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ABSTRACT

The actor model is a model for concurrent computation, centered around message

passing between entities in a system. It is well suited for distributed programming,

due to its semantics including very little guarantees or assumptions of reliability.

Actor model implementations have grown more widespread in many languages.

The library Akka (written in Scala) is one of the most popular actor libraries.

However, Akka is missing some key features. Our goal is to create our own actor

library called Aurum, which not only has these features but exhibits higher perfor-

mance. The new features include easy ways to forge references, configure and launch

clusters, message type translations, and the ability to inject message drops and delays

into every part the application. Aurum will be implemented in Rust, a programming

language designed for high performance, asynchrony and high levels of abstraction

that is well suited for IoT devices.

Our results show that Aurum outperforms Akka. In our benchmarks, a single

server running Aurum gives three times the throughput as an equivalent Akka server,

while maintaining good programmability and having features useful for IoT.
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CHAPTER 1

INTRODUCTION

The actor model of concurrent computation [1] has lately received greater attention

for its potential to take advantage of multiple processors on a single machine, and

the simplicity of translating algorithms to a distributed environment. In this model,

actors are threads that have sole access to their memory space. They may modify a

private state, but can only interact with other actors through asynchronous passing

of immutable data. Actors process messages serially, which are stored in a queue (or

“mailbox”) until then. Similar to network communication semantics, actor messages

operate with at-most-once delivery. There is no guarantee messages are received in

the same order they are sent, even from the same source actor. Fault tolerance comes

naturally to actors, who may start, terminate, and monitor other actors. Actors

send messages via actor references, learned about from other messages or spawning

that actor. References to actors are location transparent: message delivery semantics

do not change with locations of target actors. Scalability is now very simple, as

deployment to multiple nodes does not necessitate any changes to existing code.

The actor model may be ideal for implementing applications within the Internet

of Things [2]. To this end, and for ease of development, a systems-level programming

language implementation of the actor model is needed, so actors may conveniently

interact with physical devices connected to the machine they are housed on. IoT



2

devices may be sending huge amounts of raw data to servers in charge of them. To

cope with high load, our implementation must be performant, with minimal runtime

overhead such as garbage collection, just-in-time compilation, exception handling, or

marshalling between memory spaces of local actors. IoT environments require quick

start-up time, since crashes may happen often.

Ideally, an actor model would be type-safe. This means whether an actor may

receive a certain type of message or not is decided at compile time, leading to safer

programs. References to actors needed for sending messages should be forgeable (i.e.

they can be spontaneously created). Type safety adds new complexities to an actor

model. A good implementation will make these inconsequential or at least easy for

the programmer to deal with.

1.1 Existing Actor Model Implementations

Some popular actor libraries already exist, but none fill the niche we are looking

for. In Erlang [3], the language and BEAM VM itself are built around actors, but

may suffer from poor performance due to its dynamic typing, interpretation and its

isolation of memory spaces for local actors. Erlang is a dynamically typed language,

and does not provide the type safety we are looking for. Akka is an actor model

written for the Java Virtual Machine (JVM). It’s performance suffers from the JVM’s

just-in-time compilation and garbage collection. Akka does not come with the same

memory safety guarantees as Erlang, as messages to local actors are not copied, but

only their references. In cases where mutable objects are being transferred, location

transparency breaks down. In this situation, there is now a mutable, shared state

among local actors. Only serialization and deserialization provide a guaranteed deep
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copy in Java, the clone() method in Java is shallow by default. Serialization in local

messaging can be enabled in Akka [9], but the performance benefit from sharing

memory is lost. In Java, serialization is a run-time check, which decreases our type

safety.

1.2 Thesis Statement

Can we develop a type-safe implementation of the actor model that is safer to use

in developing distributed solutions and is more performant than existing actor model

implementations? The use case of particular interest is IoT devices. We will compare

our performance to the Akka actor model.

1.3 The Rust Programming Language

Rust [10] is a systems language, sufficiently low-level to readily interact with local

devices. It incorporates extensive compile-time checks to ensure memory safety. The

compiler prevents dangling pointers, most memory leaks and data races through

keeping track of which thread in what scope owns a piece of memory, for both

the stack and the heap. Leveraged properly, this could function as an effective

replacement for marshalling data across local actors: many implementations of the

actor model create explicitly separate memory spaces, where copying is necessary.

Rust’s memory management is entirely handled at compile time, memory is freed

when owned references to it fall out of scope. Lack of runtime garbage collection is

likely to significantly improve performance. Instead of exceptions, Rust handles errors

through matching patterns on return values. Determining control flow with return

values is much faster than traversing through the stack. All of Rust’s executable
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Table 1.1: Feature comparison between Rust, Scala and Erlang
Feature Rust Scala Erlang

Asynchrony Built-in With Akka Built-in
Reflection No Yes N/A

Safe Concurrency Yes No Yes
Serialization With Serde Built-in Built-in

code is generated at compilation time, minimizing program startup time, useful in

situations where crashes and restarts happen often.

We will compare Rust to 2 other programming languages popular in distributed

computing: Scala and Erlang. Akka is implemented in Scala and meant to be used

with Scala (but also has a Java API). Erlang has actors built into the language. Table

1.1 compares language features of Rust, Scala and Erlang relevant to the actor model.

The Rust compiler’s treatment of Futures turns them into efficient state machines that

can be managed by executors and schedulers. Rust’s lack of reflection is problematic

when trying to implement distributed actors, but a workaround is implemented in the

library. Rust tracks mutability through reference types. It ensures safe concurrency

using the Send and Sync traits. Serde is a Rust library with traits and macros to

aid serialization. Rust checks trait implementations at compile time, so no runtime

errors related to nonserializable types can occur.

