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ABSTRACT 

Understanding the migration behavior of carbon dioxide (CO2) during long-term 

geological storage is crucial to the success of carbon capture and sequestration 

technology. I explore p-wave and s-wave seismic properties across the Little Grand Wash 

fault in east-central Utah, a natural CO2 seep and analogue for a long-failed sequestration 

site. Travertines dated to at least 113,000 k.y. and geochemical surveys confirm both 

modern and ancient CO2 leakage along the fault. Outgassing is currently focused in 

damage zones where the total fluid pressure may reduce the minimum horizontal 

effective stress. Regional stress changes may be responsible for decadal- to millennial-

scale changes in CO2 pathways. 

I identify subsurface geologic structure in the upper few hundred meters and 

relate surface CO2 outgassing zones to seismic reflection and first arrival tomography 

data. I tie my hammer seismic results to borehole logs, geology from outcrops, and 

geochemical data. I generate velocity tomograms that cross the fault zone and construct 

rock physics models. I identify high porosity and/or high fracture density zones from 

slow seismic velocity zones. These zones match mapped fault locations, are fully 

saturated, and are conduits for upward fluid/gas migration. Anomalously high seismic 

velocities at the fault are consistent with ancient CO2 flow pathways. Low CO2 flux 

regions show seismic velocities consistent with shallow unsaturated host rock. Studying 

the behavior of CO2 in this system can give insight of potential risks in future 

sequestration projects. 
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CHAPTER ONE: INTRODUCTION 

Importance of Research 

Anthropogenic carbon dioxide (CO2) release into the atmosphere presents a threat 

to human civilization in the form of climate change. CO2 constitutes approximately 77% 

of greenhouse gases in the atmosphere and carbon emissions increased annually at a rate 

of roughly 1% from 1990 to 2007 (Rahman et al., 2017). Although CO2 emissions have 

been decreasing about 1.5 % annually since 2007, the total amount of CO2 in the 

atmosphere continues to rise. Data from the National Oceanic and Atmospheric 

Administration (NOAA) National Center for Environmental Information showed an 

average CO2 concentration of 409.8 ppm in 2019, the highest level in the last 800,000 

years (Lindsey, 2020).  Climate models predict a rise in global temperature of between 

1.9 and 5.0 degrees Celsius by the end of the 21st century (O’Neill et al., 2016).  

One practical strategy to reduce atmospheric CO2 introduced by human activity is 

carbon capture and sequestration (CCS). CSS is the process by which CO2 from power 

plants, refineries or other industrial sources is compressed, transported, and injected into 

a subsurface reservoir for long term storage (Figure 1.1). The storage of CO2 in 

subsurface reservoirs is generally believed to be one of the most effective ways to address 

global warming by reducing carbon emissions into the atmosphere (Chu, 2009). 

According to the International Panel on Climate Change (IPCC), to achieve 

the recommended limiting average warming of the atmosphere to <2°C, roughly 10 Gt 

CO2 per year must be sequestered by 2050 (Kelemen et al., 2019). The 2019 report from 



2 

 

the Global CCS Institute states that currently operational and under construction facilities 

have the capacity to store 40 Mt per year.  

 
Figure 1.0 Schematic of Carbon Capture and Sequestration process in geological 

storage reservoirs. 

Assessing reservoir integrity and predicting post-injection CO2 migration 

behavior is vital to the success of CCS projects. A major component to predicting 

subsurface CO2 migration is determining how pre-existing faults or other permeable 

pathways within the reservoir may enhance or restrict flow both laterally and vertically. 

Relevant questions are: 1) will mineral precipitation “self-seal” pathways via carbonate 

veining? 2) will increased injection pressure open fractures in the fault damage zone, 

permitting more CO2 flow? and 3) at what rate will CO2 leak back to the surface, thus 

reducing CCS effectiveness?  

To date, small or short-term CCS operations have been inadequate to predict the 

behavior of stored CO2 at the thousand-year time scale. To explore the potential leakage 

of CO2 via permeable pathways back to the atmosphere, I characterize the regolith and 

underlying rock properties across naturally occurring CO2 seeps. I utilize seismology 
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because it is the best imaging tool to remotely sense mechanical properties of soils and 

rock. From this information, I can estimate porosity and fluid saturation distributions that 

promote or inhibit CO2 flow. 

I acquired eight parallel seismic profiles spanning three km of the Little Grand 

Wash fault (LGWF). Here, the fault and underlying Green River anticline provide a trap 

and conduit for CO2 that outgasses to the surface (Jung, 2014). My surveys were 

conducted in October, 2019 and January, 2020. From these data, I identify a fault damage 

zone, underlying stratigraphy and structure, and interpret rock, fluid, gas, and regolith 

distributions from velocity variance in the upper tens of meters. I also provide empirical 

estimates of seismic velocity ranges for different lithologies and in the presence or 

absence of fluid saturation (Mavko et al., 2020).  My seismic results validate the low 

seismic velocity/high porosity relationship for the established pathways where reservoir 

CO2 degasses along the fault; and conversely, the high velocity/low porosity zones where 

low CO2 flux rates have been measured.  

In this thesis, I first provide a rock physics framework for soils and shallow rocks 

within my study area. I then describe the geologic and tectonic setting of east-central 

Utah, with details on the LGWF and the related CO2 brine system. I describe the seismic 

methods that I use to characterize the fault system, followed by detailed interpretations 

from each seismic profile. Then I connect my interpretations to effects of fluid and CO2 

gas on rock properties and seismic velocities within the fault damage zone to remotely 

characterize and ancient CO2 pathways from surface measurements. Finally, I place my 

results in the context of CCS technology and provide future directions that may stem 

from my research. 
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Rock Properties and Effects on Seismic Velocities 

Seismic velocities directly relate to elastic moduli and bulk density of a material. 

For soils and rock, influences on seismic velocity include effective pressure, pore 

pressure, lithology, grain shape, porosity (𝜙𝜙), and the fluid or gas that occupies the pore 

space. Host rock can be damaged through accumulation and release of strain through 

faulting. Faults that extend to the earth’s surface can produce a broad damage zone. 

Within this damage zone, relatively low 𝜙𝜙 host rock can transform to high 𝜙𝜙 sediments. 

These high 𝜙𝜙 sediments often produce high permeability conditions (e.g., Caine et al., 

1996), allowing CCS stored CO2 to release back into the atmosphere. Within a fault’s 

damage zone, seismic velocities generally decrease due to a decrease in elastic moduli. 

Thus, seismic velocity mapping is a viable approach to identifying high permeability 

damage zones that may provide fluid and gas release to the earth surface (Gettemy et al., 

2004).  

For sedimentary rock environments where surface rupturing faults are present, 

advective flow dominates gas migration through groundwater. Here, two conditions must 

be present for a fault to behave as a conduit for CO2 surface outgassing. First, the pore 

fluid pressure must reduce the effective stress to approximately zero (Naruk et al., 2019). 

Second, there must be pre-existing high porosity fractures within the fault’s damage zone. 

In other words, mineral precipitation or cementation within the fault zone, and diffusive 

flow through the soils, is negligible.  

There are three main factors that influence permeability within a fault zone (e.g., 

Faulkner et al., 2010). The first factor is the porosity of the host rock matrix. Higher 

porosity rock tends to have more interconnected pore space and therefore higher 
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permeability that can extend in all directions. The second factor is fracture related 

porosity. For example, the connectivity of a fracture network in the damage zone of a 

fault can provide more pathways for fluids and increase permeability. Generally, a higher 

fracture density means more vertically connected fracture pathways and therefore higher 

permeability in the fault zone. The third factor is the porosity of the fault core matrix. 

When fault movement occurs, it can break the host rock into rock clasts and gouge. The 

resulting matrix can either increase or decrease permeability that is controlled mostly by 

porosity distributions. Since faults generally form at high angles to the earth’s surface, 

these permeability effects can strongly influence vertical fluid flow. The interplay 

between these three factors determine how fluid may move vertically and horizontally 

within a fault zone. To investigate the degree of impact these factors have on fluid and 

gas flow within the LGWF, I use p-wave velocities (Vp) to estimate 𝜙𝜙 and fracture 

density within the bedrock from previously established relationships. From Vp and an 

independent measure of CO2 outgassing, I infer the permeability of along seismic 

profiles that cross the LGWF. 

