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ABSTRACT 

The understanding of factors that influence technology adoption in emergency 

planners is foundational for ensuring resilient communities to hazards in the future. We 

explore these factors through an interdisciplinary, social-ecological science lens. In this 

thesis, we use cultural evolutionary theory to understand the facilitators and barriers of 

Light Detection and Ranging (lidar) adoption in flood risk management, as a case study 

of technology adoption for long-term risk mitigation. We then disseminate our findings 

through three educational outlets: a webinar, a white paper (Appendix A), and a Story 

Map. This thesis contributes to our intellectual understanding of technology adoption, as 

well as provides information to minimize barriers to lidar uptake in Idaho.  

In the first chapter of the thesis, we used a mixed-methods empirical study to 

measure the facilitators of lidar adoption as a risk mitigation tactic in Idaho, Oregon, and 

Washington. Previous studies disproportionately focused on individual predictors of risk 

mitigation behavior such as risk perception, without identifying the contextual and 

collective drivers of risk mitigation behavior. We address this gap by examining both the 

individual (e.g., direct experience, risk-taking attitude, risk perception) and collective 

predictors (e.g., peer influence, network expertise) of lidar adoption regionally. We found 

that peer influence, or the proportion of lidar users in a respondent’s social network, 

network strength, network expertise, and risk perception significantly increase the 

likelihood of an individual to adopt lidar. The findings of this chapter contribute to 

https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d
https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d
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understanding the role of collective predictors in long-term risk mitigation behavior and 

provide a foundational basis for future disaster research.  

In the second chapter of the thesis, we developed three educational outreach 

products with varying audience and intention in mind. These products addressed barriers 

identified in our semi-structured interviews and survey instrument from our mixed-

methods empirical study discussed in Chapter One. The first product was a webinar that 

was attended by 65 flood risk managers and included a panel of cross-sector participants. 

The second product was a white paper, intended for the Idaho Geospatial Council-

Executive Committee and Elevation Technical Working Group. With input from these 

groups, the product will eventually be used to ask for a lidar liaison position and lidar 

acquisition budget for Idaho. The Story Map accompanies the white paper and provides 

detailed account of various lidar applications throughout Idaho. The Story Map 

showcases content from 10 different lidar stakeholders. Both the white paper and Story 

Map exist in digital formats that are easily shareable and are considered living documents 

that can be updated as needed.  

The overarching goal of this thesis was to understand the facilitators and barriers 

of lidar adoption and increase uptake of lidar adoption in Idaho. Chapter One focuses on 

intellectual scholarship and is formatted as a manuscript for publication in the Climate 

Risk Management journal. Chapter Two focuses on applied scholarship with the greater 

lidar community. Appendix A is the white paper, Appendix B is a copy of the semi-

structured interview instrument, and Appendix C is a copy of the survey instrument. 

Reference sections follow each chapter individually. This project was funded by the U.S. 

Department of Homeland Security Grant No. EMS-2019-CA-00030.
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CHAPTER ONE: MANUSCRIPT DRAFT – QUANTIFYING SOCIAL INFLUENCES 

OF TECHNOLOGY ADOPTION FOR LONG-TERM FLOOD RISK MANAGEMENT 

IN THE PACIFIC NORTHWEST, U.S. 

Abstract 

Flood risk and damage are expected to increase in the Pacific Northwest due to 

climate change. Light Detection and Ranging (lidar) is a remote sensing technology that 

provides high-resolution topographic data and can therefore produce higher accuracy 

floodplain maps, an important tool that communities use to assess their flood risk 

spatially. While availability of lidar data varies across the U.S., uptake also varies even 

when lidar is available. For example, we found, from our survey, that only 50% of flood 

risk managers in Idaho are using the technology. Previous research investigates important 

factors in the role of technology adoption in reducing long-term environmental risk. 

However, the current literature infrequently examines the social processes that impact an 

individual’s choices about how to manage risk. We used a mixed-methods approach to 

examine the adoption of lidar by flood managers for risk mitigation, as a function of 

individual (e.g., risk perception, direct experience) and collective predictors (e.g., peer 

influence, network expertise). We conducted 8 semi-structured interviews with flood risk 

managers in Idaho and gathered 206 survey responses from flood risk managers in Idaho, 

Oregon, and Washington. We found that flood managers who share information with 

other flood managers using lidar are also more likely to use lidar themselves. 

Furthermore, the more frequently these flood managers communicate, the more likely a 
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manager is to use lidar. This work provides a foundation for how to incorporate collective 

factors in mitigation behavior research and reveals potential for increased lidar uptake 

through collaboration in the flood risk manager community. 

Introduction 

Floods are one of the most frequent and destructive natural disasters in the United 

States (FEMA, 2020a; Pralle, 2019). Flood events disrupt ecological, cultural, and 

economic landscapes causing incalculable expenses to our society, often resulting with 

vulnerable groups at higher risk in the future (Howell and Elliott, 2019). Flood events in 

the U.S. are increasing, some of those with unprecedented amounts of rainfall, since the 

National Centers for Environmental Information (NCEI) began tracking natural disaster 

events in 1980 (NCEI, 2021). There are largely two factors driving this increase: climate 

change and population growth and urbanization. As temperatures rise, the amount of 

water vapor in the atmosphere increases, which exacerbates the potential for extreme 

rainfall events. In addition to growing flood risk from climate change, population growth 

rate and urbanization in coastal and inland floodplains is rising (Pralle, 2019; Schanze, 

2006). In 2015, 21.8 million (6.87%) of the U.S. population were exposed to the chance 

of a 100-year flood; meaning they lived in a location that could be inundated by a flood 

event with 1 in 100 chance of happening each year (Qiang, 2019). Considering these 

challenges, understanding how to manage changing flood risk is critical. 

Flood risk is inherently transdisciplinary and needs to encapsulate the full context 

of the topic for which it is being applied. Therefore, we understand flood risk to be the 

quantifiable chance of a flood event given the known contextual (e.g., social, 

environmental, political) factors. Communities understand their flood risk typically by 
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using Federal Emergency Management Agency (FEMA) floodplain maps, which estimate 

the extent of flood hazards through hydrologic and hydraulic models. These analyses 

require topography, rainfall and run-off frequency distributions, and flood control 

structures (e.g., diversion dams, levees, bridges). Floodplain maps also communicate 

flood risk to vulnerable populations, help communities mitigate and adapt to floods, and 

inform flood insurance programs such as FEMA’s National Flood Insurance Program 

(Pralle, 2019). However, in the past decade, 36% of flood claims were for properties 

outside of the FEMA-designated 100-year flood zone, which increased from the 1990s, 

where 24% of flood claims were from outside the 100-year flood zone (Ludy and 

Kondolf, 2012; Frank, 2021). The discrepancy between actual flooding and predicted 

flooding from flood maps are largely impacted by outdated and inaccurate topographic 

data inputs, use of historical rainfall patterns, and local politics (Pralle, 2019). For 

example, 100-year flood events are based on historical rainfall patterns; however, this 

probability can change based on local land use, river impoundments, the number of 

impervious surfaces, and long-term climate patterns (USGS, 2018). 

Previous research confirms that high-resolution topographic data is critical for an 

accurate floodplain map (Ali et al., 2015; Cook and Merwade, 2009). In the past, flood 

risk managers typically used 10-meter or 30-meter resolution terrain models. Now, 

higher-resolution terrain models (e.g., 1-meter or smaller) are available from technology 

such as Light Detection and Ranging (lidar). Lidar is a laser-based remote sensing 

technology that uses the reflection of light to measure elevation and features on the 

ground such as vegetation and structures. Lidar-derived products are now widely used in 
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flood risk management to model different flooding scenarios with increased accuracy 

(Muhadi et al., 2020). 

Despite the clear efficacy of lidar for flood risk management, topographic and 

bathymetric lidar are variably available for use across the contiguous, lower 48 states. 

Most states have greater than 95% coverage, except for eight states situated in the 

Western U.S, including Washington, Idaho, Montana, Oregon, Nevada, Utah, California, 

and Arizona. As lidar becomes more available and increasingly popular, it is important to 

understand the factors that influence a flood risk manager’s decision to adopt this new 

technology into their practice of flood risk management. In this chapter, we investigate 

the factors of technology adoption to understand the driving forces that cause an 

individual to adopt lidar.   

In order to do this, we conducted a mixed-methods study, combining interviews 

and a survey, with flood risk managers in the Pacific Northwest. We collected data for 

both individual and collective predictors that could influence an individual to adopt. 

Historically-studied individual predictors in flood risk management include risk 

perception, direct experience, knowledge, coping appraisal, trust, risk-taking attitude, and 

demographics (e.g. (Birkholz et al., 2014; Bubeck et al., 2012; Kellens et al., 2013; 

Poussin et al., 2014)). Collective predictors represent measurable outcomes of an 

individual’s beliefs and willingness to be part of group (Kuhlicke et al., 2020). Collective 

predictors can be drawn from a social network analysis and include factors such as peer 

influence, network strength, and network expertise. While there is limited research in the 

collective predictors of flood risk management, we chose to look at social processes 
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because of their potential to illuminate behavioral and decision-making influences on 

flood risk managers. 

There are two main objectives with our study: (1) advance our scientific 

understanding of the processes that affect technology adoption as a form of long-term 

risk mitigation and (2) quantify facilitators of lidar adoption in flood risk management 

using a mixed-method approach. We draw from an interdisciplinary, social-ecological 

science background to meet these objectives.  Specifically, we use cultural evolutionary 

theory, the selection and transmission of culture over time, to inform our selection of 

individual and collective predictors. In addition, this study is an example of convergence 

research, which integrates knowledge across disciplines and organizational boundaries to 

reduce disaster losses and promote collective well-being (Peek at al., 2020). Our study is 

an example of convergence work because it uses interdisciplinary theory and 

methodology to engage study participants from diverse, organizational backgrounds 

including government officials, industry professionals, and academics. By determining 

the most influential individual and collective predictors of lidar adoption, we can inform 

concerted efforts of lidar uptake, improve flood risk awareness and knowledge, and form 

more resilient communities to future flood risk.   

Background 

Individual and collective predictors of risk-mitigation behavior 

Previous research identified the importance of several individual factors as a 

function of risk mitigation behavior; however, research is limited in the role of collective 

action (Kuhlicke et al., 2020). Therefore, it is important to look at the combined effects of 

both individual and collective predictors in predicting risk mitigation behavior so that we 
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can understand the relative contribution of each predictor (van Valkengoed and Steg, 

2019). The following section examines previous research into predictors of risk 

mitigation behavior and then explores how cultural evolutionary theory can help 

illuminate collective predictors of influence. 

Topical Review 

Previous flood risk management research focused on flood risk perception as a 

critical factor of developing effective flood risk management strategies (Birkholz et al., 

2014). However, recent research re-examined the role of risk perception in behavior and 

decision-making because of the difficulty connecting risk perception with management 

and the challenge of parsing out the connection of risk perception with underlying 

contextual factors (Rufat et al., 2020). For example, a study by Bubeck et al. (2012) 

found risk perception to be a weak predictor of precautionary behavior and suggests 

shifting focus towards flood-coping appraisal for explaining flood risk management 

behavior. In addition, Kellens et al. (2013) reviewed 57 empirically based peer-reviewed 

articles on flood risk perception and communication to assess overall trends in flood risk 

research. The authors found that most studies were exploratory and did not apply a 

theoretical framework to examine risk perception (Kellens et al., 2013). Of the studies 

that employed a theoretical framework, protection motivation theory (PMT) was the most 

common. PMT explains individual decisions about preparing for risk as a function of 

threat appraisal (e.g., likelihood of exposure to a flood, severity of exposure, and fear) 

and coping appraisal (e.g., self-efficacy, outcome efficacy, and outcome costs). The 

results of this review suggest future research should have more theoretical support and 
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methodological openness; specifically, the use of a theoretical framework that 

emphasizes the effects of physical exposure and hazard experience (Kellens et al., 2013). 

