
A CASE STUDY IN REPRESENTING SCIENTIFIC

APPLICATIONS (GeoAc) USING

THE SPARSE POLYHEDRAL FRAMEWORK

by

Ravi Shankar

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2021

© 2021
Ravi Shankar

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Ravi Shankar

Thesis Title: A Case Study in Representing Scientific Applications (GeoAc) using
the Sparse Polyhedral Framework

Date of Final Oral Examination: 24th May 2021

The following individuals read and discussed the thesis submitted by student Ravi
Shankar, and they evaluated the presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Catherine Olschanowsky, Ph.D. Chair, Supervisory Committee

Dylan Mikesell, Ph.D. Member, Supervisory Committee

Steven Cutchin, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Catherine Olschanowsky,
Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

Dedicated to my family.

iv

ACKNOWLEDGMENTS

The author would like to express gratitude to his advisor Dr. Catherine

Olschanowsky for her unwavering support, encouragement and belief in him. Her

patience, advice and motivation over the years have been invaluable.

The author would like to thank his supervisory committee members Dr. Dylan

Mikesell and Dr. Steven Cutchin for their feedback and support.

The author would also like to acknowledge the help and collaboration of current

and former members of the ADaPT Data Flow Optimizations lab especially Aaron

Orenstein, Anna Rift, Tobi Popoola and Dr. Eddie Davis.

This material is based upon work supported partially by the National Science

Foundation under Grant Numbers 1849463 and 1563818. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the National Science Foundation. This

research utilized the high-performance computing support of the R2 compute cluster

(DOI: 10.18122/B2S41H) provided by Boise State University’s Research Computing

Department.

v

https://scholarworks.boisestate.edu/oit/2/

ABSTRACT

Tsunami detection and forecasting is a difficult problem that scientists are

trying to tackle. Early path estimation and accurate prediction of the arrival time

and size of a tsunami can save lives and help with impact assessment. Tsunami

inducing earthquakes cause ground and sea-surface displacements that push up on

the atmosphere. This atmospheric disturbance propagates upwards as an acoustic

wave and eventually hits the ionosphere. IonoSeis is a software simulation package

that leverages satellite-based ionospheric remote-sensing techniques to determine the

epicenter of these earthquakes.

The execution time of the ray-tracing component of IonoSeis prevents its use as

a real-time modeling tool. A proposed solution is to replace this component with

a newer ray-tracing package developed by Los Alamos National Laboratory called

GeoAc and parallelize it. This research is a case study that uses the sparse polyhedral

framework (SPF) to represent the operational GeoAc code and thereby drive the

requirements for a SPF optimization framework that is being actively developed.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xiii

LIST OF SYMBOLS . xiv

1 Introduction . 1

1.1 Problem Statement . 3

1.2 Contributions . 3

1.3 Organization . 4

2 Background . 5

2.1 IonoSeis . 5

2.2 GeoAc . 7

2.3 Memory Optimization . 9

2.4 Optimization Frameworks . 10

2.4.1 The Polyhedral Model . 10

2.4.2 The Sparse Polyhedral Framework (SPF) 11

2.4.3 The Computation API . 13

vii

3 Engineering update of GeoAc . 21

3.1 Parallelizing GeoAc . 21

3.1.1 Performance Profiling . 22

3.1.2 Identify Candidate Loops . 24

3.1.3 Refactor to prepare for OpenMP . 24

3.1.4 Implementation and Testing . 26

3.1.5 Performance . 27

3.2 Upgrading data formats to industry standards . 28

3.2.1 The Network Standard Data Format (NetCDF) 29

4 Representing GeoAc using the SPF . 31

4.1 Iterative Development . 32

4.2 Function Inlining . 33

4.3 Data-dependent Early Loop Exits . 35

4.4 Rewrite code using the SPF . 37

5 Related Work . 43

5.1 Applying polyhedral optimizations to scientific applications 43

6 Conclusion . 45

REFERENCES . 46

A Experimental Setup . 49

viii

LIST OF TABLES

3.1 Performance results of parallelized GeoAc . 27

ix

LIST OF FIGURES

1.1 Satellite-based remote sensing techniques detect tsunami induced iono-

spheric disturbances. 2

2.1 Flow diagram for the IonoSeis modeling framework. Red ovals indicate

model inputs, and blue boxes indicate individual steps that each have

their own BASH script with input parameters for that step [16]. 6

2.2 An simplified loop nest from the GeoAc codebase. 10

2.3 The iteration space: statements of the loop-nest in Figure 2.2 can be

viewed as lattice points on a polyhedron. 12

2.4 Dense Matrix Vector Multiply. 14

2.5 Sparse Matrix Vector Multiply. 14

2.6 Computation data space setup . 15

2.7 Partial specification of a statement using the Computation API. 16

2.8 Data dependences between statements. 17

2.9 A statement’s execution schedule. 17

2.10 Computation API specification for dense and sparse matrix vector

multiply . 19

2.11 Sparse matrix vector multiply C code generated by calling codegen on

the Computation . 20

x

3.1 GeoAc’s dot graph. Functions where most time is spent are marked

as saturated red, and functions where little time is spent are marked

as dark blue. Functions where negligible or no time is spent do not

appear in the graph by default. 23

3.2 Zoomed in sections of GeoAc’s dot graph identifying potential perfor-

mance bottlenecks . 24

3.3 Candidate Loops. 25

3.4 Combining the global variables into a struct. 26

3.5 Test parameters for GeoAc’s performance study. 27

3.6 GeoAc’s average runtime measured over four runs for varying number

of threads. Lower is better. 28

3.7 GeoAc’s speedup measured over four runs for varying number of threads.

Higher is better. 29

3.8 The structure of the resulting NetCDF file from GeoAc represented

using CDL. 30

4.1 The appendComputation function. 34

4.2 A nested function call using appendComputation. 35

4.3 The original Find Segment function in the G2S GlobalSpline1D.cpp

compilation unit . 36

4.4 The modified Find Segment function to take care of early exits and

return statements . 37

4.5 A statement in the Find Segment Computation. 38

4.6 The data reads and writes of the Find Segment. 39

4.7 The execution schedule of the Find Segment Computation. 39

xi

4.8 The complete Find Segment Computation function 40

4.9 Code generated for a single call to the c function from the GeoAc UpdateSources

function results in the Computation expressed as macros. The macro

s12 on line 14 represents the Find Segment function. 41

4.10 Calls to the macros defined in Figure 4.9. Line 13 represents the call

to the Find Segment function. 42

A.1 The lscpu command displays the CPU architecture information of R2. 50

xii

LIST OF ABBREVIATIONS

CDL – Common Data Language

GNSS – Global Navigation Satellite Systems

IEGenLib – Inspector/Executor Generator Library

IR – Intermediate Representation

LANL – Los Alamos National Laboratory

NetCDF – Network Common Data Form

NUMA – Non-Uniform Memory Access

ODE – Ordinary Differential Equation

PDFG – Polyhedral Dataflow Graph

SAC – Seismic Analysis Code

SPF – Sparse Polyhedral Framework

WASP3D – Windy Atmospheric Sonic Propagation

xiii

LIST OF SYMBOLS

∧ Logical and

| Set theory notation - such that

{} Set theory notation - A set

xiv

1

CHAPTER 1

INTRODUCTION

Tsunami detection and forecasting is a difficult problem that scientists are trying

to tackle. The unpredictability of tsunamis make it difficult for early warning and

evacuation of at-risk coastlines. Early estimation and accurate prediction of the

arrival time and size of a tsunami can save lives and help with impact assessment to

buildings and infrastructure.

Analysis of satellite-based sensing data may help predict tsunami behaviour.

Tsunami-inducing earthquakes cause ground and sea-surface displacements that push

on the atmosphere, and propagate through the atmosphere into the ionosphere.

Global Navigation Satellite Systems (GNSS) monitor ionospheric disturbances in-

duced by such phenomena. Such satellite-based remote sensing techniques can be used

to estimate the earth’s surface deformation and predict the arrival time of a tsunami.

IonoSeis [16] is a software simulation package that leverages these techniques to

determine the epicenter of earthquakes that could cause these tsunamis.

There are a few key areas where IonoSeis can be improved. One of its key compo-

nents is a three-dimensional ray-tracing package called the Windy Atmospheric Sonic

Propagation (WASP3D). WASP3D models waves arriving in the ionosphere from the

epicenter of an earthquake. This ray-tracing package is currently not fast enough to

meet the needs of the workflow and inhibits real-time monitoring application. There

2

Figure 1.1: Satellite-based remote sensing techniques detect tsunami induced iono-
spheric disturbances.

are also no provisions to simulate many potential epicenters simultaneously. One of

the objectives of this thesis replaces this component of IonoSeis with the GeoAc [2]

modelling tool.

