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ABSTRACT 

Shape memory ceramics (SMCs) are promising candidates for actuators in 

extreme environments such as high temperature and corrosive applications. Despite 

outstanding energy dissipation, compared to metallic shape memory materials, SMCs 

suffer from a sudden brittle fracture. While the interaction of crack propagation and phase 

transformation in SMCs has been the subject of several experimental and theoretical 

studies, mainly at the macroscale, the fundamental understanding of the dynamic 

interaction of crack propagation and martensitic transformation is poorly understood. 

This dissertation attempts to provide a mathematical model for crack propagation in 

transformable zirconia to address the shortage of classical methods. This dissertation uses 

the phase field framework to fully couple the martensitic transformation to the variational 

formulation of brittle fracture.  

Firstly, the model is parameterized for single crystal zirconia, which experiences 

tetragonal to monoclinic transformation during crack propagation. For mode I of fracture, 

the opening mode, crack shows an unusual propagation path that is in good agreement 

with the experiments and indicates the significant role of phase transformation on the 

crack propagation path. The investigation on the effect of lattice orientation on crack 

propagation shows that the lattice orientation has a significant influence not only on the 

crack propagation path but also on the magnitude of the transformation toughening. 

Secondly, the model is parameterized for tetragonal polycrystalline zirconia, and 

the experimental data from literature were used to validate the model. The model predicts 
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the three dominant crack propagation patterns which were observed experimentally, 

including the secondary crack initiation, crack branching, and grain bridging. The model 

shows the critical role of texture engineering in toughening enhancement. Polycrystalline 

zirconia samples with grains that make low angles between the a-axis in the tetragonal 

phase and the crack plane, show higher transformation toughening, due to maximum 

hydrostatic strain release perpendicular to the crack tip. The model also shows the grain 

boundary engineering as a way to enhance the transformation toughening. The maximum 

fracture toughness occurs at a specific grain size, and further coarsening or refinement 

reduces the fracture toughness. This optimum grain size is the consequence of the 

competition between the toughening enhancement and MT suppression with grain 

refinement. 

Finally, we parameterized the model for the 3D single crystal zirconia, which 

experienced stress- and thermal-induced tetragonal to monoclinic transformation. The 

developed 3D model considers all 12 monoclinic variants, making it possible to acquire 

realistic microstructures. Surface uplifting, self-accommodated martensite pairs 

formation, and transformed zone fragmentation were observed by the model, which 

agrees with the experimental observations. The influence of the crystal lattice orientation 

is investigated in this study, which reveals its profound effects on the transformation 

toughening and crack propagation path. 
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CHAPTER ONE: INTRODUCTION 

SMCs offer many advantages compared to shape memory metallic alloys, including 

higher strength, higher operating temperature, better thermal stability, and superior 

oxidation/corrosion resistance [1]. Among the currently available SMCs, zirconia (ZrO2)-

based ceramics have received the most interest and attention because of their similarity to 

shape memory alloys in terms of mechanical-thermal actuation due to a reversible 

martensitic transformation (MT) mechanism [1]. Zirconia has a wide range of 

applications from biomedical to aerospace industries [2–6]. Most of these applications 

benefit from the superior fracture toughness of zirconia ceramics which originates from 

the stress-induced tetragonal to monoclinic (t→m) transformation [7,8]. The tensile stress 

field at the crack tip promotes the t→m transformation, then the transformation strains 

change the stress state around the crack tip and lead to the toughening effect [9]. 

Garvie et al. [10] were the first who showed that it is possible to gain a significant 

increase in zirconia strength by making the tetragonal phase stable at room temperature. 

Tetragonal stabilization is feasible by adding oxide dopants or reducing the grain sizes. 

Both techniques reduce the tetragonal to monoclinic transformation temperature by 

decreasing the transformation driving force.   

The stabilized zirconia is resistant to crack propagation, as the stress 

concentration at the crack tip excites the tetragonal to monoclinic (𝑡𝑡 → 𝑚𝑚) 

transformation. This transformation results in a considerable shear strain (0.16) and 

volume expansion (0.04) that will create a domain with large compressive stresses 
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leading to crack tip closure and preventing the crack growth, which enhances the 

toughening property of zirconia [7]. 

Despite the superior properties of zirconia, such as applicability for a wider range of 

temperatures and higher energy absorption, compared to the metallic shape memory 

materials [11], their widespread application is limited due to their brittleness and low 

fatigue life. While recent studies [11] have shown that increasing the fatigue life is 

possible by reducing the sample size, due to reducing the presences of some defects such 

as grain boundaries, we still lack the fundamental knowledge of how martensitic 

transformation (MT) and cracks interact concurrently. 

Transformation toughening effect in zirconia ceramics has been the subject of several 

studies in past years [12–17]. Hannink et al. [7] and Kelly and Rose [8] have provided 

comprehensive reviews on this subject. Generally, there are two main approaches to 

assess the toughening effects of the phase transformation. The first approach computes 

the shielding effect of the phase transformation [12] by using the concept of linear elastic 

fracture mechanics. The second technique evaluates the fracture energy resulting from the 

phase transformation associated with a growing crack [13]. These models aimed to 

investigate the toughening effects of MT. However, they lacked the dynamics of phase 

transformation and its morphological dependence on boundary conditions, external 

loadings, and crystal orientation in their formulation. In this work, we use the phase field 

(PF) method to formulate a coupled model that concurrently captures both the physics of 

MT and crack propagations and their interactions. 

Classically, the fracture of transformable brittle materials was primarily studied at 

macroscale [13,15,18,19]. Evans and Cannon [20] conducted a thorough study to unravel 
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the mechanisms underlying transformation toughening in brittle transformable materials. 

Based on their results, materials chemistry and microstructure are the dominant 

parameters impacting toughening mechanisms [21–23]. One drawback of these classical 

models is that they assumed the transformed zone in priori, and the dynamic and 

concurrent interaction of crack growth and MT is ignored. Besides, due to the nature of 

these macroscale models, they did not have the effects of defects, such as grain 

boundaries, on crack growth. The microstructure has a significant effect on the SMCs 

mechanical properties. For instance, grain size influences the effectiveness of MT and the 

development of microcracks [24]. The complexity of the fracture mechanics in SMCs is 

due to several mechanisms like MT, microcracks formation, crack deflection, and crack 

bridging [24]. Numerous circumstances, such as microstructure discontinuities (grain 

boundaries, second phases, inclusions, etc.), local stress states, or environments, would 

have profound influences on the crack paths, causing deflection and branching [24]. 

To address the limitations of the classical fracture mechanics models for SMCs and 

advance the fundamental understating of SMCs degradation, we have developed a 

mesoscale microstructure-informed model to study the dynamic interaction of concurrent 

crack growth and MT. For this purpose, we couple the Ginzburg-Landau equations of 

MT to the variational formulation of brittle fracture. These two models are also known as 

phase-field (PF) models of MT and crack growth. 

In the last two decades, the PF method has become a successful technique for 

modeling a wide range of moving boundary problems, including solid state phase 

transformation [25–29], crack propagation [30–34], solidification [35–38], etc. PF 

modeling of MT, which is the mechanism of t→m transformation, was primarily 
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developed by Khachaturyan, Wang, and Chen [27,39] based on the PF microelasticity 

theory of Khachaturyan and time dependent Ginzburg–Landau kinetic equations. Along 

with Khachaturyan and his co-workers, several other groups developed different forms of 

PF models for MT which have been comprehensively reviewed by Mamivand et al. [40]. 

Being applied to the wide range of different MTs, including cubic to tetragonal [41,42], 

hexagonal to orthorhombic [43–45], cubic to monoclinic [46],  and tetragonal to 

monoclinic [8,47–49], the PF method has shown the capability of capturing the most 

important features of MTs.   

 Similar to MT, the PF method has attracted considerable attention in fracture 

mechanics [30,50–53] because of its relatively easier numerical implementation for 

fracture. In PF fracture, we utilize a scalar field, a so-called phase field, to represent the 

discrete cracks. Therefore, a crack in the PF method is not a discontinuity, and the 

transition from crack to the material is smooth. This diffuse interface modeling of crack 

enables the PF fracture to model the crack initiation, propagation, and branching 

behaviors in a robust manner in complex patterns. In addition, in the PF modeling, the 

crack propagation behavior can be combined with other physical phenomena such as 

phase transformation smoothly. 

Generally, there are two types of PF models for crack growth, one developed in 

the physics community [33,54–58] and the other developed in the mechanics community 

[30,32,50,59–63]. These two communities have used completely different concepts and 

methods to formulate the crack growth in the PF framework. The physics community 

used the Ginzburg-Landau [64] formalism to model the crack propagation. However, the 

mechanics community used the variational formulation of classical Griffith’s theory of 
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brittle fracture originally developed by Francfort and Marigo [65]. Ambati et al. [66] 

have holistically reviewed the PF modeling of crack growth and the differences between 

the two communities’ models. In this work, we use the mechanics community models 

because they are tightly related to the well-established and understood Griffith’s theory, 

widely applied by engineers. Due to the highly anisotropic nature of elasticity in 

tetragonal and monoclinic zirconia, we adopt an anisotropic elastic PF model for crack 

growth [67,68]. Zhao et al. [69] have studied the crack growth in zirconia by coupling the 

PF model of t→m transformation originally developed by our group with the crack 

growth model of the physics community [33,54–58]. Zhao et al.’s work was limited in 

terms of predicting the crack propagation path. To overcome this limitation and explain 

the experimentally observed anomaly crack growth path in zirconia [20,70], we have 

constructed a new PF model for crack growth in zirconia based on our experimentally 

validated PF model of t→m transformation and the mechanics communities diffuse 

interface framework of crack propagation. This work advances the crack propagation 

modeling in SMCs by capturing the concurrent dynamics of MT and crack propagation. 

We benchmark the model’s predictability by validating the model’s predictions against 

the experimental observations. 

The dissertation outline is as follows. In chapter two, we first describe the PF 

governing equations of t→m transformation and the variational formulation of crack 

growth for elastic anisotropic materials, followed by the process of combining MT and 

crack growth.  

In chapter three, we present the coupled PF model predictions for the single 

crystal model. We validate the results by comparing them to the experimental results. 
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Temporal and spatial evolution of concurrent crack propagation and phase transformation 

is provided, and the effects of lattice orientation on the fracture toughening and crack 

growth routes are analyzed. Subsequently, we present the conclusions in the final section. 

In chapter four, the model is parametrized for the polycrystalline zirconia and the 

result is provided. We study the interaction of MT and crack growth with grain 

boundaries, this is particularly important because several studies noted that pure zirconia 

has an intergranular fracture mode while yttrium stabilized zirconia and alumina-zirconia 

have a transgranular fracture [24,71]. In this chapter, we explain the algorithm that we 

used to generate two-dimensional (2D) polycrystalline geometry and mesh. The result 

validated by comparing with the experimental observation. Additionally, the effect of 

grain size on the fracture toughening and crack growth path is provided. 

In chapter five, the developed phase field model is extended to a three 

dimensional model. Twelve different order parameters have assigned to all possible 

monoclinic variants. We provide a brief description of the crystallography of 𝑡𝑡 → 𝑚𝑚 

transformation in zirconia. Then, we validate the model by comparing the results with the 

experimental observations. We elaborate the temporal and spatial evolution of 

simultaneous fracture and MT in 3D and study the influence of lattice orientation on the 

fracture, crack pattern, and toughening in 3D zirconia single crystal. Finally, the key 

findings are summarized. 

This dissertation leads to the following peer-reviewed papers; 

1) Ehsan Moshkelgosha, Mahmood Mamivand, (2019, November). "Anisotropic Phase-

Field Modeling of Crack Growth in Shape Memory Ceramics: Application to 

Zirconia". In ASME International Mechanical Engineering Congress and 
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Exposition (Vol. 59490, p. V012T10A064). American Society of Mechanical 

Engineers. doi:10.1115/IMECE2019-11695. 

 

2) Ehsan Moshkelgosha, Mahmood Mamivand, " Phase field modeling of crack 

propagation in shape memory ceramics – Application to zirconia", Computational 

Materials Science, Volume 174, (2020), 109509, ISSN 0927-0256, 

https://doi.org/10.1016/j.commatsci.2019.109509. 

 

3) Ehsan Moshkelgosha, M. Mamivand, Concurrent modeling of martensitic 

transformation and crack growth in polycrystalline shape memory ceramics, 

Engineering Fracture Mechanics, (2020) 107403. 

doi:10.1016/j.engfracmech.2020.107403. 

 

4) Ehsan Moshkelgosha, Mahmood Mamivand, " Three-dimensional Phase Field 

Modeling of Fracture in Shape Memory Ceramics" Submitted to International 

Journal of Mechanical Sciences, March 2021 

 

5) Lupercio, AE, Moshkelgosha, E, Winters, RC, et al. " Ball‐on‐ring test validation for 

equibiaxial flexural strength testing of engineered ceramics " International Journal of 

Ceramic Engineering and Science, 2021; 00: 1– 12. [72] 

https://doi.org/10.1002/ces2.10085 
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CHAPTER TWO: METHODS 

In this chapter, we derive the governing equations of MT in the context of the PF 

framework. Then, we will provide the details of the variational model of crack 

propagation in elastically anisotropic materials, and finally, we will couple these two 

models to investigate the effect of MT on crack propagation and vice versa. 

The result provided in this chapter is published as a research paper [73] in the ASME 

International Mechanical Engineering Congress and Exposition (Volume 12, November 

2019, IMECE2019-11695, https://doi.org/10.1115/IMECE2019-11695) 

Phase Field Method 

The phase-field method has become an important and extremely versatile technique 

for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface 

approach, it allows us to study the evolution of arbitrary complex grain morphologies 

without any presumption on their shape or mutual distribution. It is also straightforward 

to account for different thermodynamic driving forces for microstructure evolution, such 

as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the 

effect of different transport processes, such as mass diffusion, heat conduction and 

convection. 