Collective factors of risk mitigation behavior are limited in the existing flood risk 

management literature; however, initial evidence found the influence of social networks 

on risk mitigation behavior as important (Bojovic and Giupponi, 2020; Kuhlicke et al., 

2020; Lechowska, 2021). Social networks are of particular interest for our study because 

they are a way of measuring peer influence, the diffusion of ideas, practices, or 

technologies through network ties from social interactions (Muter et al., 2013). Peer 

influence is a helpful tool for behavior prediction based on an individual’s position in a 

social network (Daraganova and Robins, 2012; Levin, 1992). Furthermore, the 

technology adoption literature applied network analysis to measure information exchange 

and diffusion through network relations (Peng and Dey, 2013). The application of social 

networks to flood risk management decision-making is still in its infancy; however, the 

findings from previous research with respect to social networks and technology adoption 

provide a compelling baseline for using it to understand peer influence in our study. 

Additionally, recent research suggests the importance of context, local power 

relations, constraints, and opportunities that affect risk mitigating behavior calling for 

convergence research to understand the underlying assumptions of decision-making 

(Rufat et al., 2020). Given the current gaps of understanding in flood risk management 

research and the push for convergence research, we employ cultural evolutionary theory 

to employ a comprehensive theoretical baseline for flood risk mitigation behavior 

research that can be used across disciplines and scales. 
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Secondly, the current literature is pre-dominantly focused on the public’s flood 

risk behavior, rather than flood risk managers themselves (Brody et al., 2010; Roberts 

and Wernstedt, 2019). Our study is solely focused on addressing individual and collective 

predictors of risk mitigation behavior at the decision-maker level. 

Culture and Risk 

Culture is information acquired by individuals through social learning, which 

forms a group of shared beliefs and norms over time (Henrich and McElreath, 2002). 

Social learning is the observing, modeling, and imitating of behaviors, attitudes, and 

emotional reactions of others (Bandura, 1971). Social learning differs from individual 

learning, which is learned from the environment and non-social stimulus, but is not 

mutually exclusive (Perreault et al., 2012). Several researchers believe social learning 

improved human adaptability so much that we can inhabit such a wide range of habitats, 

unlike other animal species (Creanza et al., 2017). 

Behavioral adaptations display the variation of culture as a result of the 

evolutionary dynamics of cultural systems. Cultural evolutionary theory describes this 

process as the selection and transmission of culture over time. The selection process leads 

to variation of culture across temporal, spatial, and institutional scales and the 

transmission leads to adaptation (e.g., adoption of new technology). Reminiscent of 

genetic evolution, human culture evolves through the process of natural selection. This 

evolution results in between-group variation of adaptive behavior and cooperation and 

can lead to increased fitness or utility (Henrich and McElreath, 2002; Richerson et al., 

2016). Unlike genetic transmission, it is important to note cultural transmission can occur 

over a short time scale, within a generation, through social learning (Richerson et al., 
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2016). Cultural evolutionary theory and social learning are increasingly popular theories 

used to explain a wide range of phenomena in applications such as natural resource 

management, sports strategy, and institutional variation (Brooks et al., 2018; Mesoudi, 

2019; e.g., Reed et al., 2010; Richerson et al., 2016). 

In a similar vein, the cultural theory of risk is the transmission of risk information 

among a network of individuals through social learning (Douglas and Wildavsky, 1983). 

Previous flood risk management research suggested the use of cultural theory of risk to 

contextualize the relationship of risk perception as a function of cultural adherence and 

social learning (Birkholz et al., 2014). This theory has been employed in a couple 

empirical flood risk management studies so far and provides an intriguing underpinning 

of risk perception research (Shen, 2009). Cultural evolutionary theory is like cultural 

theory of risk; however, it more broadly offers a way to understand the complex 

dynamics of cultural change through interactions between individuals and populations, 

such as is needed for flood risk management (Brooks et al., 2018). 

Predictor Literature Review 

In order to select relevant individual and collective predictors of flood risk 

mitigation behavior a priori, we conducted a literature review of previous work that 

looked at the effect of the constructs outlined in Table 1.1 on flood risk mitigation. 
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Methods 

Case study description 

We examine the adoption of lidar in communities throughout Idaho, Oregon, and 

Washington. All three states expect to see an increase in precipitation and higher 

temperatures earlier in the year. In addition, these three states are similar in that they are 

currently increasing the amount of publicly-available lidar (Clark, 2010; Division, 2020; 

Emergency Management, 2018; Ralph et al., 2014; Slater and Villarini, 2016). While 

Idaho, Oregon, and Washington all reside in the same geographic region, each state’s 

flood risk challenges vary depending on the differing types of landscapes, levels of 

population growth and urbanization, and resource availability (e.g., funding for flood risk 

management, educational opportunities for flood risk managers). In addition, each state 

employs their own lidar coordination and acquisition program, which contributes 

differential levels of lidar availability as seen in Figure 1.1. 



13 

 

 
Figure 1.1. U.S. Interagency Elevation Inventory Map of the Pacific Northwest. 

Publicly-available lidar in our case study extents of Idaho, Oregon, and 

Washington. 

Idaho 

In 2019, Idaho was home to 1.79 million people across 82,643 square miles: 21.7 

people per square mile (Bureau, 2020a). It is a land-locked state and can be broken down 

into three main areas: the panhandle in the north is filled with coniferous forests and 

lakes, the central section is filled with vast mountain ranges and alpine lakes, and the 

southern section, known as the Snake River Plain, is filled with sagebrush steppe and 

high desert environment. There is influence from the Pacific Ocean in the north and west 

side of Idaho, resulting in cloudy, humid, and wet winters, whereas the east is the 

opposite with wet summers and dry winters. Average annual rainfall ranges from 10" in 

the arid southwest regions to 50" at higher elevations in certain river basins (FEMA, 

2020b). In addition, Idaho sees abundant amounts of snowfall in the mountains. 

While most of the population is concentrated in the southern part of the state, there 

is flooding across the entire state that impacts people and structures. Idaho is prone to 
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riverine flooding, ice/debris jam flooding, levee/dam/canal breaks, stormwater, sheet or 

areal flooding, and mudflows (Emergency Management, 2018). In 2021, Idaho had 145 

NFIP participating communities across 44 counties (FEMA, 2020b). 

Lidar acquisition is coordinated by Boise State University’s Idaho Lidar 

Consortium in conjunction with Idaho State University’s GIS Research and Training 

Center, which stores lidar data for public use. There is no state-approved funding set 

aside for lidar acquisition; therefore, communities rely on local funding and apply for 

external funding from USGS and/or FEMA. By the end of 2021, Idaho will have 73% of 

the state covered with publicly-available lidar. 

Oregon 

In 2019, Oregon had over 4.2 million residents across 95,988 square miles; 43.8 

people per square mile (Bureau, 2020b). Oregon can be broken down into six main areas: 

the Coast Range, the Willamette Lowland, the Cascade Mountains, the Klamath 

Mountains, the Columbia Plateau, and the Basin and Range Region. There is a maritime 

influence across the entire state due to the Pacific Ocean. The Coast range is 

predominantly evergreen forests with many small coastal lakes. The mountain regions are 

typically several thousand feet above sea-level and have a range of dense forests and 

lakes. Eastern Oregon contains high desert environment with few steep mountains. 

Oregon’s population is concentrated in the coastal region of the state. Oregon has 

an extensive history of multiple types of flooding including riverine flooding, flash 

floods, ice/debris jam flooding, coastal flooding, shallow area flooding, urban flooding, 

and playa flooding (Layton et al., 2015). In 2021, Oregon had 228 NFIP participating 

communities across 36 counties (FEMA, 2020b). 
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Lidar acquisition is coordinated by the State of Oregon Department of Geology 

and Mineral Industries’ Oregon Lidar Consortium. By the end of 2020, Oregon had 98% 

of Oregon’s populated areas were covered with publicly-available lidar, although eastern 

Oregon has much sparser coverage of lidar (Geology and Mineral Industries, 2020). 

Washington 

In 2019, Washington had over 7.6 million residents across 66,455 square miles; 

114 people per square mile (Bureau, 2020c). Washington can be broken down into six 

main areas: the Olympic Mountains, Coast Range, Puget Sound Lowlands, Cascade 

Mountains, Columbia Plateau, and Rocky Mountains. Most of the areas in the western 

and northern parts of Washington are predominately evergreen forests, where the eastern 

and southern parts of Washington are semiarid with grasses, sagebrush, and scattered 

shrubs. Annual precipitation on the Pacific side of the Olympic Peninsula exceeds 150 

inches, but places on the northwest of the peninsula receive less than 20 inches a year and 

on the eastern side receive less than 8 inches (Augustyn, 2021). 

More than three-fourths of the population lives in Puget Sound Lowlands 

(Augustyn, 2021). Flooding in Washington typically occurs on a seasonal basis due to 

rainfall from atmospheric rivers, rainfall on snow, flash foods from storms, and winter 

storms causing storm surges and high tide (Division, 2020). It is estimated that in 2021, 

Washington had 277 NFIP participating communities across 39 counties (FEMA, 2020b). 

Lidar acquisition is coordinated by the Washington State Department of Natural 

Resources and receives funding from the Washington State Legislature to acquire and 

upkeep lidar data for the state. Over 50% of the state is flown with lidar data (Gleason 

and Markert, 2020). 
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Physical flood risk 

Since flooding is becoming an increasingly damaging and costly issue, there has 

been a rise in interest from non-governmental groups to predict flood risk at the property 

level for households and property owners to be aware of their physical flood risk. First 

Street Foundation (First Street), a non-profit organization of modelers, researchers, and 

data scientists, created the first publicly-available flood risk model for the lower 48 

states. According to First Street, nearly 70% of properties have more substantial flood 

risk than previously predicted by FEMA floodplain maps (First Street Foundation, 2020). 

This discrepancy is due to First Street model’s ability to predict property-level, future 

flood risk. In addition, First Street was able to map flooding at 3-meter resolution, which 

is higher than many current floodplain maps which can range in quality up to 30-meter 

resolution. First Street’s model also increases visibility of areas whose flood risk remains 

unexamined by FEMA. To understand the nature of physical flood risk in our case study 

extent, we compare the FEMA projections to the First Street projections as seen in Table 

1.2. It is important to note that FEMA reports Idaho as having the least amount of flood 

risk relative to Oregon and Washington; however, First Street reports Idaho as having the 

highest risk. This difference could be because there are still many locations in Idaho that 

are not mapped by FEMA; therefore, urbanization in floodplain areas could be more 

likely.  
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Table 1.2. First Street Foundation and FEMA flood risk predictions. Summary 

information about environmental and social differences between Idaho, Oregon, 

and Washington. 

 Idaho Oregon Washington 

Total FEMA Properties at 

Risk (2020) 

38,047 97,918 121,528 

Percent FEMA Properties at 

Risk (2020) 

4.1 6.3 5.6 

Total FS Properties at Risk 

(2020) 

148,427 268,020 362,612 

Percent FS Properties at Risk 

(2020) 

17.6 17.3 16.4 

 

Relevant predictors of lidar adoption 

Given the previous literature and summary of our case study extent, we narrowed 

down our study to focus on eight constructs. Table 1.3 displays the five individual 

predictors that we selected for our study. We chose these factors because they aligned 

with repeated themes in our semi-structured interviews, in addition to each factor 

providing important information to help increase uptake of lidar adoption.  

In addition, we selected three collective factors reflected in Table 1.4. 
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Several studies implement social network analysis to examine the influence of 

social ties on communication in disaster management; however, the effect of social 

networks on other topics in disaster management are minimally explored (Bojovic and 

Giupponi, 2020). Bojovic and Giupponi (2020) conducted a full network analysis on the 

diffusion of innovation and technologies for risk management, which was the first study 

of this topic in disaster management. The study focused on the identification of key 

actors to effect information dissemination. 

Our study uses an ego network analysis, which is helpful for understanding the 

variation of behavior of individuals through identification of local social structures 

unique to the individual of interest (e.g., flood risk manager) (Hanneman and Riddle, 

2005). We used an open ego network and calculated the predictors of peer influence, 

network strength, and network expertise from data collected in the survey questions in 

Table 1.4. Figure 1.2 displays a range of possible network connection situations with 

varying lidar use, communication, and expertise values that flood risk managers could 

report about their network connections.  For example, Alter 1 represents an individual 

that the ego, or in this case survey respondent, reports as using lidar, communicates with 

several times a day, and views with a lot of expertise. Whereas Alter 8 represents an 

individual that the ego reports as not using lidar, communicates with only a few times a 

year, and views with no expertise. Respondents could report up to eight peers. 
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Figure 1.2. Ego network structure. We used an open ego network analysis 

structure where the ego represents the survey respondent and the lines represent the 

ties between the ego and their peers, which are labeled as alters. 

