includes widening opera-

tions in order to ensure convergence.

Although similar to the solver presented in this work in most respects, JST [4]

computes solutions to both integer and string constraints. It solves mixed con-

straints in a manner similar to SMT solvers.

Both JST [4] and STRANGER [20,22] are most similar to the solver presented

24

in this work, since they are all automata-based solvers.

2.3 Constraint Solving

Now we analyze how these related solvers approach solving string constraints.

JST handles mixed constraints of types integer and string. The integer con-

straints are solved first to obtain concrete integer values that are used in solving

string constraints. If no solution can be found for the string constraints, another

solution to the integer constraints is generated and the process continues. The

solver presented in this work assumes that concrete values are already present

in string constraints. While JST uses the same automata library as the solver

presented here, dk.brics.automata [4], it uses unbounded instead of acyclic-

automata models. The authors recognize that over-approximation can occur in

the existing string operations, and indicate that some functions require extra

handling [4]. However, it is not apparent that over-approximation is addressed.

Bultan et al. provide a body of work on string analysis [1, 3, 18–22], in-

cluding the string constraint solver STRANGER. STRANGER uses fixed-point

calculations to analyze programs using data-flow frameworks. At the start of

backwards analysis, an initial work item (automaton) representing the target

location (predicate constraint) is placed in a queue. Work items are removed from

the queue and pre-string operation automata are computed (similar to inverse

string operation in this work). These represent incoming flow values for other

work items in the control-flow graph of the program. If the values are different

from previously solved incoming flows, then the related work items are updated

and placed in the queue. The queue is processed until it is empty, at which point

25

no new incoming flow values are being generated and a fixed-point computation

has been achieved. In contrast, the proposed solver analyzes string constraints on a

single path in the programs control-flow graph. Details of this proposed framework

are presented in the next section.

In their other work [19], the authors examine vulnerability analysis using an

automata-based solver. Because in that application avoiding over-approximation

is not a primary concern, over-approximation is traded for a sound solution. In the

context of vulnerability analysis, a sound solution including all vulnerable inputs

but with some false-positives is preferable to a solution missing vulnerable inputs

but having no false-positives. As a result, the algorithms for computing pre-string

operation values in the previous work are not as precise as the ones implemented

in this solver.

Relational Constraints

input:
S1 : Σ={a-z}, k=2

input:
S2 : Σ={a-z}, k=2

operation:
S3=concatenate(S1, S2)

predicate:
S3.contains(“aaa”)
S3={aaaα, αaaa}

solutions:
1) S1={aa}, S2={aα}
2) S1={αa}, S2={aa}

true

Figure 2.5: Related Inputs

26

To further improve precision, the solver should maintain relations between

certain values. A primary characteristic of this solver is the ability to handle

relationships between inputs formed by string operations. Figure 2.5 provides an

example of related inputs resulting from the concatenation of symbolic strings S1,

S2: Σ={a-z}, k=2. Solutions for the predicate S3.contains(“aaa”) = true are given,

with α ∈ Σ. Due to the bound on length, (k=2), each input string contributes

either one or two characters to the post-predicate values of {aaaα, αaaa}. Possible

values for S1={aa, αa} and S2={aα, aa}. If input values are chosen for S1 and S2

without regard for the relationship between them, a great number of the resulting

combinations do not reach the correct branch.

F. Yu et al. [18] compute solutions for related inputs with the use of memory-

intensive, computationally complex multi-track automata. This type of automata

encodes related values, such as the possible values for the prefix and suffix of a

concatenation operation. In contrast, this proposed solver implements an approach

of iteratively propagating concrete values for related inputs. The next section

presents details of the proposed approach.

27

SECTION 3

APPROACH

The key elements for successfully implementing the proposed solver are the back-

ward analysis and inverse string operations algorithms. The general approach to

performing the backward analysis is to create a transposed constraint graph (TCG)

in which the nodes contain a majority of the required functionality. Essentially

the backward analysis traverses the TCG. The basic approach is to compute and

propagate incoming and outgoing values at each node, and traverse the TCG with

the help of the evaluation stack.

The implementations of inverse string operations depend on the type of the

operation. The most straightforward approach is for those inverse operations

that return sound and complete results. For inverse operations that return sound

but incomplete results, the solver eliminates the incompleteness. Finally, inverse

operations that deal with related inputs rely on the framework algorithm for

soundness.

The answer to two research questions introduced in Section 1.5 guides the

presentation of this section:

RQ1 Can all inverse string operations be accurately modeled? Section 3.2.1

28

provides formal definitions for the inverse string operations that positively answer

this question. To help with answering RQ1, we partitioned it into a series of the

following questions:

Does over-approximation occur in an inverse operation and if so then how is it

mitigated? Section 3.1.7 presents the over-approximating inverse operations and

the solution to handling such over-approximations.

Can existing string operations be used to model inverse operations? Section 3.2.1

provides examples of inverse string operations modeled with existing string oper-

ations such as insert(int index, String arg)−1 and reverse()−1.

How to define inverse operations that cannot be expressed with existing au-

tomata operations? Operations such as toLowerCase()−1 cannot be defined in

terms of existing string operations. Directly modifying the automata that encodes

the string values provides a way to implement these inverse functions. Section 3.1.7

describes such modifications.

RQ2 How to maintain dependencies between string values while solving string

constraints for solutions? Section 3.1.8 explains how related data-flow values are

determined and propogated in a way that maintains their relationships.

The following Section 3.1 details the backward analysis in a presence of un-

sound, but complete inverse operations. After that Section 3.2 focuses on inverse

operations.

29

3.1 Backward Analysis

3.1.1 Constraint Graph

Before the backward analysis begins, the solver performs the forward analysis on a

string constraint graph that encodes string constraints: its nodes are expressions

and edges data-flow of string values between them. Figure 3.1 presents an example

constraint graph, where nodes are string inputs (node 5), operations (nodes 10 and

17), predicates (node 32) and concrete strings (node 30).

5: Input R5

10: ToUpperCase

17: Concatenate

32: Contains 30: Concrete “AAaa”

target

arg

target

target
arg

Figure 3.1: Constraint Graph

Directed labeled edges specify type of data uses, which can be either target

or argument for the destination node. In object-oriented terms, the target is

the string object (automaton) on which the instance method (string operation) is

called. Nodes in the constraint graph can have multiple incoming and outgoing

edges. Each outgoing edge indicates a use of the node’s outgoing value. Each node

contains a numerical identifier (node ID) indicating an order for evaluating nodes

during forward analysis. The forward analysis traverses the constraint graph in

total-order on node ID until it determines the possible string values at a predicate

node and evaluates it to true or false.

30

3.1.2 Transposed Constraint Graph

Figure 3.2: Transposed Constraint Graph

Backward analysis starts after forward analysis completes the evaluation of a

predicate node. The framework builds a TCG, consisting of inverse constraint

nodes, while reversing (or transposing) edge directions from the constraint graph.

In a TCG, a node may have multiple incoming edges representing multiple uses

of a value. Figure 3.2 shows the TCG of the constraint graph in Figure 3.1.

Note that "input r5" has multiple incoming edges since it is the target of the

toUpperCase() string operation as well as the argument to the concat() string

operation in the constraint graph. In order to find a solution for input r5, the

values of all the incoming edges must have a common element. Each inverse node

contains a solution set that keeps a set of solutions from each incoming edge. A

solution set is said to be consistent when the intersection of all its elements is not

empty. Figure 3.3 shows a diagram of an inverse constraint node and its solution

set.