I estimate porosity based on Vp from my tomographic results. I use the Castagna 

et al. (1985) relationships to estimate 𝜙𝜙 from seismic velocity (Figure 1.1). As shown in 

Brocher et al. (2005), these relationships have a high correlation for sedimentary rocks in 

the Vp range of 1500 to 4500 m/s. Because I generate only Vp models for all seismic 

profiles, I use their empirically derived Vp/porosity relationship from the Frio sandstone 

(Equation 1). I assume a formation clay content of 20% (Vcl) (Dockrill and Shipton, 

2010) for fully saturated conditions, consistent with the Entrada Sandstone. Unaltered 

Entrada sandstone shows 𝜙𝜙 of about 25% at reservoir depths (Ridgley and Hatch, 2013). 
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This unit is found near the surface and within the footwall of the LGWF. Although I 

acknowledge that an estimate of absolute 𝜙𝜙 requires direct sample measurements, I rely 

on my 𝜙𝜙 estimates to identify relative changes that may relate to high permeability 

CO2/fluid pathways. For the one profile where I measure both Vp and shear wave 

velocities (Vs), I compare two additional velocity/porosity Castagna et al. (1985) 

empirical relationships. These are as follows: 

𝑉𝑉𝑝𝑝 = 5.81 − 9.42 ∗ 𝜙𝜙 − 2.21 ∗ 𝑉𝑉𝑐𝑐𝑐𝑐  (1) 

𝑉𝑉𝑠𝑠 = 3.89− 7.07 ∗ 𝜙𝜙 −  2.04 ∗ 𝑉𝑉𝑐𝑐𝑐𝑐      (2) 

𝑉𝑉𝑝𝑝
𝑉𝑉𝑠𝑠

= 1.33 + .63 ∗ (3.89− 7.07 ∗ 𝜙𝜙)   (3) 

 
For these equations, Vp and Vs are measured in km/s. Using the above equations 

with 𝜙𝜙 = 0.25 and Vcl = 0.20, I calculate Vp~3.0 km/s, Vs~1.7 km/s, and Vp/Vs~1.76 for 

unaltered sandstone. The velocities will be reduced in the presence of increasing clay 

content and 𝜙𝜙, as may be expected within the fault’s damage zone 

Effective stress or effective pressure on a fault system can directly influence 

seismic velocity. Increasing effective pressure by burial or other tectonic processes can 

close pre-existing microfractures, flaws, and grain boundaries, thus increasing rock 

stiffness and seismic velocity (Mavko et al., 2020). Closing of micro fractures in a 

damage zone associated with high effective pressure lowers overall porosity and reduces 

pore to pore connections which decreases permeability. A fault system under high 

effective pressure will likely act as a barrier to fluid or CO2 migration. 

Pore pressure is the other side of the push and pull of overall stress within the 

fault zone. Increasing pore fluid pressure can act to open pre-existing fractures and 
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reduce the effects of effective stress. High pore pressure acts to open micro fractures, 

flaws and grain boundaries, increasing what is termed soft porosity i.e., the aspect of 

porosity that changes with changing pressure regime. A combination of high pore 

pressure and low effective pressure within the fault damage zone can increase soft 

porosity, thereby reducing seismic velocities. In contrast, diagenesis can increase seismic 

velocities as cementation can increase the soil or rock’s elastic properties. High pore 

pressure persisting over long periods of time can inhibit diagenesis and preserve porosity, 

tending to keep velocities low (Mavko et al., 2020). These open pathways will show a 

decrease in seismic velocity and likely act as a conduit to upward fluid or CO2 migration.  

Whereas Vp is sensitive to bulk (k) and shear (μ) moduli, shown also as Lame 

parameters (λ) and (µ), and bulk density (ρ) (Equation 4), Vs is insensitive to λ and 

driven only by μ and ρ (Equation 5). Seismic velocity equations are shown for p-waves 

(Equation 4), and shear waves ( Equation 5), where µ, and, ρ are bulk modulus, shear 

modulus, and density of the formation, respectively. 

 

The presence of fluid within soils can strongly influence Vp (Figure 1.1) by 

increasing the bulk modulus more than the bulk density (Mavko et al., 2020). Fluid 

changes in a soil or rock do not significantly influence Vs since shear waves do not 
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propagates through fluids. The bulk modulus always increases with a less compressible 

pore fluid, and the velocity change is most effective on soft (low velocity) rock or soil. 

Pore pressure from saturation can also open fractures and grain boundaries within the 

damage zone increasing porosity, reducing grain-to-grain contacts and thereby decreasing 

velocity. 

Clark and Burbank (2011) derived an equation to estimate fracture density (Pf) 

from the measured velocity (V), the velocity derived from unaltered rock (Vr), and the 

velocity of the fracture filling material (Vf).  

 

Assumptions to satisfy this equation include a single material filling the void space (e.g., 

water or air) and that the seismic rays propagate laterally through the fractures (e.g., 

vertical fractures and horizontally traveling seismic ray paths). In my case, I assume full 

saturation and pore space filled with water or Vf = 1.5 km/s (e.g., Mavko et al., 2020). I 

assume that Vr is best represented by the maximum velocity in my tomogram. The 

assumption of horizontal ray paths and vertical fractures is valid for materials below the 

near surface and for this tectonic environment. Here, rays will bend toward the surface 

within the regolith or where weathered rock is present, and high angle faults have been 

mapped (e.g., Dockrill and Shipton, 2010). To focus on horizontal ray path coverage, I 

exclude the regions where Vp< 2.0 km/s. Below this velocity, rock physics models 

suggest the presence of unsaturated unconsolidated material (Figure 1.1).   
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Figure 1.1  Relationships of Vp and Vs to differential pressure in saturated and 

unsaturated unconsolidated sediments (left) and saturated and unsaturated 
consolidated sediments (right). I focus on the pressure range of 0 to 5 MPa for my 

study. 

Although gas can influence seismic velocity, CO2 concentration has little effect 

on Vp within unsaturated materials. This results from the ρ and Vp of CO2 being similar 

to that of air. Results of laboratory experiments on saturated Berea sandstone samples 

indicate a 5.4% Vp velocity reduction at 25% CO2 concentration that plateaus at higher 

CO2 concentrations (Gutierrez et al., 2012). Numerical simulations by Yamabe et al. 

(2016) predict a 9% Vp decrease at full saturation of CO2 (equilibrium state). Given that 

my model uncertainties are similar to the expected velocity changes from gas content, I 

focus my interpretations only on fluid, soil and rock properties. My study area consists of 

sandstones and shales that have weathered to regolith and soils. The Green River lies 

within my study area, generally providing saturation at or below river elevations. 
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CHAPTER TWO: GEOLOGIC SETTING 

Regional Geology 

The Paradox Basin, located in eastern Utah, is an oval shaped paleotectonic 

depression of Late Paleozoic age (Figure 2.0; Nuccio et al., 2000). The basin boundaries 

are defined by the extent of salt deposited during Middle Pennsylvanian Paradox 

sediment formation. This unit consists of carbonate, halite, and clasitcs that responded to 

tectonic stresses and the simultaneous uplift along its northeastern border. The shape of 

the basin was modified by later tectonic events affiliated with the Cretaceous and 

younger Laramide orogeny. Today, the basin has been dissected in places by uplift of the 

Colorado Plateau and downcutting by the Colorado River and its tributaries. 

Little Grand Wash Fault 

The LGWF is an east-west trending south-dipping normal fault located on the 

northwest margin of the Paradox Basin near Green River, east-central Utah (Figure 2.0). 

The fault has a ~30km arcuate surface expression (Dockrill and Shipton, 2010), and the 

central span intersects with the crest of the Green River Anticline. Within the central 

span, the fault becomes a more segmented fault zone with two dominant fault traces, 

accompanied by a series of minor faults and relay ramps (Oye et al., 2021). Fault throw is 

greatest at 250-300 meters in the central span of the fault near the Green River and 

juxtaposes Jurassic Morrison Formation and Cretaceous Mancos Shale (Kampman et al., 

2014). Among the northern and southern fault traces, the southern fault accounts for 

approximately 215 meters of throw. From outcrops, previous field mapping studies found 
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the fault to have a core of 0.7-to-3-meter foliated clay-rich gouge with ~1 m of highly 

fractured damage zone (Jung, 2014, Dockrill and Shipton, 2010). Further fracturing that 

extends 20-30 m from the fault was also identified by Dockrill and Shipton (2010). 

