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ABSTRACT

Model theory is the study of mathematical structures in terms of the logical

relationships they define between their constituent objects. The logical relationships

defined by these structures can be used to define topologies on the underlying sets.

These topological structures will serve as a generalization of the notion of the Zariski

topology from classical algebraic geometry. We will adapt properties and theorems

from classical algebraic geometry to our topological structure setting. We will isolate

a specific class of structures, called Zariski geometries, and demonstrate the main

classification theorem of such structures. We will construct some Zariski structures

where the classification fails by adding some noncommuting structure to a classical

one. Finally we survey an application of these nonclassical Zariski structures to

computation of formulas in quantum mechanics using a method of structural approx-

imation developed by Boris Zilber.
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CHAPTER 1

INTRODUCTION

Physicists have not always used the most mathematically precise and rigorous

techniques to compute formulas in physical models, but nevertheless physicists will

sometimes manage to use these heuristic methods to reliably predict phenomena

about the world. In particular, subdisciplines of physics such as quantum field theory

have developed powerful and predictive results by using heuristic methods to compute

non-convergent integrals and sums, as well as remove singularities from processes. An

account of such methods can be found in [8].

On a philosophical basis, we might ask how we can simultaneously demand the

sciences to provide rigorous arguments for their results, but allow for scientists to rely

on such heuristic methods which essentially ignore the nature of the mathematical

tools they use to support their arguments. On one hand, we could outright reject that

any knowledge of the world has been obtained through these methods and arguments;

but that the fact that the results accurately predicts reality might be an indicator that

the statement is still true, despite the lack of affirmative knowledge that the claim is

true. On the other hand, we might ask whether or not the mathematical structures

we are using are the correct mathematical structures for modeling the situation, and

whether or not some structure of our mathematical objects in our model come loaded

with tacit assumptions that we are imposing on the world, but are unreflective of the
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actual world. If this is the case, then we can ask whether or not that structure is

necessary for our model to describe the relationships between the objects in the world

accurately.

One of the beliefs of the author that model theory – a branch of contemporary

mathematical logic which studies mathematical structures in terms of the logical rela-

tionships they define between their constituent objects – could help provide a tool to

take the latter approach to resolving the discrepencies between these scientific models

and the heuristics used in their methods with the mathematics tools used to justify

these methods. This appoach seems similar to the approach taken by Boris Zilber

in [13], who claims that logicians have the advantage of not constraining themselves

to any specific mathematical structure a priori when they do their mathematics. In

this paper, Zilber uses model-theoretic tools which he developed in prior papers and

pursuits – such as so-called Zariski structures and geometries – to try to compute some

quantities from quantum mechanics that usually rely on such unrigorous heuristic

methods. Zilber’s prior work on Zariski geometries and their application to quantum

mechanics will be the subject of our discussion.

These Zariski structures originate from prior work of Ehud Hrushovski and Boris

Zilber in [4]. This work was motivated by a conjecture proposed by Zilber in model

theory, which concerned the kinds of geometrical structures which could be endowed

on so-called strongly minimal structures. Zilber conjectured that the canonical ge-

ometries that can be endowed on all strongly minimal structures are the geometries

of either a algebraic type, linear type, or combinatorial type. Work from Hrushovski

in [2] gave counter-examples to this trichotomy, and collaborative research between

Hrushovski and Zilber developed Zariski geometries to find a class of structures where

the trichotomy conjecture essentially holds.
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In Chapter 2, we will introduce some of the basic notation and tools from model

theory that we need to motivate and develop our results. In particular, we will use

examples from algebraic geometry to demonstrate the definitions given, which will

hopefully elucidate how model theory can help us generalize methods from algebraic

geometry. We will also introduce notation along the way which is commonly used in

model theory, and will appear abundantly in our presentation. We will also briefly

mention some of the motivating problems from model theory which inspired the

particular model-theoretic structures developed in the later chapters.

In Chapter 3, we will develop some of our basic notions of topological structure

theory, which will give us more tools to talk about models in a more geometric context.

This notion of topological structure will be a generalization of the notion of defining

a familiy of topologies such as the Zariski topologies on affine spaces from algebraic

geometry. Furthermore, we will develop specific properties that will help us resolve

some degeneracies in these structures, and help us in Chapter 4 to develop a notion of

Zariski geometries, which are a specific kind of topological structure which possesses

the imporantant model-theoretic properties that will interest us.

In Chapter 4, we will develop the theory of Zariski geometries, including theorems

which allow us to define a notion of local functions in these topological structures.

These local functions will help us define the notions of branches of curves and the

tangency relations between them. Finally, we will build group and field structures

on these equivalence classes of curves up to tangency, and demonstrate how these

groups and fields essentially characterize the Zariski geometries in from which they

are defined.

In Chapter 5, we will demonstrate that although some Zariski structures are

nicely reducible to algebraic geometry over fields, we can construct certain kinds of
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nonclassical Zariski structures which are not reducible to fields. This construction

will essentially rely on adjoining some kind of parameterized operator algebra to every

point in a classical Zariski structure, and then demonstrating that when this operator

algebra is noncommutative, the Zariski structure defined by the operator algebra will

not be reducible to some kind of field-based structure.

Finally, in Chapter 6, we will survey an application of nonclassical Zariski struc-

tures by Boris Zilber in [13] to computing some formulas in quantum mechanics.

In particular, Zilber’s application is motivated by the observation that the operator

algebras used to construct nonclassical Zariski structures can include a subclass of

what he informally deems quantum algebra, since their commuting properties ressem-

ble that of the Weyl commutation relation from physics. Furthermore, Zilber uses

a notion of structural approximation to show that some models of particularly nice

associated Zariski structures of quantum algebras can be used to approximate the ac-

tual associated Zariski structures used in physical models. We will introduce Zilber’s

method of structural approximation, which Zilber has described as a model-theoretical

generalization of techniques such as the Gromov-Hausdorff limit or deformations of

algebraic varieties to a general case of approximating mathematical objects. We will

then use these tools to compute the kernel of a Feynman propagator of a free particle,

which is a computation that usually relies on a heuristically computing a divergent

integral.
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CHAPTER 2

MODEL THEORY BACKGROUND

Before we begin our exposition on Zariski structures, we should first investigate

some of the basic tools of model theory that we will use throughout the later chap-

ters. The model theory content of this chapter should give us a basic idea of what

model theory studies, as well as demonstrating to us how we can generalize some

of the methodology of algebraic geometry to more broad classes of mathematical

structures by discussing how these definitions and constructs and be truly recognized

as generalizations of tools from algebraic geometry.

The study of model theory is primarily motivated by the study of the structure

of mathematical objects. In particular, we think of the structure of a mathematical

object as being described by the mathematical relationships it expresses between its

contsituent objects. Hence, in model theory, we will devote most of our attention to

the notion of languages, the symbols that we can use to express our language, the

relationships our languages define in mathematical structures, and the properties of

our mathematical structures which are preserved whenever we establish certain kinds

of correspondences between different elements of different mathematical structures.

Definition 2.1 (σ-structure (later called L-structure)). Let σ be a set of symbols

intended to designate relations, functions, constants, and an equality symbols – where

each symbol is associated with an arity which prescribes the number of arguments it
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accepts (for example, binary functions take two arguments, 5-ary relations take five

arguments, constants are all 0-ary etc.). Let M be a set of elements and let S ↦ SM

be a function which maps symbols in σ to objects over M such that

(1.) The equality symbol in =∈ σ is mapped to a maximally refined binary equivalence

relation. That is =M consists of singleton equivalence classes of elements of M .

(2.) Every n-ary relation symbol R ∈ σ (or function f ∈ σ) is mapped to an n-ary

relation RM ⊆Mn (or function is mapped to fM function from Mn to M)

(3.) Every constant c ∈ σ is mapped to an element cM ∈M .

Then we call the triple (M,σ, ⋅M) a σ-structure with domain M and signature σ. For

each symbol S ∈ σ, we say SM is the interpretation of S in M .

Generally we will refer to a structure by its domain M , and assume that the

signature is understood from context. We can also define the notion of a term, which

is just a family of linguistic entitites in a σ-structure that is built starting from the

base terms – variables symbols and constants of the structure – and then inductively

applying functions to define new terms. We will give the following example so we can

demonstrate how these tools from model theory will pertain to abstracting tools from

algebraic geometry in later chapters.

Example 2.2 (Fields as structures). Let σ = {+, ⋅,−, ⋅−1,0,1} and let these symbols be

interpreted over the a field F by the interpretations

(1.) + is interpreted the additive group operation on F , and ⋅ is interpreted as the

multiplicative operation on F .

(2.) 0 is interpreted as the additive identity of F and 1 is interpreted as the multi-

plicative identity of F .
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(3.) − is interpreted the additive inversion operation on F , and ⋅−1 is interpreted as

the multiplicative inversion operation for every element except 0, which we will

usually interpret by convention as (0−1)F = 0F for simplicity.

