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ABSTRACT

The understanding of factors that influence technology adoption in emergency
planners is foundational for ensuring resilient communities to hazards in the future. We
explore these factors through an interdisciplinary, social-ecological science lens. In this
thesis, we use cultural evolutionary theory to understand the facilitators and barriers of
Light Detection and Ranging (lidar) adoption in flood risk management, as a case study
of technology adoption for long-term risk mitigation. We then disseminate our findings
through three educational outlets: a webinar, a white paper (Appendix A), and a Story
Map. This thesis contributes to our intellectual understanding of technology adoption, as
well as provides information to minimize barriers to lidar uptake in Idaho.

In the first chapter of the thesis, we used a mixed-methods empirical study to
measure the facilitators of lidar adoption as a risk mitigation tactic in Idaho, Oregon, and
Washington. Previous studies disproportionately focused on individual predictors of risk
mitigation behavior such as risk perception, without identifying the contextual and
collective drivers of risk mitigation behavior. We address this gap by examining both the
individual (e.g., direct experience, risk-taking attitude, risk perception) and collective
predictors (e.g., peer influence, network expertise) of lidar adoption regionally. We found
that peer influence, or the proportion of lidar users in a respondent’s social network,
network strength, network expertise, and risk perception significantly increase the

likelihood of an individual to adopt lidar. The findings of this chapter contribute to
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understanding the role of collective predictors in long-term risk mitigation behavior and
provide a foundational basis for future disaster research.

In the second chapter of the thesis, we developed three educational outreach
products with varying audience and intention in mind. These products addressed barriers
identified in our semi-structured interviews and survey instrument from our mixed-
methods empirical study discussed in Chapter One. The first product was a webinar that
was attended by 65 flood risk managers and included a panel of cross-sector participants.
The second product was a white paper, intended for the Idaho Geospatial Council-
Executive Committee and Elevation Technical Working Group. With input from these
groups, the product will eventually be used to ask for a lidar liaison position and lidar
acquisition budget for Idaho. The Story Map accompanies the white paper and provides
detailed account of various lidar applications throughout Idaho. The Story Map
showcases content from 10 different lidar stakeholders. Both the white paper and Story
Map exist in digital formats that are easily shareable and are considered living documents
that can be updated as needed.

The overarching goal of this thesis was to understand the facilitators and barriers
of lidar adoption and increase uptake of lidar adoption in Idaho. Chapter One focuses on
intellectual scholarship and is formatted as a manuscript for publication in the Climate
Risk Management journal. Chapter Two focuses on applied scholarship with the greater
lidar community. Appendix A is the white paper, Appendix B is a copy of the semi-
structured interview instrument, and Appendix C is a copy of the survey instrument.
Reference sections follow each chapter individually. This project was funded by the U.S.

Department of Homeland Security Grant No. EMS-2019-CA-00030.
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CHAPTER ONE: MANUSCRIPT DRAFT — QUANTIFYING SOCIAL INFLUENCES
OF TECHNOLOGY ADOPTION FOR LONG-TERM FLOOD RISK MANAGEMENT
IN THE PACIFIC NORTHWEST, U.S.

Abstract

Flood risk and damage are expected to increase in the Pacific Northwest due to
climate change. Light Detection and Ranging (lidar) is a remote sensing technology that
provides high-resolution topographic data and can therefore produce higher accuracy
floodplain maps, an important tool that communities use to assess their flood risk
spatially. While availability of lidar data varies across the U.S., uptake also varies even
when lidar is available. For example, we found, from our survey, that only 50% of flood
risk managers in Idaho are using the technology. Previous research investigates important
factors in the role of technology adoption in reducing long-term environmental risk.
However, the current literature infrequently examines the social processes that impact an
individual’s choices about how to manage risk. We used a mixed-methods approach to
examine the adoption of lidar by flood managers for risk mitigation, as a function of
individual (e.qg., risk perception, direct experience) and collective predictors (e.g., peer
influence, network expertise). We conducted 8 semi-structured interviews with flood risk
managers in ldaho and gathered 206 survey responses from flood risk managers in Idaho,
Oregon, and Washington. We found that flood managers who share information with
other flood managers using lidar are also more likely to use lidar themselves.

Furthermore, the more frequently these flood managers communicate, the more likely a



manager is to use lidar. This work provides a foundation for how to incorporate collective
factors in mitigation behavior research and reveals potential for increased lidar uptake
through collaboration in the flood risk manager community.
Introduction

Floods are one of the most frequent and destructive natural disasters in the United
States (FEMA, 2020a; Pralle, 2019). Flood events disrupt ecological, cultural, and
economic landscapes causing incalculable expenses to our society, often resulting with
vulnerable groups at higher risk in the future (Howell and Elliott, 2019). Flood events in
the U.S. are increasing, some of those with unprecedented amounts of rainfall, since the
National Centers for Environmental Information (NCEI) began tracking natural disaster
events in 1980 (NCEI, 2021). There are largely two factors driving this increase: climate
change and population growth and urbanization. As temperatures rise, the amount of
water vapor in the atmosphere increases, which exacerbates the potential for extreme
rainfall events. In addition to growing flood risk from climate change, population growth
rate and urbanization in coastal and inland floodplains is rising (Pralle, 2019; Schanze,
2006). In 2015, 21.8 million (6.87%) of the U.S. population were exposed to the chance
of a 100-year flood; meaning they lived in a location that could be inundated by a flood
event with 1 in 100 chance of happening each year (Qiang, 2019). Considering these
challenges, understanding how to manage changing flood risk is critical.

Flood risk is inherently transdisciplinary and needs to encapsulate the full context
of the topic for which it is being applied. Therefore, we understand flood risk to be the
quantifiable chance of a flood event given the known contextual (e.qg., social,

environmental, political) factors. Communities understand their flood risk typically by



using Federal Emergency Management Agency (FEMA) floodplain maps, which estimate
the extent of flood hazards through hydrologic and hydraulic models. These analyses
require topography, rainfall and run-off frequency distributions, and flood control
structures (e.g., diversion dams, levees, bridges). Floodplain maps also communicate
flood risk to vulnerable populations, help communities mitigate and adapt to floods, and
inform flood insurance programs such as FEMA’s National Flood Insurance Program
(Pralle, 2019). However, in the past decade, 36% of flood claims were for properties
outside of the FEMA-designated 100-year flood zone, which increased from the 1990s,
where 24% of flood claims were from outside the 100-year flood zone (Ludy and
Kondolf, 2012; Frank, 2021). The discrepancy between actual flooding and predicted
flooding from flood maps are largely impacted by outdated and inaccurate topographic
data inputs, use of historical rainfall patterns, and local politics (Pralle, 2019). For
example, 100-year flood events are based on historical rainfall patterns; however, this
probability can change based on local land use, river impoundments, the number of
impervious surfaces, and long-term climate patterns (USGS, 2018).

Previous research confirms that high-resolution topographic data is critical for an
accurate floodplain map (Ali et al., 2015; Cook and Merwade, 2009). In the past, flood
risk managers typically used 10-meter or 30-meter resolution terrain models. Now,
higher-resolution terrain models (e.g., 1-meter or smaller) are available from technology
such as Light Detection and Ranging (lidar). Lidar is a laser-based remote sensing
technology that uses the reflection of light to measure elevation and features on the

ground such as vegetation and structures. Lidar-derived products are now widely used in



flood risk management to model different flooding scenarios with increased accuracy
(Muhadi et al., 2020).

Despite the clear efficacy of lidar for flood risk management, topographic and
bathymetric lidar are variably available for use across the contiguous, lower 48 states.
Most states have greater than 95% coverage, except for eight states situated in the
Western U.S, including Washington, Idaho, Montana, Oregon, Nevada, Utah, California,
and Arizona. As lidar becomes more available and increasingly popular, it is important to
understand the factors that influence a flood risk manager’s decision to adopt this new
technology into their practice of flood risk management. In this chapter, we investigate
the factors of technology adoption to understand the driving forces that cause an
individual to adopt lidar.

In order to do this, we conducted a mixed-methods study, combining interviews
and a survey, with flood risk managers in the Pacific Northwest. We collected data for
both individual and collective predictors that could influence an individual to adopt.
Historically-studied individual predictors in flood risk management include risk
perception, direct experience, knowledge, coping appraisal, trust, risk-taking attitude, and
demographics (e.g. (Birkholz et al., 2014; Bubeck et al., 2012; Kellens et al., 2013;
Poussin et al., 2014)). Collective predictors represent measurable outcomes of an
individual’s beliefs and willingness to be part of group (Kuhlicke et al., 2020). Collective
predictors can be drawn from a social network analysis and include factors such as peer
influence, network strength, and network expertise. While there is limited research in the

collective predictors of flood risk management, we chose to look at social processes



because of their potential to illuminate behavioral and decision-making influences on
flood risk managers.

There are two main objectives with our study: (1) advance our scientific
understanding of the processes that affect technology adoption as a form of long-term
risk mitigation and (2) quantify facilitators of lidar adoption in flood risk management
using a mixed-method approach. We draw from an interdisciplinary, social-ecological
science background to meet these objectives. Specifically, we use cultural evolutionary
theory, the selection and transmission of culture over time, to inform our selection of
individual and collective predictors. In addition, this study is an example of convergence
research, which integrates knowledge across disciplines and organizational boundaries to
reduce disaster losses and promote collective well-being (Peek at al., 2020). Our study is
an example of convergence work because it uses interdisciplinary theory and
methodology to engage study participants from diverse, organizational backgrounds
including government officials, industry professionals, and academics. By determining
the most influential individual and collective predictors of lidar adoption, we can inform
concerted efforts of lidar uptake, improve flood risk awareness and knowledge, and form
more resilient communities to future flood risk.

Background

Individual and collective predictors of risk-mitigation behavior

Previous research identified the importance of several individual factors as a
function of risk mitigation behavior; however, research is limited in the role of collective
action (Kuhlicke et al., 2020). Therefore, it is important to look at the combined effects of

both individual and collective predictors in predicting risk mitigation behavior so that we



can understand the relative contribution of each predictor (van Valkengoed and Steg,
2019). The following section examines previous research into predictors of risk
mitigation behavior and then explores how cultural evolutionary theory can help
illuminate collective predictors of influence.

Topical Review

Previous flood risk management research focused on flood risk perception as a
critical factor of developing effective flood risk management strategies (Birkholz et al.,
2014). However, recent research re-examined the role of risk perception in behavior and
decision-making because of the difficulty connecting risk perception with management
and the challenge of parsing out the connection of risk perception with underlying
contextual factors (Rufat et al., 2020). For example, a study by Bubeck et al. (2012)
found risk perception to be a weak predictor of precautionary behavior and suggests
shifting focus towards flood-coping appraisal for explaining flood risk management
behavior. In addition, Kellens et al. (2013) reviewed 57 empirically based peer-reviewed
articles on flood risk perception and communication to assess overall trends in flood risk
research. The authors found that most studies were exploratory and did not apply a
theoretical framework to examine risk perception (Kellens et al., 2013). Of the studies
that employed a theoretical framework, protection motivation theory (PMT) was the most
common. PMT explains individual decisions about preparing for risk as a function of
threat appraisal (e.g., likelihood of exposure to a flood, severity of exposure, and fear)
and coping appraisal (e.qg., self-efficacy, outcome efficacy, and outcome costs). The

results of this review suggest future research should have more theoretical support and



methodological openness; specifically, the use of a theoretical framework that
emphasizes the effects of physical exposure and hazard experience (Kellens et al., 2013).