GeoAc is a newer ray-tracing package developed by Los Alamos National Labora-

tory (LANL) that more accurately models wave propagation phenomena compared to

the WASP3D, the current ray-tracing model in IonoSeis. However, the execution time

of GeoAc is also too long. Scientific applications like GeoAc are often memory-bound,

requiring large amounts of memory, and spend a significant amount of execution time

reading and writing data. This can significantly affect performance. Shared memory

parallelization was used within GeoAc to meet the needs of IonoSeis workflow and

potentially permit real-time monitoring of tsunami hazards.

3

Several transformation frameworks have been developed to optimize memory bound

applications. However, they suffer from usability and expressivity limitations. One

such framework is the sparse polyhedral framework. Tools like the SPF are used

to express sparse computations and apply transformations automatically. This case

study drives the development of a SPF optimization framework to enable the use

of compiler transformations for performance optimization to be more expressive and

therefore more usable.

1.1 Problem Statement

The execution time of the ray-tracing component of IonoSeis is not fast enough to

meet the needs of the workflow and prevents its use as a real-time modelling tool. The

proposed replacement to this ray-tracing component is memory-bound and spends a

significant amount of time reading and writing data thereby affecting performance.

SPF tools suffer from a lack of expressiveness that captures the true behavior of

scientific applications.

1.2 Contributions

This thesis presents a case-study that drives the development of a SPF optimiza-

tion framework. The optimization framework enables the use of compiler transfor-

mations for performance optimization in other scientific applications.

WASP3D, the ray-tracing component of IonoSeis is replaced with an OpenMP

implementation of LANL’s GeoAc acoustic ray-tracing tool. The tool was customized

to meet the requirements of the workflow and generates NetCDF data files required

by subsequent steps in IonoSeis.

4

A performance study was conducted with varying threads on the OpenMP imple-

mentation of GeoAc comparing run-times and speed-ups with different thread counts.

1.3 Organization

This thesis is organized as six chapters with a varying number of sections. Chap-

ter 2 provides an overview of the domain science software tools and background

information on high performance computing concepts. Chapter 3 details the software

engineering effort to parallelize GeoAc using OpenMP and customize it to meet the

needs of the workflow. Chapter 4 covers the efforts to represent GeoAc using the

SPF and thereby drive the optimization framework. Chapter 5 contains a review of

related work. Chapter 6 concludes this thesis and provides a summary of this work.

5

CHAPTER 2

BACKGROUND

This chapter provides an overview of the domain science software tools that

this research is built on, background information on high performance computing

concepts, and the optimization framework that this case study drives. Section 2.1

provides an overview of the IonoSeis software simulation package and details how

the ray-tracing component WASP3D does not meet the needs of the workflow and

inhibits real-time monitoring application. Section 2.2 introduces the GeoAc software

package that is used to replace WASP3D and is then optimized. Section 2.3 talks

about the memory wall and how memory performance is a constraint in scientific

computing. Section 2.4 explores the polyhedral and sparse polyhedral compiler

optimization frameworks and introduces the Computation API [21].

2.1 IonoSeis

Many earthquakes cause sudden mass displacements at the earth’s surface. When

this type of earthquake occurs under the ocean, is of strong enough magnitude,

and meets certain other criteria, a tsunami is generated. Ground or sea-surface

displacements push on the atmosphere, which in turn generates an atmospheric

disturbance. This disturbance propagates upward as an acoustic wave eventually

inducing a local change in the electron density of the ionosphere. Global Navigation

6

Satellite Systems (GNSS) monitor ionospheric disturbances induced by such phenom-

ena. Such satellite-based remote sensing methods are used to estimate the earth’s

surface deformation and predict the arrival time of a tsunami.

IonoSeis is a software package that combines multiple existing codebases into a

single package to model GNSS-derived electron perturbations in the ionosphere due

to the interaction of the neutral atmosphere and charged particles in the ionosphere.

Running IonoSeis is a 5 step process as indicated in Figure 2.1. The Seismic Analysis

Figure 2.1: Flow diagram for the IonoSeis modeling framework. Red ovals indicate
model inputs, and blue boxes indicate individual steps that each have their own BASH
script with input parameters for that step [16].

Code (SAC) data format indicated by the green oval under step 5 Figure 2.1 is used to

store the electron perturbation time series. Network Common Data Form (NetCDF)

files are used to store grid information between each step.

WASP3D is one of the key components of IonoSeis and is a three-dimensional

7

ray-tracing software in spherical coordinates. It is, however, an older codebase and

has certain limitations:

• The execution time is not fast enough to to meet the needs of IonoSeis and

inhibits real-time monitoring application.

• There are no provisions to simulate many potential epicenters simultaneously.

Currently only a single epicenter can be simulated at a time.

• WASP3D does not accurately represent the physics of wave propagation.

– It does not account for viscous energy dissipation or wave amplification

due to the rarefied atmosphere at high altitudes.

– It cannot model ionospheric perturbations greater than 500-600 km until

the sampling of the atmosphere by shooting rays at nonlinear intervals can

be improved.

– It does not model nonlinear waveform behavior.

– It only models in spherical coordinates. While this is useful for IonoSeis,

scientists would like to be able to extend the package so that national labs

that study explosives and other local acoustic sources can use a Cartesian

version of the code.

A preliminary contribution of this thesis replaces WASP3D with GeoAc

2.2 GeoAc

GeoAc [2] is a ray-tracing software tool developed at Los Alamos National Lab-

oratory. The software is written in C++ and is used to model the propagation of

8

acoustic waves through the atmosphere using a fourth-order Runge–Kutta (RK4)

method. GeoAc models propagation in an azimuthal plane and include methods to

use a Cartesian coordinate system as well as a spherical coordinate system [2]. One

of the contributions of this thesis is to explore the feasibility of using an optimized

version of GeoAc to perform ionospheric ray-tracing and potentially run in real-time.

A performance analysis described in Section 3.1.1 indicates that the RK4 func-

tion is the most expensive operation in GeoAc and is therefore chosen for further

analysis and optimization. Figure 3.2 shows the potential performance bottlenecks.

Runge–Kutta methods are a family of iterative solutions commonly used to approxi-

mate solutions to initial value problems of ordinary differential equations (ODEs) [30,

1]. The fourth-order Runge-Kutta method is the most widely used method of solving

ODEs. It is commonly used as a solver in many frameworks and libraries, providing

a balance between computational cost and accuracy.

An ODE is a differential equation specifying the relationship between a dependent

variable, y, and an independent variable, x as show in in Equation 2.1. The term

‘ordinary’ indicates that it has an ordinary derivative rather than a partial derivative.

dy

dx
+ xy = 0 (2.1)

ODEs are used to model problems in engineering and various sciences that involve

the change of some variable with respect to another. Most of these problems require

the solution of an initial value problem. An initial value problem is an ODE together

with an initial condition that specifies the value of the unknown function at some

given point in the domain. GeoAc solves the equations governing acoustic propagation

through the atmosphere in the geometric limit using a RK4 algorithm.

9

2.3 Memory Optimization

Memory is a key bottleneck in scientific computing. Scientific applications are

memory-bound, often requiring large amounts of data from memory. As a result,

most of its execution time is spent reading and writing data. Even though micropro-

cessor and memory speed are improving exponentially, the rate of improvement of

microprocessor speed far exceeds that of memory, creating what is referred to as the

memory wall [29]. For a a few decades now, processor speed has increased by about

80% per year [14], as opposed to memory speed that has only improved at about

7% per year [11]. This increasing processor-memory performance gap results in the

processor spending a significant amount of time, and as a result energy, waiting for

data from the memory. As a result, the performance of scientific applications that

are memory-bound are significantly impacted.

Memory optimizations include a range of techniques used to optimize memory

usage that can then be used to improve the performance of scientific applications.

Loops are a prime candidate for optimization since they may provide a great source for

data parallelism. Loop fusion is a compiler optimization and transformation technique

that joins two or more statements from separate loops into a single loop. Read-reduce

fusion involves fusing loops that read from the same memory location and provides

opportunities to reduce the number of times the same data is read. This results

in better data locality. Data locality is the property where references to the same

memory location or adjacent locations are reused within a short period of time [15].

Better data locality ensures that the most frequently accessed data can be retrieved

quickly. Producer-consumer fusion involves merging loops where one loop writes a

variable that is then read by the second loop thereby reducing the temporary storage

10

requirement [6].