(4.) Some examples of terms constructible in this structure are 1 + 1, 1 + x, and

x ⋅ (1 + y ⋅ y)−1. Typically, we abreviate 1 + 1 as 2, and also abbreviate

x ⋅ (1 + y ⋅ y)−1 = x

1 + y2

by generally adopting the usual conventions for abbreviating terms from field

theory. Note that if we choose a variable assignment of y = 0, then the whole

term becomes 0 instead of simply being undefined. The solution model theorists

generally use for this issue is to disregard the semantics of this case when

studying fields as structures, and acknowledge this term is not meaningful for

this specific variable assignment.

Remark 2.3 (Multi-Sorted Structures). In (4) in the example of fields as a structure,

another approach we could have taken to defining the multiplicative inverse of zero

would be to develop a nortion of multi-sorted structures. The way a multi-sorted

structure is defined is to modify our current definition of structure so that we can

identify different sorts of objects, and then modify our notion of interpretation so

that functions must specify the sorts over which they are defined. Sorts give us a way

of subdividing the domains of our structures and indicating which arguments of our

functions and relations should come from which sorts. In our fields example, we could

have identified the sort K∗ = {x ∈ K ∶ x ≠ 0} and then indicated ⋅−1 ∶ K∗ → K∗ by

saying ⋅−1 has the sort type (K∗;K∗). This would have avoided the problem about the

definition of 0−1 altogether, at the cost of working through the minutia. We will see
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some examples of many-sorted structures later, but we will not define them rigorously

here since almost all of our structures will be single-sorted.

Before we start developing any logic on these structures, let us note the following

definition

Definition 2.4 (Substructures and Extensions). Let M be an L structure and let

D ⊆ M be a subset of M . We say that D, along with the interpretation of M

restricted to elements of D, is a substructure of M if all of the constant symbols in M

belong to D and if D is closed under all of the interpretations of its function symbols.

Conversely, we say that M is an extension of D in this scenario. This relationship is

denoted D ⊆M in general.

Once we define the notion of a σ-structure, we note that we can start to perform

some logical calculus on this structure. We can start evaluating the truth values of

equality and relation statements, and then define general formulas by induction by

taking conjunctions (and statements), disjunctions (or statements), negations, and

quantifiers over variables applied to other formulas, and by interpreting the truth

values of these operated formulas in the natural way prescribed by first-order logic.

The collection of all these first-order formulas is the set L, called the first-order

language over the signature σ. Most model theory texts will use L to refer to σ, and

thus will call structures L-structures instead of σ-structures.

In terms of notation, we will usually write formulas using later letters in the Greek

alphabet such as ϕ, ψ, ρ, etc. If a formula uses a variable x outside the scope of any

quantifiers that reference the variable name, we call the variable a free variable. Free

variables force the truth value of a formula to be dependent on the choice of elements

of M substituted into them, so if x1, x2, . . . , xn are free variables of a formula ϕ,
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then we will write the formula as ϕ(x1, . . . , xn) to highlight this dependency, and the

substitution of a variable xi with an object ai ∈ M is denoted ϕ(x1, . . . , ai, . . . , xn).

We will also usually abbreviate tuples as x = (x1, x2, . . . , xn) so that we can briefly

write ϕ(x1, . . . , xn) as ϕ(x).

A formula without free variables will be called a sentence. Sentences are precisely

the formulas which we can directly assign truth values, and every formula can be

turned into a sentence with appropriate substitutions of elements into each variable

used in the formula. Let ϕ be a sentence in L, and let M be a L-structure. We denote

that ϕ is true in M , or that M satisfies ϕ, by

M ⊧ ϕ

If ϕ(x) is an L-formula instead, we say that ϕ(x1, x2, . . . , xn) is satisfiable or consistent

in M if there is a tuple a ∈Mn such that

M ⊧ ϕ(a)

in which case, we say that a satisfies the formula ϕ(x).

The notion of formulas and sentences are some of the most important objects of

study in model theory because to some extent, the model theorist is most predom-

inantly concerned with a mathematical structure as the mathematical relationships

and descriptions of a domain of objects given by a language. This gives us the

following flavor of equivalence relation in model theory, which can be described as

saying two structures are logically indistinguishable.

Definition 2.5 (Elementary Equivalence, Substructures, and Extensions). Let L be
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a first-order language, and let M1 and M2 be two L-structures. We say that M1 and

M2 are elementarily equivalent if for every sentence ϕ in L the following holds :

M1 ⊧ ϕ⇔M2 ⊧ ϕ

Furthermore, if M1 ⊆ M2, then we say that M1 is an elementary substructure of M2

and that M2 is an elementary extension of M1. This relationship would be denoted

M1 ≼M2.

With our truth notion set in place, we can now briefly introduce the following

definitions. The first definition will be a general formulation of the notion of homo-

morphism, which should be natural to understand for any mathematician with a prior

background in any kind of abstract algebra. The second definition will be the model

theorist’s notion of axiomatization.

Definition 2.6 (L-homomorphism (or σ-homomorphism)). Let L be a language with

signature σ. Let M1 and M2 be any two L-structures, and let F ∶ M1 → M2 be a

mapping such that :

(1.) Let c be a constant symbol in σ. Then F (cM1) = cM2

(2.) Let f be an n-ary function symbol in σ. Then for each a1, . . . , an ∈M1 :

F (fM1(a1, a2, . . . , an)) = fM2(F (a1), F (a2), . . . , F (an))

(3.) Let R be an n-ary relation symbol in σ. Then for each a1, . . . , an ∈M1 :

(a1, a2, . . . , an) ∈ RM1 Ô⇒ (F (a1), F (a2), . . . , F (an)) ∈ RM2
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Then we call F an L-homomorphism (or a σ-homomorphism) from M1 to M2. If F is

injective and the condition in (3) is an equivalence, rather than an implication, then

F is called an L-embedding. If F is a surjective L-embedding, then it is called an

L-isomorphism.

The following proposition about L-homomorphisms will be presented without

proof, but we note that the theorem follows a fairly standard proof technique in

model theory that involves performing induction on the complexity of formulas (ie,

the number of conjunctions, disjunctions, negations, and quantifiers used). That

being said, we tend to stratify formulas in all sorts of different ways depending

on which places where the induction on formulas fails (such as failure to preserve

universal statements or negations). For the proposition, the only formulas that need

clarification are the following:

(1.) A quantifier-free formula is any formula which contains no instances of quanti-

fiers.

(2.) For any formula ϕ(x), we can find an equivalent formula (ie, true under precisely

the same variable substitutions for a given model) ψ(x) such that all occurrences

of negation in ψ(x) are applied directly to the atomic formulas (primitive

relation statements and equality statements between terms). ψ(x) is called the

negation normal form of ϕ(x). ϕ(x) is called a positive formula if its negation

normal form contains no instances of the negation symbol.

We now say that a map F ∶M1 →M2 preserves a formula ϕ(x) if for every a ∈Mn
1

we have

M1 ⊧ ϕ(a) Ô⇒ M2 ⊧ ϕ(Fa)

where Fa = (F (a1), F (a2), . . . , F (an))
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Proposition 2.7. Let L be a first-order language, and let F ∶ M1 → M2 be an L-

homomorphism. Then the following are true.

(1.) If F is an L-embedding, then F preserves every ϕ(x) formula in L of the form

∃y1, y2, . . . , yn(ψ(x, y)) where ψ is quantifier-free.

(2.) If F is a surjective L-homomorphism, then F preserves positive formulas in L.

(3.) If F is an L-isomorphism, then F preserves all formulas in L

This proposition tells us a way to understand how to establish that some amounts

of formulas are preserved when transferring from one model to another. In particular,

we can establish that preserving the signature is stronger than preserving the first-

order logic statements between two structures.

Definition 2.8 (L-theory). Let L be a first-order language. A set of sentences T

from the language L is called an L-theory. We say that an L-structure M is a model

of T if M ⊧ T , that is M ⊧ ϕ for each ϕ ∈ T . The class of all models of T will

be denoted Mod(T ). Furthermore, the following properties can be used to define a

L-theory

Example 2.9 (Theories of Fields and Algebraically Closed Fields). Let L be the

language of fields described in the previous example. The theory of fields is given

by the usual field axioms, stated in terms of of the language of L. Furthermore, we

can add the following sentence for each n ∈ Z+

∀a0, a1, . . . , an∃x(anxn + . . . + a1x + a0 = 0)

to the theory of fields to create the theory of algebraically closed fields, denoted ACF .