According to Caine et al. (1996), a combination of low percentage fault core and high 

percentage damage zone suggests the fault would act as a diffusive conduit for vertical 

fluid flow. Timing of continued movement along the LGWF is poorly constrained, 

though thought to be Tertiary and younger slip (Shipton et al., 2004). Modern seismicity 

along the LGWF has been inferred from earthquakes with hypocenters within three km of 

Crystal geyser in 2006 and 2010 (Han et al., 2013). The respective magnitudes of the 

earthquakes were 1.17 and 2.63. Han et al. (2013) also hypothesized that these two events 

could have initiated movement of the Little Grand Wash fault system and disturbed the 

eruption patterns of Crystal Geyser.  
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Figure 2.0 Map of regional geological basins (a) as well as known oil, natural gas, 

and CO2 reservoirs. Simplified geological map (b) of the LGWF and SWG with 
local springs and geysers. The approximate study area in detail (Figure 2.1) is 

shown as a red square. Figure modified from Jung (2014). 
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Figure 2.1 Geological map by Doelling et al. (2015) of the LGWF near Crystal 

Geyser. Shown also are seismic profiles (in red), local anticlines (purple), and 
abandoned boreholes. The red contours represent structure contours, in meters, 

drawn on top of Navajo Sandstone above mean sea level. 

 

To the south of both fault strands of the LGWF, or within the fault’s hanging 

wall, the Tununk Shale member of the Mancos Shale is mapped (Doelling et al., 2015). 

This unit is underlain by the Dakota and Cedar Mountain formations, and the Bushy 

Basin, Salt Wash, and Tidwell Members of the Morrison Formation. Underlying the 

Morrison formation is the Summerville, the Curtis formation and the Entrada Sandstone. 

The Carmel Formation consists of shales and silts and represents the caprock to the 

underlying Navajo Sandstone CO2 reservoir. 
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Figure 2.2 Map of the study area with collected seismic lines (blue), CO2 

measurements by Jung (2014) (red circles are proportional to amount of measured 
flux), and locations of local boreholes identified by API number or by name. The 

mapped fault trace locations are indicated by the red lines and the location of cross 
section A-A’ (Figure 2.3) is also shown. 

 

Crystal Geyser and Travertines 

The Crystal Geyser region is a prominent area for studying naturally-leaking CO2 

around the world (e.g., Jung, 2014). Along the fault, CO2 driven geysers and springs 

appear, as well as active and ancient travertine deposits with carbonate veining. 

Uranium/Thorium (U/Th) dating, age dating of the ancient travertine implies the 

occurrence of constant CO2 leakage during the last 114,098 +/- 646 years (Burnside, 

2013).  Non-active travertines among active deposits indicate temporal changes in 

pathways for CO2 outgassing. Pathway changes can result from fracture self-sealing via 

carbonate vein development, earthquakes, or changes in supplying aquifer conditions. 
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The nearby Salt Wash Graben area (Figure 2.0) also has a series of springs and geysers. 

Travertine deposits along this neighboring fault system have been dated as long as 

413,474 +/- 115,127 (2σ) years (Burnside, 2013). 

 
Figure 2.3 Cross section A to A’ (Figure 2.2) adapted from AP Williams (2004) 
based on local boreholes (vertical black lines) listed along surface. Black arrows 
indicate fluid flow within sandstone reservoir formations and upward along the 

LGWF. Red arrow indicates CO2 gas flow.  

Local Boreholes 

Borehole data from the region help constrain interpretative cross sections (Figure 

2.4). Crystal Geyser (Figure 2.2) is the result of an abandoned hydrocarbon exploratory 

drill-hole Ruby X-1 drilled in 1935 which reached a total depth of ~800 m in the upper 

portions of the Permian White Rim Sandstone (Baer and Rigby, 1978). The shallowest 

CO2 gas zone was observed in a calcite zone that ranged from 8.8m to 18 m depth.  

The 322 m deep CO2W55 scientific borehole is located directly west of the Green 

River and Crystal Geyser (Kampman et al., 2014; Figure 2.2). The borehole encountered 

the Entrada Sandstone in the upper 150 m, the Carmel sandstones and shales from 150-
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200 m, and the Navajo Sandstone from 200 to 322 m. Gas presence was intermittent 

through the Entrada Sandstone, not seen in the Carmel formation, and constant through 

the Navajo. This well was also plugged and abandoned due to abnormally high fluid 

pressures. 

Greentown Fed 35-12, or API 430931507, was drilled and abandoned by Delta 

Petroleum Corporation in December, 1990 (Figure 2.2). It is located 750 m north of the 

LGWF, and reaches a total depth of 1066 m. The drilling log states the Entrada 

Sandstone was reached at 137 m depth, the Carmel at 287m and the Navajo Sandstone at 

a depth of 331m. 

 Approximately 750 m to the south of the LGWF, the 1720 m deep Amerada 

Green River Unit #1, API 4301910030, was drilled in 1948 and later abandoned Unit #1 

(Figure 2.2). This well encountered the tops of the Entrada Sandstone, Carmel Formation, 

and Navajo Sandstone at depths of 263 m, 404 m, and 455 m respectively.  

Roughly 1000 m east and 300 meters north of Crystal Geyser, the 1164 m deep 

Marland Oil #1, API430911521 borehole (Figure 2.2) encountered the top of Entrada 

Sandstone at 190 m depth, the Carmel at 292 m, the Navajo at 344 m, the Kayenta 

Formation at 457 m, and the Wingate Sandstone at 498 m.  
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Figure 2.4 Cross section from Kampman et al. (2014) of the area near borehole 
CO2W55 showing the location of the Little Grand Wash fault in relation to Crystal 

Geyser. 

CO2 Brine System 

There are a number of hypotheses for the origin of CO2 in the LGWF system. 

Baer and Rigby (1978) interpreted the CO2 source to be chemical reactions of meteoric 

groundwater within the Navajo Sandstone (Figure 2.3). Shipton et al. (2004) proposed 

thermal decomposition of carbonate rocks in a formation at greater than 800 meters 

depth. Similar to the idea of Baer and Rigby, (1978), Assayag et al. (2009) hypothesized 

that free CO2 gas originates by exsolution from saturated Navajo brine. Analyses of in 

situ water chemistry sampled from drill-hole CO2W55 suggests a deeper crustal source at 

depths greater than two km, migrating along the LGWF as a dissolved brine to feed 

shallow aquifers (Jung, 2014). Based on analysis of helium and carbon isotopes in 

gaseous CO2 by Heath et al. (2009), CO2 may originate at a depth of over 800 m as a 
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product of clay-carbonate reactions, thermal degradation or a combination of both 

processes. Wilkenson et al. (2009) collected and analyzed gas samples from Crystal 

Geyser as well as other nearby geysers. Based on those findings, 1-20% of CO2 by 

volume originated in the mantle with the remainder derived from crustal sources (Han et 

al., 2013).  

Dissolved CO2 brine mixes with meteoric waters in shallow aquifers within the 

Navajo and Entrada Sandstone formations. Waters sampled from Crystal Geyser have 

been found to contain meteoric mixtures consistent with parts of the San Rafael Swell 

recharge area (Kampman et al., 2014). This suggests meteoric ground water recharge 

flows from the northwest to the southeast into the source aquifers of the Geyser (Jung, 

2014). The study of scientific drill-hole CO2W55 reports free CO2 gas in the Entrada 

Sandstone and only CO2 charged fluids with no gas in the Navajo Sandstone (Kampman 

et al., 2014). CO2 migrates upward into the trap created by the Green River anticline 

along the northern damage zone of the Little Grand Wash fault. CO2 outgasses to the 

surface in seeps localized to areas in which there is fracturing and where fluid pressures 

reduce the effective horizontal stress to approximately zero (Naruk et al., 2019). The 

combination of fracturing in the fault damage zone with high fluid pressure opening 

fractures further increases permeability and allows the fault damage zone to be a vertical 

conduit for CO2 and water. The high fluid pressure may also act to prevent diagenesis 

within the damage zone, a possible factor in the lengthy duration of CO2 outgassing at 

the site. 
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CHAPTER THREE: SEISMIC DATA 

Acquisition 

A team from Boise State collected seismic data over the course of two field 

campaigns (Table 3.1). A total of eight hammer seismic surveys were acquired. Surveys 

were all designed to transect the fault in areas with either relatively high or minimal CO2 

flux measured along profile (Figure 2.2). The most suitable terrain for geophysical 

surveys is found in low elevation drainages incised into the slope at the base of the cliffs. 