Peer influence was calculated as the proportion of the ego’s alters that used lidar. 

Network strength was calculated as the ego’s net average communication with lidar users 

minus average communication with non-lidar users in an ego’s network. Network 

expertise was calculated as the ego’s net average expertise with lidar users minus average 

expertise with non-lidar users in an ego’s network. 

Survey design 

Prior to finalizing our survey instrument, we conducted eight, semi-structured 

interviews with stakeholders including flood risk managers, government officials, 

industry professionals, and academics. The interviews lasted about an hour and were 

occasionally recorded. These interviews were used to identify common themes, ensure 

that our survey questions were relevant, and confirm that we were adequately identifying 

facilitators and barriers to lidar adoption. 
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Once we created our survey instrument, we conducted an expert review with eight 

university students and staff to give feedback about the appropriateness of the survey 

(e.g., length, difficulty, and readability), question fit to research questions, and survey 

structure (e.g., question order, section transitions, survey logic). Then the survey was 

tested as a pilot survey with a flood risk manager, an industry professional, and a lidar 

academic to provide additional feedback from the perspective of a potential, target 

respondent. 

The finalized survey consisted of four main parts (see Appendix B). The first part 

focused on gathering information about the respondent’s experience and beliefs about 

their flood risk management community. The second section was centered on the 

respondent’s relationship with lidar for flood risk management including if they used 

lidar, how they use lidar, and if they would like to take part in lidar workshops. The third 

part of the survey gathered information about the respondent’s flood risk management 

network. The final part of the survey asked the respondent about their personal beliefs in 

risk-taking, trust, and demographic questions such as education and gender. 

Data collection 

Initially, our target population included floodplain managers and administrators in 

Idaho, Oregon, Washington, and Alaska. Respondents also included individuals that may 

use lidar for flood risk management applications in conjunction with software 

applications such as Geographic Information System (GIS). Most sample respondents 

were municipal, state, and federal employees, as well as some private industry 

employees. We constructed our sample frame using several publicly available lists of 

managers including NFIP coordinators, Association of State Floodplain Managers 
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(ASFPM) recognized Certified Floodplain Mangers (CFM), county-level GIS 

administrators, the five largest cities and tribal GIS administrators if present, county and 

tribal emergency managers, the Federal Geospatial Data Coordination Contacts by State, 

and additional, relevant contacts for the 2019 Northwest Regional Floodplain Managers 

Association Conference contact list. 

We delivered the survey online using Qualtrics to 1,257 email addresses in our 

sample frame between May and July 2020. The survey took an average of 10 to 15 

minutes to complete. We used Dillman et al. (2014) guidelines for web and mobile 

survey implementation. We initially set an introductory email that stated what was being 

asked of respondents, why they were selected, and information about the intent, purpose, 

and outcomes of the survey (Dillman et al., 2014). We sent three to five follow-up email 

correspondence messages over the course of four weeks to help increase our response 

rate. In addition, we stated the survey was anonymous and participant’s information 

would be kept confidential. Table 1.5 summarizes the potential respondents, number of 

survey responses, and response rate for each state. 

Table 1.5. Comparative survey distribution and collection. Summary of potential 

respondents, number of survey responses, and response rate for each state. 

 Potential 

Respondents 

Number of 

Responses 

Response 

Rate 

Idaho 385 96 24.9 

Oregon 356 58 16.3 

Washington 463 54 11.7 

Alaska 53 6 11.3 

 

We did not include Alaska in our final statistical analysis because of an 

insufficient number of responses. In addition, both Oregon and Washington had lower 

response rates than Idaho. Our response rates are within the typical bounds for online 

surveys of 10-25% (Sauermann and Roach, 2013). 
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Data Analysis 

We used a Bayesian Generalized Logistic Regression (GLR) to estimate the 

relationship between our predictors of interest and our response, lidar use, because it is 

binary. The results of this model allowed us to explore the effect of a multitude of 

predictors on lidar use in Idaho, Oregon, and Washington. We hypothesized that the 

model would be helpful for understanding the level of predictor influence; however, we 

expected the predictive capacity of our model to be limited considering the large number 

of predictors and small sample size of our study. 

The model followed a binomial distribution curve, where the distribution of lidar 

use, yij, was modeled as follows: 

𝜂𝑖 = 𝜇𝛼 + 𝛽𝑥𝑖𝑗+. . . +𝛽𝑘𝑥𝑖𝑗 

𝜋𝑖 =
𝑒𝑖
𝜂

1 + 𝑒𝑖
𝜂 

𝑦𝑖𝑗 ≈ 𝐵𝑖𝑛𝑜𝑚(1, 𝜋𝑖) 

where 𝑥𝑖𝑗, predictors, are the ith rows of the known design matrices x, and 𝛽 is a 

vector of regression parameters. This Bayesian approach allowed for adjustment of 

uncertainty associated with each parameter on the outcome, lidar use. In order to do this, 

each parameter had to be assigned a prior belief of that parameter value. The values for 

these parameters are fit by sampling from these distributions to maximize the likelihood 

under this model (Kwon et al., 2008). The regression parameters, 𝛽, are normally 

distributed, 

𝛽𝑘 ≈ 𝑁(𝜂𝛽𝑘 , 𝜎𝑘) 
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Additionally, the parameters of this distribution, 𝜂𝛽𝑘  and 𝜎𝑘, also have prior 

distributions assigned to them that are constrained by 0 and a positive value. We used 

four Monte Carol Markov Chains (MCMC) with 2,000 iterations for warmup and an 

additional 2,000 iterations for the model. We assessed effective sample size and checked 

model convergence, indicated by R-hat statistics close to 1 and stable, well-mixed chains 

(Gelman et al., 2020). 

Priors 

We used a weakly informative prior distribution to provide modest regularization, 

reduce the chance of a Type I error, and improve the out-of-sample prediction for 

regression models (McElreath, 2015). This study uses a Cauchy distribution as 

recommended for logistic regression models with a low sample size (Lemoine, 2019; 

Gelman, 2008). 

Validation 

We assessed the overall model performance through Leave-One-Out Cross-

Validation (LOOCV). This process provides an absolute metric for the model’s predictive 

ability. In addition, we plotted the predicted probability against the observed proportion 

using counterfactual plots to evaluate the effect of each predictor of interest on lidar 

adoption (Levy, 2012). 

Error 

We specified our model to compute 4,000 lidar use predictions based on our 

predictors. We interpreted the median of these results as the projected lidar use. In 

addition, we calculated the 50% and 95% uncertainty intervals around the median. We 

used Bayesian R-squared to measure our overall model accuracy. However, this can be 
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unreliable for small sample sizes, so we also calculated the mean absolute error and root 

mean square error of our model. 

Results 

Our interview findings revealed several common barriers and opportunities that 

informed our predictor selection in Table 1.3 and Table 1.4. Table 1.6 summarizes these 

findings.  

Table 1.6. Interview themes. Summary table of repeated barriers and 

opportunities that came up during our semi-structured interviews (n=8).  

Barriers Opportunities 

- Rural regions with smaller 

populations typically have lower 

priority for revised mapping 

- Lidar is seen as expensive and not all 

communities / regions have adequate 

funding 

- There is potential distrust in 

scientific products and/or the federal 

government 

- Hesitancy towards publicly-

accessible lidar from private 

landowners 

-  Lidar is useful and desirable to work 

with 

-   Elected officials have authority in 

lidar acquisition 

- Community relationships can be 

influential in lidar adoption 

- Lidar acquisition is facilitated by 

collaboration across multiple 

institutions and stakeholders 

 

We received the greatest number of survey responses from Idaho (Table 1.7). The 

results show slight differences in demographic factors. Washington had the highest 

percentage of female respondents, second highest percentage of respondents with a 

bachelor’s degree or higher, and longest average length of flood risk manager experience. 
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Table 1.7. Summary survey demographics. Comparative descriptive statistics 

for survey demographics across Idaho, Oregon, and Washington. 

 Idaho Oregon Washington 

Sample Size 96 58 54 

Female 39% 34% 44% 

University Education 69% 81% 76% 

Age (50+ years) 50% 43% 43% 

Average Flood Risk 

Experience (years) 

10.6 11.2 13.8 

 

Descriptive Results 

We found that over 70% of flood risk managers, in all three states, had direct 

experience with flood damage in their communities (Table 1.8).  

Table 1.8. Descriptive statistics of predictors evaluated in our model (n=206). 

Construct/ 

Predictor 

Description Idaho Oregon Washington 

Direct Experience Direct experience with flood 

damage in community (%) 

79.20 72.40 85.20 

Risk Perception Perceive future flood damage 

in the community (%) 

97.90 96.60 98.10 

Knowledge Perceived Increase in Flood 

Severity over time (%) 

38.50 41.40 57.40 

Risk-Taking 

Attitude 

Average risk-taking attitude 

(0 to 10 with 10 being risk-

tolerant) 

2.80 3.30 3.70 

Trust Trust in accuracy of flood 

risk management scientific 

products (%) 

82.30 81.00 90.70 

Peer Influence Proportion of lidar users in 

flood risk management 

network (%) 

35.00 40.00 42.00 

Network Strength Net average communication 

in respondent’s network 

-0.60 -0.04 -0.02 

Network Expertise Net average expertise in 

respondent’s network (0 to 

10 with 10 being of highest 

expertise) 

0.70 0.20 1.00 

Lidar Use Use lidar for flood risk 

management (%) 

50.00 62.10 64.80 
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Figure 1.3 describes, in finer detail, the types of experiences flood risk managers 

have had with flooding in their communities. Survey respondents reported experiences 

that ranged from damage in their communities to damage of their personal homes, deaths 

and injury to people in their community, and disruption of their utilities. 

 
Figure 1.3. Summary of survey responses (n=206) of flood risk managers’ direct 

experiences with floods. This details varying levels of closeness of the experience. 

We also asked respondents to report the likelihood of one of those experiences 

occurring in the next 30 years in their community. Over 90% of respondents were 

concerned with future flood damage in their community (Figure 1.4). 
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Figure 1.4. Summary of survey responses (n=206) of flood risk managers’ 

perceived flood risk in the future. This details varying levels of closeness of the 

experience. 

In addition, between 38.5% - 57.4% of respondent’s expected an increase in flood 

severity. Flood risk managers in Washington tend to be less risk-averse than managers in 

Oregon and Idaho. All three states reported a high trust in the accuracy of flood risk 

management scientific products (e.g., topographic data, floodplain mapping, floodplain 

modeling), with Washington reporting the highest percentage of trust. 

For the collective predictors, about 76% of respondents completed the network 

analysis section of the survey. Respondents reported one to eight peers in their flood risk 

management network, with five peers as the median number reported. There were some 

regional differences. Washington flood risk managers’ peer networks, on average, were 

made up of 42% lidar users, which was higher than Idaho which reported 35%. These 

findings reflect a similar pattern in that Idaho had the least amount of communication, on 

average, in their flood risk managers’ networks, whereas Washington had the most. In all 

three states, respondents had slightly more communication with non-lidar users. 



30 

 

Interestingly, all three states reported on average, more expertise with lidar users in their 

network. 

Washington reported the highest amount of lidar use in flood risk management 

with almost 65% of respondent’s using lidar. Idaho reported the lowest amount of lidar 

users, 50%. 

Estimation Results 

Our GLR model allowed us to explore the effect of a multitude of predictors on 

lidar use in Idaho, Oregon, and Washington. We had item-nonresponse in the survey, for 

the network section, and we dropped incomplete responses to conduct our statistical 

modeling. Of the 206 usable responses we received, 50 of them did not fill out the 

network section. Since our model considers both individual and collective predictors and 

needs equal size data lengths for each predictor in order to run the model, we dropped 

almost 25% of our data responses, which may result in effect size underestimation 

(Langkamp et al., 2010). 