We may also specify a theory of fields of a particular characteristic p by adjoining the
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sentence

∑
i<p

1 = 0

Remark 2.10. When we’ve defined a notion of a theory for structures, we may be

inclined in some instances to decide whether or not two different languages L1 and L2

define the same kinds of theories. There is a sense in which this notion of translating

between structures can be studied, but there will not be any deeper investigation

here. Instead, we will use one fact about such translations that will make some later

definitions more elegant to phrase : every language L has an alternative language

L̂ and theory T̂ such that L̂ is a purely relational language and T̂ is a theory that

describes some of the relation symbols as defining functions and constants. To provide

a quick example of what we mean, suppose that c is a constant in L, then we can

replace c with the unary relation Isc(x), and add the following sentence to T̂ :

∃x(Isc(x) ∧ ∀y(Isc(y) Ô⇒ x = y))

This will mean that if M is an L-structure, then we can define a L̂-model of the

theory T̂ on the domain M that omits the constant symbol c, but now identifies its

interpreted object cM as the unique object satisfying the predicate Isc(x) according

to the theory T̂ . Of course, there’s a similar admissibility condition for expressing

whenever an (n + 1)-ary relation defines an n-ary function, but we will not write it

here. The moral of the story is that we can eliminate function and constant symbols

in general model theory, just so long as we make sure to prescribe certain relations

as function and constant symbols in our relational language.

We will call a theory complete if and only if it characterizes all of the facts that

can be characterized about a structure with respect to the first-order language L. In
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more precise terms, let

Th(M) = {ϕ ∶ ϕ is an L-sentence and M ⊧ ϕ}

be the (complete) first-order theory of a structure M . Then we say that T is complete

if and only if there is an L-structure M such that N ⊧ T if and only if Th(N) =

Th(M). Note that this can also read that T is complete if and only if M ≡ N for

each pair of models M ,N of T .

One final thing to notice about formulas is that we can have partial substitutions

of elements of M into formulas, but elements of M are not necessarily symbols in the

language used to define formulas over M . There are some technical details here that

have been buried, but a standard introductory textbook on model theory such as [5]

will include how these technical details are sorted out. The main idea is that these are

technically formulas in language L adjoined with parameters in a set A ⊆ M , which

is usually denoted L(A). Regardless, they can be shown to have natural methods of

truth valuation in the original language L so long as we keep our discussions over a

fixed L-structure M . We will denote a formula which uses variables x1, . . . , xn and

parameters a1, . . . , am ∈M by

ϕ(x1, . . . , xn;a1, . . . , an) = ϕ(x;a)

or some other variation of this notation, which we hope will be readily understood

from context.

Definition 2.11 (Definable Sets and Relations). Given a subset A ⊆Mn, we say that

A is a definable n-ary relation over parameters b ∈Mm (definable set if n = 1) of the
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L-structure M if there is an L(b)-formula ϕ(x1, . . . , xn; b1, b2, . . . , bm) such that

A = {a ∈Mn ∶M ⊧ ϕ(a; b)}

In this case, we say that A is defined by the formula ϕ(x;a). Sometimes we will

denote this definable set as

A = ϕ(Mn, b) = ϕ(M,b)

where in the second notation, we are ignoring the number of variables used in the

definition.

Example 2.12 (Affine Varieties as Definable Sets). Let K be a field, and let p(x) ∈

K[x1, x2, . . . , xn] be a polynomial over K. The set

D = {x ∈Kn ∶ p(x) = 0}

is definable in K fairly trivially, since p(x) = 0 is a formula in the language of fields

with parameters from K. Anyone with a background in algebraic geometry will

recognize that these sets are called the affine varieties over K. As we will see later,

these sets will be an excellent case study motivating example for the topology on

An(K) =Kn ( which we will later call affine space ).

The study of definable sets is a pivotal theme of model theory – primarily because

some of the structure of definable sets. In particular, we will discuss two notions

which are used frequently in model theory, and these two notions in particular will

relate to the specific tools of model theory we wish to investigate.
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Definition 2.13 (Minimal Sets and Structures). Let M be an L-structure, and let

D ⊆M be a definable subset of M . If D is an infinite subset such that for every other

definable set S either D ∩ S is finite or D/S is finite (or, in other words, D ∩ S is

cofinite), then we say D is a minimal subset in M . If D =M , then we say that M is

a minimal structure.

Essentially, a minimal structure is one where all of the definable subsets can

be identified as essentially equivalent to some set with parameters which only uses

Boolean combinations of atomics formulas which only use the equality symbols. We

will come back to these kinds of sets later, but these sets will later be interesting for

some geometrical properties we can associate with them.

We now note another piece of terminology that we will sometimes use when

discussing families of definable sets (and equivalently, the formulas that describe

them).

Definition 2.14 ((Finitely-)Consistent Family). Let D be a family of definable sets

of an L-structure M . We say that D is finitely consistent if for every n ∈ Z+ and

D1,D2, . . .Dn ∈ D, we have that D1 ∩D2 ∩ . . . ∩Dn is not empty. This definition can

also be expanded to families of definable relations as well.

A special case of finitely consistent families are finitely-consistent theories. What

makes finitely consistent

Theorem 2.15 (Compactness Theorem). Let T be a first-order L-theory. T is

consistent if and only if T is finitely consistent.

This theorem highlights a general technique that model theorists can use in first-

order logic. We can build new theories from old ones by taking a consistent theory T ,
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such as the theory Th(M) = {ϕ ∶M ⊧ ϕ}, and then adjoin some new sentences to the

theory. Then all that needs to be show is that every finite subset of new sentences

adjoined to the theory are consistent with any finite subset of sentences of T . If this

can be proven, then you can guarantee the existence of a model which satisfies the

theory T along with whichever sentences we adjoined to the theory.

Definition 2.16 (Types). Let b ∈ Mn and let A ⊆ M . We say that the complete

n-type of b over A in M is the set of L-formulas

tpM(b/A) = {ϕ(x;a) ∶ a ∈Mk for some k ∈ Z+ and M ⊧ ϕ(b;a)}

Furthermore, consider a set of L-formulas p(x1, x2, . . . , xn), each with parameters from

A in M . p(x) is called an n-type over A in M if there is an elementary extension

∗M ≽M and an element b ∈ ∗Mn such that p(x) ⊆ tp∗M(b/A).

Remark 2.17 (Types and Compactness). We note that the definition of a type basi-

cally says that a type is any set of formulas about some tuple in a structure which can

be extended to a complete description of that object in an extended structure. In some

ways, this means that a type is a slight generalization of the notion of an element to

some capacity, and it carries with it a more fundamentally model-theoretical character

– a type is the description of an object whose existence is consistent with the rest

of the structure in which the type is specified. Some classical examples of types are

objects like real numbers in the algebraic numbers, which can be specified by types

which indicate sequences of nested algebraic (rational in particular) intervals that

converge to them, but may not be realized as any particular algebraic numbers (such

as π for example).
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With this in mind, we will sometimes use the following corollary of the compact-

ness theorem : a set of formulas over n variables is an n-type if and only if the set of

formulas is finitely consistent. By compactness, this means we can adjoin a tuple of

n-many constants to realize the type, and the finite consistency will allow us to make

sure that the extension exists to realize that type.

Given the notion of a type, we may also think that, mathematically, it would

be nice for us to only work in structures where we can make sure that all of these

theoretical objects posited by types are actually realized in a structure. That way our

structure can perform its deductions with tangible objects which realize these types,

as opposed to simply letting these describable pieces of structure go unrepresented

as specific objects in the structure. The following notion captures the kinds of

structures we would like to study, but they are rarely encountered naturally outside

of mathematical logic and model theory.

Definition 2.18 (Saturation). Let M be an L-structure. We will call M κ-saturated

for a cardinal κ if for every subset A ⊆M such that ∣A∣ < κ, all of the n-types over A

are realized for each n ∈ Z+.

As one might expect, there are canonical ways of transfinitely inductively adding

all of the types over sets with cardinality less or equal to κ using theorems like

compactness, given some extra conditions, though. For the statement of the next

theorem, note that ∣L∣ represents the number of formulas in the first-order language

L up to change of variables. This set is always infinte, and its minimum possible

value is ω in general (in the case where the signature is finite or countable).

Proposition 2.19 (Existence of Saturated Extensions). Let M be an L-structure

where L is a first-order language. Furthermore, let λ ≥ ∣L∣. Then M has an elementary
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extension to a λ+-saturated L-structure ∗M of cardinality ∣∗M ∣ ≤ ∣M ∣λ.

Reference. A proof of this theorem can be found in [1] as Corollary 8.2.2.

In the context of model theory, we generally assume that whatever structure we

work with is sufficiently saturated for our purposes. These structures go by many

different names, such as big models, monster models, and universal domains. We will

call them universal domains from here forward. Working in such an extension gives

us the desired goal of having explicit representatives for each type with which we are

concerned, as guaranteed by a complete first-order theory.

We will now turn out attention to a model-theoretic tool which will be used in

chapter 6 when we develop our notion of structural approximation. This tool will be

called an ultraproduct, and it has a wide variety of uses in model theory. One of its

most important uses, on top of our application, is that ultraproducts can be used to

build construct saturated structures if their parameters are chosen just right, but we

will not go into detail about this here. Before we discuss the ultraproduct, however,

we should first define a direct product.