2.4 Optimization Frameworks

This section provides an overview of the polyhedral and sparse polyhedral compiler

optimization frameworks, and presents the Computation API, a SPF optimization

framework that this case study drives.

2.4.1 The Polyhedral Model

The polyhedral model is a mathematical framework used to represent and manip-

ulate loop nests of programs that perform large and complex operations in a compact

form. The iterations of the loop-nest in Figure 2.2 can be represented as lattice points

on a polyhedron as shown in Figure 2.3. The associated iteration space is represented

graphically as a two-dimensional space (i,j) where each node in the graph represents

an iteration. An iteration space that describes a loop nest is considered an affine space

when the lower and upper bounds of each loop can be expressed as a linear function.

1 int phi_bounds = 3;

2 int theta_bounds = 3;

3 for(int i = 1; i <= phi_bounds; i++){

4 for(int j = 1; j <= theta_bounds; j++){

5 S1(i,j)

6 }

7 }

Figure 2.2: An simplified loop nest from the GeoAc codebase.

A loop nest can be represented with the following components:

• Iteration Domain: The set of executed instances of each statement of the loop.

These sets are represented by affine inequalities.

11

• Relations: The set of reads, writes, and may-writes that relate statement

instances in the iteration space to data locations.

• Dependences: The set of data dependences that impose restrictions on the

execution order.

• Schedule: The overall execution order of each statement instance represented

by a lexicographically ordered set of tuples in a multidimensional space [9].

A transformation in the polyhedral model is represented by a set of affine func-

tions, one for each statement, called scheduling functions. An affine transformation is

a linear mapping that preserves points, lines, and planes. Affine transformations can

be applied to the polyhedron which is then converted into equivalent but optimized

code. This conceptualization enables the compiler to reason about loop transforma-

tions as manipulating iteration spaces of loop-nests. A limitation to the polyhedral

model is that the constraints within iteration spaces and transformations must be

affine.

2.4.2 The Sparse Polyhedral Framework (SPF)

The Sparse Polyhedral Framework extends the polyhedral model by supporting

non-affine iteration spaces and transforming irregular computations using uninter-

preted functions [13]. Uninterpreted functions are symbolic constants that represent

data structures such as the index arrays in sparse data formats. Symbolic constants

are constant values that do not change during the course of a computation. The

SPF represents computations with indirect memory accesses and run-time reordering

transformations with integer tuple sets and relations with affine constraints and con-

straints involving uninterpreted function symbols [26, 27]. Run-time data reordering

12

Figure 2.3: The iteration space: statements of the loop-nest in Figure 2.2 can be
viewed as lattice points on a polyhedron.

techniques attempt to improve the spatial and temporal data locality in a loop by

reordering the data based on the order in which it was referenced in the loop [25].

Sets and Relations in the SPF

At the core of the SPF are sets and relations. Data and iteration spaces are

represented with sets, while access functions, data dependences, and transformations

are represented with relations [26].

Sets are specified as shown in Equation 2.2, where each x is an integer tuple and

each c is a constraint. The arity of the set is m, the dimensions of the tuples.

s = {[x1, ..., xm] | c1 ∧ ... ∧ cn} (2.2)

The constraints in a set can be either equalities or inequalities which are expressions

13

containing symbolic constants or uninterpreted functions [26].

A relation is a mapping of sets of input integer tuples to output integer tuples.

Relations are specified as shown in Equation 2.3.

s = {[x1, ..., xm] → [y1, ..., yn] | c1 ∧ ... ∧ cz} (2.3)

Each x is an input tuple variable, each y is an output tuple variable and c is a

constraint.

Equation 2.4 represents the iteration domain of the dense matrix vector multiply

code show in in Figure 2.4. i and j are the iterators in the 2 dimensions of the set

and 0 <= i < N and 0 <= j < M are the affine inequalities or constraints that bind

the iteration space.

I = {[i, j] | 0 <= i < N ∧ 0 <= j < M} (2.4)

2.4.3 The Computation API

This section describes the Computation API from a workshop paper that has been

accepted [21] for publication. This case study contributed to the design and testing of

the Computation API. The Computation API is an object-oriented API that provides

a precise specification of how to combine the individual components of the SPF to

create an intermediate representation (IR). An IR is a data structure used internally

by the compiler to represent source code. This IR can directly produce polyhedral

dataflow graphs (PDFGs) [6] and translates the graph operations defined for PDFGs

into relations used by the Inspector/Executor Generator Library (IEGenLib) [26] to

perform transformations.

14

IEGenLib is a C++ library with data structures and routines that can represent,

parse, and visit integer tuple sets and relations with affine constraints and unin-

terpreted function symbol equality constraints [26]. The Computation API is imple-

mented as a C++ class in IEGenLib [26] and contains all of the components required to

express a Computation or a series of Computations. Dense and sparse matrix vector

multiplication, shown in Figure 2.4 and Figure 2.5 respectively, are used as examples

to represent the computations in the SPF. The components of a Computation are:

data spaces, statements, data dependences, and execution schedules. The proceeding

subsections describe the design and interface for each of these components.

Dense vector multiply

1 for (i = 0; i < N; i++) {

2 for (j=0; j<M; j++) {

3 y[i] += A[i][j] * x[j];

4 }

5 }

Figure 2.4: Dense Matrix Vector Multiply.

CSR Sparse matrix vector multiply

1 for (i = 0; i < N; i++) {

2 for (k=rowptr[i]; k<rowptr[i+1]; k++) {

3 j = col[k];

4 y[i] += A[k] * x[j];

5 }

6 }

Figure 2.5: Sparse Matrix Vector Multiply.

15

Data spaces

A data space represents a collection of conceptually unique memory addresses.

Each combination of data space name and input tuple is guaranteed to map to a

unique space in memory for the lifetime of the data space. The data spaces represented

in the matrix vector multiply examples shown in Figures 2.4 and 2.5 are y, A, and

x. In the sparse version the index arrays rowptr and col are also considered data

spaces.

1 // Dense matrix vector multiply

2 Computation* denseComp = new Computation();

3 denseComp->addDataSpace("y");

4 denseComp->addDataSpace("A");

5 denseComp->addDataSpace("x");

6
7 // Sparse matrix vector multiply

8 Computation* sparseComp = new Computation();

9 sparseComp->addDataSpace("y");

10 sparseComp->addDataSpace("A");

11 sparseComp->addDataSpace("x");

Figure 2.6: Computation data space setup

Statements

Statements perform read and write operations on data spaces. Each statement

has an iteration space associated with it. This iteration space is a set containing every

instance of the statement and has no particular order. A statement is expressed as

the set of iterators that it runs over, subject to the constraints of its iteration (loop

bounds).

A statement is written as a string and the names of the data spaces are delimited

with a $ symbol (see lines 2 and 5 in Figure 2.7). The iteration space is specified as a

16

set using the IEGenLib syntax, with the exception of delimiting all data spaces with

a $ symbol (see lines 3 and 6 in Figure 2.7).

1 Stmt* denseS0 = new Stmt(

2 "y(i) += A(i,j) * x(j);",
3 "{[i,j]: 0 <= i < N && 0 <= j < M}", ...

4
5 Stmt* sparseS0 = new Stmt(

6 "y(i) += A(k) * x(j)",
7 "{[i,k,j]: 0 <= i < N && rowptr(i) <= k < rowptr(i+1) && j = $col(k)}", ...

Figure 2.7: Partial specification of a statement using the Computation API.

Data dependences

Data dependences exist between statements. They are encoded using relations

between iteration vectors and data space vectors. In the matrix vector multiply

examples, the data reads and writes are specified as shown in Figure 2.8.

Execution schedules

Execution schedules are determined using scheduling functions that are required

to respect data dependence relations. Scheduling functions take as input the iterators

that apply to the current statement, if any, and output the schedule as an integer tuple

that may be lexicographically ordered with others to determine correct execution

order of a group of statements. Iterators, if any, are used as part of the output

tuple, indicating that the value of iterators affects the ordering of the statement. For

example, in the scheduling function {[i, j] → [0, i, 0, j, 0]}, the position of i before j

signifies that the corresponding statement is within a loop over j, which in turn is

within a loop over i.

17

1 /* 4th and 5th parameters to Stmt constructor */

2 // Dense matrix vector multiply

3 ...

4 { // reads

5 {"y", "{[i,j]->[i]}"},

6 {"A", "{[i,j]->[i,j]}"},

7 {"x", "{[i,j]->[j]}"}

8 },

9 { // writes

10 {"y", "{[i,j]->[i]}"}

11 }

12
13 // Sparse matrix vector multiply

14 ...