These allow survey profiles to intersect the mapped fault traces with both a near 

perpendicular angle and adequate subsurface coverage on each side of the fault zone 

(Figure 2.2). Locations for surveys east of Crystal Geyser are limited by 260-300 m tall 

cliffs on the footwall side of the LGWF. Here, seismic acquisition took place by hand and 

a sledge-hammer source. We acquired both vertically and horizontally polarized hammer 

data along one profile. Two profiles were acquired with the use of an accelerated weight 

drop source. Line 1 and Line 4 profiles were not used in my analysis.  
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Table 3.1 Details pertaining to each collected survey for the duration of the 
project. 

Line # Summary 

Line 2 ● Collected January 18th, 2020 
● N-S transect along dirt road that spanned the western bank of the Green River. 
● Seismic source was a trailered accelerated weight drop (35kg), four shots per source 

location at midpoints between geophones 
● Two 120 geophone spreads at 5m spacing, overlapped for total span of 800 m 
● GPS locations of both source and receiver positions were collected during survey 

Line 3 ● Collected January 20th, 2020 
● N-S transect along dirt road Crystal Geyser Safari Route. 
● 144 geophones at 5m spacing, 720 m total span 
● 4.5kg hammer and strike plate was source north of road and a 35kg accelerated 

weight drop. 

Line 5 ● Collected October 6th, 2019 
● N-S transect located along a drainage approx. 800 m east of Crystal Geyser 
● 120 geophones at 2m spacing, total span 240m 
● 4.5kg sledge hammer on aluminum strike plate source locations at each half station 

moving north to south 

Line 6 ● Collected October 5th, 2019 
● N-S transect along a drainage approx. 925 m east of Crystal Geyser 
● 96 geophones w/ 5 m spacing, 480 meters total span 
● 4.5kg sledge hammer on an aluminum strike plate 

Line 7  ● Collected October 3rd, 2019 
● N-S transect along drainage gulch approx. 1 km east of Crystal Geyser 
● 120 vertical component geophones at 5m spacing, total span 600m 
● 4.5kg sledge hammer on an aluminum strike plate 

Line 7 

shear 

wave 

● Collected October 3rd, 2019 
● N-S transect along drainage gulch approx. 1 km east of Crystal Geyser 
● 96 horizontal component geophones at 5m spacing, total span 480m 
● 4.5 kg hammer source on aluminum plate on the side of a wooden block, 4 shots east 

direction and 4 shots west direction.  
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Line 2 

The north-to-south, 800 m long seismic Line 2 is located along the western bank 

of the Green River (Figure 2.2). Motivation for collecting Line 2 was to compare 

formation depths interpreted from the W55 borehole log, the relatively flat footwall 

topography, no traffic, and proximity to the geyser without the affiliated ambient noise. 

This survey consisted of 120 recorded channels using 10 Hz vertical geophones spaced at 

five meters apart. A total of 168 source and geophone points were recorded, with the 

movement of 48 geophones to the south end of the profile during acquisition. A 35 kg 

accelerated weight drop was used to collect four shot gathers at each midpoint between 

geophones. Several shot points along this survey were inaccessible due to road washouts. 

I present both first arrival Vp tomography and reflection results from this profile. 

The Line 2 elevation ranges from 1234 to 1243 m, with all positions less than 10 

m above the Green River (Figure 2.2). Measured from the north, the profile crosses the 

LGWF at a distance of approximately 500 m along the profile (Doelling et al., 2015) 

(Figure 2.1). Kampman et al. (2014) mapped a second trace 360m from the north end of 

the profile. Line 2 crosses approximately 50m east of the CO2W55 borehole at the 400 m 

distance of the profile (Figure 2.2). To the north of the fault, rocks of the Summerville-

Curtis Formation and modern river deposits are mapped. Downhole logs from regional 

boreholes suggest that the Summerville-Curtis unit is upwards of 50 m thick. To the 

south of the fault, surface geology is mapped as a thin layer of Dakota/Cedar Mountain 

Formation and Mancos Shale along-side terrace alluvium deposits (Doelling et al., 2015, 

Kampman et al., 2014). CO2 flux measurements ranged from 2.4 to 111.3 g.m^2/day 

from position 250 to 500 m along the profile (Jung, 2014). The highest levels recorded 
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were near the 500 m mark of that range adjacent to travertine aged to be 5029 +/- 31 

years old by Uranium/Thorium (U/Th) dating. 

Line 3 

Line 3 is located along the Crystal Geyser Safari Route approximately three km 

east of Green River (Figure 2.2). The profile consisted of 144 10 Hz vertical geophones 

spaced five meters apart for a total span of 720m. The northern 130 m was located to the 

north of Little Valley Road. Here, we used a 10 lbs. sledge hammer source. To the south, 

we used an accelerated weight drop along the Crystal Geyser Safari Route. The northern 

10-15 m of Line 3 lies on the fault’s footwall, where Bushy-Basin member of the 

Morrison formation is mapped. The southern hanging wall side of the LGWF is mapped 

by Doelling et al. (2015) as Mancos Shale. The north end of Line 3 includes steep 

elevation along a cliff base. To the south, mostly flat terrain was encountered. No 

measurements of CO2 flux were made along this profile (Jung, 2014; Figure 2.2). I 

present both first arrival Vp tomography and reflection results from this profile. 

Line 5 

Line 5 is located along a drainage approximately 700 m east of Crystal Geyser 

(Figure 2.2). The survey consisted of 120 10-Hz vertical geophones placed at two-meter 

spacing totaling a profile span of 240 m. The source for each shot gather was a 10 lbs. 

sledge hammer struck on an aluminum plate. Four shot gathers were collected at each 

shot point located at the midpoints between geophones. The elevation of Line 5 lies 30-

50 m above the elevation of the Green River. Line 5 is the highest elevation seismic 

profile with an elevation range of 1257 m to 1293 m. In a previous study, CO2 flux 

values of 0.7 to 11.2 g/m^2/day were measured along the Line 5 transect (Jung, 2014; 
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Figure 2.2). Surface geology of Line 5 is mapped as Summerville formation sandstone on 

the footwall side, Mancos Shale on the hanging wall side and Bushy-Basin member of 

the Morrison formation within the span between fault traces (Doelling et al., 2015). I 

present first arrival Vp tomography results from this profile.  

Line 6 

Line 6 is located along a drainage approximately 880 m east of Crystal Geyser 

(Figure 2.1). The survey consists of 96 10 Hz vertical geophones spaced 5 meters apart 

for a total profile span of 480m. The source for each shot gather was a 10 lbs. sledge 

hammer against an aluminum strike plate. Four shot gathers were collected at each shot 

point located at the midpoints between geophones. Elevations at 30-40 m above the 

Green River suggest a deeper water table compared to the other profiles. To the north, 

Doelling et al. (2015) mapped sandstone rocks of the Summerville Formation. Downhole 

logs from regional boreholes suggest that the Summerville unit is upwards of 50 m thick. 

This unit overlies the Curtis Formation and Entrada Sandstone Formation. Between the 

northern and southern fault traces, the Bushy Basin Member of the Morrison Formation is 

mapped. To the south of the fault, Doelling et al. (2015) mapped rocks of the Tununk 

Member of the Mancos Shale Formation. This unit is estimated to be less than 24 m thick 

from local borehole Amerada Green River Unit #1 and lies above the fluvial sandstone 

Dakota formation and siltstone/mudstone rich Cedar Mountain Formations. CO2 flux 

measurements along Line 6 range from 1.7 to 38.7 g/m^2/day (Jung, 2014). I present first 

arrival Vp tomography results from this profile. 
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Line 7 

Line 7 is a 600-meter-long survey centered roughly one km east of Crystal Geyser 

(Figure 2.1). The profile runs along a drainage that cuts further into the north bordering 

cliff slope compared to Lines 5 and 6. This allowed for a greater total profile length, 

enabling longer source-receiver offsets and deeper probing depths when compared to 

Lines 5 and 6.  On the northern footwall block, Doelling et al. (2015) mapped sandstone 

rocks of the Summerville Formation to a depth of about 50 m. The Summerville 

Formation lies above the high porosity Entrada Sandstone that stores CO2. In the hanging 

wall block to the south of the fault, Doelling et al. (2015) mapped Quaternary alluvial 

deposits overlying rocks of the Mancos Shale formation. Line 7 transects the fault at an 

NE-SW trend due to the drainage orientation and intersects relatively high CO2 flux 

measurements, ranging from 16.7 to 5517.4 g/m^2/day. Peak CO2 was measured near 

where fault traces are mapped (Jung, 2014).  