31

Figure 3.3: Inverse Node with Solution Set

3.1.3 Graph Traversal

Backward analysis starts at the post-predicate values and propagates their results

toward the input nodes by performing a depth-first traversal of the TCG. The

solver maintains a stack of nodes to be evaluated, and initializes it with the pred-

icate. Here, the evaluation stack is an abstract concept and can be implemented

as either an actual stack or as a series of function calls in which each node calls

the evaluate(inputNode, sourceIndex) function on the next inverse constraint

node in the TCG. The algorithms presented here use the latter.

Algorithm

Algorithm 1 depicts a pseudocode for the traversal algorithm in which each node

calls the evaluate(inputNode, sourceIndex) method on the next (target) node

in the TCG. Below are the assumptions that Algorithm 1 relies on:

• Each node in the TCG has references to its children and parents.

32

• Each incoming edge represents a use of the node output in the original

constraint graph.

• Each node has access to the results of the forward analysis.

The algorithm takes as input a predicate node p of the TCG. Each node’s evalu-

ate method takes two arguments: a reference to the calling node (the predecessor of

the called node) and an integer that indicates which output to take from the calling

node. Some nodes, such as those that handle related values, have multiple outputs.

In the case of a predicate node, there is no predecessor and the input will be the

output of the next node. The algorithm sets inputNode and sourceIndex accord-

ingly and begins the traversal by calling evaluate(inputNode, sourceIndex) on

the predicate node. If the returned value is false, then the solver has failed to find

a solution, or the predicate was UNSAT.

Algorithm 1 Traverse Function
1: function traverse(predicate p)
2: inputNode ← null
3: sourceIndex ← 0
4: solved ← p.evaluate(inputNode, sourceIndex)
5: if not solved then
6: . Unable to find solution
7: end if
8: end function

3.1.4 Fallback Sequence

A fallback sequence begins when the evaluate function of a node returns false.

Once initiated, a fallback sequence continues until:

33

A node has more values to propagate - Since unsound nodes propagate a subset

of incoming values, it is possible that other unexplored values could lead to a

consistent solution.

A predicate is reached - This serves as a check for defects. If a predicate has

satisfiable assignments after the forward analysis, then there are corresponding

inputs for those assignments. If the evaluate(inputNode, sourceIndex) call in

a predicate returns false, then the solver has failed to find those inputs.

3.1.5 Node Evaluation

Each node calls the evaluate(inputNode, sourceIndex) functon on the next

node in the TCG. The function is different for each node type. The node types

are:

• Predicate Node

• Input Node

• Inverse String Operation Node - Operation that is Sound and Complete

• Inverse String Operation Node - Operation that Over-Approximates (Sound

but Incomplete)

• Inverse String Operation Node - Relational String Operation (Unsound but

Complete)

Predicate node evaluation propagates the post-predicate values and calls

evaluate(inputNode, sourceIndex) to the next node. Since all arguments to

a predicate are concrete, there is only one node following a predicate, i.e., the

“target”. Algorithm 2 presents the pseudocode for evaluating predicate nodes.

The forward results of the next node are retrieved on line 2. If the results contain

34

values, they are placed in the output set on line 4. The output set contains one or

more sets of values for subsequent nodes to use as input. The algorithm then calls

evaluate(inputNode, sourceIndex) on the next node in the TCG and returns

the boolean result.

Algorithm 2 Evaluate Function for Predicate Nodes
. Each node has a pointer to targetNode
. Each node exposes an outputMap

1: function evaluate(inputNode, sourceIndex)
2: resultModel ← targetNode.getModel()
3: if not resultModel.isEmpty() then
4: outputMap.put(1,resultModel)
5: return targetNode.evaluate(thisNode, 1)
6: end if
7: return false . Error, predicate was UNSAT
8: end function

Since a node may have more than one parent, a construct is needed to keep all of

the inputs from these calling nodes and determine if they are consistent. Each node

has a solution set for this purpose, and it is said to be consistent if the intersection

of all inputs in the set is not empty. The evaluate(inputNode, sourceIndex)

function for input nodes demonstrates use of the solution set. Algorithm 3 presents

the pseudocode for evaluating input nodes. The solution (input) from the calling

node is retrieved on line 2. It is placed into a solution set on line 3. The solution

set is checked for consistency on line 4 and if the solution set is not consistent the

solution is removed on line 5 and a fallback is initiated on line 6 by returning false.

If the solution set is consistent, the function returns true, as an input node has no

child nodes (i.e., no next node to evaluate).

35

Algorithm 3 Evaluate Function for Input Nodes
. Each node has a pointer to targetNode
. Each node has an internal solutionSet

1: function evaluate(incomingNode, sourceIndex)
2: solution ← incomingNode.outputMap(sourceIndex)
3: solutionSet.setSolution(incomingNode.getID(), solution)
4: if (not solutionSet.isConsistent()) then
5: solutionSet.remove(incomingNode.getID()
6: return false . fallback to find new solutions
7: end if
8: return true
9: end function

Figure 3.4 presents an example of computing the solution for input "r5" from

the TCG shown in Figure 3.2.

The algorithm starts with a predicate, 32, which has the value satisfying it

"AAaa". String values generated by each inverse operation are shown in each

node. As solutions are added to the solution set of r5, they are intersected with all

existing solutions in the solution set. If the intersection does not contain any values,

a fallback sequence is started in an attempt to find new solutions. A solution is

found for r5 once all incoming edges have been evaluated and the solution set is

consistent. All incoming edges for all input nodes are considered evaluated once

the series of evaluate calls completes. In this case, the solution is the intersection

of incoming edge 10 and 17, which is "aa". Using "aa" as the value input r5 in

the constraint graph in Figure 3.1 shows that the true branch is taken, and the

solution is correct.

The algorithm relies on correct implementation of inverse operations, which

are detailed in the next section.

36

Figure 3.4: Input Nodes and Solution Sets

37

3.1.6 Sound and Complete Operations

String operations can be either injective or non-injective. Non-injective operations

map more than one input to the same output. Injective operations map a single

input to an output. In situations where the solver has sufficient information about

an injective string operation, a sound and complete inverse result can be computed.

Algorithm 4 presents the pseudocode for the evaluate(inputNode, sourceIndex)

for sound and complete nodes. The input is retrieved from the calling node on

line 2. The inverse operation is applied on line 3. Lines 4-8 add the results to

the solution set and check for consistency, returning false if the solution set is

not consistent. If the solution set is consistent, lines 9-10 add the solution to the

output set and call evaluate(inputNode, sourceIndex) on the next node.

Algorithm 4 Evaluate for Sound and Complete Inverse Operations
. Each node has a pointer to targetNode
. Each node exposes an outputMap
. Each node has an internal solutionSet

1: function evaluate(inputNode, sourceIndex)
2: incoming ← inputNode.outputSet(sourceIndex)
3: solution ← inverseOperation(incoming)
4: solutionSet.setSolution(inputNode.getID(), solution)
5: if (not solutionSet.isConsistent()) then
6: solutionSet.remove(inputNode.getID())
7: return false . fallback to find new solutions
8: end if
9: outputMap.put(1,solution)

10: return targetNode.evaluate(thisNode, 1)
11: end function

To illustrate the algorithm, consider Figure 3.5 that shows the flow of a sym-

bolic string through a forward string operation, predicate, and backward anal-

38

ysis with a sound and complete inverse string operation. In this example the

string operation is insert(int offset, char c): S.insert(1,‘a’). The predicate is

S.contains("bab"). String S is defined with parameters k=2 and Σ={a,b}.

The edges are labeled with the values for S. The inverse string operation is

S.invInsert(1,1), which deletes a single character at index one. The result

is the single value "bb", which is both sound and complete. In this case the solver

has sufficient information (length and position) to remove the inserted character

sequence to compute an accurate result. In this context, the insert operation is

injective, as there is only one possible input value, "bb", that results in the output

value "bab".