Most materials are heterogeneous on the mesoscale. Their microstructure consists of 

grains or domains, which differ in structure, orientation and chemical composition. The 

physical and mechanical properties on the macroscopic scale highly depend on the shape, 

size and mutual distribution of the grains or domains. It is, therefore, extremely important 
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to gain insight in the mechanisms of microstructure formation and evolution. However, 

extensive theoretical and experimental research are hereto required, as microstructure 

evolution involves a large diversity of often complicated processes. Moreover, a 

microstructure is inherently a thermodynamic unstable structure that evolves in time. 

Within this domain, the phase-field method has become a powerful tool for simulating 

the microstructural evolution in a wide variety of material processes, such as 

solidification, solid-state phase transformations, precipitate growth and coarsening, 

martensitic transformations and grain growth.  

The microstructures considered in phase-field simulations typically consist of a 

number of grains. The shape and mutual distribution of the grains is represented by 

functions that are continuous in space and time, the phase-field variables. Within the 

grains, the phase-field variables have nearly constant values, which are related to the 

structure, orientation and composition of the grains. The interface between two grains is 

defined as a narrow region where the phase-field variables gradually vary between their 

values in the neighboring grains. This modeling approach is called a diffuse-interface 

description. The evolution of the shape of the grains, or in other words the position of the 

interfaces, as a function of time, is implicitly given by the evolution of the phase-field 

variables.  

An important advantage of the phase-field method is that, thanks to the diffuse-

interface description, there is no need to track the interfaces (to follow explicitly the 

position of the interfaces by means of mathematical equations) during microstructural 

evolution. Therefore, the evolution of complex grain morphologies, typically observed in 

technical alloys, can be predicted without making any a priori assumption on the shape of 
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the grains. The temporal evolution of the phase field variables is described by a set of 

partial differential equations, which are solved numerically. Different driving forces for 

microstructural evolution, such as a reduction in bulk energy, interfacial energy and 

elastic energy, can be considered. The phase-field method has a phenomenological 

character: the equations for the evolution of the phase-field variables are derived based 

on general thermodynamic and kinetic principles; however, they do not explicitly deal 

with the behavior of the individual atoms. As a consequence, material specific properties 

must be introduced into the model through phenomenological parameters that are 

determined based on experimental and theoretical information. Nowadays, the phase-

field technique is very popular for simulating processes at the mesoscale level. The range 

of applicability is growing quickly, amongst other reasons because of increasing 

computer power. 

There is a wide variety of phase-field models, but common to all is that they are 

based on a diffuse-interface description. The interfaces between domains are identified by 

a continuous variation of the properties within a narrow region, Figure 1.a, which is 

different from the more conventional approaches for microstructure modeling.  
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Figure 1. (a) Diffuse interface: properties evolve continuously between their 
equilibrium values in the neighboring grains. (b) Sharp interface: properties are 

discontinuous at the interface.[74] 

 

In conventional modeling techniques for phase transformations and microstructural 

evolution, the interfaces between different domains are considered to be infinitely sharp, 

Figure 1.b, and a multi-domain structure is described by the position of the interfacial 

boundaries. For each domain, a set of differential equations is solved along with flux 

conditions and constitutive laws at the interfaces. In the diffuse-interface approach, the 

microstructure is represented by means of a set of phase-field variables that are 

continuous functions of space and time. Within the domains, the phase-field variables 

have the same values as in the sharp interface model (see Figure 1.a). However, the 

transition between these values at interfaces is continuous. The position of the interfaces 

is thus implicitly given by a contour of constant values of the phase-field variables and 

the kinetic equations for microstructural evolution are defined over the whole system. 

Using a diffuse-interface description, it is possible to predict the evolution of complex 

grain morphologies as well as a transition in morphology.  
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PF Modeling of the T→M Transformation 

In this dissertation, we build on the PF model of t→m transformation in zirconia, 

originally developed by Mamivand et al.[23,49,75,76]. We briefly describe the PF model 

of t→m transformation in zirconia and refer the interested readers to the original papers 

for more details [49]. In the PF method, a multidomain microstructure can be described 

by a set of PF variables, also known as order parameters. In the case of the t→m 

transformation, PF variables are the possible variants of the monoclinic phase. Variants 

are all possible monoclinic unit cells which are crystallographically self-similar and obey 

colored symmetry point group operations in a dichromatic complex between the two 

phases [75]. This is simplistically schematized in Figure 2. 

We use the non-conserved order parameters 𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡) to represent the content of the 

𝑝𝑝𝑡𝑡ℎ  monoclinic variant, where 𝑟𝑟 is the position vector of the material point and 𝑡𝑡 refers to 

time. During the MT, the value of 𝜂𝜂𝑝𝑝 varies from 0 to 1. When 𝜂𝜂𝑝𝑝 = 1, the monoclinic 

phase exists, and when 𝜂𝜂𝑝𝑝 = 0, it is either one of the other monoclinic variants or the 

parent tetragonal phase.  
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Figure 2. Schematic illustration of possible variants of the monoclinic phase 

during t→m transformation in 2D [75]. 

The Ginzburg Landau equation has a phenomenological character and relates the rate 

of order parameter to the variational derivative of total free energy to the order parameter 

[77]:  

𝜕𝜕𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡 = −𝐿𝐿

𝛿𝛿𝛿𝛿
𝛿𝛿𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡) + 𝜍𝜍𝑝𝑝(𝑟𝑟, 𝑡𝑡)       𝑝𝑝 = 1, … , 𝑛𝑛 , (1) 

where 𝜂𝜂𝑝𝑝 represent the 𝑝𝑝𝑡𝑡ℎ  variant of monoclinic, 𝐿𝐿 is the kinetic coefficient, 𝛿𝛿 is 

the total free energy of the system, 𝛿𝛿𝛿𝛿
𝛿𝛿𝜂𝜂𝑝𝑝(𝑟𝑟,𝑡𝑡)

 is the thermodynamic driving force for the 

spatial and temporal evolution of 𝜂𝜂𝑝𝑝 and 𝜍𝜍𝑝𝑝(𝑟𝑟, 𝑡𝑡) is the Langevin noise describing the 

thermal fluctuation [27,64].  

For the MT process, the total free energy can be written as the summation of chemical 

free energy and elastic strain energy 
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𝛿𝛿 = 𝛿𝛿𝑐𝑐ℎ + 𝛿𝛿𝑒𝑒𝑒𝑒 .   (2) 

Chemical Free Energy 

Chemical free energy is the driving force of MT and primarily originates from the 

difference of Gibbs free energy between tetragonal and monoclinic phases. Considering 

the interfacial energies between the co-existing phases we can write the total chemical 

free energy as [27]: 

𝛿𝛿𝑐𝑐ℎ = ��𝑓𝑓(𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑛𝑛) + 1
2
� 𝛽𝛽𝑖𝑖𝑖𝑖(𝑝𝑝)𝛻𝛻𝑖𝑖𝜂𝜂𝑝𝑝𝛻𝛻𝑖𝑖𝜂𝜂𝑝𝑝

𝑛𝑛

𝑝𝑝=1
� 𝑑𝑑𝑑𝑑

𝑉𝑉

          𝑛𝑛 = 1, … ,𝑝𝑝 ,  
(3) 

where 𝛽𝛽𝑖𝑖𝑖𝑖(𝑝𝑝) is the positively defined gradient energy coefficient tensor and 𝛻𝛻 is 

the gradient operator. The bulk chemical free energy 𝑓𝑓(𝜂𝜂1, 𝜂𝜂2 … ,𝜂𝜂𝑛𝑛) for improper 

transformation can be expressed as a sixth-order Landau polynomial 

𝑓𝑓(𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑛𝑛) = 𝛥𝛥𝛥𝛥 �𝑎𝑎
2

(𝜂𝜂12 + 𝜂𝜂22 + ⋯+ 𝜂𝜂𝑛𝑛2) − 𝑏𝑏
4

(𝜂𝜂14 + 𝜂𝜂24 + ⋯+ 𝜂𝜂𝑛𝑛4) +

𝑐𝑐
6

(𝜂𝜂12 + 𝜂𝜂22 + ⋯+ 𝜂𝜂𝑛𝑛2)3�  ,  
(4) 

where ∆𝛥𝛥 is the chemical driving force which stands for the difference between 

the specific free energy of the parent phase and the product phase. 𝑎𝑎 , 𝑏𝑏 and 𝑐𝑐 are the 

expansion coefficients of the Landau polynomial at a fixed temperature.  

We assume that the positive gradient energy coefficient is isotropic (𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛿𝛿𝑖𝑖𝑖𝑖); 

therefore the chemical free energy can be simplified as: 

𝛿𝛿𝑐𝑐ℎ = � �𝑓𝑓(𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑛𝑛) + 1
2
� 𝛽𝛽(𝛻𝛻𝑖𝑖𝜂𝜂𝑝𝑝

𝑛𝑛
𝑝𝑝=1 )2� 𝑑𝑑𝑑𝑑

𝑉𝑉
.  

(5) 
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Elastic Strain Energy  

An important part of the free energy in MT is the strain energy which stems from the 

lattice mismatch between the parent, here tetragonal, and product phases, here 

monoclinic. Unlike chemical free energy which drives the MT, strain energy opposes the 

phase transformation. Following Khachaturyan [78] the strain energy can be expressed as 

a function of the transformation-induced stress free strain 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟). Stress free strain 

characterize the degree of lattice mismatch between the parent and product phases and 

since we are using the diffusive interface description, we need to express the stress free 

strain in terms of order parameters; therefore, the local stress free strain is related to order 

parameters through [27]: 

𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟) = �𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝)𝜂𝜂𝑝𝑝2(𝑟𝑟)
𝑛𝑛

𝑝𝑝=1

 , (6) 

where 𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝) is the transformation strain of 𝑝𝑝𝑡𝑡ℎ  variant. The elastic strain energy 

of a system is given by: 

𝛿𝛿𝑒𝑒𝑒𝑒 =
1
2
�𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 =
𝑉𝑉

1
2
�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝜀𝜀𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
𝑉𝑉

 , 
(7) 

where the elastic strain 𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒(𝑟𝑟) is the difference between the total strain, 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟), 

and the stress free strain, 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟): 

𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟)− 𝜀𝜀𝑖𝑖𝑖𝑖0 (𝑟𝑟) = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟)−� 𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝)
𝑝𝑝

 𝜂𝜂𝑝𝑝2(𝑟𝑟) = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖(𝑟𝑟)

𝜕𝜕𝑟𝑟𝑗𝑗
+ 𝜕𝜕𝑢𝑢𝑗𝑗(𝑟𝑟)

𝜕𝜕𝑟𝑟𝑖𝑖
� −

� 𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝)𝜂𝜂𝑝𝑝2(𝑟𝑟)
𝑝𝑝

 .  
(8) 
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We consider inhomogeneous elasticity and define a smooth transition from t→m 

elastic constants through the following equation, 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑃𝑃(∑ 𝜂𝜂𝑖𝑖𝑛𝑛
𝑖𝑖=1 )𝐶𝐶𝑀𝑀 + �1 − 𝑃𝑃(∑ 𝜂𝜂𝑖𝑖𝑛𝑛

𝑖𝑖=1 )�𝐶𝐶𝑇𝑇  ,  (9) 

where 𝐶𝐶𝑀𝑀 and 𝐶𝐶𝑇𝑇 are monoclinic and tetragonal elastic constants respectively, n 

is the number of order parameters and 

𝑃𝑃(𝜂𝜂) = 𝜂𝜂3(6𝜂𝜂2 − 15𝜂𝜂 + 10) . (10) 

Thus the total free energy for the phase transformation is: 

𝛿𝛿 = � �𝑓𝑓(𝜂𝜂1,𝜂𝜂2, … ,𝜂𝜂𝑛𝑛) +
1
2�𝛽𝛽�Δ𝜂𝜂𝑝𝑝�

2
𝑛𝑛

𝑝𝑝=1

� 𝑑𝑑𝑑𝑑 +
1
2
�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝜀𝜀𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
𝑉𝑉𝑉𝑉

 . (11) 

The Variational Formulation for PF Modeling of Crack Growth 

Before we describe the details of the PF modeling of crack propagation, it is 

worthwhile to briefly review the standard computational techniques in fracture 

mechanics. Generally, researchers categorize the fracture mechanics numerical models 

into two approach categories: discrete and continuous. The discrete approach simulates 

fractures as discontinuities. From a numerical point of view, how computational modelers 

propagate cracks depends on model use; they either break elements with finite element 

models or split nodes and reconnect springs when using spring network models [79]. Two 

drawbacks are that the discretization must change topology because of fracture growth, 

and that fracture propagation is restricted to follow mesh lines. Modelers can overcome 

these disadvantages either by using remeshing techniques [80] or by using advanced 

approaches, such as cohesive zone modeling [81] or the enriching displacement method 

[82]. 
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On the other hand, continuous approaches, e.g., peridynamics, gradient damage, 

or phase-field models, consider the intact and fractured areas as a whole, without the need 

to introduce discontinuities. Among continuous approaches, phase-field modeling has 

recently emerged as a competitive method to describe fracture phenomena. In general, the 

phase-field approach, to model systems with sharp interfaces, consists of incorporating a 

continuous field variable—the so-called “order parameter”—which differentiates 

between multiple physical phases within a given system through a smooth transition. In 

the context of fracture, such order parameter (the crack phase field) describes the smooth 

transition between the fully broken and intact material phases, thus approximating the 

sharp crack discontinuity. The evolution of the crack phase-field as a result of external 

loading conditions models the fracture process. What makes the phase-field approach 

particularly attractive is its ability to elegantly simulate complicated fracture processes, 

including crack initiation, propagation, merging, and branching, in general situations and 

for three-dimensional (3D) geometries, without the need for additional ad-hoc criteria.  

The phase-field model tracks propagating cracks automatically given the evolution of 

the smooth crack field on a fixed mesh. This leads to a significant advantage over discrete 

fracture description methods. Therefore, it is the perfect candidate to enable a seamless 

transition between describing continuum damage and discrete crack propagation phases. 