Collective factors of risk mitigation behavior are limited in the existing flood risk
management literature; however, initial evidence found the influence of social networks
on risk mitigation behavior as important (Bojovic and Giupponi, 2020; Kuhlicke et al.,
2020; Lechowska, 2021). Social networks are of particular interest for our study because
they are a way of measuring peer influence, the diffusion of ideas, practices, or
technologies through network ties from social interactions (Muter et al., 2013). Peer
influence is a helpful tool for behavior prediction based on an individual’s position in a
social network (Daraganova and Robins, 2012; Levin, 1992). Furthermore, the
technology adoption literature applied network analysis to measure information exchange
and diffusion through network relations (Peng and Dey, 2013). The application of social
networks to flood risk management decision-making is still in its infancy; however, the
findings from previous research with respect to social networks and technology adoption
provide a compelling baseline for using it to understand peer influence in our study.

Additionally, recent research suggests the importance of context, local power
relations, constraints, and opportunities that affect risk mitigating behavior calling for
convergence research to understand the underlying assumptions of decision-making
(Rufat et al., 2020). Given the current gaps of understanding in flood risk management
research and the push for convergence research, we employ cultural evolutionary theory
to employ a comprehensive theoretical baseline for flood risk mitigation behavior

research that can be used across disciplines and scales.



Secondly, the current literature is pre-dominantly focused on the public’s flood
risk behavior, rather than flood risk managers themselves (Brody et al., 2010; Roberts
and Wernstedt, 2019). Our study is solely focused on addressing individual and collective
predictors of risk mitigation behavior at the decision-maker level.

Culture and Risk

Culture is information acquired by individuals through social learning, which
forms a group of shared beliefs and norms over time (Henrich and McElreath, 2002).
Social learning is the observing, modeling, and imitating of behaviors, attitudes, and
emotional reactions of others (Bandura, 1971). Social learning differs from individual
learning, which is learned from the environment and non-social stimulus, but is not
mutually exclusive (Perreault et al., 2012). Several researchers believe social learning
improved human adaptability so much that we can inhabit such a wide range of habitats,
unlike other animal species (Creanza et al., 2017).

Behavioral adaptations display the variation of culture as a result of the
evolutionary dynamics of cultural systems. Cultural evolutionary theory describes this
process as the selection and transmission of culture over time. The selection process leads
to variation of culture across temporal, spatial, and institutional scales and the
transmission leads to adaptation (e.g., adoption of new technology). Reminiscent of
genetic evolution, human culture evolves through the process of natural selection. This
evolution results in between-group variation of adaptive behavior and cooperation and
can lead to increased fitness or utility (Henrich and McElreath, 2002; Richerson et al.,
2016). Unlike genetic transmission, it is important to note cultural transmission can occur

over a short time scale, within a generation, through social learning (Richerson et al.,



2016). Cultural evolutionary theory and social learning are increasingly popular theories
used to explain a wide range of phenomena in applications such as natural resource
management, sports strategy, and institutional variation (Brooks et al., 2018; Mesoudi,
2019; e.g., Reed et al., 2010; Richerson et al., 2016).

In a similar vein, the cultural theory of risk is the transmission of risk information
among a network of individuals through social learning (Douglas and Wildavsky, 1983).
Previous flood risk management research suggested the use of cultural theory of risk to
contextualize the relationship of risk perception as a function of cultural adherence and
social learning (Birkholz et al., 2014). This theory has been employed in a couple
empirical flood risk management studies so far and provides an intriguing underpinning
of risk perception research (Shen, 2009). Cultural evolutionary theory is like cultural
theory of risk; however, it more broadly offers a way to understand the complex
dynamics of cultural change through interactions between individuals and populations,
such as is needed for flood risk management (Brooks et al., 2018).

Predictor Literature Review

In order to select relevant individual and collective predictors of flood risk
mitigation behavior a priori, we conducted a literature review of previous work that

looked at the effect of the constructs outlined in Table 1.1 on flood risk mitigation.
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Methods

Case study description

We examine the adoption of lidar in communities throughout Idaho, Oregon, and
Washington. All three states expect to see an increase in precipitation and higher
temperatures earlier in the year. In addition, these three states are similar in that they are
currently increasing the amount of publicly-available lidar (Clark, 2010; Division, 2020;
Emergency Management, 2018; Ralph et al., 2014; Slater and Villarini, 2016). While
Idaho, Oregon, and Washington all reside in the same geographic region, each state’s
flood risk challenges vary depending on the differing types of landscapes, levels of
population growth and urbanization, and resource availability (e.g., funding for flood risk
management, educational opportunities for flood risk managers). In addition, each state
employs their own lidar coordination and acquisition program, which contributes

differential levels of lidar availability as seen in Figure 1.1.
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Figure 1.1.  U.S. Interagency Elevation Inventory Map of the Pacific Northwest.
Publicly-available lidar in our case study extents of Idaho, Oregon, and
Washington.

Idaho

In 2019, Idaho was home to 1.79 million people across 82,643 square miles: 21.7
people per square mile (Bureau, 2020a). It is a land-locked state and can be broken down
into three main areas: the panhandle in the north is filled with coniferous forests and
lakes, the central section is filled with vast mountain ranges and alpine lakes, and the
southern section, known as the Snake River Plain, is filled with sagebrush steppe and
high desert environment. There is influence from the Pacific Ocean in the north and west
side of Idaho, resulting in cloudy, humid, and wet winters, whereas the east is the
opposite with wet summers and dry winters. Average annual rainfall ranges from 10" in
the arid southwest regions to 50" at higher elevations in certain river basins (FEMA,
2020b). In addition, Idaho sees abundant amounts of snowfall in the mountains.

While most of the population is concentrated in the southern part of the state, there

is flooding across the entire state that impacts people and structures. Idaho is prone to
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riverine flooding, ice/debris jam flooding, levee/dam/canal breaks, stormwater, sheet or
areal flooding, and mudflows (Emergency Management, 2018). In 2021, Idaho had 145
NFIP participating communities across 44 counties (FEMA, 2020b).

Lidar acquisition is coordinated by Boise State University’s Idaho Lidar
Consortium in conjunction with Idaho State University’s GIS Research and Training
Center, which stores lidar data for public use. There is no state-approved funding set
aside for lidar acquisition; therefore, communities rely on local funding and apply for
external funding from USGS and/or FEMA. By the end of 2021, Idaho will have 73% of
the state covered with publicly-available lidar.

Oregon

In 2019, Oregon had over 4.2 million residents across 95,988 square miles; 43.8
people per square mile (Bureau, 2020b). Oregon can be broken down into six main areas:
the Coast Range, the Willamette Lowland, the Cascade Mountains, the Klamath
Mountains, the Columbia Plateau, and the Basin and Range Region. There is a maritime
influence across the entire state due to the Pacific Ocean. The Coast range is
predominantly evergreen forests with many small coastal lakes. The mountain regions are
typically several thousand feet above sea-level and have a range of dense forests and
lakes. Eastern Oregon contains high desert environment with few steep mountains.

Oregon’s population is concentrated in the coastal region of the state. Oregon has
an extensive history of multiple types of flooding including riverine flooding, flash
floods, ice/debris jam flooding, coastal flooding, shallow area flooding, urban flooding,
and playa flooding (Layton et al., 2015). In 2021, Oregon had 228 NFIP participating

communities across 36 counties (FEMA, 2020b).
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Lidar acquisition is coordinated by the State of Oregon Department of Geology
and Mineral Industries’ Oregon Lidar Consortium. By the end of 2020, Oregon had 98%
of Oregon’s populated areas were covered with publicly-available lidar, although eastern
Oregon has much sparser coverage of lidar (Geology and Mineral Industries, 2020).

Washington

In 2019, Washington had over 7.6 million residents across 66,455 square miles;
114 people per square mile (Bureau, 2020c). Washington can be broken down into six
main areas: the Olympic Mountains, Coast Range, Puget Sound Lowlands, Cascade
Mountains, Columbia Plateau, and Rocky Mountains. Most of the areas in the western
and northern parts of Washington are predominately evergreen forests, where the eastern
and southern parts of Washington are semiarid with grasses, sagebrush, and scattered
shrubs. Annual precipitation on the Pacific side of the Olympic Peninsula exceeds 150
inches, but places on the northwest of the peninsula receive less than 20 inches a year and
on the eastern side receive less than 8 inches (Augustyn, 2021).

More than three-fourths of the population lives in Puget Sound Lowlands
(Augustyn, 2021). Flooding in Washington typically occurs on a seasonal basis due to
rainfall from atmospheric rivers, rainfall on snow, flash foods from storms, and winter
storms causing storm surges and high tide (Division, 2020). It is estimated that in 2021,
Washington had 277 NFIP participating communities across 39 counties (FEMA, 2020b).

Lidar acquisition is coordinated by the Washington State Department of Natural
Resources and receives funding from the Washington State Legislature to acquire and
upkeep lidar data for the state. Over 50% of the state is flown with lidar data (Gleason

and Markert, 2020).
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Physical flood risk

Since flooding is becoming an increasingly damaging and costly issue, there has
been a rise in interest from non-governmental groups to predict flood risk at the property
level for households and property owners to be aware of their physical flood risk. First
Street Foundation (First Street), a non-profit organization of modelers, researchers, and
data scientists, created the first publicly-available flood risk model for the lower 48
states. According to First Street, nearly 70% of properties have more substantial flood
risk than previously predicted by FEMA floodplain maps (First Street Foundation, 2020).
This discrepancy is due to First Street model’s ability to predict property-level, future
flood risk. In addition, First Street was able to map flooding at 3-meter resolution, which
is higher than many current floodplain maps which can range in quality up to 30-meter
resolution. First Street’s model also increases visibility of areas whose flood risk remains
unexamined by FEMA. To understand the nature of physical flood risk in our case study
extent, we compare the FEMA projections to the First Street projections as seen in Table
1.2. It is important to note that FEMA reports Idaho as having the least amount of flood
risk relative to Oregon and Washington; however, First Street reports Idaho as having the
highest risk. This difference could be because there are still many locations in Idaho that
are not mapped by FEMA,; therefore, urbanization in floodplain areas could be more

likely.



17

Table 1.2. First Street Foundation and FEMA flood risk predictions. Summary

information about environmental and social differences between Idaho, Oregon,

and Washington.

(2020)

Idaho Oregon Washington
Total FEMA Properties at 38,047 97,918 121,528
Risk (2020)
Percent FEMA Propertiesat | 4.1 6.3 5.6
Risk (2020)
Total FS Properties at Risk 148,427 268,020 362,612
(2020)
Percent FS Properties at Risk | 17.6 17.3 16.4

Relevant predictors of lidar adoption

Given the previous literature and summary of our case study extent, we narrowed

down our study to focus on eight constructs. Table 1.3 displays the five individual
predictors that we selected for our study. We chose these factors because they aligned

with repeated themes in our semi-structured interviews, in addition to each factor

providing important information to help increase uptake of lidar adoption.

In addition, we selected three collective factors reflected in Table 1.4.
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Several studies implement social network analysis to examine the influence of
social ties on communication in disaster management; however, the effect of social
networks on other topics in disaster management are minimally explored (Bojovic and
Giupponi, 2020). Bojovic and Giupponi (2020) conducted a full network analysis on the
diffusion of innovation and technologies for risk management, which was the first study
of this topic in disaster management. The study focused on the identification of key
actors to effect information dissemination.

