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ABSTRACT 

Parkinson’s disease is the second most common neurodegenerative disorder. It is 

characterized by the death of dopaminergic neurons in the substantia nigra and a series of 

debilitating motor symptoms. Macroautophagy (hereafter referred to as autophagy) is a 

cellular process by which cells degrade proteins, lipids, organelles or dysfunctional 

components. Autophagy is thought to play an important role in Parkinson’s disease, 

because it is the only cellular process known to remove large protein aggregates, such as 

those seen in Parkinson’s disease pathology. Historically, a large body of work has 

focused on reporting on protein effectors of autophagy, and regulation of autophagy but 

lipophilic molecules has garnered less attention. This dissertation focuses on the 

regulatory contributions of lipid molecules to autophagy in addition to describing the 

identification and lead discovery of autophagy-regulating lipid factors using an 

endogenous lipid chaperone protein, known as Fatty Acid Binding Protein 5, as a ‘bait’ 

molecule. 
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CHAPTER ONE: A REVIEW OF SIGNALING AND OTHER ROLES OF LIPIDS IN 

AUTOPHAGY 

The process of autophagy is integral to cellular function. In this process, proteins, 

organelles, and metabolites are engulfed in a lipid vesicle and trafficked to a lysosome for 

degradation. Its central role in protein and organelle homeostasis has piqued interest for 

autophagy dysfunction as a driver of pathology for a number of diseases including 

cancer, muscular disorders, neurological disorders, and non-alcoholic fatty liver disease. 

For much of its history, the study of autophagy has centered around proteins, however, 

due to advances in mass spectrometry and refined methodologies, the role of lipids in this 

essential cellular process has become more apparent. This review discusses the diverse 

endogenous lipid compounds shown to mediate autophagy. Downstream lipid signaling 

pathways are also reviewed in the context of autophagy regulation. Specific focus is 

placed upon the Mammalian Target of Rapamycin (mTOR) and Peroxisome Proliferator 

Activated Receptor (PPAR) signaling pathways as integration hubs for lipid regulation of 

autophagy. 

Introduction 

Autophagy is a process by which proteins, organelles, and metabolites are broken 

down and turned over often as a response to starvation or as a means to protect the cell 

from damage. Autophagy pathways come in three forms, macroautophagy, 

microautophagy, and chaperone-mediated autophagy 1. Of these, macroautophagy is the 
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best characterized and most well understood. Macroautophagy (hereafter referred to as 

autophagy) was originally studied in yeast and involves the formation of lipid vesicles 

known as autophagosomes that engulf cargo to be degraded.  Once formed, the 

autophagosome is trafficked to a lysosome and a fusion event occurs resulting in the 

degradation of the cargo within the autophagosome (Figure 1.1) 1.  

Autophagy is delineated into key events: initiation, nucleation, elongation, and 

formation of a mature autophagosome, fusion of the autophagosome with a  

 
Figure 1.1 Autophagy mechanism. Autophagy is a cellular mechanism by which 

metabolites, organelles, proteins, and protein aggregates are enveloped by a 
vesicular membrane to form an autophagosome. The autophagosome is trafficked to 
a lysosome where fusion occurs, and lysosomal degradative enzymes break down the 

cargo.  
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lysosome, and degradation of cargo. Initiation of autophagy is tightly regulated by the 

mTOR complex 1 2. When the cell is in a nutrient-rich state, mTORC1 is active and 

autophagy is suppressed, however during nutrient-poor conditions, mTOR is inhibited 

which allows for the formation of Unc-51 like kinase (ULK) initiation complex 

composed of ULK kinases, autophagy related protein 13 (Atg13), Autophagy related 

protein 101 (Atg101), and RB1-inducable coiled-coil protein 1 (FIP200) 3. Furthermore, 

ULK-1 also activates a second complex composed of Beclin1-vacuolar protein sorting 

protein 34 (VPS34)-autophagy related protein 14 (Atg14L)-P150, which produces 

phosphatidylinositol-3-phosphate (PI3P) (Figure 1.1) 4. This complex is responsible for 

autophagic vesicles budding from the endoplasmic reticulum and forming a structure 

known as an omegasome. In mammals this is the site responsible for the nucleation of 

autophagosomes 5. Next, phosphatidylethanolamine (PE) is conjugated to microtubule 

associated light protein light chain 3 (LC3) by autophagy related protein 7 (Atg7) and 

autophagy related protein 3 (Atg3), which are ubiquitin-like conjugating enzymes. Then 

the conjugated PE-LC3 is inserted into the autophagosome membrane 6. In addition, 

autophagy related protein 12 (Atg12) is conjugated to autophagy related protein 5 (Atg5) 

by Atg7 and autophagy related protein 10 (Atg10) also in a ubiquitin like manner 7. 

Atg12-Atg5 interacts with autophagy related 16 like protein (Atg16L) and promotes 

elongation 8. Meanwhile cargo is selected by ubiquitination and interaction with cargo 

receptor proteins p62/ sequestome 1 (sqstm1). Cargo bound to p62 then binds to the p62 

interacting regions of LC3 9. After the cargo is selected, the autophagosome matures by 

disassembling the autophagy related proteins from the outer layer with the help of 

myotubularin 3 (MTMR3), a PI3P phosphatase 10. Once matured, the autophagosome will 
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fuse with early and late endosomes as well as with lysosomes this is mediated by 

Rubicon, UV resistance-associated gene (UVRAG), Ras related protein 7 (Rab7), snap 

receptor proteins (SNAREs), and Lysosome-associated membrane glycoproteins 

(LAMPs) 11-13. Once fusion with a lysosome is complete, the cargo is degraded. In 

mammals, lysosomal hydrolases break down cargo. Beneficial components, such as 

amino acids are then returned to the cytosol via amino acid effluxers such as vacuolar 

amino acid transporter 3 (Avt3) and vacuolar amino acid transporter 4 (Avt4) 14.  

Lipid Signaling Directs Autophagy 

 While autophagy has been studied extensively through the years, the role of 

lipids in this process is underrepresented. Historically, working with lipids has presented 

a challenge, leading to emphasis on work that primarily focused upon protein 

contributions. However, recent advances in both mass spectrometry capabilities and 

methodologies have spurred considerable progress in the study of lipids. For example, 

lipophagy, the targeted breakdown of lipid droplets by autophagic pathways, is currently 

being studied in the context of non-alcoholic fatty liver disease, aging, and cancer. It is 

becoming more apparent that lipids play a prominent role in autophagy. mTOR, the 

master regulator of cell growth, metabolism, and autophagy is itself a part of a signaling 

cascade in which lipid phosphoinositides are involved. In addition, Peroxisome 

Proliferator-activating factors (PPARs), are nuclear receptors which respond to lipid 

signals and have been implicated in the control of autophagy and autophagy related 

genes. For all of these reasons, this review seeks to provide a comprehensive overview of 

the growing field of lipid signaling. In the subsequent sections of this article, we discuss 
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the different lipid signaling pathways known to regulate autophagy and their implications 

in disease states. 

Impaired Autophagy in Human Disease 

Autophagy is of considerable interest as a potential target for treatment in many 

diseases that include cancer, muscular disorders, and neurodegenerative disease. The 

fundamental role for organelle, particularly mitochondria, and biomolecule turnover by 

autophagy provides a broad influence of this process in cellular physiology. In addition, 

autophagy is the only known cellular process for removing protein aggregates making 

study of this process of considerable interest in protein aggregation disorders which 

coincide with numerous neurodegenerative diseases. Therefore, understanding and 

developing tools to manipulate autophagy could yield widespread therapeutic benefits.    

Due to its regulation by mammalian target of rapamycin (mTOR), autophagy is 

intimately involved in growth, cell death and cytoprotective processes. As a result, there 

is great interest in harnessing this process in the context of cancer.  In early stages, 

suppression of autophagy is believed to facilitate the uncontrolled growth 15. In later 

stages, cells may require increased autophagy in low-oxygen and low-nutrient conditions, 

such as those seen in tumors 16. Autophagy also can protect tumors from ionizing 

radiation by helping to remove damaged organelles and proteins 17. Dysfunction in the 

phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mTOR pathway has been 

commonly seen to result in altered autophagy. This pathway, when active, suppresses 

autophagy and uses lipid signaling molecules such as phosphatidylinositol-3,4,5-

triphosphate (PIP3) as key signal transducers 18. Mutations in phosphatase and tensin 

homolog (PTEN), a phosphatase that antagonizes PI3K and causes positive regulation of 
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autophagy, result in aberrant inhibition of autophagy that has been associated with 

excessive growth and tumor formation 19. Another common mutation in cancers that 

leads to autophagy dysfunction is Beclin-1. A high percentage of human breast, ovarian, 

and prostate cancers have a heterozygous mutation in this gene. Beclin-1 is a part of the 

initiation complex responsible for activating lipid kinases required for the formation of 

autophagosomes. In breast carcinoma cell line MCF7, it has been established that Beclin-

1 expression is below detectable limits, and transfection of the Beclin-1 gene upregulates 

autophagy 15. Studies have also shown that mice with a heterozygous deletion of Beclin-1 

are more susceptible to developing tumors 20, 21. This is further evidence of the role of 

beclin-1 and autophagy play in cancer. 

Autophagy has also been implicated in muscular disorders. It is common for 

autophagy to play an important role in post-mitotic cells, such as muscle cells and 

neurons due to the potential for damage from accumulation of dysfunctional or toxic 

molecules, protein or organelles. Vacuolar myopathy is a type of muscular disease in 

which the structure of lysosomes is abnormal either from a deficiency in lysosomal   
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Figure 1.2 PI3K-mTOR autophagy pathway utilizes PIP3 lipid signaling. PI3K 

converts the lipid PIP2 to PIP3. PIP3 mediates the phosphorylation of PDK1 
causing the activation of AKT. AKT inhibits the activation of the TSC1/2 complex 

by phosphorylating TSC2.  The inhibition of the TSC1/2 complex results in 
inhibition of Rheb GTPase which in turn activates mTORC1. MTORC1 inhibits the 

activation of the ULK activation complex leading to an inhibition of autophagy. 
Inversely, phosphatase activity of PTEN converts PIP3 to PIP2 which suppresses the 

activation of PDK1 and downstream AKT. Inhibited AKT cannot suppress the 
TSC1/2 complex allowing Rheb GTPase to remain active. An active Rheb results in 

inhibition of mTORC1 and an activation of the ULK1 complex 

enzymes or a deficiency in lysosomal membrane proteins 22. Therefore, it is not 

surprising that diseases in which lysosomal function is affected also result in the altered 

autophagy. In fact, an accumulation of autophagosomes is typically required to diagnose 

vacuolar myopathies 23. In addition, an autophagy related gene has been associated with a 

vacuolar myopathy known as Danon’s disease. In Danon’s disease, mutations in 

lysosome associated membrane protein 2 (LAMP-2) have been identified 23. LAMP-2 is a 

lysosomal membrane protein whose function is still not fully understood. However, 

studies in which the Lamp2 gene is deleted in mice result in a Danon’s disease-like 

phenotype and an accumulation of autophagosomes 23. 

Autophagy has long been thought to play an important role in neurodegenerative 

disorders. A prominent hallmark of these diseases is the accumulation of protein 
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aggregates associated with neuronal loss in the brain. Noted examples include: ɑ-

Synuclein Lewy bodies in Parkinson’s disease, Tau neurofibrillary tangles in Alzheimer’s 

disease, Superoxide dismutase 1 (SOD1)-mediated aggregates in Amyotrophic Lateral 

Sclerosis, and mutant Huntingtin protein aggregates in Huntington’s disease 24-28. It is 

speculated that these aggregates may be substrates for autophagy, and that in these 

disease states, autophagy is disrupted. Several proteins have been identified and are 

linked to dysfunction in various steps of autophagy in each of these diseases. For 

example, in Alzheimer’s disease, autophagy induction is disrupted by reduced expression 

of Beclin-129. In Parkinson’s disease, an overexpression of ɑ-Synuclein causes the 

inhibition of GTPase Rab1. This inhibition is responsible for the mislocalization of 

autophagy related protein 9 (Atg9), a protein involved in the formation of 

autophagosomes 30. Also, PTEN induced kinase 1(PINK1) and Parkin are proteins 

involved in the recognition of damaged mitochondria normally targeted for degradation 

mitophagy. Loss of function mutations in these proteins can prevent the necessary 

destruction of damaged mitochondria through autophagy resulting in cell death 31,32. In 

addition, the park9 gene encodes lysosomal type 5 p-type ATPase (ATP13A2). 

Autosomal recessive mutations in the park9 gene result in levodopa-responsive early-

onset Parkinson's Disease. This loss of function mutation is responsible for aberrant 

expression of zinc transporters and an impairment in the ability for Zn 2+ to enter 

lysosomal vesicles resulting in an induction of reactive oxygen species and impairment of 

mitochondrial function 33. In Huntington’s disease, mutant huntingtin protein is known to 

affect several stages in autophagy 32. Many research groups have reported changes in 
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expression of mRNA corresponding to genes in the autophagic pathway 34. In addition, a 

polymorphism in the ATG7 gene has been linked to early onset Huntington’s isease 35.      

Phospholipids, Sphingolipids, and mTOR Signaling 

Phosphoinositides are a class of phospholipids derived from phosphatidylinositol, 

which is found in the inner layer of the cell membrane and are commonly used by the cell 

as signaling molecules 36. They play a major role in the regulation of autophagy through 

phosphorylation and dephosphorylation at the 3,4 and 5-hydroxyl positions of the inositol 

ring. They control the pathway that directly regulates mTOR 37. mTOR itself is a master 

regulator of growth, anabolic processes, and autophagy. Generally, mTOR is activated in 

response to insulin, other nutrients such as amino acids or triglycerides, and growth 

factors. When active, mTOR promotes growth and suppresses autophagy. In response to 

starvation, the cell inhibits mTOR and autophagy is promoted 2.  

The canonical signaling pathway that controls autophagy functions through PIP3. 

The pathway begins as a response to insulin, other nutrients, or growth factors 38. 

Phosphoinositide 3-kinases convert phosphatidylinositol 4,5- bisphosphate (PIP2) to PIP3. 

PIP3 activates phosphoinositide dependent kinase-1 (PDK1) which in turn phosphorylates 

Akt 39,40. Akt then phosphorylates tuberous sclerosis 2 (TSC2) which results in the 

inhibition of the tuberous sclerosis 1/2 (TSC1/2) complex 41. When inhibited, TSC1/2 

cannot activate Rheb GTPase activity permitting activation of mTOR. When bound to 

GTP, Rheb mediates the activation of mTOR complex 1 (mTORC1) which, in turn, 

inhibits autophagy 42. Activated mTORC1 inhibits autophagy by inhibiting the ULK1 

initiation complex. Pro-autophagy signals result in ULK1 dissociation from mTOR and 

autophagy initiation is facilitated (Figure 1.2) 43. 
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PI3P also plays an integral role in the process of autophagy by interacting with 

VPS34 44. Originally identified and studied in yeast, VPS34 is a class III 

phosphatidylinositol 3 kinase. In yeast, VPS34 forms one of two complexes. VPS34 

complex-I is composed of VPS34, VPS30/ATG6, VPS15, and ATG14 and is implicated 

in the initiation of the pre-autophagosomal structure (PAS) 45,46. In Mammals, VPS34 is 

thought to play a similar role in autophagy initiation. However, it has been difficult to 

study in mouse models since pan knockouts of VPS34 are embryonically lethal, and there 

are no inhibitors specific to VPS34 necessitating the use of low specificity inhibitors, 

such as wortmannin or 3-MA 47. Conditional knockout studies using cultured mice 

embryonic fibroblasts have shown that VPS34 is required for the formation of 

autophagosomes 48. In addition, VPS34 is involved with mTOR regulation of autophagy. 

Studies using mice embryonic fibroblasts have shown that mTORC1 must be inactivated 

for the VPS34 initiation complex to be active and that mTORC1 is able to inhibit the 

phosphatidylinositol 3-kinase activity of this complex by phosphorylating ATG14 48. 

PI3P is also a component of the autophagosome. It has been observed to be enriched in 

the concave surface of early phagophores 49. Because of this, PI3P is thought to facilitate 

the expansion and sealing of autophagosomes. 

In addition to its function in the autophagosomal membrane, PI3P is thought to 

mediate selected cargo capture via its interaction with autophagy linked FYVE protein 

(Alfy), a nuclear scaffold protein with a FYVE domain that binds PI3P 50. In the 

autophagic process, Alfy interacts with Ath5 and P62 through its WD40 domain and with 

PI3P through its FYVE domain. The high amount of PI3P in the inner membrane of 

autophagosomes is believed to act as a dock for this Alfy/Atg5/P62 complex in the 
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selective engulfment of protein aggregates that results in aggregate clearance known as 

aggrephagy 51. 

Metabolites formed from the breakdown of phospholipids are also involved in 

autophagy. Phosphatidic acid is formed by the breakdown of phosphatidylcholine into 

choline and phosphatidic acid by Phospholipase D 52. Phosphatidic acid plays a role in 

autophagy by inducing membrane curvature due to its cone shape. In addition, 

Phosphatidic acid is formed as a result of an absence of nutrients and serves as an 

inhibitor of mTORC1 thus acting as a positive regulator of autophagy 53. Phosphatidic 

acid can also be converted into diacylglycerol by the Phosphatidic Acid Phosphatases 

which has other autophagy regulating properties 54. Diacylglycerol modulates autophagy 

by activating Protein Kinase C which induces autophagy by disrupting the B-cell 

lymphoma protein 2 (Bcl-2)-Beclin-1 complex via c-Jun N terminal kinase (JNK) and 

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 54. 

Sphingolipids are a class of lipids involved in several processes ranging from 

apoptosis to cell proliferation to differentiation, inflammation and autophagy 55. In 

autophagy two sphingolipids have been found to play sizeable roles, ceramide and 

sphingosine -1-phosphate. Ceramide activates autophagy by inhibiting Akt and resulting 

in an inactivation of mTOR and an upregulation of Beclin-1 function 56.  Sphingosine-1-

phosphate is formed by the hydrolysis of ceramide into sphingosine followed by its 

phosphorylation by Sphingosine Kinases 1 and 2 57. Sphingosine Kinase 1 is activated by 

starvation signals and drives the formation of sphingosine-1-phosphate 57. In addition, 

sphingosine kinase 1 inhibits mTORC1 independently of Akt while upregulating beclin-1 

expression, ultimately promoting cell survival 57. 



12 

 

Signaling Through the PPAR Family 

PPARs are a family of nuclear receptor proteins that act as transcription factors. 

There are 3 isoforms of PPARs in mammals, PPARα, PPARδ, and PPARγ 58. All 3 

isoforms of PPARs must bind with a Retinoid Receptor X (RXR) and a lipid ligand in 

order to act as transcription factors (Figure 1.3) 59. Generally, they have been reported to 

bind to oleic acid, linoleic acids, linolenic acids, prostaglandins, eicosanoids, and 

oxidized lipids with the help of fatty acid binding proteins which bind lipophilic ligands 

in the cytoplasm and shuttle them to their target PPAR 60, 61.  PPARs bind to their ligands 

through the ligand binding domain (LBD). These domains consist of 12 α-helices 

arranged into an ‘antiparallel helix sandwich’ and a three-stranded antiparallel β-sheet. 

The ligand binding site is located in the core of the ligand binding domain that is formed 

by helices 3,5,7,11, and 12. The cavity formed by these helices is T-shaped 62. In order 

for ligands to bind to PPAR-α or PPAR-γ they must be able to form a U-shaped 

conformation, and in order to bind to PPAR-delta ligands must form an L-shaped 

conformation 63. All PPARs isoforms have been shown to modulate autophagy in the 

context of different diseases and cellular responses.   

PPARα is primarily expressed in the liver, brown adipose tissue, heart, and 

kidney. It promotes uptake and catabolism of fatty acids by helping to express fatty acid 

transport and binding genes 58 64. It has been thought to be involved in innate immune 

response during mycobacterium infection 65. In studies with tuberculosis infected bone  
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Figure 1.3 Overview of PPAR signaling and mechanism for PPARα-mediated 
autophagy activation in innate immune system. Initially, lipid molecule enters the 
cell and is quickly bound by a fatty acid binding protein. The fatty acid binding 
protein transports the lipid to a PPAR which in turn activates a corresponding 

RXR. The PPAR-RXR complex crosses into the nucleus and facilitate expression of 
required genes. In the case of tuberculosis infection, PPARα upregulates the 

expression of TFEB which, in turn, drives the expression of autophagy related 
genes, LAMP3 and RAB7 thus stimulating autophagy. 

derived macrophages, PPARα were shown to stimulate autophagy and autophagosomal 

maturation, while suppressing inflammatory responses. It was determined that following 

PPARα activation, Transcription Factor EB (TFEB) was activated and a series of 

autophagy and lysosomal genes were expressed such as LAMP3 and Rab7 65. Based on 

this work, it is thought that, in mycobacterial infections, such as tuberculosis, PPARα is 

activated and in turn activates TFEB. Together they promote the expression of 

autophagy-related genes which stimulate autophagy (Figure 1.3). 
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PPAR δ has high expression levels in the colon, small intestine, liver, heart lung 

and brain. It plays an important role in diseases such as diabetes, obesity, atherosclerosis, 

and cancer 58,64. This is especially poignant, because there are great efforts in exploiting 

autophagy as possible treatments for cancer and diabetes. Studies in mice cells have 

shown a marked decrease in autophagic markers associated with the knockout of PPAR δ 

suggesting its involvement in autophagy 66. 