The main advantages of the phase-field approach are that the method: (1) conducts all 

calculations on the initial undeformed topology; (2) has the ability to simulate complex 

fracturing processes, such as branching, joining, propagation, or nucleation, without the 

need for additional criteria; and (3) handles heterogeneous media without any additional 

rule. 
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For variational modeling of crack growth, we have primarily used the models 

developed in Ref. [30,51,60,83,84] and describe it briefly in below. 

Theory of Brittle Fracture 

To describe the PF formulation of crack propagation, consider a material body 𝛺𝛺 ⊂

𝑅𝑅𝑑𝑑  (𝑑𝑑 ∈ {1, 2, 3}) with a boundary of 𝜕𝜕𝛺𝛺 which contains an internal discontinuity 

boundary 𝛤𝛤, e.g. crack. Similar to the PF model of MT, we define the displacement of the 

body 𝛺𝛺 at time 𝑡𝑡 as 𝑢𝑢�⃗ (𝑟𝑟, 𝑡𝑡) in which 𝑟𝑟 is the position vector and 𝑡𝑡 is time. The time-

dependent Dirichlet boundary conditions fulfill the displacement field, 𝑢𝑢𝑖𝑖(𝑟𝑟, 𝑡𝑡) =

𝑔𝑔𝑖𝑖(𝑟𝑟, 𝑡𝑡), on 𝜕𝜕𝛺𝛺𝑔𝑔𝑖𝑖 ∈ 𝛺𝛺, and also the time-dependent Neumann conditions apply on the 

𝜕𝜕𝛺𝛺ℎ𝑖𝑖 ∈ 𝛺𝛺. We also consider a body force 𝑏𝑏�⃗ (𝑟𝑟, 𝑡𝑡) acting on the body 𝛺𝛺 and a traction 

𝑓𝑓(𝑟𝑟, 𝑡𝑡) acting on the boundary 𝜕𝜕𝛺𝛺ℎ𝑖𝑖. 

 
Figure 3. Phase field approximation of the crack surface. In PF modeling of 

crack growth, we use the PF variable 𝝓𝝓(𝒓𝒓, 𝒕𝒕) ∈ [𝟎𝟎,𝟏𝟏] as the order parameter, with 
𝝓𝝓 = 𝟏𝟏 shows the crack and 𝝓𝝓 = 𝟎𝟎 indicates that the body is uncracked. 

The PF modeling of crack propagation is fundamentally based on the pioneering work 

of Francfort and Marigo’s [65] who developed the variational formulation of the 
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Griffith’s theory. Their model declares that the minimum energy needed for producing a 

cracked surface per unit area is equal to the critical fracture energy density 𝛥𝛥𝑐𝑐, which is 

also commonly referred as the critical energy release rate [85]. For materials which do 

not experience ad hoc physics, such as MT, the total potential energy 𝛹𝛹𝑝𝑝𝑡𝑡𝑡𝑡(𝑢𝑢,𝛤𝛤) is 

consist of the elastic energy 𝜓𝜓𝜀𝜀(𝜀𝜀), fracture energy, and energy due to the external forces: 

Ψ𝑝𝑝𝑡𝑡𝑡𝑡(𝑢𝑢,Γ) = �𝜓𝜓𝜀𝜀(𝜀𝜀)
Ω

𝑑𝑑Ω + �𝛥𝛥𝑐𝑐
Γ

𝑑𝑑𝑑𝑑 −�𝑏𝑏. 𝑢𝑢
Ω

𝑑𝑑Ω − � 𝑓𝑓. 𝑢𝑢
∂Ωh𝑖𝑖

𝑑𝑑S , 
(12) 

where ε = ε(𝑢𝑢�⃗ ) is the linear strain tensor defined by, 

𝜀𝜀𝑖𝑖𝑖𝑖 =
1
2�

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑟𝑟𝑖𝑖

+
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑟𝑟𝑖𝑖

� . (13) 

 

Phase Field Approximation for Fracture Energy 

Similar to the PF modeling of MT, we need a PF variable to describe the cracked and 

intact domains. We use the PF variable 𝜙𝜙(𝑟𝑟, 𝑡𝑡) ∈ [0, 1], with 𝜙𝜙 = 1 shows the crack and 

𝜙𝜙 = 0 indicates that the body is uncracked (see Figure 3). Based on this diffusive crack 

topology, we can express the crack surface density per unit volume of the solid body by 

[30], 

𝛾𝛾(𝜙𝜙,∇𝜙𝜙) = �
𝜙𝜙2

2𝑙𝑙0
+
𝑙𝑙0
2
𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖

𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖

� 𝑑𝑑Ω , (14) 

where 𝑙𝑙0 adjusts the passing zone of the PF variable from 0 to 1. 𝑙𝑙0 is called the 

length scale parameter that represents the shape of a crack. Increasing 𝑙𝑙0would widen the 

crack region and vice versa. By integration of Eq. 14 over the crack domain, the fracture 

energy could be expressed by, 
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�𝛥𝛥𝑐𝑐𝑑𝑑𝑑𝑑
Γ

= � 𝛥𝛥𝑐𝑐 �
𝜙𝜙2

2𝑙𝑙0
+
𝑙𝑙0
2
𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖

𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖

� 𝑑𝑑Ω
Ω

 . (15) 

To avoid crack growth in compression, a unilateral contact formulation is utilized. 

This goal can be achieved by  implementing two different methods [86]; 1) by dividing 

the strain tensor into positive and negative strain parts (see [30,87]), or; 2) by 

decomposing the strain tensor into spherical and deviatoric strain components (see [62]). 

It is hard to implement the first technique in an application for anisotropic materials 

because there is no general formulation for the elastic tensor. Therefore we use the 

second technique in the present work following Ref. [62]. We decompose the elastic 

strain into deviatoric 𝜀𝜀𝑑𝑑𝑒𝑒𝑑𝑑  and spherical 𝜀𝜀𝑠𝑠𝑝𝑝ℎ parts. Then, it is considered that the crack is 

produced by expansion only (positive spherical part) and shear: [86] 

𝜓𝜓𝜀𝜀(𝜀𝜀,𝜙𝜙) =

⎩
⎪
⎨

⎪
⎧1

2𝑔𝑔
(𝜙𝜙)[𝜀𝜀:𝐶𝐶0: 𝜀𝜀]                                                                 𝑖𝑖𝑓𝑓 𝑡𝑡𝑟𝑟(𝜀𝜀) ≥ 0

 
1
2
�𝜀𝜀𝑠𝑠𝑝𝑝ℎ ∶ 𝐶𝐶0: 𝜀𝜀𝑠𝑠𝑝𝑝ℎ  �+ 𝑔𝑔(𝜙𝜙)[𝜀𝜀𝑑𝑑𝑒𝑒𝑑𝑑:𝐶𝐶0: 𝜀𝜀𝑑𝑑𝑒𝑒𝑑𝑑]                  𝑖𝑖𝑓𝑓 𝑡𝑡𝑟𝑟(𝜀𝜀) < 0

, (16) 

where 𝑡𝑡𝑟𝑟(𝜀𝜀) is the trace operator for a second-order strain tensor and 𝐶𝐶0 expresses 

the initial elastic tensor of the material. It is presumed that the degradation function 𝑔𝑔(𝜙𝜙) 

in Eq. 16 has the following simple form: 

𝑔𝑔(𝜙𝜙) = (1 − 𝑘𝑘)(1 −𝜙𝜙)2 + 𝑘𝑘 . (17) 

The function 𝑔𝑔(𝜙𝜙) is defined in a way that 𝑔𝑔′(𝜙𝜙 = 1) = 0 to ensure that the strain 

energy density function would be a finite value as the domain is locally damaged and 

𝑔𝑔(0) = 1 to guarantee that the material is uncracked. 𝑔𝑔(𝜙𝜙 = 1) = 0 is the limit for a 

fully damaged material. The quadratic function (1− 𝜙𝜙)2 is defined to make sure about 
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the presence of a regular solution [68]. Further possibilities like quartic function or cubic 

functions have been presented in [55,88]. The insignificant value  𝑘𝑘 << 1 is often 

implemented to keep the well-posedness of the solution for partially fractured parts of the 

field [86]. 

Now we can define elastic tensor as the following format: 

𝐶𝐶(𝜙𝜙) = 𝑔𝑔(𝜙𝜙)𝐶𝐶0 + 𝑘𝑘01⨂1[1− 𝑔𝑔(𝜙𝜙)]𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛−�𝑡𝑡𝑟𝑟(𝜀𝜀)� , (18) 

where the sign function 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛−(𝑥𝑥) = 1 if 𝑥𝑥 < 0 and 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛−(𝑥𝑥) = 0 if 𝑥𝑥 ≥ 0. The 

strain energy can be rewritten as: 

𝜓𝜓𝜀𝜀(𝜀𝜀,𝜙𝜙) =
1
2

[𝜀𝜀:𝐶𝐶(𝜙𝜙): 𝜀𝜀] . (19) 

Combining the Variational Formulation of Crack Growth and the T→M 

Transformation 

In this section, we combine the variational formulation of crack propagation with the 

PF formulation of t→m transformation to develop a model that tracks the co-evolution of 

the MT and crack propagation. We construct the total free energy functional by summing 

up the Eq. 11 and Eq. 12. 

Ψ𝑝𝑝𝑡𝑡𝑡𝑡(𝑢𝑢,Γ) = ∫ 𝜓𝜓𝜀𝜀(𝜀𝜀)Ω 𝑑𝑑Ω + ∫ 𝛥𝛥𝑐𝑐Γ 𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑛𝑛) +Ω

1
2
∑ 𝛽𝛽𝑖𝑖𝑖𝑖(𝑝𝑝)∇𝑖𝑖𝜂𝜂𝑝𝑝∇𝑖𝑖𝜂𝜂𝑝𝑝𝑛𝑛
𝑝𝑝=1 𝑑𝑑Ω − ∫ 𝑏𝑏. 𝑢𝑢Ω 𝑑𝑑Ω − ∫ 𝑓𝑓. 𝑢𝑢∂Ωh𝑖𝑖

𝑑𝑑S . (20) 

By replacing 𝜓𝜓𝜀𝜀(𝜀𝜀) from Eq. 19 and 𝛥𝛥𝑐𝑐 from Eq. 15 and 𝑓𝑓(𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑛𝑛)  from Eq. 4 

we have: 
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Ψ𝑝𝑝𝑡𝑡𝑡𝑡(𝑢𝑢,Γ) = ∫ 1
2
�𝜀𝜀:𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙): 𝜀𝜀�Ω 𝑑𝑑Ω + ∫ 𝛥𝛥𝑐𝑐 �

𝜙𝜙2

2𝑒𝑒0
+ 𝑒𝑒0

2
𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖

𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟𝑖𝑖
� 𝑑𝑑ΩΩ +

∫ 𝛥𝛥𝛥𝛥 �𝑎𝑎
2

(𝜂𝜂12 + 𝜂𝜂22 + ⋯+ 𝜂𝜂𝑛𝑛2)− 𝑏𝑏
4

(𝜂𝜂14 + 𝜂𝜂24 + ⋯+ 𝜂𝜂𝑛𝑛4) + 𝑐𝑐
6

(𝜂𝜂12 + 𝜂𝜂22 + ⋯+Ω

𝜂𝜂𝑛𝑛2)3� 𝑑𝑑Ω + 1
2
∑ 𝛽𝛽𝑖𝑖𝑖𝑖(𝑝𝑝)∇𝑖𝑖𝜂𝜂𝑝𝑝∇𝑖𝑖𝜂𝜂𝑝𝑝𝑛𝑛
𝑝𝑝=1 𝑑𝑑Ω − ∫ 𝑏𝑏.𝑢𝑢Ω 𝑑𝑑Ω − ∫ 𝑓𝑓. 𝑢𝑢∂Ωh𝑖𝑖

𝑑𝑑S .  

(21) 

The variation of the functional Ψ𝑝𝑝𝑡𝑡𝑡𝑡 can be derived and its first variation should be 

zero, which leads to the following governing equations: 

2(1− 𝑘𝑘)(1− 𝜙𝜙)[𝜀𝜀:𝐶𝐶ℎ: 𝜀𝜀]− 2Ψ𝑐𝑐�𝜙𝜙 − 𝑙𝑙0
2∇2𝜙𝜙� = 0 ,  (22) 

where Ψ𝑐𝑐 = 𝐺𝐺𝑐𝑐
2𝑒𝑒0

 and 𝐶𝐶ℎ = 1
2

(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 − 𝑘𝑘01⨂1𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛−(𝑡𝑡𝑟𝑟(𝜀𝜀))). 

To consider loading and unloading histories, Miehe et al. [30] introduced the strain 

history functional, which is defined in by: 

ℋ(𝑟𝑟, 𝑡𝑡) =  {(1 − 𝑘𝑘)[𝜀𝜀:𝐶𝐶ℎ: 𝜀𝜀] }𝜏𝜏∈[0,𝑡𝑡]
𝑚𝑚𝑎𝑎𝑚𝑚    .  