15 { // reads

16 {"y", "{[i,k,j]->[i]}"},

17 {"A", "{[i,k,j]->[k]}"},

18 {"x", "{[i,k,j]->[j]}"}

19 },

20 { // writes

21 {"y", "{[i,k,j]->[i]}"}

22 }

Figure 2.8: Data dependences between statements.

Figure 2.10 shows the complete specification of the dense matrix vector multiply

followed by the sparse matrix vector multiply.

Code Generation

Polyhedra scanning is used to generate optimized code. The Computation class

interfaces with CodeGen+ [4] for code generation. CodeGen+ uses Omega sets and

1 /* 3rd parameter to the Stmt constructor */

2 // Dense matrix vector multiply

3 "{[i,j] ->[0,i,0,j,0]}"

4
5 // Sparse matrix vector multiply

6 "{[i,k,j]->[0,i,0,k,0,j,0]}"

Figure 2.9: A statement’s execution schedule.

18

relations for polyhedra scanning. Omega [12] is a set of C++ classes for manipulating

integer tuple relations and sets. Omega sets and relations have limitations in the

presence of uninterpreted functions. Uninterpreted functions are limited by the prefix

rule whereby they must be a prefix of the tuple declaration. Uninterpreted functions

cannot have expressions as parameters. Code generation overcomes this limitation

by modifying uninterpreted functions in IEGenLib to be Omega compliant.

Figure 2.11 shows the results of code generation for the sparse matrix vector

multiplication Computation defined in Figure 2.10. Line 2 of Figure 2.11 defines a

macro for the statement s0, lines 7 - 9 remap the Omega compliant uninterpreted

function back to its original, and lines 11 - 16 are a direct result of polyhedra scanning

from CodeGen+. The Computation implementation provides all of the supporting

definitions for fully functional code.

19

Full Computation Specification

1 // Dense matrix vector multiply

2 Computation* denseComp = new Computation();

3 denseComp->addDataSpace("y");

4 denseComp->addDataSpace("A");

5 denseComp->addDataSpace("x");

6 Stmt* denseS0 = new Stmt(

7 // source code

8 "y(i) += A(i,j) * x(j);",
9 // iter domain

10 "{[i,j]: 0 <= i < N && 0 <= j < M}",
11 // scheduling function

12 "{[i,j] ->[0,i,0,j,0]}",

13 { // data reads

14 {"y", "{[i,j]->[i]}"},

15 {"A", "{[i,j]->[i,j]}"},

16 {"x", "{[i,j]->[j]}"}

17 },

18 { // data writes

19 {"y", "{[i,j]->[i]}"}

20 }

21);

22 denseComp->addStmt(denseS0);

23

24 // Sparse matrix vector multiply

25 Computation* sparseComp = new Computation();

26 sparseComp->addDataSpace("y");

27 sparseComp->addDataSpace("A");

28 sparseComp->addDataSpace("x");

29 Stmt* sparseS0 = new Stmt(

30 "y(i) += A(k) * x(j)",
31 "{[i,k,j]: 0 <= i < N && rowptr(i) <= k < rowptr(i+1) && j = col(k)}",

32 "{[i,k,j]->[0,i,0,k,0,j,0]}",

33 {

34 {"y", "{[i,k,j]->[i]}"},

35 {"A", "{[i,k,j]->[k]}"},

36 {"x", "{[i,k,j]->[j]}"}

37 },

38 {

39 {"y", "{[i,k,j]->[i]}"}

40 }

41);

42 sparseComp->addStmt(sparseS0);

Figure 2.10: Computation API specification for dense and sparse matrix vector
multiply

20

SPMV codegen

1 #undef s0

2 #define s0(__x0, i, __x2, k, __x4, j, __x6) y(i) += A(k) * x(j)

3

4 #undef col(t0)

5 #undef col_0(__tv0, __tv1, __tv2, __tv3)

6 #undef rowptr(t0)

7 #undef rowptr_1(__tv0, __tv1)

8 #undef rowptr_2(__tv0, __tv1)

9 #define col(t0) col[t0]

10 #define col_0(__tv0, __tv1, __tv2, __tv3) col(__tv3)

11 #define rowptr(t0) rowptr[t0]

12 #define rowptr_1(__tv0, __tv1) rowptr(__tv1)

13 #define rowptr_2(__tv0, __tv1) rowptr(__tv1 + 1)

14

15 for(t2 = 0; t2 <= N-1; t2++) {

16 for(t4 = rowptr_1(t1,t2); t4 <= rowptr_2(t1,t2)-1; t4++) {

17 t6=col_0(t1,t2,t3,t4);

18 s0(0,t2,0,t4,0,t6,0);

19 }

20 }

21

22 #undef s0

23 #undef col(t0)

24 #undef col_0(__tv0, __tv1, __tv2, __tv3)

25 #undef rowptr(t0)

26 #undef rowptr_1(__tv0, __tv1)

27 #undef rowptr_2(__tv0, __tv1)

Figure 2.11: Sparse matrix vector multiply C code generated by calling codegen on
the Computation

21

CHAPTER 3

ENGINEERING UPDATE OF GEOAC

This chapter provides details on the software engineering updates performed on

GeoAc. The contributions described in this chapter include section 3.1 which de-

scribes the various steps culminating in the shared memory parallelization GeoAc,

performance results as a result of the parallelization in section 3.1.5, and section 3.2,

which details upgrading data formats from a generic data file to industry standard

NetCDF format.

3.1 Parallelizing GeoAc

Scientific applications typically run on large clusters/supercomputers. Power is

an important design constraint of these machines. The longer an application runs

the more power it consumes. A direct result is a requirement for expensive cooling

solutions to keep the hardware running optimally. Scientific applications that are

designed to take advantage of parallelism run faster and as a result save time, energy

and money.

While GeoAc improved the physics of the generated models, it still wasn’t fast

enough to be used as a real-time monitoring tool. A serial run on GeoAc with the

input parameters as specified in Figure 3.5 took approximately 19 hours on Boise

22

State’s R2 compute cluster. The following sections describe the effort taken to

parallelize GeoAc using OpenMP [5].

3.1.1 Performance Profiling

Profiling GeoAc helped identify which parts of the application were expensive,

and could be good candidates for a code rewrite to potentially make the application

run in parallel. Profiling tools record what fraction of a program’s run-time is spent

in various portions of the code. The GNU gprof [8] utility is one such tool that

reports this data at function-level granularity. GeoAc was profiled using gprof to

generate the call graph seen in Figure 3.1. Each node in the graph represents a

function. The first number is the percent of cumulative time spent in the function

or its subroutines against the total runtime of the application. The second number,

listed in parentheses, is the percentage of time spent directly in the function. The

third number is the total number of calls to the function.

An open source python script gprof2dot [7] was used to convert the call graph into

a dot graph. Graphviz’s dot renderer was then used to generate an image of the dot

graph. Examination of the dot graph helped us gain an overview of the relationships

between the different functions in GeoAc.

23

F
ig

u
re

3.
1:

G
eo

A
c’

s
d
ot

gr
ap

h
.

F
u
n
ct

io
n
s

w
h
er

e
m

os
t

ti
m

e
is

sp
en

t
ar

e
m

ar
ke

d
as

sa
tu

ra
te

d
re

d
,

an
d

fu
n
ct

io
n
s

w
h
er

e
li
tt

le
ti

m
e

is
sp

en
t

ar
e

m
ar

ke
d

as
d
ar

k
b
lu

e.
F

u
n
ct

io
n
s

w
h
er

e
n
eg

li
gi

b
le

or
n
o

ti
m

e
is

sp
en

t
d
o

n
ot

ap
p

ea
r

in
th

e
gr

ap
h

b
y

d
ef

au
lt

.

24

From the dot graph, we were able to identify that a majority of the time spent

by the application was in the GeoAcGlobal RunProp function. This function in turn

called the GeoAc Propagate RK4 function.

Figure 3.2: Zoomed in sections of GeoAc’s dot graph identifying potential perfor-
mance bottlenecks

3.1.2 Identify Candidate Loops

Profiling GeoAc also helped us identify important loops that could be candidates

for optimization. A manual analysis of the code revealed the legality of paral-

lelizing expensive sections of the code. Figure 3.3 shows a loop nest within the

GeoAcGlobal RunProp function. This seemed to be an ideal target for optimization.

3.1.3 Refactor to prepare for OpenMP

A manual dataflow analysis was conducted to determine reads and writes within

parallel sections. Any variable written to in the parallel section must be thread

local. All global variables that were not constant were refactored and made local so

25

1 ...

2 for(double phi = phi_min; phi <= phi_max; phi+=phi_step){

3 for(double theta = theta_min; theta <= theta_max; theta+=theta_step){

4 ...