 
Figure 1.4 PPARγ mediated activation of autophagy. PPARγ promotes the 
expression of PTEN. High amounts of PTEN lead to lower concentrations of 

PI(3,4,5)P3. Less PI(3,4,5)P3 inhibits the activation of PDK1 and ultimately results 
in inhibition of mTORC1 which causes an activation of autophagy. 

Finally, PPARγ is expressed in adipose tissue, the intestines and macrophages. It 

is usually involved in fatty acid storage, glucose uptake, and adipogenesis 58,64. Because 

of its role controlling the availability of nutrients, there has been interest in targeting it as 

a treatment for cancer. In Colorectal cancer, studies with Caco-2, a common colorectal 

cancer cell line, have shown that activation of autophagy occurs following treatment with 

PPARγ agonist rosiglitazone 67. In addition, inhibition of autophagy with 3-MA was 

observed to induce expression of PPARγ. PPARγ was determined to cause the induction 

of PTEN, an antagonist to PI3K which dephosphorylates and reduces the concentration of 

PIP3 67. This results in an overall inhibition of the mTOR pathway and induces 
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autophagy. In the context of breast cancer, PPARγ has also been implicated to modulate 

autophagy. Activation of PPARγ by agonist troglitazone was shown to induce autophagy 

in MDA-MB231 cells as determined by the measurement of acidic vesicular organelles 

by staining with Acridine orange 68. In addition, studies of constitutively active PPARγ 

suggest that it is sufficient for the activation of autophagy leading to the belief that 

autophagy acts to protect cancer cells (Figure 1.4) 68. 

Lipid Metabolism and Autophagy 

Autophagy is intricately related to the metabolism of lipids, namely triglycerides, 

due to the fact that it responds to the presence or absence of nutrients in the cell. 

Furthermore, it is involved with the breakdown of stored lipids in the cell. Triglycerides 

are stored in organelles known as lipid droplets. They are used to generate energy, 

building blocks for membranes, and for lipid signaling 69. Lipid droplets are broken down 

for use by the cell via lipophagy. This process is mediated by the GTPase Rab7 in 

hepatocytes and results in the release of free fatty acids under starvation conditions to be 

used as fuel in the mitochondria and undergo β-oxidation. Rab7 was shown to mediate 

the docking of autophagosome to lipid droplets facilitating their catabolism 70. In 

addition, Adipose triglyceride lipase (ATGL) is a regulator of lipophagy. When knocked 

down in hepatocytes, ATGL causes decreased lipophagy. This ATGL signaling has been 

observed to occur through sirtuin 1. Together, these two proteins drive lipophagy and 

fatty acid oxidation 71. 

Additionally, breakdown of lipid droplets by lipophagy can be regulated by 

transcription factors. TFEB mediates the activation of PPAR alpha as a response to 

nutrient deprivation in order to activate lipophagy 72 Additionally, forkhead homeobox 



16 

 

protein O1 (FOXO1) becomes upregulated in nutrient restricted conditions and increases 

lipophagy of lipid droplets. The FOXO1 mediated lipophagy activation is facilitated by 

an increased expression of lysosomal acid lipase (LIPA) resulting in a release of free fatty 

acids through adenosine monophosphate kinase (AMPK)-dependent β-oxidation in 

adipocytes in nutrient restricted conditions 73. 

Conversely autophagy is linked to the biosynthesis of new triglycerides as well. 

Not only does autophagy drive the breakdown of lipid droplets, but it is also tied to the 

metabolic balance of liver triglycerides. Diets low in protein result in a reduced 

expression of autophagy receptor SQstm1 and increases the expression of LC3-II. This 

correlates to an induction of autophagy. It is speculated that, in the case of low protein 

availability, autophagy does not catabolize lipids and instead may help triglycerides to 

accumulate in the liver 74. Additionally, Perilipin-2, a protein that associates with lipid 

droplets, has been observed to protect lipid droplets from autophagy. Perilipin-2 has been 

observed to inhibit lipogenesis and triglyceride production as well as upregulating 

autophagy when it is depleted in the cell 75. 

Free Fatty Acids and Cholesterol 

Free fatty acids have also been implicated in the autophagic pathway. Although 

they usually act as nutrients, fatty acids can induce cell death when they accumulate in 

excessive levels in non-adipose cells and tissues. This is known as lipotoxicity and has 

been observed in diseases such as obesity, diabetes, and non-alcoholic fatty liver disease 

76. As a result, levels of free fatty acids are thought to be regulated inside the cell through 

lipophagy 69. Palmitic acid (PA) and its effects on diabetes has been studied in rat 

pancreatic beta cell line INS-1 77. It was determined to trigger autophagy independently 
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of the mTOR pathway. For instance, autophagy was shown to be promoted by 

stimulating JNK which leads to phosphorylation of Bcl-2 a resulting in its dissociation 

from Beclin-1 which in turn allowed for the initiation of autophagy and autophagosome 

formation 77. In addition, protein kinase C (PKC) isoforms δ, ɑ, and Θ have also been 

implicated in PA-mediated autophagy regulation 78.  

Studies suggest that in mice embryonic fibroblasts, PA, a saturated fatty acid can 

induce autophagy 79. It was reported that palmitic acid was able to increase the amount of 

LC3, suggesting an induction of autophagy. However, there was no increase in 

phosphorylation of P70S6K or S6, two downstream proteins in the mTOR signaling 

pathway 79. This suggests that PA induces autophagy independent of mTOR. PKCɑ was 

identified and shown to be involved in the autophagy inducing process. When it was 

knocked down with siRNA, LC3 detection fell 79. Furthermore, studies show that while 

prolonged exposure to PA causes cell death, short term exposure induces autophagy, this 

suggests that autophagy is an important protective measure against lipotoxicity caused by 

PA 79. 

PA has been shown to modulate autophagy via a secondary signaling pathway. Its 

effects have been studied in the context of hepatic steatosis; a condition caused by high 

amounts of fat in the liver 80. In hepatic steatosis, high lipid levels cause lipotoxicity. 

Non-alcoholic steatohepatitis mice were fed a high fat diet. These mice were shown to 

exhibit high autophagy mediated by PA 80. In these studies, autophagy was determined to 

be regulated by the activation of mitogen activated protein kinase (MAPK), extracellular 

signal-regulated kinase (ERK), P38, JNK. Based on these studies, researchers concluded 
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that JNK-1 has a lipo-apoptotic effect while JNK-2 promotes autophagy and has a 

cytoprotective effect (Figure 1.5) 80. 

In addition to PA, myristic acid (MA) has been studied for its autophagy 

regulating effects.  Like palmitic acid, MA is a saturated fatty acid commonly used by the 

body as a nutrient. In the context of autophagy, MA has been found to promote 

overexpression of Beclin-1 gene BCN1 and increased conversion of LC3-I to LC3-II in 

mouse cardiomyocytes 81. MA is thought to work to upregulate autophagy by producing 

C14-ceramide and upregulating ceramide synthase 5 (Figure 1.5) 81.    

Omega-3 polyunsaturated acids have been known to play a role in regulating 

autophagy. The most studied of these is docosahexaenoic acid (DHA). DHA is a 

component in many of the phospholipids that make up the cell membrane in the brain, 

skin, and retinal tissue 82. It has been studied in myocardioblasts and various human 

cancer cell lines 83-85. DHA has been implicated in the p53-AMPK-mTOR signaling   
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Figure 1.5 Overview of regulation of autophagy by free fatty acids. Palmitic acid 
stimulates autophagy by activating JNK and has been shown to interact with PKC 

isoforms which have been implicated in autophagy regulation. Myristic acid has 
been shown to upregulate autophagy by producing C-14 ceramide. DHA has been 

implicated in the P53-AMPK-mTOR pathway resulting in activation of autophagy. 

pathway. It has been shown to work through AMPK to inhibit mTOR and induce 

autophagy in human cancer cells with wild type p53. 86. However, In prostate cancer cells 

with mutant p53, DHA was observed to induce autophagy through the creation of 

mitochondrial reactive oxygen species that results in the inactivation of AKT and mTOR 

also resulting in an activation of autophagy (Figure 1.5) 87.  

Finally, autophagy is related to cholesterol biosynthesis inversely through the 

mTOR signaling pathway. When cholesterol biosynthesis is inhibited, there is an 

induction of autophagy. Inhibition of cholesterol biosynthesis by statin drugs such as, 

simvastatin has been linked to autophagy activation via the inhibition of the mTOR 

signaling pathway in human blood cancer cells. It was determined that the statin drug 

caused this activation only through cholesterol depletion when the cholesterol depleting 

agent, methyl-β-cyclodextrin also produced an activation of autophagy 88. Likewise, a 

deficiency of transmembrane 7 superfamily member 2 (TM7SF2), a positive regulator of 
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cholesterol biosynthesis, results in repression of autophagy. Removal of TMS7F2 causes 

increases in the expression of fatty acid degradative enzymes, decreased lipid 

accumulation and in turn decreased autophagy in mice exposed to Lipopolysaccharide 89. 

Conclusion and Future Perspectives 

The aim of this review is to outline the current state in the field of lipid regulation 

of autophagy. To that end, this review has discussed a myriad of ways in which many 

lipids are involved in the process of autophagy and its regulation. All the lipids discussed 

along with their functions and effects on autophagy have been summarized in Table 1.1 

(Table 1.1). Autophagy represents a cellular process that has implications for several 

important areas of study. Phospholipids and their derivatives have been shown to not only 

be an important part of the regulation of autophagy through the crucial mTORC1 

signaling pathway, but also an integral part of the autophagy machinery. These lipids 

have also been shown to affect a variety of processes by acting through PPARs with 

possible implication in human disease. Finally, dietary lipids and cholesterol have been 

implicated in the regulation of autophagy both through the canonical mTOR pathway and 

alternative means.  

The role lipid molecules play in autophagy represents the potential for many new 

avenues of research. Understanding it can give us a better, more holistic idea of this 

process which is central to many cellular functions and disease states. As our 

understanding of autophagy has grown, its activators and inhibitors have begun to appear 

as a novel area of drug development. As a result, it is necessary to fill in the gaps in our 

knowledge with regards lipid signaling.  In the specific case of disease, it may be 

necessary to identify novel lipid molecules involved in autophagy. It may also be helpful 
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to determine if there is a link between the signaling pathways described or if they all act 

independently. Finally, if autophagy is to be exploited as a potential treatment for disease, 

it would be necessary to evaluate the effects these lipid molecules and signaling pathways 

have on cellular functions related to autophagy.  

Table 1.1 A Summary of Discussed Lipids Involved in Autophagy 

Table 1.1. Summary of discussed lipids involved in autophagy 
Lipid Name Function Effect on autophagy 

Phosphatidylethanolamine (PE) is conjugated to LC3 and 
incorporates into autophagosome 

required for autophagy 
progression 

posphatidylinositol-3-phosphate 
(PI3P) 

elongation of autophagosome 
memebranes/ docking molecule 

in selective cargo capture 

required for autophagy 
progression 

phosphatidylinositol-4,-5-
bisphosphate (PIP2) 

inhibits PI3K-AKT-mTOR 
signaling pathway activation of autophagy 

phosphatidylinositol-3, 4, 5-
triphosphate (PIP3) 

activates PI3K-AKT-mTOR 
signaling pathway inhibition of autophagy 

phosphatidic acid 
induces membrane curvature in 

autophagosomal vesicles/ 
inhibits mTOR 

required for autophagy 
progression/ activation 

autophagy 
diacylglycerol (DAG) activates Protein Kinase C activation of autophagy 

sphingosine-1-phosphate inhibits mTOR independently of 
AKT activation of autophagy 

ceramide inhibits AKT and, by extention, 
mTOR activation of autophagy 

triglycerides/lipid droplets 
abundance of triglycerides is 
regulated by the cell through 
autophagy of lipid droplets 

activation of autophagy/ 
inhibition of autophagy 

palmitic acid (PA) activates Protein Kinase C/ 
activates JNK activation of autophagy 

myristic acid (MA) increases the production of 
ceramide activation of autophagy 

docosahexaenoic acid (DHA 
inhibits AMPK-mTOR pathway 
through wild-type p53/ inhibits 
AKT-mTOR through mutan p53 

activation of autophagy 

cholesterol activates mTOR signaling inhibition of autophagy 
 

The technology we use to understand autophagy has increased greatly over the past years, 

and it has allowed our understanding to grow. However, there is still progress to be made 

especially with respect to the role lipids play in its regulation. For example, mass 
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spectroscopy techniques have significantly improved in recent years allowing for the high 

throughput analysis and identification of lipids present in a system. Other advances that 

would facilitate new research could include an improved way of visualizing and even 

purifying autophagosomes and lysosomes. Current methods utilize immunoprecipitation 

or density gradient fractionation, both of which are known to result in significant levels 

of impurities, to isolate these subcellular structures. In conclusion, lipids play an 

important and diverse signaling role in autophagy regulation, and it is necessary to fully 

characterize lipid signal transduction pathways to better inform autophagy-based 

therapies.   
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CHAPTER TWO: LIPIDOMIC ANALYSIS OF FABP5-BOUND AUTOPHAGY 

REGULATORS IN DIFFERENTIATED SH-SY5Y CELLS 

The motor features of Parkinson’s disease result from loss of dopaminergic 

neurons in the substantia nigra with autophagy dysfunction being closely linked to this 

disease.  While a large body of work focusing on protein effectors of autophagy has been 

reported, regulation of autophagy by lipids has garnered far less attention.  We, therefore, 

sought to identify endogenous lipid molecules that act as signaling mediators of 

autophagy.  In order to accomplish this goal, we assessed the role of fatty acid binding 

protein (FABP) family members on autophagy.  Knockdown of FABP5 resulted in 

suppression of autophagy in retinoic acid-differentiated SH-SY5Y cells suggesting an 

autophagic role for an interacting lipid.  A lipidomic screen using FABP5, that is 

expressed by dopaminergic neurons, as “bait” was devised and implemented to identify 

lipid cargo.  Our analysis has found significant hits that include 5-oxo-eicosatetraenoic 

acid (5OE) and its precursor metabolite, arachidonic acid (AA).  Long chain fatty acids 

were also found to bind FABP5 that include stearic acid (SA), hydroxystearic acid (HSA) 

and palmitic acid (PA).   Addition of 5OE, SA and HSA but not AA or PA, led to potent 

inhibition of autophagy in cultured dopaminergic cells.  Correspondingly, heightened 

mTOR signaling was also observed following 5OE, HSA and SA treatment.  To identify 

potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was 

performed which revealed both shared and divergent signaling pathways.  These findings 

suggest a role for these lipids in modulating autophagy through diverse signaling 
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pathways that may involve mTOR activity and could represent novel therapeutic targets 

for Parkinson’s disease.  

Introduction 

Autophagy and Parkinson’s Disease 

Parkinson’s disease (PD) is the second most frequent neurodegenerative disease 

that is characterized by motor system dysfunction caused by loss of dopaminergic 

neurons in the substantia nigra.  Macroautophagy (subsequently denoted as autophagy) 

plays an important role in PD as evidenced by disease-causing mutations in genes 

directly involved in this essential cellular process 90.  Autophagy is a fundamental process 

for degrading macromolecules and organelles and is also the only cellular process known 

to remove large protein aggregates 91.  Therefore, defective autophagy is associated with 

the pathophysiology of PD due to the presence of hallmark Lewy body inclusions 92.  As 

a result, autophagy has been of a keen focus for the development of PD therapy.  

Autophagy is a highly ordered catabolic process which begins by targeting 

material to be degraded through conjugation of p62 or by other mechanisms 93.  Once 

targeted, the material is engulfed by a lipid vesicle derived from the endoplasmic 

reticulum.  The lipid vesicle is created through the propagation of 

phosphotidylethanolamine-Atg8 (LC3) lipoprotein complex.  A vesicle with fully 

enveloped cargo will fuse with multivesicular bodies and then lysosomes possessing 

digestive enzymes to degrade the cargo into simple constituents that can be recycled for 

metabolic purposes.  This process occurs constitutively within cells however the rate and 

targeted cargo can be modulated by numerous signaling pathways many of which 

converge on a master regulatory complex known as TORC1 94.  
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Regulation of Autophagy by Lipids 

Advances in our understanding of autophagy have occurred largely through the 

investigation of protein effectors of this process.  However, little is known about the 

contribution of endogenous lipid compounds to autophagy regulation.  Principal 

knowledge in this field has arisen from the study of AKT pathway activation by 

phosphatidylinositol phosphorylation, largely in the context of growth factor signaling 

and oncogenesis.  Despite the reduced focus in this area, the involvement of 

phosphatidylinositol indicates that lipids are indeed critical signaling mediators for 

autophagy control.  A limited understanding of other lipid contributors is likely due to the 

inherent physical properties of these biomolecules, which include enhanced oxidation, 

degradation and insolubility, rendering them difficult to study.  Despite these limitations, 

lipid research is becoming more accessible, largely as a result of advancements in mass 

spectrometry resources (e.g., methods, databases) and the commercial availability of 

lipids.  As such, we have employed these tools to identify autophagy-relevant lipids.   

FABP5 is an Intracellular Lipid Chaperone 

There are 10 members of the FABP family (FABP1-9 and 12) present in humans.  

As a group, these members transport fatty acids and other lipophilic compounds (e.g., 

eicosanoids and retinoids) within cells 95,96.  Individually, these proteins have both 

distinct and shared cargo lipids.  The unique functionality of specific FABP members is 

also suggested by diverse tissue and developmental expression, as well as an association 

with human disease 96, 97.  Therefore, this protein family represents a strong pool of 

potential bait proteins for the identification of autophagy-regulating lipids.  A detailed 

examination of individual members has led to our specific interest in FABP5.  Ewing et 
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al., have provided evidence that FABP5 interacts with a known autophagy-regulating 

protein (ATG5) as one of 368 bait proteins in a mass spectrometry-based interactome 

screen 98.  In addition, FABP5 expression has been reported to modulate PI3K/AKT 

signaling99, which plays a central role in regulating autophagy via mTOR activity.  

Furthermore, FABP5 might have particular relevance to PD since it has been reported 

that its expression is highly enriched in nigral DA neurons 100.  As a result, we began our 

investigation into autophagy-regulating lipids by focusing on FABP5 interactors.   

Dopaminergic SH-SY5Y cells  

SH-SY5Y cells are human neuroblastoma cells derived from the SK-N-SH cell 

line101; they are a widely used cellular model for PD due to their physiologic similarity to 

dopaminergic neurons.  These cells are commonly differentiated with all trans-retinoic 

acid (RA) into a DA neuron-like postmitotic cell capable of generating action potentials 

102, 103.  Systems genomic analysis using transcriptome sequencing coupled with 

proteomic evaluation shows that SH-SY5Y cells have intact DA neuron signaling 

pathways 104.  RA-differentiated SH-SY5Y cells express mature DA neuron markers (TH, 

VMAT2, DAT, PITX3, RET, DRD2) and produce high levels of dopamine 105.  Evidence 

also indicates that these cells, like mature DA neurons, have intact DRD2 signaling 105.   

Consequently, differentiated SH-SY5Y cells are commonly used to model DA neurons 

and were chosen for this study.  

Materials And Methods 

Cell Culture 

SH-SY5Y human neuroblastoma cells, from ATCC, were cultured in T175 tissue 

culture flasks and kept at 37°C with a 5% CO2 environment. Cells were cultured in 
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DMEM/F12 50/50 mix (Corning Cellgro) with L-glutamine, 15% Fetal Bovine serum 

(Atlanta Biologicals), 1% non-essential amino acids (Corning Cellgro), 1% Penicillin-

Streptomycin solution (HycloneTM, 1000 units/mL Penicillin- 10000μg/mL 

Streptomycin) as previously described by Shipley, Mangold, & Szpara 106. Cells were 

passaged when the flasks reached ~80%-90% confluency using 0.25% Trypsin, with 

2.2mM EDTA and sodium bicarbonate (Corning). Cells at passage number 5-15 were 

used for experiments. For experiments, cells were plated on multi-well tissue culture 

plates at the necessary concentrations (e.g. 3 million cells per well on a 6-well plate). 