(23) 

By replacing Eq. 23 in the Eq. 22, we have: 

(1 −𝜙𝜙)ℋ −Ψ𝑐𝑐�𝜙𝜙 − 𝑙𝑙0
2∇2𝜙𝜙� = 0 . (24) 

Finally, by some mathematical operation we obtain: 

�1 +
ℋ
Ψ𝑐𝑐
�𝜙𝜙 − 𝑙𝑙0

2∇2𝜙𝜙 =
ℋ
Ψ𝑐𝑐

 . (25) 

The Ginzburg-Landau equation for t→m transformation, Eq. 1, by considering the 

given energy functional of the coupled PF model is: 

𝜕𝜕𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡 = −𝐿𝐿 �−𝛽𝛽 𝛻𝛻2𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡) +

𝜕𝜕𝑓𝑓
𝜕𝜕𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡) +

𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒
𝛿𝛿𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)�+𝜍𝜍𝑝𝑝(𝑟𝑟, 𝑡𝑡)   𝑝𝑝 = 1, … ,𝑛𝑛 (26) 

where 𝑓𝑓 was defined in Eq. 4, and  
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𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒
𝛿𝛿𝜂𝜂𝑝𝑝(𝑟𝑟,𝑡𝑡)

= − 1
2
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙)𝜀𝜀𝑖𝑖𝑒𝑒00(𝑝𝑝)𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡) �𝑢𝑢𝑖𝑖,𝑖𝑖(𝑟𝑟) + 𝑢𝑢𝑖𝑖,𝑖𝑖(𝑟𝑟)�+

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙)𝜀𝜀𝑖𝑖𝑒𝑒00(𝑝𝑝)𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)� 𝜀𝜀𝑖𝑖𝑖𝑖00(𝑧𝑧)𝜂𝜂𝑧𝑧2(𝑟𝑟, 𝑡𝑡)
𝑛𝑛

𝑧𝑧=1
− 1

2
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙)𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝)𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)(𝑢𝑢𝑖𝑖,𝑒𝑒(𝑟𝑟) +

𝑢𝑢𝑒𝑒,𝑖𝑖(𝑟𝑟)) + 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙)𝜀𝜀𝑖𝑖𝑖𝑖00(𝑝𝑝)𝜂𝜂𝑝𝑝(𝑟𝑟, 𝑡𝑡)� 𝜀𝜀𝑖𝑖𝑒𝑒00(𝑧𝑧)𝜂𝜂𝑧𝑧2(𝑟𝑟, 𝑡𝑡)𝑛𝑛
𝑧𝑧=1   

(27) 

L in Eq. 26, which is called the mobility parameter, is considered to incrementally 

rising from 0 to a constant 𝐿𝐿0 while 𝜙𝜙 changes from 0 to 0.8 and then stays a constant 

until 𝜙𝜙 becomes 1. 

Eventually, we have to use the combination of Eqs. 25 and 26 along with the 

following mechanical equilibrium equations to find the displacement of the domain. 

𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑟𝑟𝑖𝑖

= 0 ⇒ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒(𝜙𝜙) �
1
2 (𝑢𝑢𝑖𝑖,𝑒𝑒𝑖𝑖(𝑟𝑟) + 𝑢𝑢𝑒𝑒,𝑖𝑖𝑖𝑖(𝑟𝑟))−�𝜀𝜀𝑖𝑖𝑒𝑒00(𝑝𝑝)

𝜕𝜕
𝜕𝜕𝑟𝑟𝑖𝑖

(𝜂𝜂𝑝𝑝2(𝑟𝑟))

𝑝𝑝

� = 0 (28) 

Eqs. 25, 26, and 28 are solved in the finite element package COMSOL Multiphysics 

considering the boundary and load conditions which are discussed in the next chapters. 
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CHAPTER THREE: SINGLE CRYSTAL MODEL 

In this chapter, we parametrize the developed model to the single crystal zirconia 

and provide the result. This study reveals the effect of microstructure evolution and phase 

transformation on the crack growth of shape memory ceramics.  

The result provided in this chapter is published as a research paper [89] in the 

Computational Materials Science Journal (Volume 174, March 2020, 109509, 

https://doi.org/10.1016/j.commatsci.2019.109509) 

Result 

To study the crack growth in a single crystal tetragonal zirconia, we consider an 

edge cracked square plate with domain dimensions of 2 𝜇𝜇𝑚𝑚 × 2 𝜇𝜇𝑚𝑚 with plane strain 

assumption, see Figure 4. We note that in 2D there are two possible variants for 

monoclinic, Figure 2, while the number of possible monoclinic variants in 3D is 12. 

However, not all 12 monoclinic variants have an equal chance for formation. 

Experimental observations and theoretical calculations [90–92] have shown that the 

transformation of the a-axis and c-axis in tetragonal to the a-axis and c-axis in 

monoclinic, respectively, is the most dominant transformation path, due to the small 

strain energy associated with it. Therefore, in the 2D model in this chapter, we have 

studied the plane which includes at (a-axis in tetragonal) and ct (c-axis in tetragonal). 

Therefore, the 2D model is able to predict the experimentally observed morphologies 

during t→m as was discussed in more details in Ref. [49].  
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Figure 4. The geometry and boundary conditions of a single-edge-notched 

square plate subjected to tension loading. 

In Figure 4, a time dependent tensile load is applied to the upper boundary of the 

model. We apply a constant load increment rate of 𝛥𝛥𝜎𝜎 = 1 𝑀𝑀𝑃𝑃𝑎𝑎/𝑠𝑠 to ensure the 

convergence.   

We consider the Langevin noise in Eq. 1 to be zero and impose a randomly 

distributed initial condition for the phase transformation order parameters. The initial 

condition for displacement is zero in the whole domain, and boundary conditions for the 

ith order parameter are periodic and 

𝑛𝑛 ⋅ 𝛻𝛻𝜂𝜂𝑖𝑖 = 0,   𝑖𝑖 = 1 , . . . , 𝑝𝑝 .   (29) 

The input parameters of the model are listed in Table 1, Table 2 and Table 3.  
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Table 1. Elastic constants for monoclinic zirconia (GPa) [49]. 

C11 C22 C33 C44 C55 C66 

361 408 258 100 81 126 
 

C12 C13 C16 C23 C26 C36 C45 

142 55 -21 196 31 -18 -23 

 
Table 2. Elastic constants for tetragonal zirconia (GPa) [49]. 

C11 C33 C44 C66 C12 C13 

327 264 59 64 100 62 
 

Table 3. Numerical values used for calculation. 

Temperature (K) [49] 1170 

Chemical driving force, (𝐽𝐽.𝑚𝑚𝑚𝑚𝑙𝑙−1) [49] 800 (36.8 × 106 𝐽𝐽.𝑚𝑚−3) 

Gradient energy coefficient, 𝛽𝛽 (𝐽𝐽.𝑚𝑚−1) [49] 1 × 10−8 

Energy density coefficient, a [49] 0.14 

Energy density coefficient, b [49] 12.42 

Energy density coefficient, c [49] 12.28 

Kinetic coefficient, 𝐿𝐿 (𝑚𝑚3. 𝐽𝐽−1. 𝑠𝑠−1) 2 × 10−9 

Critical energy release rate, 𝛥𝛥𝑐𝑐(𝐽𝐽.𝑚𝑚−2) [69] 4.33 

Crack elasticity modification parameter, 𝑘𝑘 1 × 10−9 

The length parameter, 𝑙𝑙0 (𝑛𝑛𝑚𝑚) 20 

t→m transformation strains, 𝜀𝜀00 [49]  
𝜀𝜀00(1) = �0.0049 0.0761

0.0761 0.0180� 

𝜀𝜀00(2) = � 0.0049 −0.0761
−0.0761 0.0180 � 
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Model Verification 

We verified our model by simulating the crack propagation path of an edge crack in 

an elastic anisotropic single crystal tetragonal zirconia under the mode I loading. Since 

the lattice orientation was not identified in the experiment, we picked a lattice orientation 

angle, 𝜃𝜃, of 150º. This choice reproduced similar martensitic laths as the experimental 

observations. PF simulation results show that the phase transformation starts from the 

crack tip which is consistent with the experimental observations [20,70] and previous 

models [23,69]. t→m initiation at the crack tip is due to high local stresses at the crack tip 

which provides enough strain energy to trigger t→m transformation. While the crack is 

expected to propagate in a straight line because of the Mode I loading, the PF simulation 

shows that crack would deviate from the straight path and deflect upward. This anomaly 

crack growth path was also observed in experimental studies of crack growth in ZrO2 −

18 mol % CeO [20], Figure 5.  

 

 
Figure 5. Comparison of the coupled PF simulation of martensitic 

transformation and crack propagation result with the experiment [20,70].  

Mono. Vari. 1 Tetragonal Mono. Vari. 2 
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Temporal and Spatial Evolution of Concurrent T→M Transformation and Crack 

Propagation in A Single Crystal Tetragonal Zirconia 

In this section, we investigate the propagation of an edge crack, mode I, in a single 

crystal tetragonal zirconia. In these simulations, we consider the lattice orientation angle 

to be zero degrees, i.e. 𝜃𝜃 = 0º in Figure 4, which indicates that the 𝑎𝑎𝑡𝑡 axis in the 

tetragonal phase is horizontal.    

Figure 6 shows the temporal and spatial co-evolution of t→m transformation and 

crack propagation under the mode I of fracture. Initially, the whole domain is tetragonal. 

Since the thermal driving force is not adequate to initiate the t→m transformation, 

external loading is needed. As we apply the external loading (1 𝑀𝑀𝑃𝑃𝑎𝑎/𝑠𝑠), higher stresses 

and corresponding strains at the crack tip facilitate the t→m transformation. After t→m 

initiation at the crack tip, phase transformation propagates toward the regions ahead of 

the crack tip. Phase transformation continues by increasing the external loading until the 

whole domain transforms to the monoclinic. The predicted microstructure has the twin 

plane of (100)m which is consistent with experimental observations [91,92]. For the 

specific conditions of this simulation, such as temperature, loading rate, boundary 

conditions, etc. crack propagation starts when the majority of the domain has transformed 

to monoclinic. Because of the loading at the upper part of the domain, the top half of the 

domain is able to deform as the crack grows. This deformation changes the 

microstructure and favors the formation of the more strain-accommodating monoclinic 

variate against the other one. Therefore, the upper part of the domain completely 

transforms to a single variant monoclinic. This observation is also in agreement with 

several theoretical and experimental works that showed the formation of unbalanced 
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martensitic variants under different loadings [23,93]. While it is expected that the crack 

grows in a straight line, due to mode I loading and isotropic fracture property, the results 

show that the crack would grow in an anomaly path which is heavily dependent on 

crystal lattice orientation of zirconia. 

 

t = 0 s 
𝜀𝜀 = 0 

 

t = 70 s  
𝜀𝜀 = 0.0015 

 

t = 100 s 
𝜀𝜀 = 0.004 

 

t = 150 s 
𝜀𝜀 = 0.012 

 

t = 300 s 
𝜀𝜀 = 0.02 

 

t = 600 s 
𝜀𝜀 = 0.025 

 

t = 1500 s 
𝜀𝜀 = 0.04 

 

t = 2500 s 
𝜀𝜀 = 0.09 

 

t = 3500 s 
𝜀𝜀 = 0.18 

 

Figure 6. The co-evolution of t→m transformation and crack propagation in 
zirconia under the mode I loading for lattice orientation angle of zero degrees, 𝜽𝜽 =

𝟎𝟎°.  

Monoclinic Vari. 1 Monoclinic Vari. 2 Tetragonal 
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Figure 7 shows the stress–strain curve for a faulted single crystal tetragonal zirconia 

at low strains and the corresponding domain microstructure at different loading 

conditions. The stress-strain curve is elastic at low stresses, before the initiation of t→m 

transformation at the crack tip. By t→m initiation and propagation there is an almost flat 

part in the stress-strain curve due to generated strains during monoclinic propagation. The 

curve again shows hardening when the microstructure becomes dominantly monoclinic 

and finally, the curve gets again flattened as the crack grows. We note that Figure 7 is a 

load-controlled crack propagation simulation and the external stress is continuously 

increasing. Therefore, we do not observe the typical load drop which is common in 

displacement-controlled fracture tests and simulations.    

 

 
Figure 7. The stress–strain curve for single crystal tetragonal zirconia under 

uniaxial tension and its corresponding microstructure evolution and deformed 
shapes. 
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The Effect of Crystal Lattice Orientation 

Microstructural patterning during MT is highly dependent on loadings, boundary 

conditions, and crystal lattice orientations. To elucidate the role of crystal lattice 

orientation on crack propagation, we investigate the effect of lattice orientation on crack 

propagation in a single crystal tetragonal zirconia. Loadings and boundary conditions for 

all these simulations are similar to Figure 4.  

Figure 8 shows the crack propagation behavior for six different lattice orientation 

angles, 𝜃𝜃 = 0º, 20º, 40º, 50º, 60º, and 90º for two different simulation times, t = 600 s, 

and 3500 s. The initial conditions of all these simulations was a crack notch in a fully 

tetragonal phase, similar to t = 0 s in Figure 6. At t = 600 s most of the tetragonal phase 

transformed to monoclinic for all lattice orientations. Main monoclinic phases that form 

in all simulations have (100)m and (001)m junction planes, the plane between two 

different martensite variants, which have been observed in several experimental studies 

[7,8,27,91,92,94].            

The simulation results show that by changing the crystal lattice orientation, the crack 

growth path, as well as the amount of crack growth (toughening effect), change greatly. 

This observation clearly indicates that the crystal lattice orientation has a significant 

influence not only on the crack growth path but also on the magnitude of the 

transformation toughening. 
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𝜃𝜃 = 50° 

  

𝜃𝜃 = 60° 

  

𝜃𝜃 = 90° 

  

Figure 8. The effect of crystal lattice orientation on the crack growth in a single 
crystal tetragonal zirconia under the mode I loading. The left and right columns 

show the concurrent evolution of t→m transformation and crack growth at the times 
of 600 s and 3500 s, respectively.  

 

We studied the effect of crystal lattice orientation more quantitatively by plotting 

the applied external stress versus normal average strain in the y-direction in Figure 9. In 

these studies, we ran all the simulations for a fixed time with a similar constant loading 
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rate. Due to the dominant contribution of crack growth on the strain in Figure 9, the 

higher strains represent more crack growth length. Similarly, a comparison of the 

different curves in Figure 9 at constant strains indicates that crystal lattice orientations 

which show higher stresses are more crack resistant, i.e. show stronger crack toughening. 