Table 1.9 displays the results from our GLR model that considers the effect of 

individual and collective predictors on lidar use.  
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Table 1.9. Estimation results from the model.  

 Mean  

(log odds) 

S.D. 5% 95% 

Intercept -0.9 1.7 -3.7 1.9 

Direct 

Experience 

0.4 0.7 -0.6 1.5 

Risk 

Perception 

1.2 0.8 -0.2 2.6 

Knowledge 0.2 0.4 -0.3 0.9 

Risk-Taking 

Attitude 

0.1 0.1 -0.1 0.3 

Trust -0.2 0.3 -0.8 0.3 

Peer 

Influence 

1.4 1.1 -0.4 3.3 

Network 

Strength 

0.4 0.1 0.2 0.7 

Network 

Expertise 

0.1 0.1 0.0 0.2 

 

From our analysis, we examined the Posterior Predictive Distribution for each 

predictor and the intercept (Figure 1.5). We considered predictors that had parameter 

estimates whose 90% credible interval did not overlap with zero to be important. These 

results suggest peer influence, network strength, network expertise, and risk perception 

effect on lidar use. That is, some attributes had a positive effect on lidar use, and some a 

negative effect.  
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Figure 1.5. Posterior Predictive Distribution for each predictor variable. 

Figure 1.6 displays the effect, when holding all other variables at their minimum, 

of peer influence, which is the proportion of lidar users in a respondent’s network on lidar 

use by region. When every alter in a respondent’s network used lidar, 64.4% of flood risk 

managers were predicted to adopt lidar. Alternatively, when the proportion of lidar user 

in respondent’s network decreased to 0, 32.4% were predicted to adopt lidar. 
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Figure 1.6. Counterfactual plots show the effect of a) the proportion of 

respondent’s social network using lidar, or peer influence, and predicted lidar 

adoption, b) net average frequency of communication with lidar and non-lidar 

users, or network strength, in flood risk manager’s network, and c) net average 

expertise of lidar and non-lidar users, or network expertise, in flood risk manager’s 

network. The dark grey and light grey represent the 50% and 95% confidence 

intervals, respectively. 

Both network strength and network expertise had positive correlations with lidar 

adoption. Network strength resulted in the largest increase in lidar adoption ranging from 

3.3% for those who spoke only with non-lidar users to 87.2% for flood risk managers 

who spoke with only lidar users. Network expertise also had a positive effect, although 

small. When a flood risk manager’s network was made up of expertise from non-lidar 

users, 14.7% were predicted to adopt as opposed to 57.5% when a flood risk manager’s 

network was comprised of expertise from lidar users. 
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Figure 1.7. Counterfactual plot of risk perception and predicted lidar adoption. 

The dark grey and light grey represent the 50% and 95% uncertainty intervals, 

respectively. 

Our model also suggests that risk perception was an important predictor of lidar 

adoption. Figure 1.7 displays the effect, when holding all other variables at their 

minimum, of risk perception on lidar adoption. We found that when flood risk managers 

expect 0% chance of future flood risk in their community, 59.9% of flood risk managers 

are predicted to adopt lidar, whereas flood risk managers who expect 100% chance of 

future flood risk in their community, 99.3% of flood risk managers are predicted to adopt 

lidar.  

Furthermore, we examined the out-of-sample predictive performance of our 

model. The Loo Information Criterion was 161.4 with standard error of 17.5. The 

predictive power of the model was assessed by using a Posterior Predictive Checking 

from the bayesplot package in R (Figure 1.8). 
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Figure 1.8. Displays a histogram, using the PPC function that represents the 

number of individuals that do not use lidar (0) in the left column and use lidar (1) in 

the right column. The y histogram represents the actual data and the yrep 

represents the data generated from the posterior predictive distribution. Overall, 

the yrep is representative of the y, meaning our model has an accurate predictive 

ability. 

The Mean Absolute Error of our model was 1.45 and Root Mean Square Error 

was 1.75; therefore, our model had minimal variance in individual errors in our sample. 

Lastly, the Bayesian R-squared value for our model was 0.43, which represents a 

moderate effect size in social science data (Ferguson, 2009). 

Discussion 

Flooding is one of the most common and destructive of natural disasters. High-

resolution topographic data are critical for management of increasing flood risks from 

climate change and population growth and urbanization. However, the variable uptake of 

lidar illuminates an interesting discrepancy of knowledge of flood risk and mitigation 
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behavior. Our study examines the individual and collective predictors that could drive a 

flood risk manager to adopt lidar. By conducting a mixed-methods study, we identified 

several predictors that contribute our existing understanding of technology adoption for 

long-term risk mitigation. There are four main findings.  

First, our findings show mixed support for individual predictors of lidar use 

(Figure 1.5), as we predicted from our hypotheses in Table 1.3. Our results show that risk 

perception positively effects lidar adoption, increasing likelihood of adoption almost 

40%. There were minimal regional differences between Idaho, Oregon, and Washington 

who all reported over 96% chance of future flood damage in their communities. While 

risk perception positively correlates with lidar adoption, there are limitations in the 

implementation of this finding for improving flood risk management or for deciphering 

important underlying, contextual factors that drive the connection between risk 

perception and lidar adoption (Rufat et al., 2020). Despite the just criticism of risk 

perception in the flood risk management literature (e.g. Kellens et al., 2013; Wachinger et 

al., 2013), it can be helpful in policy making practices (Bubeck et al., 2012). For 

example, if a property owner is unaware that they are in a flood zone, then they likely 

will not buy flood insurance because they have a low perception of risk. Considering 

36% of flood claims are from properties outside of the FEMA-designated flood zone, 

there is a clear gap in risk perception and actual risk (Frank, 2021). A spatial comparison 

of where individuals perceive their risk compared to current floodplain maps can 

highlight important discrepancies to guide policy makers to focus targeted efforts. For 

our study, we use the results from the remaining individual and collective factors to 

provide contextual, correlative factors of lidar adoption.  
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The second significant finding of our study is that the remaining individual 

predictors resulted in mixed effects on lidar adoption (Figure 1.5). Direct experience 

positively correlated with lidar adoption and there were small regional differences with 

flood risk managers. For example, flood risk managers in Oregon directly experienced 

almost 13% and 5% less floods than Washington and Idaho, respectively. This finding 

supports previous research that found positive effect of direct experience on behavior 

(e.g. Poussin et al., 2014; van Valkengoed & Steg, 2019). It is possible that measuring the 

intensity or impact of the event experience could be a more informative measure though, 

since experiences vary greatly. Interestingly, knowledge, risk-taking attitude, and trust 

effected lidar adoption minimally. While knowledge may be important, our results show 

it does not seem to play as significant of a role in lidar adoption as other factors (e.g., risk 

perception). There were regional differences in knowledge, with nearly 20% and 16% 

more flood risk managers in Washington perceiving an increase in flood severity than in 

Idaho and Oregon, respectively. In addition, our results were inconclusive on the effect of 

risk-taking attitude (risk tolerant vs risk averse) on lidar adoption, which is similar to 

previous flood risk management studies (e.g. Roberts & Wernstedt, 2019; Viglione et al., 

2014). This is perhaps because of the duality of risk that comes with technology adoption 

and floodplain management. There is an inherent risk in adopting a technology that an 

individual may not know how to use, but a pay off in managing the flood risk. 

Conversely, there may be others who are more willing to take the risk of potential 

flooding in order to minimize the risk of adopting a new technology. This inconclusive 

finding suggests that we need to investigate risk salience further to understand the 

layering of factors (e.g., technological risk, societal risk) in decision-making. For 
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example, social influence might reduce the risk of adopting a new technology; that is, if a 

trusted peer uses lidar, lidar could feel less risky. On the other hand, direct experience 

with flooding might enhance a person’s perceived environmental risk in a way that makes 

them overcome the risk of adopting a new technology. Lastly, trust in the accuracy of 

science minimally correlated with decreasing lidar adoption. This could be because the 

more an individual trusts the current floodplain maps, the more likely they are to accept 

them as is instead of trying to update the maps based on new data. Overall, the correlation 

of trust and technology adoption resulted in mixed effects such as previous studies found 

(e.g. Kellens et al., 2013; Viglione et al., 2014), and therefore needs to be examined in 

greater detail to determine significance of its effect on technology adoption for flood risk 

management.  

Third, our findings show that collective predictors (peer influence, network 

strength, and network experience) most significantly facilitate the adoption of lidar 

(Figure 1.5).  As expected, the respondents with 100% lidar users in their social network 

were 32% more likely to adopt lidar than those with 0% lidar users in their network. Our 

finding aligns with existing literature, which also found peer influence to be a facilitator 

of technology adoption (e.g., Lo, 2013; Poussin et al., 2014; Viglione et al., 2014). 

Network strength had the largest effect on lidar adoption, increasing the likelihood of 

lidar adoption almost 84% from flood risk managers who communicate mostly with non-

lidar users to those who communicate with mostly lidar users. While network expertise 

did not have as large of an effect, it increased the likelihood of lidar adoption by almost 

43% for respondents who had more expertise from lidar users in their network. These 

findings support the idea that peers can be highly influential when it comes to adopting 
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new practices, as hypothesized by social learning and cultural evolutionary theory (e.g., 

Brooks et al., 2018; Mesoudi, 2019; e.g., Reed et al., 2010; Richerson et al., 2016). 

Furthermore, there was slight regional differences in social network characteristics 

where, overall, Washington reported the highest lidar peer influence, network strength, 

and network expertise. Interestingly, Washington also reported the highest percentage of 

lidar users (64.8%). These findings reiterate the correlation between social processes and 

lidar adoption, which we also found evidence for during our interviews (Table 1.6). One 

interview we conducted, with a floodplain manager from Idaho at a regional conference, 

mentioned “I feel like we should do a lot more networking in the state of Idaho, but 

oftentimes I have to reach out to people in Washington for help or at the national level for 

help. And so that’s why coming to these conferences is helpful for me because I meet 

peers outside of just our immediate, that have similar programs.” This is an intriguing 

point that highlights Washington as the source of lidar information for a flood risk 

manager in Idaho. Moreover, another interviewee stated, “we’re all in the same kind of 

communities, which is helpful sometimes, but it also is a little bit of a silo thing… we are 

all stuck in the same point of view.” These results show a clear need for increased 

communication and collaboration for the exchange of critical information that could 

potentially improve flood risk management practices and lower flood damage in the 

future. 

Fourth, our findings support the behavioral shift in flood risk management to 

focus on collective action. Rufat et al. (2020) calls for flood risk governance to include 

collaborative and participatory approaches, which is line with the United Nations Disaster 

Risk Reduction recommendations and policy goals and opposes historical flood risk 
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governance which is based off false assumptions of individual responsibility for action. 

Furthermore, current flood risk management literature lacks coordinated and integrated 

theoretical approach to understanding the drivers of flood risk manager behavior and 

decision-making ((Kellens et al., 2013; Kuhlicke et al., 2020; Rufat et al., 2020). Our 

study exemplifies an interdisciplinary and integrated framework that could be replicated 

to understand the role and effect of collective predictors, alongside individual factors, on 

other risk mitigation behaviors.   

Implications 

Our first suggestion is a more targeted focus on increasing collaboration across 

flood risk manager communities within states and between states. The need for more 

established networks was found in both our interviews and survey analysis. Federal, state, 

and local level authorities capitalize on the importance of peer influence and 

communication, not only for lidar adoption, but for general information dissemination of 

effective flood risk mitigation behavior and sustained best practices for flood risk 

management. For example, states could provide targeted networking events for the lidar 

community to gather and communicate about lidar. 

Secondly, we found that Washington had 1.3 times more lidar users than Idaho. In 

addition to our survey findings, this variation could also be driven by the lidar acquisition 

and coordination program in Washington. The Washington Geological Survey was 

granted funding from 2015-2021 for the collection and distribution of lidar data and lidar-

derived products. Established in the Department of Natural Resources, the funding came 

from the Washington State General Fund and provided funding for two permanent lidar 

positions, a lidar manager and a lidar specialist. In addition, Washington focused on 
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disseminating interactive (e.g. Washington Story Map) information on lidar to educate 

the public and advocate for sustained lidar investment at the state-level. Oregon and 

Idaho also have established lidar acquisition and coordination efforts; however, they do 

not have a permanently funded position to manage lidar. In summary, the lidar model in 

Washington, which includes two full time positions and sustained state funding, could be 

one of the reasons we see a higher lidar adoption rate in Washington. Following the 

model of Washington might promote increased use of lidar in the other states. This would 

require both policy and funding-level changes in Oregon and Idaho. 