5 ...

6 for(int bnc_cnt = 0; bnc_cnt <= bounces; bnc_cnt++){

7 k = GeoAc_Propagate_RK4(solution, BreakCheck);

8 if(WriteRays || WriteCaustics){

9 if(WriteCaustics){

10 ...

11 }

12 // write profiles to data files and vector arrays

13 for(int m = 1; m < k ; m++){

14 ...

15 }

16 ...

17 }

18 ...

19 }

20 ...

21 }

22 ...

23 }

Figure 3.3: Candidate Loops.

that every thread has a local copy of the variable. After the dataflow analysis, all

non-constant global variables were re-declared locally and added as parameters to

functions where the globals were being used. In some functions, global structs were

being used. Since each thread requires a local copy of the struct, it was redefined

and moved to a header file so that local instances could be called by the driver. In

one particular function, a new struct called SplineStruct was created as shown in

Figure 3.4, that held all the global variables the function used in order to conveniently

pass the required variable around.

26

1 // Struct that contain variables that were previously global

2 // Each thread gets its own copy

3 struct SplineStruct{

4 //--//

5 //------Parameters for Interpolation------//

6 //--//

7 int r_cnt; // Number of vertical points

8 int accel = 0; // Acceleration index

9 double* r_vals; // r_k elements (r_cnt length)

10 double* T_vals; // Temperature at r_k

11 double* u_vals; // E-W winds at r_k

12 double* v_vals; // N-S winds at r_k

13 double* rho_vals; // Density at r_k

14 //--//

15 ////-------------Combined Function to Input-------------//

16 ////------G2S Files and Generate the Interpolation------//

17 ////--//

18 struct NaturalCubicSpline_1D Temp_Spline;

19 struct NaturalCubicSpline_1D Windu_Spline;

20 struct NaturalCubicSpline_1D Windv_Spline;

21 struct NaturalCubicSpline_1D Density_Spline;

22 };

Figure 3.4: Combining the global variables into a struct.

3.1.4 Implementation and Testing

After refactoring the code, OpenMP was used to achieve shared memory paral-

lelization. OpenMP consists of a set of compiler directives (#pragmas) and library

routines that provides support for parallel programming in shared-memory environ-

ments. These directives are designed such that even if the compiler does not support

them, the program will still execute, but without any parallelism.

The ‘#pragma omp for’ directive was applied to the nested loop identified in

section 3.1.2. The loop construct ‘for’ specifies that the iterations of loops will be

distributed among and executed by the encountering team of threads. By default

when OpenMP encounters the ‘#pragma omp for’ directive, it creates as many

threads as there are cores in the system.

27

3.1.5 Performance

Correctness was ensured by running the application successfully using the follow-

ing test parameters in Figure 3.5 without any errors or warnings.

1 0 <= theta <= 90 ; theta_step=0.1

2 0 <= phi <= 90 ; phi_step=1

3 bounces=0

4 rng_max=5000

Figure 3.5: Test parameters for GeoAc’s performance study.

Multiple runs of the application were conducted with varying number of threads

and a preliminary performance analysis was conducted.

Table 3.1: Performance results of parallelized GeoAc

GeoAc performance results
Threads Run 1 (s) Run 2 (s) Run 3 (s) Run 4 (s) Avg. (s) Speedup

1 68552 69043 69401 69424 69105
4 18712 18924 18642 19060 18835 3
8 9917 9909 9951 9961 9934 6
16 5078 5076 5087 5081 5080 13
28 3032 3016 3026 3023 3024 22

Figure 3.6 shows the average runtime measured over four runs with 1, 4, 8, 16

and 28 threads. For this particular set of input parameters, 28 threads was the clear

winner with an average runtime of about 50 minutes as opposed to 19 hours with the

serial version. The 28 thread run resulted in a 22x speedup over the serial version of

the code as shown in Figure 3.7.

28

Figure 3.6: GeoAc’s average runtime measured over four runs for varying number of
threads. Lower is better.

3.2 Upgrading data formats to industry standards

GeoAc outputs data in generic DAT files. One of the problems with this data

type is that when GeoAc is run with larger parameter sets, the output files can grow

significantly large. Another problem that was discussed earlier in section 2.1, is that

the NetCDF format is used to store grid information between each step of IonoSeis.

At the request of the domain scientist and in the interest of conforming to IonoSeis

and industry standards, the code was modified to output NetCDF files rather than

generic DAT files.

29

Figure 3.7: GeoAc’s speedup measured over four runs for varying number of threads.
Higher is better.

3.2.1 The Network Standard Data Format (NetCDF)

NetCDF is a machine-independent data abstraction commonly used for storing

and retrieving multi-dimensional scientific data [24]. A NetCDF file contains dimen-

sions, variables, and attributes. These components are used together to describe data

fields in a multi-dimensional dataset. A dimension has a name and size and can be

used to represent a physical dimension like the number of rays and the maximum

points along a ray. Variables have a datatype, name, and dimension and store the

bulk of the data. Attributes are used to provide more information about a particular

variable or the NetCDF file in general. Figure 3.8 shows the structure of a NetCDF

file generated with GeoAc using the CDL (Common Data Language) notation. CDL

30

is a human-readable notation for NetCDF data.

1 netcdf GeoAcResultsAndRaypaths {

2 dimensions:

3 nRays = 756 ;

4 maxPointsAlongRay = 600 ;

5 variables:

6 double theta(nRays) ;

7 double wasp_takeoff_angle(nRays) ;

8 int n_b(nRays) ;

9 double lat_0_deg(nRays) ;

10 double lon_0_deg(nRays) ;

11 double TravelTime_s(nRays) ;

12 double Celerity_kmps(nRays) ;

13 double TurningHeight_km(nRays) ;

14 double Inclination_deg(nRays) ;

15 double BackAzimuth_deg(nRays) ;

16 double GeoAtten_dB(nRays) ;

17 double AtmoAtten_dB(nRays) ;

18 double wasp_altitude_km(nRays, maxPointsAlongRay) ;

19 double wasp_colatitude_deg(nRays, maxPointsAlongRay) ;

20 double wasp_longitude_deg(nRays, maxPointsAlongRay) ;

21 double wasp_kr_deg(nRays, maxPointsAlongRay) ;

22 double wasp_kt_deg(nRays, maxPointsAlongRay) ;

23 double wasp_kf_deg(nRays, maxPointsAlongRay) ;

24 double wasp_amplitude_dB(nRays, maxPointsAlongRay) ;

25 double wasp_Veff_dB(nRays, maxPointsAlongRay) ;

26 double wasp_arrival_time_s(nRays, maxPointsAlongRay) ;

27 }

Figure 3.8: The structure of the resulting NetCDF file from GeoAc represented using
CDL.

NetCDF is not thread-safe. As a result, it was not possible to parallelize the file i/o

without using locks or some sort of mutual exclusion which would have significantly

increased the complexity of the implementation. The parallel implementation wrote

data files per thread and combined them at the end of the parallel section. Instead

of combining each of the thread’s data files, a better option was to gather the data

from each thread and write it directly to a NetCDF file.

31

CHAPTER 4

REPRESENTING GEOAC USING THE SPF

Based on the profile and a manual dataflow analysis of the code, portions of

GeoAc that could potentially be expressed using the sparse polyhedral framework

were identified. The GeoAc Propagate RK4 2 function was deemed the most suitable.

Data and iteration spaces are represented using sets while access functions, data

dependences, and transformations are represented using relations. This chapter

discusses the development of the optimization framework (Computation API) by

incrementally expressing GeoAc code using the SPF and tackling limitations as they

arise.

From GeoAc’s dot graph in Figure 3.2, it is evident that the GeoAc RunProp,

GeoAc Propogate RK4 and GeoAc UpdateSources functions have the greatest per-

cent of cumulative time spent in them. The core of the acoustic ray-tracing of

GeoAc is performed by an RK4 algorithm, so the GeoAc Propogate RK4 was deemed

most appropriate to represent using the SPF. The strategy of representing the op-

erational code with the SPF involved identifying the leaf function called from the

GeoAc Propogate RK4 function and representing it using the Computation API. We

work our way upwards from there.

To determine the leaf function, a manual dataflow analysis was conducted to iden-

tify all the function calls. Each function was traversed iteratively until the leaf func-

32

tion is reached. The first call in GeoAc Propogate RK4 is to the GeoAc UpdateSources

function. The GeoAc UpdateSources function calls the c function which in turn calls

the Eval Spline f function. The Eval Spline f function then calls the Find Segment

function which was determined to be the leaf function from a call to the GeoAc Propogate RK4.