Having these metrics in mind, Figure 9 shows that the transformation toughening 

increases as the crystal lattice orientation increases from 0º to 50º and then decreases 

from 50º to 90º. A more holistic study of the crystal lattice orientation, from 0 º to 180 º, 

leads to the following observations.    

1) Crystal lattice orientations from 10º to 50º have crack paths that make positive 
slops with initial crack surface and the crack path gets straight, zero slopes, at 60º. 
Then the crack path makes a negative slope with the initial crack surface for 
crystal lattice orientations of 70º to 90º. For crystal orientations above 90º, the 
crack path makes a positive slope reaching the peak at approximately 140º. Then 
the slope of the crack path reduces gradually to the most negative slope at 180º. 

2) Changing the crystal lattice orientation changes the dominant monoclinic variant 
at the top surface of the growing crack. For lattice orientations between 0º to 45º, 
the variant 2 (red color) is dominant, while for 45º to 90º the variant 1 (green 
color) becomes dominant. Moreover, the results for the lattice orientations of 90º 
to 180º reveal that the monoclinic variants are completely reversed compare to 0º 
to 90º. 

We note that the martensite lathes patterning and consequently the crack 

growth path are highly dependent on the loading and boundary conditions and above 

observations are for mode I loading as depicted in Figure 4. 
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Figure 9. The stress-strain curve for crack growth in tetragonal zirconia single 

crystal with different lattice orientation angles. The loading rate and simulation 
time are consistent for all simulations. Lattice orientations of 50º and 90º show the 

maximum and minimum transformation toughening, respectively.   

 

Crack Propagation in Transformable Versus Untransformable Zirconia   

To study the effect of t→m transformation on the fracture behavior of zirconia, we 

compared the crack propagation of single crystal tetragonal zirconia with and without the 

phase transformation. In the latter case, we artificially turned off the phase transformation 

equation, i.e. Eq. 26. Figure 10 shows a comparison between transformable and 

untransformable zirconia. The first and second columns in Figure 10 show the crack 

nucleation and propagation in untransformable and transformable zirconia, respectively. 

In these two columns, the blue domains demonstrate the intact phase (𝜙𝜙 = 0), while the 

red domains illustrate the cracked phase (𝜙𝜙 = 1), and the other colors indicate the 

transitional phases (0 < 𝜙𝜙 < 1). The third column shows the corresponding 
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microstructure evolution for the transformable case. Figure 10 clearly shows the effect of 

t→m transformation on transformation toughening in zirconia. For the untransformable 

case, the crack starts to grow at t = 1000 s and complete fracture happens at t = 2000 s. 

While for the case of the transformable zirconia, due to the dilatational strain associated 

with the phase transformation, the crack propagation is much slower.   

    

t = 1000 s 

   

t = 1500 s 

   

t = 2000 s 

   
Figure 10. The comparison between crack propagation in single crystal 

tetragonal zirconia with and without phase transformation. The left column shows 
the crack propagation in untransformable zirconia (phase transformation is 

artificially turned off), the middle column shows the crack growth in transformable 
zirconia, and the right column shows the corresponding microstructure for the 

transformable case. 

 

 Cracked  Uncracked Vari. 1 Vari. 2  Cracked  Uncracked 
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Figure 11 shows a more quantitative comparison between the stress-strain curves for 

the edge notched single crystal for transformable and untransformable zirconia. The 

stress in this plot is the external loading, which increases with time. Therefore, we do not 

see the typical load drop, which is common for constant displacement tests, as the crack 

grows. Figure 11 shows that the fracture happens at the higher loads for the transformable 

zirconia compared to the untransformable one, which indicates to the transformation 

toughening effect. The difference between the stress-strain curves in Figure 11 at the 

early stages of loading is due to the t→m transformation which leads to flat stress-strain 

curve for the transformable case.  

 
Figure 11. The stress-strain curve for transformable and untransformable single 

crystal tetragonal zirconia upon loading to crack growth initiation.  
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To elucidate the contribution of elastic anisotropy and phase transformation on the 

crack propagation path, we have studied and compared the crack growth in three cases: 1) 

elastic isotropic, 2) elastic anisotropic, and 3) elastic anisotropic with phase 

transformation under displacement control loading. For elastic isotropic model, we 

considered the Young modulus of 210 GPa and Poisson’s ratio of 0.3. 

Figure 11 shows that the crack propagation path for elastic isotropic and anisotropic 

cases are fairly similar which indicates the minor effect of elastic anisotropy on the crack 

propagation path. However, it is the MT and its patterning which is the key player in 

determining the crack propagation path in SMCs.   
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Elastic Isotropic Elastic Anisotropic 
Transformable Elastic 

Anisotropic 

   

 
  

 

  

Figure 12. Comparisons between crack propagation path in elastic isotropic, 
elastic anisotropic, and transformable elastic anisotropic models show that the MT 

is the dominant physics in SMCs cracking.  

Figure 13 shows the fracture energy release rate, G, versus crack extension for 

two stresses, 900 MPa and 1100 MPa. While the energy release rate is proportional to the 

square of the applied stress, we observe similar G for 900 MPa and 1100 MPa at some 

crack extension lengths. This discrepancy with classical fracture mechanics is due to the 

dynamic evolution of microstructure during crack propagation and the differences 

between the time scales for 900 MPa and 1100 MPa to reach the same crack extension, 

i.e. crack grows faster for higher stress. Therefore, for similar crack extension for 900 

MPa and 1100 MPa, we have different microstructures that provide different toughening 

𝜃𝜃 = 10  𝜃𝜃 = 10  

𝜃𝜃 = 80  𝜃𝜃 = 80  

Monoclinic Vari. 1 
Monoclinic Vari. 2 
Tetragonal 
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effects and consequently, the G is not solely function of external stress and crack length 

for transformable materials.  

 

 

Figure 13. Energy release rate versus crack extension for a single crystal zirconia 
for σ=900 and 1100 MPa. Dynamic evolution of the microstructure during the crack 
propagation and its associated toughening effects, lead to higher energy release rate 

for 900 MPa compared to 1100 MPa for crack extensions between 120 nm to 250 
nm. 

Conclusion 

In this chapter, we used the phase field method to couple the martensitic 

transformation with the variational formulation of brittle fracture. The model is 

efficiently capable of predicting crack propagation in transformable materials. The model 

was parameterized for 2D single crystal zirconia and anisotropic elastic properties of the 
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zirconia were taken into account in the model. The analysis of the crack growth behavior 

in single crystal zirconia shows an unusual crack growth path at the presence of the 

martensitic transformation. A comparison between the crack growth in transforming 

zirconia with the untransformable one reveals the mechanism of phase transformation at 

the crack tip and its toughening effects. The phase transformation dramatically slows 

down the crack propagation and reduces the value of the normal stresses in front of the 

crack tip. The crack propagation path and transformation toughening are strongly 

dependent to the crystal lattice orientation. Results, for a constrained single crystal under 

mode I loading, show that the maximum (minimum) transformation toughening happens 

when the crystal lattice orientation makes the angle of 50 (90) degrees with the crack 

surface.   
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CHAPTER FOUR: POLYCRYSTALLINE MODEL 

In this chapter, we parametrize the developed PF model for polycrystalline 

zirconia and provide the result. 

The result provided in this chapter is published as a research paper [95] in the 

Engineering Fracture Mechanics Journal (Volume 241, January 2021, 107403, 

https://doi.org/10.1016/j.engfracmech.2020.107403). 

Polycrystalline Model Generation 

In this section, we describe the algorithm that we use to create the two-

dimensional (2D) polycrystalline geometry and mesh. The goal is to create a 

polycrystalline model with different selective grain sizes, grain boundary size, and a 

suitable tessellation morphology, i.e., Voronoi or grain growth. 

First, we use the open-source Neper software [96,97] to create the primary model. 

However, the Neper does not create the grain boundaries. Therefore, to create an 

appropriate grain boundary, we use the MATLAB routines developed by Paggi et al. 

[98]. The polycrystalline geometry and mesh creation algorithm used in this work is as 

follows: 

1) We generate polycrystalline models using the Neper software with the following 
command: 

neper -T -n 10 -id 1 -reg 1 -dim 2 -format geo  -o 10Zirconia -domain 
"square(2000,2000)" -morpho "diameq:dirac ,sphericity:lognormal(1,0.03)" 

 
This command would create a 2D 2000 x 2000 (in this work nm2) polycrystalline 

model with a grain growth morphology. The number of grains generated by the above 
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command would be 10, which are approximately equal in size, and the generated file 

format would be geo. 

2) The generated geometry in step 1 is imported into Gmsh software [99] to create an 
appropriate mesh. Using the Gmsh software, the msh file is exported. 

3) The msh file has to be divided into lines, nodes, and elements before the grain 
boundary generation based on the Paggi’s et al. Matlab code [98]. 

4) We have modified the Paggi’s Matlab codes to create internal grain boundaries and 
generate an msh format output.  

5) The msh file will be imported into Gmsh software and exported as a bdf file, which 
is acceptable in COMSOL.  

6) The final step is to import the file into the COMSOL for multiphysics simulation. 

The procedure of geometry and mesh generation is depicted in Figure 14. 

 
Figure 13. Algorithm of polycrystalline geometry and mesh generation with 

distinct internal grain boundaries. 

Results 

In this section, we analyze a 2D Tetragonal Polycrystalline zirconia (TPZ) with a 

squared geometry of size 2 𝜇𝜇𝑚𝑚 × 2 𝜇𝜇𝑚𝑚. The model has an initial edge crack and is 

embedded in a tetragonal domain, as depicted in Figure 4. The polycrystalline model is 
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generated using the algorithm described in section 0. Using this algorithm, it is possible 

to quickly generate a polycrystalline model with different morphology, grain size, and 

grain boundary size.  

 
Figure 14. The geometry and boundary conditions of the polycrystalline domain 

embedded in the tetragonal domain. 

 

To assure the numerical convergence, we apply a time-dependent tensile load of 

 𝛥𝛥𝜎𝜎 = 1 𝑀𝑀𝑃𝑃𝑎𝑎/𝑠𝑠 at the upper boundary of the model. Table 4, Table 5 and Table 6 

provide the numerical inputs of the model.  
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Table 4. Monoclinic zirconia elastic constants (Gpa) [49]. 

C11 C22 C33 C44 C55 C66 

361 408 258 100 81 126 

 

C12 C13 C16 C23 C26 C36 C45 

142 55 -21 196 31 -18 -23 

 
Table 5. Tetragonal zirconia elastic constants (Gpa) [49,100]. 

C11 C33 C44 C66 C12 C13 

327 264 59 64 100 62 

 
Table 6. Numerical parameters utilized in the model calculations. 

Temperature (K) [49] 1170 

Chemical driving force, ∆𝛥𝛥 (𝐽𝐽.𝑚𝑚𝑚𝑚𝑙𝑙−1) [49] 800 (36.8 × 106 𝐽𝐽.𝑚𝑚−3) 

Gradient energy coefficient, 𝛽𝛽 (𝐽𝐽.𝑚𝑚−1) [49] 1 × 10−8 

Energy density coefficient, a [49] 0.14 

Energy density coefficient, b [49] 12.42 

Energy density coefficient, c [49] 12.28 

Kinetic coefficient, 𝐿𝐿 (𝑚𝑚3. 𝐽𝐽−1. 𝑠𝑠−1) 2 × 10−9 

Critical energy release rate inside grains, 𝛥𝛥𝑐𝑐(𝐽𝐽.𝑚𝑚−2) [69] 4.33 

Fracture energy ratio (𝛥𝛥𝐺𝐺𝐺𝐺/𝛥𝛥𝐺𝐺) for pure zirconia 0.2 

Fracture energy ratio (𝛥𝛥𝐺𝐺𝐺𝐺/𝛥𝛥𝐺𝐺) for yttrium stabilized zirconia 0.4 

Crack elasticity modification parameter, 𝑘𝑘 1 × 10−9 
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The length parameter, 𝑙𝑙0 (𝑛𝑛𝑚𝑚) 20 

t→m transformation strains, 𝜀𝜀00  [49]  

𝜀𝜀00(1)

= �0.0049 0.0761
0.0761 0.0180� 

 

𝜀𝜀00(2)

= � 0.0049 −0.0761
−0.0761 0.0180 � 

 

Model Verification 

The simulation results have been validated by comparing the crack path patterns 

in polycrystalline zirconia with the experimental results of Kumar et al. [71]. Kumar et al. 

[71] reported the formation of three different crack patterns in polycrystalline zirconia. 

The first observation of Kumar et al. was the formation of a new and separate crack, 

secondary crack, which was appeared ahead of the primary crack tip. Kumar et al. 

reported that the secondary crack propagated in both directions, i.e. propagated toward 

and away from the primary crack tip. The backward growth of the secondary crack 

deflects toward the primary crack and joins it at the location just behind the primary 

crack tip. The interaction of the primary and the secondary cracks leads to the primary 

crack tip closer. Kumar et al. could not explain this observation based on the classical 

fracture mechanics models as in these models, the highest stress intensity belongs to the 

primary crack tip, and it is expected that the primary crack should grow. However, the 

developed model in this work indeed predicts the formation of the secondary crack and 

the way it communicates with the primary crack. The reason underlying this anomaly 
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behavior, i.e., primary crack tip closer, is the effects of t→m transformation on zirconia 

microstructure and its influence on the crack growth path. 

Figure 16 shows the crack growth pattern in a polycrystalline zirconia containing 

15 grains. First, the primary crack propagates forward. However, after a while, a 

secondary crack nucleates ahead of the primary crack and propagates in both directions. 

In its backward propagation, the secondary crack, bend toward the primary crack and 

arrest its growth.   
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(a) 

 
(b) 

 
 

 
(c) 

 
 

 
(e) 

 
 

 
(d) 

 
 

 
(f) 

Figure 16. (a,b) Micrographs showing the secondary crack nucleation, ahead of 
the primary crack, and backward growth and bending toward the primary crack 

[71]. (c,d) Simulation results showing the evidence of a secondary crack and its 
interaction with the primary crack. (e,f)  Simulation results showing both 

microstructure evolution and crack growth simultaneously. (MV1 = Monoclinic 
Variant 1, MV2 = Monoclinic Variant 2, T = Tetragonal). 