Limitations 

While we can identify correlative trends, our analysis is limited in understanding 

the causal inference of these collective predictors on lidar adoption due to the cross-

sectional nature of our study. Causal inference could be found by conducting a 

longitudinal study to see how lidar adoption changes over time, especially with target 

barrier reduction and increased channels for peer influence and resource sharing. In 

addition, our social processes results were limited by an ego network analysis that only 

provides one degree of peer connections. We suggest a full network analysis in the future, 

which could identify key stakeholders in the flood risk management community to target 

information dissemination and risk mitigation behavior changes in the flood risk 

management community. Additionally, our study does not include the impact and 

efficacy of lidar use; rather, we operate under the assumption that lidar is useful to flood 

risk managers. The USGS has broken down the benefit-cost ratio for each state to help 

state-level decision makers plan and manage lidar acquisition in their communities; 

however, it would be helpful to directly link this work with lidar adoption (Sugarbaker et 

https://wadnr.maps.arcgis.com/apps/Cascade/index.html?appid=b93c17aa1ef24669b656dbaea009b5ce_
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al., 2014). Lastly, we were unable to confirm if our survey sample demographics 

represented the full flood risk manager populations in Idaho, Oregon, and Washington. 

Since our survey was distributed during COVID-19, it is possible that flood risk 

managers may have been consumed by other responsibilities regarding the pandemic and 

therefore were unable to take our survey limiting our sample size and scope. 

Conclusion 

Lidar provides flood risk managers with the technology needed to understand 

their communities flood risk in a changing environment. The variable adoption of this 

technology lends to an interesting case study of facilitators to technology adoption for 

long-term risk mitigation. We used a mixed-method empirical study to understand the 

individual and collective predictors of lidar use. Overall, peer influence, network 

strength, network and risk perception were positively correlated with lidar adoption. 

Whereas knowledge, risk-taking attitude, and trust did strongly correlate with lidar 

adoption. In addition, our interview findings were congruent with trends from our 

quantitative analysis. Specifically, there is a desire and need for increased communication 

and collaboration of flood risk managers within and between states. In the future, we 

suggest a longitudinal study to understand the change in lidar use over time in order to 

understand the causality of social processes and lidar adoption. We hope the findings of 

this study can be used to bolster flood risk management collaboration networks to 

facilitate targeted risk mitigation behaviors in the future. In addition, we hope that our 

framework, that uses cultural evolutionary theory and social learning theory, can be used 

in disaster and hazard management studies to quantify the impacts of collective factors on 

long-term risk mitigation behavior. 
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CHAPTER TWO: PUBLIC SCHOLARSHIP—KNOWING MORE, LOSING LESS 

THROUGH INVESTMENT IN HIGH-QUALITY ELEVATION DATA IN IDAHO 

Abstract 

Both natural hazards and urbanization alter the landscape in which they occur. 

Local and state planners, managers, and officials need access to accurate data regarding 

the earth’s topography, vegetation, and structures in order to respond to these landscape-

level changes. Light Detection and Ranging (lidar) is a remote sensing technology that 

provides high-quality topographic data. However, there has been a slow uptake of raw 

lidar and lidar-derived products in Idaho. Using the Idaho-specific survey data collected 

in Chapter One, we quantified the barriers flood risk managers face with lidar adoption in 

Idaho. We found that lack of funding, expertise, and political support were the top 

barriers flood risk managers faced. In response, we created three educational outreach 

products to address these barriers: a webinar, a white paper, and a Story Map. In addition, 

we expanded our findings from the survey to any application that could benefit lidar in 

Idaho because we expect to find similar barriers to uptake in those fields. The varied 

forms of information dissemination will increase knowledge about lidar and in turn, will 

hopefully increase uptake.  
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Introduction 

In recent years, Idaho has seen an increase in the number of dangerous heat days, 

drought threat, and number of large fires in conjunction with snowpack trending 

downward and precipitation increasing. These climate changes pose increased natural 

hazards threat. In addition, Idaho had the largest single-year population increase of the 

entire U.S. with a 2.1% increase from 2019-2020 (Press, 2020). The Treasure Valley 

alone is expected to grow by almost 53%, surpassing 1 million residents by 2040 

(COMPASS, 2012). The culmination of hazards and growth over the last year, and 

projected growth, amplifies vulnerability and requires active, dynamic planning in order 

to ensure a resilient future for Idahoans. Both human-caused and natural hazards, 

alongside urbanization, alter the landscape.  Planners, managers, and officials need access 

to accurate data regarding topography, vegetation, and structures in order to respond to 

these landscape-level changes.  

Light and Detection Ranging (lidar) is a remote sensing technology that provides 

high-quality elevation data. Light can penetrate small openings in canopy cover allowing 

for measurements of ground features below the canopy, and other topographic features. 

The data can be processed into Digital Elevation Models (DEM), which show the bare 

earth and Digital Surface Models (DSM) which show structures such as trees or 

buildings, on the surface. In addition to raster-layer products, the raw and processed lidar 

point clouds provide flexibility for a variety of applications. For example, the point 

clouds can be used in their native 3-D point cloud format or reprocessed into rasters that 

are tailored to assessing vegetation health. Raw lidar data and lidar-derived products are 

widely-used across the United States for hazards, resource management, and urban 
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planning, among other applications (e.g., Andersen et al., 2005; Chang et al., 2014; 

Clifton et al., 2018; Ellett et al., 2019; Muhadi et al., 2020).  

In 2010, the U.S. Geological Survey (USGS) established the 3D Elevation 

Program (3DEP) as the first nationally-coordinated lidar acquisition program. The main 

goal of 3DEP is to have complete lidar coverage of the U.S. by 2023, given adequate 

funding (Sugarbaker et al., 2014) However, this project only provides seed funding and 

depends on additional funds and partnerships in order to acquire lidar. In 2013, the Idaho 

Lidar Consortium (ILC) was founded to provide a repository for publicly-available lidar, 

as well as provide a resource for state-level lidar acquisition and coordination in Idaho. In 

2018, the Idaho Lidar Statewide Acquisition Plan (Plan) was created to establish an 

approach to acquire and recommend quality level standards of publicly-available 

statewide lidar data and lidar-derived products by 2026 (Elevation Technical Working 

Group, 2018). The ILC and the Plan have been instrumental in increasing lidar coverage 

from 18% in 2018 to 73% by the end of 2021. While the founding of ILC has been 

paramount for the initiation and upkeep of continued lidar data acquisition, there has been 

varying interest from potential users, in addition to varying resources to acquire lidar, 

resulting in a fragmented and incomplete lidar coverage of the state (Figure 2.1).  
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Figure 2.1. Project 2021 lidar coverage. QL represents quality level of lidar 

flown, where QL1 is the highest quality. 

Applied Research 

This chapter uses data gathered from Chapter One. Moreover, we specifically look 

at the data retrieved from Idaho-based survey respondents. In addition, we scale up 

adoption barriers from flood risk management to address adoption barriers across sectors 

(e.g. riverine ecosystem management, wildlife and habitat management, forest resource 

management) and scales (e.g. city, county, state).  This approach is informed by 

innovation adoption theory, which postulates that one way to elicit change in adoption is 

by identifying the facilitators and barriers correlated with adoption (Wisdom et al., 2014). 

Some of the common barriers that prevent individuals from adopting are lack of 

Quality Level 1 
Quality Level 2 
Quality Level 3+ 
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awareness, familiarity, time, autonomy, and ability to access research (Wisdom et al., 

2014).  

Objectives 

There were two main objectives: (1) to understand the current barriers to lidar 

adoption with flood risk managers in Idaho (2) create and disseminate three educational 

outreach products tailored to a specific audience and purpose across a wide-scope of lidar 

applications in Idaho. In order to do this, I worked closely with Dr. Nancy Glenn and 

Josh Enterkine from ILC to design and carry out an applied research project that aligned 

with the organization’s short-term and long-term goals for lidar adoption in Idaho.  

Methods 

Case Study Methodology 

We used the results from the survey instrument we created for Chapter One of my 

thesis. Specifically, we focused on solely survey responses from Idaho (n=96). One 

section of the survey asked respondents about barriers to lidar adoption in flood risk 

management (Figure 2.2). 
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Figure 2.2. Survey question regarding barriers to lidar adoption. This question 

addressed six potential barriers flood risk managers may face and responses were 

collected on a likert scale. 

In addition, we asked respondents about specific areas they would like training 

sessions regarding lidar to inform our educational outreach portion of this study (Figure 

2.3).  
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Figure 2.3. Survey question regarding educational workshops of interest to 

respondents. Survey respondents had four pre-specified answer choices and an open 

response option. 

Communicating Results to Stakeholders 

Based on our research findings from Figure 2.2 and Figure 2.3, we created three 

forms of sharing our results to community stakeholders. Each method of information 

dissemination was created with a specific audience, intention, and publishing format in 

mind. The three ways we did this were (1) a webinar summarizing our survey findings 

specifically for flood risk managers in Idaho, (2) a white paper for the Idaho Geospatial 

Council – Executive Committee and Elevation Technical Working Group, and (3) a Story 

Map for a broad audience of potential and current lidar users in Idaho.  

The webinar titled, “Current State of Lidar in Idaho for Flood Risk Management”, 

was part of a series of webinars to engage the broader flood risk management community 

on lidar use. The intention of this webinar was to share our survey findings from both 

thesis chapters and discuss the implications of these findings for community stakeholders. 

This webinar was designed to incorporate best practices for engagement and learning 

including tailored message for target audience, guest speakers from varied backgrounds, 
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“mini-lectures,” audience engagement (e.g., introduction over chat, live discussion), and 

contact information of speakers for follow-up questions (Bedford, 2016). 

The white paper, titled “Knowing More, Losing Less through Investment in High-

Quality Elevation Data in Idaho,” was written for a very specific audience, the Idaho 

Geospatial Council – Executive Committee and Elevation Technical Working Group. 

The intention behind this document was to discuss the current state of lidar acquisition in 

Idaho, as well as a call to action to ensure the completion of the goals set forth by the 

USGS 3DEP and the Idaho Lidar Statewide Acquisition Plan. The white paper format 

provided a way to quickly identify the problem and provide a solution to the problem in a 

concise, engaging format and inform governmental policy (Stelzner, 2007).  

The third form of educational outreach we conducted was through the 

Environmental Systems Research Institute Story Map (Story Map) application. Research 

has found that Story Maps are an effective teaching tool for STEM subjects (Groshans et 

al., 2019). Another study found that Story Maps increase accessibility and enhanced 

participation in sustainability-related activities (Austin, 2018). In addition, Story Maps 

provide an integrative approach to science communication by combining concise text 

with engaging visuals. Considering these advantages, we created a Story Map, titled 

“Mapping for Resilience.” It was written for a broad audience of potential and current 

lidar users. The intention behind this document was to educate the viewer about how lidar 

can be used to address a wide range of challenges posed by landscape change due to 

natural hazards and urbanization. This format provided an engaging and dynamic 

platform to display the versatility of lidar and complimented the goals of our white paper.   

https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d&edit
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Results 

Case Study Results 

Around 50% of the survey respondents used lidar for flood risk management in 

Idaho (Table 1.8). When we examined this at a more granular level, we found that only 

32% and 41% of flood risk managers at the City and County level, respectively, used 

lidar compared to 80% and 86% of flood risk managers at the Industry and State-level, 

respectively. This shows a clear discrepancy about who is using lidar. For the flood risk 

managers who did not use lidar, the survey asked about barriers that inhibited them. The 

top three barriers were lack of adequate funding, expertise, and political support with 

nearly 50% or more respondents selecting these barriers (Figure 2.4).  
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Figure 2.4. Descriptive summary of barriers to lidar adoption for flood risk 

managers.  