Our study uses an ego network analysis, which is helpful for understanding the
variation of behavior of individuals through identification of local social structures
unique to the individual of interest (e.g., flood risk manager) (Hanneman and Riddle,
2005). We used an open ego network and calculated the predictors of peer influence,
network strength, and network expertise from data collected in the survey questions in
Table 1.4. Figure 1.2 displays a range of possible network connection situations with
varying lidar use, communication, and expertise values that flood risk managers could
report about their network connections. For example, Alter 1 represents an individual
that the ego, or in this case survey respondent, reports as using lidar, communicates with
several times a day, and views with a lot of expertise. Whereas Alter 8 represents an
individual that the ego reports as not using lidar, communicates with only a few times a

year, and views with no expertise. Respondents could report up to eight peers.
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Figure 1.2.  Ego network structure. We used an open ego network analysis
structure where the ego represents the survey respondent and the lines represent the
ties between the ego and their peers, which are labeled as alters.

Peer influence was calculated as the proportion of the ego’s alters that used lidar.
Network strength was calculated as the ego’s net average communication with lidar users
minus average communication with non-lidar users in an ego’s network. Network
expertise was calculated as the ego’s net average expertise with lidar users minus average
expertise with non-lidar users in an ego’s network.

Survey design

Prior to finalizing our survey instrument, we conducted eight, semi-structured
interviews with stakeholders including flood risk managers, government officials,
industry professionals, and academics. The interviews lasted about an hour and were
occasionally recorded. These interviews were used to identify common themes, ensure
that our survey questions were relevant, and confirm that we were adequately identifying

facilitators and barriers to lidar adoption.
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Once we created our survey instrument, we conducted an expert review with eight
university students and staff to give feedback about the appropriateness of the survey
(e.g., length, difficulty, and readability), question fit to research questions, and survey
structure (e.g., question order, section transitions, survey logic). Then the survey was
tested as a pilot survey with a flood risk manager, an industry professional, and a lidar
academic to provide additional feedback from the perspective of a potential, target
respondent.

The finalized survey consisted of four main parts (see Appendix B). The first part
focused on gathering information about the respondent’s experience and beliefs about
their flood risk management community. The second section was centered on the
respondent’s relationship with lidar for flood risk management including if they used
lidar, how they use lidar, and if they would like to take part in lidar workshops. The third
part of the survey gathered information about the respondent’s flood risk management
network. The final part of the survey asked the respondent about their personal beliefs in
risk-taking, trust, and demographic questions such as education and gender.

Data collection

Initially, our target population included floodplain managers and administrators in
Idaho, Oregon, Washington, and Alaska. Respondents also included individuals that may
use lidar for flood risk management applications in conjunction with software
applications such as Geographic Information System (GIS). Most sample respondents
were municipal, state, and federal employees, as well as some private industry
employees. We constructed our sample frame using several publicly available lists of

managers including NFIP coordinators, Association of State Floodplain Managers
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(ASFPM) recognized Certified Floodplain Mangers (CFM), county-level GIS
administrators, the five largest cities and tribal GIS administrators if present, county and
tribal emergency managers, the Federal Geospatial Data Coordination Contacts by State,
and additional, relevant contacts for the 2019 Northwest Regional Floodplain Managers
Association Conference contact list.

We delivered the survey online using Qualtrics to 1,257 email addresses in our
sample frame between May and July 2020. The survey took an average of 10 to 15
minutes to complete. We used Dillman et al. (2014) guidelines for web and mobile
survey implementation. We initially set an introductory email that stated what was being
asked of respondents, why they were selected, and information about the intent, purpose,
and outcomes of the survey (Dillman et al., 2014). We sent three to five follow-up email
correspondence messages over the course of four weeks to help increase our response
rate. In addition, we stated the survey was anonymous and participant’s information
would be kept confidential. Table 1.5 summarizes the potential respondents, number of
survey responses, and response rate for each state.

Table 1.5. Comparative survey distribution and collection. Summary of potential
respondents, number of survey responses, and response rate for each state.

Potential Number of | Response

Respondents | Responses | Rate
Idaho 385 96 24.9
Oregon 356 58 16.3
Washington | 463 54 11.7
Alaska 53 6 11.3

We did not include Alaska in our final statistical analysis because of an
insufficient number of responses. In addition, both Oregon and Washington had lower
response rates than Idaho. Our response rates are within the typical bounds for online

surveys of 10-25% (Sauermann and Roach, 2013).



24

Data Analysis

We used a Bayesian Generalized Logistic Regression (GLR) to estimate the
relationship between our predictors of interest and our response, lidar use, because it is
binary. The results of this model allowed us to explore the effect of a multitude of
predictors on lidar use in Idaho, Oregon, and Washington. We hypothesized that the
model would be helpful for understanding the level of predictor influence; however, we
expected the predictive capacity of our model to be limited considering the large number
of predictors and small sample size of our study.

The model followed a binomial distribution curve, where the distribution of lidar
use, Yij, was modeled as follows:

Ni = Ug + Bxij+... +Prx;;

n
€;

1+el.77

m; =

yij ® Binom(1,m;)
where x;;, predictors, are the ith rows of the known design matrices X, and g is a
vector of regression parameters. This Bayesian approach allowed for adjustment of
uncertainty associated with each parameter on the outcome, lidar use. In order to do this,
each parameter had to be assigned a prior belief of that parameter value. The values for
these parameters are fit by sampling from these distributions to maximize the likelihood
under this model (Kwon et al., 2008). The regression parameters, 3, are normally

distributed,

Bk = N(n[i’k' 1)
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Additionally, the parameters of this distribution, 7z, and oy, also have prior
distributions assigned to them that are constrained by 0 and a positive value. We used
four Monte Carol Markov Chains (MCMC) with 2,000 iterations for warmup and an
additional 2,000 iterations for the model. We assessed effective sample size and checked
model convergence, indicated by R-hat statistics close to 1 and stable, well-mixed chains
(Gelman et al., 2020).

Priors

We used a weakly informative prior distribution to provide modest regularization,
reduce the chance of a Type | error, and improve the out-of-sample prediction for
regression models (McElreath, 2015). This study uses a Cauchy distribution as
recommended for logistic regression models with a low sample size (Lemoine, 2019;
Gelman, 2008).

Validation

We assessed the overall model performance through Leave-One-Out Cross-
Validation (LOOCYV). This process provides an absolute metric for the model’s predictive
ability. In addition, we plotted the predicted probability against the observed proportion
using counterfactual plots to evaluate the effect of each predictor of interest on lidar
adoption (Levy, 2012).

Error

We specified our model to compute 4,000 lidar use predictions based on our
predictors. We interpreted the median of these results as the projected lidar use. In
addition, we calculated the 50% and 95% uncertainty intervals around the median. We

used Bayesian R-squared to measure our overall model accuracy. However, this can be
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unreliable for small sample sizes, so we also calculated the mean absolute error and root
mean square error of our model.
Results
Our interview findings revealed several common barriers and opportunities that

informed our predictor selection in Table 1.3 and Table 1.4. Table 1.6 summarizes these

findings.
Table 1.6. Interview themes. Summary table of repeated barriers and
opportunities that came up during our semi-structured interviews (n=8).
Barriers Opportunities
- Rural regions with smaller - Lidar is useful and desirable to work
populations typically have lower with
priority for revised mapping - Elected officials have authority in
- Lidar is seen as expensive and not all | lidar acquisition
communities / regions have adequate | - Community relationships can be
funding influential in lidar adoption
- There is potential distrust in - Lidar acquisition is facilitated by
scientific products and/or the federal collaboration across multiple
government institutions and stakeholders
- Hesitancy towards publicly-
accessible lidar from private
landowners

We received the greatest number of survey responses from Idaho (Table 1.7). The
results show slight differences in demographic factors. Washington had the highest
percentage of female respondents, second highest percentage of respondents with a

bachelor’s degree or higher, and longest average length of flood risk manager experience.



Table 1.7.

for survey demographics across ldaho, Oregon, and Washington.

Idaho | Oregon | Washington
Sample Size 96 58 54
Female 39% | 34% 44%
University Education | 69% | 81% 76%
Age (50+ years) 50% | 43% 43%
Average Flood Risk | 10.6 | 11.2 13.8
Experience (years)

Descriptive Results
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Summary survey demographics. Comparative descriptive statistics

We found that over 70% of flood risk managers, in all three states, had direct

experience with flood damage in their communities (Table 1.8).

Table 1.8. Descriptive statistics of predictors evaluated in our model (n=206).
Construct/ Description Idaho Oregon | Washington
Predictor
Direct Experience | Direct experience with flood | 79.20 72.40 85.20
damage in community (%)

Risk Perception Perceive future flood damage | 97.90 96.60 98.10
in the community (%)

Knowledge Perceived Increase in Flood | 38.50 41.40 57.40
Severity over time (%)

Risk-Taking Average risk-taking attitude | 2.80 3.30 3.70

Attitude (0 to 10 with 10 being risk-
tolerant)

Trust Trust in accuracy of flood 82.30 81.00 90.70
risk management scientific
products (%)

Peer Influence Proportion of lidar users in 35.00 40.00 42.00
flood risk management
network (%)

Network Strength | Net average communication | -0.60 -0.04 -0.02
in respondent’s network

Network Expertise | Net average expertise in 0.70 0.20 1.00
respondent’s network (0 to
10 with 10 being of highest
expertise)

Lidar Use Use lidar for flood risk 50.00 62.10 64.80

management (%)
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Figure 1.3 describes, in finer detail, the types of experiences flood risk managers
have had with flooding in their communities. Survey respondents reported experiences
that ranged from damage in their communities to damage of their personal homes, deaths

and injury to people in their community, and disruption of their utilities.

Have you ever experienced a flood that caused...

deaths orinjuries to you or members |
of your immediate family?

damage to your home?

deaths and injury to people in your community? |

disruption to your electric, water, |
phone, and other basic services?

damage to property in your community? -

0.00 0.25 0.50 075 1.00
Proportion of Responses

Figure 1.3.  Summary of survey responses (n=206) of flood risk managers’ direct
experiences with floods. This details varying levels of closeness of the experience.

We also asked respondents to report the likelihood of one of those experiences
occurring in the next 30 years in their community. Over 90% of respondents were

concerned with future flood damage in their community (Figure 1.4).

. Yes

No
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Thinking about your community in the next 30 years,
how likely is it that a flood will cause...

deaths orinjuries to you or members |
of your immediate family?

damage to your home?

B oo
B =
B 5%

25%
0%

deaths and injury to people in your community?

disruption to your electric, water, |
phone, and other basic services?

damage to property in your community? 4

0.00 0.25 0.50 0.75 1.00
Proportion of Responses

Figure 1.4.  Summary of survey responses (n=206) of flood risk managers’
perceived flood risk in the future. This details varying levels of closeness of the
experience.

In addition, between 38.5% - 57.4% of respondent’s expected an increase in flood
severity. Flood risk managers in Washington tend to be less risk-averse than managers in
Oregon and Idaho. All three states reported a high trust in the accuracy of flood risk
management scientific products (e.g., topographic data, floodplain mapping, floodplain
modeling), with Washington reporting the highest percentage of trust.

For the collective predictors, about 76% of respondents completed the network
analysis section of the survey. Respondents reported one to eight peers in their flood risk
management network, with five peers as the median number reported. There were some
regional differences. Washington flood risk managers’ peer networks, on average, were
made up of 42% lidar users, which was higher than Idaho which reported 35%. These
findings reflect a similar pattern in that Idaho had the least amount of communication, on
average, in their flood risk managers’ networks, whereas Washington had the most. In all

three states, respondents had slightly more communication with non-lidar users.
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Interestingly, all three states reported on average, more expertise with lidar users in their
network.