Symbolic String S

S.insert(1,‘a’)

S.contains(“bab”)

S.invInsert(1,1)

Spre-operation = {aa,ab,ba,bb}

Spost-operation = {aaa,aab,baa,bab} Spost-predicate = {bab}

Sresult = {bb}

Figure 3.5: Sound and Complete Inverse Operation

3.1.7 Handling Over-Approximation

A non-injective string operation results in unavoidable over-approximation in its

inverse string operation. A common approach for eliminating over-approximation

is to intersect the over-approximated result with the results of the forward analy-

sis [21]. This step removes the spurious strings introduced by the over-approximating

inverse.

39

The evaluate(inputNode, sourceIndex) function for a node with an over-

approximating inverse string operation performs the intersection required to elim-

inate the over-approximation. Algorithm 5 presents the pseudocode for such a

function, with the intersection occurring on line 4.

Algorithm 5 Evaluate for Over-Approximating Inverse Operations
. Each node has a pointer to targetNode
. Each node exposes an outputMap
. Each node has an internal solutionSet

1: function evaluate(inputNode, sourceIndex)
2: incoming ← inputNode.outputSet(sourceIndex)
3: solution ← inverseOperation(incoming)
4: solution ← intersect(solution, targetNode.forwardResult)
5: if solution.isEmpty() then
6: return false . fallback to find new solutions
7: end if
8: solutionSet.setSolution(inputNode.getID(), solution)
9: if (not solutionSet.isConsistent()) then

10: solutionSet.remove(inputNode.getID())
11: return false . fallback to find new solutions
12: end if
13: outputMap.put(1,solution)
14: return targetNode.evaluate(thisNode, 1)
15: end function

Figure 3.6 gives an example of the non-injective string function toLowerCase()

and the subsequent over-approximation in invToLowerCase(). Given a string S,

Σ={a, b, A, B}, k=2, which has the initial values {aB, bA, ba}, the toLowerCase()

function produces Spost-operation = {ab, ba}. Application of the predicate pro-

duces Spost-predicate = {ab}, which is input to the invToLowerCase() operation.

However, the lower case string "ab" is the result of calling toLowerCase() on any

40

of the strings {ab, aB, Ab, AB}, with only one of the four present in Spre-operation.

Intersecting Spre-operation with Spost-inverse eliminates the additional strings intro-

duced by invToLowerCase().

Symbolic String S

S.toLowerCase()

S.endsWith(“b”)

S.invToLowerCase()

Spost-inverse ∩ Spre-operation

Spre-operation = {aB,bA,ba}

Spost-operation = {ab,ba} Spost-predicate = {ab}

Spost-inverse = {ab,aB,Ab,AB}

Sresult = {ab,aB,Ab,AB} ∩ {aB,bA,ba} = {aB}

Figure 3.6: Handling Over-Approximation

3.1.8 Maintaining Related Values

Unsound results are returned when an inverse string operation needs to maintain

the relationship of outgoing strings. However, single-track automata models can-

not maintain such relations. Each string model represents one string, with no

intrinsic way to specify a relationship with a string from another node. Previous

work examines methods of handling string relations using complex, multi-track

automata that are memory and computationally expensive [18,19]. The approach

taken here focuses on completeness, and it propagates singleton values as matched

pairs for related concrete strings. To ensure soundness, the framework produces

all matched pairs through iteration.

The related value node evaluate(inputNode, sourceIndex) function is pre-

sented in Algorithm 6. The function maintains the list of related values returned

41

by the inverse string operation, and either returns values from this list if available,

or uses the inverse string operation to generate more values from remaining input.

The input is retrieved from the calling node on line 2. The alogrithm selects

concrete values from these inputs, and the while loop initiated on line 3 continues

until all inputs are exhuasted or solutions are found. Line 4-5 remove a concrete

value from the inputs. Lines 6-7 retrieve string models from the target and

argument nodes. Line 8 calls the inverse operation that returns a set of tuples,

each tuple containing a matched pair of concrete values that satisfy both the target

and argument nodes. The while loop initiated on line 9 continues until all of these

tuples have been propagated or a solution is found. Line 10 removes a single tuple

from the set. It is split into two singleton string models on lines 11-12. The

singleton string models are intersected with the forward results on lines 13-14.

The singleton string models are placed in the output set on lines 15-16. The

evaluate(inputNode, sourceIndex) function for both the target and argument

nodes is called on line 17. If both of these calls return true, then the algorithm

returns true. If no solution is found and all available values have been explored,

the algorithm returns false.

42

Algorithm 6 Evaluate Function for Related Value Operations
. Each node has a pointer to targetNode
. Each node exposes an outputMap
. Each node has an internal solutionSet
. Each node has reference to argumentNode

1: function evaluate(inputNode, sourceIndex)
2: inputs ← inputNode.outputSet(sourceIndex)
3: while not inputs.isEmpty() do
4: input ← inputs.getShortest()
5: inputs ← inputs.minus(input)
6: targetModel ← targetNode.getModel()
7: argumentModel ← argumentNode.getModel()
8: Set of Tuples outputs ← inverseOperation(targetModel,argumentModel)
9: while not outputs.isEmpty() do

10: Tuple split ← outputs.remove()
11: postOpTarget ← split.get1()
12: postOpArgument ← split.get2()
13: postOpTarget ← intersect(postOpTarget, targetNode.forwardResult)
14: postOpArgument ← intersect(postOpArgument,

argumentNode.forwardResult)
15: outputMap.put(1,postOpTarget)
16: outputMap.put(2,postOpArgument)
17: if argumentNode.evaluate(thisNode,2) ∧

targetNode.evaluate(thisNode,1) then
18: return true
19: end if
20: end while
21: end while
22: return false . fallback to find new solutions
23: end function

Figure 3.7 presents the flow of related symbolic strings through a concatena-

tion operation, where input strings S1, S2 are defined with parameters Σ={a,b},

43

1≤k≤2. The post-predicate values for S3 are displayed below the invConcat()

node. In this example, the string value "aaa" (underlined in the figure) is selected

as input to the invConcat() operation. The invConcat() operation returns a

list of valid prefix / suffix pairs for further computations. In this case it returns

tuples (a, aa) and (aa, a). The first singleton values propagated are S1 = "a",

S2 = "aa". If a fallback occurs or multiple solutions are needed, then the next

evaluation returns S1 = "aa", S2 = "a". After that, another singleton is removed

from the set of incoming values and the process continues. If no further pairs are

available and there are no further incoming values available, a fallback sequence

is initiated. It is important to note that the invConcat() exhaustively returns all

of the prefix / suffix pairs, which makes this operation sound and complete.

Input S1 Input S2

S3=S1.concat(S2)

S3.contains(“aaa”)

S3.invConcat(S1,S2)

Solution S1 Solution S2

{a,b,aa,ab,ba,bb} {a,b,aa,ab,ba,bb}

{aa,ab,aaa,aab,aba,...,bbba,bbbb} {aaa,aaaa,baaa,aaab}

{a} {aa}

Figure 3.7: Handling Related Inputs

This approach addresses the goals of prioritizing a complete solution over a

sound solution in a single iteration, while maintaining relationships between string

inputs. Note that the term unsound result when applied to an inverse string

operation using this approach means it has not yet returned all of the values in a

sound result, but does not indicate that it cannot produce a sound result if it is

allowed to exhaust the incoming values.

44

3.1.9 Termination

The algorithm terminates since the TCG is acyclic, and each node has a finite

number of values that it can propagate backwards. It finds a solution because it

propagates all feasible predicate strings backwards to each input, and one of those

strings must lead to a solution.

3.1.10 Complexity

The nodes of the TCG can be partitioned into two groups: source and sink nodes,

and inverse operation (inner) nodes. Source and sink nodes are predicates, inputs,

and constants. These three node types simply propagate values, with the input

nodes taking the additional step of checking the solution set for consistency. Here

we define an input size as the number of values the symbolic string inputs represent.