Before experimentation, the cells were treated with 10 µM retinoic acid for 7 days, to 

differentiate them into dopaminergic neuron-like cells. HEK 293T Human Embryonic 

Kidney cells were grown in DMEM media with 1.0 g/L glucose with L-glutamine and 

sodium pyruvate (VWR), 10% Fetal Bovine Serum (Atlanta Biologicals), and 1% 

Penicillin-Streptomycin solution (HycloneTM, 1000 units/mL Penicillin- 10000μg/mL 

Streptomycin) and passaged as described for SH-SY5Y cells. 

Lipid Treatment of Cells 

Stock solutions of 5-oxo-ETE (10mM), hydroxystearic acid (100mM), 

arachidonic acid (100mM), palmitic acid (100mM), and stearic acid (100mM) were made 

by dissolving each lipid in sterile 95% ethanol and stored at -80°C. Stock and dosage 

concentrations were determined by using similar concentrations as those used in other 

published studies within the literature 107-109. During experimentation, SH-SY5Y cells 

were treated with each relevant lipid or the vehicle control (ethanol) dissolved into a 

media solution consisting of DMEM/F12 50/50 mix (Corning Cellgro) with L-glutamine, 

15% freshly thawed Fetal Bovine serum (Atlanta Biologicals), 1% Penicillin-
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Streptomycin solution (HycloneTM, 1000 units/mL Penicillin- 10000μg/mL 

Streptomycin) for 4 hours followed by lysis.  

Detergent-free Immunoprecipitation 

FABP5-V5 tagged, overexpressing SH-SY5Y cells were plated onto a 100mm 

cell culture dish and treated with retinoic acid for 7 days. Cells were then lysed using a 

freeze-thaw lysis technique. During lysis, cells were washed twice with phosphate buffer 

and frozen at -80°C for 15 minutes in 120 µL PBS. Cells were then thawed and scraped 

into microcentrifuge tubes. Following lysis, the cells were centrifuged at 15000g for 10 

minutes at 4°C and the supernatant was collected. The supernatant was incubated with 

either V5 antibody (D3H8Q, Cell Signaling Technology, catalog no. 13202S) or IgG 

isotype control antibody (Cell Signaling Technology, catalog no. 3900) for 1 hour at 4°C 

on rotation. Following primary antibody incubation, ChIP grade protein G magnetic 

beads (Cell Signaling Technology, catalog no. 9006S) were added and the supernatant 

was rotated at 4°C. Then the magnetic bead complexes were pelleted and washed twice 

with PBS and once with ddH2O. Water was then removed, and magnetic bead pellets 

were resuspended in a 2:1 chloroform: methanol solution and sent for lipidomic analysis 

at The Emory University Lipidomics Core Facility.  

Western Blotting 

Western blots were run using the Life Technologies products. Before western 

blotting, cells were washed with PBS, lysed with RIPA lysis buffer containing a protease 

inhibitor cocktail and subsequently sonicated at 80% intensity for 7 seconds. Following 

sonication, cells were sonicated at 15000g for 10 minutes at 4°C, and the supernatant was 

then collected. Polyacrylamide Gel Electrophoresis was then performed on the protein 
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extracts on either a 4-12% or 16% pre-cast gel, depending on the size of the protein 

assayed and the band separation required for proper analysis. Electrophoresed proteins 

were transferred onto a PVDF membrane using the iBlot2 Dry transfer device and 

transfer materials. The transfer was performed according to the manufacturer’s 

instructions with the iBlot2 device.  

Primary antibodies were used to detect LC3 (Novus Biologicals, catalog no. 

NB100-2220), FABP5 (Cell Signaling Technology, catalog no. 39926S), Phospho- S6 

Ribosomal protein (Ser 235/236) (Cell Signaling Technology, catalog no.4858S), and β-

actin (Thermo Fisher, catalog no. MA1-91399). Anti-rabbit (Cell Signaling Technology, 

catalog no. 7074) and anti-mouse (Cell Signaling Technology, catalog no. 7076) HRP 

secondary antibodies were used to probe western blot PVDF membranes after primary 

antibody incubation. Pierce ECL Western Blotting substrate (Thermo Scientific) was then 

used to develop membranes. Membranes were imaged on a Bio-Rad blot imager. Protein 

expression was analyzed by taking densitometry measurements on the images obtained, 

using ImageJ and Microsoft Excel. 

Lentiviral Production and Transduction 

A Thermo Fisher Virapower kit was used to produce lentivirus. HEK 293T 

Human embryonic Kidney cells (ATCC) were transfected with the transgene-carrying 

plasmids, together with plasmids containing lentiviral packaging components, using 

lipofectamine 2000 (Life Technologies). Lentiviral packaging plasmids LP1 and LP2 as 

well as coat protein plasmid VSV and the desired transgene plasmid vector (7.2 µg of 

each) were incubated with Lipofectamine 2000 in Opti-MEM media (Gibco) for 20 
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minutes at room temperature. The mixture was then added dropwise to flasks containing 

293T cells in fresh media. The next day, media was replaced with fresh media. The 

following day, the supernatant containing full assembled, active lentivirus was collected 

and filtered through 400nm pore filters. Filtered supernatant media was aliquoted as 

needed and stored at -80°C until ready for use. For transduction into target cells, 

aliquoted virus-containing media was added directly to the media bathing the target cells 

in their flasks. The following day, media was replaced with fresh media. Puromycin-

based selection for shRNA constructs was initiated three days after viral addition and 

maintained for the duration of the experiment.  

LC3B-GFP-Mcherry Puncta Assessment 

SH-SY5Y cells were plated into 24-well plates containing poly D-lysine coated 

coverslips. Cells were transduced with lentiviral stocks containing the FUW Mcherry-

GFP-LC3 plasmid obtained as a gift from Anne Brunet (Addgene, plasmid # 110060) 110. 

The following day virus-containing media was replaced with fresh media. 48 hours after 

initial transduction cells were differentiated into neurons with 10 µM RA for 7 days. 

Following the differentiation period, cells were treated with relevant lipids for 4 hours. 

Treated cells were then fixed with 4% paraformaldehyde (in PBS) for 23 minutes on ice. 

The glass coverslips with attached cells were then washed with PBS and incubated in 

1:10000 Hoechst dye in PBS for 5 minutes on ice and in the dark and washed again. 

Finally, the coverslips were mounted on glass slides for fluorescent imaging using 

Fluoromount G. Glass slides were imaged on the EVOS M5000 imaging system (Thermo 

Fisher Scientific) at 60x objective magnification with the automated z-stack function. 

Red only puncta and green only puncta were counted with ImageJ on each image 
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produced and a value for flux was determined as the ratio of red only puncta to total 

puncta for each image. This processing was automated via macro to create objective 

quantification of puncta.  

RNA Extraction 

SH-SY5Y cells were plated onto 6-well plates and treated with either vehicle 

control (ethanol), 5OE (40 µM), SA (400 µM) or HSA (400 µM) for 6 hours. Following 

treatment, cells were lysed using the materials included in the Qiagen RNeasy RNA 

extraction Minikit (catalog no, 74104). Total RNA was extracted with included materials 

according to the manufacturer’s protocol. RNA concentrations and purity were measured 

using a spectrophotometer (Implen Pearl nanophotometer).  

RNA Seq 

Extracted RNA was sequenced and analyzed by Novogene. Briefly, RNA was 

poly-A captured (rRNA depleted), RNA fragmented and cDNA synthesized. Sequencing 

was performed using an Illumina NovaSeq 6000 system. Analysis was performed for 

paired-end 150 bp reads with ≥ 20 million reads per sample. A differential gene 

expression analysis was performed and KEGG and Reactome annotated pathways 

enrichment determined.   

Results 

FABP5 is Expressed by Dopaminergic Neurons in the Substantia Nigra 

In situ hybridization data, provided by the Allen Brain Institute, transcriptomics 

previously reported100 and our immunohistochemical analysis (Figure 2.1) indicates that 

FABP5 mRNA and protein expression is enriched in dopaminergic neurons within the 

substantial nigra of mouse brain, a region that possesses dopaminergic neurons whose 
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loss results in the hallmark motor features of PD.  As a result, we chose to utilize a human 

neuroblatoma cell line (SH-SY5Y) for this investigation that can be differentiated into 

post-mitotic dopaminergic neuron-like cells.  These cells are widely employed by PD 

researchers and, due to their ready production of post-mitotic neuron-like cells, they are 

also used broadly across neuroscience disciplines including AD, ALS and HD research 

111. 

 
Figure 2.1.  FABP5 is expressed by nigral dopaminergic neurons.  In situ 

hybridization for Tyrosine hydroxylase (A) and Fabp5 (B) mRNA expression [Mouse 
Brain Atlas, Allen Brain Institute]. Immunohistochemistry was performed for 

FABP5 (C) and Tyrosine Hydroxylase (D) in adult mouse brain substantia nigra 
with nuclei labeled using DAPI and merged image shown (E). Scale bar = 400 µm. 

FABP5 Regulates Autophagy 

To address whether FABP5 affects autophagy, we engineered SH-SY5Y cells to 

stably express scrambled or FABP5 shRNA.  A pure population of transgenic cells was 

then obtained by selection with puromycin.  SH-SY5Y cells were then differentiated into 

post-mitotic dopaminergic neuron-like cells with 7 days of 10 µM of all-trans retinoic 

acid (RA) supplemented to growth media as previously described 111, 112.  Autophagic flux 
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was determined by comparing the autophagosome marker LC3B-II in untreated versus 

bafilomycin A1 treated cultures (Figure 2.2A, B) 113.  We also monitored autophagic flux 

by quantifying autophagosome/lysosome ratios observed in mCherry-GFP-LC3B 

transgene-expressing cells (Figure 2.2C, D) as previously described 113, 114.  Our data 

indicates that FABP5 knockdown results in impaired autophagy.  In addition, we found 

that neither FABP5 knockdown nor overexpression affected SH-SY5Y differentiation 

(Figure 2.3), indicating that differences in these cells were not due to altered RA 

signaling or differentiation status.   

 
Figure 2.2.  FABP5 regulates autophagy. (A) Undifferentiated or RA-

differentiated SH-SY5Y cells were transduced with lentivirus containing scrambled 
(Cntrl) or FABP5 shRNA constructs and LC3B-IIexpression evaluated by western 
blot and (B) autophagic flux determined. (C) Representative images for mCherry-

gfp-LC3B that was transduced by lentivirus into RA-differentiated control or 
FABP5 knockdown as described in A. and then autophagosome (yellow) and 

lysosomes (red) quantified (D). *p<0.05, error bars = SEM. 
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Figure 2.3.  FABP5 does not affect SH-SY5Y differentiation by RA. SH-SY5Y 
cells were transduced with lentivirus containing a scrambled (control) shRNA, 

FABP5 shRNA or an FABP5 overexpression (OVER) construct. Cells were selected 
for transgene expression using puromycin and treated with all-trans RA (10 µM) for 

the indicated times and Tyrosine Hydroxylase (TH) and Dopamine receptor D2 
(DRD2) protein levels were assessed by western blot. 3 biological replicates are 

shown. 

5OE, AA, HSA, SA and PA Interact with FABP5 

Having established an autophagy regulating function for FABP5, we next employed 

FABP5 as a bait protein to identify lipid interactors.  We created an SH-SY5Y cell line 

using a lentivirus that stably expressed FABP5 with a V5 epitope tag.  A detergent-free 

immunoprecipitation protocol was developed to co-purify FABP5 and associated lipids 

(Figure 2.4A).  Cells were RA-differentiated for 7 days and then treated with media 

containing fresh FBS for 1 hour.  FABP5-lipid complexes were then purified and sent to 

the Emory University lipidomics core for analysis.  Six lipids (one unidentifiable by mass) 

were found to exhibit FABP5 binding (Figure 2.4B).  Arachidonic acid (AA) was identified 

in this group and is well-studied as a precursor for a diverse set of metabolites, including 

5-Oxo-eicosatetraenoic acid (5OE), another FABP5 interactor found in this analysis.  Long 
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chain fatty acids were also identified that include hydroxystearic acid (HSA), stearic acid 

(SA) and palmitic acid (PA).   

 
Figure 2.4. FABP5 lipidomic interactome.(A) FABP5 was successfully 

immunoprecipitated (IP) with a detergent-free method using lysate obtained from 
RA-differentiated SH-SY5Y cells that stably express a recombinant FABP5-V5. 
Immunoprecipitations (V5 epitope tag-specific or antibody isotype control) were 

performed for 1 hr or overnight (O/N) and western blotting done using an FABP5 
antibody. (B) Samples obtained by 1 hr FABP5-V5 IP (V5) or control antibody IP 

(Control) from 3 independent biological replicates were processed for lipid 
extraction and analyzed by QTRAP 5500 mass spectrometer via Exion LC AC 

autosampler. Six lipids were identified to have significant interaction with FABP5.   

Autophagy Inhibition by 5OE, HSA and SA but not AA or PA 

We next examined whether each of these five candidates affected autophagy in 

differentiated SH-SY5Y cells.  We found that 5OE, HSA and SA, but not AA or PA, 

exhibited potent dose-dependent anti-autophagic activity at concentrations reported in 

human serum115–117 as well as in other systems (Figures 2.5, 2.6) 118–120.  Interestingly, AA 

shows an altered lysosome/autophagosome ratio following quantification of mCherry-

GFP-LC3B puncta (Figure 2.6) indicative of autophagy inhibition.  However, an 

examination of LC3-II levels following bafilomycin treatment (Figure 2.5C., D) has  
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Figure 2.5. Effect of candidate lipids on LC3B-II autophagic flux. (A,C,E,G,I) 
Increasing amounts of lipid or vehicle (ethanol) were added to RA-differentiated 
SH-SY5Y cells for 4h in the presence or absence of bafilomycin A1 (Baf A1) and 

western blotting performed and autophagic flux was determined (B,D,F,H,J) from 3 
biological replicates. *p< 0.05, error bars = SEM. 
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revealed no effect on autophagic flux.  We observed that at 4 hours of treatment large 

numbers of cells were detached in the two higher doses of AA, suggesting toxicity.  This 

was confirmed at 24 hours of treatment (data not shown).  Given many shared mechanisms 

between autophagy and apoptosis, these results suggest AA induces death rather than 

autophagy 121.     

 
Figure 2.6. Effect of candidate lipids on LC3B puncta autophagic flux. Lentivirus 
was used to transduce RA-differentiated SH-SY5Y cells with mCherry-gfp-LC3B. 

Seven days later, cells were treated with ethanol (vehicle) or lipid at the highest two 
does for 4h. Representative images (A) are shown for the highest lipid dose and 

autophagosomes (yellow) and lysosomes (red) were then quantified (B). *p < 0.05, 
error bars = SEM. 

Treatment with 5OE, HSA or SA Enhances mTORC1 Pathway Signaling 

The mammalian target of rapamycin complex 1 (mTORC1) complex is a master 

regulator of autophagy via integration of numerous and diverse signaling pathways 122.  

To further validate autophagic flux data for 5OE, HSA and SA, we assessed their 

activation of mTORC1.  We tested whether candidate lipids could regulate mTORC1 

activation by treating differentiated SH-SY5Y cells with autophagy inhibiting doses of 

5OE, HSA or SA and measured the activation of a canonical mTORC1 substrate, S6, by 
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western blot (Figure 2.7).  An increase in the phosphorylation of S6 at mTORC1-

associated residues (S240/S244) was observed following 5OE and HSA at 15 min (Figure 

2.7C) and SA at 1 hr (Figure 2.7D) compared to vehicle.  Activation of S6 was largely 

unchanged at 1h and 2h post-treatment with the exception of SA.  No effect was observed 

by PA treatment.  It should be noted that lipids were gently but thoroughly mixed with 

fresh media containing 15% FBS by tube inversion and added to cells at time zero.  FBS 

possesses lipid carrier proteins (e.g., albumin) to facilitate proper shuttling of lipids to 

cultured cells in a physiological manner.  Also note, that the initial robust increase in pS6 

(at 30 min) in vehicle-treated cells is likely due to enhanced mTOR signaling resulting 

from this addition of fresh FBS-containing media.  However, 5OE, HSA and SA alter this 

dynamic.  This data supports an autophagy-inhibiting role for 5OE, HSA and SA and 

suggests that this could involve an mTORC1-mediated mechanism.    
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Figure 2.7. mTOR pathway activation by 5OE, HSA, SA, and PA. SH-SY5Y cells 
were differentiated with RA and then subjected to ethanol (vehicle), 5OE, HSA, SA 
or PA for the indicated concentrations and times in freshly prepared culture media. 

Western blotting (A, B) was then performed for pS6 (Ser240/244) following 
treatment at the indicated times. Densitometry was assessed for pS6/B-Actin for 

each condition and time point normalized to vehicle for each time point (C, D). *p < 
0.05, error bars = SEM versus vehicle group at each time point. 

5OE, HSA and SA Do Not Induce Cell Death 

Autophagic mechanisms can share features with apoptosis 123.  Therefore, we 

examined whether the lipids, 5OE, HSA or SA, which exhibited an autophagy-regulating 

profile in both autophagic flux assay (Figures 2.5 and 2.6) induced death in differentiated 

SH-SY5Y cells.  These lipids did not exhibit toxicity after 24 hours of treatment (Figure 

2.8) indicating that apoptosis is not confounding autophagic flux data.  Interestingly, 

despite structural similarity, AA showed robust toxicity at 100uM and 400uM doses (data 

not shown) suggesting divergent effects with 5OE. 
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Figure 2.8.  5OE, HSA, SA and PA do not induce cell death. RA-differentiated 

SH-SY5Y cells were treated with ethanol (vehicle), 5OE, HSA, SA or PA as shown 
in normal growth media. After 24h, cell death was measured by (A, C) LDH 

released into the culture media as well as y the (B, D) resazurin assay. *p < 0.05, 
error bars = SEM.  

Transcriptomic Alteration of the PPAR Pathway by HSA 

We next sought to gain insight into the molecular mechanism of action for 

autophagy-inhibiting lipid candidates.  RNA Seq (random primed with 44M-60M 

reads/sample) was performed on RA-differentiated SH-SY5Y cells treated with vehicle 

(ethanol) or lipid (5OE: 4 µM, HSA: 400 µM, SA: 400 µM) for 6 hours.  Unbiased 

analysis for transcript enrichment for KEGG and Reactome annotated pathways was 

performed (Figure 2.9).  Large numbers of differential transcripts for both HSA and SA-

treated cells were identified (Figure 2.9H, I).  However, only a very modest number of 

differential transcripts in the 5OE group was found (Figure 2.9G) which reduces the 
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pathway associations as evidenced by only one significant hit (amyotrophic lateral 

sclerosis).  For this reason, we also listed the top associated pathways that were not 

significant.  Interestingly, the mTOR signaling pathway was such a hit.  Both HSA and 

SA exhibited associations with cell cycle regulation, fatty acid metabolism and 

peroxisome proliferator-activated receptor (PPARA) signaling.     
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Figure 2.9.  RNA Seq analysis of lipid treatment.KEGG annotated pathways for 

RA-differentiated SH-SY5Y cells treated with (A) 4 µM 5OE, (C) 400 µM HSA and 
(E) 400 µM SA for 6h. (B, D, F) Reactome pathways are also shown for each 

treatment. *significance versus vehicle treatment group; 3 biological replicates. 
Volcano plots for (G) 4 µM 5OE, (F) 400 µM HSA and (G) 400 µM SA are shown 

(red dots = up regulated genes, green dots = down regulated genes).   
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Discussion 

Despite intense efforts to harness autophagy for therapeutic benefit, very few 

clinical applications have been realized 124.  Consequently, the strong association between 

autophagic dysfunction and neurodegenerative diseases like PD has spurred investigation 

into more diverse targets for autophagy regulation.  This rationale prompted us to devise 

a lipidomic screen for identification of autophagy-controlling lipids.  Our study has 

identified three lipids, 5OE, HSA and SA, with potent anti-autophagic activity when 

applied to cultured dopaminergic cells at physiological concentrations found in human 

serum.   In addition, this work has uncovered FABP5 as a regulator of autophagy, likely 

through the activity of lipid cargo.   