 Cracked  Uncracked  Cracked  Uncracked 

MV1 MV2 T MV1 MV2 T 
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The second form of the crack propagation pattern that Kumar et al. [71] reported 

was the primary crack branching. Kumar et al. observed that after branching, both 

branches grow initially, but eventually, one of the branches continues to propagate, 

whereas the other branch stops. Simulation results in Figure 17 show a similar 

observation, i.e., the primary crack growth and then branching, and finally, one branch 

grows, and the other stops. 

 

(a) 

 

 

(b) 

 

 

(c) 

  

 Cracked  Uncracked  Cracked  Uncracked 

MV1 MV2 T MV1 MV2 T 
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(d) 

 

(e) 

Figure 17. (a) Micrograph showing a primary crack growth and branching. One 
branch grows while the other branch stops growing [71]. (b,c) Simulation results 
showing the crack branching and closer of one branch. (d,e) Simulation results 

showing both microstructure evolution and crack growth simultaneously. (MV1 = 
Monoclinic Variant 1, MV2 = Monoclinic Variant 2, T = Tetragonal) 

The last type of crack growth pattern that Kumar et al. reported was grain 

bridging. In this case, the crack grows along the grain boundary. As the crack grows, the 

local crack opening increases and the grain is pulled out from its original site. The 

experimental and simulation observations of this phenomenon are shown in Figure 18. 

 

(a) 

 

(b) 

   Cracked  Uncracked  Cracked  Uncracked 
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(c) 

 

(d) 

 

 

(e) 

 

 

(f) 

Figure 18. (a,b) Micrographs showing interaction between a growing crack and a 
grain at two stages of crack growth (same location) [71]. (c,d) Simulation results 

showing the crack grain bridging. (e,f)  Simulation results showing both 
microstructure evolution and crack growth simultaneously. (MV1 = Monoclinic 

Variant 1, MV2 = Monoclinic Variant 2, T = Tetragonal) 

Temporal and Spatial Evolution of Concurrent T→M Transformation and Crack 

Propagation in Polycrystalline Zirconia 

In this section, we study the concurrent temporal and spatial evolution of the 

crack growth, mode I, and MT in TPZ. In this simulation, we examine a polycrystalline 

MV1 MV2 T MV1 MV2 T 
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microstructure with 20 grains with random lattice orientation angles between 0 to 180 

degrees, as depicted in Figure 19.  

 
Figure 15. Polycrystalline configuration and lattice orientation variation in 

different grains.  

Figure 20 illustrates the co-evolution of MT and fracture in TZP. In the 

beginning, the tetragonal phase is dominant. Because the thermal driving force is not 

enough to trigger MT, it is essential to have the external loading to promote the t→m 

transformation. As we employ the external loading (1 𝑀𝑀𝑃𝑃𝑎𝑎/𝑠𝑠), the higher stresses, and 

their associated strains, at the crack tip promote the t→m transformation. After t→m 

initiation at the crack tip, phase transformation spreads at the domains around the crack 

tip. 

When the martensite lathes in one grain grow and reach to the next grain, the local 

stresses that are much higher than the macroscopic stresses, promote the MT in the 

neighboring grains. This phenomenon, which is also known as autocatalytic 

transformation, facilitates the MT spread within the whole domain [8,101]. Figure 20 

presents the process of autocatalytic transformation and how it promotes the MT in TPZ. 
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As long as the external load raises, the phase transformation proceeds until the entire 

domain converts into the monoclinic phase. Microstructure analysis shows the formation 

of (100)m twin planes in the final microstructure that is in agreement with the 

experimental findings [91,92]. In this study, based on our simulation’s initial inputs like 

boundary conditions, loading rate, etc., the crack begins to grow when most of the field 

has transformed into the monoclinic. 

 

t = 0 s 

 

t = 80 s 

 

t = 100 s 

 

t = 120 s 

 

t = 130 s 

 

t = 150 s 

 

t = 180 s 

 

t = 200 s 

 

t = 300 s 

 

t = 600 s t = 1000 s t = 2000 s 
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t = 2500 s 

 

t = 3000 s 

 

t = 3500 s 

 

Figure 16. The co-evolution of MT and Mode I fracture in TPZ. 

Figure 10 shows the stress-strain curve for a TPZ with an initial crack under the 

Mode I fracture and stress rate of 1 𝑀𝑀𝑃𝑃𝑎𝑎/𝑠𝑠 along with the corresponding microstructure 

at the different steps. The early stages of the stress-strain curve show a linear elastic 

behavior. This linear behavior transforms into a flat curve with a negligible hardening by 

t→m transformation initiation and propagation facilitated by the autocatalytic 

transformation. The curve shows hardening again when most parts of the domain 

transform into monoclinic. Eventually, as the crack grows, the stress-strain curve flattens.    
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Figure 17. The stress-strain curve for a faulted TPZ along with the co-evolution 
of crack and MT. 
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To elaborate the effects of MT on crack propagation in SMCs, we have compared 

the crack growth path and stress-strain curve for a transformable microstructure with an 

untransformable microstructure in Figure 22 and Figure 23, respectively. For 

polycrystalline materials with intergranular fracture dominancy, it is generally expected 

that the crack follows the grain boundary typically by chasing the shortest path, as it is 

possible. To minimize the energy, the customarily expected way would be the nearest 

route to the straight line, due to the Mode I fracture. This crack behavior is what we see 

when the microstructure is untransformable, Figure 22-a. However, the results reveal that 

the crack would propagate in an anomaly route, and it is substantially associated with the 

crystal lattice orientation of every single grain in the polycrystalline domain, when the 

microstructure is metastable and can transform. Figure 22-b shows that the crack follows 

its expected path until t = 3000 s. However, the primary crack stopped then, and a 

secondary crack started to propagate in the upper section. This anomaly crack growth 

behavior stems from the changes in the stress state at the crack tip and grain boundaries 

junctions due to the internal strains associated with MT. The modified stress state makes 

the crack growth harder in some sites, i.e., spot 1 in Figure 22-b while facilitating crack 

nucleation and growth in the other sites, spot 2 in Figure 22-b.  
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(a) 

 

(b) 

Figure 18. Crack growth in untransformable TPZ results in an expected, the 
nearest route to the straight line, crack growth path (a). MT leads to an anomaly 

crack propagation route in transformable TPZ (b). (MV1 = Monoclinic Variant 1; 
MV2 = Monoclinic Variant 2, T = Tetragonal).  

 

 Cracked  Uncracked MV1 MV2 T 
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Figure 19. The stress-strain curve, along with the crack propagation for 
transformable and untransformable TPZ.   

Figure 23 compares the stress-strain curves for a transformable and 

untransformable TPZ. Figure 23 shows that the fracture in the transformable case 

propagates much slower than the untransformable one that indicates to the role of 

transformation toughening. Two forms of the energy absorption mechanisms in materials 

with metastable phase contribute into less crack growth in the transformable materials: 1) 

phase transformation ahead of the crack tip is similar to a non-elastic deformation and 

 Cracked  Uncracked 
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able of absorbing energy otherwise would contribute in crack growth; 2) the volume 

change during phase transformation can produce several tiny cracks ahead of the bigger 

crack, and it would significantly enhance the surface area amount created per unit 

extension of the larger crack and therefor, afterward, substantially raise the absorbed 

energy during the crack extension [102].  

The Effects of Lattice Orientation 

One way that we can develop more crack resistant SMCs is through engineering 

the microstructure texture. In this section, we study the effects of lattice orientation on 

crack growth in TPZ. Crystal lattice orientations, loadings, and boundary conditions have 

a dominant influence on MT microstructural patterning. Therefore, it is expected that the 

lattice orientation would have noticeable effects on the crack behavior in SMCs. We 

construct four models with four different lattice orientation patterns in a polycrystalline 

domain consisting of 15 grains. Three microstructures have lattice orientations confined 

in 0 – 30 degrees, 30 – 60 degrees, and 60 – 90 degrees, and the last microstructure has a 

random texture.  

To have a better understanding of the effects of lattice orientation on the crack 

growth in TPZ, we present two sets of results. In the first set, we consider the fracture 

energy release rate at the grain boundaries equal to that of in the grains (𝑅𝑅 =

𝛥𝛥𝐺𝐺𝐺𝐺 𝛥𝛥𝐺𝐺 = 1⁄ ). This case would represent transgranular crack growth behavior, which is 

dominant in zirconia doped ceramics such as yttria-stabilized zirconia. In the second set, 

we consider energy release rate at the grain boundaries to be 20% of the grains’ fracture 

energy (𝑅𝑅 = 𝛥𝛥𝐺𝐺𝐺𝐺 𝛥𝛥𝐺𝐺 = 0.2⁄ ). This case would represent intergranular fracture behavior, 

which is dominant in pure zirconia.  
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Figure 24 and Figure 26 show the microstructural patterning and the crack growth 

path for the four described textures for transgranular and intergranular fracture, 

respectively. In these models, the simulation begins at the entirely tetragonal state, like t 

= 0 s in Figure 23. At t = 600 s, for all lattice orientations, the majority of the tetragonal 

phase transforms into monoclinic. The monoclinic phase has (100)m and (001)m junction 

planes, the plane between two different martensite variants, that have been noted in many 

experimental investigations [7,8,27,91,92,94]. The model outcomes reveal that the crack 

propagation route and the crack size would alter notably by differing the crystal lattice 

orientation. These observations indicate that the crystal lattice orientation has a 

considerable impact not only on the crack propagation route but also on the efficacy of 

the transformation toughening for both transgranular and intergranular fracture. 

Figure 24 and Figure 26 also reveal another critical effect of the lattice 

orientations on the TPZ. For both figures, each texture has its specific crack propagation 

path, which indicates that different lattice orientations may cause the primary crack to 

stop at some locations by closing the crack tip and reducing the stress at those spots. In 

such a situation, the crack has to propagate from the nearest location with the highest 

amount of stress. Since the internal stresses are governed by the local martensite 

microstructure and twin-twin interactions, the new crack initiation spot will be lattice 

orientation-dependent as it dramatically influences the microstructure.  
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Random 

   

Figure 20. The crystal lattice orientation effects on the Mode I transgranular 
crack propagation in TPZ. The first column shows the lattice orientation angle 

ranges for each grain. The second column is the microstructure at the onset of crack 
growth. The last column is the crack growth path and amount for each 

microstructure (all are at the same time, 3500 s). (MV1 = Monoclinic Variant 1, 
MV2 = Monoclinic Variant 2, T = Tetragonal). 
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Figure 21. The stress-strain curve for the Mode I transgranular fracture in 

tetragonal zirconia with different lattice orientation configuration. (LOR: lattice 
orientation; 𝑹𝑹 = 𝑮𝑮𝑮𝑮𝑮𝑮 𝑮𝑮𝑮𝑮 = 𝟏𝟏⁄ ).     

Figure 25 and Figure 27 demonstrate the stress-strain curves for the 

polycrystalline zirconia with four different lattice orientation configurations for 

transgranular and intergranular fracture, respectively. The graphs show that the cracks 

propagate more quickly in the microstructure with the grains’ lattice orientations in the 

60-90 degrees range. The reason for this behavior lies behind the fact that the grains with 

lattice orientation between 60-90 degrees produce the monoclinic variants with twin 

 Cracked  Uncracked 
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planes almost parallel to the initial crack plane. Therefore, the excess volumetric strain 

due to 𝑡𝑡 → 𝑚𝑚 transformation releases in the planes parallel to the crack plane. However, 

in microstructures with lower angle grains, the majority of the excess strain is 

perpendicular to the crack plane and helps crack closure and eventually postponing the 

crack growth. The difference in the early stages of the stress-strain curves between the 

models with grains lattice orientation 60-90 degrees (red line) and the other models also 

shows that the released strain for red lines is not in the y-direction, i.e., perpendicular to 

the crack plane. 
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Figure 22. The crystal lattice orientation effects on the Mode I intergranular 
crack propagation in TPZ. The first column shows the lattice orientation angle 

ranges of each microstructure. The second column is the microstructure at the onset 
of crack growth. The last column is the crack growth path and amount for each 
microstructure (all are at the same time, 3500 s). (MV1 = Monoclinic Variant 1, 

MV2 = Monoclinic Variant 2, T = Tetragonal).  
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Figure 23. The stress-strain curve for the Mode I intergranular fracture in 

tetragonal zirconia with different lattice orientation configurations. (LOR: lattice 
orientation; 𝑹𝑹 = 𝟎𝟎.𝟐𝟐). Microstructures with low angle grains show higher resistance 

to crack growth. See Figure 4 for angle interpretation.    

The Effects of The Grain Size on The Fracture of Polycrystalline Zirconia  

Besides texture engineering, grain boundary engineering is also another technique 

for developing materials with superior properties. In this section, we investigate the 

effects of grain size on the toughening and fracture of TPZ.  

 Cracked  Uncracked 
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Generally, toughness trend for most materials is inversely related to the grain size, 

i.e., grain size reduction leads to fracture toughness improvement. However, this is not 

the case for zirconia because while the grain size reduction makes crack growth harder, it 

will suppress the MT and its associated transformation toughening [103]. To study these 

two antagonistic effects, we have modeled the crack growth in polycrystalline zirconia 

with four different microstructures with average grain sizes of 480, 360, 300, and 200 

nm. 

Since most experimental data on zirconia fracture is for yttria-stabilized zirconia 

and Kumar et al. [71] reported transgranular fracture for yttria-stabilized zirconia, we 

study the transgranular fracture in this section. Additionally, the Young’s modulus at the 

grain boundaries is chosen to be 85 percent of the grain [69]. 