It should be noted that the GeoAc Propogate RK4 function, the GeoAc UpdateSources

and the remaining functions were all in different compilation units.

After the dataflow analysis, the Find Segment function is expressed using the

sparse polyhedral framework. This is done using function inlining with the Compu-

tation API described in Section 2.4.3.

4.1 Iterative Development

Iterative transformations are a key goal of the Computation API. Contributions

of this thesis evaluate how well the iterative transformations work. We breakdown

the SPF representation process into small iterative pieces that are tested with the

operational GeoAc code. We start by representing the leaf function Find Segment as

a reusable function that returns a Computation which is outlined in Section 4.2. Code

generation is called on the Computation with a driver developed in IEGenLib. This

results in a C file with compiler generated statement macros. This file is dropped into

the operational GeoAc code in place of the Find Segment function as a preprocessor

directive (# include). GeoAc is then run on a test case with known results and the

new results are compared for correctness.

33

4.2 Function Inlining

Functions are useful in breaking down programming solutions to smaller reusable

modules and help with code structure. They, however, present challenges with inter-

procedural analysis. Function inlining is an optimization that copies code from the

function definition directly into the calling function’s code. This eliminates the need

for a separate set of instructions in memory and exposes optimization opportunities.

One of the goals of the Computation API is to eliminate the interprocedural analysis

challenge.

The c, v and u functions within GeoAc UpdateSources each called two other

functions - Eval Spline f and Find Segment. Furthermore, since the parent function

GeoAc UpdateSources is within a for loop, each of these functions end up being called

multiple times. To enable code reuse, functions that return a Computation* were cre-

ated in the optimization driver wherein each function in the driver corresponds to the

SPF representation of the function we were optimizing in GeoAc. The Computation*

returning functions are only ever called once. Subsequent calls to a function involved

appending the same Computation multiple times. Figure 4.8 shows the leaf function

Find Segment Computation.

Nested function calls resulted in the development of the appendComputation

function shown in Figure 4.1. This function take as its parameters the Compu-

tation to be appended (appendee), the iteration domain of the appendee context,

the execution schedule of the appendee context and a vector of strings containing

arguments to Computation to be appended. The return valued of this function is a

AppendComputationResult struct that consists of a vector of strings that holds the

return value (name of a dataspace or a literal) of the function that is being appended

34

and an integer that is the depth of the last statement in the appendee.

1 AppendComputationResult appendComputation(

2 const Computation* other,

3 std::string surroundingIterDomainStr,

4 std::string surroundingExecScheduleStr,

5 const std::vector<std::string>& arguments = {})

Figure 4.1: The appendComputation function.

One of the problems with inlining functions across multiple compilation units was

name collisions between the caller and callee functions. The addParameter function

takes as its parameters a pair of strings - the name of the argument and its datatype.

Data space renaming prevents name conflicts between the caller and callee as well as

multiple invocations of the callee within the same context. This is taken care of by the

appendComputation function under the hood. The argument is checked for whether

it is a data space in the caller, and an exception is thrown if it is not. Literals were

initially not supported. The caller is required to assign literals to temporary variables

and then pass those variables in as arguments. If a check on the argument indicates

that it is not a data space, it is considered a literal and evaluated. Expressions in

function calls are not supported. The caller will need to assign the expression to a

temporary data space.

Since inlining copies code from the function definition directly into the calling

function’s code, return statements are invalid. The appendComputation function

supports return values by returning a struct which consists of the depth of the last

appended statement and a vector of strings that hold the return value (name of a

dataspace or a literal). It is the caller’s responsibility to keep track of whether the

return type is a literal or data space.

35

Our use case necessitated function calls nested within loops. Functions being

called within loops of the calling function is a fairly common pattern in scientific

applications. In this situation the inlining procedure must adjust the iteration spaces

and scheduling functions of the callee to appear within the loop structures. By copying

data from previous computations up to the given depth of the surrounding execution

schedule, the inlining procedure was able to support function calls within loops. Fig-

ure 4.2 shows a nested function call. The third parameter of the appendComputation

function on line 13 indicates that a call to aComputation is the first statement in an

i loop (nested function call).

1 //The current computation (appender)

2 Computation* temp = new Computation();

3
4 //The computation to be appended (appendee)

5 Computation* comp = aComputation();

6
7 //The return datatype of the appendComputation function is a struct

8 AppendComputationResult aCompRes;

9 aCompRes = temp->appendComputation(comp, "{[0]}", "{[0]->[1, i, 1]}", args);

Figure 4.2: A nested function call using appendComputation.

4.3 Data-dependent Early Loop Exits

The Find Segment function shown in Figure 4.3 is used to find the segment index

as well as evaluate the 1D vertical spline. From the code, and by examining results of

debug print statements, it was observed that the function was originally written with

a loop optimization. The start, middle and end of the x vals array were checked at

the start of the function to quickly calculate the segment index without having to

iterate through the entire array. There were multiple data-dependent early loop exits

in the code.

36

The original Find Segment function

1 //---//

2 //------Functions to Find the Segment Index------//

3 //-----and Evaluate the 1D Vertical Splines------//

4 //---//

5 int Find_Segment(double x, double* x_vals, int length, int & prev){

6 if(x > x_vals[length-1] || x < x_vals[0]){

7 cout << "Cannot interpolate outside of given bounds. x = " << x << "

is invalid." << ’\n’;

8 } else {

9

10 // Check previous index and bounding segments

11 if(x >= x_vals[prev] && x <= x_vals[prev+1]){

12 done = true;

13 }

14

15 if(!done && prev+2 <= length-1){

16 if(x >= x_vals[prev+1] && x <= x_vals[prev+2]){

17 done = true;

18 prev = prev + 1;

19 }

20 }

21 if(!done && prev-1 >= 0){

22 if(x >= x_vals[prev-1] && x <= x_vals[prev]){

23 done = true;

24 prev = prev - 1;

25 }

26 }

27

28 if(!done){

29 for(int i = 0; i < length; i++){

30 if(x >= x_vals[i] && x <= x_vals[i+1]){

31 index = i;

32 break;

33 }

34 if (x >= x_vals[length - 2 - i] && x < x_vals[length - 1 - i])

{

35 index = (length - 2) - i;

36 break;

37 }

38 }

39 prev = index;

40 }

41 return prev;

42 }

43 }

Figure 4.3: The original Find Segment function in the G2S GlobalSpline1D.cpp

compilation unit

37

Data dependent loops have data dependencies, making parallelization difficult

without extensive refactoring. With the function now inlined, data-dependent early

exits would cause an early exit in the inlined code resulting in unforeseen errors.

As a result of this finding, research is ongoing to add data-dependent early exits

and data-dependent control flow in general to the SPF. The Computation API does

not at present support data-dependent early exits and as a result, the function was

refactored as shown in Figure 4.4.

The modified Find Segment function

1 int Find_Segment(double x, double* x_vals, int length, int & prev){

2 for(int i = 0; i < length; i++){

3 if(x >= x_vals[i] && x <= x_vals[i+1]){

4 prev = i;

5 }

6 }

7 }

Figure 4.4: The modified Find Segment function to take care of early exits and
return statements

Once the Find Segment function was represented in the SPF, we move up to the

next one which is the Eval Spline f function. We repeat this process until the code

in the function we were originally trying to represent in the SPF is replaced with code

generated using the Computation API.

4.4 Rewrite code using the SPF

This section presents operational GeoAc code represented in the SPF using the

Computation API. The Computation API is used to represent the modified Find Segment

function in Figure 4.5. The first parameter is the source code within the i loop and

38

is written as a string on lines 1 and 2 of Figure 4.5. The names of the dataspaces in

the source code are delimited with $ symbols.

1 Stmt* s0 = new Stmt("if(x >= x_vals[i] &&

2 x <= x_vals[i+1]) $prev$ = i;", //Statement

3 "{[i]: i>=0 && i<length}", //Iteration schedule

4 ...

Figure 4.5: A statement in the Find Segment Computation.

Statements have an iteration space associated with them. This iteration domain

is a set containing every instance of the statement and is typically expressed as the

set of iterators that the statement runs over, subject to the constraints of their loop

bounds. The iteration space is represented on line 3 of Figure 4.5 using the IEGenLib

syntax with the exception of wrapping data spaces with the $ sign. Equation 4.1

represents the iteration space of the Find Segment function.

I = {[i] | i >= 0 ∧ i < length} (4.1)

As discussed in Section 2.4.2, constraints to an iteration space should be provided

as symbolic constants. An interesting case that we came across is when constraints

were passed in as arguments to the function. By default, adding parameters to a

Computation also added them as data spaces to the Computation. It was necessary

to identify variables that are never written to and make sure that they aren’t renamed.