In addition, we asked all survey respondents to answer the type of lidar training 

sessions they would like to attend in the future. 58% of respondents selected they would 

like to attend sessions about lidar fundamentals, lidar with ArcGIS, and lidar acquisition 

(Figure 2.5). 
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Figure 2.5. Descriptive summary of lidar training sessions of interest to survey 

respondents. Majority of respondents showed interest in all three trainings. 

Communicating Results to Stakeholders Results 

The webinar shared the Idaho-specific survey results in October 2020 over Zoom. 

We sent out the invitation to the webinar though multiple channels including the ILC 

website, the Idaho GIS listserv, and the Hazards and Climate Resiliency Institute contact 

list. There were over 65 individuals in attendance and included flood risk management 

stakeholders such as government officials, industry professionals, and academics. The 

first part of the webinar was a presentation about the history of lidar coverage in Idaho, 

the findings from the project, and two guest speakers, Linda Davis, the GIS Manager at 

the Idaho Department of Water Resources, and Kristine Hilt, the Blaine County 

Floodplain Manager. The second part of the webinar was a panel discussion facilitated by 

Dr. Nancy Glenn and prompted by questions from the audience. 

The white paper and Story Map were based on the survey results regarding the top 

three barriers of lidar adoption, which were lack of adequate funding, expertise, and 
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political support. The white paper (Appendix A) primarily focused on formulating an 

argument for a state-level lidar liaison position that could help facilitate funding 

opportunities and provide a source of support for the community interested in lidar. The 

Story Map was created to speak to each of the lidar training session subjects that in turn 

could minimize the expertise barrier felt by over 50% of the respondents. The story 

begins with background information about lidar and how it works. Then it describes 

several primary Business Uses of lidar in Idaho including flood risk management, 

wildfire management, wildlife and habitat management, riverine ecosystem management, 

and forest management, among others (Dewberry, 2012). Finally, the story ends with a 

section about how to acquire lidar and additional resources to build community. These 

documents will be distributed June 2021 through the ILC website and the Hazards and 

Climate Resiliency Institute at Boise State University. In addition, it will be distributed 

with lidar training courses through Idaho State University’s GIS Training and Research 

Center. 

Discussion 

The three forms of educational outreach distribution played a key role in reaching 

a wide audience with tailored messaging to that audience. The first form, a webinar, was 

helpful for disseminating information specifically to flood risk managers, the focus of our 

case study. The live panel format allowed for an engaging discussion to occur and the 

online format over Zoom allowed for attendance of flood risk managers across the state. 

The white paper and Story Map were created for a broader lidar use audience, informed 

by the findings of our case study, since lidar is a technology that can be beneficial to 
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multiple sectors and types of organizations. Furthermore, the online format of these 

products makes the broadcasting of these materials easier.  

The past year in Idaho was greatly affected by the COVID-19 pandemic and likely 

lowered the number of survey responses we received. Specifically, we had a survey 

response rate of 25% in Idaho (Table 1.5); therefore, we did not hear from most of the 

potential survey respondents. While this survey response rate is typical of an online 

survey, it is possible this number was lower this year because of flood risk manager’s 

involvement with emergency management in their communities (Sauermann & Roach, 

2013). In addition, we were unable to hold in-person interviews and workshops because 

of COVID-19. While we were still able to complete the important components of the 

project, I feel as if I did not experience some of the benefits of in-person work such as 

growing a closer connection with the lidar community in Idaho. Richer connections in the 

flood risk manager community could have led to increased education for me and 

community members.  

In the future, we suggest sending out the survey again to see if lidar adoption rates 

increased after this project’s educational materials were instituted as a way of assessing 

product efficacy. This could lead to a longitudinal study, which would better inform how 

we understand technology adoption. We recommend expanding the survey beyond flood 

risk managers to all individuals and organizations that may use lidar. This would result in 

a greater understanding of the landscape of barriers that lidar adopters face. Finally, we 

recommend that the educational outreach products, specifically the white paper and Story 

Map, remain as live, dynamic documents that can be updated to reflect the current needs 

of lidar acquisition and coordination in Idaho.  
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Future Work 

The white paper and Story Map will first be distributed to the Idaho Geospatial 

Council – Executive Committee and Elevation Technical Working Group on June 3rd. I 

plan to do this through a presentation and electronic dissemination of materials to 

relevant individuals. Once the committee has given feedback, we hope to submit the 

white paper and Story Map to state elected officials to get funded. In addition, the Story 

Map is a living document that we would like to keep up-to-date as lidar use increases 

throughout the State.  

Conclusion  

Using the Idaho-specific survey data from Chapter One, we found that flood risk 

managers in Idaho experience several barriers to lidar adoption resulting in only 50% of 

managers using lidar. The top three barriers we found were lack of funding, lack of 

expertise, and lack of political support. In addition, we found that flood risk managers 

would like workshops in lidar fundamentals, lidar use with ArcGIS, and lidar acquisition. 

Considering these findings, we created three forms of educational outreach to create 

materials tailored for a specific audience and purpose. We held a webinar to share our 

survey results with flood risk managers in Idaho, wrote a white paper to advocate for a 

lidar liaison and permanent budget for lidar acquisition and coordination with support 

from state-level organizations, and created a Story Map to educate current and potential 

lidar users about lidar fundamentals, applications, and acquisition. We found this work to 

be received well by the lidar community in Idaho and are hopeful that these educational 

materials will increase lidar uptake in Idaho.  
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Introduction 
In recent years, Idaho has seen an increase in the number of dangerous 

heat days, drought threat, and number of large fires in conjunction with 

snowpack trending downward and precipitation increasing. In addition, 

Idaho had the largest single-year population increase of the entire U.S. 

with a 2.1% increase from 2019-2020 (Idaho Business Review, 2020). 

Furthermore, the Treasure Valley, alone, is expected to grow by almost 

53%, amounting to over 1 million residents, by 2040 (COMPASS, 2012). 

Natural hazards, as well as urbanization alter the landscape in which they 

occur and therefore planners, managers, and officials need access to 

accurate data regarding Idaho’s topography and vegetation. Light and 

Detection Ranging (lidar) is a remote sensing technology that provides 

high-quality topographic data for hazard mitigation. Raw lidar data and 

lidar-derived products have become widely-used across the United 

States for hazards, resource management, and urban planning, among 

other applications, because it creates high-resolution, accurate maps. In 

response to this growing need for high-quality data, several states have 

created permanent, state-level positions to manage and coordinate lidar 

data acquisition efforts (Appendix B). In Idaho, the Idaho Lidar 

Consortium (ILC) currently manages state-level lidar data coordination 

efforts. The ILC helped coordinated lidar acquisition across the state, 

leading to 73% coverage by the end of 2021. While the amount of 

publicly-available lidar is increasing it is critical that Idaho invests in a 

plan that ensures continued lidar data collection and implementation to 

increase the resiliency of Idaho in the future.  

This white paper discusses the lidar acquisition process in Idaho and 

calls for action to ensure the completion of the goals set forth by the 

USGS 3D Elevation Program (3DEP) and the Idaho Lidar Statewide 

Acquisition Plan. 

Lidar Processing 

 
For large areas, lidar data is most 
commonly collected using airplanes 
and helicopters. Light is able to 
penetrate small openings in canopy 
cover allowing for measurements of 
ground features below the canopy as 
well as other topographic features. 
The data can be processed into 
Digital Elevation Models (DEM) 
which show bare earth and Digital 
Surface Models which show 
structures (see image below), such as 
trees or buildings, on the surface. In 
addition to raster-layer products, the 
raw and processed lidar point clouds 
provide flexibility for a variety of 
applications. For example, the point 
clouds can be used in their native 3-D 
point cloud format or reprocessed 
into rasters that are tailored to 

assessing vegetation health.  

https://ita.idaho.gov/wp-content/uploads/sites/3/2018/10/Idaho_Statewide_Lidar_Plan_Final_2018.pdf
https://ita.idaho.gov/wp-content/uploads/sites/3/2018/10/Idaho_Statewide_Lidar_Plan_Final_2018.pdf
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History of Elevation Data in Idaho  
  

 

 

 

 

  

2021

•An additional 56% (47,000 sq. miles) of the state will 
be mapped (some remapped) amounting to 73% 
(60,783 sq. miles) of the state covered with lidar.

2020

•25% (24,000 sq. miles) of the state is covered with 
lidar data.

2018

•Idaho Lidar Statewide Acquisition Plan was created 
to establish an approach to acquire publically-
available statewide lidar data and lidar-derived 
products for Idaho by 2026 and set reommended 
standards for lidar data. 

2013

•Idaho Lidar Consortium (ILC) is founded to provide 
a repository for publically-available lidar, as well as a 
resource for state-level lidar coordination and 
acquistion in Idaho.

2010

•USGS establishes 3D Elevation Program (3DEP), 
the first nationally-coordinated lidar acquisition 
program with a goal of having the complete lidar 
coverage of the US by 2023 given adequate funding. 
This would be the first-ever national baseline of 
consistent high resolution topographic elevation 
data, including bare earth and 3D point clouds.

2000

•USGS National Elevation Dataset (NED) provides 
publically-accessible 10-meter and 30-meter 
topographic data in Idaho. 

Idaho Lidar Coverage 

Historically, publicly-available lidar data has been 
acquired in Idaho through various interested 
parties such as county officials (e.g., Nez Perce 
County) and public agencies such as the US Forest 
Service (USFS), Federal Emergency Management 
Agency (FEMA), and United States Geological 
Survey (USGS). While these data are important, 
this approach to data acquisition has resulted in 
fragmented and incomplete lidar data coverage in 
the state. The founding of the ILC has been 
paramount for the initiation and upkeep of 
continued lidar data acquisition throughout the 
state of Idaho. For example, the ILC is currently 
working to create an official lidar-derived 
topographic layer for the state of Idaho. This layer 
will provide a 1-meter resolution DEM that can be 
used for a wide range of applications. In addition 
to this product, the ILC aims for continuous up-
to-date raw lidar data available across the entire 
state.  
Figure 1. Lidar coverage in 2021. Quality Level 1 
(QL1) represents the highest lidar quality level in 
Idaho. See Appendix C for specifications.  

 

QL1 
QL2 
QL3+ 
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Who is using lidar data in Idaho? 
Lidar is currently being used by a range of individuals and agencies including GIS technicians, planners, 

engineers, academics, among others. Since lidar is used by a vast range of individuals, we spent the last year 

and a half focused on one specific group of lidar users to learn more about why an individual would or 

would not adopt the technology; that group was flood risk managers in Idaho. It became evident, through 

my research, that City and County officials were using lidar at a much lower rate than industry and State-

level officials and that several barriers existed in the uptake of lidar including lack of adequate funding and 

expertise. While these findings are based in flood risk manager’s experience, they can also be used to bolster 

our strategic plan for lidar acquisition and coordination for Idaho, overall, through incorporating measures 

to reduce uptake barriers and increase accessibility to lidar data and lidar-derived products in Idaho in the 

future.  

  Case study: Lidar Use in Flood Risk Management 

This past year we conducted several interviews with flood risk managers to understand the landscape of 
lidar use in flood risk management in Idaho. Several common themes arose from these conversations: 

Barriers Opportunities 

- Rural regions with smaller populations 
typically have lower priority for revised 
mapping 

- Lidar is seen as expensive and not all 
communities / regions have adequate 
funding 

- There is potential distrust in scientific 
products and/or the federal government 

- Hesitancy towards publicly-accessible 
lidar from private landowners 

- Lidar is useful and desirable to 
work with 

- Elected officials have authority in 
lidar acquisition 

- Community relationships can be 
influential in lidar adoption 

- Lidar acquisition is facilitated by 
collaboration across multiple 
institutions and stakeholders 

 
These results informed a survey that we sent out from June to August 2020. From this survey, we 
found that half the respondents used lidar. When we examined this at a more granular level, I found 
that only 32% and 41% of flood risk managers at the City and County level, respectively, used lidar 
compared to 80% and 86% of flood risk managers at the Industry and State-level, respectively. This 
showed a clear discrepancy about “who” is using lidar. Figure 2, below, reports our findings from the 
survey on the barriers experienced by flood risk managers.  

 
Figure 2. Summary of barriers that prevented flood risk managers from using lidar. 