5OE and AA are both well-established signaling lipids that were significant hits in 

our FABP5 interactome screen.  AA also serves as the precursor for a diverse set of 

bioactive lipid signaling molecules making it of great interest in human physiology and 

disease 125.  Nevertheless, since we do not observe a direct effect on autophagy in our 

system, we did not explore AA biology further.  We do note, however, that AA is an 

interactor of FABP5 and a precursor for 5OE, which provides additional evidence for a 

physiological FABP5-5OE interaction.  5OE can be produced and released locally or as a 

precursor metabolite (5-HETE) released and metabolized by the target cell into 5OE (via 

transcellular biosynthesis) 126.  5OE has been well-studied for its role as an inflammatory 

cytokine that can affect a wide range of leukocytes 127.  However, 5OE is reported to 

exhibit the greatest potency on eosinophils as both a chemotactic agent and a stimulant, 

suggesting an anti-parasitic or allergic response role 127,128.  Interestingly, previous work 

has uncovered another allergy response pathway expressed by dopaminergic neurons that 
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sensitizes these cells to death 129.  This raises the question of whether dopaminergic 

neurons are susceptible to cell stress induced by allergic response signaling.  A possible 

explanation for heightened expression of FABP5 in dopaminergic neurons of the 

substantia nigra (Figure 2.1) is to sequester 5OE due to enhanced sensitivity toward this 

mode of allergic response signaling.   

Our data supports a direct role for 5OE upon dopaminergic neurons, which is 

consistent with reports of other proinflammatory cytokines (e.g., IL-6, TNF-alpha) 130.  

While there are reports of an oxoeicosanoid receptor 1 (OXER1)131 that can interact with 

5OE as well as other eicosanoids, leukotrienes and 5OE metabolites132, it is likely not 

responsible for autophagy inhibition by 5OE that we observe. This is because OXER1 is 

a plasma membrane-bound G-protein-coupled receptor, while our isolated FABP5-5OE 

complexes reside within the cytoplasm (mild, detergent-free immunoprecipitation).  We 

have also observed that FABP5 suppression by shRNA inhibits autophagy, indicating a 

cytoplasmic role for 5OE.     

HSA and SA are long-chain fatty acids with an 18-carbon backbone that were also 

identified by our FABP5 lipidomic interactome screen.  SA is a lipid commonly found at 

high levels in a large number of food products, including grains, milk, meat, and dairy.  

Thus, all individuals have some exposure to this compound.  There are no reports of 

direct toxicity from SA.  However, mounting evidence implicates this dietary lipid as a 

potential regulator of cell cycle and tumorigenesis, albeit with conflicting reports 108, 133.  

Metabolic derangement has also been noted in cells and rodents following SA exposure 

134.  Further study of SA is likely warranted given the ubiquitous presence of this lipid in 

food products and the newly found association with autophagy inhibition reported here. 
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The addition of a single hydroxyl group to SA at the 12th carbon results in the 

creation of HSA.  While HSA is not a natural food compound, it is found in considerable 

amounts in a large number of consumer products and can be produced by microbiota 

from oleic acid and could provide a natural source of unknown dosage in animals 135.  

The synthetic addition of the hydroxyl group to SA provides favorable handling 

characteristics (waxiness), leading to the wide adoption of HSA in cosmetic products 

(e.g., shampoo, underarm deodorants, lipsticks and more).  Similar to SA, the study of 

HSA has suggested its potential involvement in regulating tumorigenesis 136, 137.  In line 

with this observation, we found a strong association with cell cycle alteration and 

oncogenic pathways in our RNA Seq analysis of HSA-treated cells (Figure 2.9).  

Interestingly, both SA and HSA exhibited strong associations with PPAR signaling 

pathways for KEGG and Reactome annotated pathways in our analysis.  PPAR alpha and 

delta are known to propagate lipid signaling through FABP5 interaction 138, 139 suggesting 

that this is a pathway of interest for further study of autophagy inhibition.    

In summary, we report that FABP5 regulates autophagy in dopaminergic cells.  

Our subsequent lipidomic interactome screen identified five FABP5 interactors.  Of these 

interactors, 5OE, HSA and SA were confirmed to inhibit autophagy in dopaminergic 

neurons.  RNA Seq analysis for 5OE yielded few clues to mechanism of action due to 

low differential transcript expression versus control.  Conversely, transcriptomic 

assessment for both HSA and SA indicates a strong association with altered PPAR 

signaling which provides an intriguing target for further investigation into HSA/SA-

FABP5-mediated autophagy inhibition.  Overall, these results indicate that identification 
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of lipids that modulate autophagy could be a fruitful avenue for developing novel 

therapeutics.  
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Abstract 

Understanding the contribution of endothelial cells to the progenitor pools of adult 

tissues has the potential to inform therapies for human disease. To address whether 

endothelial cells transdifferentiate into non-vascular cell types, we performed cell lineage 

tracing analysis using transgenic mice engineered to express a fluorescent marker 

following activation by tamoxifen in vascular endothelial cadherin promoter-expressing 

cells (VEcad-CreERT2; B6 Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze). Activation of target-cell 

labeling following 1.5 months of ad libitum feeding with tamoxifen-laden chow in 4–5 

month-old mice resulted in the tracing of central nervous system and peripheral cells that 

include: cerebellar granule neurons, ependymal cells, skeletal myocytes, pancreatic beta 

cells, pancreatic acinar cells, tubular cells in the renal cortex, duodenal crypt cells, ileal 

crypt cells, and hair follicle stem cells. As Nestin expression has been reported in a subset 

of endothelial cells, Nes-CreERT2 mice were also utilized in these conditions. The tracing 

of cells in adult Nes-CreERT2 mice revealed the labeling of canonical progeny cell types 

such as hippocampal and olfactory granule neurons as well as ependymal cells. 

Interestingly, Nestin tracing also labeled skeletal myocytes, ileal crypt cells, and sparsely 

marked cerebellar granule neurons. Our findings provide support for endothelial cells as 
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active contributors to adult tissue progenitor pools. This information could be of particular 

significance for the intravenous delivery of therapeutics to downstream endothelial-

derived cellular targets. The animal experiments were approved by the Boise State 

University Institute Animal Care and Use Committee (approval No. 006-AC15-018) on 

October 31, 2018. 

Introduction 

Identifying cell populations in adult mammals that undergo regeneration and 

determining the source of progenitors can inform therapeutic strategies for a wide range of 

human diseases. For such strategies to succeed, consideration must be given to the 

contributions of non-canonical mechanisms for tissue regeneration. Supporting this notion is 

accumulating evidence indicating the existence of naturally occurring transdifferentiation 

mechanisms for adult cell replenishment (Michalopoulos et al., 2005; Tang et al., 2012; 

Tarlow et al., 2014; Merrell and Stanger, 2016). Endothelial cells are key players in human 

disease (Donato et al., 2015) while also representing an understudied potential pool of adult 

progenitor cells. These cells are particularly promising candidates due to the possibility of 

using intravenous genetic manipulation to target difficult to reach cell populations, such as 

those of the central nervous system, in conjunction with vectors currently employed in 

clinical trials (e.g., adeno-associated virus). Endothelial transdifferentiation would also offer 

an explanation for reported extravascular effects following intravenous delivery of viral 

vectors in humans and laboratory model systems. The proximity to all tissue types and a 

well-described association with adult progenitor cells (e.g., the perivascular stem cell niche) 

(Oh and Nör, 2015; Tamplin et al., 2015) provide additional rationale for further examination 

of endothelial cells in this context. 
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A growing body of evidence supports adult endothelial cell plasticity. For example, 

primary mouse neural progenitor cells have been observed to spontaneously differentiate into 

endothelial cells in culture (Wurmser et al., 2004). In addition, there is evidence that 

populations of adult neuronal progenitor cells migrate from the meninges, a region 

possessing a high concentration of endothelial cells (Bifari et al., 2017). Another area of 

attracting increased interest is the study of the endothelial-mesenchymal transition, which is a 

natural transdifferentiation phenomenon undertaken by endothelial cells and is an element of 

normal cardiac development (Bernanke and Markwald, 1982; Mjaatvedt et al., 1987; 

Eisenberg and Markwald, 1995; Camenisch et al., 2002; de Lange et al., 2004) that may also 

underlie several forms of vascular disease (Chen et al., 2015; Moonen et al., 2015; Li et al., 

2018). Lastly, there is evidence that in adult rodents, specialized endothelial cells can de-

differentiate to become smooth muscle cells and chondrogenic cells following vascular injury 

(Tang et al., 2012). These multipotent endothelial cells have been reported to readily 

differentiate into diverse cell types, including neurons in vitro (Tang et al., 2012). Taken 

together, these findings blur the line between endothelial cells and other cell types, 

suggesting that endothelial cells could be attractive targets for cell lineage tracing analysis in 

an adult mammalian system. 

The development of innovative cell lineage tracing approaches has accelerated 

research efforts in the field of regenerative medicine. Traditional cell lineage tracing 

methods that rely upon the labeling of replicated DNA (e.g., BrdU, [3H]-thymidine) 

would be expected to underreport transdifferentiation events due to the absence of cell 

division in this process. To address the limitations of traditional approaches, cell lineage 

tracing strategies that utilize a permanent fluorescent reporter activated by temporally-
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controlled genetic alteration have become prevalent (Kretzschmar and Watt, 2012). 

Therefore, to carry out a comprehensive cell lineage tracing study of endothelial 

transdifferentiation, we employed such a strategy that utilized an adult transgenic mouse 

model for specific temporal labeling of endothelial cells. Mice were sacrificed at varied 

intervals following the labeling period and 23 tissue types were assessed for the presence 

(or absence) of a fluorescent marker to identify cellular progeny. 

Materials and Methods 

Animals 

All mouse procedures and husbandry were approved by the Boise State University 

Institute Animal Care and Use Committee (approval No. 006-AC15-018) on October 31, 

2018. Mice were maintained in the Boise State University rodent vivarium at 25°C with 12-

hour light/dark cycles and provided food ad libitum. VEcad-CreERT2 transgenic mice were 

kindly gifted by University of California, Los Angeles, USA (Monvoisin et al., 2006). Nes-

CreERT2 transgenic mice (stock# 016261) (Battiste et al., 2007) and B6 Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze reporter mice (stock# 007909) (Madisen et al., 2010) were 

purchased from Jackson laboratory (Bar Harbor, ME, USA). Cell lineage tracing experiments 

were initiated by replacing standard rodent pellets with chow containing 400 mg tamoxifen 

citrate/kg chow (Cat# TD.130860; Envigo, Huntingdon, Cambridgeshire, UK) as described 

previously (Albright et al., 2016; Rahman et al., 2017). After 1.5 months of tamoxifen 

treatment, the chow was replaced with standard rodent pellets. Both female and male 4–5-

month-old mice were used in this study and no sex-linked variation in lineage tracing was 

observed. Genotyping for transgenic mouse lines was performed as described previously 
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(Monvoisin et al., 2006; Battiste et al., 2007; Madisen et al., 2010). At least two mice per 

cohort were examined for reporter expression. 

Tissue Preparation and Cryosectioning 

Study mice were anesthetized with isoflurane followed by transcardial perfusion with 

heparin (20 U/mL) in neutral phosphate buffer (PB) and then 4% paraformaldehyde (PFA) in 

PB. Tissue was harvested and placed in ice-cold 4%PFA/PB and stored for 24 hours at 4°C. 

Samples were then transferred to a 30% sucrose/PB solution for storage at 4°C for 72 hours. 

Tissue was then dried and frozen rapidly in optimal cutting temperature (OCT) media on a 

block of dry ice. Samples were then wrapped in aluminum foil, placed in freezer bags and 

stored at –80°C until sectioning. Tissues were equilibrated to –20°C and then sectioned using 

a cryostat (model CM1950; Leica, Buffalo Grove, IL, USA) at a thickness of 15 µm directly 

onto Superfrost Plus Gold microscope slides (Thermo Fisher, Waltham, MA, USA). Slides 

were dried in a dark drawer overnight. The next day, slides were processed for labeling or 

placed in a slide holder, sealed, and stored at –80°C. 

Hoechst Dye Labeling 

Slides were removed from –80°C storage and allowed to equilibrate to room 

temperature in a dark drawer. Slides were then washed with PB and labeled with a 1:20,000 

dilution of Hoechst 33342 dye (Cat# H3570; Thermo Fisher) for 10 minutes at room 

temperature. One PB wash was performed and sections were then allowed to dry in a dark 

drawer for 30 minutes. Coverslips were then mounted using Everbrite mounting media (Cat# 

23003; Biotium, Fremont, CA, USA). Slides were allowed to dry in a dark drawer for 24 

hours and then stored in a slide box at 4°C until viewed. 
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Immunohistochemistry 

Section-containing slides were removed from –80°C storage and dried for 1 hour in 

the dark at room temperature. Antigen retrieval was performed as previously described 

(Hussaini et al., 2013). Slides were washed with PB and then placed in a container with 

citrate solution (Cat# 14746S; Cell Signaling, Danvers, MA, USA) diluted in dH2O that was 

preheated in a microwave (5 minutes at high power). The solution with slides was then 

heated in a microwave for an additional 7 minutes at high power. The heated container was 

then covered and placed in an ice bath for 1 hour. Slides were then washed three times with a 

Tris solution (50 mM Tris HCl, 150 mM NaCl, 0.05% Triton X100-not pH adjusted). A pH-

adjusted Tris solution was used (TBST: 50 mM Tris HCl, 150 mM NaCl, 0.05% Triton 

X100- pH 7.2) as a final wash. The slides were then dried for 30 minutes and primary 

antibodies were then diluted in TBST supplemented with donkey serum to 4%. The primary 

antibodies used in this study are as follows: anti-mCherry (Cat# MBS448092; 1:100; 

Mybiosource, San Diego, CA, USA), anti-NeuN (Cat# 24307S; 1:100; Cell Signaling), anti-

insulin (Cat# 3014S; 1:800; Cell Signaling), anti-glucagon (Cat# sc-514592, 1:100; Santa 

Cruz Biotechnology, Dallas, TX, USA), and anti-K15 (Cat# sc-47697; 1:100; Santa Cruz 

Biotechnology). Antibody solutions were incubated in a humidifying slide chamber at room 

temperature overnight. The next day, slides were washed with TBST and incubated with the 

appropriate secondary antibodies diluted in TBST with donkey serum to 4% for 2 hours at 

room temperature. The secondary antibodies used in this study are as follows: donkey anti-

goat Alexa 594 (Cat# A32758; 1:500; Thermo Fisher), donkey anti-mouse Alexa 488 (Cat# 

A-21202; 1:500; Thermo Fisher) and donkey anti-rabbit Alexa 488 (Cat# A-21206; 1:500; 

Thermo Fisher). Slides were washed with TBST and then incubated with a 1:20,000 dilution 
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of Hoechst 33342 dye (Cat# H3570; Thermo Fisher) at room temperature for 10 minutes. A 

final wash in PB was performed and slides were then dried for 1h in a dark drawer. Once dry, 

the slides were mounted with coverslips using Everbrite mounting media (Cat# 23003; 

Biotium). The coverslips were allowed to dry for 24 hours in a dark drawer before imaging 

or storage at 4°C. 

Imaging and assessment of tissue sections 

Conventional fluorescence microscopy images were obtained using an EVOS 

M7000 Imaging System (Thermo Fisher). Hoechst images were viewed using a DAPI 

filter cube and tdTomato was assessed using an RFP filter cube in the EVOS system. 

Semi-quantitative assessment of tdTomato+ve cells was performed by comparing three or 

more comparable levels of a tissue section obtained from at least two mice per cohort. 

Cells were counted at 100× fields and a relative number of “+” signs assigned. When 

comparing across different cohorts within a tissue group, the number of + signs correlate 

to relative increases or decreases in tdTomato +ve cell number. As such, this method is 

not stereological but provides a strong correlation with the relative abundance of cells 

expressing tdTomato. Confocal microscopy images were acquired using the following 

systems: Zeiss Laser Scanning Confocal Microscope Meta 510 system (Zeiss, White 

Plains, NY, USA), Zeiss 880 Airy Scan system and an Olympus FV3000 Laser Scanning 

Confocal Microscope system (Olympus, Center Valley, PA, USA). A supplemental image 

database containing representative conventional fluorescence microscopy images (EVOS 

M7000 system) from all examined tissues can be found at the Open Science Framework 

(https://osf.io/x9yu8).  

https://osf.io/x9yu8
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Results 

VE-cadherin cell lineage tracing labels a diversity of cell types in adult mice 

Endothelial cell labeling was performed using a double transgenic mouse system that 

allows for VE-cadherin promoter-specific expression of a CRE-recombinase (VEcad-

CreERT2) (Monvoisin et al., 2006), kindly provided by Dr. Iruela‐Arispe (UCLA)) that is 

activated at designated times by the addition of tamoxifen (TAM) to rodent chow (Figure 

A1). Following activation by TAM, CreERT2 excises a loxP-flanked DNA cassette 

containing a stop codon within a transgenic CAG-promoter-driven tdTomato reporter 

(Gt(ROSA)26Sortm9(CAG-tdTomato)Hze) (Madisen et al., 2010), resulting in permanent 

and constitutive expression of tdTomato. VE-cadherin-directed CreERT2 expression was 

selected due to the high degree of endothelial cell specificity reported in adult mice (Heimark 

et al., 1990; Monvoisin et al., 2006). We also observed prototypical endothelial cell tracing in 

these mice (Additional Figure 1). For this study, we sought to extend the labeling period to 

1.5 months to enhance the tagging of transient endothelial cell populations not covered by 

previous studies (Figure A1B). In addition, we lengthened the post-labeling phase (1.5, 3, 

and 6 months) for increased capture of slow transdifferentiation events. A summary of the 

results for the examined cell types and tissues is found in (Table A1). In addition, a 

repository of images containing transgenic mouse lines, tissues, and experimental time points 

has been provided in Additional file 1. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl1.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl2.pdf
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Figure A1 Transgenic mouse cell lineage tracing strategy. (A). Adult mice (4–5 

months of age) possessing a transgenic cassette containing either vascular endothelial 
cadherin (VEcad)- or Nestin-promoter-driven.CreERT2 recombinase are fed tamoxifen 
(TAM) citrate-laden chow to acti- vate loxP site-directed excision of a second transgene 

(Ai9 line) possessing a translation stop codon sequence. Removal of this stop codon 
results in CAG promoter-driven reporter expression of tdTomato. Note that post-TAM 
tdTomato expression is solely controlled by the CAG promoter and Gt(RO- SA)26Sor 
chromosomal locus (tdTomato reporter locus). (B) Permanent activation of tdTomato 

expression in VEcad or Nestin-expressing cells was achieved by feeding adult mice 
tamoxifen for 1.5 months. Mice were sacri- ficed at the indicated times, fixed and 

histological assessment was performed. 
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Table A1 Cell lineage tracing results for vascular endothelial cadherin and Nestin 
Cell types were scored semi-quantitatively for the relative abundance of tdTomato positive 
cells (+) at the indicated times following initiation of tamoxifen treatment in (A) VEcad-
CreERT2/Rosa-flox-STOP-tdTomato or (B) Nes-CreERT2/Rosa-flox-STOP-tdTomato 
transgenic mice. Cell types without (–) tdTomato labeling are also shown. Notes: amyocytes 
very weakly labeled with most signal surrounding the muscle fiber; babundant weakly 
positive cells; cpossible tdTomato+ tumor noted; dweakly positive 
 

Cell type 1.5 mon 
post-
TAM 

3 mon 
post-
TAM 

6 mon 
post-
TAM 

Cell type 1.5 mon 
post-
TAM 

3 mon 
post-
TAM 

6 mon 
post-
TAM 

A. Vascular endothelial cadherin cell lineage 
tracing B. Nestin cell lineage tracing  

Olfactory 
bulb granule 

neurons 

– – – Olfactory 
bulb granule 

neurons 

– +++++ ++++++
+ 

Olfactory 
bulb 

juxtaglomer
ular 

projections 

++ ++++ ++ Olfactory 
bulb 

juxtaglomer
ular 

projections 

+ ++++ ++ 

Midbrain 
neurons 

– – – Midbrain 
neurons 

– – – 

Midbrain 
ventricular 

cells 

– – – Midbrain 
ventricular 

cells 

– +++++ ++ 

Cortical 
neurons 

– – – Cortical 
neurons 

– – – 

Hippocamp
al neurons 

– – – Hippocampa
l neurons 

– + ++ 

Cerebellar 
granule 
neurons 

++++ +++++
+ 

– Cerebellar 
granule 
neurons 

– ++ + 

Choroid 
plexus 

+++ +++++ +++ Choroid 
plexus 

++ – +++ 

Striatal 
neurons 

– – – Striatal 
neurons 

– – – 

Subventricu
lar zone 
layer I 

– ++ – Subventricul
ar zone 
layer I 

– ++++++
++ 

++++++ 

Subventricu
lar zone 

layers 2–4 

– – – Subventricul
ar zone 

layers 2–4 

– – – 

Pancreatic 
islet cells 

++++++
+ 

++++ – Pancreatic 
islet cells 

– – – 
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Cell type 1.5 mon 
post-
TAM 

3 mon 
post-
TAM 

6 mon 
post-
TAM 

Cell type 1.5 mon 
post-
TAM 

3 mon 
post-
TAM 

6 mon 
post-
TAM 

A. Vascular endothelial cadherin cell lineage 
tracing 

B. Nestin cell lineage tracing 
 

Pancreatic 
acinar cells 

++++++
+ 

++++ – Pancreatic 
acinar cells 

– – + 

Skeletal 
myocytes 

(hamstring) 

++ +++++ ++a Skeletal 
myocytes 

(hamstring) 

– +++ + 

Skeletal 
myocytes 

(underlying 
dorsal skin) 

– – ++++ Skeletal 
myocytes 

(underlying 
dorsal skin) 

– + +++ 

Cardiac 
myocytes 

– – – Cardiac 
myocytes 

– – – 

Hepatocytes – – – Hepatocytes – – – 
Renal cells 

(cortical 
layer) 

+++++ +++ – Renal cells – – – 

Hair follicle 
cells 

+++++ ++ – Hair follicle 
cells 

– – – 

Splenic 
follicles 

– – – Splenic 
follicles 

– – – 

Gastric pit 
cells 

– – – Gastric pit 
cells 

– – – 

Duodenal 
crypt cells 

+++ – – Duodenal 
crypt cells 

– – – 

Ileal crypt 
cells 

++++++
++++ 

– – Ileal crypt 
cells 

++++++
++b 

–c ++d 

Colonic 
crypt cells 

   

Colonic 
crypt cells 

– – – 

 

Central Nervous System 

Examination of the central nervous system (CNS) following TAM treatment revealed 

tdTomato-positive cells in several cell types not previously reported to share embryonic 

origins with endothelial cells. Positive cellular projections were observed in the olfactory 

bulb adjacent to but outside of glomeruli, suggesting that these cells are not olfactory neurons 

(Figure A2). These projections were noted in a juxtaglomerular region within all levels of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F2/
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olfactory bulb sections and at all post-TAM treatment time points. No associated somas were 

observed, suggesting that these projections originated outside of the olfactory bulb. 