This Vp survey consisted of 120 recorded channels using 10 Hz vertical 

geophones spaced at five meters apart. I also acquired a shear wave dataset along Line 7 

(Figure 2.1). For this survey, 96 horizontal component 10 Hz geophones were collocated 

with their vertical component counterparts starting from the north end. The shear wave 

survey had a total span of 480 m, A 10 lb. sledge hammer is the source for the line 7 

shear wave survey. Aluminum strike plate was mounted on the sides of a wooden block 

to reorient the source motion to horizontal. At each shot location 4 shot gathers were 

collected with source motion initiating eastward, then 4 shot gathers were collected with 

source motion initiated westward at the same shot location.  
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First Arrival Tomography 

I pre-processed the seismic data by assigning source-receiver geometries from 

differentially corrected GPS positions, removing bad traces, and bandpass filtering. I 

stacked common source-receiver traces to improve signal quality. I picked coherent first 

motions that contained a center frequency of about 50 Hz. I follow the approach of St. 

Clair (2015) to obtain final tomographic velocity models from my first arrival picks. I 

start with a 10-layer one-dimensional velocity model that incorporates topography. I then 

calculated the difference between my picks and calculated arrival times derived from ray 

tracing. I iterate from the initial model to generate two-dimensional velocity models that 

minimize the root mean square (RMS) model misfit. This code replaces the starting 

model with each iteration.  

I used the inversion code of St. Clair (2015) to generate final tomograms. I 

modified this approach to include sparse regularization constraints using the shortest path 

ray tracing method of Moser (1991). Sparse regularization constraints seek to minimize 

the L1 norm on model smoothness by allowing sharp boundaries to appear in the 

solution. The objective function is 

 

 𝜑𝜑 = 𝑚𝑚𝑚𝑚𝑚𝑚 {‖𝐴𝐴𝑚𝑚 − 𝑑𝑑‖22 + 𝛼𝛼𝑥𝑥|𝐿𝐿𝑥𝑥𝑚𝑚|1 + 𝛼𝛼𝑧𝑧|𝐿𝐿𝑧𝑧𝑚𝑚|1}  (7) 

 

where A is the Fréchet matrix, m is the model vector, d is the data vector, Li are 

derivative operators and 𝛼𝛼𝑖𝑖 are regularization weights. Thus, we minimize the L2 norm of 

the data misfit, but the L1 norm of the model smoothness constraint. 

I employed an iterative reweighting algorithm to solve the problem. First, I solve: 
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𝑑𝑑𝑚𝑚𝑗𝑗 = [𝐴𝐴𝑇𝑇𝐴𝐴+ 𝛼𝛼𝑥𝑥2𝐿𝐿𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 + 𝛼𝛼𝑧𝑧2𝐿𝐿𝑧𝑧𝑇𝑇𝐿𝐿𝑧𝑧]−1[𝐴𝐴𝑇𝑇𝑑𝑑 − [𝛼𝛼𝑥𝑥2𝐿𝐿𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 + 𝛼𝛼𝑧𝑧2𝐿𝐿𝑧𝑧𝑇𝑇𝐿𝐿𝑧𝑧]𝑚𝑚𝑗𝑗] (8) 

 

where 𝑑𝑑𝑚𝑚𝑗𝑗 is an update vector for the current model vector 𝑚𝑚𝑗𝑗. Next, I apply the 

derivative operators to the new model 𝑚𝑚𝑗𝑗+1 = 𝑚𝑚𝑗𝑗 + 𝑑𝑑𝑚𝑚𝑗𝑗 to get the magnitude of 

 𝛼𝛼𝑖𝑖𝐿𝐿𝑖𝑖𝑚𝑚𝑗𝑗+1 at every model parameter. Then, I solve the new problem: 

 

𝑑𝑑𝑚𝑚𝑗𝑗+1 = [𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛼𝛼𝑥𝑥2𝐿𝐿𝑥𝑥𝑇𝑇𝑊𝑊𝑥𝑥𝐿𝐿𝑥𝑥 + 𝛼𝛼𝑧𝑧2𝐿𝐿𝑧𝑧𝑇𝑇𝑊𝑊𝑧𝑧𝐿𝐿𝑧𝑧]−1[𝐴𝐴𝑇𝑇𝑑𝑑 − [𝛼𝛼𝑥𝑥2𝐿𝐿𝑥𝑥𝑇𝑇𝑊𝑊𝑥𝑥𝐿𝐿𝑥𝑥 + 𝛼𝛼𝑧𝑧2𝐿𝐿𝑧𝑧𝑇𝑇𝑊𝑊𝑧𝑧𝐿𝐿𝑧𝑧]𝑚𝑚𝑗𝑗+1]

 (9) 

 

where 

 

 𝑊𝑊𝑖𝑖 = 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑[�𝐿𝐿𝑖𝑖𝑚𝑚𝑗𝑗+1 + 𝜖𝜖�
−1

]    (10) 

 

for 𝜖𝜖 ≪ 1. We repeat this process until 1𝑇𝑇�𝛼𝛼𝑥𝑥𝐿𝐿𝑥𝑥𝑚𝑚𝑗𝑗+1 + 𝛼𝛼𝑧𝑧𝐿𝐿𝑧𝑧𝑚𝑚𝑗𝑗+1 � −

1𝑇𝑇�𝛼𝛼𝑥𝑥𝐿𝐿𝑥𝑥𝑚𝑚𝑗𝑗 + 𝛼𝛼𝑧𝑧𝐿𝐿𝑧𝑧𝑚𝑚𝑗𝑗 � <  𝜏𝜏, for some predefined 𝜏𝜏 (St. Clair, 2015). Metric of model 

fit 𝜏𝜏 is the calculated difference of observed versus calculated arrival times, or root mean 

square (rms) error. 

The code utilizes Tikhonov regularization, a method of regularization for ill-

posed problems with no unique solution. There is a regularization parameter to weight the 

velocity gradient linearly with depth and I have 1st and 2nd derivative parameters that 

constrain both vertical and horizontal smoothness of the model. Reweighting parameters 

can help smooth anomalous model features but generally can remove larger primary 
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features in the model. Regularization parameters can be updated in each iteration to 

improve model fit. Through ray tracing, I determine that velocity models are well 

constrained for the upper 20 to 40 meters below land surface. For a final model, I iterate 

until I obtain a misfit, or sum of all RMS values, less than .005 s or until RMS values 

change by less than .001 s from the previous iteration. To validate that model, I compare 

final tomograms to first break picks on shot gathers that cross the fault to ensure that 

velocity reduction corresponds to the regions in which velocity structures exist (Figure 

3.0). 

The Common Offset Gather 

I adopt the use of common offset gathers (COG) to identify lateral seismic 

boundaries and to validate my final tomographic models (Figure 3.0). This approach has 

been used to map faults and to validate large lateral velocity changes (e.g., Schuster et al., 

2016; Liberty et al., 2021). With this approach, I assume that first arrival travel times and 

surface wave phase velocities will remain constant for a fixed source/receiver offset. 

Visible and large changes in these arrivals suggest the presence of a lateral boundary. For 

example, Figure 3.0 shows slower first arrivals near positions 2075 and 2100 along the 

deconvolved Line 2 COG. Deconvolution attenuates wave path multiples and sharpens 

the seismic pulse (Yilmaz, 2001). These surface locations coincide with the mapped fault 

trace of Doelling et al. (2015). The low passband COG also shows changing wave speeds 

for the surface waves to the south of the mapped fault trace. By removing higher 

frequencies from the COG, surface wave signals are highlighted. 
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Figure 3.0 Shot Gather (top) from line 7 showing first arrival picks (red) with 

distance along profile in the x direction and time in seconds in the y direction. In the 
center is a common offset gather with an applied low-pass filter. The bottom image 

is a 100m depth common offset gather deconvolution. 