Figure 28 shows the crack propagation pattern and amount as well as the 

microstructural evolution of the monoclinic phase in different time steps for the 

polycrystalline zirconia with varying average grain size. For more quantitative 

comparison, the stress-strain curves are also shown in Figure 29. From these two plots, 

we see that the model with the biggest grain size, 480 nm, shows the weakest crack 

growth resistance. Fracture toughness increases by decreasing grain size from 480 to 360 

and 300 nm. However, the fracture toughness decreases when grain size drops from 300 

nm to 200 nm. These results indicate that for zirconia, there is an optimum grain size, 

which leads to the maximum fracture toughness, in this study 300 nm.    

Similar trends were observed in the experimental studies. Eichler et al. [104] 

studied the effects of grain size on fracture toughness of TPZ doped with 2 mol% yttria 

(2Y-TPZ) in specimens with average grain sizes between 150 to 900 nm. Their study 
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explicates that the toughening was improved by increasing the grain size from 150 nm to 

300 nm then decreased in the sample with 500 nm grain size. Eichler et al., in another 

study [103], found that the critical grain size for maximum toughening in 3Y-TPZ was 

380 nm. 

 

Dgrain = 
480 nm 

   

Dgrain = 
360 nm 

   

Dgrain = 
300 nm 

   

 Cracked  Uncracked MV1 MV
 

T Tetragonal 
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Dgrain = 
200 nm 

   

Figure 24. The effects of grain size on the crack propagation in TPZ. The first 
column is the crack propagation in each microstructure at t = 3500 s. The second 
column depicts the microstructure at the onset of the crack growth, t = 600 s. The 
last column is the crack growth pattern at t = 3500 s along with the corresponding 
microstructure. (MV1 = Monoclinic Variant 1, MV2 = Monoclinic Variant 2, T = 

Tetragonal). 
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Figure 25. The stress-strain curve for the transgranular crack propagation in the 

TPZ with different average grain sizes (Dgrain).  

The Effects of Grain Boundaries Strength  

As it was noted in the previous section, experimental studies have shown that pure 

zirconia has an intergranular fracture behavior [24,71], while the yttria-stabilized zirconia 

and aluminum toughened zirconia tends to have a transgranular fracture [24,71]. In this 

section, we investigate the effects of the fracture energy at the grain boundaries on the 

crack propagation patterning, which shows the model capability in predicting both 

transgranular and intergranular fractures in polycrystalline materials. 

In order to have a better understanding of the influence of the fracture energy at 

grain boundaries compared to that of inside the grain, we use a parameter which is called 
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fracture energy ratio. Fracture energy ratio is the ratio of the grain boundary fracture 

energy to the fracture energy inside the grains, 𝐺𝐺𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺

= 𝑅𝑅. By changing this ratio, it would 

be possible for our model to show how the fracture patterns tend to change their paths. 

Our simulations show that R = 0.2 would be an appropriate choice for intergranular crack 

growth since several simulations with wide ranges of grains’ lattice orientations showed 

intergranular crack growth. However, when R starts to rise from 0.2 to 0.3, the crack 

tends to get away from the grain boundaries. When R increase to over 0.4, the crack path 

is transgranular with a majority of the area perpendicular to the tensile load direction no 

matter if it is in the middle of the grain or it is at the grain boundary. In this work, since 

we study the Mode I fracture, the typical path is straight. Therefore, the crack tends to 

grow straight. Figure 30 depicts the role of the fracture energy ratio on the crack 

propagation path. 
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𝑅𝑅 = 0.25 
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Figure 26. The fracture propagation path in TPZ with different fracture energy 
ratio (R), the ratio of grain boundary fracture energy to the fracture energy inside 

the grains. The crack tends to depart from the grain boundaries when the ratio 
increases. 
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Conclusion 

In this chapter, we developed a multiphysics/multiphase phase-field model for 

crack growth in polycrystalline shape memory ceramics and parameterized it for zirconia. 

The model captures the three main forms of fracture mechanisms in polycrystalline 

zirconia, including the secondary crack initiation and growth ahead of the primary crack, 

crack branching, and grain boundary bridging. We employed an appropriate algorithm for 

generating polycrystalline geometry, which makes it feasible to implement models with 

different morphologies, grain sizes, and grain boundary sizes. The model shows that the 

texture and grain boundary engineering can be effectively used to design polycrystalline 

zirconia with enhanced fracture toughness. Texturing the grains to form low angles 

between at (a-axis in tetragonal) and the crack plane increases the fracture toughness. The 

competition between the fracture toughness improvement and the martensitic 

transformation suppression due to grain size reduction creates a scenario in which the 

maximum fracture toughness happens in an optimum grain size.  



75 

 

CHAPTER FIVE: THREE-DIMENSIONAL MODEL 

In this chapter, we parametrize the model for 3D single crystal zirconia. All 12 

monoclinic variants are considered in the model. This study would enable us to have a 

more realistic understanding of the MT and crack growth's concurrent evolution in shape 

memory ceramics. 

The result provided in this chapter is submitted as a research paper in the 

International Journal of Mechanical Sciences (March 2021) [105].  

Crystallography of Tetragonal to Monoclinic Transformation in Zirconia 

Monoclinic variants that are derived from tetragonal are categorized into three 

main correspondences, namely correspondence A, B, and C. These correspondences are 

defined based on the monoclinic axis that is derived from the 𝑐𝑐𝑡𝑡 (axis c in tetragonal). For 

example, correspondence A indicates that 𝑐𝑐𝑡𝑡 becomes 𝑎𝑎𝑚𝑚 (axis a in monoclinic). 

However, we need a more comprehensive notation as in the case of correspondence A, 𝑎𝑎𝑡𝑡 

and 𝑏𝑏𝑡𝑡 to have this chance to become either 𝑏𝑏𝑚𝑚 or 𝑐𝑐𝑚𝑚. Therefore, in this study, we use the 

Hayakawa et al. [106–108] notation system to identify all monoclinic variants. This 

notation technique uses a three-letter-sign for each monoclinic variant. If we consider 𝑎𝑎𝑡𝑡, 

𝑏𝑏𝑡𝑡 and 𝑐𝑐𝑡𝑡 as the tetragonal axes and 𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚 and 𝑐𝑐𝑚𝑚as the monoclinic axes, the three 

letters in Hayakawa’s notation, from left to right, show which monoclinic axes are 

derived from 𝑎𝑎𝑡𝑡, 𝑏𝑏𝑡𝑡, and 𝑐𝑐𝑡𝑡. For instance, the BCA variant indicates that 𝑏𝑏𝑚𝑚 is derived 

from 𝑎𝑎𝑡𝑡, 𝑐𝑐𝑚𝑚 is derived from 𝑏𝑏𝑡𝑡, and 𝑎𝑎𝑚𝑚 is derived from 𝑐𝑐𝑡𝑡. The angles between 𝑎𝑎𝑚𝑚 and 

𝑐𝑐𝑚𝑚 in the monoclinic phase is about 99° [8]. Therefore, there are two possible 
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orientations for each monoclinic variant, OR1, and OR2. OR1 (OR2) indicates that 𝑎𝑎𝑚𝑚 

(𝑐𝑐𝑚𝑚) is aligned with its correspondent axis in tetragonal and 𝑐𝑐𝑚𝑚 (𝑎𝑎𝑚𝑚) is tilted. Figure 31 

demonstrates four possible monoclinic variants of the correspondence C.  

 
Figure 27. Schematic representation of possible monoclinic variants derived 

from the correspondence C, i.e., ct become cm [76]. 

 

In the 𝑡𝑡 → 𝑚𝑚 transformation, the incorporation of orientations, variants, and 

correspondences leads to 12 feasible monoclinic crystals for each tetragonal crystal. 

Figure 32 shows the monoclinic correspondences, orientations, variants, and their self-

accommodating variants in 𝑡𝑡 → 𝑚𝑚 transformation.  
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Figure 28. The feasible monoclinic variants and their self-accommodating 

variants in 𝒕𝒕 → 𝒎𝒎 transformation [76]. 

Results 

In this section, we model the 3D single crystal zirconia fracture in a cube with a 

length of 2 𝜇𝜇𝑚𝑚. The cube has an initial crack and a monotonic increasing displacement 

load, 𝛥𝛥𝑢𝑢 = 1 𝑛𝑛𝑚𝑚
𝑠𝑠

, has been applied at the upper surface, and the bottom boundary is 

clamped. A fine mesh has been applied. The geometry and boundary conditions are 

depicted in Figure 33. 

The numerical parameters that are used in this model are provided in Table 7.   
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Table 7. Parameters applied in the model. 

Temperature (K)  1170 

A (N/m2) [49] 2.5 × 106 

Chemical driving force, (𝐽𝐽.𝑚𝑚𝑚𝑚𝑙𝑙−1) [49] 800 (36.8 × 106 𝐽𝐽.𝑚𝑚−3) 

Gradient energy coefficient, 𝛽𝛽 (𝐽𝐽.𝑚𝑚−1) [49] 2.5 × 10−9 

Kinetic coefficient, 𝐿𝐿 (𝑚𝑚3. 𝐽𝐽−1. 𝑠𝑠−1) 2 × 10−9 

Critical energy release rate, 𝛥𝛥𝑐𝑐(𝐽𝐽.𝑚𝑚−2) [69] 4.33 

Crack elasticity modification parameter, 𝑘𝑘 1 × 10−9 

The length parameter, 𝑙𝑙0 (𝑛𝑛𝑚𝑚) 20 

 

 
Figure 29. The boundary conditions and geometry of a cube with an initial 

crack. 
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Model Verification 

We validate the proposed model by comparing the results with the experiments. 

Figure 34 shows a comparison between the PF model results and an Atomic Force 

Microscopy (AFM) micrograph of the surface relief obtained from the martensitic 𝑡𝑡 → 𝑚𝑚 

transformation in ceria-stabilized zirconia [109]. The high resolution AFM experiments 

of Deville et al. [109] make it feasible to follow and capture the transition-induced relief 

at the surface precisely. AFM observations at the crack zone in Figure 34 show self-

accommodated martensite pairs development in the vicinity of crack areas with arrows 

indicating such pairs' junction planes. As in Deville et al.’s [109] experimental 

observations, transformed variants are distinctly visible when 𝑐𝑐𝑡𝑡 axis of the grain is 

almost perpendicular to the surface. We adopt the same orientation for the single crystal 

in this simulation and the results depict similar morphologies for the monoclinic variants. 

Figure 34-a shows the crack pattern and the microstructure of the transformed domain 

from the simulation. Four different martensitic variants emerged from the simulation, 

namely 𝐴𝐴𝐴𝐴𝐶𝐶, 𝐴𝐴𝐴𝐴𝐶𝐶̅, 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅. Figure 34-b shows the surrounding of a propagated 

crack in ceria-stabilized zirconia, which depicts the martensitic variants in the 

transformed zone. A magnified frame of the crack zone, illustrated in Figure 34-c, shows 

the primary and secondary junction planes of the martensitic variants.  
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(a)                                                (b)                                          (c) 

Figure 30. PF model simulation result for martensitic transformation and crack 
propagation in a 3D single crystal zirconia (a) and comparison with the experiment 

(b) (c) [109].  

The detailed investigation of Deville et al. [109] on transformation-induced relief 

leads to brand-new knowledge regarding the toughening mechanism order. Deville et al. 

[109] reported the fragmentation of the transformed zones caused by the crack growth. 

This observation indicates to the domain phase transition before the crack arrival. Phase 

field simulation also shows a similar observation, Figure 35. The reason behind this 

phenomenon is the fact that the stress state around the crack tip is increasing due to 

loading, and this stress can trigger the phase transformation, which absorbs some of the 

stress that otherwise would be available for crack growth. In the case of increasing the 

stress further, it leads to crack propagation in the transformed areas. Figure 35-c shows a 

propagated crack in ceria-stabilized zirconia. The crack propagated throughout the 

transformed grain and fragmented it. In this particular case, i.e. 𝑐𝑐𝑡𝑡 is perpendicular to the 

top surface, we have a transformation strain that is accommodated vertically, so there is 

no residual stress in the domain, and it is possible for the crack to run through the 

transformed grain rather than passing alongside. Figure 35-a shows that the crack has 
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started to grow while there are martensitic transformed variants in the domain, and the 

crack is passing through them. Figure 35-b shows that the crack propagated more and 

breaks the transformed plane. 

 

         (a)                                                (b)                                                 (c) 

Figure 31. Observation of the fragmented transformed plane in both simulation 
(a)-(b) and experiment, AFM (c) [109].  

 
Temporal and Spatial Evolution of Crack Propagation in Transformable Domains 

In this section, we have considered the coupled PF model to investigate the crack 

growth, mode I, in a 3D tetragonal single crystal zirconia. In this part, we picked zero 

degrees, i.e., 𝜃𝜃 = 0°,  in Figure 33 for the lattice orientation angle. The results show the 

importance of the phase transformation on the crack growth as well as toughening. 

Figure 36 depicts the co-evolution of 𝑡𝑡 → 𝑚𝑚 transformation and crack propagation 

in a 3D domain. The domain is fully tetragonal in the beginning. As the external loading is 

applied on the upper surface, the stress escalates at the crack tip and promotes the 𝑡𝑡 → 𝑚𝑚 

transformation. As predicted from our simulation results and observed in the experimental 

studies, the phase transformation originates from the crack tip. The transition process 
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proceeds by raising the displacement loading until the monoclinic phase dominates the 

crystal body. 

Although there are 12 possible monoclinic variants in 3D, experimental studies 

have observed some of them more frequently. According to empirical and theoretical 

studies [90–92], correspondence C is the predominant direction for the transformation 

because of its relatively smaller strain energy than the other correspondences, i.e., A and 

B. The equations and model parameters are set in a way to consider all 12 monoclinic 

variants without any preferences or differences in their emergence chance and 

development. Nevertheless, only a few of them will show up in the final microstructure, 

which will be chosen by innate minimum formation energy principles. 