Definition 2.20 (Direct Product). Let {Mi ∶ i ∈ I} be an indexed family of L-

structures. The direct product of this family of structures is the structure N =∏i∈IMi

defined by letting the domain of the structure be the set of choice functions a ∶ I →

∪i∈IMi (ie, for all i ∈ I, we have x(i) ∈Mi), and define the interpretation such that

(1.) If a, b ∈ N , we say a = b if and only if a(i) = b(i) for all i ∈ I.

(2.) If a ∈ N and c is a constant symbol, then a = cN if and only if a(i) = cMi
for

each i ∈ I.
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(3.) Let f be an n-ary function symbol. Then for all a1, a2, . . . , an and b in N , we

let

fN(a1, a2, . . . , an) = b if and only if fMi
(a1(i), a2(i), . . . , an(i)) = b(i) for each i ∈ I

(4.) Let R be an n-ary relation symbol. Then for a1, a2, . . . , an ∈ N let

(a1, a2, . . . , an) ∈ RN if and only if (a1(i), a2(i), . . . , an(i)) ∈ RMi
for each i ∈ I

With the notion of a product defined, we can start defining ways of taking some

kinds of quotients of this product structure. In particular, recall the notion of a filter

from order theory. Let us take a filter F on the Boolean algebra of subsets of I. In

particular, let us define the equivalence relation on ∏i∈IMi by saying for a, b ∈∏i∈IMi

that

a ∼ b if and only if {i ∈ I ∶Mi ⊧ a(i) = b(i)} ∈ F (2.1)

We can now take the set of equivalence classes under this equivalence relations and

use it as the domain of a new structure. In particular, let us assume that F = U is an

ultrafilter of subsets of I – which is simply a maximal filter. Since the set of subsets

of I form a Boolean algebra, it is actually an equivalent condition for U to have the

property that

X ∉ U if and only if Xc = I/X ∈ U (2.2)

Now for the following definition, let us go ahead and introduce the notation that for

every ϕ statement in L, the Boolean value of ϕ in ∏i∈IMi is

∥ϕ∥ = {i ∈ I ∶Mi ⊧ ϕ}
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Let us also denote our equivalence class for an element a under the equivalence relation

(2.1) by a/F where F is the filter used to define the equivalence relation.

Definition 2.21 (Ultraproduct). Let {Mi ∶ i ∈ I} be an indexed family of L-structures,

and let U be an ultrafilter of subsets of I. Then the ultraproduct of {Mi}i∈I along U

is an L-structure with a domain equal to N = ∏i∈IMi/U , the set of all equivalence

classes defined by the equivalence relation in (2.1). We also define the interpretation

of N by the following

(1.) Equality is defined by two equivalence classes being the same one.

(2.) Let c be a constant symbol. Then we say that

cN = a/U where â ∈ a/U we have a(i) = cMi
for all i ∈ I

(3.) Let f be an n-ary function symbol and let a1, a2, . . . , an ∈∏i∈IMi. Then we say

that

fN(a1/U , . . . , an/U) = b/U where fMi
(a1(i), . . . , an(i)) = b(i) for each i ∈ I

(4.) Let R be an n-ary relation symbol and a1, a2, . . . , an ∈ ∏i∈IMi. Then we say

that

(a1/U , . . . , an/U) ∈ RN if and only if ∥R(a1, a2, . . . , an)∥ ∈ U

With all of this machinery in place, we will go ahead and state one classical, and

fairly simple, result about ultraproducts.
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Theorem 2.22 ( Loś’s Theorem). Let {Mi}i∈I be a family of L structures, and let N =

∏IMi/U be the ultraproduct of {Mi}i∈I along U . Then for every formula ϕ(x1, . . . , xn)

and any a1, . . . , an ∈∏IMi, the following holds

N ⊧ ϕ(a1/U , . . . , an/U) if and only if ∥ϕ(a1, . . . , an)∥ ∈ U

Outline. This theorem follows from a fairly simple proof by induction on the complex-

ity of formulas. In particular, everything except for induction on negation symbols

can be proven without the assumption that U is an ultrafilter, but then the fact that

U is an ultrafilter proves that step of the induction trivially by (2.2).

We will now turn our attention to our last tool, and with a biref discussion of some

of the implications of this tool in model theory. This tool was originally developed to

prove a famous theorem in model theory known as Morley’s Categoricity Theorem.

The theorem states that any theory with a countable language which is categorical in

one uncountable cardinal must be categorical in all uncountable cardinals. The tool

is meant to give a rough notion of dimension in the purely model-theoretical context.

Definition 2.23 (Morley Rank). Let M be a sufficiently saturated L-structure, and

let ϕ(x1, . . . , xn) be a formula in L. Let us define a function rk, whose output is either

−1, ∞, or an ordinal, with the following relations

(1.) rk(ϕ) ≥ 0 if and only if ϕ(Mn) is not empty.

(2.) For α + 1 a successor ordinal, we say that rk(ϕ) ≥ α + 1 if and only if there

is a sequence {ψk(x1, . . . , xn)}k∈ω of formulas such that the family {φ(Mn) ∩

ψk(Mn)}k∈ω is pairwise disjoint, and consists of definable sets with rk(φ∧ψk) ≥ α

for each k ∈ ω.
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(3.) For a limit ordinal λ, rk(ϕ) ≥ λ if and only if rk(ϕ) ≥ α for each α < λ.

We then say that rk(ϕ) = −1 if ϕ(Mn) is empty. Otherwise we say that, if it exists,

we define

rk(ϕ) = min{α ∶ α is an ordinal, and rk(ϕ) ≥ α}

and if this value doesn’t exist, then we define rk(ϕ) =∞. The output of the function

rk(ϕ) is called the Morley rank of ϕ.

Of course, one thing we can notice from this definition is that we could have

equivalently constructed the definition using definable sets instead of formulas, and

we would have obtained essentially the same definition. In fact, let D be a subset

of M defined by the formula ϕ(x). Then we can define rk(D) = rk(ϕ). We can also

note that the definable set of a structure is M = {x ∈M ∶ x = x}, and so the Morley

rank of a structure rk(M) is computed by the Morley rank of the formula x = x.

A common result in model theory to note is that ω-saturation (or ℵ0-saturation

in cardinal notation) is sufficient to compute Morley rank. More precisely, Morley

rank computed in an ω-saturated extension of a structure is equal to the Morley rank

computed in any κ-saturated extension of a structure for κ ≥ ω. This result can be

found in [5].

To solidify the idea that the Morley rank defines a dimension notion, we will

mention the following list of properties found in [1] about Morley rank.

Proposition 2.24 (Properties of Morley Rank). Let M be an ω-saturated L-structure,

let ϕ(x) and ψ(x) be L-formulas, and let χ(x, y1, y2, . . . , yn) be an L-formula without

parameters.

(1.) If M ⊧ ∀x(ϕ(x)→ ψ(x)), then rk(ϕ) ≤ rk(ψ).
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(2.) rk(ϕ ∨ ψ) = max(rk(ϕ), rk(ψ))

(3.) Let c1, c2, . . . , cn be new constant symbols adjoined to L to make a new lan-

guage. Let us consider two different interpretations (M,a) and (M,b) of this

new language L ∪ {c1, . . . , cn} over domain M such that (M,a) ⊧ ci = ai and

(M,b) ⊧ ci = bi for all i ≤ n. If (M,a) ≡ (M,b), then rk(χ(x, a)) = rk(χ(x, b))

In this proposition, (1) says that taking definable subsets can only ever reduce

Morley rank. In property (2), we see that the Morley rank of a union of two definable

sets is equal to the maximum of their ranks. Lastly, (3) tells us that if we have

any formula with parameters, then we can exchange those parameters for any other

equivalent set of parameters to obtain a formula of the same rank. All of these have the

flavor of the kinds of dimension notions that would be studied in algebraic geometry,

such as the dimension of a variety. Indeed, in [5] it is shown that the dimension of

an irreducible variety over an algebraically closed field is equal to its Morley rank.

Another notion associated with Morley rank is the idea that every definable set

of Morley rank α has a maximal finite partition into other definable sets of Morley

rank α – this follows almost immediately from the definition of Morley rank. We call

the maximum size of these partitions the Morley degree of a formula, often denoted

deg(ϕ) for a formula ϕ(x). In algebraic geometry, this is analogous to the number of

irreducible components of a variety.

Morley rank was initially developed as a tool in model theory to prove the following

theorem, which can be found proven in [1] and [5]. The proof of this theorem relies

on techniques which utilize some of the quasi-geometrical nature of Morley rank.

Theorem 2.25 (Morley’s Categoricity Theorem). Let T be a complete theory over

L. If T is κ-categorical for some uncountable cardinal κ (that is, a model M ⊧ T with
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∣M ∣ = κ is unique up to L-isomorphism), then T is λ-categorical for all uncountable

cardinals λ (we say that T is uncountably categorical).