 

Tomographic Results 

Line 2  

My final tomogram for Line 2 shows an RMS error of .0027 s with ray coverage 

to about 30 m depth. Vp ranges from 500 to 3500 m/s. I observe a vertical velocity 
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gradient that ranges from 50 to 60 m/s/m. The depth to the 1500 m/s contour is close to 

the measured Green River surface elevation of 1228.5 m. The river elevation and Vp 

values suggest water saturated sediments are found at a depth of a few meters. The depth 

to the 2000 m/s contour ranges from 2 to 15 m depth. From the W055 borehole, located 

about 70 m to the west of position 400 m (Figure 2.2), Kampman et al. (2014) identified 

the regolith base at 10.2 m depth, consistent with this velocity contour. Below, they 

identified the gas-rich Entrada sandstone to 149 m depth.  

At 500 m distance, I observe a 30 m wide slow, low gradient Vp zone at all 

measured depths. I interpret this Vp reduction as the fault damage zone, as it corresponds 

with a previous mapped fault strand (Kampman et al., 2014) (Figure 2.2). The resulting 

low Vp implies an increased  𝜙𝜙 (Figure 3.1) (Castagna et al., 1985; Caine et al., 1996) 

where I speculate that high fluid and gas pressure has widened pre-existing 

microfractures (Naruk et al., 2019). Elevated CO2 flux values were measured between 

270 to 520 m distance along Line 2 (Jung, 2014), and I observed gas bubbles surfacing 

along the bank of the Green River near position 500 m. Both of these observations 

suggest that the high porosity damage zone represents a high permeability conduit for 

upward flowing CO2. Although elevated CO2 was observed near the northern fault trace 

at position 350 m, I observe no measurable Vp change in the upper 10 m. However, I 

observe lower Vp and likely higher 𝜙𝜙 north to about 350 m distance below the regolith 

base, as defined by Vp=2000 m/s contour. This may imply some diffusive CO2 flow 

through the unsaturated regolith, consistent with observations of Jung, (2014). Near the 

lower boundary of my model, between 100 m to 350 m distance, I estimate 𝜙𝜙 <0.25 that 

is consistent with unaltered Entrada sandstones. To the south of the fault, Vp is generally 
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less than that observed to the north of the fault. This observation is consistent with 

mapped shales (Doelling et al., 2015). At position 690m distance, I identify a slow Vp 

zone that does not correspond with a mapped fault. I speculate this may be a minor fault 

or fracture zone. There are  no measured CO2 flux values at this position. 

 
Figure 3.1 Line 2 CO2 flux measurements of Jung (2014) (a) and refraction 

tomogram model at 2:1 vertical exaggeration (b) showing mapped locations of two 
LGWF strands. Porosity estimates the relationships of Castagna et al. (1985) 

(Figure 1.1, equation 1) (c). Red lines are mapped fault locations (E. Petrie, personal 
comm.). Estimated fracture density (d) from Clark and Burbank (2011). 

From simple rock physics relationships (Figure 1.1), I interpret unsaturated and 

saturated unconsolidated sediment and unsaturated and saturated consolidated rock for 

Line 2 (Figure 3.3). I interpret unsaturated soils and regolith above the water table or 

river elevation. These soils measure Vp<1500 m/s. Below, I interpret saturated regolith 
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that extends from 10 to 30 m depth or Vp between 1500 to 2500 m/s. Semi-consolidated 

bedrock lies below the regolith and refers to heavily fractured bedrock to semi-

consolidated soils that were identified in borehole W055. This unit Vp ranges from 2500 

to 3000 m/s. I term consolidated bedrock for materials that have much lower fracture 

density but where minor fracturing is still present. Vp ranges from 3000 to 3500 m/s. 

Finally, unaltered bedrock represents unfractured, un-weathered host rock where 

Vp>3500 m/s. This velocity is consistent with a sandstone of 20% porosity and 20% clay 

(Equation 1). 

For my geologic interpretation (Figure 3.2), the slow velocity zones at position 

500 m and 690 m appear as saturated regolith within the damage zones of faults of the 

LGWF. Although not mapped, I interpret this second fault strand at 690 m, A change 

from consolidated bedrock to semi-consolidated can be seen across the interpreted fault 

damage zone, this is likely a change in lithology from Summerville formation in the north 

to Cedar Mountain formation to the south as mapped by Doelling et al. (2015). 

 
Figure 3.2  Geologic interpretation based on values from Lee (2003) (Figure 1.1). 
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Line 3 

The 600 m long Line 3 tomogram (Figure 3.3) is located three km to the east of 

the Crystal Geyser, and crosses the LGWF approximately 10-15 m from the north end of 

the profile (Figure 2.1). My final velocity model, with an RMS error of .00154 s, shows 

Vp that ranges from 1500 to 3500 m/s. I observe a vertical velocity gradient that ranges 

from 50 to 60 m/s/m. Previous mapping of the fault location is near the northern end of 

the profile and may not be reliably imaged. I observe no areas of slow Vp or changing 

porosity estimates further south that could suggest faulting. My interpretation aligns with 

fault mapping of Doelling et al. (2015). From position 450 m to 550 m, I observe that Vp 

in the top 10 m increases from less than 2000 m/s to above 3000 m/s. 

 
Figure 3.3 Line 3 projected CO2 flux (Jung, 2014) (top) and final refraction 
tomogram model at 2:1 vertical exaggeration (center). Porosity estimates the 

relationships of Castagna et al. (1985) (Figure 1.1, equation 1) (bottom). Red lines 
are mapped fault locations (E. Petrie, personal comm.). 



33 

 

Applying the same velocity ranges for unsaturated and saturated, unconsolidated 

and consolidated materials as with Line 2, I create a geologic interpretation for Line 3 

(Figure 3.4). The Vp/lithology relationships for Line 3 are different when compared to 

the other profiles, as the mapped lithology is mostly a more clay-rich shale. 

Velocity/lithology relationships of Lee (2003) were from sandstones samples with lower 

clay content. As I show with equation 1, a greater clay content will lower the Vp with 

respect to porosity and can lower the Vp for consolidated rock. Regardless, from position 

0 to 480 m distance, the bedrock generally lies 10 to 15 meters below ground level. I 

interpret saturated sediments to the near surface, as Vp is generally >1500 m/s. From 

position 480 to 520 meters I observe an increased velocity in the near surface. Near this 

position Doelling et al. (2015) mapped the crest of an anticline, the velocity increase may 

be the exposed compressed crest of this anticline. One other hypothesis for this high 

velocity zone is a fault zone that is imaged at greater depth in the Line 3 reflection image 

(Figure 3.14). Higher velocities would support a low permeability fault here. 

 
Figure 3.4 Geologic interpretation of Line 3 using velocities from Lee (2003).  
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Line 5  

For Line 5, my final Vp model, with an RMS error of .002 s, shows a Vp range 

from 1000 to 3000 m/s (Figure 3.5). I observe a vertical velocity gradient that ranges 

from 50 to 100 m/s/m. Two strands of the LGWF were mapped at positions 70 and 125 

m. At position 135 m I observe a velocity increase in the top 20 m from 1500 m/s to 2500 

m/s. I observe the velocity gradient north of position 160 m to be of the lower end of the 

observed gradient range. The velocity gradient south of position 160 m is less gradual at 

around 100 m/s/m. I interpret 0 to 23 m of regolith along this profile. The relatively low 

Vp suggests that consolidated bedrock lies at depths below my ray coverage. 

 I interpret the increased Vp/decreased 𝜙𝜙 around position 135 m to be a fault zone 

and relic flow pathway that is now sealed. I speculate that the higher Vp could be result 

from mineral precipitation and diagenesis, or effective stress closing pre-existing 

fractures within the fault damage zone (Naruk et al., 2019). 
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Figure 3.5 Line 5 CO2 flux profile (Jung, 2014) (top) and final refraction 
tomogram model at 2:1 vertical exaggeration (center). Porosity estimates the 

relationships of Castagna et al. (1985) (Figure 1.1, equation 1) (bottom). Red lines 
are mapped fault locations (E. Petrie, personal comm.). 

When I apply my lithologic interpretation from Line 2, this would suggest that 

much of the subsurface beneath Line 5 would be represented by saturated regolith (Figure 
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3.6). However, Vp for saturated unconsolidated regolith at 0 MPa typically ranges from 

1500 to 1800 m/s and Vp for unsaturated consolidated bedrock at 0 MPa ranges from 

2000 to 2400 m/s. Both lie in the Vp range that I identify. Given the higher profile 

elevation with respect to groundwater levels, I prefer an interpretation of mostly 

unsaturated, semi-consolidated bedrock beneath Line 5. 