 
Figure A2 Vascular endothelial-cadherin cell fate mapping in the central nervous 
system. Adult mice possessing VEcad-CreERT2/Rosa-flox-STOP-tdTomato were fed 

tamoxifen-containing chow for 1.5 months and mice sacrificed at the indicated times 
following initiation of treatment. Representative channel merged images from fixed and 
Hoechst labeled tissues. Nuclei are labeled by Hoechst (blue) and cell lineage tracing is 
indicated by tdTomato (red). The areas shown in micrographs are indicated by high- 

lighted regions (red boxes) in diagrams to the right where the granule cell layer (GCL), 
glomerular layer (GL), lateral ventricle (LV) and fourth ventricle (4V) are shown. 

Arrowheads highlight labeled cells and cellular appendages (white scale bars: 400 μm). 

 

Interestingly, numerous tdTomato+ cells were detected in the granule layer of the 

cerebellum (Figure A2). Positive cellular projections within the molecular layer were 

detected and confocal microscopic examination (Figure A3A, AS2, and AS4) confirmed that 

the abundant positive cells in this region were cerebellar granule neurons (CGNs). A clear 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl3.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl5.pdf
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gradation of positive CGN expression was observed, with a peak at 3 months post-TAM 

treatment and with complete absence observed at 6 months. The choroid plexus lining the 

ventricle ventral to the cerebellum was tdTomato+ at all time points, with peak frequency of 

tdTomato expression occurring 3 months following TAM treatment. The subventricular zone 

(SVZ), a region possessing adult olfactory bulb neuronal progenitors, exhibited positive 

labeling only in the ependymal layer (SVZ layer I) at 3 months of age (Figure A2). 

 
Figure A3 Cerebellar granule neurons and hair follicle stem cells express vascular 

endothelial-cadherin fate mapping reporter. Representative confocal microscopy images 
from adult VEcad-CreERT2/ Rosa-flox-STOP-tdTomato transgenic mouse cerebellum 

(A) and skin (B,C) at three months following the start of tamoxifen treatment. 
Immunohis- tochemical labeling for (A) NeuN (green) or (B, C) K15 (green) with tdTo- 
mato (red) and nucleus (Hoechst; blue) are shown at two magnifications to demonstrate 

the rare occurrence of K15-tdTomato colocalization. Images captured using a Zeiss 
Laser Scanning Confocal Microscope Meta 510 sys- tem. Orthogonal projections 

provided in the supplementary data indicate cells exhibiting (#) red/green 
colocalization. Asterisks (*) signify cells with- out co-localization, hair shafts (HS) are 

also shown. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F2/
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Hair follicle stem cells 

Inspection of integumentary tissue obtained from the dorsal pelt of adult transgenic 

mice revealed tdTomato expression within hair root tissue (Figure A4). The most robust 

labeling was observed 1.5 months after TAM treatment, with labeling decreasing at 3 months 

and reaching undetectable levels at 6 months. Confocal microscopic assessment (Figure3A-C 

and AS2B–D) revealed that a small portion of tdTomato-expressing cells co-label with the 

hair root stem cell marker K15. It is interesting to note the numerous instances in which 

tdTomato-labeled cells were observed in close proximity to K15-expressing cells without 

exhibiting co-localization (Figure AS2B–D). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl3.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl3.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl3.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl3.pdf
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Figure A4  Vascular endothelial-cadherin cell fate mapping in the periphery. 4–5-

Month-old VEcad-CreERT2/Rosa-flox-STOP-tdTomato mice were provided tamoxifen 
chow for 1.5 months and sacrificed at the times shown. Images were obtained from 

fixed and Hoechst stained tissues. Cell lineage tracing is evidenced by tdTomato (red) 
and nuclei are indicated by Hoechst (blue) labeling. Arrowheads highlight labeled cells 
(white scale bar = 400 μm). Red boxes displayed in diagrams indicate region shown in 
the associated micrographs. Asterisk (*) indicates tdTomato+ muscle fibers underlying 
skin; Intestinal lumen (L) and tdTomato+ crypt cells (arrowheads) are labeled. Renal 

tissue diagram indicates the location of the renal pelvis (R.P.). 



83 

 

Skeletal muscle 

The hamstrings of adult mice were also inspected for tdTomato labeling (Figures A4 

and AS3). Surprisingly, extensive labeling was observed at 1.5 months, with maximum 

labeling observed 3 months after TAM treatment. After 6 months, faint fluorescence was still 

evident surrounding muscle fibers, indicating labeling within the endomysium region with 

possible satellite cell involvement. No strongly labeled muscle fibers were observed for that 

time point. Labeling was concentrated in localized regions of muscle whenever robust 

tdTomato expression was observed (1.5 and 3 months post-TAM), leaving most areas of 

muscle with no labeled fibers. In addition, muscle residing beneath the subcutaneous layer of 

dorsal skin was found to be weakly tdTomato+ at 6 months post-TAM with no detectable 

fluorescence at 1.5 or 3 months (Figure A4). 

Pancreas 

Another unexpected finding was the observed labeling of pancreatic islets (Figure 

A4). There was a well-defined gradation of labeling, with all observed islets possessing 

tdTomato-positive cells 1.5 months post-TAM and with 83% of islets containing one or more 

positive cells 3 months post-TAM. No tdTomato+ cells were observed 6 months post-TAM. 

Confocal microscopic analysis (Figures A5A and AS5A) revealed that some of the positive 

cells were beta cells (3% insulin+). It is worthwhile to note the extremely close proximity of 

the tdTomato-positive cells with insulin-positive cells in an interwoven configuration 

(Figures A5A, B and AS5A, B). Co-labeling with glucagon (Figure A5C and Additional 

Figure AS5C) was not observed, indicating that none of the tdTomato-expressing cells at 

these time points were alpha cells.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl4.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl6.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl6.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl6.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl6.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl6.pdf
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Figure A5 Vascular endothelial-cadherin fate mapping labels pancreatic β-

cells.Immunohistochemistry was performed for pancreatic insulin (A, B) and tdTomato 
reporter expression at three months post-tamoxifen treatment in adult VEcad-
CreERT2/Rosa-flox-STOP-tdTomato transgenic mice. Representative images were 
obtained by confocal microscopy for insulin (A, B; green), glucagon (C; green), 

tdTomato (red) and the nu- cleus (Hoechst; blue). Two magnifications of separate fields 
are shown to demonstrate the rare instances of Insulin-tdTomato colocalization.  A 

Zeiss Laser Scanning Confocal Microscope Meta 510 system was used to capture and 
analyze the images shown. Confocal orthogonal projections presented in the 

supplemental data section were utilized to confirm cells with (#) or without (*) 
green/red co-localization 

 

TdTomato labeling was also detected in the acini of the exocrine pancreas (Figures 

A4 and AS6). The most robust labeling was observed at 1.5 months and decreasing 

thereafter. Only a small minority of pancreatic acini exhibited positive labeling. Similar to 

the pattern witnessed in skeletal muscle, positive cells were most often grouped in close 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl7.pdf
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proximity to each other. Likewise, only a very faint fluorescent signal in acini was detected 6 

months post-TAM. 

Renal Cells 

Kidney sections were assessed and found to exhibit strong tdTomato expression 1.5 

months after TAM administration (Figure A4). Labeling was restricted to the cortical layer 

and markedly absent from the medulla. This suggests that tdTomato labeling was likely 

confined to proximal and distal convoluted tubules. Expression intensity diminished 

significantly 3 months post-TAM and was only very weakly detectable in the cortex at 6 

months. It should be noted that residual urea would have been flushed from the tissue 

sections by numerous washes associated with sample preparation before imaging. Therefore, 

it is not expected that filtrate or urine (which might exhibit tdTomato fluorescence) 

contributed to the observed signal. 

Small Intestines 

Examination of the intestinal tract revealed positive tdTomato labeling for crypt cells 

(crypt of Lieberkühn) found in both the duodenum and ileum (Figure A4). These labeled 

cells were concentrated within the most basal portion of the intestinal gland. The most 

intense labeling was observed 1.5 months post-TAM and labeling was completely absent (or 

very indistinct) 3 and 6 months following TAM treatment. No fluorescence was observed for 

colonic cells at any time point. 

Nestin Cell Lineage Tracing Labels for Canonical and Non-Canonical Targets in Adult Mice 

The intermediate filament Nestin is known to exhibit a promiscuous expression 

pattern. However, it has been reported that some endothelial cells (as well as specialized 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F4/
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endothelial progenitor cells) express Nestin in adult mice (Mokrý et al., 2008; Suzuki et al., 

2010; Ding and Morrison, 2013; Itkin et al., 2016; Dusart et al., 2018). Therefore, Nestin cell 

lineage tracing (Nes-CreERT2), as employed here (Figure A1), could provide additional 

information with respect to endothelial cell progeny. We found both canonical Nestin cell 

progeny as well as novel cell labeling events show some correlation with VE-cadherin cell 

lineage tracing. A detailed summary of Nestin cell lineage tracing results can be found in 

Table A1and additional image sets are provided in Additional file 1. 

Central Nervous System 

Analysis of adult mouse brain (Figure A6) showed tdTomato labeling of neurons in 

the granule cell layer of the olfactory bulb at 3 months, which was maintained at a similar 

level 6 months post-TAM. This is consistent with previous reports of Nestin-positive 

progenitors migrating from the SVZ to establish adult-born olfactory bulb neurons (Altman, 

1969; Menezes et al., 1995; Zerlin et al., 1995). Labeled olfactory neurons were not present 

at 1.5 months, which indicates that the tdTomato-expressing cells at 3 months were indeed 

derived outside of the olfactory bulb. Interestingly, we observed juxtaglomerular projections 

in the olfactory bulb at all time points, as was witnessed in VE-cadherin lineage tracing 

experiments described above. No associated cell somas were noted, which indicates that 

these projections originated outside of the olfactory bulb. Similar to adult olfactory bulb 

granule neurons, populations of hippocampal cells are known to undergo adult neurogenesis 

from Nestin+ progenitors (Palmer et al., 1995). Supporting this notion, we find tdTomato-

positive cells in the hippocampus beginning 3 months following TAM administration and 

increasing at 6 months. Interestingly, we find only a relatively small number of labeled cells 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl2.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F6/
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in this region, despite numerous reports in the literature of abundant neuronal regeneration in 

the hippocampus of adult mice (Altman and Das, 1965; Bayer et al., 1982). 

 
Figure A6 Nestin cell fate mapping in the central nervous system. Transgenic Nes-

CreERT2/Rosa-flox-STOP-tdTomato mice at 4–5 months of age were fed tamoxifen-lad- en 
chow for 1.5 months and then sacrificed at thetimes shown post treatment initiation. 
Channel merged images were then acquired from fixed and Hoechst stained tissues. 
Nuclei are labeled by Hoechst (blue) and cell lineage tracing is indicated by tdTomato 

(red). Images shown were obtained from the regions indicated by the red box in the as- 
sociated diagram to the right where the granule cell layer (GCL), glomerular layer 

(GL), lateral ventricle (LV) and fourth ventricle (4V) are shown. Arrow- heads highlight 
labeled cells and cellular append- ages; # indicates autofluorescence from wrinkled 

tissue region (white scale bars: 400 μm; green scale bars: 1000 μm). 
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Our study also detected tdTomato-labeled cerebellar granule neurons at 3 and 6 

months following treatment with TAM (Figure A6). No tdTomato-positive cells were noted 

in the 1.5-month cohort. Both the 3- and 6-month groups exhibited far fewer positive 

cerebellar granule neurons compared to our VE-cadherin study. Assessment of the nearby 

choroid plexus showed sparse labeling at 1.5 and 6 months. Surprisingly, no labeled cells 

were observed 3 months after TAM treatment for the cohort of mice we examined. This 

correlates inversely with VE-cadherin labeling of the same structure at 3 months. Another 

interesting finding was positive labeling of ependymal cells lining the ventricular surfaces 

extending throughout the brain, which was absent at 1.5 months but robustly labeled 3 and 6 

months post-TAM. The expression pattern also shows a clear disconnect between the choroid 

plexus and the ubiquitous ependymal layer indicating differential regulation for their 

production. 

Skeletal Muscle 

Investigation of skeletal muscle obtained from hamstring found tdTomato-labeled 

muscle fibers 3 months after TAM treatment while being absent in the 1.5-month group 

(Figure A7). However, the 6-month cohort showed positive labeling for very few muscle 

fibers. It is evident that the majority of positive cells at 3 months have an elevated signal 

originating from the endomysium area in addition to signals originating from myocytes. 

Comparable to VE-cadherin tracing, Nestin-traced myocytes were found in close proximity 

to each other. We also observed robust Nestin tracing to muscle underlying the subcutaneous 

fat layer of dorsal skin at 3 and 6 months post-TAM but not at 1.5 months (Figure A7). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F7/
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Figure A7 Nestin cell fate mapping in the periphery. Transgenic Nes-

CreERT2/Rosa-flox-STOP-tdTomato mice at 4–5 months were fed tamoxifen-laden 
chow and tissue har- vested at the indicated times following treatment initiation. The 
representative merged channel images were acquired from tissues that were fixed and 
Hoechst labeled. Cell lineage trac- ing is evidenced by tdTomato (red) and nuclei are 

indicated by Hoechst (blue) labeling. Note in hair follicles at 1.5 months after tamoxifen 
addition, the observed fluorescent signal is only found in hair shafts (no labeled cells). 
Labeled hair folli- cle cells observed at 6 months post-tamoxifen were confirmed K15-
negative. Red boxes displayed in diagrams on the right indicate region shown in the 

associated micrographs. Asterisk (*) indicates tdTomato+ muscle fibers underlying skin. 
Arrow- heads highlight labeled cells and the ileal lumen (L) is indicat- ed [white scale 

bar: 400 μm]. 

Small Intestine 

Nestin cell lineage tracing revealed positive labeling for ileal crypt cells at 1.5 months and 

absence at 3 and 6 months post-TAM treatment (Figure A7). Labeling was analogous to VE-

cadherin tracing for this tissue. Conversely, no labeling was observed for duodenal crypt 

cells, suggesting divergent mechanisms for these two tissues. Interestingly, a small mass of 

tdTomato-positive cells possessing irregular morphology (possible tumor) was noted in the 

ileum of a 3 month post-TAM mouse (Additional file 1). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/figure/F7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513977/bin/NRR-15-1856_Suppl2.pdf
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Discussion 

The non-endothelial tdTomato expression patterns observed in this study are likely due 

to differentiation events traced from endothelial cells. This is supported by previous work 

that examined the expression pattern of the VEcad-CreERT2 mouse line used in this study 

(Monvoisin et al., 2006). Monvoisin et al. found that reporter gene expression by these mice 

is confined to endothelial cells following a 5-day intraperitoneal injection regimen of 4‐

hydroxy‐tamoxifen (4‐OHT) when examined 7 days post-treatment. In addition, inspection of 

hematopoietic bone marrow cells revealed that VEcad-CreERT2 mice exhibited very few 

reporter positive cells (0.3%) compared to negative control mice (0.2%) suggesting only a 

negligible contribution from these sources. This group also assessed skeletal muscle in adult 

mice (6–8 weeks of age) following 3-day tamoxifen injection at 2 days, 1 week and 6 weeks 

post-injection. No positive skeletal myocyte reporter expression, only endothelial cells (by 

morphology), was noted for any time point. This is consistent with our finding of 

tdTomato+ve skeletal muscle first appearing at 3 months post-treatment. It is important to 

note that the reporter used by Monvoisin and colleagues to examine VEcad-CreERT2 mouse 

line expression utilized a β-galactosidase cassette (activated by CRE activity) residing in 

the ROSA26 locus and driven by native ROSA26 elements (Soriano, 1999). Our study utilizes 

a flox-STOP-tdTomato reporter also residing in the ROSA26 locus (Madisen et al., 2010). 

However, this reporter is driven by a CAG promoter that could exhibit differing expression 

(cell type, intensity and silencing) properties. We observe endothelial cell expression 

robustly in some tissues while it is markedly reduced in others. This could be due to 

properties conveyed by the CAG promoter and a possibility that not all endothelial cells 

exhibit the same expression profile in all tissues. Given the strong endothelial cell fidelity 
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reported by Monvoisin et al. and numerous studies of VE-cadherin immunohistochemistry, 

the VEcad-CreERT2 cassette portion of this dual transgenic system appears to be functioning 

as intended. 

The robust labeling of large numbers of cerebellar granule neurons by VE-cadherin 

tracing was a notable finding. Unlike other regions of the brain, development of the 

cerebellum begins postnatally, which may represent an alternative development strategy for 

CGNs. It has been shown that despite elimination of canonical CGN precursors in the early 

postnatal mouse brain by irradiation and genetic approaches, CGNs are nevertheless 

generated at high levels (Wojcinski et al., 2017). Ponti et al. (2008) reported that cells 

previously classified as astroglia and interneuron progenitors are in fact distinct from 

neonatal canonical CGN progenitors and that in peripubertal rabbits they give rise to large 

numbers of adult-produced CGNs. A separate group of researchers has also presented 

evidence indicating that a Nestin-expressing progenitor pool is reprogrammed to contribute 

to CGN repopulation following acute depletion in postnatal mice (Wojcinski et al., 2017). 

Interestingly, we also observed Nestin+ progenitors tracing to CGNs. Our study suggests that 

only a very small number of CGNs are regenerated (absent of injury) from a Nestin-

expressing progenitor in adult mice. VE-cadherin+ progenitor cells contribute to the vast 

majority of labeled CGNs, indicating at least two distinct pools of progenitor cells 

(Nestin+ and VE-cadherin+) for the homeostasis of adult mouse cerebellum. These findings 

suggest an opportunity to deliver gene therapy intravenously for direct effects on CGN 

physiology. 

Ependymal cells have been described as a source of CNS progenitor cells in the adult 

brain (Johansson et al., 1999) in addition to performing other important homeostatic 
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functions such as cerebrospinal fluid production (Becht, 1920; Bruni et al., 1985). Here we 

report that the ependymal layer is sparsely labeled by VE-cadherin tracing throughout 

ventricular surfaces 3 months post-TAM (and including the choroid plexus just ventral to the 

cerebellum). Ependymal labeling was only visible in the choroid plexus adjacent to the 

cerebellum in the 1.5- and 6-month cohorts. We also observed intense Nestin tracing for the 

ubiquitous ventricle-lining ependymal layer throughout the adult mouse brain. These results 

suggest the possibility of a Nestin+/VE-cadherin+ choroid plexus progenitor in adult mice, 

which is consistent with an endothelial subtype. 