Finally, with Morley rank defined, we will finish our model theory background

discussion with a brief return to minimal sets, and note in particular that every

definable set with Morley rank 1 and Morley degree 1 is a minimal set, since we know

that if we take any definable subset, then that definable subset must either be Morley

rank 0 (finite), or have a relative complement in the definable subset which is Morley

rank 0. However, we also note that not every minimal set will have Morley rank 1 and

Morley degree 0, since not every minimal set is defined in an ω-saturated structure.

This gives us into our following definition, which is a Morley rank definition for a

stronger notion of minimality.

Definition 2.26 (Strong Minimality). We say that a formula ϕ over M (equivalently

the set it defines) is strongly minimal if and only if its Morley rank and Morley degree

are both 1. In other words, ϕ is strongly minimal if and only if it is minimal some

ω-saturated elementary extension of M .

Strong minimality is one of the first major classification properties of model theory

which has been widely studied and mostly resolved. Some of the most important

results about strong minimality pertain to how they can be endowed with a closure

operation pregeometry structure, which is essentially a infinite matroid structure

modified by an axiom ressembling the finite-character property of closure operations.

The specific closure operation used is the following

Definition 2.27 (Algebraic Closure Operation). Let M be an L-structure, and let

D ⊆ M be a definable subset. We say that an object a ∈ M is algebraic over D is

there is a formula ϕ(x; y1, . . . , yn) and some parameters b1, b2, . . . , bn ∈ D such that
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M ⊧ ϕ(a; b1, b2, . . . , bn) and also M models the assertion that there is only finitely

many choices for x that satisfy this formula with these parameters. We then define

the algebraic closure of D as the set

aclM(D) = {a ∈M ∶ a is algebraic over D}

In Chapter 9 of [1], there is a proof that the algebraic closure operation defines

a pregeometry on any minimal subset of an L-structure. The only property which is

difficult to prove is the exchange property. Furthermore, the pregeometry allows us

to define a notion of bases, which allows us to more easily classify strongly minimal

structures, since we can develop a generalization of the theorem of matroids that

allows us to determine if two matroids are isomorphic by finding an isomorphism

between their bases.

While these structures have incredible properties, for a long time the only struc-

tures we knew to be strongly minimal were structures based on the three classical

notions of dependence relations found in mathematics : algebraic dependence in

fields, linear dependence over vector spaces, and combinatorial dependence of pairs of

vertices in a graph. To clarify, by combinatorial dependence we mean the dependence

relation defined by considering two vertices in a graph dependent if and only if they

lie in the same connected component.

These types of dependencies, as well as their abundance in the class of strongly

minimal structures, motivated the following conjecture proposed by Zilber as an initial

proposal that such structures could be seen as being among the most logically perfect

structures in first-order model theory, due to their nice classification properties. This

conjecture was also proven in a weaker form by Zilber in [11]. The conjecture is
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summzarized as follows

Conjecture 2.28 (Zilber’s Trichotomy Conjecture). The geometry of a minimal

structure is isomorphic to one of the three classical types described in the preceding

paragraphs.

This conjecture was disproven by Hrushovski in [2] which demonstrated that upon

introducing some appropriate pre-dimension notion, one could define structures which

could be used to define new kinds of strongly minimal sets whose geometries were not

recognizable as any of the types listed.

With this in mind, Hrushovski and Zilber collaborated on identifying ways in

which the Trichotomy conjecture could be salvaged. This led to the body of tools

which will be presented in the next chapters, which were initially developed in the

paper [4] to strengthen the assumptions of the Trichotomy conjecture and find a class

of structures where the Trichotomy principle at least essentially or mostly holds. The

core idea was to adapt the notion of a Zariski topology from algebraic geometry to

studying more general topologies induced by definable sets of structures, and then pick

a particularly nice set of topological properties which can control for any irregularities

one might encounter when trying to classify strongly minimal structures.
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CHAPTER 3

TOPOLOGICAL AND ZARISKI STRUCTURES

In this chapter, we will develop the first main tools for studying the geometrical

classification we would like to pursue in general model-theoretical structures. In

particular, we will develop the notion of a topological structure – which is simply a

structure where some subsystem of its definable sets are taken as the closed subsets

of a topology, and generally should have its topology generated by the logic on these

definable sets. We will then introduce some additional properties and constructs

which will be useful for developing other interesting topological notions on on these

structures, such as working towards developing a theory of infinitesimals in topological

structures. Finally, we will isolate some of our most important properties to develop

the notion of a (Noetherian) Zariski structure. Here the use of Noetherian is primarily

used as a distinguishing name from another type of Zariski structure which will not

be discussed, called an analytic Zariski structure – these are discussed in Chapter 6

of [14], however. The usual Zariski structures we consider will have a number of nice

model-theoretical properties which will prepare much of our classification theory, but

will not come to complete fruition until chapter 4 when we develop the notion of a

Zariski geometry.



29

3.1 Topological Structures

Before we directly pursue the general formulations of Zariski structures that we

would like to identify the main way we will endow mathematical structures with

topologies. In particular, our first definition will be seen as a vast generalization of

the method used to define the Zariski topologies on affine spaces of a variety. Here,

we will allow closed sets to be definable by any class of closed sets which happens to

form a topological space.

Definition 3.1 (Topological Structure). Let L be a (relational) language and let M

be an L-structure. Furthermore, let C be a family of definable subsets of M . We call

(M,C) a topological L-structure with closed sets C if it satisfies the following axioms,

which we will collectively refer to by the abbreviation (L) :

(L1.) C is closed under intersections.

(L2.) C is closed under finite unions.

(L3.) The domain M and the empty set ∅ are closed.

(L4.) The graph of equality Γeq = {(x, y) ∈M2 ∶ x = y} is closed.

(L5.) Every singleton set of M is closed.

(L6.) Cartesian products of closed sets are closed.

(L7.) Let σ be a permuation of {1,2, . . . , n} and let πσ ∶Mn →Mn be defined by

πσ(x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n))

Then if S ∈ C, then also πσ(S) ∈ C (ie. C is closed under permutations of

coordinates).
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(L8.) For any a ∈ Mm and any S ⊆ Mm+n such that S ∈ C and is defined by the

predicate S(x1, . . . , xm, y1, . . . , yn), the fiber S(a,Mn) = {b ∈Mn ∶M ⊧ S(a, b)}

over a is in C.

To give a brief motivation for the axioms as they are, let us note the following.

First, the axioms (L1), (L2), and (L3) are essentially the axioms of a topological

space for each Cn family of closed n-ary formulas over M , meaning that topological

structures define a family of topological spaces with one topology for each Mn where

n ∈ Z+. (L4) and (L5) tell us that the equality symbols and our choice of elements

in the structure should always have some bearing on how the structure is defined

(particularly, we include all sets defined by equality and parameter substitutions into

equality). (L6) gives us as way of representing the process of conjoining two different

formulas without necessarily mixing the use of variables between them. To give an

example from this from algebraic geometry. Consider the two varieties

V1 = {(x1, x2) ∈ R2 ∶ x21 = x2} and V2 = {(x1, x2, x3) ∈ R3 ∶ y21 + y22 = y23}

then we can take the conjunction of these two varieties without necessarily mixing

their variables by taking the Cartesian product

V1 × V2 = {(x1, x2, y1, y2, y3) ∈ R5 ∶ (x1, x2) ∈ V1 ∧ (y1, y2, y3) ∈ V2}

= {(x1, x2, y1, y2, y3) ∈ R5 ∶ x21 = x2 ∧ y21 + y22 = y23}

(L7) guarantees that our choice of which element of our tuples represents which

variable in a formula has no effect on whether or not a set is considered closed. For

example, without the axiom we could conceivably allow
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{(x, y) ∈ R2 ∶ x2 = y}

to be a closed set of R, but also disallow

{(x, y) ∈ R2 ∶ y2 = x}

from being considered a definable subset, which seems inconsistent with the goal to

induce the topology of our space from the logical properties of the closed sets of our

structure. (L8) allows us to substitute variables with parameters into the formulas

defining our closed subsets to obtain new closed sets. As a quick example, if we take

the double-cone in R3, defined by our variety V2 above, to be closed; then we must

accept that every circle in R2 obtained using any real number r by

S1
r = {(x1, x2) ∈ R2 ∶ (x1, x2, r) ∈ V2} = {(x1, x2) ∈ R2 ∶ x21 + x22 = r2}

must also be closed.

Example 3.2 (Zariski Topologies of Algebraic Geometry). Let K be a field and let

An(K) = Kn. We call An(K) affine n-space over the field K. We can endow An(K)

with the affine Zariski topology by letting the its closed sets Cn be the polynomial

equations in n-variables with parameters from K (or, affine varieties, as we called

them in our example of definable sets).

Remark 3.3. We will often refer to a topological structure (M,C) by its domain M ,

and we will usually assume that C is assumed from context.

With these axioms, it is easy to verify some basic facts about topological struc-

tures. First, let us note that every projection map π ∶ Mn+k → Mn is continuous in
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this topological structure. This is because for each S ⊆ Mn closed, the preimage is

given by π−1(S) = S ×Mk. By (L3) and (L6), we know that this set is also closed.