Since the input size does not affect these nodes, they compute in constant time.

Note that the number of values a symbolic string input represents is determined

by the alphabet and the length of input strings.

Inverse operation nodes can further be categorized into two types: Those that

return a full solution (sound) and those that do not (unsound). The complexity of

inverse operations of sound nodes depend on the input size and has growth linear

with the automata size. The complexity of inverse operations for the nodes that

compute unsound results has non-linear growth with the input size. A worst-case

scenario, therefore, is a constraint containing multiple unsound operations over

related variables such as s1.concat(s1)−1.

Consider unsound nodes in the TCG. We define d as the size of their inputs,

set in this case the number of string values output by the previous node. Note

45

that d depends on the length and alphabet size of the symbolic string inputs (see

Section 5.3 for more details). We define p as the maximum number of matching

tuples of values for each d input value that such node can produce. In a worst

case scenario all of these pairs need to be propagated to the descendants of the

node. We define m as the number of inverse operations in the TCG. Then the

resulting recurrence relationship is f(m) = d × p × f(m − 1). This reduces to

f(m) = dm × pm, which is the worst case number of traversals of the TCG.

3.1.11 Limitations

The algorithm is limited in the handling of multiple predicates. Although a

constraint graph may have multiple predicates present, the algorithm processes

one predicate at a time, without consideration for the presence of others. In

practical terms, the algorithm cannot reliably process related predicates such as

embedded “If” statements. It will solve each independently and cannot backtrack

to previously solved predicates. Extension of the algorithm to multiple related

predicates is left for future work.

3.2 Inverse String Operations

Nodes in the TCG ally with inverse string operations for the backward analysis.

The following list itemizes the properties of an inverse string operation:

• All operations must return complete results.

• Some operations return sound and complete results on the first evaluation.

• When relationships between strings must be maintained, an operation re-

turns an unsound result containing a set of singleton pairs.

46

• Operations that return unsound results can be repeatedly queried until all

possible results are returned.

• When over-approximation occurs, inverse results are intersected with pre-

string operation values to obtain a complete result.

3.2.1 Formal Definitions and Algorithms

The formal definitions are based on the following assumptions. First, each inverse

operation takes as input an acyclic-automata A encoding all of the possible strings

from the previous inverse operation. However, the inverse concatenation operation

only considers singletons to compute the prefix and suffix inverses. Second, all of

the string operations modeled in the forward analysis such as delete and insert are

available, as well as standard automata operations such as union and intersection.

Third, all integers used in arguments of string operations such as substring have

concrete values.

47

Inverse String Operation t.concat(String arg)−1:

From the input automata, a single string s is removed and encoded in A.

Then the inverse is defined as:

{(t, arg) | ∀i ∈ [0, |s|] t = A.substring(0, i) ∧ arg = A.substring(i)}

The inverse of concat operates on a single string s and splits it into

all possible prefix and suffix combinations. This inverse produces a set

of (t, arg) tuples for each possible i split. The pseudocode for inverse

concatenate is presented in Algorithm 7. At line 3 it iterates over the

length of the prefix. Each iteration builds a prefix / suffix tuple on lines

4-5. A new tuple is created and added to the result set on line 6. A set

of tuples containing all feasible prefix / suffix pairs is returned on line 8.

The evaluate(inputNode, sourceIndex) removes infeasible tuples from

the result tuples.

Algorithm 7 Algorithm for invConcat()
1: function invConcat(prefixModel, suffixModel)
2: resultTuples = {}
3: for length ← 0 to prefixModel .bound() do
4: newPrefix ← thisModel .substring(0, length)
5: newSuffix ← thisModel .substring(length)
6: resultTuples.add(new Tuple(newPrefix, newSuffix))
7: end for
8: return resultTuples
9: end function

48

Inverse String Operation t.delete(int start, int end)−1:

Let Asubstr have L(Asubstr) = Σend−start, that is all strings of length (end

- start). The inverse is defined as:

A.insert(Asubstr, start)

All possible strings of length (end − start) are inserted into A. The

pseudocode for inverse delete is presented in Algorithm 8. A new symbolic

string accepting all strings of the length of the deleted portion is created on

line 2. The new symbolic string is inserted into the target automaton on

line 3. Subsequent intersection with forward results occurs in the calling

evaluate(inputNode, sourceIndex) function.

Algorithm 8 Algorithm for invDelete()
1: function invDelete(start, end)
2: insertModel ← createModel(Σend−start)
3: resultModel← thisModel.insert(start, insertModel)
4: return resultModel
5: end function

49

Inverse String Operation t.deleteCharAt(int index)−1:

The inverse is defined in terms of the t.delete(int start, int end)−1.

The inverse is:

t.delete(int index, int index + 1)−1

The pseudocode for inverse deleteCharAt is presented in Algorithm 9. Line

2 assigns the value of a call to the invDelete function with arguments that

evaluate to a string of length one.

Algorithm 9 Algorithm for invDeleteCharAt()
1: function invDeleteCharAt(index)
2: resultModel← thisModel.invDelete(index, index + 1)
3: return resultModel
4: end function

Inverse String Operation t.insert(int index, String arg)−1:

Let A be the target string model. Let m be |arg|, where arg is a concrete

string, then the inverse is defined as:

A.delete(index, m)

This inverse operation deletes a substring of length m at the specified

location. The algorithm for inverse insert is presented in Algorithm 10.

Line 2 assigns the value returned by a delete invocation, which removes

the inserted portion from the target symbolic string.

Algorithm 10 Algorithm for invInsert()
1: function invInsert(index, arg)
2: resultModel← thisModel.delete(index, index + |arg|)
3: return resultModel
4: end function

50

Inverse String Operation t.replace(char oldChar, char

newChar)−1:

Let A = (Q,Σ, E, q0, F) be the incoming automaton. Given the

values of oldChar and newChar, define a new set of transitions

Et = E ∪ {(p, oldChar, q) | (p, newChar, q) ∈ E}. The inverse creates a

new automaton with a new set of transitions Et, that is the automaton

for the target becomes:

(Q,Σ, Et, q0, F)

This inverse operation adds additional transitions with oldChar labels to

A between states that already have newChar as labels. The pseudocode

for inverse replace is presented in Algorithm 11. Line 2 extracts the

underlying automaton from the symbolic string, since the function

directly modifies it. The sets of transitions are initialized on line

3. Lines 4-8 iterate over all of the incoming automata transitions,

adding a new oldChar transition to the new transition set for every

newChar transition. Line 9 creates a new automaton and string model.

Subsequent intersection with forward results occurs in the calling

evaluate(inputNode, sourceIndex) function.

Algorithm 11 Algorithm for invReplace()
1: function invReplace(oldChar, newChar)
2: newAutomaton← thisModel.getAutomaton()
3: E ← newAutomaton.getTransitions()
4: for all transition e ∈ E do
5: if e.char == newChar then
6: E.addTransition(e.target, oldChar, e.dest)
7: end if
8: end for
9: resultModel ← new StringModel(newAutomaton)

10: return resultModel
11: end function

51

Inverse String Operation t.reverse()−1:

Let A be the target string model. The inverse is defined as:

A.reverse()

The reverse operation is the inverse of itself and has no over-

approximation. The pseudocode for inverse reverse is presented in Al-

gorithm 12. The algorithm simply invokes reverse on the string model on

line 2.