1.4 Other Actor Systems for Rust

Multiple software projects are currently implementing the actor model in Rust. Actix

[7] is the most well-developed. It is mature and fully functioning, but it only allows

local actors. There exists young plugin called actix-remote, but it is underdeveloped

and does not implement remote actors for actix. The bastion-rs [5] project was
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created with the goal of creating an Erlangesque actor interface for Rust, but it

is meant for small-scale distributed systems according to their website. Bastion

also uses untyped, unforgeable actor references, does not handle serialization or

deserialization, does not support static dispatch and cannot send remote messages

outside the cluster. The Riker [4] project was created to mimic the popular Akka

library for Scala [8]. While Riker looks like it might develop into a Akka-for-Rust

library eventually, many necessary features remain unimplemented such as remote

actors, location transparency and clustering. Lastly, Acteur [6] is a fairly new project,

and does not support remoting or clustering. None of these libraries are sufficient to

use out of the box for the functionality we want.

1.5 Background

We assume some knowledge of distributed systems and concurrency, including servers,

clients and threading. Distributed Systems by Martin van Steen and Andrew Tanen-

baum [29] is a good resource for learning the principles of distributed systems. The

book can be downloaded and read for free.
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CHAPTER 2

LIBRARY FEATURES AND DESIGN

Our library will be called Aurum, named after a group of alien robots from the video

game Kid Icarus: Uprising. This section will cover various features of Aurum and

how they are implemented.

2.1 Local Concurrency

Logically speaking, each actor runs on its own thread, and messages are received

atomically. Actors must be lightweight and have good scalability locally, meaning

system threads are not a good choice for running actors. Tokio is a Rust library with

a runtime environment for scheduling green threads (which Tokio calls “tasks”). It

takes least one Tokio task to run an actor. Tasks are lightweight, and many actors

can be run on a single system thread. Tokio integrates with the Rust compiler’s

asynchronous features to schedule its tasks. Aurum operates under the same rules

as Rust’s (and Tokio’s) asynchrony: tasks are IO-bound. Code running in tasks is

expected to await often, and starvation can occur if asynchronous code performs

heavy compute operations or synchronous IO. There are plans to add support for

heavy compute to Aurum in the future.
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2.2 Location Transparency

There are 2 types of actor references, LocalRef and ActorRef. LocalRef is not

serializable and accepts messages that implement Rust’s Send trait. A LocalRef

directly places messages in the message queue of the recipient actor. A LocalRef

type is needed because some message types may not be serializable. ActorRefs do

not accept non-serializable messages, although it is possible for ActorRefs expecting

non-serializable message types to exist. All ActorRefs, even ones expecting non-

serializable messages, are serializable. They contain information needed to contact a

remote actor: its location, port and name. ActorRefs may also contain a LocalRef

if they refer to a local actor. Sending a message with an ActorRef can make use of

the inner LocalRef if it exists. ActorRefs are location transparent: its choice between

local and remote sends occur without the user needing to care.

2.3 Typed Actor References

Actor references are typed, meaning they can only receive messages of a specific type.

Typed references add safety by turning some runtime errors into compile time errors,

and eliminating the need for catch-all match branches that handle invalid messages.

It also makes code easier to read, type annotations give extra hints of the actor’s role

in the program. Actor references are statically typed, meaning the type of messages

they receive must be defined at compile time. Generics are used to communicate

which the types of messages.

ActorRefs can be serialized and deserialized. When a deserialized ActorRef is

loaded into the structure, we need to make sure the ActorRef actually refers to an

actor with the same message type the compiler thinks it has. Type information about
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actor references must be serialized and sent along with the rest of the ActorRef. When

the type information is deserialized, a check must be performed to make sure the actor

reference is valid for the type it is being loaded into. In other words, we are asking a

piece of data about its type information at runtime (known as reflection). Since Rust

does not have reflection, Aurum deals with this problem by keeping a centralized

list of all message types used in the system in the form of an enum. Each type is

represented by a different variant within this enum (henceforth referred to as the

“unified type”).

Actor references must be deserialized using the right generic type, so names of

actors are paired with an instance of the unified type conveying what message type

the actor with that name receives. The actor reference’s message type needs to be a

member of this unified type, and a single logical system must operate with exactly

unified type. The unified type implements a case trait for every message type in its

variants. The case trait contains associated constants, allowing us to retrieve variants

of the unified type with Rust’s type information for runtime comparison.

A programmer using Aurum must define the unified type themselves. Since 2

different unified types cannot exist for the same application, libraries built on top of

Aurum’s core functionality (including our clustering) cannot define a unified type.

Instead they must define their logic in terms of generic types that implement case

traits for their message types. The user of their library will define the enum to include

all the message types for all the libraries being used.

2.4 Actor Interfaces

It is not unusual for someone to want to store actor references in a data structure

(for instance, to keep track of subscribers to events). Collections in Rust must be



9

homogeneous, but there may be many different kinds of actors who want to subscribe

to the same events. You cannot keep actor references receiving different types in

the same data structure, nor is creating a different structure for every possible type

desirable, nor do we want to create separate actors that relay event messages to the

real subscriber under its preferred type.

Actor interfaces allow the programmer to define a subset of message types receiv-

able by an actor, and create actor references which receive only that subset. For

LocalRefs receiving a message of the subtype, the reference will internally convert it

to the actual type the recipient actor receives and send it off.

Remote interfaces are more complicated. Actor references have the interface as

their outward-facing generic type, not the underlying message type of the recipient

actor. This information is still present in the actor’s name, which is important for

forged references. When a message sent by an ActorRef is serialized, the interface

variant is sent along with it to tell the recipient deserializer how to interpret the

bytes. Based on the variant, the deserialization is dynamically dispatched to the

correct interpretation.

2.5 Forgeable References

Traditionally, actor references can only be obtained 2 ways: receiving it in a message

or being in charge of spawning the actor. However, it is useful to be able to create actor

references from scratch by providing all the information needed ourselves. Forging

references removes the need for some complex discovery protocols in distributed

algorithms. This cannot be done with typed actor references in Akka, because

Akka actor names do not contain any type information. Since Aurum includes type
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information in its actor names, it is capable of creating actor references with certain,

compile-time knowledge of which messages the actor it refers to accepts. The semantic

validity of forged references is guaranteed at compile time using associated constants

in the case trait for unified types. Only remote references can be forged.