In the the topological structure setting, we can identify sets by the formulas which

define them. For example, let us consider S1, S2 ∈ C. Then we can define the Boolean

operations of S1 and S2 as such

S1(x) ∧ S2(x) = S1 ∩ S2 S1(x) ∨ S2(x) = S1 ∪ S2

Our only note is that the complement operation nor our quantifiers will necessarily

give us a closed sets

Definition 3.4 (Constructible Sets). Let (M,C) be a topological structure with

closed sets C. A subset S ⊆ Mn is called a constructible set in M if S is equal to a

Boolean combination of elements of C. Equivalently, M is constructible if it is a finite

union of sets of the form F ⊆cl G ⊆op M .

Constructible sets give us a way of expanding our sets of consideration to combi-

nations of sets which may use negation symbols on closed sets. In particular, we can

define the closure Q as the smallest closed set containing Q, and every constuctible

set Q can be written in the form
n

⋃
i=1
Fi/Si (3.1)

where each Fi and Si is closed.

We will now introduce the notion of a projective set to expand our consideration

to combinations which might also use the existential quantifiers on some variables in

our constructible sets.
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Definition 3.5 (Projective Sets). Let M be a topological structure. A set S is called

a projective set in M if S is the image of a constructible set under a projection map.

Equivalently, S is projective if it is a finite union of projections of sets of the form

F ⊆cl G ⊆op M .

With the following definitions in place, let us briefly note that every constructible

set of M (under a given system of definable closed sets) is a projective set of M , and

every projective set of M is a definable set of M . Often times we will talk about

whether or not we can reduce certain classes of subsets to each other, and that will

generally denote some kind of topological property.

We now list some extra properties which can be developed for topological struc-

tures, which are lifted precisely from definitions sometimes used in algebraic geometry.

Definition 3.6 (Some Topological Properties). The following properties can be used

to describe topological structure M (or one of its closed subsets) which satisfies the

respective properties :

1. (Complete) : M is called complete if it satisfies the properness of projections

property, which we will abbreviate as (P) :

(P) : Let S ⊆cl Mn and pr ∶ Mn → Mm be a projection map. Then

pr(S) ⊆cl Mm.

2. (Quasi-Compact) : M is called (quasi-)compact if it is complete and satisfies

the following property, which we will abbreviate (QC) :

(QC) : Let F = {Fi}i∈I be a famiy of closed subsets of Mn. If F is finitely

consistent, then the intersection ⋂
i∈I
Fi is nonempty.
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3. (Noetherian) : M is called Noetherian if it satisfies the descdending chain

condition for its closed subsets. This is the following property, abbreviated

(DCC) :

(DCC) : Let Si ∈ C for i ∈ Z+ be a family of closed sets with

S1 ⊇ S2 ⊇ . . . ⊇ Sn ⊇ . . .

then there is some N ∈ Z+ such that SN = Sn for all n ≥ N

The definition of completeness in the above definition comes from the definition

of completeness of an algebraic variety. The term quasi-compact was a separate

term introduced in algebraic geometry to delineate this definition (which is simply

compactness in general topology) from the algebro-geometric notion sometimes used

to mean compactness, which means compact and Hausdorff in general topology terms.

The Noetherian property is an important property in algebraic geometry, and here

we presented the general topological definition of Noetherian.

Definition 3.7 (Irreducible Set). A definable set S is called irreducible if there is no

two relatively closed proper subsets S1 ⊂cl S and S2 ⊂cl S such that S = S1 ∪ S2.

This definition of an irreducible set is once again a lift of precisely the same notion

from algebraic geometry to a general topology context.

Proposition 3.8 (Irreducible Decomposition). Let S be a Noetherian definable subset

of a topological structure M . Then there is a unique collection of distinct subsets

S1, S2, . . . , Sn such that each Si is an irreducible, closed subset of S and S = S1 ∪S2 ∪

. . . ∪ Sn. Furthermore, each Si is called an irreducible component of S.
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Note that if M is Noetherian, then every closed subset is a Noetherian, definable

subset of M . With that, can expand our decomposition of constructible sets into

relatively closed irreducible subsets of open sets in M . In other words, if Q is a

constructible set of a Noetherian topological space, then we can write

Q =
n

⋃
i=1
Fi/Si

for some Fi, Si closed with Fi irreducible in M .

Let us now list a collection of topological properties which will be useful to note

about topological structures.

Theorem 3.9 (Properties of Topological Structures). Let M be a topological struc-

ture.

(1.) For S ⊆cl Mn and pr ∶ Mn → Mk, then pr(S) is irreducible if and only if S is

irreducible.

(2.) For n, k ∈ Z, the topology on Mn+k extends the product topology on Mn ×Mk.

(3.) If S1, S2 are closed, irreducible sets, then pr(S1) and S1 × S2 are irreducible as

well.

(4.) If F (x, y) is a relation defining a closed set, then ∀yF (x, y) defines a closed set

as well.

Proof. Let us first prove (1). Note that topological closure and images of functions

distribute over finite unions, so if S is reducible, the closures of the images of the

components of S will serve to demonstrate pr(S) is reducible. Also suppose that
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pr(S) is reducible. Then pr(S) = F1 ∪ F2 for some disjoint closed subsets F1 and F2.

So

pr−1(pr(S)) = pr−1(F1 ∪ F2) = pr−1(F1) ∪ pr−1(F2) ⊇ S

therefore S1 = pr−1(F1) and S2 = pr−1(F2)∩S will form a reduction of S. This proves

(1).

(3) is fairly easy to prove via similar techniques. (2) follows from the fact that the

product topology is the initial topology with respect to projection maps, and so

because Mn+k continuously maps to each of its factors by the projection map, it must

be at least as refined a topology as the product topology on Mn+k. (4) follows from

the fact that

D = {x ∈Mn ∶ ∀yF (x, y)} = ⋂
a∈Mk

F (Mn, a)

which is closed by the fact that eacy F (Mn, a) is closed by axiom (L8), making their

intersection also closed.

With some basic topological details in place, we would now like to develop a notion

of infinitesimals for a topological structure. The notion of an infinitesimal of a point,

say a ∈M , will essentially be understood as a point that would sit in the closure of a

if it existed in the space M . This notion will be captured in the following definition,

which can be considered a way of expressing a space of infinitesmials.

Definition 3.10 (Specialization). Let ∗M ≽ M and let M ⊆ A ⊆ ∗M . A (partial)

specialization from A to M is a function π ∶ A→M such that for each S closed n-ary

relation defined over M and each a ∈ Mn, if a ∈ ∗S = {x ∈ ∗Mn ∶ ∗M ⊧ S(x)} then

π(a) ∈ S. If A = ∗M , then π is called a total specialization.



37

Example 3.11 (Hyperreals). Let R and ∗R be the real numbers and hyperreals num-

bers, respectively with their topological structures induced by the positive atomic

formulas in the language of ordered fields (the subalgebraic sets over these fields).

Consider the subset ′R ⊆ ∗R defined by

′R = {x ∈ ∗R ∶ x = r + ε for some r ∈ R and ε > 0 such that ε < s for all s ∈ R}

This set ′R is often called the set of finite hyperreals. On the finite hyperreals, we can

define the standard part map

st ∶ ′R→ R by st(r + ε) = r

The standard part map is a classical example of a partial specialization from ′R to

R. This can be shown to be a specialization by first showing that the standard part

map preserves addition, proving that every set is closed if and only if it is a translate

of a closed set about 0, and then proving that every infinitesimal preserves M -closed

sets when mapping to 0. Specialization follows trivially when this fact has been

established.

With this example in mind, we realize that we can try to lift some of the same intu-

itions about specializations from the hyperreals to the general case of specializations

for topological structures. The next definition we will establish will be an analogue

of the monad (or halo) of a point from nonstandard analysis – that is, we can take

the preimage of a point in our base space to obtain its infinitesimal neighborhood with

respect to the specialization.

Definition 3.12 (Infinitesimal Neighborhood). Let a ∈ M and (let (∗M,π) be a
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universal pair for now), then the infinitesimal neighborhood of a under π is the

preimage

Va = π−1(a)

Along with the notion of a specialization, we might find ourselves particularly

interested in total specializations since they use the entire structure of the extension,

since this would allow us to transfer the same operations and relationships from the

base structure to the infinitesimals of the space. The following theorem tells us that

if our space is quasi-compact, then we can always guarantee that we can always build

such an extension.

Proposition 3.13 (Total Extensions of Partial Specializations). Let M be a quasi-

compact topological structure and let ∗M ≽ M . Then any partial specialization from

∗M to M can be extended to a total specialization. In particular, a total specialization

from ∗M to M exists.