For the current simulation set, i.e., the lattice orientation angle is zero degrees, 

𝜃𝜃 = 0°, only the monoclinic variants of 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅ from the correspondence C show 

up in the microstructure, and the other variants do not appear while they have similar 

initial chances. After nucleation of favorable variants in the early stages of the phase 

transition, the variants rearrange and grow in a way to accommodate the highest possible 

amount of strain. When the monoclinic phase becomes dominant in the crystal, the crack 

propagates in its straight expected direction, as it is a mode I crack growth model. Since 

the model has the displacement loading normal to the upper boundary, which is the 

direction of 𝑐𝑐𝑡𝑡 in this simulation, the correspondence C is expected to form and 

eventually change the microstructure until the whole upper crack part alters to the single 

monoclinic variant. This phenomenon agrees with the experimental and theoretical 

studies that observed the development of different martensitic variants in favor of the 

loading conditions [23,93]. 
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Figure 32. The concurrent evolution of 𝒕𝒕 → 𝒎𝒎 transformation and monoclinic 
variants reorientation with crack propagation in 3D single crystal zirconia in 

isosurface (𝜼𝜼 =  𝟎𝟎.𝟓𝟓). (Vacant domain is tetragonal, yellow is monoclinic 
variant 𝑨𝑨𝑮𝑮𝑨𝑨, cyan is monoclinic variant 𝑨𝑨𝑮𝑮𝑨𝑨�, and brown is crack) 

 

Monoclinic Vari. 𝐴𝐴𝐴𝐴𝐶𝐶 Monoclinic Vari. 𝐴𝐴𝐴𝐴�̅�𝐶 Tetragonal Crack 
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The Effects of Crystal Lattice Orientation 

To gain more profound knowledge on how the lattice orientation would affect the 

monoclinic variants formation and crack growth pattern and toughening, we have studied 

a set of simulations for crack growth in a 3D single crystal zirconia for different lattice 

orientations (LORs) in the at-ct plane, i.e., the rotation angle is around the bt-axis.  

Figure 37 depicts the microstructure at t = 200 s and 2000 s and the crack pattern 

at t = 2000 s for the lattice orientations of 0, 15, 30, 45, 60, 75, and 90 degrees. The 

results show that the initial emerging and final monoclinic variants are different for 

different lattice orientations. For instance, in the model with LOR 0º and 15º, only 

monoclinic variants of 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴�̅�𝐶 form. However, the arrangement of these variants 

are different in LOR 0º and 15º; the dominant twin plane for LOR 0º is (100)m plane, 

while for LOR 15º, we see both (100)m and (001)m planes. For LOR 0º, the crack grows 

evenly through the thickness while it is not even for LOR 15º. For 30º, 45º, and 60º we 

observe the formation of four monoclinic variants, i.e., 𝐴𝐴𝐴𝐴𝐶𝐶, 𝐴𝐴𝐴𝐴𝐶𝐶̅, 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅. The 

presence of 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅ variants are more dominant for LOR 30º while the dominancy 

changes to 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅ variants for LOR 60º. For LOR 75º and 90º only variants 𝐴𝐴𝐴𝐴𝐶𝐶 

and 𝐴𝐴𝐴𝐴𝐶𝐶̅ form. The results reveal the profound influence of the lattice orientation on both 

microstructure and crack growth. As the lattice orientation changes, the configuration and 

the type of the monoclinic variants alter, affecting the crack pattern and crack 

propagation amount or toughness. For instance, in the model with LOR 0º, the crack 

grows in a straight path and even throughout the thickness, because the displacement 

loading is in the ct direction and the 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴�̅�𝐶 monoclinic variants emerge 

symmetrically, whereas, in the model with LOR 15º, the crack is not even within the 
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thickness because of the uneven microstructure formation that leads to the different stress 

states at various spots. 
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Figure 33. Microstructure and crack pattern in 3D single crystal zirconia with 

different lattice orientations. The first column shows the microstructure at t = 200 s, 
the second column shows the microstructure at t = 2000 s, and the last column 

shows the crack pattern at t = 2000 s.  

To elaborate the concurrent evolution of crack and 𝑡𝑡 → 𝑚𝑚 transformation for the 

cases that the crack propagation deviates from the even growth through the thickness and 

gets deflected from the initial crack plane, we present the temporal and spatial concurrent 

evolution of MT and crack for LOR 30º in Figure 38. Originally, the entire crystal body 
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is tetragonal. In the early stages of the loading, among all 12 possible variants of 

monoclinic, only four monoclinic variants, i.e., 𝐴𝐴𝐴𝐴𝐶𝐶, 𝐴𝐴𝐴𝐴𝐶𝐶̅, 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅, form at the 

crack tip because of the high stress concentration. The monoclinic variants rearrange to 

accommodate the maximum strain. The crack starts to grow when most of the crystal 

body has converted to monoclinic.  
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Figure 34. The temporal and spatial co-evolution of MT and crack for lattice 

orientation of 30 degrees in 3D single crystal zirconia.  

To show the crack pattern clearly, we have removed the microstructure in Figure 

39. Figure 39 (a)-(b) show that the crack starts growing at the t = 1100 s at (01�0)𝑡𝑡 plane 

and then gradually propagates through the thickness. The difference in the crack growth 

amount is because of the phase transformation's local toughening effects, which vary at 

different locations, and consequently, these local monoclinic variants determine the stress 

states and crack growth driving force. This observation shows the impact of the local 

microstructure on the transformation toughening in shape memory ceramics. When 

monoclinic variants arrangement is in a way that produces more toughening, it is difficult 

for the crack to grow in some spots and vice versa. Figure 39(d) shows the crack pattern 

at t = 3500 s. At this stage, the crack has deflected upward in the (01�0)𝑡𝑡 plane, while it is 

deflected slightly downward in the (010)𝑡𝑡 plane. Interestingly the uneven crack tip 

pattern through the thickness is not uniform; it is parabolic initially and then gets linear, 

Figure 39(e). This behavior is because of the evolving microstructural patterns 

constructed from different monoclinic variants in each spot; they create different local 

stresses through the thickness. Therefore, the crack tip pattern is not uniform and grows 

more in areas with more favorable stress states. Looking more closely at the 
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microstructures, it turns out that the crack tip at (01�0)𝑡𝑡 plane is more surrounded by 

monoclinic variant 𝐴𝐴𝐴𝐴𝐶𝐶  and have the monoclinic variant 𝐴𝐴𝐴𝐴𝐶𝐶̅ at the bottom. The 

configuration of monoclinic variants and the accommodated stress state in (01�0)𝑡𝑡 plane 

leads to the upward deflection of the crack, whereas crack tip in the (010)𝑡𝑡 plane is 

surrounded almost evenly by variants 𝐴𝐴𝐴𝐴𝐶𝐶 and 𝐴𝐴𝐴𝐴𝐶𝐶̅ which leads to slight downward 

deflection. The presence of monoclinic variants 𝐴𝐴𝐴𝐴𝐶𝐶̅ in the (010)𝑡𝑡 plane is the reason 

that the crack in this plane started very late compare to the other areas. Additionally, the 

middle part of the crack is surrounded by monoclinic variants 𝐶𝐶̅ , which made it difficult 

for this part of the crack to grow at the same pace as the other sections and eventually 

leading to the parabolic pattern of the crack tip in this area.  

Since in this simulation we have lattice orientation of 30 degrees, the loading 

direction is not aligned with the 𝑐𝑐𝑡𝑡-axis and this leads to an unbalanced and un-

symmetrical microstructural domain. This would result in uneven stress state at crack tip 

in different areas, resulting in an uneven crack growth throughout the thickness. The non-

uniform growth of the crack tip through the thickness, which the 3D simulation enables 

us to observe, indicates to the local behavior of transformation toughening within a single 

crystal zirconia.     
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Figure 35. The Isosurface plots of the crack propagation in a single crystal 
zirconia for lattice orientation of 30 degrees around bt-axis. 

Conclusion 

This chapter presented a three-dimensional phase field model to study the 

concurrent evolution of martensitic transformation and crack growth in the shape 

memory ceramics. Zirconia is used as the model material with emphasis on the tetragonal 

to monoclinic transformation. The three-dimensional modeling empowers us to acquire 

all twelve variants of the monoclinic phase. By implementing all twelve monoclinic 

variants in the martensitic transformation model's equations and coupling them with the 
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variational formulation of fracture, the developed model predicts the experimentally 

observed results, such as the surface uplifting and self-accommodated martensite 

formation in the crack vicinity. The model also agrees with the experimentally observed 

fragmented transformed zones resulting from the crack propagation throughout the 

transformed planes. Investigating the lattice orientation effects on zirconia fracture 

reveals the “local” nature of transformation toughening within a single crystal. Results 

also show that the angles that the tetragonal axes make with the loading direction 

profoundly impact the selection of the monoclinic variants that nucleate at the crack tip 

and their further growth and eventual morphology and consequently on the crack growth 

path and toughening. 
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CHAPTER SIX: CONCLUSION AND FUTURE WORKS 

This dissertation attempts to provide a mathematical framework for fracture in 

shape memory ceramics that experience martensitic transformation. To address the 

shortage of classical methods, we have developed an anisotropic phase field model that 

coupled the Ginzburg-Landau equations of martensitic transformation to the variational 

formulation of brittle fracture based on the Griffith theory. The model is efficiently 

capable of predicting crack propagation in transformable materials.  

We used zirconia as the model material for this study. In the first step, we started 

from the simplest model and constructed a model for single crystal zirconia. The phase 

transformation dramatically slows down the crack propagation and reduces the value of 

the normal stresses in front of the crack tip. The analysis of the crack growth behavior in 

single crystal zirconia shows an unusual crack growth path in the presence of the 

martensitic transformation. For mode I of fracture, the opening mode, crack shows an 

unusual propagation path that is in good agreement with the experiments and indicates 

the significant role of phase transformation on the crack propagation path. The 

investigation on the effect of lattice orientation on crack propagation shows that the 

lattice orientation has a considerable influence not only on the crack propagation path but 

also on the magnitude of the transformation toughening. 

When the lattice orientation changed in the crystal, the final microstructure 

patterns would change after phase transition. Therefore, the stress state in the domain 

changed, and each spot in the field has different stress states that make it harder for the 
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crack to grow in some regions and easier to grow in some other areas to minimize the 

energy. This leads to the crack deflection and changes the magnitude of the 

transformation toughening. This mainly happened in the lattice orientations that cause the 

unsymmetrical final microstructures in the monoclinic phase. 

At the second step, we expanded the single crystal model to polycrystalline by 

introducing the interfaces and grain boundaries into the model. The model is 

parameterized for tetragonal polycrystalline zirconia, and the experimental data from 

literature were used to validate the model. We employed an appropriate algorithm for 

generating polycrystalline geometry, making it feasible to implement models with 

different morphologies, grain sizes, and grain boundary sizes. The model predicts the 

three dominant crack propagation patterns observed experimentally, including the 

secondary crack initiation, crack branching, and grain bridging. The model shows the 

critical role of texture engineering in toughening enhancement. With grains that make 

low angles between the a-axis in the tetragonal phase and the crack plane, polycrystalline 

zirconia samples show higher transformation toughening due to maximum hydrostatic 

strain release perpendicular to the crack tip. The model also shows the grain boundary 

engineering as a way to enhance the transformation toughening. The maximum fracture 

toughness occurs at a specific grain size, and further coarsening or refinement reduces the 

fracture toughness. This optimum grain size results from the competition between the 

toughening enhancement and MT suppression with grain refinement. 

In the final step, we expanded the model to 3D to capture more realistic results 

and overcome the lackings of the 2D model. The 2D model could not consider all 

monoclinic variants and some of the features was ignored. The developed three-
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dimensional model considers all 12 monoclinic variants, making it possible to acquire 

realistic microstructures. Surface uplifting, self-accommodated martensite pairs 

formation, and transformed zone fragmentation were observed by the model, which 

agrees with the experimental observations. The influence of the crystal lattice orientation 

is investigated in this study, which changed the microstructure patterns and altered the 

transformation toughening and deflected the crack propagation path. Examining the 

lattice orientation effects on zirconia fracture reveals the “local” nature of transformation 

toughening within a single crystal. Results also show that the angles that the tetragonal 

axes make with the loading direction changed the selection of the monoclinic variants 

that nucleate at the crack tip and their further growth and eventual morphology and 

consequently on the crack growth path and toughening. 

Future Works 

Cyclic degradation is one of the grand challenges in shape memory materials 

(SMMs). This work is the first step in our group toward addressing mechanical 

degradation in SMMs.  In the following, we provide some information about how it is 

possible to expand this study in the future. 

• Improve the model to consider heterogeneous fracture. The current study considers a 

fixed amount for critical energy release rate (Gc) for both tetragonal and monoclinic 

phases. It was primarily because of the unavailability of the data in the literature. 

With recent advancements in interatomic potential development, atomistic 

simulations can be used to estimate Gc for both tetragonal and monoclinic.  

• Expand the model to study the fatigue in SMCs. Based on the fracture framework 

developed in this study, it is possible to develop a fatigue phase field model, for 
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example see Carrara et al. [110]. Fatigue in SMCs has been the subject of extensive 

experimental studies at the macroscale. However, we are not aware of any 

microstructure-informed model that has elucidated the fundamental mechanisms of 

fatigue degradation in zirconia, or other SMCs.  

• Enhance the model beyond ceramics. The fatigue and fracture of shape memory 

alloys have been important problems both in mechanical engineering and materials 

science communities. The primary challenge is related to the fracture model. While 

the variational formulation of fracture exists for brittle materials, it does not for 

ductile materials. Recently some models have been developed to address this 

challenge. This work would be a suitable starting point for studying mechanical 

degradations of shape memory alloys by adding plasticity to both phase 

transformation and fracture models.  

• Improving the algorithms to enable simulations at the component scale. The current 

model has been applied to the microscale geometries. Expanding the model to the 

component scale would be very beneficial considering the wide range of applications 

of zirconia in aerospace to biomedical.  
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