2.6 Remote Actors

All remotely accessible actors need to be addressable independently from other actors

on the same node. Every actor has a name, which is a combination of a string and a

unified type variant. The variant corresponds to the message type the actor receives.

When they are started, an actor’s names and local reference are sent to a registry,

which is itself an actor. When a serialized message is received on a socket, it is

forwarded to the registry. The registry resolves the destination name contained in

the serialized message to a local reference, and forwards the serialized message if

it exists. To improve parallelism, actors are responsible for deserializing their own

messages.

2.7 Double Threaded Actors

Most actors run on a single thread, which receives messages, deserializes them if

necessary, and runs the Actor trait’s recv method. Some actors may want to use 2

threads: a primary task for executing business logic defined by the programmer, and

a secondary task for handling other concurrent operations related to the primary.

The secondary task will handle these for the primary task:

• Priority Queuing We couldn’t do this well without a secondary task. The

primary task would be unable to build up a queue without pausing in between
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message processing to rank queued messages. Better to have the highest priority

message ready to go when the primary asks for it by delegating to a secondary

task. Priority queuing is not yet supported for double threaded actors.

• Deserialization If an actor is receiving large, remote messages often enough,

deserialization may be taking a significant portion of its compute time. The

secondary can use its compute time for deserialization instead, or may spawn a

separate task if the serialized form is large enough to warrant doing so (although

this is not currently the case).

• Monitoring The secondary is be able to track whether the primary panicked

without heartbeats. Upon detecting a failure, the secondary will restart the

primary in the same state it was in when it crashed, with no cloning of the

state. Monitoring is not yet implemented for double-threaded actors.

To process the next message, the primary task sends a request via multiple-

producer-single-consumer channels to the secondary, which removes the most im-

portant message from its queue and passes it back using another channel.

2.8 Clustering

Perhaps Aurum’s most important feature, the clustering module exists to define a

group of nodes, who all have knowledge of each other. Knowledge of which nodes are

part of the cluster is propagated to other nodes via a gossip protocol, where the data

is randomly sent out until every node in the cluster has it. If a node has not received

a piece of gossip for a while, it will request one.
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Failure Detection

The clustering elastic: nodes can be added or removed from a cluster at any time, and

the system will adapt. Should a node fail, it will be noticed through a probabilistic

failure detection. Each node keeps a buffer of timestamps on heartbeats it has received

from the nodes it is in charge of monitoring. The gaps between these timestamps

are arranged in a normal distribution. A probability phi (given by the user as a

configuration option) will be compared against the cumulative distribution function

(CDF) of the time since the last received heartbeat to determine if the node should

be considered down. When the time since the last heartbeat reaches a value when

the CDF is at or above phi, the node will be marked down. The state change will

then be dispersed throughout the cluster with gossip. In the event of an erroneous

downing, the node being downed will eventually receive word that is has been downed

(through gossip requests). It will assign itself a new identifier and rejoin the cluster.

The Node Ring

Monitoring in the cluster is sharded. Nodes do not track every other node, but a

small subset of them. The alternative would lead to a quadratic increase in network

traffic as the cluster grew. Instead, nodes are hashed and placed within a consistent

hashing ring. The consistent hashing ring has an inverse function, so nodes can see

which nodes are in charge of them, and which nodes they have to monitor. The gossip

protocol is heavily biased towards sending to a node’s neighbors in the ring, because

ring states must agree with each other if heartbeats are to work properly. When a

node is added, removed or downed (therefore changing the ring), only that node’s

neighbors in the ring are affected. Using the ring, the entire cluster need not change
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its monitoring behavior.

Within the ring, each node has a number of virtual nodes (or “vnodes”) repre-

senting it at different points in the ring. Vnodes communicate how much relative

work a node should be assigned in proportion to the rest of the cluster. A single node

having 6 vnodes in the ring while every other node has 3 generally means that node

will be performing twice as much cluster work. Because vnodes express a proportion,

assiging every node 3 vnodes allots the same amount of relative work to each node

as using 1 vnode. Using more vnodes for each node decreases the chances of a node

not getting enough work or getting too much work based on a unlucky hash value.

Using more vnodes also increases the size of the ring structure, so this is a trade-off.

However, because the ring is based on the gossip state, changes to the gossip state

causes a node to change its view of the ring. It is never sent over the network, so

increased memory use is the only potential problem for a larger ring. Increasing the

number of vnodes does not change the size of the gossip state.

Using Cluster

Local actors can subscribe to changes in the state of the local cluster instance. Each

update includes the full node ring, a list of active nodes, and a list of events that

happened since the last update (adds, removals, downings, and changes to the local

node’s identifier). The first update each subscriber gets (no matter when it subscribes)

contains the identifier of the local node. Information about a node includes its

location, identifier and number of vnodes. Because subscribers have full access to

the node ring, they can use it to perform their own sharding. Any hashable value can

ask the ring which nodes should be responsible for it.
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To join the cluster, a local clustering instance needs to be started. The local

instance needs a configuration, number of vnodes for this node, and a list of seed

nodes. The list of seed nodes will be continually pinged until the first response, upon

which the node is now part of the cluster. If the seed nodes do not response before the

limit is reached (defined in the configuration), the node will start a separate cluster

consisting of only itself.

Cluster have 2 configuration structs: ClusterConfig and HBRConfig . ClusterConfig

contains information that the node will need to interact properly, with the rest of the

cluster, including the seed nodes and replication_factor , which signifies now many

nodes will be managing each node in the cluster. The replication_factor must be the

same value on every node in the cluster. HBRConfig configures the heartbeat receivers

for a node’s charges, including phi values. Each cluster is identified and discovered

by a globally known name, which is supplied when starting a cluster instance. To join

the same cluster, each instance must start already knowing the name of the cluster

they are about to join. A single node can join many cluster as the user wants.