Washington reported the highest amount of lidar use in flood risk management
with almost 65% of respondent’s using lidar. Idaho reported the lowest amount of lidar
users, 50%.

Estimation Results

Our GLR model allowed us to explore the effect of a multitude of predictors on
lidar use in Idaho, Oregon, and Washington. We had item-nonresponse in the survey, for
the network section, and we dropped incomplete responses to conduct our statistical
modeling. Of the 206 usable responses we received, 50 of them did not fill out the
network section. Since our model considers both individual and collective predictors and
needs equal size data lengths for each predictor in order to run the model, we dropped
almost 25% of our data responses, which may result in effect size underestimation
(Langkamp et al., 2010).

Table 1.9 displays the results from our GLR model that considers the effect of

individual and collective predictors on lidar use.



Table 1.9. Estimation results from the model.

Mean S.D. 5% 95%
(log odds)

Intercept -0.9 1.7 -3.7 1.9

Direct 0.4 0.7 -0.6 1.5

Experience

Risk 1.2 0.8 -0.2 2.6

Perception

Knowledge | 0.2 0.4 -0.3 0.9

Risk-Taking | 0.1 0.1 -0.1 0.3

Attitude

Trust -0.2 0.3 -0.8 0.3

Peer 14 1.1 -04 3.3

Influence

Network 0.4 0.1 0.2 0.7

Strength

Network 0.1 0.1 0.0 0.2

Expertise

From our analysis, we examined the Posterior Predictive Distribution for each
predictor and the intercept (Figure 1.5). We considered predictors that had parameter
estimates whose 90% credible interval did not overlap with zero to be important. These

results suggest peer influence, network strength, network expertise, and risk perception

31

effect on lidar use. That is, some attributes had a positive effect on lidar use, and some a

negative effect.



32

Risk-taking attitude {

Trust

Knowledge 1

Direct experience

Risk perception 1

Metwork expertise 1

Metwork strength 1

A

J—

Peerinfluence

0 2 4
Posterior Predictive Distribution

Figure 1.5.  Posterior Predictive Distribution for each predictor variable.

Figure 1.6 displays the effect, when holding all other variables at their minimum,

of peer influence, which is the proportion of lidar users in a respondent’s network on lidar

use by region. When every alter in a respondent’s network used lidar, 64.4% of flood risk

managers were predicted to adopt lidar. Alternatively, when the proportion of lidar user

in respondent’s network decreased to 0, 32.4% were predicted to adopt lidar.
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Figure 1.6.  Counterfactual plots show the effect of a) the proportion of
respondent’s social network using lidar, or peer influence, and predicted lidar
adoption, b) net average frequency of communication with lidar and non-lidar

users, or network strength, in flood risk manager’s network, and c¢) net average
expertise of lidar and non-lidar users, or network expertise, in flood risk manager’s
network. The dark grey and light grey represent the 50% and 95% confidence
intervals, respectively.

ertise Equal expertise More expertis
ar lidar/non-lidar among lidar
users users

Both network strength and network expertise had positive correlations with lidar
adoption. Network strength resulted in the largest increase in lidar adoption ranging from
3.3% for those who spoke only with non-lidar users to 87.2% for flood risk managers
who spoke with only lidar users. Network expertise also had a positive effect, although
small. When a flood risk manager’s network was made up of expertise from non-lidar
users, 14.7% were predicted to adopt as opposed to 57.5% when a flood risk manager’s

network was comprised of expertise from lidar users.
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Figure 1.7.  Counterfactual plot of risk perception and predicted lidar adoption.
The dark grey and light grey represent the 50% and 95% uncertainty intervals,
respectively.

Our model also suggests that risk perception was an important predictor of lidar
adoption. Figure 1.7 displays the effect, when holding all other variables at their
minimum, of risk perception on lidar adoption. We found that when flood risk managers
expect 0% chance of future flood risk in their community, 59.9% of flood risk managers
are predicted to adopt lidar, whereas flood risk managers who expect 100% chance of
future flood risk in their community, 99.3% of flood risk managers are predicted to adopt
lidar.

Furthermore, we examined the out-of-sample predictive performance of our
model. The Loo Information Criterion was 161.4 with standard error of 17.5. The
predictive power of the model was assessed by using a Posterior Predictive Checking

from the bayesplot package in R (Figure 1.8).
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Figure 1.8.  Displays a histogram, using the PPC function that represents the
number of individuals that do not use lidar (0) in the left column and use lidar (1) in
the right column. The y histogram represents the actual data and the yrep
represents the data generated from the posterior predictive distribution. Overall,
the yrep is representative of the y, meaning our model has an accurate predictive
ability.

The Mean Absolute Error of our model was 1.45 and Root Mean Square Error
was 1.75; therefore, our model had minimal variance in individual errors in our sample.
Lastly, the Bayesian R-squared value for our model was 0.43, which represents a
moderate effect size in social science data (Ferguson, 2009).

Discussion

Flooding is one of the most common and destructive of natural disasters. High-
resolution topographic data are critical for management of increasing flood risks from
climate change and population growth and urbanization. However, the variable uptake of

lidar illuminates an interesting discrepancy of knowledge of flood risk and mitigation
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behavior. Our study examines the individual and collective predictors that could drive a
flood risk manager to adopt lidar. By conducting a mixed-methods study, we identified
several predictors that contribute our existing understanding of technology adoption for
long-term risk mitigation. There are four main findings.

First, our findings show mixed support for individual predictors of lidar use
(Figure 1.5), as we predicted from our hypotheses in Table 1.3. Our results show that risk
perception positively effects lidar adoption, increasing likelihood of adoption almost
40%. There were minimal regional differences between Idaho, Oregon, and Washington
who all reported over 96% chance of future flood damage in their communities. While
risk perception positively correlates with lidar adoption, there are limitations in the
implementation of this finding for improving flood risk management or for deciphering
important underlying, contextual factors that drive the connection between risk
perception and lidar adoption (Rufat et al., 2020). Despite the just criticism of risk
perception in the flood risk management literature (e.g. Kellens et al., 2013; Wachinger et
al., 2013), it can be helpful in policy making practices (Bubeck et al., 2012). For
example, if a property owner is unaware that they are in a flood zone, then they likely
will not buy flood insurance because they have a low perception of risk. Considering
36% of flood claims are from properties outside of the FEMA-designated flood zone,
there is a clear gap in risk perception and actual risk (Frank, 2021). A spatial comparison
of where individuals perceive their risk compared to current floodplain maps can
highlight important discrepancies to guide policy makers to focus targeted efforts. For
our study, we use the results from the remaining individual and collective factors to

provide contextual, correlative factors of lidar adoption.
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The second significant finding of our study is that the remaining individual
predictors resulted in mixed effects on lidar adoption (Figure 1.5). Direct experience
positively correlated with lidar adoption and there were small regional differences with
flood risk managers. For example, flood risk managers in Oregon directly experienced
almost 13% and 5% less floods than Washington and Idaho, respectively. This finding
supports previous research that found positive effect of direct experience on behavior
(e.g. Poussin et al., 2014; van Valkengoed & Steg, 2019). It is possible that measuring the
intensity or impact of the event experience could be a more informative measure though,
since experiences vary greatly. Interestingly, knowledge, risk-taking attitude, and trust
effected lidar adoption minimally. While knowledge may be important, our results show
it does not seem to play as significant of a role in lidar adoption as other factors (e.g., risk
perception). There were regional differences in knowledge, with nearly 20% and 16%
more flood risk managers in Washington perceiving an increase in flood severity than in
Idaho and Oregon, respectively. In addition, our results were inconclusive on the effect of
risk-taking attitude (risk tolerant vs risk averse) on lidar adoption, which is similar to
previous flood risk management studies (e.g. Roberts & Wernstedt, 2019; Viglione et al.,
2014). This is perhaps because of the duality of risk that comes with technology adoption
and floodplain management. There is an inherent risk in adopting a technology that an
individual may not know how to use, but a pay off in managing the flood risk.
Conversely, there may be others who are more willing to take the risk of potential
flooding in order to minimize the risk of adopting a new technology. This inconclusive
finding suggests that we need to investigate risk salience further to understand the

layering of factors (e.g., technological risk, societal risk) in decision-making. For
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example, social influence might reduce the risk of adopting a new technology; that is, if a
trusted peer uses lidar, lidar could feel less risky. On the other hand, direct experience
with flooding might enhance a person’s perceived environmental risk in a way that makes
them overcome the risk of adopting a new technology. Lastly, trust in the accuracy of
science minimally correlated with decreasing lidar adoption. This could be because the
more an individual trusts the current floodplain maps, the more likely they are to accept
them as is instead of trying to update the maps based on new data. Overall, the correlation
of trust and technology adoption resulted in mixed effects such as previous studies found
(e.g. Kellens et al., 2013; Viglione et al., 2014), and therefore needs to be examined in
greater detail to determine significance of its effect on technology adoption for flood risk
management.

Third, our findings show that collective predictors (peer influence, network
strength, and network experience) most significantly facilitate the adoption of lidar
(Figure 1.5). As expected, the respondents with 100% lidar users in their social network
were 32% more likely to adopt lidar than those with 0% lidar users in their network. Our
finding aligns with existing literature, which also found peer influence to be a facilitator
of technology adoption (e.g., Lo, 2013; Poussin et al., 2014; Viglione et al., 2014).
Network strength had the largest effect on lidar adoption, increasing the likelihood of
lidar adoption almost 84% from flood risk managers who communicate mostly with non-
lidar users to those who communicate with mostly lidar users. While network expertise
did not have as large of an effect, it increased the likelihood of lidar adoption by almost
43% for respondents who had more expertise from lidar users in their network. These

findings support the idea that peers can be highly influential when it comes to adopting
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new practices, as hypothesized by social learning and cultural evolutionary theory (e.g.,
Brooks et al., 2018; Mesoudi, 2019; e.g., Reed et al., 2010; Richerson et al., 2016).
Furthermore, there was slight regional differences in social network characteristics
where, overall, Washington reported the highest lidar peer influence, network strength,
and network expertise. Interestingly, Washington also reported the highest percentage of
lidar users (64.8%). These findings reiterate the correlation between social processes and
lidar adoption, which we also found evidence for during our interviews (Table 1.6). One
interview we conducted, with a floodplain manager from Idaho at a regional conference,
mentioned “I feel like we should do a lot more networking in the state of Idaho, but
oftentimes | have to reach out to people in Washington for help or at the national level for
help. And so that’s why coming to these conferences is helpful for me because I meet
peers outside of just our immediate, that have similar programs.” This is an intriguing
point that highlights Washington as the source of lidar information for a flood risk
manager in Idaho. Moreover, another interviewee stated, “we’re all in the same kind of
communities, which is helpful sometimes, but it also is a little bit of a silo thing... we are
all stuck in the same point of view.” These results show a clear need for increased
communication and collaboration for the exchange of critical information that could
potentially improve flood risk management practices and lower flood damage in the
future.

Fourth, our findings support the behavioral shift in flood risk management to
focus on collective action. Rufat et al. (2020) calls for flood risk governance to include
collaborative and participatory approaches, which is line with the United Nations Disaster

Risk Reduction recommendations and policy goals and opposes historical flood risk
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governance which is based off false assumptions of individual responsibility for action.
Furthermore, current flood risk management literature lacks coordinated and integrated
theoretical approach to understanding the drivers of flood risk manager behavior and
decision-making ((Kellens et al., 2013; Kuhlicke et al., 2020; Rufat et al., 2020). Our
study exemplifies an interdisciplinary and integrated framework that could be replicated
to understand the role and effect of collective predictors, alongside individual factors, on
other risk mitigation behaviors.