 
 

 



70 

 

Examples of lidar applications 
Given the influx of lidar data in Idaho, it has already been used in a wide-array of applications, which the USGS 

has categorized into specific, measurable Business Uses (BU). There are currently 13 BUs that have been 

identified for Idaho, which are summarized in Appendix A. Here are two examples of successful applications 

of lidar within these BUs. To learn about additional lidar applications and how they are making Idaho a more 

resilient state to climate change and population growth, visit this Storymap about lidar in Idaho called “Mapping 

for Resilience”.   

  

  Flood Risk Management: flood risk modeling and 
mapping of riverine areas 
More than 50% of the counties that are using floodplain 
maps in Idaho are using maps from before 2002 (IOEM, 
2018). There is a need to update flood hazard maps to 
reflect accurate risk based on high-quality topographic 

data.  

In 2017, there were over 100 days of flooding 
along the Boise River. However, this flooding 
occurred at much a lower flow rate than officials 
expected. This event, along with increased 
urbanization and population, motivated the 
acquisition of lidar along the Boise River so that 
flood risk managers could accurately assess the 
flood potential of the Boise River in the future. 
This includes modeling flow rates representative 
of climate change, which is expected to change the 
timing of peak flows along the river. In addition, 
lidar can be used to develop a 2-dimensional 
hydraulic routing model that can provide estimates 
of physical parameters (e.g., depth and velocity) 
that can be key components for identifying the 
spatial distribution of conditions that are critical to 
account for in water quality models and studies. 
These studies can illuminate critical habitat, 
pollutant transport, sediment deposition and 
scour, and channel migration.  

 

Around three million acres of the Payette National 
Forest were flown with Quality Level 1 lidar. It is 
used for many applications including fire planning, 
timber harvesting, and transportation planning. The 
detailed nature of lidar data helps planners efficiently 
improve databases by correcting road alignments, 
updating inventory, and digitizing roads not already 
identified. The image to the right shows pre-2017 
National Forest Road alignments based on aerial 
imagery in blue. The realigned National Forest 
System Roads based on higher-quality lidar data are 
in magenta. Numerous other routes can be seen in 
the area which have been inventoried for future 
analysis. Planners also use lidar to identify channels 
and define horizontal buffer zones to map channel 
proximity to road systems. One way lidar is especially 
helpful is that it can display channel migration, which 
can help planners understand the history of a 
channel. The image on Page 6 shows an example of 

channel migration in Payette River. 

 

Forest Resources Management: plan, monitor, 
and protect forest resources 
Forests are a valuable renewable resource for Idaho. 
Forests provide a significant asset for the state, as 
well as for wildlife, recreation, and the climate 
among other uses. 

https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d&edit
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Considerations to increase lidar coverage and uptake 
Publicly-accessible lidar data and lidar-derived products have increased in Idaho over the last decade. 

However, we think a commitment to continuing investment is needed in order to sustain lidar 

acquisition in the future. One way we could move lidar forward is by engaging in a broader discussion 

with the state’s Elevation Technical Working Group and the Idaho Geospatial Council – Executive 

Committee. We recommend the following items be considered, discussed, and potentially incorporated 

into the “Idaho GIS Strategic Plan”:   

1. A permanent job role at the state-level specifically for coordinating and managing lidar 

acquisition for Idaho. The ILC acts as a state-level coordinator currently, however this position 

is dependent on support from universities and external, non-permanent grant funds.  

2. A one-time budget approved at the state-level to execute lidar acquisition for the remaining 

areas of the state that do not currently have lidar and replacement of existing lidar coverage 

that is 10 years or older.   

3. A recurring budget approved for continual lidar acquisition in the future to keep in-line with 

the Update Frequency outlined in Appendix A.  

4. Recurring budget for lidar workshops to educate individuals on how to use lidar with the 

relevant software needed to complete the BU’s outlined in Appendix A.  

Benefits of a permanent, state-level investment in lidar include:  

1. Systematic, coordinated, and standardized data collection for the entire state.  

2. Lidar data and lidar-derived products will be publicly-available across the entire state. 

3. Economies of scale provides the potential for lower costs per square mile of data collected 

due to potential for larger swaths of data collection at a time.  

4. There is potential for a greater amount of higher quality lidar data. The USGS 3DEP program 

provides funding for lidar acquisition projects of Quality Level 2. State-level coordination with 

local agencies and academic institutions is critical for leveraging lidar acquisition efforts that 

fund data collection with a minimum of Quality Level 1, which is required for heavily forested 

and complex terrain.  

The Idaho Office of Emergency Management estimates that for every $1 spent on mitigation, there 

will be $6 in disaster savings.  Budgeting for permanent lidar acquisition and coordination is a 

critical step in investing in disaster mitigation for a resilient future in Idaho.  

 

  
Relative Elevation Model using a 1-meter 

resolution lidar-derived DEM of the North 
Fork Payette River by Donnelly, Idaho. The 

whitest part shows the current channel, 
while the faded blue shows where the 

channel has been. 
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https://www.arcgis.com/apps/Cascade/index.html?appid=4a63a54438f74d5db21114bec266baf4
https://esd.dof.ca.gov/Documents/bcp/2021/FY2021_ORG0540_BCP3610.pdf
https://www.dnr.wa.gov/lidar
https://wadnr.maps.arcgis.com/apps/Cascade/index.html?appid=b93c17aa1ef24669b656dbaea009b5ce
https://clearinghouse.isgs.illinois.edu/data/elevation/illinois-height-modernization-ilhmp
https://clearinghouse.isgs.illinois.edu/lidar/Illinois_LiDAR_Plan_October_2019_working_draft.pdf
https://www.floridadisaster.org/dem/ITM/geographic-information-systems/lidar/
https://floridadisaster.maps.arcgis.com/apps/MapJournal/index.html?appid=c1a901b51646442db0eff37cbb98219f
https://www.kansasgis.org/resources/lidar.cfm
https://kwo.ks.gov/docs/default-source/governor's-water-conference/2017-governor's-conference-presentations/kastens---lidar-and-the-kansas-water-surface-landscape.pdf?sfvrsn=2
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Appendix C 
Table 3. Lidar Quality Levels based on USGS standards. 

Quality Level 
(QL) 

Aggregate 
nominal pulse 
spacing (m) 

Aggregate 
nominal pulse 
density 
(pulse/m2) 

Smooth surface 
repeatability, 
RMSD (m) 

Swatch overlap 
difference, 
RMSD (m) 

QL0 ≤0.35 ≥8.0 ≤0.03 ≤0.04 

QL1 ≤0.35 ≥8.0 ≤0.06 ≤0.08 

QL2 ≤0.71 ≥2.0 ≤0.06 ≤0.08 

QL3 ≤1.41 ≥0.5 ≤0.12 ≤0.16 
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Interview Instrument 
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Study Title: Promoting the use of lidar for flood risk preparedness, planning, and 
adoption in municipalities across the western US 

Interview Script 

Principal Investigator: Tara Pozzi   

Collaborating Groups/Individuals: Dr. Vicken Hillis, Boise State University 

Researcher: Collect consent forms. “Thank you for agreeing to speak with me today. 

The purpose of this study is to better understand how floodplain management currently 
works, identify gaps and barriers to the implementation of lidar use, and provide 
opportunities for knowledge and information sharing across the region. You are being 
asked to participate because you have a stake in flood risk management for your region. 
If you agree to a semi-structured interview you will be asked to participate in a 1-hour 
interview and answer questions regarding your role in flood risk management. This may 
include a short-written questionnaire, audio recording and/or note taking with your 
permission. 

  
Basic metadata questionnaire           Interview Number______(completed by researcher) 
  
Today’s date 
Age 
Gender 
Ethnicity 
  
What is the highest level of education you completed? 
1)     Some high school 
2)     High school diploma 
3)     College education, did not graduate 
4)     College education, Associates degree 
5)     College education, Bachelor’s degree 
6)     Post College, no degree 
7)     Advanced degree (MA, JD, MBA) 
What was your degree? 
1)     Engineering 
2)     Planning 
3)     Business 
4)     Geography 
5)     Public Administration 
6)     Political Science 
7)     Geology 
8)     Other 

  
Percent of your time spent on floodplain management. 
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1)     0-10% 
2)     11-20% 
3)     21-30% 
4)     31-40% 
5)     41-50% 
6)     More than 50% 
  

Floodplain manager experience 
  

1)     < 5 years: how many?______ 
2)     6-10 years 
3)     11-15 years 
4)     16-20 years 
5)     > 21 years 

What is your approximate yearly household gross income, including all ranch and off ranch 
income (circle one)? 
1)     Less than $24,999 
2)     $25,000 to $34,999 
3)     $35,000 to $44,999 
4)     $45,000 to $54,999 
5)     $55,000 to $64,999 
6)     $65,000 to $74,999 
7)     More than $75,000 
  
Are you a Certified Floodplain Manager (CFM)? 
  

1)     Yes 
2)     No 
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Semi-Structured Questions 

Section 1: Interviewee background information 

  

What is your background with flood risk management? 

  

What is your current job title? 

  

What responsibilities do you have in your current role? How much time do you dedicate 
to each of your responsibilities? 

  

Are you solely responsible for floodplain management or do you have other 
responsibilities? 

  

Where do you do most of your work? From an office, house, the field? 

  

What professional organizations are you apart of? Do you partake in any continued 
education courses, and if so what type? 

  

Section 2: Local floodplain management practices 

  

How many floodplain management staff are there? What are the combined years of staff 
experience in floodplain management? 

  

At a general level, what factors control or significantly influence your work? Policy 
makers, community welfare, funding, etc.  

  

How does funding work for your region? What are your typical revenue sources? i.e., 
grants, loans, taxes, technical assistance programs, etc. 

  



81 

 

What stakeholders (organizations, agencies, people, etc.) do you regularly work with? 

  

Do you follow the minimum floodplain management practices set forth by NFIP? If so, 
are any of those stricter than NFIP’s requirements? Do you feel like you know best 
management practices for your region? 

  

How well do you think all vested interests in this industry collaborate, coordinate, and 
communicate with one another? Including other floodplain managers, engineers, 
developers, homeowners, farmers, etc. 

                                         

How has recent development affected your floodplain management practices? 
  

Section 3: Flood risk perception in your region 

  

What level of flooding risk do you associate with the area you are responsible for? What 
is the typical frequency, size, or timing of flooding events? When was the last significant 
flood event? 

  

How is the flood risk management process conducted in terms of identification, 
assessment, planning and implementation of projects? 

  

What resources do you use to obtain information about precipitation, climate patterns, 
etc. that influence your understanding of flood risk? 

  

What are your beliefs on changing climate patterns? Does this affect how you see risk 
your region? 

  

Does urbanization provide additional risk your region? 

  

What is the extent of public engagement regarding flood risk management and how do 
you go about engaging the community in these topics? 

  



82 

 

Section 4: Lidar use in floodplain management 

  

What is your current mapping system? How accurate do you think your current mapping 
system is in identifying areas of vulnerability in your region? 

  

Are there parts of your region that are unmapped and if so, where? And how do manage 
flood vulnerabilities in those areas? 

  

Do you personally work with lidar? What other technology do you most often use for 
flood management? 

  

How do members of the industry use lidar for floodplain management? What is their 
opinion on this technology? 

  

Section 5: Changes and barriers to change in the industry  

  

What do you see as barriers or issues in floodplain management today? And why do you 
think they exist? (e.g., where are current gaps or resources you wish you had?) 

  

Based on your previous answer, are there specific areas that our research could assist 
with flood risk management? If so, where could we be most helpful in filling those gaps? 

 

What do you see as the most effective way to increase lidar uptake in your region? 
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APPENDIX C 

Survey Instrument 
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Technology Adoption in Flood Risk Management 

 

Start of Block: Consent Form 

 

Welcome to the Technology Adoption in Flood Risk Management Survey! 

The purpose of this survey is to better understand how managers make decisions about flood 

risk management. You are being asked to participate in this survey because you are a 

knowledgeable member of the industry who could provide information for our study. This 

survey will ask about you, the community you work in, and your use of lidar (Light Detection and 

Ranging) in flood risk management. Your answers will be used to contribute to understanding 

the role lidar plays in flood risk management, as well as help us identify challenges and barriers 

that may exist to its implementation.  