 
Figure 3.6 Geologic interpretation of Line 5 using Vp/lithology relationships of 

Lee (2003). 

Line 6  

The 480 m long Line 6 profile is located 800 m east of the Crystal Geyser, and 

crosses two mapped fault traces of the LGWF at a distance of approximately 135 m and 

210 m (Kampman et al. 2014; Figure 2.2). My final velocity model (Figure 3.7), with an 

RMS error of .003 s, shows Vp ranges from 1000 to 3500 m/s. I observe a vertical 

velocity gradient that ranges from 40 to 60 m/s/m. Near position 210 m, I observe a 

slower Vp zone. This zone coincides with a mapped fault trace (E.Petrie, personal 

comm.). I observe a second slow Vp zone near position 300 m and speculate this may 

represent an unmapped fault strand. A similar slow zone is also observed at position 75 
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m. I speculate this may be another fault that does not correspond to the mapped traces. 

Measured velocities suggest 1 to 15 m of regolith, with porosities consistent with 

unaltered Entrada sandstone below 20 m depth. This is in contrast to the thicker regolith 

observed along Line 5, located 120 m to the west. 
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Figure 3.7 Line 6 CO2 flux profile (Jung, 2014) (top) and refraction tomogram 
model at 4:1 vertical exaggeration (center). Porosity estimates the relationships of 

Castagna et al. (1985) (Figure 1.1, equation 1) (bottom). Red lines are mapped fault 
locations (E. Petrie, personal comm.). 

Utilizing the same Vp/lithology approach, I create a geologic interpretation for 

Line 6 (Figure 3.8). I categorize slow zones in my tomogram (figure 3.7) as saturated 
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regolith or semi-consolidated material. I interpret the slow zone at position 200 m to be 

the southern fault trace and the zone of saturated regolith to indicate a region of highly 

fractured damage zone. I speculate that the slow zones at position 75 and 300 m indicate 

unmapped faults and that position 75 has a lower fracture density within the damage zone 

than position 300 m. 

 
Figure 3.8 Geologic interpretation of Line 6 based on Vp/lithology relationships 

adapted from Lee (2003). 

Line 7 

The 600 m long Line 7 refraction tomogram is located 1000 m to the east of the 

Crystal Geyser (Figure 2.1). The dataset consists of 480 120 channel shots acquired with 

a sledge hammer source (four shots per source location). The profile elevation ranges 

from 1251 to 1267 m, between 18 to 34 m above the Green River elevation near the 

Crystal Geyser. The profile crosses two closely spaced 70-80 degree south dipping fault 

strands of the LGWF at a distance of 300 m to 340 m along the profile (E.Petrie, personal 

comm.). Near the southern fault location, Jung et al. (2014) mapped an area where 
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elevated CO2 flux was measured at 5514.7 g/m^2/day (Figure 2.2), the highest natural 

CO2 source for the region. At position 250 m outgassing of water and gas bubbles flow 

form a natural spring. Dockrill et al. (2010) and Jung et al. (2014) suggest that the fault 

damage zone may range from .2 to 3 m wide. Line 7 was the only profile where I assess 

both Vp and Vs tomograms. 

Line 7 Vp model 

My final Vp model (Figure 3.9b), with an RMS error of .0026 s, shows a Vp 

range from 1500 to 3750 m/s. I observe a Vp increase with depth and vertical velocity 

gradient that ranges from 50 to 60 m/s/m. Between 300 to 340 m distance, I observe a 50 

m wide zone where slower velocities are measured at all depths. In this zone velocities 

measure between 2000 to 2500 m/s. I interpret this zone of slower Vp to be the fault 

damage zone related to the southern mapped fault strand. This damge zone width is 

significantly greater than that mapped from surface geology. Measured velocities suggest 

0 to 8 m of regolith, with porosities consistent with unaltered Entrada sandstone below 

15-25 m depth.  I speculate the increase in estimated porosity I observe coinciding with 

this slow Vp zone to suggest the fault is a pathway for fluid and gas to the surface. I 

further speculate that the cause of this porosity increase may be fluid pressure opening 

pre-existing fractures within the fault damage zone. Whereas elevated CO2 appears 

across the northern fault strand, I do not observe a measurable Vp slow zone here. 

Instead, a faster Vp zone is observed near position 250 m. This result may suggest a relic 

cemented northern fault with diffusive flow through the dry regolith.  
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Figure 3.9 Line 7 CO2 flux profile (a) and final Vp refraction tomogram (b) 

model at 2:1 vertical exaggeration. Line 7 final shear wave refraction tomogram (c) 
model at 2:1 vertical exaggeration. Vp/Vs ratio plot (d). Red lines mark mapped 

fault locations (E. Petrie, personal comm.). 

Line 7 Vs model 

My final velocity model (Figure 3.9c), with an RMS error of .0069 s, shows Vs 

that ranges from 500 to 1750 m/s. I observe a vertical velocity gradient that ranges from 

25 to 50 m/s/m. Velocities below northern portions of the profile show velocities ranging 

from 500 to 1800 m/s. Between 300 to 340 m distance, I observe a zone of slower 

velocities at all depths. These velocities range between 500 to 1000 m/s. I interpret this 

slow zone to be the fault damage zone. I speculate that increased porosity at this position 

(Figure 3.10a-c) is resultant of high pore pressure and may indicate the fault is a pathway 
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for fluid at gas flow to the surface. Again, I see no evidence for a low Vs fault below the 

mapped northern fault strand. 

 
Figure 3.10 Porosity estimates of Line 7 Vp (a), shear wave (b) and Vp/Vs ratio (c) 

based on the relationships of Castagna et al. (1985) (Figure 1.1, equation 1-3). 
Estimated fracture density (d) using method from Clark and Burbank (2011).  
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Line 7 interpretation 

The slow Vp and Vs zones at position 300 to 340 m correspond with a mapped 

fault trace of the LGWF (Figure 2.2) (Figure 3.9b-c) (E. Petrie, personal comm.).  I 

interpret the soil/regolith and underlying rock to be saturated as Vp within the fault 

damage zone does not fall below 1500 m/s. The width of the damage zone observed with 

my seismic measurements is likely wider than that mapped with surface geology because 

of the lower elevations of the seismic measurements, where fluid interactions with the 

surface has widened the fault’s damage zone. 

I observe outgassing in the form of CO2 within a natural spring at position 260 m. 

Naruk et al. (2019) states that pore pressure can act to preserve porosity in the fault 

damage zone, open microfractures, and offset effective stress acting on the fault. I 

speculate that pressure from fluid and CO2 within pore and fracture space may cause an 

increase in porosity and reduce Vp within the fault zone. 

 
Figure 3.11 Geologic Interpretation of line 7 based on velocities from Lee (2003). 
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Vp/Vs Ratio 

Vp/Vs is considered as a primary constraint on the nature and composition of 

rocks when interpreting seismological data. It is well established that the presence of 

fluid-filled porosity (cracks, pores or open grain junctions) strongly modifies the Vp/Vs 

ratio (Brantut et al. 2018). I compute the Vp/Vs ratio for Line 7 (Figure 3.9) as an 

estimate of fluid saturation within the profile. Since Vs is relatively insensitive to 

saturation, using the ratio of Vp to Vs can estimate saturation distribution more 

accurately than Vp or Vs alone. I interpret a Vp/Vs ratio above 2.5 as being saturated. I 

observe the highest Vp/Vs ratio (Figure 3.9d) to coincide with the low velocity zones in 

the Vp and Vs plots (Figures 3.9b and 3.9c). 

Seismic Reflection 

I processed three seismic reflection profiles using Halliburton’s SeisSpace® 

processing software with a standard processing approach outlined by Yilmaz (2001). 

Processing steps included datum statics, spiking deconvolution, bandpass filter, surface 

wave attenuation through a two-step singular value decomposition approach to estimate 

and adaptively subtract the ground roll signal (where appropriate), iterative velocity 

analyses with dip moveout corrections, amplitude gains, and a post-stack time to depth 

conversion. Where surface waves were strong, I muted this window. Post-stack migration 

is selectively applied to the data where appropriate so as to not introduce migration 

artifacts which can distort key reflector geometries. Depths were estimated using 1-D 

averaged stacking velocity models. These velocities were consistent with downhole 

measurements for central Utah. 
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The datasets for three seismic profiles are capable of producing coherent 

reflection images in which structure at depth can be interpreted. Line 2, adjacent to the 

Green River, spans an area near a recent scientific borehole CO2 W55 which provides an 

assist for determining contact depths for the Entrada, Carmel, and Navajo Formations. 