2.9 Delta-State CRDT Dispersal

Conflict Free Replicated Data Types (CRDT), for sharing data between members of

a cluster. Updates to these types do not require any coordination, and are eventually

consistent. Copies of the data are stored on each member of the cluster, updates

are applied via merge functions. Merge functions are a binary operation that takes

the old local version and new received version of the data and returns a new local

version. Merge operations are commutative, associative, idempotent and monotonic,

so CRDTs are useful atop communication protocols with no delivery or message
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ordering guarantees.

Delta-State CRDTs [20] are optimized structures whose mutation operations re-

turn a much smaller version of the state they operated, only containing changes to

it. These deltas can be merged with each other just like the full CRDTs they are

generated from, sent over the network and merge with the recipient’s full state. The

result is significantly decreased network traffic, serialization and deserialization time,

and retransmission. Each node in the cluster keeps a buffer of deltas representing how

far back they have to go in order to make sure the cluster-wide state is consistent,

along with acknowledgements informing senders on who has been updated, and at

what point to which they have been.

These CRDTs are implemented as persistent data structures like hash array

mapped tries, relaxed radix balanced vectors, and b-trees. Rust’s im (short for “im-

mutable”) library [18] thankfully implemented these structures. They can be cloned

and disseminated locally at little cost, while having only slightly more expensive

mutation operations.

2.10 External Node Tracking

Sometimes, you want to make a node accessible to a cluster without that node joining.

In cases where low-latency queries are required, an external node’s information and

status must be available instantly to every cluster member. The devices module

provides a way to introduce an external node to a cluster. Among other applications,

this is useful for IoT. IoT devices should not be part of the cluster, their variable

location makes them unsuitable for highly coordinated interactions.

The servers decide among themselves who will manage each device using the node
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ring. When the clustering gossip converges, the servers have the same knowledge

of the cluster, and each server will know who is supposed to handle each device.

Although not all servers are responsible for keeping track of all devices, all servers

know of the existence of every device. The devices and their states are stored

in a cluster-wide CRDT, which is circulated in the cluster using Aurum’s CRDT

functionality.

The devices are responsible for initiating contact with the servers. They must be

provided with a list of seed servers at startup. It will send its preferred heartbeat

interval to every server in its list of seeds. If a server receives an initiation request

from a device it is not responsible for, it will forward that request to the server who

is. Once a server receives an initiation request from a device, it will start a local actor

dedicated to sending heartbeat requests to the device and deciding what the device’s

state is based on current phi values. When a device receives a heartbeat request from

its server, it sends a heartbeat in reply. The device also keeps track of the heartbeat

requests it receives from the server using a phi accrual detector. If a server failure

is detected, the device will contact the seeds again. If multiple senders of heartbeat

requests are detected, the device will send a message to every server ordering them

to kill themselves if they are not the designated sender.

2.11 The Test Kit

Distributed algorithms cannot make the same assumptions local algorithms can. Any

remote message send can fail, be duplicated or delayed by any amount of time. When

designing distributed algorithms, the programmer must account for any message

having any delivery error. Unreliable delivery is easy to control from an application



17

level without relying on or affecting the rest of the system. The test kit provides

macros to select between sending actor messages normally and randomly dropping

them. The macros take variables specifying whether the messages should be dropped

or not. In modules like cluster and CRDT, these variables will be controlled by

compiler flags. The user will be able to configure whether the sends may fail using

these flags.

The probability of a message send failure is configured at runtime with instances

of FailureConfig . Different FailureConfig instances are associated with sockets in

a FailureConfigMap , which has a default FailureConfig if one is not found in the

map. FailureConfig s also contain optional upper and lower bounds for delays in

transmission should the random check succeed.

The test kit contains a logging module as well. The logger is an actor, whose

reference is stored in the node. Logging levels will be configured per module by

compiler flags. There are 7 logging levels (in order of priority): Trace, Debug, Info,

Warn, Error, Fatal and Off, and a macro for each level. Each macro accepts a log

level as an argument. If the log level passed in is higher that the log level signified by

the macro, the log message is not sent. Logging will accept any Display trait object.

Currently, the only log target it stdout.
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CHAPTER 3

AURUM LIBRARY INTERFACE

3.1 The Actor Trait

The actor trait represents the most basic unit of programming in Aurum. It is a

simple interface, with 2 generic types and 3 methods:

1 pub trait Actor <U: Case <S> + UnifiedType , S: SpecificInterface <U>> {

2 async fn pre_start (&mut self , ctx: &ActorContext <U, S>) {}

3 async fn recv(&mut self , ctx: &ActorContext <U, S>, msg: S);

4 async fn post_stop (&mut self , ctx: &ActorContext <U, S>) {}

5 }

pre_start() runs before any messages are received. recv() is a reaction to a

message. post_stop() runs after the actor is terminated. Actor requires 2 generic

types. U is the unified type, the list in which all the message types received by the

entire application reside. S is the message type received by the actor.

3.2 The AurumInterface Macro

AurumInterface is a derive macro applied to the message types for actors. It generates

all the necessary implementations for the message type to interact with the unified

type and produce interfaces. Currently, AurumInterface has a single annotation:

aurum , which has one optional argument, telling AurumInterface whether the inter-



19

face is to be exclusively local or not. Message types using the AurumInterface macro

do not need to know of a specific unified type to belong to. An example:

1 #[ derive(AurumInterface)]

2 #[ aurum(local)]

3 enum MyMsgType {

4 #[ aurum]

5 MyStringInterface(String),

6 #[ aurum(local)]

7 MyNonserializableInterface (&’static str)

8 MyOtherMsg(usize)

9 }

In this example, because one of the message options is not serializable, the message

type as a whole is not serializable. However, you can use an ActorRef<MyUnifiedType, String>

to send a string from a remote machine to whatever actor uses this message type.

You can also create a LocalRef<&’static str> , but not an ActorRef .