Implications

Our first suggestion is a more targeted focus on increasing collaboration across
flood risk manager communities within states and between states. The need for more
established networks was found in both our interviews and survey analysis. Federal, state,
and local level authorities capitalize on the importance of peer influence and
communication, not only for lidar adoption, but for general information dissemination of
effective flood risk mitigation behavior and sustained best practices for flood risk
management. For example, states could provide targeted networking events for the lidar
community to gather and communicate about lidar.

Secondly, we found that Washington had 1.3 times more lidar users than Idaho. In
addition to our survey findings, this variation could also be driven by the lidar acquisition
and coordination program in Washington. The Washington Geological Survey was
granted funding from 2015-2021 for the collection and distribution of lidar data and lidar-
derived products. Established in the Department of Natural Resources, the funding came
from the Washington State General Fund and provided funding for two permanent lidar

positions, a lidar manager and a lidar specialist. In addition, Washington focused on
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disseminating interactive (e.g. Washington Story Map) information on lidar to educate

the public and advocate for sustained lidar investment at the state-level. Oregon and
Idaho also have established lidar acquisition and coordination efforts; however, they do
not have a permanently funded position to manage lidar. In summary, the lidar model in
Washington, which includes two full time positions and sustained state funding, could be
one of the reasons we see a higher lidar adoption rate in Washington. Following the
model of Washington might promote increased use of lidar in the other states. This would
require both policy and funding-level changes in Oregon and Idaho.
Limitations

While we can identify correlative trends, our analysis is limited in understanding
the causal inference of these collective predictors on lidar adoption due to the cross-
sectional nature of our study. Causal inference could be found by conducting a
longitudinal study to see how lidar adoption changes over time, especially with target
barrier reduction and increased channels for peer influence and resource sharing. In
addition, our social processes results were limited by an ego network analysis that only
provides one degree of peer connections. We suggest a full network analysis in the future,
which could identify key stakeholders in the flood risk management community to target
information dissemination and risk mitigation behavior changes in the flood risk
management community. Additionally, our study does not include the impact and
efficacy of lidar use; rather, we operate under the assumption that lidar is useful to flood
risk managers. The USGS has broken down the benefit-cost ratio for each state to help
state-level decision makers plan and manage lidar acquisition in their communities;

however, it would be helpful to directly link this work with lidar adoption (Sugarbaker et


https://wadnr.maps.arcgis.com/apps/Cascade/index.html?appid=b93c17aa1ef24669b656dbaea009b5ce_
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al., 2014). Lastly, we were unable to confirm if our survey sample demographics
represented the full flood risk manager populations in Idaho, Oregon, and Washington.
Since our survey was distributed during COVID-19, it is possible that flood risk
managers may have been consumed by other responsibilities regarding the pandemic and
therefore were unable to take our survey limiting our sample size and scope.
Conclusion

Lidar provides flood risk managers with the technology needed to understand
their communities flood risk in a changing environment. The variable adoption of this
technology lends to an interesting case study of facilitators to technology adoption for
long-term risk mitigation. We used a mixed-method empirical study to understand the
individual and collective predictors of lidar use. Overall, peer influence, network
strength, network and risk perception were positively correlated with lidar adoption.
Whereas knowledge, risk-taking attitude, and trust did strongly correlate with lidar
adoption. In addition, our interview findings were congruent with trends from our
quantitative analysis. Specifically, there is a desire and need for increased communication
and collaboration of flood risk managers within and between states. In the future, we
suggest a longitudinal study to understand the change in lidar use over time in order to
understand the causality of social processes and lidar adoption. We hope the findings of
this study can be used to bolster flood risk management collaboration networks to
facilitate targeted risk mitigation behaviors in the future. In addition, we hope that our
framework, that uses cultural evolutionary theory and social learning theory, can be used
in disaster and hazard management studies to quantify the impacts of collective factors on

long-term risk mitigation behavior.
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CHAPTER TWO: PUBLIC SCHOLARSHIP—KNOWING MORE, LOSING LESS
THROUGH INVESTMENT IN HIGH-QUALITY ELEVATION DATA IN IDAHO
Abstract
Both natural hazards and urbanization alter the landscape in which they occur.

Local and state planners, managers, and officials need access to accurate data regarding
the earth’s topography, vegetation, and structures in order to respond to these landscape-
level changes. Light Detection and Ranging (lidar) is a remote sensing technology that
provides high-quality topographic data. However, there has been a slow uptake of raw
lidar and lidar-derived products in Idaho. Using the lIdaho-specific survey data collected
in Chapter One, we quantified the barriers flood risk managers face with lidar adoption in
Idaho. We found that lack of funding, expertise, and political support were the top
barriers flood risk managers faced. In response, we created three educational outreach
products to address these barriers: a webinar, a white paper, and a Story Map. In addition,
we expanded our findings from the survey to any application that could benefit lidar in
Idaho because we expect to find similar barriers to uptake in those fields. The varied
forms of information dissemination will increase knowledge about lidar and in turn, will

hopefully increase uptake.
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Introduction

In recent years, ldaho has seen an increase in the number of dangerous heat days,
drought threat, and number of large fires in conjunction with snowpack trending
downward and precipitation increasing. These climate changes pose increased natural
hazards threat. In addition, Idaho had the largest single-year population increase of the
entire U.S. with a 2.1% increase from 2019-2020 (Press, 2020). The Treasure Valley
alone is expected to grow by almost 53%, surpassing 1 million residents by 2040
(COMPASS, 2012). The culmination of hazards and growth over the last year, and
projected growth, amplifies vulnerability and requires active, dynamic planning in order
to ensure a resilient future for Idahoans. Both human-caused and natural hazards,
alongside urbanization, alter the landscape. Planners, managers, and officials need access
to accurate data regarding topography, vegetation, and structures in order to respond to
these landscape-level changes.

Light and Detection Ranging (lidar) is a remote sensing technology that provides
high-quality elevation data. Light can penetrate small openings in canopy cover allowing
for measurements of ground features below the canopy, and other topographic features.
The data can be processed into Digital Elevation Models (DEM), which show the bare
earth and Digital Surface Models (DSM) which show structures such as trees or
buildings, on the surface. In addition to raster-layer products, the raw and processed lidar
point clouds provide flexibility for a variety of applications. For example, the point
clouds can be used in their native 3-D point cloud format or reprocessed into rasters that
are tailored to assessing vegetation health. Raw lidar data and lidar-derived products are

widely-used across the United States for hazards, resource management, and urban
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planning, among other applications (e.g., Andersen et al., 2005; Chang et al., 2014;
Clifton et al., 2018; Ellett et al., 2019; Muhadi et al., 2020).

In 2010, the U.S. Geological Survey (USGS) established the 3D Elevation
Program (3DEP) as the first nationally-coordinated lidar acquisition program. The main
goal of 3DEP is to have complete lidar coverage of the U.S. by 2023, given adequate
funding (Sugarbaker et al., 2014) However, this project only provides seed funding and
depends on additional funds and partnerships in order to acquire lidar. In 2013, the Idaho
Lidar Consortium (ILC) was founded to provide a repository for publicly-available lidar,
as well as provide a resource for state-level lidar acquisition and coordination in Idaho. In
2018, the Idaho Lidar Statewide Acquisition Plan (Plan) was created to establish an
approach to acquire and recommend quality level standards of publicly-available
statewide lidar data and lidar-derived products by 2026 (Elevation Technical Working
Group, 2018). The ILC and the Plan have been instrumental in increasing lidar coverage
from 18% in 2018 to 73% by the end of 2021. While the founding of ILC has been
paramount for the initiation and upkeep of continued lidar data acquisition, there has been
varying interest from potential users, in addition to varying resources to acquire lidar,

resulting in a fragmented and incomplete lidar coverage of the state (Figure 2.1).
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Quality Level 1
Quality Level 2
Quality Level 3+

Figure 2.1.  Project 2021 lidar coverage. QL represents quality level of lidar
flown, where QL1 is the highest quality.

Applied Research

This chapter uses data gathered from Chapter One. Moreover, we specifically look
at the data retrieved from ldaho-based survey respondents. In addition, we scale up
adoption barriers from flood risk management to address adoption barriers across sectors
(e.g. riverine ecosystem management, wildlife and habitat management, forest resource
management) and scales (e.g. city, county, state). This approach is informed by
innovation adoption theory, which postulates that one way to elicit change in adoption is
by identifying the facilitators and barriers correlated with adoption (Wisdom et al., 2014).

Some of the common barriers that prevent individuals from adopting are lack of
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awareness, familiarity, time, autonomy, and ability to access research (Wisdom et al.,
2014).
Objectives

There were two main objectives: (1) to understand the current barriers to lidar
adoption with flood risk managers in Idaho (2) create and disseminate three educational
outreach products tailored to a specific audience and purpose across a wide-scope of lidar
applications in Idaho. In order to do this, | worked closely with Dr. Nancy Glenn and
Josh Enterkine from ILC to design and carry out an applied research project that aligned
with the organization’s short-term and long-term goals for lidar adoption in Idaho.

Methods

Case Study Methodology

We used the results from the survey instrument we created for Chapter One of my
thesis. Specifically, we focused on solely survey responses from Idaho (n=96). One
section of the survey asked respondents about barriers to lidar adoption in flood risk

management (Figure 2.2).
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To what extent do you agree with each of the following statements? (Please check one
response for each statement.)

Neither
Strongly Somewhat agree nor Somewhat  Strongly
agree agree disagree disagree disagree

Lidar is too expensive for my O O O O O

community to afford

There is not enough expertise O O O O O

in my community to use lidar

My community does not use

lidar because it is sparsely O O O O O

populated

My community does not use

lidar because it has a low rate O O o O O

of economic development

We do not use lidar in my

community because there is O O O O O

little risk of flooding
There is not enough political
support in my community to O O O O O

make lidar use feasible

Other:

O O O O @)

Figure 2.2.  Survey question regarding barriers to lidar adoption. This question
addressed six potential barriers flood risk managers may face and responses were
collected on a likert scale.

In addition, we asked respondents about specific areas they would like training
sessions regarding lidar to inform our educational outreach portion of this study (Figure

2.3).
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There are a number of lidar training tools available both online and in-person.
All of them are free and take 1-2 hours to complete. Which of the following
training sessions would you personally find to be the most helpful?

A training session which focuses on the fundamentals of lidar (e.g., how
it works; general use).

@ A training session which focuses on how to use and integrate lidar
technology in conjunction with ArcGIS.

(O A training session on how to acquire lidar for your area
(O All of the above

(O Other:

Figure 2.3.  Survey question regarding educational workshops of interest to
respondents. Survey respondents had four pre-specified answer choices and an open
response option.

Communicating Results to Stakeholders

Based on our research findings from Figure 2.2 and Figure 2.3, we created three
forms of sharing our results to community stakeholders. Each method of information
dissemination was created with a specific audience, intention, and publishing format in
mind. The three ways we did this were (1) a webinar summarizing our survey findings
specifically for flood risk managers in Idaho, (2) a white paper for the Idaho Geospatial
Council — Executive Committee and Elevation Technical Working Group, and (3) a Story
Map for a broad audience of potential and current lidar users in Idaho.

The webinar titled, “Current State of Lidar in Idaho for Flood Risk Management”,
was part of a series of webinars to engage the broader flood risk management community
on lidar use. The intention of this webinar was to share our survey findings from both
thesis chapters and discuss the implications of these findings for community stakeholders.
This webinar was designed to incorporate best practices for engagement and learning

including tailored message for target audience, guest speakers from varied backgrounds,
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“mini-lectures,” audience engagement (€.g., introduction over chat, live discussion), and
contact information of speakers for follow-up questions (Bedford, 2016).