Anticlines that may behave as traps for CO2 gas are discernable as well and give some 

insight into the flow pathways of CO2 to the surface. 

Line 2 

The scientific borehole CO2 W55 was drilled on the foot wall of the LGWF ~50 

m west of the Line 2 profile (Figure 2.2). The Line 2 reflection image (Figure 3.12) 

shows coherent reflectors near the inferred top and bottom boundaries of the Navajo 

Sandstone as well as the lower contact of the Entrada Sandstone at 149 m depth 

(Kampman et al., 2014). Lateral changes in reflection amplitude support the fault location 

observed as a slow Vp zone from the Line 2 tomogram. The LGWF crosses the Green 

River anticline (Figure 2.1), as mapped by Doelling et al. (2015). The intersection of the 

anticline with the east-west trending LGWF creates a structural trap for up flowing CO2 

(Naruk 2019). 
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Figure 3.12 Reflection image for Line 2 at 4:1 vertical exaggeration with overlain 

refraction tomogram and borehole log from CO2 W55. 

Line 3 

The Line 3 reflection profile crosses the LGWF on the northern end and mostly 

consists of the hanging wall of the LGWF (Figure 3.14). The crest of an anticline mapped 

by Doelling et al. 2015 can be seen by curvature of reflections near the southern end of 

the profile. Offset reflectors near position 5500 is consistent with a near vertical fault.  
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Figure 3.13 Line 3 reflection image at 1:1 vertical exaggeration with overlain line 

3 refraction tomogram.  

Line 7 

I processed the dataset of Line 7 to produce a reflection image with 4:1 vertical 

exaggeration (Figure 3.9). The dramatic change in reflection amplitude laterally at 300-

340 m along the profile indicates the location and architecture of the LGWF at depth. The 

strong reflection seen south of the fault compared to weaker reflections north of the fault 

may be representative of the large amount of fault throw previously described in the is 

span of the fault (Kampman et al. 2014b).  
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Figure 3.14 Line 7 reflection image at 1:1 vertical exaggeration with overlain Line 

7 Vp refraction tomogram. 
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CHAPTER FOUR: DISCUSSION 

My dataset provides an ideal seismic velocity comparison to lithology, to mapped 

fault locations, to measured CO2 flux rates, to elevations, and to ancient CO2 pathways. 

Here, I focus on seismic velocity distributions in the upper 20 to 40 m. I focus on a 

comparison of seismic velocities to lithology, estimated porosity, fluid saturation, and the 

presence of modern and relic CO2 pathways to the surface. I use seismic reflection 

images to place the shallow velocities in a structural and stratigraphic context. 

From rock chemistry from borehole CO2 W55 cores, Kampman et al. (2014) 

concluded that CO2-undersaturated meteoric groundwater recharges from the San Rafael 

Swell and flows laterally southeastward within the aquifers. Free CO2 sourced from deep 

reservoirs interacts in the Navajo and Entrada Sandstone CO2-charging the aquifers. The 

LGWF is thought to impede a lateral flow of CO2-rich brine in the aquifers but be open 

to upwards-directed, along-fault flow via fractures in the fault damage zone (Jung, 2014, 

Dockrill and Shipton 2010). The majority of CO2 outgassed within the central span of the 

LGWF by Jung (2014). I observe that the previously mapped northern fault traces often 

are not distinguishable in my tomograms. I speculate that due to buoyant fluid and gas 

surpassing the northern trace and being trapped by the southern fault trace and the 

southern mapped trace in my tomograms may more consistently align with observed 

zones of increased estimated porosity and Vp reduction for this reason. This would 

indicate that advection is the dominant process that drives CO2 migration. The lack of 
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seismic evidence of the northern fault strand and high CO2 measurements of outgassing 

on the footwall may suggest some diffusive flow is also present.  

Using the relationship of dependence of Vp and Vs on φ and Vcl (Equation 1-3), I 

estimate φ for each of my tomograms based on Vp and assuming a constant clay content. 

This provides relative porosity values for interpreting lithology and fault location. Within 

interpreted fault zones I observe porosity values changed +/-5-10% compared to 

surrounding values. This Vp to φ relationship, and the φ to permeability relationships for 

sandstones, suggests then that seismic velocity can be used to identify high permeability 

CO2 outgassing zones. Areas of slower velocity are interpreted as zones of higher 

porosity however this also be indicated as higher clay content. Ridgley and Hatch, (2013) 

found the range of porosity of 22 to 25% from for Entrada Sandstone reservoir rock. 

Antonellini and Aydin (1994) measured porosity in the Moab member of the Entrada 

Sandstone, the top 20 to 40 m directly underlying the Morrison Formation, to vary from 4 

to 28%. From this range I suggest depth to bedrock relates to porosity values of 25 to 

30% (0.25 to 0.3 on plots).  

I interpret Vp greater than 1500 m/s to indicate saturated soil or more competent 

rock. Below the 1500 m/s contour, I interpret unsaturated, unconsolidated sediments. 

Based on this relationship, I interpret Lines 2, 3, 6 and 7 to be saturated to less than 10m 

depth. I speculate that Line 5 is likely unsaturated in the top 10-20 m due to a 20 to 34% 

decrease in Vp for the upper 25m depth when compared to other profiles. With water 

saturation, Vp increases, but Vs decreases slightly. However, neither P- nor S-wave 

velocity is the best indicator of any fluid saturation effect because of the coupling 

between P- and S-waves through the shear modulus and bulk density (Figure 1.2) (Han et 
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al., 2004). As Vs is relatively insensitive to saturation, using the ratio of Vp to Vs on Line 

7 can improve the estimate of saturation when compared to Vp or Vs alone. I use a ratio 

above 2.5 to interpret saturated areas along Line 7.  

Stress acting on the fault can further open pre-existing fractures and decrease 

particle to particle contact. This pressure acts to increase average porosity and create 

more permeable pathways for fluid and gas flow (Naruk et al., 2019). I speculate the slow 

Vp zones observed in lines 2, 6 and 7 to be resultant of pre-existing fractures near the 

fault being further opened by the pressure from outflowing fluid and CO2 gas. I speculate 

that high levels of CO2 outgassing, as measured by Jung, (2014), correlate with the 

location of fault traces or areas north of the northern fault trace. Profiles with less CO2 

measured such as Lines 5 and 6 show a weaker link between CO2 outgassing and fault 

location when compared to Lines 2 and 7. Here, higher measured CO2 flux show the 

highest levels of outgassing near mapped fault traces. 

Conclusion  

For the successful long-term storage of CO2, it is essential to determine how 

existing faults will behave when introducing pressurized fluid. Determining whether a 

fault will act as a conduit or barrier for flowing material will greatly affect the viability of 

a storage system. Understanding the dynamics of CCS is critical to identification of 

potential leakage pathways or active leaking of a storage system. 

Through seismic imaging I show low velocity zones that relate to high 

permeability, high CO2 flux zones. The width of interpreted damage zones within the 

fault are interpreted to be greater than have been previously documented. A significant 

reduction in seismic velocity is observable at all depths across the LGWF in first arrival 
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tomograms. Places along the fault at which I observe slow velocities show high levels of 

CO2 flux (Jung et al. 2014). It is possible CO2 gas present in the rock pore space creates 

pressure to offset the effective stress on the fault, opening pre-existing fractures in the 

fault. 

My findings can be applied to other CCS sites to identify outgassing CO2. 

Seismic velocity can be used to estimate porosity, to find high porosity zones and to 

identify potential high permeability CO2 outgassing zones. CO2 within a fault to the 

surface can be identified via hammer seismic survey and manifests as slow velocity 

zones. The ability to identify pathways of leaking CO2 via seismic methods offers a low-

cost monitoring strategy for CCS sites. Additional data that would improve my approach 

are regularly spaced and temporal CO2 concentration measurements that are tied to the 

geyser eruption cycle. Time-lapse seismic to image the sandstone aquifers through an 

eruption cycle would help understand how material in the aquifer migrates as pressure 

rises and falls.
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