Algorithm 12 Algorithm for invReverse()
1: function invReverse()
2: resultModel← thisModel.reverse()
3: return resultModel
4: end function

52

Inverse String Operation t.toLowerCase()−1:

Let A = (Q,Σ, E, q0, F) be the incoming target automaton. We define a

new set of transitions Et = E ∪ {(p, upperCase(char), q) | (p, char, q) ∈

E}. The inverse operation creates a new automaton with the new set of

transitions Et. The inverse is defined as the new automaton:

(Q,Σ, Et, q0, F)

The inverse adds a transition with an upper case character between states

that have transitions on a corresponding lower case character. The algo-

rithm for inverse toLowerCase is presented in Algorithm 13. A reference

to the underlying automaton is created on line 2. Lines 4-6 iterate over

the transitions and characters. Line 5 adds an upper case transition for

every character. Subsequent intersection with forward results occurs in

the calling evaluate(inputNode, sourceIndex) function.

Algorithm 13 Algorithm for invToLowerCase()
1: function invToLowerCase()
2: newAutomaton← thisModel.getAutomaton()
3: E ← newAutomaton.getTransitions()
4: for all transition e ∈ E do
5: E.addTransition(e.target, e.char.toUpper(), e.dest)
6: end for
7: resultModel ← new StringModel(newAutomaton)
8: return resultModel
9: end function

53

Inverse String Operation t.toUpperCase()−1:

Let A = (Q,Σ, E, q0, F) be the incoming target automaton. We define a

new set of transitions Et = E ∪ {(p, lowerCase(char), q) | (p, char, q) ∈

E}. The inverse operation creates a new automaton with the new set of

transitions Et. The inverse is defined as the new automaton:

(Q,Σ, Et, q0, F)

The inverse adds a transition with a lower case character between states

that have transitions on a corresponding upper case character. The algo-

rithm for inverse toUpperCase is presented in Algorithm 14. A reference

to the underlying automaton is created on line 2. Lines 4-6 iterate over

the transitions and characters. Line 5 adds a lower case transition for

every character. Subsequent intersection with forward results occurs in

the calling evaluate(inputNode, sourceIndex) function.

Algorithm 14 Algorithm for invToUpperCase()
1: function invToUpperCase()
2: newAutomaton← thisModel.getAutomaton()
3: E ← newAutomaton.getTransitions()
4: for all transition e ∈ E do
5: E.addTransition(e.target, e.char.toLower(), e.dest)
6: end for
7: resultModel ← new StringModel(newAutomaton)
8: return resultModel
9: end function

54

Inverse String Operation t.substring(int start, int end)−1:

Let A be the incoming target automata. Define m as the maximum

length of string in the forward results AF0 and an automaton Aprefix such

that L(Aprefix) = Σstart. Define automaton Asuffix such that L(Asuffix) =

Σm−end. Then the inverse is defined as follows:

Aprefix.concat(A).concat(Asuffix)

The pseudocode for inverse substring(start, end) is presented in Algo-

rithm 15. It creates a prefix of known length start and a suffix of length

m−end accepting all strings to the given length. It then concatenates the

Aprefix, A, and Asuffix. Line 2 creates a string model that accepts strings

up to the length of the removed prefix. Line 3 creates a suffix model that

is at least as long as the removed suffix. Line 4 concatenates the prefix,

target and suffix together. Subsequent intersection with forward results

occurs in the calling evaluate(inputNode, sourceIndex) function.

Algorithm 15 Algorithm for invSubstring(start, end)
1: function invSubstring(start, end)
2: prefixModel ← createModel(Σstart)
3: suffixModel ← createModel(Σm−end)
4: resultModel← prefixModel.concat(thisModel).concat(suffixModel)
5: return resultModel
6: end function

55

Inverse String Operation t.substring(int start)−1:

Let A be the incoming target automata. Define automata Aprefix such that

L(Aprefix) = Σstart. The inverse is defined as:

Aprefix.concat(A)

The pseudocode for inverse substring(start) is presented in Algorithm 16.

It creates a prefix of known length start accepting all strings to the given

length. It then concatenates the Aprefix and A. A prefix model is created

that accepts all strings up to the length of the removed prefix on line 2.

Line 3 concatenates the prefix and target. Subsequent intersection with

forward results occurs in the calling evaluate(inputNode, sourceIndex)

function.

Algorithm 16 Algorithm for invSubstring(start)
1: function invSubstring(start)
2: prefixModel ← createModel(Σstart)
3: resultModel← prefixModel.concat(thisModel)
4: return resultModel
5: end function

56

Inverse String Operation t.trim()−1:

Let A be the incoming target automata. Define w as the whitespace

character, and m as the maximum length of string in the forward results

AF0 . Define Apadding such that L(Apadding) = wm. Then the inverse is

defined as:

Apadding.concat(A.concat(Apadding))

The pseudocode for inverse trim is presented in Algorithm 17. The inverse

operation pads the strings encoded in A with the whitespace character

such that all strings are at least as long as the longest string in AF0 . A

string model as long as the maximum string length is created on line 3

that accepts all strings comprised of the whitespace character. The prefix,

target and suffix are concatenated on line 4. Subsequent intersection with

forward results occurs in the calling evaluate(inputNode, sourceIndex)

function.

Algorithm 17 Algorithm for invTrim()
1: function invTrim()
2: alphabet Σ← w

3: paddingModel ← createModel(Σm)
4: resultModel← paddingModel.concat(thisModel.concat(paddingModel))
5: return resultModel
6: end function

57

SECTION 4

IMPLEMENTATION

The solver is part of a larger input generation framework shown in Figure 4.1. The

solver has been completed, extending the code from previous research comparing

the performance of string solvers [10]1 and the suitability of automata for modeling

symbolic strings [16]2. These in turn are largely based on Java String Analyzer

(JSA) and the dk.brics automaton library [4]3. The input generation framework

is part of the public repository at

https://github.com/BoiseState/string-constraint-counting.

The framework consists of the following components, illustrated in Figure 4.1:

Input Generator - This is the main entry point for the system. It instantiates the

reporter, parser, and solver. It instantiates the reporter run() function, which in

turn uses the parser and solver to generate inputs through backward analysis.

Parser - Parses input graphs encoding into internal data structure.

Solver - Contains forward and backward analysis logic as well as the symbolic

string table.
1https://github.com/BoiseState/string-constraint-solvers
2https://github.com/BoiseState/string-constraint-counting
3http://www.brics.dk/JSA/, https://www.brics.dk/automaton/

58

Figure 4.1: Input Generator Components

Reporter - Bridges the parser and solver components, and provides output from

the system.

Automata Model - Contains the acyclic automata and implementations of string

operations and their inverse.

Table 4.1 presents Software metrics of the initial (string-constraint-counting)

and current (inverse-testing) codebases. The implementation adheres to object

oriented design principles, with proper type hierarchy represented by interfaces,

abstract classes, and concrete classes. This results in a larger increase in the

number of classes and interfaces in comparison to lines of code.

Table 4.1: Metrics for Initial and Current Codebase

Code Base Files Classes Interfaces Lines

string-constraint-counting 74 66 8 ∼28,000
inverse-string-testing 150 130 19 ∼31,000

Table 4.2 contains the external dependencies required to build the input gen-

59

eration system.

Table 4.2: Major Dependencies

Library Source Version

Apache Commons Math Apache Software Foundation 3.6
jackson-core FasterXML, LLC. 2.7.2
jackson-databind FasterXML, LLC. 2.7.2
jackson-annotations FasterXML, LLC. 2.7.2
jgraph Barak Naveh et. al. 5.13
jgraphx Barak Naveh et. al. 2.0.0.1
jgrapht-core Barak Naveh et. al. 0.9.1
jgrapht-ext Barak Naveh et. al. 0.9.1
dk.brics.automaton Anders Moller 1.11-8
dk.brics.string Anders Moller et. al. 2.1-1
hamcrest hamcrest.org 1.3

4.1 Inverse String Operation Classes

Interfaces and base abstract classes specify the inverse string operations and meth-

ods necessary to perform the backward analysis. The acyclic-automata model is

extended with the inverse string operations shown in Table 4.3. String operations

may have multiple inverse string operations, depending on the argument types

passed to the string operation, i.e., whether the argument is concrete or symbolic.