This study also revealed VE-cadherin tracing to hair follicle cells. Examination by 

confocal microscopy revealed that a very small proportion of these cells were positive for a 

hair follicle stem cell marker (K15). This is a surprising finding, given that hair follicle stem 

cells are believed to be of mesenchymal origin. As such, K15+ stem cells would not be 

expected to be derived from a progenitor that expresses an endothelial marker. The highest 

level of labeling was observed 1.5 months post-TAM where most hair follicles had at least 

one positive cell per section; significantly reduced labeling was observed at 3 months and 

labeling was reduced to undetectable levels at 6 months. This implies a rapid turnover rate 

consistent with hair growth in mice. Unlike VE-cadherin, Nestin did not trace to hair follicle 

stem cells. We did, however, observe an enrichment of Nestin-traced hair follicle-associated 

capillaries. 

Inspection of skeletal muscle from hamstring showed VE-cadherin tracing at 1.5 

months post-TAM treatment followed by a peak in tdTomato+ muscle fiber number at 3 

months. No strongly positive myocytes were observed by 6 months and only faintly labeled 

fibers remained. This suggests that the signal resulting from the fusion of VE-cadherin-traced 
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progenitors with myocyte cytosol had been diluted out through fusion with non-labeled 

progenitors after the 3 month post-TAM time point. We also observed Nestin tracing in 

hamstring at 3 months post-TAM (no labeling in the 1.5- or 6-month cohorts). Additionally, 

we found VE-cadherin and Nestin tracing to muscle underlying subcutaneous dorsal pelt. 

This indicates the possible existence of a Nestin+ and VE-cadherin+ skeletal muscle 

progenitor in adult mice. Previous investigations have reported the existence of skeletal 

muscle satellite cells in adult animals termed myoendothelial cells that express endothelial 

cell markers including VE-cadherin (Zheng et al., 2007). Whether these cells are of 

endothelial origin remains to be determined. Supporting the notion of endothelial-skeletal 

muscle transdifferentiation are reports of extravascular expression following intravenous 

delivery of transgenes. A group reported that intravenous delivery of adeno-associated virus 

(AAV9) containing CRISPR/CAS9 editing constructs, carried out in a canine model of 

Duchenne muscular dystrophy (Amoasii et al., 2018), resulted in successful editing of a 

mutant dystrophin gene in skeletal muscle. Interestingly, this group found an extremely high 

percentage of successfully edited/transduced skeletal myocytes at 2 months post-systemic 

AAV injection, even far surpassing what was observed in this study. Taken together, these 

findings imply that intravenous delivery of gene therapy could be undertaken to correct a 

defined mutation or provide a trophic factor to improve outcomes for skeletal muscle disease. 

Investigation of VE-cadherin cell lineage tracing within the pancreas uncovered 

tdTomato labeling of islets. All islets examined at 1.5 months post-TAM contained 

tdTomato+ cells and 83% of islets at 3 months post-TAM displayed labeling. No labeling was 

evident at 6 months, suggesting complete turnover of labeled cells by that time. Confocal 

assessment confirmed that a small proportion (3%) of tdTomato+ islet cells were insulin-
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producing β cells. No tdTomato-expressing cells were found to be glucagon+ α-cells. The 

presence of VE-cadherin-traced β cells suggests the possible existence of a β cell precursor 

cell in adult mice with endothelial origins. The evident decrease in tdTomato+ islet cells over 

time provides support for the existence of regenerative mechanisms of β cells in adult mice, 

which is currently a subject of controversy (Yu et al., 2016). The existence of a natural 

endothelial-derived β cell progenitor could offer new intravenous therapy options for 

prolonged treatment of diabetes. In addition, this knowledge could inform strategies to 

stimulate β cell regeneration in vivo. 

Exocrine pancreatic acini were also found to contain tdTomato-labeled cells 

following VE-cadherin tracing. Only a few acini lobes per section exhibited the fluorescent 

marker, though when present, positive cells were grouped in close proximity. The highest 

abundance of labeled acini was found 1.5 months post-TAM, which decreased markedly 3 

months after treatment. The 6-month group showed only rare and individual 

tdTomato+ acinar cells. This labeling pattern suggests the existence of an endothelial-derived 

progenitor and that near-complete regeneration of acini cells occurred over this 6-month 

period. 

Renal tissue was also found to exhibit VE-cadherin tracing. Specifically, cells 

comprising the convoluted tubules within the renal cortex had pronounced labeling at 1.5 

months post-TAM, with a gradual loss observed at 3 months and only a very faint signal 

detected at 6 months. The progenitor source for adult proximal convoluted tubule cells is still 

highly debated and our finding adds to a substantial body of evidence regarding extra-renal 

and atypical sources (Poulsom et al., 2001; Gupta et al., 2002; Sugimoto et al., 2006; 

Castrop, 2019). The observed fluorescent signal in this study likely does not arise from 



95 

 

filtrate since the tissues were thoroughly flushed during multiple washes following sectioning 

onto slides. In addition, tdTomato labeling is completely absent from the renal medulla, 

excluding fluorescence contributed directly by filtrate cells in the loop of Henle or medullar 

collecting tubules. However, it cannot be ruled out that label-positive proximal convoluted 

tubule cells obtained tdTomato from early filtrate via their native protein-recovery 

mechanisms and thereby obtained cytosolic fluorescence independent of a 

transdifferentiation event. An alternative interpretation of this result could be that cell fusion 

events of proximal convoluted tubule cells with other tdTomato+ cells decreased and that 

contributed cytoplasm was gradually turned over (similar to myocytes). Another possibility is 

that the weak signal at 6 months is due to activation of CRE by tamoxifen that has persisted. 

Further studies are needed to explore these possibilities as the prospect for renewal of these 

important cell types could be useful in the development of therapeutic strategies for the 

treatment of kidney disease. 

Our assessment of the digestive tract revealed VE-cadherin cell lineage tracing of 

duodenal and ileal gland crypts. Labeling was confined to the base of the intestinal crypts and 

was robust at 1.5 months but disappeared 3 months after TAM treatment began. This 

suggests a rapid turnover of these cells, which is consistent with that of cells found within a 

highly proliferative epithelial tissue. A weaker fluorescent signal was observed for more 

mature cells emanating from the crypts that form the intestinal villi. Interestingly, we did not 

observe any tdTomato labeling within colonic crypts, which suggests a different etiology in 

adult mice. We also found that Nestin traced to Ileal crypts at 1.5 months post-TAM (and 

disappeared by 3 months) but did not trace to the duodenum suggesting divergent origins for 

these adult tissues. 
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Conclusion 

There is evidence of tissue homeostasis by actively dividing stem cells and one or 

more pools of quiescent stem cells working in concert to maintain cell replacement needs (Li 

and Clevers, 2010; Blanpain and Fuchs, 2014). In such cases, it is possible that the selector of 

the donating quiescent progenitor is the tissue environment rather than the cell type 

classification of the progenitor itself. For example, a growing body of evidence indicates that 

some quiescent brain regions possess the ability to foster the differentiation of transplanted 

progenitor cells from varied sources into functional neurons (Lindvall et al., 1989; Volkman 

and Offen, 2017). Moreover, experimental ablation of one type of progenitor can cause 

restoration by another type (Rompolas et al., 2013; Blanpain and Fuchs, 2014). If indeed this 

form of plasticity occurs broadly in adult mammals, endothelial cells would represent the 

most readily available cell type for “recruitment” as a progenitor across tissues. Evidence 

presented in this study supports the notion of an endothelial population that 

transdifferentiates into other embryonically distinct cell types and which is also a substantial 

contributor to adult mammalian tissue homeostasis. Confirmation of such a finding would 

offer new insights into the pathology of human disease and present potential therapeutic 

avenues. 

Limitations of the CreERT2/Rosa-floxed-STOP-tdTomato System 

• a) Cell fusion events cannot be completely ruled out. However, Hoechst labeling of 

nuclei did not reveal any multinucleated cells (with the exception of myocytes) by 

conventional or confocal microscopy. In addition, previous studies involving bone 

marrow-derived stem cell transplantation (Alvarez-Dolado et al., 2003) did not reveal 
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cell fusion events for any of the tdTomato+ cells observed in this study, indicating 

that tdTomato-expressing cells are likely not derived from fusion events with 

hematopoietic cells (e.g., B-cells). 

• b)The genomic location (Rosa26) of the reporter cassette, in concert with the 

exogenous promoter employed (CAG promoter-driven-tdTomato), dictates the cell-

type expression pattern of tdTomato following the initial activation from flox-STOP 

removal by CreERT2. Therefore, genomic editing by activated CreERT2 may have 

occurred in a given cell without the production of a fluorescent signal if 

the Rosa26 locus or CAG promoter is silenced by that cell type. 

• c) CRE activity can result in two outcomes. Correct editing creates a tdTomato 

sequence with the removal of a stop-codon-containing cassette and the subsequent 

expression of a functional fluorescent reporter. However, CRE activity can also result 

in translocation of cut DNA fragments to other locations in the genome or other 

rearrangements that do not produce a functional reporter. In these instances, cell 

lineage tracing mechanisms would be activated but not observed. 

• d) Promoter silencing is a reported cellular response to numerous constitutive 

promoter systems (e.g., CMV, CAG) (Choi et al., 2005; Xia et al., 2007; Herbst et al., 

2012). Reporter gene silencing could also confound the disappearance of the 

tdTomato signal at later time points. Other approaches would be necessary to 

determine if a loss in signal is due to cell turnover or CAG promoter silencing. 

• e) The observation of fewer reported tracing events could be the result of cell death. 

Double-stranded cuts directed by CRE in target cells initiate DNA repair systems. If 
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repairs are not made correctly or in a timely fashion, cells are susceptible to 

apoptosis. In addition, cell death could be directed by the immune system against 

tdTomato-derived peptides presented in MHC class I complexes. However, this 

prospect is unlikely, given that tdTomato is observed in some tissues in both VE-

cadherin and Nestin mouse lines at 6 months post-TAM. 

• f) Contributions by extracellular vesicles emitted from tdTomato-expressing cells 

cannot be determined in this system. It is possible that extracellular vesicles 

containing tdTomato are released by edited/labeled cells and accumulated in target 

cells, thereby leading to fluorescence in the target cell that is not associated with a 

transdifferentiation event. This is an inherent limitation of the Rosa-floxed-STOP-

tdTomato system.  
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Additional Figures 

 
Figure AS1. Prototypical arterial endothelila cell expression of dTomato following 

VE-cadherin cell-lineage tracing in real tissue. Renal tissue was harvested from VEcad-
CreERT2/Rosa-flox-STOP-tdTomato transgenic mice 1.5 months post-tamoxifen 

treatment initiation. Tissue samples were fixed, cryosectioned (15 µm) onto slides, 
stained with Hoechst dye (nuclear label) and then mounted with coverslips. The 

displayed image was captured by an EVOS M7000 conventional fluorescence 
microscopy system. The merged image shows tdTomato (red) and Hoechst (blue) 
channels. Arrowhead indicates tdTomato+ endothelial cells of the internal elastic 
lamina of a renal glomerulus arteriole. Asterisks (*) show tdTomato+ convoluted 

tubules also present in this micrograph. 
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Figure AS2. Confocal microscopy orthogonal analysis of VE-cadherin-traced 

cerebellar granule neurons and hair follicle cells presented in Figure A3. (A) NeuN 
(green) /tdTomato (red) co-labeling (arrowheads) by IHC confirmed for cerebellar 

granule neurons through orthogonal reconstruction from confocal image stacks. (B, C) 
Rare hair follicular cells exhibit K15 (green)/tdTomato (red) co-localization 

(arrowheads). (D) The vast majority of tdTomato hair follicle cells do not exhibit co-
labeling with K15 (green) despite often being in very close proximity. Images captured 

using a Zeiss Laser Scanning Confocal Microscope Meta 510 system. 
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Figure AS3. Examination of skeletal myocytes following VE-cadherin cell lineage 

tracing high resolution confocal image. Hamstring tissue was harvested from VEcad-
CreERT2/Rosa-flox-STOP-tdTomato transgenic mice 3 months post-tamoxifen treatment 
initiation. Fixed samples were sectioned (15 μm) onto slides, labeled with Hoechst dye, 

mounted with coverslips, and imaged using an Olympus FV3000 Laser Scanning 
Confocal Microscope system. The displayed image was obtained from a series of 10 μm 

z-stacked planes compressed into a maximum intensity projection image showing 
tdTomato (red) and Hoechst (blue) channels. 
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Figure AS4. VE-cadherin-traced cerebellar granule neurons confocal microscopy high 

resolution tiled image.Tissue was harvested from VEcad-CreERT2/Rosa-flox-STOP-
tdTomato transgenic mice 3 months post-tamoxifen treatment initiation. The 

cryosectioned tissue (15 μm) was fixed, labeled with Hoechst  dye, and mounted with a 
coverslip. A tiled image was captured for 10 μm z-stacked planes and stitched using a 

Zeiss 880 Airy Scan system. Hoechst dye (blue) and tdTomato (red) channels are 
displayed in the maximum intensity projection image shown. 
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Figure AS5 Confocal microscopy orthogonal analysis of VE-cadherin-traced 

pancreatic islet cells presented in Figure A5. (A) Immunohistochemistry for 
insulin/tdTomato-co-labeled cell (arrowhead) assessed by orthogonal reconstruction 

from confocal stacked images. (B) Almost all tdTomato positive islet cells examined are 
insulin (green)-negative despite very close physical proximity. (C) No glucagon 

(green)/tdTomato co-labeled cells were observed in any pancreatic section examined. 
Arrowheads indicate a point of assessment. A Zeiss Laser Scanning Confocal 

Microscope Meta 510 system was used to capture and analyze the images shown. 
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Figure AS6 VE-cadherin cell lineage tracing high-resolution confocal image of 

pancreatic acini.Pancreatic tissue was harvested from VEcad-CreERT2/Rosa-flox-STOP-
tdTomato transgenic mice 3 months post-tamoxifen treatment initiation. Tissue samples 

were fixed, cryosectioned (15 μm) onto slides, stained with Hoechst dye and then 
mounted with coverslips. The displayed image was captured by an Olympus FV3000 

Laser Scanning Confocal Microscope system from 10 μm z-stacked planes and 
represented as a maximum intensity projection. The merged image shows tdTomato 

(red) and Hoechst (blue) channels.  
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Abstract 

Drug development is a complicated, slow and expensive process with high failure 

rates. One strategy to mitigate these factors is to recycle existing drugs that have viable 

safety profiles and have gained Food and Drug Administration approval following 

extensive clinical trials. Cardiovascular and neurodegenerative diseases are quite difficult 

to treat, and there exist few effective therapeutics, necessitating the development of new, 

more efficacious drugs. Recent scientific studies have led to mechanistic understanding 

of heart and brain disease progression, which has led researchers to assess myriad drugs 

for their potential as pharmacological treatments for these ailments. The focus of this 

review is to survey strategies for selection of drug repurposing candidates and provide 

representative case studies where drug repurposing was used to discover therapeutics for 

cardiovascular and neurodegenerative disorders, wherein anti-inflammatory drugs have 

profound side-effects during chronic use and therefore new alternatives are needed. 

Introduction 

Drug development is a long, labor-intensive process with no guarantee of success. 

On average, it takes 10 years and 2.6 billion dollars to develop a new drug, with success 

rates averaging only about 12% [1]. One way to mitigate the barriers of drug 

development is to repurpose Food and Drug Administration (FDA) approved drugs for 

the treatment of different diseases. Drug repurposing is the practice of finding new uses 

for existing drugs at any stage of development. The benefit of drug repurposing is that the 
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risk of failure is significantly lower than drug development, which permits more effective 

use of resources to optimize drug efficacy for treatment of the desired ailment. Much of 

the primary research regarding repurposed drug safety, mechanism and dosage has 

already been completed at the time the drug was first studied [2]. For example, a drug 

that demonstrated efficacy in animal models with low side effects but failed in human 

clinical trials to perform its intended purpose, may be a good candidate for use as a 

therapeutic for a different disease. Drugs with potential to be repurposed have progressed 

through many of the steps required to meet regulatory safety and potency benchmarks, 

allowing for an accelerated and abbreviated path toFDA approval. A few representative 

examples of successful drugs that have been repurposed include amantadine, aspirin, 

mecamylamine, minoxidil and tamoxifen (Table B1) [3]. Repurposed drugs are generally 

screened by computer search algorithm from databases of therapeutics that may or may 

not have been sufficiently effective in providing treatment for the pathology that served 

as their original target. For example, some drugs lack sufficient drug-like qualities to 

warrant further investigation for treatment of an intended illness, but modification of the 

molecular scaffold or functional groups attached to the drug template may afford 

attributes and activity suitable for therapeutic viability. The therapeutic index for a 

repurposed drug requires investigation into dosage recommendations for maximal benefit 

to counter the illness, while minimizing detrimental side-effects to the patient.  
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Table B1. Examples of repurposed drugs 

Drug Original purpose Repurposed use Reference 
Amantadine Parkinson’s disease Influenza A, 

COVID-19 
(hypothesized) 

[4,5] 

Aspirin Inflammation, pain 
relief 

Anti-platelet [6] 

Mecamylamine Hypertension Tourette’s syndrome [7] 

Minoxidil Hypertension Hair loss [8] 

Tamoxifen Cancer Leishmaniasis [9] 

 

Technology to repurpose drugs 

Computational strategies for determining potential drug repurposing candidates 

are a great starting place for researchers to find drugs that have previously been on the 

market to take to new clinical trials. Multiple computational strategies have emerged to 

identify potential candidates for drug repurposing. Of these, four strategies have gained 

popularity in recent years and will be discussed in brief. These strategies are side effect 

similarity mapping, genome-wide association studies (GWAS), small-molecule peptide-

influenced drug repurposing (SPIDR), and computational high throughput screening 

(HTS) screening [10,11]. 

In side-effect similarity mapping, existing drugs are categorized by their side 

effects using the Unified Medical Language System (UMLS) ontology for medical 

symptoms. Developed by Campillos et al. (2008), 746 marketed drugs were organized 

according to their listed phenotypic side effect similarities rather than a chemical 

similarity, and 20 of these marketed drugs were confirmed through in vitro assays to 

indicate that side effect similarity may be indicative of common protein targets. Using 

this strategy, prediction of the likelihood that two drugs had the same target based on 
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their side effects was demonstrated [12]. This study describes a process by which drugs 

marketed for different targets could be identified as having potential for repurposing.  

GWAS identify single nucleotide polymorphisms (SNPs) and their associated 

phenotypes for individuals with a given disease. GWAS is performed by genotyping 

individuals which share a common disease and determining whether a genetic variant is 

shared to statistical significance among this population. Experimental validation by 

chromatin precipitation is then performed and variants associated by phenotypic effects 

[13]. This technique has been used to identify many novel variant to trait associations in a 

wide variety of diseases such as macular degeneration, anorexia nervosa, depression, 

coronary artery disease and diabetes mellitus, and can be used to determine novel drug 

targets as well [14]. For example, GWAS have been used to identify SNPs for 

Parkinson’s disease (PD) and determined that estradiol may protect dopaminergic 

neurons in PD. This supported previous evidence that estradiol may be protective against 

PD because men are more likely to be diagnosed [15]. The neuroprotective role of 

estradiol was later confirmed in in vivo studies. At present, estradiol is still not an 

approved treatment for PD, but efficacy studies are ongoing [2,16,17]. Another example 

of GWAS being useful for determining novel drug targets was the identification of a gene 

encoding a disintegrin and metalloproteinase with thrombospondin motifs TS7 

(ADAMTS7), a gene implicated in coronary artery disease (CAD) for its presence 

in angiographic CAD patients and role in smooth muscle cell migration, a finding that 

supports the idea of genetically inherited CAD [18,19]. Using GWAS, it is possible to 

identify new potential targets based on SNPs. 
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SPIDR is a recently developed computational screening technique to identify 

drugs that can target a specific receptor by looking at its peptide ligand conformational 

space [20]. This method was integrated into the free program DockoMatic v 2.1, making 

this process accessible to lower resourced institutions [21]. This technique works by first 

utilizing the genetic algorithm managed peptide mutant screening (GAMPMS) to screen 

for peptide mutants with high binding affinity to the receptor, and then this population of 

peptides is moved over to the SimSearcher utility to search for the top small molecules 

analogous to the peptide population for binding to the isoform [20]. SPIDR was 

developed and used to find 12 small molecules computationally predicted to bind with 

high affinity to a nicotinic acetylcholine receptor (nAChR) isoform associated with 

Alzheimer’s and PD, by looking at alpha conotoxin MII peptide analogs that would bind 

favorable to the receptor isoform specifically [20]. Following this publication, a 

qualitative assay to detect dopamine release by ligand action on nAChRs was developed 

with the intent to assess bioactivity of molecules that may act on different nAChR 

isoforms for drug development. This assay was developed using luminescence-based 

assay and validated with known nAChR binders acetylcholine, nicotine and cytisine [22]. 