3.3 The Unify Macro

The unify! macro is responsible for constructing the unified type and implementing

traits for it. Arguments to unify! must include all message types (whether they are

to be remotely accessed or not), and types used for remote interfaces. unify! creates

a type, so it should only be called once in a single application. An example:

1 unify! { MyUnifiedType =

2 MyMsgType |

3 MyOtherMsgType |

4 MsgTypeForSomeThirdPartyLibrary

5 ;
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6 String |

7 InterfaceForSomeThirdPartyLibrary

8 }

3.4 Spawning Actors

The node is responsible for spawning actors and managing global system information.

It is accessible from every actor it spawns, and contains references to the socket

information, Tokio runtime, registry and logger. Creating a node only requires a

socket and knowing how many system threads the Tokio runtime will use. Spawning

actors is very simple. You need an initial instance of whatever type implements

the actor trait, the string part of the actor’s name, whether the actor should be

double-threaded and whether a reference to it should be sent to the registry.

1 struct MyActor {

2 first: String ,

3 second: usize

4 }

5 // Don ’t forget this annotation , the compiler will whine.

6 #[ async_trait]

7 impl Actor <MyUnifiedType , MyMsgType > for MyActor {...}

8

9 let socket = Socket ::new (...);

10 let node = Node::new(socket , 1);

11 let actor = MyActor {

12 first: "hi there",

13 second: 42

14 };

15 node.spawn(
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16 false , // Double -threaded?

17 actor ,

18 "my -very -cool -actor",

19 true , // Register?

20 );

3.5 Sending Messages

Using an ActorRef , there are several ways to send a message. remote_send() uses the

remote address of the actor, whether it is local or not. send() clones the message if

it is being sent locally. move_to() takes ownership.

ActorRef ’s have 3 components: the target host/port, the name of the recipient

actor, and a possible LocalRef . You may construct the target node and actor name

independently. This is just like forging references. The udp_msg() function takes

these separate components.

1 let socket = Socket ::new (...);

2 let dest = Destination ::<MyUnifiedType , String >::new::<MyMsgType >(

3 "my -very -cool -actor"

4 );

5 let msg: String = "My name is Baloo";

6 udp_msg (&socket , &dest , &msg);

7 // Forging a reference

8 let forged = ActorRef::<MyUnifiedType , String >::new::<MyMsgType >(

9 "my -very -cool -actor",

10 socket

11 );

12 forged.remote_send (&msg);
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You can send a message unreliably using the udp_select! macro. Whether the

message is artificially dropped or not depends on a FailureMode . FailureMode has 3

options: None, Packet (not yet implemented) and Message. FailureMode::None will

send the message without checking first to artificially drop it. FailureMode::Message

will atomically decide per message whether the message will be sent, and with what

delay.

1 // Doesn ’t have to be a const

2 const MODE: FailureMode = FailureMode :: Message;

3 let fail_map = FailureConfigMap { ... };

4 let msg: String = "My name is Baloo";

5 udp_select !(MODE , &node , &fail_map , &socket , &dest , &msg);

3.6 Logging

Sending messages to the logger is fairly simple. Define a log level for you environment,

and call the macro. The logger is accessible from the node, but there is nothing

stopping you from spawning your own logger, it’s just an actor. The log messages

can be anything that implement Display. The argument is turned into a trait object

in the macro body.

1 // Doesn ’t have to be a const

2 const LEVEL: LogLevel = LogLevel ::Debug;

3 // Not logged , the level is Debug , which is above Trace

4 trace!(LEVEL , &node , "kelp");

5 // This is logged , Warn is above Debug

6 warn!(LEVEL , &node , "sharks ");
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3.7 Starting a Cluster

Each cluster has a string name, which is used to construct the necessary actors. In

addition to the configurations, ClusterConfig and HBRConfig , you need an initial list

of subscribers to cluster events (it could be empty), a FailureConfigMap and a number

of vnodes. Cluster’s constructor returns a LocalRef that sends commands to the local

cluster instance.

1 let mut clr = ClusterConfig :: default ();

2 // Changes to clr ...

3 let mut hbr = HBRConfig :: default ();

4 // Changes to hbr ...

5 let cluster = Cluster ::new(

6 &node ,

7 "my -cool -cluster -name". to_string (),

8 3, // number of vnodes

9 vec![ctx.local_interface ()], // Initial

10 fail_map ,

11 clr ,

12 hbr ,

13 );
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CHAPTER 4

CORRECTNESS TESTING

In addition to the difficulties associated with testing local concurrent code, we must

account for the uncertainty of network communication. Custom data structures

like the device CRDT, the gossip state and the node ring are unit tested. Actors

involved in complex protocols are too tightly coupled together for unit testing to be

effective. Instead, actors are tested from a user’s perspective. Many features (like

clustering) involve actors interacting with other instances of themselves on different

nodes. Tracking how cluster-wide state evolves over time is best done from an

application level.

Our tests for clustering, device tracking and CRDT dispersal make use of the

testkit to randomly inject failures into message sends. These tests have a single

central node spawn many processes that cluster with each other. The central process

subscribes to updates from every node, and executes a series of events (like node

spawns, terminations and data mutations). For each event, the central process

constructs an expected value for the shared data, and waits for that value to be

received from every process before proceeding to the next set of events. This allows

the test to be conducted without use of precise timeouts for every message. It provides

the flexibility we need to use the same test configuration for many tests with different

failure values and delays. Figure 4.1 provides a visual aid.
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Figure 4.1: Test Architecture for Distributed Algorithms
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CHAPTER 5

PERFORMANCE COMPARISONS

5.1 Introduction

We will compare the performance of Aurum to Akka. We need a benchmark to show

the performance difference. We will discuss existing benchmarks and why they do

not fit our use case, then define our own benchmark to compare performance.