The Sound column indicates whether the inverse operation returns a sound result

on the first evaluation. The Over column indicates whether the inverse operation

over-approximates.

60

Table 4.3: String and Inverse String Operations

String Operation Inverse Operation(s) Sound Over

concat(arg)
invConcat(Con) Yes No
invConcat(Sym) No Yes

delete(int start, int end) invDelete(int, int) Yes Yes

insert(int offset, arg)
invInsert(int, Con) Yes Yes
invInsert(int, Char) Yes No

replace(arg find, arg repl)
invReplace(Char, Char) Yes Yes
invReplace(Con, Con) Yes Yes

reverse() invReverse() Yes No
substring(int start, int end) invSubstring(int, int) Yes Yes
substring(int start) invSubstring(int) Yes Yes
toLowercase() invToLowerCase() Yes Yes
toUppercase() invToUpperCase() Yes Yes
trim() invTrim() Yes Yes

4.2 Solver

Interfaces and base abstract classes include the methods for supporting backward

analysis and performing inverse string operations. The solver class has been

extended to support the inverse string operations implemented in the acyclic-

automata string model.

The solver takes as input a constraint graph stored in a JSON format. The

JSON file encodes the edge and vertices information along with the alphabet

definition. Input length can be optionally encoded in the file or specified through

command line arguments.

Benchmark constraint graphs are collected in previous work [10,16] by instru-

menting real-world Java programs.

61

4.3 Integration with Symbolic Pathfinder

The input generation system is loosely integrated with Symbolic Pathfinder (SPF).

Currently SPF does not support many of the non-injective functions that the

solver can currently perform. For those benchmarks that include only those

functions SPF supports, a semi-automated workflow has been developed. First,

SPF analyzes the Java program and produces a path condition, which is parsed

into a JSON file for input into the system. Figure 4.2 shows the workflow for this

process. Figure 4.3 shows an excerpt from a Java program used for correctness

testing and the resulting path condition from SPF. Figure 4.4 shows the resulting

constraint graph.

Figure 4.2: Symbolic Pathfinder Data Flow

62

1 public class BSU_SCS_Inverse_case_6 {
2 ...
3 // method under test
4 public static void mut(String r5) {
5 if (r5.substring(4, 7). equals("two")) {
6 pathTaken = path != 0 ? 1 : 0;
7 return;
8 } else {
9 pathTaken = path != 0 ? 2 : 0;

10 return;
11 }
12 }
13 }
14

(a) Method with string input

(r5-1-SYMSTRING.substr(4,7) equals CONST-two)

(b) Path Conditions from SPF

Figure 4.3: Example SPF Input and Output

Figure 4.4: Test Case Constraint Graph

63

SECTION 5

EVALUATION

This section provides details on the correctness verification as well as the answer

to research question RQ3: Is the solution practical and effective?

5.1 Correctness

Fifteen synthetic test cases are used to verify correctness, developed specifically

for this solver. They are implemented as Java programs where string inputs

determine execution paths, taking as input concrete string values and expected

execution paths for them. Figure 5.7 presents the test flow diagram from a

Java program through verification results. The Java test case program is used

as the input into SPF, with methodUnderTest() specified as the target method

for analysis. SPF generates a path condition which is then parsed into a JSON

file containing the constraint graph. This in turn is used as input into the Input

Generation framework which uses the solver to generate a solution for each pa-

rameter of methodUnderTest(). Correctness is verified by executing the Java test

case program with the solution values and observing the results. The test cases

are designed such that they indicate success or failure based on the expected and

64

actual path taken with the computed input values. Some of these test programs

incorporate non-injective and unsound operations. Thus, Figure 5.1 presents a

test case incorporating non-injective and unsound operations on line 26. This

code corresponds to the constraint graph in Figure 5.2. Other test cases take

multiple inputs (Figures 5.5 and 5.6) and have multiple outgoing edges from a

node (Figures 5.3 and 5.4) in their constraint graphs. These test cases compose

the correctness benchmark.

1 public class BSU_SCS_Inverse_case_1 {
2 static int path = 0;
3 static int pathTaken = 0;
4 static String r5;
5 static boolean test = false;
6
7 public static void main(String [] args) {
8 if (args.length == 2) {
9 path = Integer.parseInt(args [0]);

10 r5 = args [1];
11 test = true;
12 System.out.println("\nTEST: Args ... " + r5 + "\nTEST: Path ... " + path);
13 } else {
14 r5 = "A"; }
15
16 methodUnderTest(r5);
17
18 if (test) {
19 if (path - pathTaken == 0) {
20 System.out.println("TEST: SUCCESS");
21 } else {
22 System.out.println("TEST: FAILURE");
23 } } }
24
25 public static void methodUnderTest(String r5) {
26 if (r5.toLowerCase (). concat("AB"). contains("aA")) {
27 pathTaken = path != 0 ? 1 : 0;
28 return;
29 } else {
30 pathTaken = path != 0 ? 2 : 0;
31 return;
32 } } }
33

Figure 5.1: Non-Injective and Unsound Operations Test Case Code

65

Figure 5.2: Non-Injective and Unsound Operations Constraint Graph

1 public class BSU_SCS_Inverse_case_1a {
2 static int path = 0;
3 static int pathTaken = 0;
4 static String r5;
5 static boolean test = false;
6
7 public static void main(String [] args) {
8 if (args.length == 2) {
9 path = Integer.parseInt(args [0]);

10 r5 = args [1];
11 test = true;
12 System.out.println("\nTEST: Args ... " + r5 + "\nTEST: Path ... " + path);
13 } else {
14 r5 = "A"; }
15
16 methodUnderTest(r5);
17
18 if (test) {
19 if (path - pathTaken == 0) {
20 System.out.println("TEST: SUCCESS");
21 } else {
22 System.out.println("TEST: FAILURE");
23 } } }
24
25 public static void methodUnderTest(String r5) {
26 if (r5.contains("aA")) {
27 if (r5.contains("AA")) {
28 pathTaken = path != 0 ? 1 : 0;
29 }
30 return;
31 } else {
32 pathTaken = path != 0 ? 2 : 0;
33 return;
34 } } }
35

Figure 5.3: Multiple Outgoing Edges Test Case Code

66

Figure 5.4: Multiple Outgoing Edges Constraint Graph

1 public class BSU_SCS_Inverse_case_2b {
2 static int path = 0;
3 static int pathTaken = 0;
4 static String r5,r6;
5 static boolean test = false;
6
7 public static void main(String [] args) {
8 if (args.length == 3) {
9 path = Integer.parseInt(args [0]);

10 r5 = args [1];
11 r6 = args [2];
12 test = true;
13 System.out.println("\nTEST:Args ...r5: "+r5+" r6: "+r6+"\nTEST: Path ..."+path);
14 } else {
15 r5 = "one";
16 r6 = "two"; }
17
18 methodUnderTest(r5, r6);
19
20 if (test) {
21 if (path - pathTaken == 0) {
22 System.out.println("TEST: SUCCESS");
23 } else {
24 System.out.println("TEST: FAILURE");
25 } } }
26
27 public static void methodUnderTest(String r5, String r6) {
28 if (r5.concat(r6). contains("onetwo")) {
29 pathTaken = path != 0 ? 1 : 0;
30 return;
31 } else {
32 pathTaken = path != 0 ? 2 : 0;
33 return;
34 } } }
35

Figure 5.5: Multiple Inputs Test Case Code

The constraint graph file contains the size and description of the alphabet, and

the bound on lengths of symbolic string inputs in addition to the constraint graph.