The white paper, titled “Knowing More, Losing Less through Investment in High-
Quality Elevation Data in Idaho,” was written for a very specific audience, the Idaho
Geospatial Council — Executive Committee and Elevation Technical Working Group.
The intention behind this document was to discuss the current state of lidar acquisition in
Idaho, as well as a call to action to ensure the completion of the goals set forth by the
USGS 3DEP and the Idaho Lidar Statewide Acquisition Plan. The white paper format
provided a way to quickly identify the problem and provide a solution to the problem in a
concise, engaging format and inform governmental policy (Stelzner, 2007).

The third form of educational outreach we conducted was through the
Environmental Systems Research Institute Story Map (Story Map) application. Research
has found that Story Maps are an effective teaching tool for STEM subjects (Groshans et
al., 2019). Another study found that Story Maps increase accessibility and enhanced
participation in sustainability-related activities (Austin, 2018). In addition, Story Maps
provide an integrative approach to science communication by combining concise text
with engaging visuals. Considering these advantages, we created a Story Map, titled
“Mapping for Resilience.” It was written for a broad audience of potential and current
lidar users. The intention behind this document was to educate the viewer about how lidar
can be used to address a wide range of challenges posed by landscape change due to
natural hazards and urbanization. This format provided an engaging and dynamic

platform to display the versatility of lidar and complimented the goals of our white paper.


https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d&edit

S7

Results

Case Study Results

Around 50% of the survey respondents used lidar for flood risk management in
Idaho (Table 1.8). When we examined this at a more granular level, we found that only
32% and 41% of flood risk managers at the City and County level, respectively, used
lidar compared to 80% and 86% of flood risk managers at the Industry and State-level,
respectively. This shows a clear discrepancy about who is using lidar. For the flood risk
managers who did not use lidar, the survey asked about barriers that inhibited them. The
top three barriers were lack of adequate funding, expertise, and political support with

nearly 50% or more respondents selecting these barriers (Figure 2.4).
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Lidar is too expensive _
for my community to afford

There is not enough expertise _
in my community to use lidar

There is not enough political support in my
community to make lidar use feasible

B Srongly Agree

[0 somewhat Agree

" Neither Agree nor Disagree
| Somewhat Disagree

W strongly Disagree

My community does not use lidar _
b itis sp pulated

My community does not use lidar because it _
has a low rate of economic development

We do not use lidar in my community
because there is little risk of flooding

=

0.00 025 0.50 075 1.0
Percentage of Responses

Figure 2.4.  Descriptive summary of barriers to lidar adoption for flood risk
managers.

In addition, we asked all survey respondents to answer the type of lidar training
sessions they would like to attend in the future. 58% of respondents selected they would
like to attend sessions about lidar fundamentals, lidar with ArcGIS, and lidar acquisition

(Figure 2.5).
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Figure 2.5.  Descriptive summary of lidar training sessions of interest to survey
respondents. Majority of respondents showed interest in all three trainings.

Communicating Results to Stakeholders Results

The webinar shared the Idaho-specific survey results in October 2020 over Zoom.
We sent out the invitation to the webinar though multiple channels including the ILC
website, the Idaho GIS listserv, and the Hazards and Climate Resiliency Institute contact
list. There were over 65 individuals in attendance and included flood risk management
stakeholders such as government officials, industry professionals, and academics. The
first part of the webinar was a presentation about the history of lidar coverage in Idaho,
the findings from the project, and two guest speakers, Linda Davis, the GIS Manager at
the Idaho Department of Water Resources, and Kristine Hilt, the Blaine County
Floodplain Manager. The second part of the webinar was a panel discussion facilitated by
Dr. Nancy Glenn and prompted by questions from the audience.

The white paper and Story Map were based on the survey results regarding the top

three barriers of lidar adoption, which were lack of adequate funding, expertise, and
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political support. The white paper (Appendix A) primarily focused on formulating an
argument for a state-level lidar liaison position that could help facilitate funding
opportunities and provide a source of support for the community interested in lidar. The
Story Map was created to speak to each of the lidar training session subjects that in turn
could minimize the expertise barrier felt by over 50% of the respondents. The story
begins with background information about lidar and how it works. Then it describes
several primary Business Uses of lidar in Idaho including flood risk management,
wildfire management, wildlife and habitat management, riverine ecosystem management,
and forest management, among others (Dewberry, 2012). Finally, the story ends with a
section about how to acquire lidar and additional resources to build community. These
documents will be distributed June 2021 through the ILC website and the Hazards and
Climate Resiliency Institute at Boise State University. In addition, it will be distributed
with lidar training courses through Idaho State University’s GIS Training and Research
Center.
Discussion

The three forms of educational outreach distribution played a key role in reaching
a wide audience with tailored messaging to that audience. The first form, a webinar, was
helpful for disseminating information specifically to flood risk managers, the focus of our
case study. The live panel format allowed for an engaging discussion to occur and the
online format over Zoom allowed for attendance of flood risk managers across the state.
The white paper and Story Map were created for a broader lidar use audience, informed

by the findings of our case study, since lidar is a technology that can be beneficial to
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multiple sectors and types of organizations. Furthermore, the online format of these
products makes the broadcasting of these materials easier.

The past year in Idaho was greatly affected by the COVID-19 pandemic and likely
lowered the number of survey responses we received. Specifically, we had a survey
response rate of 25% in Idaho (Table 1.5); therefore, we did not hear from most of the
potential survey respondents. While this survey response rate is typical of an online
survey, it is possible this number was lower this year because of flood risk manager’s
involvement with emergency management in their communities (Sauermann & Roach,
2013). In addition, we were unable to hold in-person interviews and workshops because
of COVID-19. While we were still able to complete the important components of the
project, | feel as if I did not experience some of the benefits of in-person work such as
growing a closer connection with the lidar community in Idaho. Richer connections in the
flood risk manager community could have led to increased education for me and
community members.

In the future, we suggest sending out the survey again to see if lidar adoption rates
increased after this project’s educational materials were instituted as a way of assessing
product efficacy. This could lead to a longitudinal study, which would better inform how
we understand technology adoption. We recommend expanding the survey beyond flood
risk managers to all individuals and organizations that may use lidar. This would result in
a greater understanding of the landscape of barriers that lidar adopters face. Finally, we
recommend that the educational outreach products, specifically the white paper and Story
Map, remain as live, dynamic documents that can be updated to reflect the current needs

of lidar acquisition and coordination in Idaho.
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Future Work

The white paper and Story Map will first be distributed to the Idaho Geospatial
Council — Executive Committee and Elevation Technical Working Group on June 3rd. |
plan to do this through a presentation and electronic dissemination of materials to
relevant individuals. Once the committee has given feedback, we hope to submit the
white paper and Story Map to state elected officials to get funded. In addition, the Story
Map is a living document that we would like to keep up-to-date as lidar use increases
throughout the State.

Conclusion

Using the Idaho-specific survey data from Chapter One, we found that flood risk
managers in Idaho experience several barriers to lidar adoption resulting in only 50% of
managers using lidar. The top three barriers we found were lack of funding, lack of
expertise, and lack of political support. In addition, we found that flood risk managers
would like workshops in lidar fundamentals, lidar use with ArcGIS, and lidar acquisition.
Considering these findings, we created three forms of educational outreach to create
materials tailored for a specific audience and purpose. We held a webinar to share our
survey results with flood risk managers in Idaho, wrote a white paper to advocate for a
lidar liaison and permanent budget for lidar acquisition and coordination with support
from state-level organizations, and created a Story Map to educate current and potential
lidar users about lidar fundamentals, applications, and acquisition. We found this work to
be received well by the lidar community in Idaho and are hopeful that these educational

materials will increase lidar uptake in Idaho.
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Introduction

In recent years, Idaho has seen an increase in the number of dangerous
heat days, drought threat, and number of large fires in conjunction with
snowpack trending downward and precipitation increasing. In addition,
Idaho had the largest single-year population increase of the entire U.S.
with a 2.1% increase from 2019-2020 (Idaho Business Review, 2020).
Furthermore, the Treasure Valley, alone, is expected to grow by almost
53%, amounting to over 1 million residents, by 2040 (COMPASS, 2012).
Natural hazards, as well as urbanization alter the landscape in which they
occur and therefore planners, managers, and officials need access to
accurate data regarding Idaho’s topography and vegetation. Light and
Detection Ranging (lidar) is a remote sensing technology that provides
high-quality topographic data for hazard mitigation. Raw lidar data and
lidar-derived products have become widely-used across the United
States for hazards, resource management, and urban planning, among
other applications, because it creates high-resolution, accurate maps. In
response to this growing need for high-quality data, several states have
created permanent, state-level positions to manage and coordinate lidar
data acquisition efforts (Appendix B). In Idaho, the Idaho Lidar
Consortium (ILC) currently manages state-level lidar data coordination
efforts. The ILC helped coordinated lidar acquisition across the state,
leading to 73% coverage by the end of 2021. While the amount of
publicly-available lidar is increasing it is critical that Idaho invests in a
plan that ensures continued lidar data collection and implementation to
increase the resiliency of Idaho in the future.

This white paper discusses the lidar acquisition process in Idaho and

calls for action to ensure the completion of the goals set forth by the
USGS 3D Elevation Program (3DEP) and the Idaho Lidar Statewide

Acquisition Plan.
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Lidar Processing

For large areas, lidar data is most
commonly collected using airplanes
and helicopters. Light is able to
penetrate small openings in canopy
cover allowing for measurements of
ground features below the canopy as
well as other topographic features.
The data can be processed into
Digital Elevation Models (DEM)
which show bare earth and Digital
Surface  Models ~ which  show
structures (see image below), such as
trees or buildings, on the surface. In
addition to raster-layer products, the
raw and processed lidar point clouds
provide flexibility for a variety of
applications. For example, the point
clouds can be used in their native 3-D
point cloud format or reprocessed
into rasters that are tailored to
assessif

PN rughe reen —



https://ita.idaho.gov/wp-content/uploads/sites/3/2018/10/Idaho_Statewide_Lidar_Plan_Final_2018.pdf
https://ita.idaho.gov/wp-content/uploads/sites/3/2018/10/Idaho_Statewide_Lidar_Plan_Final_2018.pdf

68

History of Elevation Data in Idaho

2021

* An additional 56% (47,000 sq. miles) of the state will
be mapped (some remapped) amounting to 73%
(60,783 sq. miles) of the state covered w vith lidar.

2020

*25% (24,000 sq. miles) of the state is covered with

lidar data.

2018

eJdaho Lidar Statewide Acquieition Plan was created
to establish an approach to acquire publically-
available statewide lidar data and lidar-derived
products for Idaho by 2026 and set reommended
standards for lidar data.

2013

*Idaho Lidar Consortium (ILC) is founded to provide
a repository for publically-available lidar, as well as a
resource for state-level lidar coordination and
acquistion in Idaho.

2010

*USGS establishes 3D Elevation Program (3DEP),
the first nationally-coordinated lidar acquisition

program with a (T()al of having the complete lidar
coverage of the US by 2023 given adequate funding.
This w ould be the first-ever nqtlonql baseline of
consistent high resolution topovmphm elevation
data, 1nclud1nu bare earth and 3D point clouds.

2000

*USGS National Elevation Dataset (NED) provides
publically-accessible 10-meter and 30-meter
topographic data in Idaho.