5.2 Existing Benchmarks

Many benchmarks exist for some types of distributed software, including distributed

stream processing systems (Apache Spark [24], Apache Storm [25] or Apache Flink

[26]), big data engines (Apache Hadoop [27], Apache Spark or MapReduce) and actor

models (Akka, Proto.Actor or Erlang). Although performance of these systems is

effectively measured, effects of failure on performance are not explored.

MRBench [21] is a benchmark created for MapReduce. It implements various SQL

features in MapReduce (such as JOIN and WHERE), and ran a variety of complex

queries against gigabyte-size databases stored in the Hadoop Distributed File System.

Since their benchmark operates on static data, it does not fit an IoT use case, which

requires data processing to be in real time.
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RIoTBench [22] is a collection of micro-benchmarks that can be strung together

in task graphs to produce fairly realistic test applications. It uses Apache Storm

to execute these tasks, which range from transformation and filtering to prediction.

RIoTBench and other similar suites are meant to test distributed stream processing

systems, which perform SIMD operations on potentially real-time streams of data.

In these streams, data exclusively travels one-way: from the devices to the cluster.

More complex IoT applications require continuous, full-duplex interaction between

devices and the cluster.

Although distributed stream processing systems are designed to tolerate failures

in the cluster, the benchmarks do not test systems under this kind of strain. Effects

of failure on performance are not well established by these benchmarks. Cardoso et

al [23] used a simple ring benchmark to explore the performance of Erlang and Scala

actors, but no clustering logic was present in the test (no capacity for adding/removing

nodes or failure detection. Because failure is relatively common in IoT settings,

understanding impacts of device failures is especially valuable. Performant fault

tolerance depends on both the recovery time of the device and its process, as well

as the speed at which the cluster handles its membership. A benchmark containing

full-duplex device interaction, fault tolerance and clustering logic will be developed

to address these requirements.

5.3 Our Benchmark

The benchmark will test the devices module against its Akka equivalent. It will

consist of a group of external nodes periodically sending data to a cluster in a data

center. Each time a node sends data to the cluster is a “report”. Reports consist of
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data aggregated between the last report and the time it is sent. The cluster request

a report from every external node, and upon receiving it, will make another request

right after. This allows each server to set its own pace without being overloaded with

requests.

Failures are expected to occur often in this environment. Broadly speaking,

failures come in 2 categories: hardware and software. Hardware failures result in

a full restart for the devices, software failures restart the daemon in which our device

node is running. Similar failures can happen within the cluster.

MTTR (Mean Time To Repair) can be used to measure how quickly devices

recover from failure. “Repair” is defined as the recovered device’s status is now up

to date and known to all members of the cluster. MTTR is useful for testing how

quickly the system can recover.

We want to know how many reports per second (throughput) can be processed

end-to-end under different conditions. MTTF (Mean Time To Failure) is the average

frequency of failures injected into a running system to test its fault tolerance. We will

test what throughputs can be achieved with different MTTF values. Injected failures

can be hardware or software failures, in either the cluster or devices. Which types

of failures MTTF values affect will be reported alongside throughput. We will start

with very high MTTF values (i.e. infrequent failure), and decrease until the system

can no longer function. We aim to show that Aurum remains viable and continues to

work correctly, albeit at slower throughput.

The Benchmark’s Parameters

To simulate a real IoT environment, it is possible to inject failures and delays into

message sends. The probability of a send failing is configurable, along with minimum
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and maximum delays for sending a message. Processes can be killed, then restarted

automatically at randomly generated intervals in a specified range. The devices all

use the same heartbeat interval (although the protocol allows them not to), which is

configurable.

The Business Logic

In each server, the business logic contacts the middleware and subscribes to the list

of devices that server is responsible for. For each device, the server will send report

requests to the device. The device responds with a report, simply an array of 64-bit

signed integers numbered 1 to 1000. If a report is not received for a while, the request

is resent. When reports arrive at the server, the numbers are summed, then added

to a total, and another report request is sent. Each device on each server has its

own total. The collector (a single process) will make periodic requests to each server,

asking for its totals for each device. The collector distills the totals into a number of

reports received by the cluster as a whole. This information will be used to tell how

many reports the cluster is able to process as a whole.

5.4 Results

Our benchmark was run on Boise State University’s Onyx cluster. Nodes that run

client processes usually run more than one.

Aurum versus Akka

Our first set of tests compares our library to Akka. The algorithm running on servers

was designed not to break on higher loads, but merely slow down throughput. The
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effect can be seen when the throughput plateaus even as the load gets much higher

than it did when maximum throughput was achieved. These tests were performed

with no failure injection.

The first series of tests we ran used 1 server and 3 client nodes, increasing the

number of clients per node with each test. Akka’s throughput plateaued rather quickly

at 14,000 reports per second, but stayed constant as the number of clients increased.

Aurum took much longer to plateau, but eventually did at 42,000. Results are in

Table 5.1 and Figure 5.1.

The second series is exactly the same, but scaled up to 11 servers and 18 client

nodes. This provides 21 clients on average to each server, allowing Akka to plateau.

In accordance with the limit we saw in the previous test, Akka’s throughput plateaued

at 155,000 reports per second. Aurum’s throughput did not stop increasing as the

number of clients went up, going all the way to 315,000 reports per second. Results

are in Table 5.2 and Figure 5.2.

Aurum is able to consistently outperform Akka. The higher the load, the more

pronounced this difference becomes. For a single server, Aurum’s peak throughput is

triple that of Akka’s.

Dropping Messages

To simulate a realistic IoT application, we tested Aurum with messages randomly

dropped instead of sent, with a particular probability. Messages are only dropped

when sent between clients and servers, not between servers. To keep the loads high,

no delays were injected. If a report is not received by the server when requested,

the server will resend the request after a 3 millisecond timeout. This test used 11

servers and 18 client nodes with 13 clients per node. We gradually increased the
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probability of a message failing to send, and tracked throughput alongside it. As

the probability increased, we would expect the throughput to approach zero in a

monotonically decreasing, concave up fashion. Results in Table 5.3 and Figure 5.3

show our expectation to be correct. Aurum remains usable (although slower) on

higher rates of message drops.