This assay is intended to be used to test the small molecules found in the SPIDR 

development publication for nAChR activity as an in vitro validation for the SPIDR 

methodology. 

Additionally, small molecule compound screens can be used to identify drugs 

amenable to being repurposed. Computational programs such as AutoDock Vina are 

often used to screen molecular library databases like ZINC, chEMBL, pubchem, 

DrugBank, Chem Spider, and others [23]. Computational screens, in silico, are an ideal 
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starting point for any drug discovery project to narrow down a list of molecules that may 

bind your target with high affinity. However, wet lab experimentation needs to be 

conducted, which can be done with commercially available libraries of drugs using in 

vitro cell-based assays. Researchers study whether a drug being tested induces a 

phenotypic effect in cell-based assays, which are usually performed in cell culture or on a 

model organism whereas a target-based screen can be performed in vitro using techniques 

like ELISA, Surface Plasmon Resonance (SPR) or Nuclear Magnetic Resonance (NMR) 

spectroscopy. In this article we will briefly discuss strategies for repurposing drugs and 

examples of drugs that are being repurposed for treatment of cardiovascular disease and 

neurodegenerative disorders. Specifically, we will cover those conditions that affect both 

cardiovascular and neurodegenerative disease such as inflammatory pathways, as these 

conditions connect heart and brain disease. 

Heart and brain interconnectedness in disease 

There are currently few therapeutics for cardiovascular and neurodegenerative 

diseases that provide suitable efficacy and minimal side effects, creating ideal conditions 

for drug repurposing. Not only are cardiovascular and neurodegenerative diseases 

difficult to treat, but treatment options remain limited, and many drugs do not cease 

progression nor achieve remission of the disease state. Considerable progress has been 

made in recent years to understand the molecular determinants of cardiovascular disease, 

which encompasses a wide variety of disorders such as endothelial dysfunction, 

atherosclerosis and pulmonary arterial hypertension, and neurodegenerative disorders, 

such as Parkinson’s and Alzheimer's [24,25] Cardiovascular disease and 

neurodegenerative disorders share a common trait in that inflammation is a component to 
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the pathogenic process. Targeting inflammatory processes with repurposed drugs can 

have a multitude of beneficial effects for patients with diseases of both the heart and 

brain. Currently, repurposed drugs are being used in studies associated with two 

cardiovascular related diseases that include endothelial dysfunction and pulmonary 

arterial hypertension. As for neurodegenerative diseases, repurposed drugs are being 

studied for the treatment of autophagy and neuroinflammation. 

Targeting endothelial dysfunction in cardiovascular disease 

Cardiovascular diseases including atherosclerosis, coronary artery disease and 

arrhythmias that eventually lead to myocardial infarction and/or stroke. Ischemic events 

such as these are the leading cause of death in the world [26]. Pharmacological 

intervention of cardiovascular diseases is provided by statins, beta-blockers, and 

angiotensin converting enzyme inhibitors. In more advanced cases, surgical intervention 

may be necessary. The medications for cardiovascular disease target high cholesterol and 

low-density lipoprotein levels, and hypertension. There is an emerging field of research 

to discover small molecule inhibitors for alternative pathways aimed at the disruption of 

heart disease progression [27]. There is a robust market for pharmaceutical companies to 

synthesize drugs to treat disorders, but the potential for repurposing already FDA-

approved drugs constitutes a desirable alternative to discovery since these medications 

have been deemed safe enough for patient use and thus make clinical trials for novel use 

non-trivial. 

The endothelium is characterized by the cells of the tissue lining the various 

organs of the body, including the arteries and lymphatic system. The endothelium plays a 
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major role in blood flow and constriction by facilitating the synthesis and degradation of 

vasodilating factors, such as nitric oxide (NO), arachidonic acid metabolites and reactive 

oxygen species (ROS) [28]. Endothelial dysfunction occurs when the endothelium fails to 

function properly. Namely, that the endothelium dysfunctions in the formation of 

vasodilating factors. Endothelial dysfunction is especially important in cardiovascular 

disease because it is a leading contributor to cardiac events. Endothelial dysfunction is a 

component of atherosclerosis, which is characterized by the hardening and narrowing of 

the arterial walls, and hyperlipidemia, or high lipid concentrations in the blood.  

Three drugs investigated for their potential to treat diseases of endothelial 

dysfunction that will be discussed here include colchicine, which has been traditionally 

used to treat gout, methotrexate, an immunosuppressant and chemotherapy drug, and 

Tocilizumab (brand name Actrema), an immunosuppressant used to treat severe 

rheumatoid arthritis.   

Colchicine 

Colchicine is a secondary metabolite from the plants Gloriosa superba and 

Colchicum autumnale, that is known to be toxic when ingested [29]. Its current approved 

use is to treat gout, an inflammatory form of arthritis common in people with high levels 

of uric acid in their blood. Due to its anti-inflammatory properties, colchicine is currently 

under investigation as a potential endothelial dysfunction drug. Endothelial dysfunction is 

a characteristic of cardiovascular disease that leads to an increase in macrophages, T 

lymphocytes and growth factors that contribute to atherosclerotic lesion formation 

associated with atherosclerosis [30–33].  The same inflammation inhibition mechanism 
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that permits colchicine to be effective against gout, may also be applicable to the 

treatment of patients with early stages of atherosclerosis [34,35].  

Colchicine prevents inflammation by binding to tubulin, preventing tubulin 

polymerization and function (see Figure B1) [18]. As a result, colchicine halts mitotic 

cells in metaphase. Colchicine also concentrates in neutrophils and prevents chemotaxis 

via the release of crystal-derived chemotactic factor, and inhibits monosodium urate 

induced loss of myeloid inhibitory C-type lectin-like receptor in neutrophils and 

interleukin-8 formation [36] Myeloid inhibitory C-type lectin-like receptor and 

interleukin-8 are important in immune homeostasis and inflammatory response [37,38]. 

 
Figure B1.   Inhibitory pathway of colchicine.Colchicine inhibits activation of 
purinergic P2X2/P2X7 receptors and blocks cation uptake and subsequent pro-

inflammatory signaling cascades without affecting cell death. Colchicine also 
inhibits the NALP3 inflammasome pathway, the Rho/ROCK pathway via 

cytoskeleton rearrangement, and inhibits release of ROS, NO and TNFa. Figure 1 
was created using BioRender.com (adapted from [36] . 
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Cell adhesion is the process by which cells adhere to one another through the 

action of proteins, electrostatic interactions, and hydrophobic interactions. Adhesion is 

important because cells can use physical contact with one another to communicate via 

signal transduction. Colchicine interferes with cell adhesion by inducing the shedding of 

neutrophil adhesion molecules, which are important in neutrophil function [36]. These 

neutrophil adhesion molecules include selectins and counter receptors which partake in 

signal transduction. Selectins are single-chain transmembrane glycoproteins organized by 

leukocyte (L), endothelial (E) and platelet/endothelial (P) selectins. They are 

characterized by their similar homology in both sequence, structure and sugar ligands. 

Colchicine reduces endothelial expression of selectins by acting on leukocytes in 

coronary artery disease [35].  

Nidorf et al. reviewed ongoing clinical trial results and experimental evidence that 

supported the use of colchicine as an anti-inflammatory drug with promising efficacy 

toward the treatment of atherosclerosis [34]. First, they describe the mechanisms by 

which colchicine acts on the various inflammatory pathways including the production of 

pro-inflammatory cytokines, such as interleukin (IL)-1ß, reduction of platelet leukocyte 

interactions that lead to atherothrombosis and suppressing the growth of fibroblasts and 

osteophytes. At lower doses, colchicine was found to have no reported side effects on 

patients with liver and/or kidney disease [34]. The authors concluded that colchicine 

could be repurposed for treatment of inflammation associated with atherosclerosis. 

Methotrexate  

Aminopterin, a precursor drug to methotrexate, has been used to treat childhood 
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leukemia, dating back to the late 1940’s and early 1950’s. It was noted that the drug 

interfered with connective tissue proliferation in patients undergoing leukemia treatment, 

which led to studies into the effect of aminopterin on rheumatic disease [39]. A study in 

1951 by Gubner et al. demonstrated that aminopterin was effective in alleviating signs 

and symptoms of the disease associated with rheumatoid arthritis, psoriasis and psoriatic 

arthritis.  The synthesis of aminopterin proved to be a barrier to drug studies, inspiring 

creation of methotrexate, which was easier to synthesize, but equally as efficacious as 

aminopterin (Figure B2). In the 1960’s, the National Institute of Health reported that 

methotrexate was effective at treating rheumatoid arthritis and psoriatic arthritis. 

However, the rheumatologist community at the time maintained a fidelity for 

corticosteroids to treat rheumatic syndromes, which stifled the use of methotrexate. 

Further, and larger studies were conducted that established irrefutable evidence that 

methotrexate was effective in the treatment of rheumatoid arthritis [40].   
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Figure B2.  Structures of folic acid and its analogs methotrexate and aminopterin 
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Methotrexate is a synthetic disease-modifying anti-rheumatic drug that is a 

structural analog of folic acid [25]. Methotrexate was originally used as a cancer drug but 

has recently been investigated for its use in inflammation associated with endothelial 

dysfunction. In a study of 673 patients, methotrexate was used for the treatment of 

rheumatoid arthritis, and was determined that under proper dosing and use, it could be a 

beneficial drug to treat arthritis with 1.7% adverse side effect frequency and 0.15% 

mortality [41]. Methotrexate was identified as a good candidate for use to treat 

inflammatory diseases, including endothelial dysfunction.  

Methotrexate exerts a multitude of biochemical and biological perturbations when 

administered to patients. While the exact or primary mechanism of action is not 

completely understood, multiple modes of activity have been characterized that reveal 

how methotrexate functions (Figure B3). First, methotrexate diminishes the immune 

response by increasing the rate of T cell apoptosis. Methotrexate binds dihydrofolate 

reductase, causing an increase in nitric oxide synthase uncoupling through the prevention 

of the conversion of dihydrobiopterin to tetrahydrobiopterin (FigureB3a). Second, 

methotrexate suppresses inflammation and the immune response by promoting the release 

of adenosine. Metabolites of methotrexate inhibit aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) transformylase, causing an increase in the concentration of 

intracellular AICAR and thus more adenosine release (Figure B3b). Third, methotrexate 

increases the expression of long intergenic non-coding RNA p21, a mediator and 

regulator of a variety of pro-apoptotic processes (Figure B3c) [42].  
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Figure B3. Metabolic pathways of methotrexate.  a) Methotrexate inhibits 

dihydrofolate reductase (DHFR) and prevents conversion of dihydrobiopterin (BH2) 
to tetrahydrobiopterin (BH4), leading to uncoupling of NO synthase. b) 

Methotrexate inhibits AICAR transformylase, leading to increased adenosine levels 
and subsequent anti-inflammatory responses. c) Methotrexate stimulates lincRNA-
p21 expression, leading to increased apoptotic gene expression and subsequent anti-

inflammatory responses.  

 

There is increasing evidence that the 5′-adenosine monophosphate-activated 

protein kinase (AMPK) is beneficial to the endothelium by protecting against apoptosis, 

oxidative stress and increases NO production in the endothelium, which reduces 

cholesterol efflux activity [25]. Stimulation of AMPK as a treatment for endothelial 

dysfunction is under investigation. One study showed that application of methotrexate on 

perivascular adipose tissue from Sprague-Dawley rats increased AMPK activity under 

basal and inflammatory conditions when treated with a negative control, palmitic acid 

[25]. A positive control using aminoimidazole-4-carboxamide ribonucleotide, a known 

AMPK agonist, was also able to stimulate AMPK activity [25]. This study similarly 

showed that methotrexate stimulated adiponectin mRNA expression and suppressed the 
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pro-inflammatory molecules nuclear factor kappa B (NFκB) p-65, tumor necrosis factor 

alpha (TNF-α), and interleukin-6 (IL-6) activity [25]. At the time of this review, only 

studies of methotrexate on perivascular adipose tissue taken from sacrificed mice and in 

vitro studies in cell culture have been performed, necessitating investigation into more 

physiologically relevant in vivo model systems.  

Contrarily, other studies have indicated that methotrexate may contribute to 

vascular endothelial dysfunction by causing endothelial damage [43]. Methotrexate is a 

direct competitor with folic acid for the active site of human serum albumin, and indeed 

folic acid supplements are often provided in conjunction with methotrexate to prevent 

folic acid deficiency [44]. A study performed in Wistar rats, by Sankrityayan in 2016, 

showed that when administered with methotrexate, ex vivo vascular reactivity in the aorta 

was significantly reduced [43]. Vascular reactivity is the phenomenon responsible for 

both vasoconstriction and vasodilation, and those responses to various stimuli implicated 

in vasculature. Methotrexate has also been implicated in the reduction of NO, leading to 

increased oxidative stress and hindering of bioavailability of tetrahydrobiopterin by 

oxidizing it to dihydrobiopterin in the aorta [45,46]. This leads to hypertension, 

hyperlipidemia and induces endothelial dysfunction, because tetrahydrobiopterin is 

necessary as a cofactor required for synthesis of NO [47]. 

There is contradicting evidence for methotrexate use as an endothelial dysfunction 

drug. On one hand, there is data that suggests methotrexate reduces inflammation, while 

on the other hand, methotrexate appears to lead to endothelial dysfunction. Therefore, 

more studies must be performed to determine the true mechanism of action for 
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methotrexate on the vascular endothelium if it is to be used to treat endothelial 

dysfunction. There are currently 2140 clinical trials listed under the National Library of 

Medicine’s clinical trial database with methotrexate being evaluated for treatment of 

everything from ectopic pregnancy, to schizophrenia, to alopecia, and cancer. It appears 

that in many pathologies where inflammation is a principal concern, or where 

immunomodulation is of utility, methotrexate may provide benefit.  

Tocilizumab  

Tocilizumab (TCZ) is an IL-6 inhibitor and recombinant monoclonal antibody 

used in rheumatoid arthritis treatment since obtaining FDA approval in 2010 [48]. TCZ 

binds IL-6 and blocks JAK/STAT signaling to prevent the production of pro-

inflammatory molecules [48,49]. It is currently being investigated for the treatment of 

endothelial dysfunction due to its anti-inflammatory properties. This is because RA is 

often listed as a co-morbidity in approximately 39-50% of atherosclerosis-related deaths, 

with endothelial dysfunction presented in many RA patients [50]. One hypothesis is that 

the release of networks of chromatin and granules (NETs) into the extracellular space, a 

common occurrence in both RA and endothelial function. TCZ was found to alleviate 

symptoms in endothelial dysfunction in a human clinical study [49]. 

Targeting pulmonary arterial hypertension 

Pulmonary arterial hypertension (PAH) is a relatively rare condition, affecting 

approximately 10-52 people per million population, characterized by the narrowing of the 

pulmonary arteries [51,52]. Left untreated, pulmonary arterial hypertension leads to the 

buildup of pressure on the right side of the heart when blood vessels in the lungs are 
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diseased, causing the arteries to become increasingly narrow with time, and right-sided 

heart failure, often resulting in premature death [53,54]. While the direct cause of 

pulmonary arterial hypertension is unknown, a set of factors including liver disease, HIV 

infection, intravenous drug use, autoimmune disorders, and others are suspected to be 

culpable. For pulmonary arterial hypertension, there are several drugs under investigation 

for use in PAH in clinical trials and are discussed in detail [55]. Of these, two drugs, 

Anakinra and Ubenimex, target inflammatory processes specifically. 

Anakinra 

Anakinra was approved for use in rheumatoid arthritis by the FDA in 2001. 

Anakinra is currently under investigation and has undergone Phase I clinical trial studies 

for novel use in PAH [55,56]. Anakinra, an interleukin-1 (IL-1) receptor protein 

antagonist analogue, is recombinantly expressed in E. coli and is administered via 

subcutaneous injection. The proposed mechanism of action for PAH, done in mice, is 

such that anakinra blocks perivascular macrophage recruitment in pulmonary artery 

smooth muscle cells [57]. In an inflammatory response pathway, IL-1b binds to IL-1 

receptor (IL-1R) and recruits the myeloid differentiation primary response protein 88 

(MyD88) and induces IL-1 synthesis via NFκB activation. In this study, the goal was to 

investigate whether this pathway played a role in the progression of PAH.57 First, it was 

determined that in both the lung tissue taken of patients with PAH as well as mice with 

PAH, there were increased expression levels of both IL-1R and MyD88. In IL-1R-/- and 

MyD88-/- mice, severity of PAH was not significantly different between the two but 

were significantly lower in severity than hypoxic wild-type mice. Hypoxic wild-type 

mice treated with anakinra (20 mg/kg per day) were shown to have lower severity in 
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PAH symptoms, namely, right ventricular systolic presser and hypertrophy, than 

untreated mice. It was also observed than in both IL-1R-/- and MyD88-/- hypoxic mice as 

well as wild-type mice treated with anakinra, there was no significant fold change in IL-

1b levels when compared to wild-type untreated mice with hypoxia over 48 hours. These 

findings suggest that anakinra is a good potential treatment for PAH in that IL-1b is not 

having to be expressed as an emergency measure for PAH. Furthermore, the pilot Phase I 

clinical study (clinicaltrials.gov: NCT03057028) done with treatment of PAH by 

anakinra found promising results by inducing IL-1 blockade. 

Ubenimex 

Ubenimex, also known as bestatin, is not currently approved for use by the FDA 

for any disease; however, it has undergone Phase II clinical trials for potential treatment 

of PAH [55]. Its original usage was for leukemia [58]. Ubenimex is a leukotriene A4 

hydrolase (LTA4H) inhibitor, thought to block leukotriene B4 formation, thought to be 

involved in PAH pathogenesis via pulmonary artery smooth muscle cell proliferation 

[55,59]. However, results from the Phase II clinical trial are as yet unpublished. 

Modulating Autophagy in Neurodegeneration 

Neurodegenerative disorders are devastating, irreversible conditions that are 

characterized by the loss of neurons in the brain. In many cases, the onset of 

neurodegeneration associated with diseases including Parkinson’s and Alzheimer’s, is 

sporadic with no known genetic or environmental cause [60,61]. Given the absence of a 

causative agent, there are no disease-modifying treatments available, and existing drugs 

serve only to treat symptoms in an attempt to prolong the effects of disease progression 
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[62]. There exits an important need for treatment options that prevent, slow or stop the 

progression of neurodegenerative disorders.  

Neurodegenerative disorders can affect different areas of the nervous system, and 

cause patients to exhibit different symptoms depending on the disease; however, many 

share important characteristics outside the gradual loss of neurons over time. For 

example, Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis and 

Huntington’s Disease all exhibit protein aggregate pathology in the form of 

neurofibrillary tangles, Lewy bodies, inclusion bodies, and mutant huntingtin aggregates, 

respectively [63]. It is believed that these aggregates are toxic and play a role in neuronal 

death. Neurodegenerative disorders are also commonly associated with aberrant 

activation of the innate and adaptive immune systems in the central nervous system. 

Currently, significant research efforts are focused on targeting the mechanism by which 

these aggregates are removed by cell, namely autophagy. Alternatively, efforts also 

include studying the role inflammation plays in these disorders [64]. 

Autophagy is a cellular process responsible for maintaining protein homeostasis 

in the cell. While there is more than one mechanism of autophagy, macro-autophagy is 

the most studied and best understood type. For this reason, we will focus on macro-

autophagy (hereafter referred to as autophagy). In autophagy, cytoplasmic materials such 

as proteins, metabolites, and organelles are engulfed by membrane-bound vesicles known 

as autophagosomes. These autophagosomes are then trafficked to a lysosome, which then 

fuses with the autophagosome and is then degraded and released [63]. 