Data dependences are encoded using relations between iteration vectors and data

space vectors. The data reads and writes can be specified as shown in Figure 4.6:

Execution schedules are determined using scheduling functions. They take itera-

tors that apply to the current statement as the input, if any, and output the schedule

as an integer tuple that may be lexicographically ordered with others to determine

39

1 {{"x","{[0]->[0]}"}, {"x_vals","{[i]->[i]}"}, {"x_vals","{[i]->[ip1]:
ip1 = i+1}"}}, //Reads

2 {{"$prev$","{[0]->[0]}"}} //writes

Figure 4.6: The data reads and writes of the Find Segment.

correct execution order of a group of statements. Figure 4.7 shows the execution

schedule of the Find Segment function.

1 //3rd parameter to the Stmt constructor

2 ...

3 "{[i]->[0, i, 0]"},

4 ...

Figure 4.7: The execution schedule of the Find Segment Computation.

Once we have all the different components of a Computation, we can specify the

full Computation as Figure 4.8. The Computation class interfaces with CodeGen+

for code generation. Calling codegen on a Computation generates C code in the form

of statement macros and calls to them. A macro is a fragment of code which has

been given a name. Whenever the macro name is used, it is replaced by the contents

of the macro. Figures 4.9 and 4.10 shows the result of code generation.

40

The complete Find Segment Computation

1 Computation* Find_Segment_Computation(){

2

3 Computation* FindSegmentComputation = new Computation();

4 FindSegmentComputation->addParameter("x", "double");

5 FindSegmentComputation->addParameter("x_vals", "double*");

6 FindSegmentComputation->addParameter("$length$", "int");

7 FindSegmentComputation->addParameter("$prev$", "int&");

8

9 //Creating s0

10 //if(x >= x_vals[i] && x <= x_vals[i+1]) prev = i;

11 Stmt* s0 = new Stmt("if(x >= x_vals[i] &&

12 x <= x_vals[i+1]) $prev$ = i;",

13 "{[i]: i>=0 && i<length}", //Iteration schedule

14 "{[i]->[0, i, 0]}", //Execution schedule

15 { //Data Reads

16 {"x","{[0]->[0]}"},
17 {"x_vals","{[i]->[i]}"},
18 {"x_vals","{[i]->[ip1]: ip1 = i+1}"}

19 },

20 { //Data writes

21 {"$prev$","{[0]->[0]}"}}
22);

23

24 //Adding s0 to the computation

25 FindSegmentComputation->addStmt(s0);

26

27 //Adding the return value

28 FindSegmentComputation->addReturnValue("$prev$", true);

29

30 return FindSegmentComputation;

31 }

Figure 4.8: The complete Find Segment Computation function

41

Compiler generated macros

1 ...

2 #define s0(__x0) double _iegen_2r = r;

3 #define s1(__x0) double _iegen_2theta = theta;

4 #define s2(__x0) double _iegen_2phi = phi;

5 #define s3(__x0) NaturalCubicSpline_1D & _iegen_2Temp_Spline = spl.

Temp_Spline;

6 #define s4(__x0) double _iegen_2r_eval = min(_iegen_2r, r_max);

7 #define s5(__x0) _iegen_2r_eval = max(_iegen_2r_eval, r_min);

8 #define s6(__x0) double _iegen_2_iegen_1x = _iegen_2r_eval;

9 #define s7(__x0) struct NaturalCubicSpline_1D & _iegen_2_iegen_1Spline =

_iegen_2Temp_Spline;

10 #define s8(__x0) double _iegen_0_iegen_2_iegen_1x = _iegen_2_iegen_1x;

11 #define s9(__x0) double* _iegen_2_iegen_1_iegen_0x_vals =

_iegen_2_iegen_1Spline.x_vals;

12 #define s10(__x0) int _iegen_2_iegen_1_iegen_0length =

_iegen_2_iegen_1Spline.length;

13 #define s11(__x0) int& _iegen_2_iegen_1_iegen_0prev = _iegen_2_iegen_1Spline

.accel;

14 #define s12(x0, i, x2) if(iegen 0 iegen 2 iegen 1x >=

iegen 2 iegen 1 iegen 0x vals[i] && iegen 0 iegen 2 iegen 1x <=

iegen 2 iegen 1 iegen 0x vals[i+1]) iegen 2 iegen 1 iegen 0prev = i;

15 #define s13(__x0) int _iegen_2_iegen_1k = _iegen_2_iegen_1_iegen_0prev;

16 #define s14(__x0) double _iegen_2_iegen_1result = 0.0;

17 #define s15(__x0) if(_iegen_2_iegen_1k < _iegen_2_iegen_1Spline.length) {

double _iegen_2_iegen_1X = (_iegen_2_iegen_1x - _iegen_2_iegen_1Spline.

x_vals[_iegen_2_iegen_1k])/(_iegen_2_iegen_1Spline.x_vals[

_iegen_2_iegen_1k+1] - _iegen_2_iegen_1Spline.x_vals[_iegen_2_iegen_1k]);

double _iegen_2_iegen_1A = _iegen_2_iegen_1Spline.slopes[

_iegen_2_iegen_1k] * (_iegen_2_iegen_1Spline.x_vals[_iegen_2_iegen_1k+1]

- _iegen_2_iegen_1Spline.x_vals[_iegen_2_iegen_1k]) - (

_iegen_2_iegen_1Spline.f_vals[_iegen_2_iegen_1k+1] -

_iegen_2_iegen_1Spline.f_vals[_iegen_2_iegen_1k]); double

_iegen_2_iegen_1B = -_iegen_2_iegen_1Spline.slopes[_iegen_2_iegen_1k+1] *

(_iegen_2_iegen_1Spline.x_vals[_iegen_2_iegen_1k+1] -

_iegen_2_iegen_1Spline.x_vals[_iegen_2_iegen_1k]) + (

_iegen_2_iegen_1Spline.f_vals[_iegen_2_iegen_1k+1] -

_iegen_2_iegen_1Spline.f_vals[_iegen_2_iegen_1k]); _iegen_2_iegen_1result

= (1.0 - _iegen_2_iegen_1X) * _iegen_2_iegen_1Spline.f_vals[

_iegen_2_iegen_1k] + _iegen_2_iegen_1X * _iegen_2_iegen_1Spline.f_vals[

_iegen_2_iegen_1k+1] + _iegen_2_iegen_1X * (1.0 - _iegen_2_iegen_1X) * (

_iegen_2_iegen_1A * (1.0 - _iegen_2_iegen_1X) + _iegen_2_iegen_1B *

_iegen_2_iegen_1X);}

18 #define s16(__x0) double _iegen_2c_result = sqrt(gamR *

_iegen_2_iegen_1result);

19 #define s17(__x0, __x1, __x2) sources.c = _iegen_2c_result;

20

21 unsigned int t2 = 0;

22 ...

Figure 4.9: Code generated for a single call to the c function from the
GeoAc UpdateSources function results in the Computation expressed as macros. The
macro s12 on line 14 represents the Find Segment function.

42

Macros in use

1 s0(0);

2 s1(1);

3 s2(2);

4 s3(3);

5 s4(4);

6 s5(5);

7 s6(6);

8 s7(7);

9 s8(8);

10 s9(9);

11 s10(10);

12 s11(11);

13 for(t2 = 0; t2 <= iegen 2 iegen 1 iegen 0length-1; t2++) {
s12(12,t2,0);

}
14 s13(13);

15 s14(14);

16 s15(15);

17 s16(16);

18 s17(17,0,0);

19 ...

Figure 4.10: Calls to the macros defined in Figure 4.9. Line 13 represents the call to
the Find Segment function.

43

CHAPTER 5

RELATED WORK

5.1 Applying polyhedral optimizations to scientific applica-

tions

Polyhedral Dataflow Graphs (PDFG) are a compiler internal representation that

exposes optimization opportunities such as loop transformation and temporary stor-

age reductions. To implement PDFG, the framework introduces a specification lan-

guage called Polyhedral Dataflow Language (PDFL). This specification language can

be written directly, derived from existing codes, or lifted from another intermediate

representation.

Existing work demonstrates the benefit of polyhedral data flow optimizations.

Olschanowsky et al. demonstrated this benefit on a computational fluid dynamic

(CFD) benchmark [20]. Davis et al. automated the experiments from the previous

work using modified macro dataflow graphs [6]. Strout et al. extended the polyhedral

model for sparse computations allowing indirect array accesses [26]. This research

distinguishes itself by being applied to a full application in a different domain.