Failing Clients

A realistic IoT application may include regular client failures. To simulate that, each

client node has a supervisor process that kill and restarts clients as the test runs,

with a certain MTTF. The time between starting a process and killing it is randomly

generated between MTTF*0.25 and MTTF*1.75. A client is always restarted 5

seconds after it is killed, regardless of how long it was alive. As MTTF decrease,

we expect the throughput to approach zero, monotonically decreasing and concave

down. Results in Table 5.4 and Figure 5.4 show the curve monotonically decreasing

and is not perfectly concave down, but that is the general trend.

Failing Servers

Although servers failing regularly is not part of a realistic application, we ran the

benchmark for the sake of completeness. This test has exactly the same setup as

the client failures. The external node tracking protocol is not designed for such high

failure rates, so we expect inconsistencies for higher MTTF values. Results in Table

5.5 and Figure 5.5 show the throughput to be non-monotonic, with a small spike

at a MTTF of 21 seconds. All clients use a comprehensive list of seed nodes, so

multiple servers may be receiving from a client some of the time. This increase is

counteracted by the throughput loss caused by server processes being killed, which
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gives us the inconsistencies at higher values. As values get lower, process deaths

become the dominant factor and throughput starts approaching zero in the same way

as the client failure test.

Analysis

The performance gap between Aurum and Akka is not fully understood. However,

we can conjecture possible contributors to the difference. Tokio’s scheduler is co-

operative, and is explicitly notified by the code whenever await is called, which

potentially speeds up context switching. Reflection is implemented efficiently in

Aurum. Enum variants are represented with a small number, and the dispatch to the

proper deserialization function can be performed quickly. Being a JVM framework,

Akka dynamically allocates more memory than Aurum and must free that memory

with garbage collection. The significance of these factors could be captured by future

experiments. Akka uses Scala’s ExecutionContext, which could be compared to Tokio.

Reflection is more difficult to compare, but tests are possible when it is combined with

serialization. Garbage collection is difficult to control, so the exact impact of increased

dynamic memory allocation on performance will be challenging to test.
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# clients/node Aurum reports/second Akka reports/second

1 5,500 4,300
2 11,000 8,500
3 15,500 11,000
4 18,500 13,000
5 21,500 14,000
6 25,000 14,000
7 28,500 14,000
8 33,000 14,000
9 37,000 14,000
10 40,500 14,000
11 41,500 14,000
12 42,000 14,000
13 42,000 14,000

Table 5.1: Onyx Cluster - 1 Server - 3 Client Nodes - No Failures
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Figure 5.1: Onyx Cluster - 1 Server - 3 Client Nodes - No Failures
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# clients/node Aurum reports/second Akka reports/second

1 30,000 25,000
2 70,000 50,000
3 105,000 70,000
4 130,000 95,000
5 155,000 110,000
6 170,000 135,000
7 190,000 145,000
8 210,000 155,000
9 235,000 155,000
10 255,000 155,000
11 275,000 155,000
12 300,000 155,000
13 315,000 155,000

Table 5.2: Onyx Cluster - 11 Servers - 18 Client Nodes - No Failures
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Figure 5.2: Onyx Cluster - 11 Servers - 18 Client Nodes - No Failures
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drop % reports/second

0% 315,000
5% 215,000
10% 150,000
15% 105,000
20% 80,000
25% 60,000
30% 45,000
35% 36,000
40% 28,000
45% 21,000
50% 16,000

Table 5.3: Onyx Cluster - Message Drops
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Figure 5.3: Onyx Cluster - Message Drops
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Mean Time to Failure (s) reports/second

30 277,000
27 274,000
24 269,000
21 265,000
18 238,000
15 232,000
12 223,000
9 204,000
6 179,000
3 120,000
2 103,000
1 66,000

Table 5.4: Onyx Cluster - Client Failures
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Figure 5.4: Onyx Cluster - Client Failures
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Mean Time to Failure (s) reports/second

30 240,000
27 235,000
24 210,000
21 230,000
18 217,000
15 200,000
12 170,000
9 155,000
6 110,000
3 47,000
2 33,000
1 6,000

Table 5.5: Onyx Cluster - Server Failures
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Figure 5.5: Onyx Cluster - Server Failures
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CHAPTER 6

CONCLUSION

6.1 Summary

Aurum is a type-safe and performant library. It outperforms Akka in our benchmarks.

The performance benefits of using Aurum become more apparent as we scale up. An

Aurum server can deal with dozens of clients at full throttle. Like Akka, Aurum is a

fault tolerant system, and continues to function properly even as processes crash and

messages are dropped. Aurum’s interface is simple and powerful. It provides easy

ways to forge references, configure and launch clusters, and inject message drops and

delays into every part the application. IoT applications are easy and safer to write in

Aurum, thanks to its forgeable references, message type translations, and extensive

compile-time checks.

6.2 Future Work

Although a good start has been made to the Aurum library, there are more features

that must be implemented for it to be fully usable in production. Below we describe

some of these features.
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TCP and TLS Support

Aurum communicates exclusively through UDP at this point in development. Users

may want reliable delivery with TCP and security through TLS [17]. Actor mes-

sages are fire-and-forget, so the sender should not be the one keeping track of TCP

connections. The node will manage actors who own TCP connections.

Encryption for UDP Messages

TLS needs a reliable, in-order transport protocol like TCP underneath it to function

properly, so it cannot be used over UDP. However, secure UDP communication would

be incredibly useful to have. The proper interface for this feature is unclear. Most

complexity lies in managing keys. It may be beneficial to use a single, cluster-wide

key that is shared using asymmetric encryption, or have every node with its own key.

Distributed Systems [29] discusses ways to manage keys. The keys will also need to

be easily accessible by every actor on a node at all times.