Because a hallmark of neurodegenerative diseases is the accumulation of protein 
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aggregates, and autophagy is known to clear large aggregates of protein, autophagy is 

thought to be a potential target for a disease-modifying treatment. Furthermore, 

dysfunction in autophagy and its regulation have been implicated in many common 

neurodegenerative diseases. In Parkinson’s Disease, mutations in PTEN-Induced Kinase 

1 (PINK1) and Parkin, an E3 ubiquitin ligase involved in mitochondrial turnover, are 

known to disrupt the autophagic degradation of mitochondria leading to stress-induced 

mitochondrial dysfunction and cell death. Additionally, mutations in Park9 disrupt 

acidification in the lysosome [65].  In AD, reductions in expression of Beclin 1, a protein 

involved in the induction of autophagy, and Rab5, an endosomal and lysosomal regulator, 

have been implicated in the progression of the disease [65]. Finally, in Huntington’s 

disease, huntingtin protein is involved in various aspects of autophagy, such as cargo 

recognition, endosomal and lysosomal regulation, and vesicular trafficking, and its 

canonical polyglutamine tract mutation has been shown to interfere with these regular 

functions (of autophagy) (Figure B4) [65]. Felodipine and lonafarnib are two examples 

of drug repurposing candidates that have undergone study for their activity to target 

autophagy.  
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Figure B4. Autophagy mechanism and associated gene dysfunctions. Autophagy 

is a cellular mechanism by which metabolites, organelles, proteins and protein 
aggregates are enveloped by a vesicular membrane to form an autophagosome. This 

autophagosome is trafficked to a lysosome where fusion occurs, and lysosomal 
degradative enzymes break down the cargo. Dysfunction in several genes associated 

with neurodegenerative diseases have been implicated and are known to disrupt 
autophagy. Figure 4 image created using BioRender.com. 

Felodipine 

Felodipine is an antihypertensive drug originally approved by the FDA in 1988 

[66]. It prevents hypertension by inhibiting L-type calcium channels and preventing 

calcium-dependent smooth muscle contractions, namely those responsible for 

constriction of the blood vessels [66] Currently, it is being investigated as an inducer of 

autophagy in Huntington’s Disease and Parkinson’s Disease models.  

Calcium influx inhibition induces autophagy by reducing the activity of calcium-

dependent cysteine proteases, which are also known as calpains. Upon activation, 

calpains cleave G-proteins, which results in the activation of adenylyl cyclase. Activated 

adenylyl cyclase increases the amount of cyclic AMP (cAMP) in the cell and activates 

phospholipase C. Phospholipase C is responsible for the generation of 

phosphatidylinositol 3-phosphate (PIP3), which is a direct inhibitor of autophagy and 
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allows more calcium to enter the cell creating a positive feedback loop. By blocking 

cytoplasmic calcium, there is a net reduction in PIP3 and an induction of autophagy [67]. 

Felodipine activity to induce autophagy by blocking L-type calcium channels was 

identified as favorable in a screen of drugs assessed in primary mice neurons [68] Out of 

nine calcium channel blockers, felodipine showed the greatest increase in 

autophagosomes and autophagolysosomes. The efficacy of felodipine has been further 

assessed in zebrafish models of tauopathy, a class of neurodegenerative disease involving 

the aggregation of Tau protein in the human brain, mouse models of Huntington’s 

Disease, and mouse models of Parkinson’s Disease [68]. In mice, felodipine has the 

ability to ameliorate signs of Huntington’s disease over a treatment period of 12 weeks 

and resulted in improved clearance of alpha-synuclein, the main component of Lewy 

bodies. Twenty-two B6HD mice, a Huntington’s Disease model, were treated with 

felodipine starting in their sixth week from birth, and were tested for grip strength, wire 

maneuvering and tremors, every two weeks from age 7 to 19 weeks.  Felodipine treated 

mice were reported to have better grip strength from week 11-19 and a reduction in 

tremors from weeks 17-19, when compared to vehicle-treated control mice [68]. 

Likewise, A53T alpha-synuclein mice, a common Parkinson’s Disease mouse model, 

were shown to have improved grip strength, increased neuron numbers in the substantia 

nigra (the area of the brain affected by Parkinson’s Disease), and a reduction in insoluble 

alpha-synuclein, a protein that comprises Lewy bodies. In zebrafish, a rho: tau model was 

used to emulate cell death associated with the aggregation of Tau protein commonly 

associated with Alzheimer’s Disease. In this model, wild-type human tau protein is 

expressed in rod photoreceptors and causes cell death. Felodipine successfully rescued 
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rod cell death, but failed to do so in zebra fish lacking atg7, a vital autophagy gene, 

suggesting the effect of felodipine on these cells is dependent on autophagy [68]. 

While felodipine has shown promise as a potential new treatment for 

neurodegeneration, cautious skepticism is advised due to how recent the studies have 

been conducted and the scope of studies has been limited to preclinical models of disease. 

Human clinical trials and efficacious dosage regimens remain to be conducted. Due to 

differences between human and mouse physiology, felodipine is metabolized much 

quicker in mice. As a result, the mice in this study were exposed to transient exposures of 

felodipine that are two orders of magnitude higher than the dosage indicated for use as an 

antihypertensive drug in humans. It is possible that the required dosage is so high that 

deleterious side-effects may preclude human treatment. Finally, the models used in this 

work were only successful in showing that felodipine can clear protein aggregates; the 

studies did not include the full disease course or its progression.  

Lonafarnib 

Lonafarnib is a promising drug that has passed phase two clinical trials for the 

treatment of progeria, a genetic disorder causing accelerated aging in children, and phase 

three clinical trials for the treatment of hepatitis delta virus infections [69]. Lonafarnib is 

a farnesyltransferase inhibitor that prevents prenylation, the addition of a lipid group to 

the cysteine residues of proteins. In hepatitis delta infections, prenylation is required for 

the assembly and packaging of new viral particles.68 By inhibiting prenylation, fewer 

viral particles are created. In progeria, a genetic mutation causes Lamin A to be truncated 

and form progerin. Lamin A is an important part of the nuclear membrane structure and 
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may be required for the repair of double-stranded DNA breaks [70]. When progerin, is 

formed instead, it is prenylated and cannot incorporate into the nuclear membrane. By 

inhibiting farnesyltransferase and prenylation, the instability of the nuclear membrane 

can be rescued [70]. 

Interestingly, lonafarnib shows promise as an inducer of autophagy and may be a 

possible therapeutic to treat tauopathy. In the cell, autophagy is regulated by the 

mechanistic target of rapamycin (mTOR) kinase, also commonly referred to as FK506-

binding protein 12-rapamycin-associated protein 1 (FRAP1). When mTOR is active, 

autophagy is inhibited. mTOR itself is regulated by the G-protein, Rheb, which is 

functional when localized to the cell membrane via a fatty acid chain tether. 

Farnesyltransferase inhibitors, such as lonafarnib disrupt the prenylation of Rheb and 

prevent its localization to the inner cell membrane. Without Rheb in the proper position, 

mTOR cannot be activated, resulting in an upregulation of autophagy [71]. 

Lonafarnib has been shown to induce autophagy in primary mice fibroblast cells 

as well as improving symptoms in mice models of dementia. In a study by Hernandez et 

al., transgenic NIH3T3 mouse fibroblast cells were used to show efficacy in inducing 

autophagy [72]. NIH3T3 cells were used to perform a fluorescent assay that can 

determine the rate of autophagy[71]. NIH3T3 cells treated with increasing doses of 

lonafarnib exhibited dose-dependent increases in autophagolysosomes suggesting a 

lonafarnib mediated increase in autophagy. Furthermore, Tg4510 mice, used as a 

dementia model displaying behavioral impairments associated with dementia, were 

treated with lonafarnib starting at 10 weeks of age. At 20 weeks, mice were assessed for 
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nest building behaviors. Treated mice displayed an improvement in nest shredding, a trait 

associated with these mice. Lonafarnib was also able to ameliorate the circling behavior 

attributed to this model, but not reverse it after already manifesting. Due to these 

findings, it was concluded that lonafarnib cannot reverse existing tau pathology, but can 

prevent it from worsening [72]. 

While lonafarnib is indeed a promising drug, it is important to consider that this 

drug is still in relatively early stages of the drug discovery pipeline. It has not yet been 

approved by the FDA and is not clinically available. It is also important to note that the 

successful use of this drug as a treatment for dementia would also be hindered by the fact 

that lonafarnib cannot reverse the damage done by tauopathy. Because of this, lonafarnib 

may be essential in patients with early diagnoses. Studies on the inhibition of prenylation 

of proteins should be performed to determine if lonafarnib may have any off-target 

effects, as there are many proteins that need to be prenylated to function correctly. It is 

likely that in the case of progeria, the life-saving effect seen by long term use of this drug 

outweighs any potentially harmful side-effects, but the same cannot be inferred for 

dementia.  

Inflammation and NRF2 as a Target in Neurodegeneration 

Chronic inflammation in the brain is associated with many neurodegenerative 

disorders including psoriasis, multiple sclerosis, Parkinson’s disease, macular 

degeneration, cutaneous T-cell lymphoma, obstructive sleep apnea, adult brain 

glioblastoma and rheumatoid arthritis [64]. It is believed that the innate immune response 

and chronic inflammation of the brain mediated by microglia and astrocytes have a role 
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in the onset of neurodegeneration, and there is interest in studying therapeutics to reduce 

neuroinflammation. As an example, nuclear factor (erythroid derived 2)-like2 (NRF2) is 

a transcription factor that regulates the expression of detoxifying enzymes and 

antioxidant genes including NAD(P)H quinone oxidoreductase 1, heme oxygenase-

1(HO-1), glutathione S-transferase (GST) genes, and UDP-glucuronosyltransferase 

(UGT) genes. NRF2 is inhibited by KEAP1 under normal conditions, but NRF2 is 

activated under stressful conditions. Under normal conditions, KEAP1 binds to NRF2 

and mediates its degradation via the ubiquitin-proteasome system. However, under 

conditions of oxidative stress, KEAP1 releases NRF2 allowing it to upregulate any 

number of antioxidant genes. One such gene is HO-1. HO-1 catalyzes the degradation of 

heme into carbon monoxide (CO), free iron, and biliverdin as well as directly 

upregulating anti-inflammatory cytokines and inhibiting pro-inflammatory cytokines. In 

addition to these points, CO inhibits NFκB, a signaling protein responsible for promoting 

pro-inflammatory cytokines [73]. Activation of the NRF2 signaling pathway, which is 

shown in (Figure B5), has a net anti-inflammatory effect. Dimethyl fumarate and 

exemestane are two drugs that could be repurposed for treatment of inflammation due to 

aberrant NRF2 signaling pathway. 

 

https://en.wikipedia.org/wiki/Heme_oxygenase_1
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Figure B5.  NRF2 signaling and inflammation. Under basal conditions, NRF2 is 

bound to its repressor, KEAP1 and ultimately degraded by the proteasome 
following ubiquination. However, under oxidative stress, free NRF2 translocates to 
the nucleus and dimerizes with small MAF family proteins. This complex binds to 

and promotes the expression of genes with an antioxidant response element, such as 
HO-1. HO-1 directly inhibits pro-inflammatory cytokines while upregulating anti-
inflammatory cytokines as well as catalyzing the breakdown of heme into carbon 
monoxide, free iron, and biliverdin. Carbon monoxide is an inhibitor of the NFκB 

pathway, resulting in an overall decrease of pro-inflammatory cytokines. The figure 
B5 image was created using BioRender.com. 

Dimethyl Fumarate 

Fumaric acid derivatives were first utilized in the 1950’s for the treatment of 

psoriasis. The hypothesized mechanism of action for fumaric acid and its derivatives was 

thought to be that a combination of oral and topical administration of these compounds 

restored an imbalance in the citric acid cycle, as fumaric acid is an intermediate product 

in the cycle, and a fumarate deficiency was proposed as a problem in patients with 

psoriasis [74]. However, early clinical trials could not reproduce these results and 

fumarates were discontinued for over ten years. In the early 1990s, the first clinical trial 

for dimethyl fumarate (DMF) was conducted for the treatment of psoriasis and the results 
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proved favorable in regards to severe plaque psoriasis [75]. The topical, exogenous 

administration of dimethyl fumarate (Figure B6), also known as Fumaderm®, evolved 

over time into an oral formulation in the late 1990’s. Germany licensed Fumaderm® as 

an oral treatment for moderate to severe psoriasis[76].  

 
Figure B6. The structure for dimethyl fumarate.  

DMF was approved by the FDA in 2014 under the trade name Tecfidera® as a 

medication to treat relapsing forms of multiple sclerosis (MS) [77,78]. Multiple sclerosis 

is an autoimmune disease in which the myelin sheath surrounding nerves is attacked and 

degrades, resulting in pain and motor function impairment. DMF is metabolized to 

monomethyl fumarate when administered to a patient. Monomethyl fumarate acts as an 

agonist of the nAChR, resulting in activation of the NRF2 pathway, which leads to a 

reduction in the inflammation that exacerbates demyelination. More recently, DMF has 

been found to activate this same anti-inflammatory pathway in Parkinson’s disease 

patients, providing a promising treatment option for neurodegeneration that appears to 

work in mouse models of α-synucleinopathy [79]. In PD, DMF has demonstrated a 

neuroprotective effect by ameliorating mitochondrial dysfunction and upregulating 

mitochondrial biogenesis by blocking neurotoxicity in wild-type, but not Nrf2 knockout 

mice [80]. 

On par with other immunomodulation treatments, DMF does not have a singular 

mechanism of action or one biochemical pathway that is targeted with administration. 
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Rather, it is believed that DMF has multiple targets and exerts a spectrum of biological 

effect that leads to the therapeutic action of DMF experienced by MS patients. As shown 

in in vitro studies, DMF partially exerts anti-inflammatory action with the ability to 

increase the production of interleukin-4 (IL-4) and IL-5 when added to cultures of 

stimulated peripheral mononuclear blood cells. These cytokines are conducive to 

producing and promoting a Th2 immune response. The perturbation away from the Th1 

response was also replicated in dendritic cells. The polarization of the immune response 

away from Th1 and toward the Th2 profile is a probable mechanism for DMF function as 

an immunomodulator. There is also evidence that DMF stimulates the native anti-

oxidative stress machinery in cells. The anti-oxidative response is activated by NRF2, the 

primary transcription factor for genes associated with the anti-oxidative response. DMF 

has been shown to enhance the nuclear translocation of NRF2, and thus activating 

transcription of associated genes. The effect DMF has on the NRF2 pathway is likely a 

profound contributor to the mechanism of action [77]. 

In a study by Lastres-Becker et al., rAAV6-ɑ-synuclein NRF2+/+ and NRF2-/- 

mice were treated with DMF for 1 and 3 weeks followed by additional treatments every 

other day for eight weeks [79]. One day before sacrifice, the mice were assessed for 

motor asymmetry via the elevated body swing test. The NRF2-/- mice displayed 

significantly increased contralateral body torsion compared to the NRF2+/+ mice [81]. 

Additionally, DMF was assessed for its effect on signs of inflammation at the tissue level. 

One sign of inflammation in Parkinson’s Disease is the increase of microglia and 

astrocytes in the basal ganglia known as microgliosis and astrocytosis, respectively. In 

order to test the effect of DMF on these inflammatory markers, NRF2+/+ mice treated 
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with DMF displayed significant decreases in astrocytosis and microgliosis compared to 

the NRF2-/- mice. In the brain, microglia can express one of two phenotypes, a pro-

inflammatory, IL-1β and inducible nitric oxide synthase (iNOS)-producing phenotype 

and anti-inflammatory, IL-4 and sphingosine kinase 2-producing phenotype. DMF was 

shown to mediate the conversion of the pro-inflammatory phenotype to the anti-

inflammatory phenotype in mouse BV2 microglial cells. Cells treated with DMF 

displayed increased levels of IL-4 mRNA in a time-dependent manner [79]. DMF was 

also shown to have a neuroprotective effect on BV2 cells in studies where the cells were 

pretreated with DMF and then exposed to ɑ-synuclein. Untreated cells had an induction 

of IL-1β and iNOS whereas pretreated cells displayed lower pro-inflammatory marker 

induction. Based on these findings, NRF2 appears to be a potentially useful target for 

Parkinson’s Disease treatment, and DMF may bring us one step closer to a disease 

modifying drug [81]. 

A survey of clinical trial data yielded that DMF has been or is being investigated 

for efficacy in treating the following disease states: Primary Progressive Multiple 

Sclerosis, Relapsing-Remitting Multiple Sclerosis, Age-related Macular Degeneration, 

Cutaneous T Cell Lymphoma, Obstructive Sleep Apnea, Adult Brain Glioblastoma and 

Rheumatoid Arthritis. While there is a diversity of pathologies being investigated with 

the administration of DMF, inflammation arises as a shared theme in these clinical trials. 

Immunomodulation, down regulation of proinflammatory cytokines, the effect of DMF 

on T cell regulation, and DMF exerts in vitro could be of utility in treating a myriad of 

diseases [82–84]. 
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Exemestane  

Exemestane was approved by the FDA in 1999 and is marketed as Aromasin, an 

aromatase inhibitor for use on estrogen-dependent breast cancers, especially in post-

menopausal women [85,86]. Exemestane treats breast cancer by preventing the synthesis 

of estrogen via the inhibition of the aromatization step of androgens into estradiol, a 

precursor of estrogen. Without estrogen, these estrogen-dependent cancers’ growth and 

spread is inhibited. Exemestane was identified as a potential treatment for Parkinson’s 

Disease through a screen aiming to find compounds that activate HO-1 [87]. Exemestane 

was found to be one of the most effective compounds in the screen. The proposed 

mechanism for treating Parkinson’s Disease is different than that of treating breast 

cancer, where aromasin inhibits the formation of estrogen from androgen during the rate-

limiting step of aromatase conversion [88,89]. In this sense, aromasin acts as an 

upregulator of NRF2 expression, a transcription factor responsible for producing anti-

oxidant enzymes in order to circumvent the degeneration of dopaminergic neurons due to 

high amounts of oxidative stress from ROS such as NO [85,90]. 

In a study by Son et al, (2017), exemestane was validated in BV2 microglial cells 

and in MPTP mouse models of Parkinson’s Disease.  BV2 cells were tested for NRF2 

protein levels, HO-1 and NQO1 mRNA levels, and iNOS and IL-1β levels following 

exemestane treatment.85 NRF2 expression was elevated, suggesting exemestane-

mediated activation. Likewise, the expression of NRF2 downstream genes increased with 

exemestane treatment, while inflammatory marker levels decreased. Taken together, 

these results signify a possible reduction of inflammation by exemestane. In the same 

study, exemestane was also evaluated in a mouse model of Parkinson’s Disease. Mice 
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were treated with MPTP, a neurotoxin that kills dopaminergic neurons and attempts to 

simulate the death of neurons in Parkinson’s Disease. The mice were then co-

administered with exemestane orally (10 mg/kg) three times a day every day for seven 

days. Following treatment, the mice were sacrificed. Immunostaining was performed for 

tyrosine hydroxylase, a selective marker expressed by dopaminergic neurons. Mice co-

treated with exemestane exhibited a reduction in the loss of dopaminergic neurons caused 

by MPTP [85]. 

DMF and exemestane both show enticing results as potential new treatments for 

Parkinson’s Disease; however, the exact molecular target of either drug remains 

unknown. The Parkinson’s Disease model studies performed with DMF and exemestane 

are still preclinical, limiting any interpretation of results regarding potential efficacy in 

humans. One concern that may be raised for exemestane experiments has to do with the 

MPTP mouse model. The addition of a toxin does not necessarily recapitulate 

Parkinson’s Disease progression because the neurons die all at once instead of gradually 

over time as they would in human disease progression. Additionally, the results from the 

Son et al study seem to contradict previous reports that estradiol has a neuroprotective 

effect in PD [16]. However, estradiol and its inhibitor, exemestane, exhibit their 

neuroprotective qualities through separate pathways- JNK and NRF2, respectively.  This 

would necessitate further studies on the effects of estradiol and its inhibition in the 

context of PD. Another consideration that must be made is that the experiments 

conducted on mice for both drugs were done over a relatively short period of time. The 

DMF treatments lasted eight weeks and the exemestane tests were done for seven days. It 

will be necessary to discover how long-term treatments affect the progression of 
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Parkinson’s Disease in more relevant model systems up to and including human trials. 

Conclusion 

The benefit of repurposing drugs that have previously been FDA approved removes 

many of the time and financial barriers for bringing a drug to market. FDA approval is a 

good indication of a drug’s effectiveness and safety in clinical trials, which is indicative 

of a good outcome for the use of a drug for a different purpose. Because a drug can take 

anywhere from 8-12 years to go from initial discovery to the market, drug repurposing 

can cut this time significantly[1]. The repurposing of drugs to treat cardiovascular and 

neurodegenerative diseases is an emerging and promising field of study. Treatments for 

inflammatory diseases including vascular endothelial dysfunction, pulmonary arterial 

hypertension, multiple sclerosis, Parkinson’s,and Alzheimer’s, using repurposed drugs 

like colchicine, methotrexate, tocilizumab, felodipine, lonafarnib, dimethyl fumarate and 

exemestane may prove to be an effective strategy to address the treatment gap for 

untreatable ailments 
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