In order to achieve reasonable runtimes on the correctness benchmark, bounds and

67

Figure 5.6: Multiple Inputs Constraint Graph

Figure 5.7: Test Flow

alphabets are set to small values such that testing completes quickly. Alphabets

of (A-C, a-c) are used unless additional characters are needed (test cases 2b and

6). The testing iterates over length bounds due to unsoundness of the approach.

At each iteration the length bound is incremented, starting with length k = 1 and

doubling in length until k = 16.

68

Test case properties are presented in Table 5.1.

Table 5.1: Test Case Properties

5.1.1 Correctness Results

The correctness experiment is performed on an Intel(R) Xeon(R) CPU E5-2407

v2 @ 2.40GHz based system with 24GB of memory, running Fedora Linux version

33-1.2. The JVM used is OpenJDK version 11, with the target compatibility set to

version 1.8. Each benchmark is executed three times with the average performance

being reported. Table 5.2 presents performance timing and solution results of the

correctness benchmark. The values reported in the input length columns is the

time in milliseconds(ms) for the solver to compute a solution at the given length.

69

In those cases where the solver cannot find a solution (NS) it was verified manually

that there were no possible solutions due to the given length being too restrictive.

Timeouts of greater than 120 minutes are indicated with TO. Only the backward

analysis time is presented in the table, however, the timeout calculation includes

forward analysis time. The solutions column contains the computed solution to

the input(s), and in cases where there is more than one solution only one chosen

for an example. Note that once a solution is found at a given length, longer lengths

continue to produce solutions unless a time out occurs, which serves as another

measure of correctness of the implementation.

Table 5.2: Correctness Results

This testing process brought to light multiple faults in the code, but no funda-

mental errors in either the solvers algorithms or the logic of the inverse operations.

70

All solutions generated for the test cases successfully reach the expected locations

when used as inputs to the Java benchmark programs.

To note, all runtime measurements increase as the length bound increases. This

is an expected behavior, but some real-world program benchmarks presented in

the next section exhibit a different trend.

Test cases 10 and 10ab demonstrate expected inefficiencies of the solver with

certain constraints. In particular, these test cases have multiple concat(String

arg)−1 constraints with data dependencies. In general, the performance bottleneck

exists when establishing consistency between data dependent nodes. In the case

of concatenation, the solver propagates partial results of inverse operations to

maintain the relationship between the prefix and suffix pair. This can lead to

many iterations of prefix / suffix choices and their propagation until satisfiable

pairs are found. As length increases, more prefix / suffix pairs are available for

iterations, causing an increase in runtime. Both test cases are only able to produce

solutions at k = 2 before timing out. Figures 5.8 and 5.9 present the test code

and constraint graph for test case 10ab.

Reproducing Correctness Results

In order to aid in the reproduction of these results, a Docker file is available at

https://github.com/marlinroberts21/string-input-docker. Utilizing this

file, a user can build an image of a linux system housing the test input generation

framework and correctness benchmarks.

71

1 public class BSU_SCS_Inverse_case_10ab {
2 static int path = 0;
3 static int pathTaken = 0;
4 static String r5;
5 static boolean test = false;
6
7 public static void main(String [] args) {
8 if (args.length == 2) {
9 path = Integer.parseInt(args [0]);

10 r5 = args [1];
11 test = true;
12 System.out.println("\nTEST: Args ... " + r5 + "\nTEST: Path ... " + path);
13 } else {
14 r5 = "ab"; }
15
16 methodUnderTest(r5);
17
18 if (test) {
19 if (path - pathTaken == 0) {
20 System.out.println("TEST: SUCCESS");
21 } else {
22 System.out.println("TEST: FAILURE");
23 } } }
24
25 public static void methodUnderTest(String r5) {
26 String s1 = r5.toUpperCase ();
27 if (r5.concat(s1). concat(s1.concat(r5)). contains("ab")) {
28 pathTaken = path != 0 ? 1 : 0;
29 return;
30 } else {
31 pathTaken = path != 0 ? 2 : 0;
32 return;
33 } } }
34

Figure 5.8: Related Unsound Operations Test Code

72

Figure 5.9: Related Unsound Operations Constraint Graph

73

5.2 Practicality

In order to answer the research question Is the solution practical and effective?,

definitions of both practical and effective are needed. Practical means that the

solver can be used in practice, in contexts of real-world scenarios, that include

conditions and inputs. Effective means that the solver finds solutions for the

inputs in those contexts.

To demonstrate practicality, it is necessary to have a set of inputs representing

actual programs that incorporate common constructs and patterns found in Java

programs. Previous work [10,16] obtained such a set of benchmarks from real-world

Java programs and encoded them in constraint graphs, discussed previously. The

benchmarks consist of a series of constraint graphs for three different Java pro-

grams, with each representing dynamic execution paths of programs with different

concrete inputs. Table 5.3 presents the number of nodes, operations, predicates

and inputs of each benchmark.

Table 5.3: Benchmark Properties

The solver is effective in that it finds solutions for all of the real-world bench-

marks. Since the programs contain string operations which SPF does not support,

it is not possible to incorporate them into the testing framework.

74

5.2.1 Results

Each benchmark series is executed in the same environment as the correctness

benchmark. Similarly, each benchmark is executed three times and the average

analysis time is reported.

Series One This series exhibited behavior unlike the correctness benchmarks in

that approximately half of the benchmarks had a minimum runtime at length k

= 16. Table 5.4 presents the runtimes as a ratio (Runtime/MinimumRuntime).

The minimum runtime for each benchmark is shaded. Figure 5.10 presents a box

plot of the ratio data from Table 5.4.

Series Two The series two execution times are presented in Table 5.5. This series

does not have solutions at any length less than k = 16. This is due to the fact

that the predicate arguments in this series can be length k = 11. For instance,

input.contains(“description”) cannot have a solution for input at any k ≤ 11.

The two outliers identified in the box plot in Figure 5.11 have significantly fewer

nodes than the other benchmarks in the same series. This led to significantly lower

runtimes for both benchmarks.

Series Three Similar to series two, this series did not generate solutions until

reaching a certain length, k = 8. At k = 16 all but two of the benchmarks

reached the timeout of 120 minutes. The two outliers identified in the box plot in

Figure 5.12 have significantly more nodes than the other benchmarks in the same

series. This led to significantly higher runtimes for both benchmarks.

75

Table 5.4: Benchmark Timing Ratios - Series One

76

Figure 5.10: Box Plot of Series One Runtime Ratio

77

Table 5.5: Benchmark Timings - Series Two

78

Figure 5.11: Box Plot of Series Two Runtimes

79

Table 5.6: Benchmark Timings - Series Three

80

Figure 5.12: Box Plot of Series Three Runtimes

81

5.3 Scalability

In general, the solution is not scalable since solving string constraints is an undecid-

able problem [3]. The poor scalability results in the exponential growth in runtime

vs. length of string input exhibited by several of the correctness benchmarks

in Figure 5.13. However, when applied to real-world benchmarks, the resulting

growth with increasing length is not as large, and in the case of benchmark series

one, the longest length provided the fastest result in 13 out of 31 benchmarks.

The length of the symbolic string inputs is a primary factor in performance

degradation, and thus scalability. All string operations in the solver operate on

acyclic-automata. These automata are made up of states and transitions. As

the length increases, so do the number of states and transitions in the underlying

automata. And unlike undbounded or bounded-automata, acyclic-automata re-

quire at least one additional state and transition for each additional character of

input. Thus, as length increases, so do the number of states and transitions that

an operation must manipulate, leading to an increase in runtime.