Proof. Let π be a partial specialization of ∗M onto M . Suppose π is defined on

D ⊆ ∗M and b′ is an element of ∗M not in the domain of π. We want to extend π to

D ∪ {b′}. Let

Φ = {S(x, d) ∶ S ⊆cl Mn+1 and ∗M ⊧ S(b′, d′) for some d
′ ∈Dn where π(d′) = d}

By definition, each of these S(M,d) sets is empty because ∃xS(x, ∗M) is nonempty by

definition, and is closed by completeness of quasi-compact spaces, soM ⊧ ∃xS(x,π(d′)).

Furthermore, every finite intersection of such sets is in the set, so they must also be

nonempty. Therefore, by quasi-compactness, the whole intersection of sets defined by

formulas in Φ is nonempty. Let b ∈ ⋂Φ(M) and extend π(b′) = b. This extension is
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a partial specialization. We can then proceed to do this inductively for each b ∈ ∗M

until π is total.

To prove that a total specialization will always exist, note that the identity map

is a partial specialization that always exists – and by the preceding argument, it has

a total extension.

We would like to understand what kind of topological information a specialization

captures about the structure onto which it specializes. We can define a topological

structure by considering the π-closed subsets of M induced by the specialization of

∗M onto M .

Definition 3.14 (π-closed Sets). Let π ∶ ∗M → M be a partial specialization. We

say a definable set P ⊆ Mn is π-closed if π(∗P ) ⊆ P . The collection of such sets is

denoted Cπ for specialization π.

In context of our definition of specializations, it should be noted that every closed

set (element of C) is automatically closed, however this family of closed sets does not

encompass all definable subsets – as we’ve already observed with our open subsets,

which are definable over M , but not necessarily closed. We also note that P ⊆ π(∗P )

follows for free since P ⊆ ∗P and π(p) = p for all p ∈ P . This means we could have

replaced ’⊆’ with ’=’ in the definition to obtain an equivalent definition.

We would like to note some of the topological properties that the topologies of

these

Proposition 3.15 (Saturated Total Specializations demonstrate Compactness). Let

π ∶ ∗M →M be a total specialization with ∗M saturated. Then the topological structure

of π-closed subsets of M is quasi-compact.
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Proof. Completeness is immediate, since every map commutes with projection and

projections of closed sets are definable.

To prove quasi-compactness, consider a family of closed sets {Si}i∈I in Mn. Then

⋂i∈I ∗Si is nonempty since ∗M is saturated. Let c′ be in the intersection in ∗M . Then

π(c′) ∈ ⋂i∈I Si. Therefore M is quasi-compact.

One note about the proof of this theorem is that our proof that Cπ never invoked

the saturation of ∗M , nor did it invoke the totality of the specialization. This means

we have also proven that the topological structure induced by Cπ is always complete.

Furthermore, we realize that our choice of specialization onto our structure M will

induce different properties on the structure of π-closed sets. With this in mind, we

motivate the next definition with the aim of identifying a class of specializations onto

M under which the π-closed sets and the ordinary closed sets of M coincide.

Definition 3.16 (Universal Specialization). Let ∗M ≽ M and let π ∶ ∗M → M

be a specialization. We call this pair (∗M,π) a universal pair over M if for every

elementary extension ′M ≽ ∗M and any finite A ⊆M and specialization π′ ∶ A∪ ∗M →

M extending π, there is an elementary embedding α ∶ A→ ∗M over A∩ ∗M such that

π′ = π ○ α over A

Proposition 3.17 (π-closed sets are precisely closed sets in Universal Specializa-

tions). Let (∗M,π) be a universal pair over M , and let S ⊆Mn be a definable set of

M . Then S is π-closed if and only if S is closed. In other words, C = Cπ.

Proof. We start by proving the following claim
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Claim 3.18. Let S0 be a relatively closed subset of S, and suppose that for some s ∈ S

there is a s′ ∈ Vs ∩ S0. Then s ∈ S0.

This claim follows fairly trivially from the fact that S0 = S0 ∩S and s = π(s′) ∈ S0

by s′ ∈ Vs. This gives us that every closed subset is π-closed. Now let us prove the

other direction.

The other direction is proven in [14] as Proposition 2.2.24 in Chapter 2, Section

2.

With this in mind, we would like to work with universal specializations when-

ever we can, so that our infinitesimals faithfully represent the closed subsets of our

base space. Fortunately, we can always guarantee the existence of such a universal

specialization.

Proposition 3.19 (Universal Specialization Existence). Every topological structure

M has a universal pair (∗M,π). Furthermore, if M is quasi-compact, this π will be

total.

Proof. The proof here will replicate the general kind of proof strategy used to build

saturated extensions.

Begin with M0 ≽ M with specialization π0 ∶ M0 → M . We construct a chain of

elementary extensions M0 ≼M1 ≼ . . . ≼Mi ≼ . . . of length ω with partial specialization

πi ∶Mi →M and πi ⊆ πi+1 for each i < ω. In the case where M is quasi-compact, we

note that we can always choose πi to be total.

To construct each pair(Mi+1, πi+1) given (Mi, πi) constructed, consider the set

{(Aα, aα, pα(x)) ∶ α < κi}
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where each Aα is a finite subset of Mi, aα ∈Mn, and pα(x) is an n-type over M ∪Aα

and κ is the cardinality of all possible tuples. We now construct specializations πi,α

for each α < κi such that πi,α ⊃ πi with domain extended to some Ni,α.

Let Ni,0 = Mi and πi,0 = πi. At the limit ordinal steps α, take the union of all

functions defined at previous steps. On successor steps, follow the decision rule

(i.) If there is some b satisfying pα, and a specialization π′ ⊇ πi,α sending b to aα,

then let Ni,α+1 = Ni,α ∪ {b} and πi,α+1 = π′

(ii.) Otherwise, let Ni,α+1 = Ni,α and let πi,α+1 = πi,α

Now let Mi+1 be a model containing Ni,κi and let πi+1 be a specialization extending

πi,κi from Mi+1 to M . Again, if M is quasi-compact, these can be chosen to be total.

We finally note that for each ′M ≽ Mi+1 ≽ M and any finite subset B ⊆ ′M

with specialization π′ ∶ B ∪Mi → M extending πim we can define an elementary

isomorphism (that is, a bijective map that preserves first-order formulas in both

directions) α ∶ B →Mi+1 over M ∪ (B ∩Mi) such that π′ = π ○α over B. Therefore, if

we let

∗M = ⋃
i<ω
Mi and π = ⋃

i<ω
πi

then we will have (∗M,π) as a universal pair.

As noted in the proof of the previous theorem, let us also note the following, which

can be obtained by a modification of the proof of the previous theorem, but making

sure to alternate between steps that saturate the structure and steps that build a

universal specialization on the structure.
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Proposition 3.20 (Universal and Saturated Extension). Let M be a topological

structure with universal pair (∗M,π) specializing to it. Then there is a structure

∗∗M ≽ ∗M and a specialization ∗π ∶ ∗∗M → ∗M such that the following hold :

(1.) (∗∗M, ∗π) is a universal pair over ∗M .

(2.) (∗∗M,π ○ ∗π) is a universal pair over M .

(3.) ∗∗M is ∣∗M ∣+-saturated.

In other words, every topological structure has a saturated elementary extension which

universally specializes to it.

With this in place, we can now start developing more geometrical notions for

such structures, such as dimension and covering maps. In particular, we will con-

sider certain kinds of topological structures with particularly nice dimension notions

and projection properties Zariski structures, which are an intermediate topological

structure towards building Zariski geometries, which have many of the nice model-

theoretical propreties of Zariski geometries, but lack some of the nice properties which

make the geometry on these structures similar to algebraic varieties over algebraically

closed fields.

3.2 Zariski Structures

With the basic topological structure notions in place, we would like to start

introducing some more geometrical structure to these topologies, and begin to develop

some commonly used constructs that often appear in more geometrically-oriented

studies of topological spaces. In particular, we will introduce the notion of a Zariski

structures. The geometrical conditions of Zariski structures will be shown to admit
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nice model-theoretical properties and transfer under taking elementary extensions

of Zariski structues – particularly the universal specializations over the space. We

will also introduce the notion of covering maps of topological structures, which will

be useful later when we develop infinitesimal analysis over a more well-behaved

subclass of Zariski structures, which will be our Zariski geometries. We will begin by

introducing a good dimension notion for topological spaces.

Definition 3.21 (Good Dimension Notion). Let X be the family of all projective

subsets of M . A function dim ∶X → ω is called a good dimension notion if it satisfies

the following properties :

�(DP) Dimension of Points : dim({a}) = 0 for every a ∈ Mn. Every point is 0-

dimensional.

�(DU) Dimension of Unions : dim(S1∪S2) = max{dim(S1),dim(S2)} for every S1, S2 ∈

X.

�(SI) Strong Irreducibility : Let S ⊆cl U ⊆op Mn and let S be irreducible. For any

relatively closed subset S′ ⊆cl S where S′ ≠ S we have dim(S′) < dim(S).