Idaho Lidar Coverage

Historically, publicly-available lidar data has been
acquired in Idaho through wvarious interested
parties such as county officials (e.g., Nez Perce
County) and public agencies such as the US Forest
Service (USES), Federal Emergency Management
Agency (FEMA), and United States Geological
Survey (USGS). While these data are important,
this approach to data acquisition has resulted in
fragmented and incomplete lidar data coverage in
the state. The founding of the ILC has been
paramount for the initiation and upkeep of
continued lidar data acquisition throughout the
state of Idaho. For example, the ILC is currently
working to create an official lidar-derived
topogtaphic layer for the state of Idaho. This layer
will provide a 1-meter resolution DEM that can be
used for a wide range of applications. In addition
to this product, the ILC aims for continuous up-
to-date raw lidar data available across the entire
state.

Figure 1. Lidar coverage in 2021. Quality Level 1
(QL1) represents the highest lidar quality level in
Idaho. See Appendix C for specifications.
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Who is using lidar data in Idaho?

Lidar is currently being used by a range of individuals and agencies including GIS technicians, planners,
engineers, academics, among others. Since lidar is used by a vast range of individuals, we spent the last year
and a half focused on one specific group of lidar users to learn more about why an individual would or
would not adopt the technology; that group was flood risk managers in Idaho. It became evident, through
my research, that City and County officials were using lidar at a much lower rate than industry and State-
level officials and that several barriers existed in the uptake of lidar including lack of adequate funding and
expertise. While these findings are based in flood risk manager’s experience, they can also be used to bolster
our strategic plan for lidar acquisition and coordination for Idaho, overall, through incorporating measures
to reduce uptake barriers and increase accessibility to lidar data and lidar-derived products in Idaho in the
future.

Case study: Lidar Use in Flood Risk Management

This past year we conducted several interviews with flood risk managers to understand the landscape of
lidar use in flood risk management in Idaho. Several common themes arose from these conversations:

Batriers

Opportunities

Rural regions with smaller populations
typically have lower priority for revised
mapping

Lidar is seen as expensive and not all
communities / regions have adequate
funding

There is potential distrust in scientific

Lidar is useful and desirable to
work with

Elected officials have authority in
lidar acquisition

Community relationships can be
influential in lidar adoption

Lidar acquisition is facilitated by

products and/or the federal government
- Hesitancy towards publicly-accessible
lidar from private landowners

collaboration  across  multiple
institutions and stakeholders

These results informed a survey that we sent out from June to August 2020. From this survey, we
found that half the respondents used lidar. When we examined this at a more granular level, I found
that only 32% and 41% of flood risk managers at the City and County level, respectively, used lidar
compared to 80% and 86% of flood risk managers at the Industry and State-level, respectively. This
showed a clear discrepancy about “who” is using lidar. Figure 2, below, reports our findings from the
survey on the barriers experienced by flood risk managers.

Figure 2. Summary of barriers that prevented flood risk managers from using lidar.

Lidar s oo expensive
for my community to atford

There is not enough expertise
in my community to use lidar

There is not enough political support in my _
community to make lidar use feasible

B Srongly Agree
I somewhat Agree
Neither Agree nor Disagree
Somewhat Disagree
My community does not use lidar _ M strongly Disagree
because it is sparsely populated

My community does not use lidar because it _
has a low rate of economic development

We do not use lidar in my community
because there is little risk of flooding

0.01 075 1.00

8
o
M
@

050
Percentage of Responses
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Examples of lidar applications

Given the influx of lidar data in Idaho, it has already been used in a wide-array of applications, which the USGS
has categorized into specific, measurable Business Uses (BU). There are currently 13 BUs that have been
identified for Idaho, which are summarized in Appendix A. Here are two examples of successful applications
of lidar within these BUs. To learn about additional lidar applications and how they are making Idaho a more
resilient state to climate change and population growth, visit this Storymap about lidar in Idaho called “Mapping
for Resilience”.

In 2017, there were over 100 days of flooding
along the Boise River. However, this flooding
occurred at much a lower flow rate than officials
expected. This event, along with increased
urbanization and population, motivated the
acquisition of lidar along the Boise River so that
flood risk managers could accurately assess the
flood potential of the Boise River in the future.
This includes modeling flow rates representative
of climate change, which is expected to change the
timing of peak flows along the river. In addition,
lidar can be used to develop a 2-dimensional
hydraulic routing model that can provide estimates
of physical parameters (e.g., depth and velocity)
that can be key components for identifying the
spatial distribution of conditions that are critical to
account for in water quality models and studies.
These studies can illuminate critical habitat,
pollutant transport, sediment deposition and
scour, and channel migration.

Around three million acres of the Payette National
Forest were flown with Quality Level 1 lidar. It is
used for many applications including fire planning,
timber harvesting, and transportation planning. The
detailed nature of lidar data helps planners efficiently
improve databases by correcting road alignments,
updating inventory, and digitizing roads not already
identified. The image to the right shows pre-2017
National Forest Road alignments based on aerial
imagery in blue. The realigned National Forest
System Roads based on higher-quality lidar data are
in magenta. Numerous other routes can be seen in
the area which have been inventoried for future
analysis. Planners also use lidar to identify channels
and define horizontal buffer zones to map channel
proximity to road systems. One way lidar is especially
helpful is that it can display channel migration, which
can help planners understand the history of a
channel. The image on Page 6 shows an example of
channel migration in Payette River.



https://boisestate.maps.arcgis.com/apps/Cascade/index.html?appid=63fc0118b554441589d7793e1c38ff1d&edit
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Considerations to increase lidar coverage and uptake

Publicly-accessible lidar data and lidar-derived products have increased in Idaho over the last decade.
However, we think a commitment to continuing investment is needed in order to sustain lidar
acquisition in the future. One way we could move lidar forward is by engaging in a broader discussion
with the state’s Elevation Technical Working Group and the Idaho Geospatial Council — Executive
Committee. We recommend the following items be considered, discussed, and potentially incorporated
into the “Idaho GIS Strategic Plan™:

1. A permanent job role at the state-level specifically for coordinating and managing lidar
acquisition for Idaho. The ILC acts as a state-level coordinator currently, however this position
is dependent on support from universities and external, non-permanent grant funds.

2. A one-time budget approved at the state-level to execute lidar acquisition for the remaining
areas of the state that do not currently have lidar and replacement of existing lidar coverage
that is 10 years or older.

3. A recurring budget approved for continual lidar acquisition in the future to keep in-line with
the Update Frequency outlined in Appendix A.

4. Recurring budget for lidar workshops to educate individuals on how to use lidar with the
relevant software needed to complete the BU’s outlined in Appendix A.

Benefits of a permanent, state-level investment in lidar include:

1. Systematic, coordinated, and standardized data collection for the entire state.

2. Lidar data and lidar-derived products will be publicly-available across the entire state.

3. Economies of scale provides the potential for lower costs per square mile of data collected
due to potential for larger swaths of data collection at a time.

4. 'There is potential for a greater amount of higher quality lidar data. The USGS 3DEP program
provides funding for lidar acquisition projects of Quality Level 2. State-level coordination with
local agencies and academic institutions is critical for leveraging lidar acquisition efforts that
fund data collection with a minimum of Quality Level 1, which is required for heavily forested
and complex terrain.

The Idaho Office of Emergency Management estimates that for every $1 spent on mitigation, there
will be $6 in disaster savings. Budgeting for permanent lidar acquisition and coordination is a
critical step in investing in disaster mitigation for a resilient future in Idaho.

Relative Elevation Model using a 1-meter
resolution lidar-derived DEM of the North
Fork Payette River by Donnelly, Idaho. The

whitest part shows the current channel,
while the faded blue shows where the
channel has been.
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https://www.arcgis.com/apps/Cascade/index.html?appid=4a63a54438f74d5db21114bec266baf4
https://esd.dof.ca.gov/Documents/bcp/2021/FY2021_ORG0540_BCP3610.pdf
https://www.dnr.wa.gov/lidar
https://wadnr.maps.arcgis.com/apps/Cascade/index.html?appid=b93c17aa1ef24669b656dbaea009b5ce
https://clearinghouse.isgs.illinois.edu/data/elevation/illinois-height-modernization-ilhmp
https://clearinghouse.isgs.illinois.edu/lidar/Illinois_LiDAR_Plan_October_2019_working_draft.pdf
https://www.floridadisaster.org/dem/ITM/geographic-information-systems/lidar/
https://floridadisaster.maps.arcgis.com/apps/MapJournal/index.html?appid=c1a901b51646442db0eff37cbb98219f
https://www.kansasgis.org/resources/lidar.cfm
https://kwo.ks.gov/docs/default-source/governor's-water-conference/2017-governor's-conference-presentations/kastens---lidar-and-the-kansas-water-surface-landscape.pdf?sfvrsn=2
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75

Table 3. Lidar Quality Levels based on USGS standards.

Quality Level Aggregate Aggregate Smooth surface Swatch overlap

QL) nominal pulse nominal pulse repeatability, difference,
spacing (m) density RMSD (m) RMSD (m)

(pulse/m?)

QLO <0.35 28.0 <0.03 =0.04

QL1 <0.35 28.0 <0.06 =<0.08

QL2 <0.71 2>2.0 <0.06 =<0.08

QL3 <141 20.5 <0.12 <0.16
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Study Title: Promoting the use of lidar for flood risk preparedness, planning, and
adoption in municipalities across the western US

Interview Script

Principal Investigator: Tara Pozzi

Collaborating Groups/Individuals: Dr. Vicken Hillis, Boise State University

Researcher: Collect consent forms. “Thank you for agreeing to speak with me today.
The purpose of this study is to better understand how floodplain management currently
works, identify gaps and barriers to the implementation of lidar use, and provide
opportunities for knowledge and information sharing across the region. You are being
asked to participate because you have a stake in flood risk management for your region.
If you agree to a semi-structured interview you will be asked to participate in a 1-hour
interview and answer questions regarding your role in flood risk management. This may
include a short-written questionnaire, audio recording and/or note taking with your
permission.

Basic metadata questionnaire Interview Number (completed by researcher)

Today’s date
Age

Gender
Ethnicity

What is the highest level of education you completed?
1) Some high school

2) High school diploma

3) College education, did not graduate
4) College education, Associates degree
5) College education, Bachelor's degree
6) Post College, no degree

7) Advanced degree (MA, JD, MBA)
What was your degree?

1) Engineering

2) Planning

3) Business

4) Geography

5) Public Administration

6) Political Science

7) Geology

8) Other

Percent of your time spent on floodplain management.
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1) 0-10%
2) 11-20%
3) 21-30%
4) 31-40%
5) 41-50%
6) More than 50%

Floodplain manager experience

1) <5 years: how many?
2) 6-10 years
3) 11-15 years
4) 16-20 years
5) > 21 years
What is your approximate yearly household gross income, including all ranch and off ranch
income (circle one)?
1) Less than $24,999
2) $25,000 to $34,999
3) $35,000 to $44,999
4) $45,000 to $54,999
5) $55,000 to $64,999
6) $65,000 to $74,999
7) More than $75,000

Are you a Certified Floodplain Manager (CFM)?

1) Yes
2) No
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Semi-Structured Questions

Section 1: Interviewee background information

What is your background with flood risk management?

What is your current job title?

What responsibilities do you have in your current role? How much time do you dedicate
to each of your responsibilities?

Are you solely responsible for floodplain management or do you have other
responsibilities?

Where do you do most of your work? From an office, house, the field?

What professional organizations are you apart of? Do you partake in any continued
education courses, and if so what type?