Tools such as Polly [10], Pluto [3], Loopy [19], PolyMage [18] and Halide [22, 23, 17]

use the polyhedral model to transform regular codes. PolyMage and Halide are

two domain specific languages and compilers for optimizing parallelism, locality, and

44

recomputation in image processing pipelines. Halide separates the definition of the

algorithm from the concerns of optimization making the algorithms simpler, more

modular and more portable. This lets us play around with different optimizations

with a guarantee not to change the result. PolyMage’s optimization strategy relies

primarily on the transformation and code generation capabilities of the polyhedral

compiler framework and performs complex fusion, tiling, and storage optimization

automatically.

The isl (integer set library) is a thread-safe C library for manipulating sets and

relations of integer tuples bounded by affine constraints [28]. This library is used in

the polyhedral model for program analysis and transformations and forms the basis

for affine transformations used in all the tools discussed previously in this section.

45

CHAPTER 6

CONCLUSION

This thesis presents a case study to represent the GeoAc acoustic ray-tracing

tool using the sparse polyhedral framework. GeoAc more accurately models wave

propagation phenomena as compared to the current ray-tracing tool used in the

IonoSeis modelling package. GeoAc was customized to meet the needs of IonoSeis’s

workflow. OpenMP was used to parallelize GeoAc which resulted in a 22x speedup

over the serial version of the code. The run-time went down from about 19 hours to

just under 51 minutes for a large set of input parameters.

The parallelized GeoAc code drives the development of a SPF optimization frame-

work called the Computation API. The leaf functions of the GeoAc codebase were

incrementally expressed in the SPF using the Computation API and code was gener-

ated as statement macros. These macros were used to replace the leaf functions and

the application was run on a set of test parameters to determine the correctness of

the results. Each iterative expression of the code in the SPF presented new challenges

which helped drive the development of the optimization framework.

46

REFERENCES

[1] Martha L. Abell and James P. Braselton. 2 - first-order ordinary differential
equations. In Martha L. Abell and James P. Braselton, editors, Differential
Equations with Mathematica (Fourth Edition), pages 45–131. Academic Press,
Oxford, fourth edition edition, 2016.

[2] P Blom. Geoac: Numerical tools to model acoustic propagation in the geometric
limit. https://github.com/LANL-Seismoacoustics/GeoAc, 2014.

[3] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A Practical and
Fully Automatic Polyhedral Program Optimization System. PLDI 2008 - 29th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 1–15, 2008.

[4] Chun Chen. Polyhedra scanning revisited. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 499–508, 2012.

[5] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api
for shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[6] Eddie C Davis, Michelle Mills Strout, and Catherine Olschanowsky. Trans-
forming loop chains via macro dataflow graphs. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, pages 265–277.
ACM, 2018.

[7] José Fonseca. Gprof2dot: Convert profiling output to a dot graph,.

[8] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: A call
graph execution profiler. 39(4):49–57, April 2004.

[9] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral ast generation
is more than scanning polyhedra. ACM Transactions on Programming Languages
and Systems (TOPLAS), 37(4):12, 2015.

https://github.com/LANL-Seismoacoustics/GeoAc

47

[10] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. Polly - Polyhedral optimization in LLVM.
Proceedings of the First International Workshop on Polyhedral Compilation
Techniques (IMPACT ’11), page None, 2011.

[11] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[12] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman,
and David Wonnacott. The omega library interface guide. 1995.

[13] Alan LaMielle and Michelle Mills Strout. Enabling code generation within the
sparse polyhedral framework. Technical report, Technical Report CS-10-102,
2010.

[14] John D McCalpin. A survey of memory bandwidth and machine balance in
current high performance computers. IEEE TCCA Newsletter, 19:25, 1995.

[15] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453,
July 1996.

[16] Thomas Mikesell, Lucie Rolland, Rebekah Lee, Florian Zedek, Pierdavide
Cöısson, and Jean-Xavier Dessa. Ionoseis: A package to model coseismic
ionospheric disturbances. Atmosphere, 10(8):443, Aug 2019.

[17] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley,
and Kayvon Fatahalian. Automatically scheduling halide image processing
pipelines. ACM Transactions on Graphics (TOG), 35(4):83, 2016.

[18] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Auto-
matic optimization for image processing pipelines. In ACM SIGARCH Computer
Architecture News, volume 43, pages 429–443. ACM, 2015.

[19] Kedar S. Namjoshi and Nimit Singhania. Loopy: Programmable and formally
verified loop transformations. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 9837 LNCS(July):383–402, 2016.

[20] Catherine Olschanowsky, Michelle Mills Strout, Stephen Guzik, John Loffeld,
and Jeffrey Hittinger. A study on balancing parallelism, data locality, and
recomputation in existing pde solvers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 793–804, 3 Park Ave, New York, NY, USA, 2014. IEEE Press, IEEE Press.

48

[21] Tobi Popoola, Ravi Shankar, Anna Rift, Shivani Singh, Eddie Davis, Michelle
Strout, and Catherine Olschanowsky. An object-oriented interface to the sparse
polyhedral library. In 2021 Ninth Workshop on Data-Flow Execution Models for
Extreme Scale Computing, Accepted.

[22] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. 2012.

[23] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing pipelines. ACM
SIGPLAN Notices, 48(6):519–530, 2013.

[24] R. Rew and G. Davis. Netcdf: an interface for scientific data access. IEEE
Computer Graphics and Applications, 10(4):76–82, 1990.

[25] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time compo-
sition of run-time data and iteration reorderings. SIGPLAN Not., 38(5):91–102,
May 2003.

[26] Michelle Mills Strout, Geri Georg, and Catherine Olschanowsky. Set and relation
manipulation for the sparse polyhedral framework. In International Workshop on
Languages and Compilers for Parallel Computing, pages 61–75. Springer, 2012.

[27] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara
Kreaseck, and Catherine Olschanowsky. An approach for code generation in the
sparse polyhedral framework. Parallel Computing, 53:32–57, 2016.

[28] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In
International Congress on Mathematical Software, pages 299–302. Springer,
2010.

[29] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of
the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

[30] L. Zheng and X. Zhang. Chapter 8 - numerical methods. In Liancun Zheng
and Xinxin Zhang, editors, Modeling and Analysis of Modern Fluid Problems,
Mathematics in Science and Engineering, pages 361–455. Academic Press, 2017.

49

APPENDIX A

EXPERIMENTAL SETUP

50

The work in this thesis has been developed and tested on the R2 high performance

cluster at Boise State University. Each node on the cluster is a dual socket, Intel Xeon

E5-2680 v4 CPU at 2.40 GHz clock frequency. Each node consists of two Non-Uniform

Memory Access (NUMA) domains each containing 14 cores. Each core has its own

local memory and each node is connected with one another by means of high speed

interconnect links. The cores include a 32KB L1, 256KB L2 cache. In addition, each

core has access to a shared 35MB L3 data cache in each NUMA domain. Figure A.1

shows the CPU architecture information as a result of the lscpu command.

1 Architecture: x86_64

2 CPU op-mode(s): 32-bit, 64-bit

3 Byte Order: Little Endian

4 CPU(s): 28

5 On-line CPU(s) list: 0-27

6 Thread(s) per core: 1

7 Core(s) per socket: 14

8 Socket(s): 2

9 NUMA node(s): 2

10 Vendor ID: GenuineIntel

11 CPU family: 6

12 Model: 79

13 Model name: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

14 Stepping: 1

15 CPU MHz: 1546.875

16 CPU max MHz: 3300.0000

17 CPU min MHz: 1200.0000

18 BogoMIPS: 4800.30

19 Virtualization: VT-x

20 L1d cache: 32K

21 L1i cache: 32K

22 L2 cache: 256K

23 L3 cache: 35840K

24 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26

25 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27

Figure A.1: The lscpu command displays the CPU architecture information of R2.

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	Introduction
	Problem Statement
	Contributions
	Organization

	Background
	IonoSeis
	GeoAc
	Memory Optimization
	Optimization Frameworks
	The Polyhedral Model
	The Sparse Polyhedral Framework (SPF)
	The Computation API

	Engineering update of GeoAc
	Parallelizing GeoAc
	Performance Profiling
	Identify Candidate Loops
	Refactor to prepare for OpenMP
	Implementation and Testing
	Performance

	Upgrading data formats to industry standards
	The Network Standard Data Format (NetCDF)

	Representing GeoAc using the SPF
	Iterative Development
	Function Inlining
	Data-dependent Early Loop Exits
	Rewrite code using the SPF

	Related Work
	Applying polyhedral optimizations to scientific applications

	Conclusion
	REFERENCES
	Experimental Setup