  

We anticipate the survey will take less than 15 minutes.  

 

Please note: 

You must be at least 18 years old to participate. Your participation is voluntary, and your 

responses will remain confidential. No personally identifiable information will be associated 

with your responses in any reports of the data. If there are any items that you would prefer to 

skip, please leave the answer blank.   

For any questions, please contact the principal investigator: Tara Pozzi at 

tarapozzi@boisestate.edu or Dr. Vicken Hillis at vickenhillis@boisestate.edu.     

o I want to participate.  

o I do not want to participate.  
 

End of Block: Consent Form 
 

Start of Block: Screening Question 

 

This survey is intended for people with primary decision responsibility in flood risk management. 

Does this description fit your role? 

o Yes  

o No  
 

 

End of Block: Screening Question 
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Start of Block: Section 1: Background Information 

How many years have you been working in flood risk management? 

________________________________________________________________ 
 

End of Block: Section 1: Background Information 
 

Start of Block: Section 3: Local Floodplain Information 

 

This next series of questions is about the flood risk management community you primarily work 

with. For example, you could name a watershed (e.g., Boise River), a county (e.g., Teton 

County), or a city (e.g., McCall).    

             

If you work in several communities, please answer the questions considering the one 

community where you work the most. 

 

 

What is the name of the community where you work in flood risk management? This can be a 

city, county, and/or watershed depending on what is most applicable to you. 

________________________________________________________________ 
 

The National Flood Insurance Program (NFIP) is an agreement between local communities and 

the Federal Government to help communities adopt and enforce a floodplain management 

ordinance to reduce future flood risks. 

 

 

Is your community currently enrolled in the NFIP? 

▢ Yes  

▢ No  
 

 

What is the reason your community is not enrolled in the NFIP? 

________________________________________________________________ 
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Have you ever experienced a flood that caused...? 

 Yes No 

damage to property in your 
community?  o  o  

deaths and injury to people in 
your community?  o  o  

damage to your home?  o  o  
deaths or injuries to you or 

members of your immediate 
family?  o  o  

disruption to your electric, 
water, phone, and other basic 

services?  o  o  
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Thinking about your community in the future, how likely is it, if at all, that a flood will cause... 

 0% chance 25% chance 50% chance 75% chance 100% chance 

damage to 
property in 

your 
community?  

o  o  o  o  o  

deaths and 
injury to 

people in your 
community?  

o  o  o  o  o  

damage to 
your home?  o  o  o  o  o  

deaths or 
injuries to you 
or members 

of your 
immediate 

family?  

o  o  o  o  o  

disruption to 
your electric, 
water, phone, 

and other 
basic 

services?  

o  o  o  o  o  

 

End of Block: Section 3: Local Floodplain Information 
 

Start of Block: Section 4: Current Mapping Data 

 

This next series of questions is about the current topographic data and floodplain maps in the 

community you work with in flood risk management.  
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Do you think your community's floodplain maps accurately reflect flood risk? 

o Completely accurate  

o Mostly accurate  

o Moderately accurate  

o Slightly accurate  

o Not at all accurate  
 

To your knowledge, are there any areas in your community that have flooded in the past, but 

are not designated in a flood zone on your current flood maps? 

o Yes  

o No  
 

If you had to say, is your community prepared for a significant flood event? 

o Completely prepared  

o Mostly prepared  

o Moderately prepared  

o Slightly prepared  

o Not at all prepared   
 

End of Block: Section 4: Current Mapping Data 
 

Start of Block: Section 5: Changing environment 

 

This next section will ask you several questions about whether your community's flood risk is 

changing.  

 

 Please answer the following questions about the same area you reported on before. 
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In the future, do you think the average number of flood events in your community will increase, 

decrease, or stay the same as the current average? 

o Increase  

o Decrease  

o Stay the same  
 

In the future, do you think the average severity of flood damage in your community will 

increase, decrease, or stay the same as the current average? 

o Increase  

o Decrease  

o Stay the Same  
 

End of Block: Section 5: Changing environment 
 

Start of Block: Section 2: Lidar Use 

 

Light Detection and Ranging (lidar) is a laser-based technology that provides a detailed map of 

the ground (bare earth), vegetation (canopy), and other models of the earth’s surface. 

 

Do you currently use lidar? 

o Yes  

o No, but I have heard of it  

o No, I have not heard of it  
 

End of Block: Section 2: Lidar Use 
 

Start of Block: Section 2.3: I have not heard of lidar 
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Would you and/or your organization be interested in learning more about lidar? 

▢ Yes  

▢ No  
 

End of Block: Section 2.3: I have not heard of lidar 
 

Start of Block: Section 2.2: No to lidar use 
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Which of the following reasons prevents you from using lidar (check all that apply)? 

 Definitely yes Probably yes 
Might or 

might not 
Probably not Definitely not 

Lack of 
funding  o  o  o  o  o  
Lack of 

knowledge on 
how to use 

lidar  
o  o  o  o  o  

Sparse 
population in 
your flood risk 

area  
o  o  o  o  o  

Low 
development 
rate and/or 

urbanization 
in your flood 

risk area  

o  o  o  o  o  

Feel that your 
area does not 

have a 
significant 

flood risk and 
therefore 

does not need 
new mapping 

data  

o  o  o  o  o  

Lack of 
political 
support  o  o  o  o  o  

Other:  o  o  o  o  o  
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How useful or useless do you think lidar could be for your flood risk area? 

o Extremely useful  

o Very useful  

o Moderately useful  

o Slightly useful  

o Not useful at all  
 

There are a number of lidar training tools available both online and in-person. All of them are 

free and take 1-2 hours to complete. Which of the following training sessions would you 

personally find to be the most helpful? 

o A training session which focuses on the fundamentals of lidar (e.g., how it works; 
general use).  

o A training session which focuses on how to use and integrate lidar technology in 
conjunction with ArcGIS.  

o A training session on how to acquire lidar for your area  

o All of the above  

o Other: ________________________________________________ 
 

 

End of Block: Section 2.2: No to lidar use 
 

Start of Block: Section 2.1: Yes to lidar 
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Where do you access your lidar data from (check all that apply)? 

▢ Federal website  

▢ State website  

▢ County website  

▢ City website  

▢ Idaho lidar Consortium  

▢ Private source  

▢ Other: ________________________________________________ 
 

What do you use lidar for (check all that apply)? 

▢ Floodplain map development  

▢ Hydrologic and/or hydraulic analysis   

▢ Hazard mitigation  

▢ Flood risk assessment  

▢ Educational materials  

▢ Other: ________________________________________________ 
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There are a number of lidar training tools available both online and in-person. All of them are 

free and take 1-2 hours to complete. Which of the following training sessions would you 

personally find to be the most helpful? 

o A training session which focuses on the fundamentals of lidar (e.g., how it works; 
general use).  

o A training session which focuses on how to use and integrate lidar technology in 
conjunction with ArcGIS.  

o A training session on how to acquire lidar for your area  

o All of the above  

o Other: ________________________________________________ 
 

End of Block: Section 2.1: Yes to lidar 
 

Start of Block: Section 6: Network 

 

This next section is going to ask you about significant relationships you have in the flood risk 

management community. Please note that these relationships may be professional or personal 

in nature, positive or negative. 
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Looking back over the last 12 months, who are the people with whom you discussed significant 

matters regarding flood risk management? Please list up to eight people, naming only their 

initials in order to keep them anonymous. 

▢ Person's initials (1): ________________________________________________ 

▢ Person's initials (2): ________________________________________________ 

▢ Person's initials (3): ________________________________________________ 

▢ Person's initials (4): ________________________________________________ 

▢ Person's initials (5): ________________________________________________ 

▢ Person's initials (6): ________________________________________________ 

▢ Person's initials (7): ________________________________________________ 

▢ Person's initials (8): ________________________________________________ 
 

 

End of Block: Section 6: Network 
 

Start of Block: Section 6.1: Alter one 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/1}?      

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/1} use lidar? 

o Yes  

o No  

o I do not know.  
 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/1} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.1: Alter one 
 

Start of Block: Section 6.2: Alter two 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/2}?     

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/2} use lidar? 

o Yes  

o No  

o I do not know.  
 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/2} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.2: Alter two 
 

Start of Block: Section 6.3: Alter three 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/3}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/3} use lidar? 

o Yes  

o No  

o I do not know.  
 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/3} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.3: Alter three 
 

Start of Block: Section 6.4: Alter four 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/4}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/4} use lidar? 

o Yes  

o No  

o I do not know.  
 

 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/4} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

End of Block: Section 6.4: Alter four 
 

Start of Block: Section 6.5: Alter five 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/5}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/5} use lidar? 

o Yes  

o No  

o I do not know.  
 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/5} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.5: Alter five 
 

Start of Block: Section 6.6: Alter six 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/6}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/6} use lidar? 

o Yes  

o No  

o I do not know.  
 

 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/6} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.6: Alter six 
 

Start of Block: Section 6.7: Alter seven 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/7}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/7} use lidar? 

o Yes  

o No  

o I do not know.  
 

 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/7} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.7: Alter seven 
 

Start of Block: Section 6.8: Alter eight 

 

How often do you communicate (e.g. in-person, online, over the phone) 

with ${alter_names/ChoiceTextEntryValue/8}? 

o A few times a year  

o Once a month  

o 2-3 times a month  

o Once a week  

o Several times a week  

o Several times a day  
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To your knowledge, does ${alter_names/ChoiceTextEntryValue/8} use lidar? 

o Yes  

o No  

o I do not know.  
 

On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/8} as having or 

lacking expertise in the field of flood risk management? 

 No expertise at all Very much expertise 
 

 0 1 2 3 4 5 6 7 8 9 10 
 

  
 

 

 

End of Block: Section 6.8: Alter eight 
 
 

Start of Block: Risk Preference- SOEP 

 

Do you generally prefer to take risks or to avoid risks?  

 I generally prefer to 
take risks 

I generally prefer to 
avoid risks 

 

 0 1 2 3 4 5 6 7 8 9 10 
 

1 
 

 

End of Block: Risk Preference- SOEP 
 

Start of Block: Section 8: Demographic Questions 
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What gender do you identify with? 

o Male  

o Female  

o Prefer to self-describe: ________________________________________________ 
 

 

What is your age? 

o Less than 20 years  

o 20-29 years  

o 30-39 years  

o 40-49 years  

o 50+  years  
 

 

What is the highest level of education you have completed? 

o Some high school  

o High school diploma  

o College education, did not graduate   

o College education, Associates degree  

o College education, Bachelor’s degree  

o Advanced degree (MA, JD, MBA, PhD)  
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What was your degree? 

o Engineering  

o Planning  

o Business  

o Public Administration  

o Geography  

o Emergency Management  

o Other: ________________________________________________ 
 

 

How much do you trust or distrust the accuracy of scientific products the federal government 

develops with respect to flood risk management (i.e. topographic data, floodplain mapping, 

floodplain modeling)? 

o Strongly trust  

o Somewhat trust  

o Neither trust nor distrust  

o Somewhat distrust  

o Strongly distrust  
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How much do you trust or distrust the usefulness of the products the federal government 

develops with respect to flood risk management (i.e. data collection, accurate mapping, 

floodplain modeling, flood insurance)? 

o Strongly trust

o Somewhat trust

o Neither trust nor distrust

o Somewhat distrust

o Strongly distrust

How involved do you think the federal government should be with flood risk management (i.e. 

data collection, floodplain mapping, floodplain modeling, flood insurance)? 

o Completely involved

o Mostly involved

o Moderately involved

o Somewhat involved

o Not at all involved

End of Block: Section 8: Demographic Questions 

Start of Block: End of Survey-- custom 

Thank you for taking the time to fill out this survey! 

We plan to share the results of the research with the study participants, other community 

members, and the larger community of flood risk professionals through peer reviewed 

publications. 

Please feel reach to reach out with any questions and/or concerns to the Principal Investigator, 
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Tara Pozzi  at 831-225-6419 or tarapozzi@boisestate.edu or the Co- Principal Investigator, Dr. 

Vicken Hillis at 415-812-6846 or vickenhillis@boisestate.edu. 

 

 

End of Block: End of Survey-- custom 
 

 

 