Section 2: Local floodplain management practices

How many floodplain management staff are there? What are the combined years of staff
experience in floodplain management?

At a general level, what factors control or significantly influence your work? Policy
makers, community welfare, funding, etc.

How does funding work for your region? What are your typical revenue sources? i.e.,
grants, loans, taxes, technical assistance programs, etc.
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What stakeholders (organizations, agencies, people, etc.) do you regularly work with?

Do you follow the minimum floodplain management practices set forth by NFIP? If so,
are any of those stricter than NFIP’s requirements? Do you feel like you know best
management practices for your region?

How well do you think all vested interests in this industry collaborate, coordinate, and
communicate with one another? Including other floodplain managers, engineers,
developers, homeowners, farmers, etc.

How has recent development affected your floodplain management practices?

Section 3: Flood risk perception in your region

What level of flooding risk do you associate with the area you are responsible for? What
is the typical frequency, size, or timing of flooding events? When was the last significant
flood event?

How is the flood risk management process conducted in terms of identification,
assessment, planning and implementation of projects?

What resources do you use to obtain information about precipitation, climate patterns,
etc. that influence your understanding of flood risk?

What are your beliefs on changing climate patterns? Does this affect how you see risk
your region?

Does urbanization provide additional risk your region?

What is the extent of public engagement regarding flood risk management and how do
you go about engaging the community in these topics?
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Section 4: Lidar use in floodplain management

What is your current mapping system? How accurate do you think your current mapping
system is in identifying areas of vulnerability in your region?

Are there parts of your region that are unmapped and if so, where? And how do manage
flood vulnerabilities in those areas?

Do you personally work with lidar? What other technology do you most often use for
flood management?

How do members of the industry use lidar for floodplain management? What is their
opinion on this technology?

Section 5: Changes and barriers to change in the industry

What do you see as barriers or issues in floodplain management today? And why do you
think they exist? (e.g., where are current gaps or resources you wish you had?)

Based on your previous answer, are there specific areas that our research could assist
with flood risk management? If so, where could we be most helpful in filling those gaps?

What do you see as the most effective way to increase lidar uptake in your region?
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Technology Adoption in Flood Risk Management

Welcome to the Technology Adoption in Flood Risk Management Survey!

The purpose of this survey is to better understand how managers make decisions about flood
risk management. You are being asked to participate in this survey because you are a
knowledgeable member of the industry who could provide information for our study. This
survey will ask about you, the community you work in, and your use of lidar (Light Detection and
Ranging) in flood risk management. Your answers will be used to contribute to understanding
the role lidar plays in flood risk management, as well as help us identify challenges and barriers
that may exist to its implementation.

We anticipate the survey will take less than 15 minutes.

Please note:

You must be at least 18 years old to participate. Your participation is voluntary, and your
responses will remain confidential. No personally identifiable information will be associated
with your responses in any reports of the data. If there are any items that you would prefer to
skip, please leave the answer blank.

For any questions, please contact the principal investigator: Tara Pozzi at
tarapozzi@boisestate.edu or Dr. Vicken Hillis at vickenhillis@boisestate.edu.

| want to participate.

| do not want to participate.

This survey is intended for people with primary decision responsibility in flood risk management.
Does this description fit your role?

Yes

No
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How many years have you been working in flood risk management?

This next series of questions is about the flood risk management community you primarily work
with. For example, you could name a watershed (e.g., Boise River), a county (e.g., Teton
County), or a city (e.g., McCall).

If you work in several communities, please answer the questions considering the one

community where you work the most.

What is the name of the community where you work in flood risk management? This can be a
city, county, and/or watershed depending on what is most applicable to you.

The National Flood Insurance Program (NFIP) is an agreement between local communities and
the Federal Government to help communities adopt and enforce a floodplain management
ordinance to reduce future flood risks.

Is your community currently enrolled in the NFIP?

Yes

No

What is the reason your community is not enrolled in the NFIP?
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Have you ever experienced a flood that caused...?
Yes

damage to property in your
community?

deaths and injury to people in
your community?

damage to your home?

deaths or injuries to you or
members of your immediate
family?

disruption to your electric,
water, phone, and other basic
services?

No
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Thinking about your community in the future, how likely is it, if at all, that a flood will cause...
0% chance 25% chance 50% chance 75% chance  100% chance

damage to

property in
your

community?

deaths and
injury to
people in your
community?

damage to
your home?

deaths or
injuries to you
or members
of your
immediate
family?

disruption to
your electric,
water, phone,
and other
basic
services?

This next series of questions is about the current topographic data and floodplain maps in the
community you work with in flood risk management.
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Do you think your community's floodplain maps accurately reflect flood risk?
Completely accurate
Mostly accurate
Moderately accurate
Slightly accurate
Not at all accurate

To your knowledge, are there any areas in your community that have flooded in the past, but
are not designated in a flood zone on your current flood maps?

Yes
No
If you had to say, is your community prepared for a significant flood event?
Completely prepared
Mostly prepared
Moderately prepared
Slightly prepared

Not at all prepared

This next section will ask you several questions about whether your community's flood risk is
changing.

Please answer the following questions about the same area you reported on before.
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In the future, do you think the average number of flood events in your community will increase,
decrease, or stay the same as the current average?

Increase

Decrease

Stay the same

In the future, do you think the average severity of flood damage in your community will
increase, decrease, or stay the same as the current average?

Increase

Decrease

Stay the Same

Light Detection and Ranging (lidar) is a laser-based technology that provides a detailed map of
the ground (bare earth), vegetation (canopy), and other models of the earth’s surface.

Do you currently use lidar?

Yes

No, but | have heard of it

No, | have not heard of it
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Would you and/or your organization be interested in learning more about lidar?

Yes

No
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Which of the following reasons prevents you from using lidar (check all that apply)?

Lack of
funding

Lack of
knowledge on

how to use
lidar

Sparse
population in
your flood risk
area

Low
development
rate and/or
urbanization
in your flood
risk area

Feel that your
area does not
have a
significant
flood risk and
therefore
does not need
new mapping
data

Lack of
political
support

Other:

Definitely yes

Probably yes

Might or
might not

Probably not

Definitely not
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How useful or useless do you think lidar could be for your flood risk area?

Extremely useful

Very useful

Moderately useful

Slightly useful

Not useful at all

There are a number of lidar training tools available both online and in-person. All of them are
free and take 1-2 hours to complete. Which of the following training sessions would you
personally find to be the most helpful?

A training session which focuses on the fundamentals of lidar (e.g., how it works;
general use).

A training session which focuses on how to use and integrate lidar technology in
conjunction with ArcGlIS.

A training session on how to acquire lidar for your area

All of the above

Other:




Where do you access your lidar data from (check all that apply)?

Federal website

State website

County website

City website

Idaho lidar Consortium

Private source

Other:

What do you use lidar for (check all that apply)?

Floodplain map development

Hydrologic and/or hydraulic analysis

Hazard mitigation

Flood risk assessment

Educational materials

Other:
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There are a number of lidar training tools available both online and in-person. All of them are
free and take 1-2 hours to complete. Which of the following training sessions would you
personally find to be the most helpful?

A training session which focuses on the fundamentals of lidar (e.g., how it works;
general use).

A training session which focuses on how to use and integrate lidar technology in
conjunction with ArcGIS.

A training session on how to acquire lidar for your area
All of the above

Other:

This next section is going to ask you about significant relationships you have in the flood risk
management community. Please note that these relationships may be professional or personal
in nature, positive or negative.
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Looking back over the last 12 months, who are the people with whom you discussed significant
matters regarding flood risk management? Please list up to eight people, naming only their
initials in order to keep them anonymous.

Person's initials (1):

Person's initials (2):

Person's initials (3):

Person's initials (4):

Person's initials (5):

Person's initials (6):

Person's initials (7):

Person's initials (8):

How often do you communicate (e.g. in-person, online, over the phone)
with S{alter_names/ChoiceTextEntryValue/1}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/1} use lidar?

Yes

No

| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/1} as having or
lacking expertise in the field of flood risk management?

No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S{alter_names/ChoiceTextEntryValue/2}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/2} use lidar?

Yes
No
| do not know.

On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/2} as having or
lacking expertise in the field of flood risk management?
No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S${alter_names/ChoiceTextEntryValue/3}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/3} use lidar?

Yes

No

| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/3} as having or
lacking expertise in the field of flood risk management?

No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S{alter_names/ChoiceTextEntryValue/4}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/4} use lidar?

Yes
No
| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/4} as having or
lacking expertise in the field of flood risk management?
No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S${alter_names/ChoiceTextEntryValue/5}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/5} use lidar?

Yes

No

| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/5} as having or
lacking expertise in the field of flood risk management?

No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S{alter_names/ChoiceTextEntryValue/6}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day
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To your knowledge, does S{alter_names/ChoiceTextEntryValue/6} use lidar?

Yes
No
| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/6} as having or
lacking expertise in the field of flood risk management?
No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S${alter_names/ChoiceTextEntryValue/7}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day



102

To your knowledge, does S{alter_names/ChoiceTextEntryValue/7} use lidar?

Yes
No
| do not know.
On a scale from 1 to 10, do you think of S{alter_names/ChoiceTextEntryValue/7} as having or
lacking expertise in the field of flood risk management?
No expertise at all Very much expertise

0o 1 2 3 4 5 6 7 8 9 10

How often do you communicate (e.g. in-person, online, over the phone)
with S{alter_names/ChoiceTextEntryValue/8}?

A few times a year
Once a month

2-3 times a month
Once a week

Several times a week

Several times a day



103

To your knowledge, does S{alter_names/ChoiceTextEntryValue/8} use lidar?

Yes
No
| do not know.
On a scale from 1 to 10, do you think of ${alter_names/ChoiceTextEntryValue/8} as having or

lacking expertise in the field of flood risk management?
No expertise at all Very much expertise

Do you generally prefer to take risks or to avoid risks?

| generally prefer to | generally prefer to
take risks avoid risks




104

What gender do you identify with?

Male

Female

Prefer to self-describe:

What is your age?
Less than 20 years
20-29 years
30-39 years
40-49 years

50+ years

What is the highest level of education you have completed?

Some high school

High school diploma

College education, did not graduate
College education, Associates degree
College education, Bachelor’s degree

Advanced degree (MA, JD, MBA, PhD)
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What was your degree?

Engineering

Planning

Business

Public Administration

Geography

Emergency Management

Other:

How much do you trust or distrust the accuracy of scientific products the federal government
develops with respect to flood risk management (i.e. topographic data, floodplain mapping,
floodplain modeling)?

Strongly trust

Somewhat trust

Neither trust nor distrust

Somewhat distrust

Strongly distrust
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How much do you trust or distrust the usefulness of the products the federal government
develops with respect to flood risk management (i.e. data collection, accurate mapping,
floodplain modeling, flood insurance)?

Strongly trust
Somewhat trust

Neither trust nor distrust
Somewhat distrust

Strongly distrust

How involved do you think the federal government should be with flood risk management (i.e.
data collection, floodplain mapping, floodplain modeling, flood insurance)?

Completely involved
Mostly involved
Moderately involved
Somewhat involved

Not at all involved

Thank you for taking the time to fill out this survey!
We plan to share the results of the research with the study participants, other community
members, and the larger community of flood risk professionals through peer reviewed

publications.

Please feel reach to reach out with any questions and/or concerns to the Principal Investigator,
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Tara Pozzi at 831-225-6419 or tarapozzi@boisestate.edu or the Co- Principal Investigator, Dr.
Vicken Hillis at 415-812-6846 or vickenhillis@boisestate.edu.