More Options for Downing

The clustering module only has one mechanism for deciding if a node is down. If a

single monitor detects failure, that detection will be propogated to other nodes, who

will also consider the node down. This does not effectively deal with network parti-

tions. Network partitions may be especially problematic for features that guarantee

only a single, cluster-wide instance of a particular entity exists. Virtual actors and

distributed mutexes are examples.
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Fully Featurize Double Threaded Actors

Priority queuing will require several additional traits. Actor message types will need

a new trait with a method returning that message’s priority. Another trait will be

needed to provide a generic way for the programmer to structure priority queuing.

Monitoring can naturally follow from the features in Tokio’s message passing. When

the secondary detects the crash through the message sender, it will restart the

primary. The primary’s state may be owned by a mutex, to enable mutable access on

data shared between the primary and the secondary. Restoration after a crash will

simply involve cloning a reference to the mutex and passing it to the newly started

primary.

Expand the CRDT Module

There are many CRDTs not yet added to the module, including grow-only sets,

counters, observe-remove maps and sets, registers and much more. Direct support of

named delta-state CRDTs need to be added to the interface as well.

Heavy Compute Operations

Aurum is backed by the asynchronous runtime, Tokio. Rust’s asynchronous features

are meant specifically for IO-bound tasks. Spawning CPU-bound tasks on an asyn-

chronous runtime will lead to starvation. By adding second pool to the node that

schedules CPU-bound tasks, Aurum can handle a much greater variety of applications.

One such pool is found in the Rayon library [19], which has a convenient interface

for parallel computing. Rayon’s thread pool is independently managed from Tokio’s,



41

but results from compute operations executed with Rayon can be passed to an actor

asynchronously without interfering with Tokio’s scheduling of other actors.

Virtual Actors

It may be useful to only refer to an actor by its logical name, rather than its physical

location. If an actor’s host machine crashes, it should be restarted on another node

in the cluster. Messages sent to that actor are rerouted accordingly. Such actors are

called virtual actors, and other actor libraries like Akka and Orleans have already

implemented them. Virtual actors have the potential give an application better

programmability and resilience.

Investigate Performance Differences

We would like to run more experiments in the future, to more fully understand why

Aurum achieves better performance. The nature of our benchmarks may change as

Aurum’s feature set expands and its performance further improves.
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APPENDIX A

APPENDIX A: SOURCE CODE

The complete source code can be found here: https://github.com/arjunlalshukla/

research/tree/master/thesis. Akka’s version of the benchmark is found in the

akka-benchmark directory. Aurum’s source code is in the aurum directory. The

projects are structured as standard sbt and cargo projects, respectively. Instruc-

tions for how to use the code are in the repository.
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APPENDIX B

APPENDIX B: TEST ENVIRONMENT SPECIFICATIONS

Language versions:

• Java version: 11.0.11

• Scala version: 2.13.1

• Rust version: 1.51

Onyx /etc/os-release :

1 NAME="Red Hat Enterprise Linux Server"

2 VERSION ="7.9 (Maipo)"

3 ID="rhel"

4 ID_LIKE =" fedora"

5 VARIANT =" Server"

6 VARIANT_ID =" server"

7 VERSION_ID ="7.9"

8 PRETTY_NAME ="Red Hat Enterprise Linux"

9 ANSI_COLOR ="0;31"

10 CPE_NAME ="cpe:/o:redhat:enterprise_linux :7.9: GA:server"

11 HOME_URL ="https ://www.redhat.com/"

12 BUG_REPORT_URL =" https :// bugzilla.redhat.com/"

13

14 REDHAT_BUGZILLA_PRODUCT ="Red Hat Enterprise Linux 7"
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15 REDHAT_BUGZILLA_PRODUCT_VERSION =7.9

16 REDHAT_SUPPORT_PRODUCT ="Red Hat Enterprise Linux"

17 REDHAT_SUPPORT_PRODUCT_VERSION ="7.9"

Onyx head node lscpu :

1 Architecture: x86_64

2 CPU op -mode(s): 32-bit , 64-bit

3 Byte Order: Little Endian

4 CPU(s): 48

5 On-line CPU(s) list: 0-47

6 Thread(s) per core: 2

7 Core(s) per socket: 12

8 Socket(s): 2

9 NUMA node(s): 2

10 Vendor ID: GenuineIntel

11 CPU family: 6

12 Model: 85

13 Model name: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz

14 Stepping: 4

15 CPU MHz: 919.006

16 CPU max MHz: 3000.0000

17 CPU min MHz: 800.0000

18 BogoMIPS: 4200.00

19 Virtualization: VT -x

20 L1d cache: 32K

21 L1i cache: 32K

22 L2 cache: 1024K

23 L3 cache: 16896K

24 NUMA node0 CPU(s):

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46



48

25 NUMA node1 CPU(s):

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47

26 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss

ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art

arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc

aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx

est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2

x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand

lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single

intel_pt ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority

ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid

rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt

clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc

cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts

pku ospke md_clear spec_ctrl intel_stibp flush_l1d

Onyx nodes lscpu :

1 Architecture: x86_64

2 CPU op -mode(s): 32-bit , 64-bit

3 Byte Order: Little Endian

4 CPU(s): 6

5 On-line CPU(s) list: 0-5

6 Thread(s) per core: 1

7 Core(s) per socket: 6

8 Socket(s): 1

9 NUMA node(s): 1

10 Vendor ID: GenuineIntel
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11 CPU family: 6

12 Model: 158

13 Model name: Intel(R) Core(TM) i5 -8500T CPU @ 2.10 GHz

14 Stepping: 10

15 CPU MHz: 3402.976

16 CPU max MHz: 3500.0000

17 CPU min MHz: 800.0000

18 BogoMIPS: 4224.00

19 Virtualization: VT -x

20 L1d cache: 32K

21 L1i cache: 32K

22 L2 cache: 256K

23 L3 cache: 9216K

24 NUMA node0 CPU(s): 0-5

25 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss

ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art

arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid

aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx

smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2

x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand

lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd

ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad

fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx

rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1

xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window

hwp_epp md_clear flush_l1d