Alphabet size is also a primary determinant in runtime. As the size of the

alphabet increases, so do the number of transitions in the underlying automata,

and the number of possible values for a given length increases with each additional

alphabet symbol. Given an alphabet of size a and a length of symbolic input k the

number of possible string values is ak. This becomes problematic when the solver

must find consistency in related values. Since the solver iteratively propagates

single related value pairs, an increase the number of available pairs has a direct

impact on runtime.

It may be possible to restrict the alphabet to only those symbols needed to sat-

82

Figure 5.13: Growth in Runtime of Selected Test Cases

isfy path conditions. In particular, this would be of benefit when handling related

values, as the solver would have fewer related pairs to generate and propagate.

Table 5.7 shows the effect of adding a single uppercase and lowercase digit to the

alphabet of test case 10ab. It is clear that limiting the alphabet to only those

values necessary could improve the scalability of the solver.

Table 5.7: Effect of Alphabet Size on Test Case 10ab

83

5.4 Validity

There are several factors which may impact the external validity of this evaluation.

Restricted Alphabets Since runtime increases quadratically with increases in

alphabet size, restricted alphabets are chosen as a default. Table 5.7 demonstrates

runtimes quickly become large enough to make the evaluation impractical for

certain test cases. However, extending the alphabet in test case 10ab does not

affect the solution, only the time taken to achieve it.

Restricted Lengths Since runtime worsens with the increase in length, only

experiments with lengths 1, 2, 4, 8 and 16 are evaluated. These appear to be

adequate because the solver found solutions for synthetic and real-world bench-

marks with at least one of these lengths. Further, once a length provides a feasible

solution, longer lengths continue that trend. This would tend to indicate that once

a minimum length has been determined, testing at longer lengths is unnecessary

other than to provide additional analysis data or inputs of greater length.

Inability to Verify Solutions on Real-World Benchmarks The real-world bench-

marks contained string operations that are not currently supported in SPF. There-

fore the full testing sequence could not be performed on them at this time. This

means we rely on the correctness benchmarks only to verify the correctness of the

solver.

5.5 Summary

Experiments answer the research question of whether or not the solver is practical

and effective. Data shows that the solver is practical because it finds string

84

inputs for real-world programs benchmarks. The only circumstances in which

the solver reports finding no solution are those in which the specified input length

is too restrictive. Since the solver successfully generated solutions for real-world

programs, it can be said that the solver is effective as well as practical.

The synthetic benchmarks proved to be a greater challenge than many of the

benchmarks obtained from real-world programs. This suggests that the solver per-

formance bottlenecks identified by the synthetic benchmarks may not be prevalent

in real-world programs.

85

SECTION 6

CONCLUSION

This work demonstrates that an automata-based solver can be implemented for

generating test inputs for real-world programs, both practically and efficiently.

Symbolic Execution was examined in detail, along with possible automata types

suitable for representing symbolic strings. Analysis shows the acyclic automata

most suitable for our purposes. Novel inverse string operations on automata are

presented which guarantee sound and complete results for a given string bound.

In cases where the relationship between values must be maintained, this work

demonstrates a novel method for ensuring them while keeping the automata model

simple. Finally, the analysis of benchmark results shows that the solver is capable

of producing correct results in the presence of non-injective and related-value string

operations contained in real-world programs.

Future work should focus on the scalability of the solver. The solver currently

generates input solutions based on a specified input length. This design choice

is based on the need to have a finite input length in order to obtain solutions

in a reasonable amount of time. However, as a practical matter, the length of

inputs are generally not specified in Java programs other than they must be valid

Java strings. Input solutions generated with smaller input sizes that reach a given

86

location during program execution are as viable and usefull as those generated

with longer input lengths.

Therefore, it may be beneficial to add a length decision heuristic in which the

solver attempts to find a minimum length before starting, perhaps by examining

predicate arguments and existing string operations in the constraint graph before

starting forward analysis. It could then increase length incrementally in those

cases where the chosen input length proves too restrictive to generate a solution.

Currently the solver is given an alphabet specification as part of the input.

Since alphabet size is a significant factor in runtime, it may be beneficial to have

an alphabet determination heuristic that determines a minimum viable alphabet

based on the symbols found in concrete and argument values present in the con-

straint graph.

Finally, the solver cannot reliably process related predicates, such as embedded

“If” statements. The algorithm should be extended to handle these conditions,

possibly utilizing a breadth-first traversal of the TCG instead of depth-first.

87

REFERENCES

[1] A. Aydin, M. Alkhalaf, and T. Bultan. Automated test generation from
vulnerability signatures. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation, pages 193–202, 2014.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[3] T. Bultan, F. Yu, M. Alkhalaf, and A. Aydin. String Analysis for Software
Verification and Security. Springer International Publishing, AG, 01 2018.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Pre-
cise analysis of string expressions. In Proceedings of the 10th International
Conference on Static Analysis, SAS’03, page 1–18, Berlin, Heidelberg, 2003.
Springer-Verlag.

[5] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, SE-2(3):215–222,
1976.

[6] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary deci-
sion diagrams: An efficient datastructure for matrix representation. Form.
Methods Syst. Des., 10(2–3):149–169, April 1997.

[7] I. Ghosh, N. Shafiei, G. Li, and W. Chiang. Jst: An automatic test generation
tool for industrial java applications with strings. In 2013 35th International
Conference on Software Engineering (ICSE), pages 992–1001, 2013.

[8] A. Harris. Suitability of finite state automata to model string constraints in
probabilistic symbolic execution. Boise State University Theses and Disser-
tations, 2019.

88

[9] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms
for string analysis. In Proceedings of the 12th International Conference on
Verification, Model Checking, and Abstract Interpretation, VMCAI’11, page
248–262, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Scott Kausler and Elena Sherman. Evaluation of string constraint solvers in
the context of symbolic execution. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, page
259–270, New York, NY, USA, 2014. Association for Computing Machinery.

[11] Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer,
and Michael D. Ernst. Hampi: A solver for string constraints. 21(4), February
2013.

[12] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[13] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS,
Department of Computer Science, University of Aarhus, January 2001. Notes
Series NS-01-1. Available from http://www.brics.dk/mona/.

[14] Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark
Barrett, and Morgan Deters. An efficient smt solver for string constraints.
Form. Methods Syst. Des., 48(3):206–234, June 2016.

[15] Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. Symbolic execu-
tion of programs with strings. In Proceedings of the South African Institute
for Computer Scientists and Information Technologists Conference, SAICSIT
’12, page 139–148, New York, NY, USA, 2012. Association for Computing
Machinery.

[16] E. Sherman and A. Harris. Accurate string constraints solution counting with
weighted automata. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 440–452, 2019.

[17] Willem Visser, Corina S. Păsăreanu, and Sarfraz Khurshid. Test input
generation with java pathfinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107,
July 2004.

[18] F. Yu, T. Bultan, and O.H. Ibarra. Relational string verification using multi-
track automata. International Journal of Foundations of Computer Science,
22, 04 2012.

89

[19] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generating vulnerability
signatures for string manipulating programs using automata-based forward
and backward symbolic analyses. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, page
605–609, USA, 2009. IEEE Computer Society.

[20] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-based
string analysis tool for php. In Proceedings of the 16th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’10, page 154–157, Berlin, Heidelberg, 2010. Springer-Verlag.

[21] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic string
verification: An automata-based approach. In Klaus Havelund, Rupak Ma-
jumdar, and Jens Palsberg, editors, Model Checking Software, pages 306–324,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[22] Fang Yu, Tevfik Bultan, and Oscar H Ibarra. Symbolic string verification:
Combining string analysis and size analysis. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
322–336. Springer, 2009.

[23] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based string
solver for web application analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, page
114–124, New York, NY, USA, 2013. Association for Computing Machinery.