�(AF) Addition Formula : Consider an irreducible S ⊆cl U ⊆op Mn and projection

pr ∶Mn →Mm. Then

dim(S) = dim(pr(S)) + min
a∈pr(S)

{dim(pr−1(a)) ∩ S}

�(FC) Fiber Condition : For any irreducible S ⊆cl U ⊆op Mn and projection pr ∶Mn →

Mm. Then there is a relatively open subset V ⊆op pr(S) such that for any b ∈ V

min
a∈pr(S)

dim(pr−1(a) ∩ S) = dim(pr−1(b) ∩ S)



45

In other words, there is an open subset on which the dimension of the fibers of

pr(S) is minimized.

This notion of dimension is defined to mimic the kinds of dimension properties

that we find with dimension notions from algebraic geometry, such as the dimension

of an irreducible variety in terms of the maximal lengths of descending chains of

irreducible subvarieties. Furthermore, with this notion of dimension, we note that we

can now give a notion of a what it means for a point to be generic, which will be a

convenient notion for proving generic properties of subsets of topological structures.

Definition 3.22 (Generic Point). For M ≺ ′M , we say that a point a′ ∈ ′Mn and let

S ⊆cl Mn be an irreducible subset such that a′ ∈ S( ′M). If dim(S) is minimal with

respect to all closed subsets satisfying these conditions, then we say that a′ is generic

in S.

To clarify this definition of a generic point, consider the following interpretation

of what it means for a′ ∈ S( ′M) to be non-generic : this means that a′ is in an

irreducible, closed subset of Ŝ ⊆ Mn with dim(Ŝ) < dim(S). Therefore Ŝ ∩ S must

have strictly smaller dimension than S, which means that we can omit Ŝ from S to

obtain a subset S/Ŝ which keeps the same dimension, but now omits the point a′ in

the specialization. In other words, the set of generic points of S are the set of points

from S that cannot be removed without also removing a non-negligible component of

S and its infinitesimals.

Definition 3.23 (Zariski Structure). Let M be a Noetherian topological structure.

If M is endowed with a good dimension notion dim, then (M,dim) – often denoted

as simply M – is called a Zariski structure if it satisfies the following condition :
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�(SP) Semi-properness of projections : For any closed irreducible subset S ⊆cl Mn and

projection pr ∶Mn →Mm, there is a subset F ⊂cl pr(S) closed in Mm such that

pr(S)/F ⊆ pr(S)

Recall that the Noetherian property of a Zariski structure M means that every

closed subset of M is reducible to a finite union of irreducible components. With

this in mind, one can often prove theorems without loss of generality on irreducible

subsets. Thus we can assume that M itself is irreducible without loss of generality.

Let’s also note the following propositon, which will be useful later when we proving

some facts about coverings of Zariski structures. We present it without proof.

Proposition 3.24 ((Addition Formula for Reducible Sets)). For a topological struc-

ture M with a good dimension notion, assume S ⊆cl U ⊆op Mn and that S0 ⊆cl S with

dim(S0) = dim(S). Then

dim(S) ≥ dim(pr(S)) + min
a∈pr(S)

{dim(pr−1(a) ∩ S)}

Along with the usual properties of Zariski structure, we also list the following

properties which Zariski structures can have; which we be useful later when we develop

the notion of a so-called Zariski geometry.

Definition 3.25 (Some Additional Properties for Zariski Structures). Let M be

a topological structure. Here we define the following properties, labelled by the

abbreviations we will use for the properties :

�(EU) Essential Uncountability : We say M is essentially uncountable if for every

S ⊆cl Mn such that S =
∞
⋃
k=0
Sk for some Sk ⊆cl Mn, then there is finitely-many of

those sets Sk1 , Sk2 , . . . , Skn such that S =
n

⋃
i=1
Ski .
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�(PS) Pre-Smoothness : We say M is pre-smooth if for every S1, S2 ⊆cl Mn irreducible

subsets, then for every S′ ⊆cl S1 ∩ S2 irreducible component, we have

dim(S′) ≥ dim(S1) + dim(S2) − dim(Mn)

We will occasionally note some results about these properties along the way to

defining Zariski geometries, but for now we will consider them imporant for what

model theoretic results they will admit in structures which satisfy them. In particular,

the next theorem will give us one of the main model-theoretical properties about

Zariski structures, which will demonstrate how powerful the logical relationships on

these structures are, and give us directions for how to adapt these structures to

become minimal structures in the sense described in chapter 2.

Theorem 3.26 (Zariski Structures Admit Quantifer Elimination). Let M be a Zariski

strucrure. Then for every definable subset Q ⊆Mn, Q is constructible.

Proof. Recall that any constuctible set is of the form

Q =
n

⋃
i=1
Si/Pi

where each Si, Pi is closed and irreducible. Consider the projection map pr ∶Mn+1 →

Mn. It is sufficient to prove that pr(Q) will be constuctible itself. Without loss

of generality, we may also assume Q = S/P with Q nonempty. Let us proceed by

induction on dim(S). Let

dS = min
a∈pr(S)

{dim(pr−1(a) ∩ S)} = min{dim(S(M,a)) ∶ a ∈ pr(S)}
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and let

F = {b ∈ pr(S) ∶ dim(P (M,b)) ≥ dS}

We note that the closure of F is F ⊂ pr(S) by (FC). Thus dim(F ) < dim(pr(S)) since

pr(S) is irreducible. Then we let S′ = S ∩ pr−1(F ). From this, we gather than S′ ⊂ S

since F ∩ pr(S) ≠ pr(S). So dim(S′) < dim(S) by irreducibility as well. Then finally,

we see

pr(Q) = pr(S/P ) ⊆ pr(S′/P ) ∪ (pr(S)/F )

But pr(S)/F ⊆ pr(Q) since if b ∈ pr(S)/F , then P (M,b) ⊂ S(Mb) This makes the

equality hold

pr(Q) = pr(S′/P ) ∪ (pr(S)/F )

We then apply induction on S′/P and note that pr(S)/F is already constructible.

Given that we can do quantifier elimination in a Zariski structure, this means

that we can extend our definition of dimension to all definable subsets since every Q

definable in M can be written as

Q =
n

⋃
i=1

(Si/Pi)

with each Si, Pi closed and each Si irreducible since M is Noetherian. This means

that we can take the closure to be

Q =
n

⋃
i=1
Si

which means that we can compute dim(Q) = dim(Q) = max
1≤i≤n

{dim(Si)}. Furthermore,

in a Zariski structure we can work with the following additional form of the Fiber
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condition.

Proposition 3.27. Let M be a Zariski structure. Then the following condition holds

�(FC ′) For any projection map pr, closed irreducible S ⊆Mn, and k ∈ N; the set

Ppr(S, k) = {a ∈ pr(S) ∶ dim(S ∩ pr−1(a)) > k}

is constructible and is contained in a proper, relatively closed subset of pr(S)

provided

k ≥ min
a∈pr(S)

{dim(pr−1(a) ∩ S)}

Outline. Proven by induction on dimension of S. The statement is trivial for zero-

dimensional case, and the case where k < mina∈pr(S){dim(pr−1(a) ∩ S}. We can

substract the union of the fibers over the open set obtained from (FC) from the

set S to obtain a subset S′ of smaller dimension, which we can show that Ppr(S, k) =

Ppr(S′, k), where we can also show S′ is contained in pr(S)/U .

We would now like to prove some results about the Morley rank of Zariski struc-

tures. In particular, given our motivation, we should be expecting that some general

classes of Zariski structures will have at least finite Morley rank, as we can see with

irreducible varieties over algebraically closed fields – since their dimensions are equal

to their Morley ranks. In fact, essential uncountability constitutes one of these classes

of structures. This can be captured in the following model-theoretical reformulation

of essential uncountability, which is proven in [14].

Lemma 3.28. A Zariski structure M is essentially uncountable if and only if it is

ω1-compact, ie all of its countable types are realized.
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As a brief remark, we note that ω1-compactness is not ω1-saturation, since a type

can include uncountably-many sentences using countably-many parameters. However,

we can note that every ω1-saturated structure must be ω1-compact. With this lemma,

we can prove that essentially uncountable Zariski structures have finite Morley rank

fairly easily.

Theorem 3.29 (Essentially Uncountable Zariski Structures have Finite Morley Rank).

Any Zariski structure M satisfying (EU) has finite Morley rank. More precisely,

rk(Q) ≤ dim(Q) for any definable set Q of M .

Proof. We first note that if dim(Q) = 0, then Q must be finite. Hence rk(Q) = 0.

This initialized the base case of an inductive proof. We will now prove the inductive

step by contradiction. Suppose that dim(Q) ≤ n but rk(Q) ≥ n+1 for some n ≥ 0. We

may assume without loss of generality that Q is irreducible. By definition of Morley

rank, we know that there must be, for any k ∈ Z+, some disjoint Q1,Q2, . . . ,Qk with

rk(Qi) ≥ n such that

Q ⊇ Q1 ∪Q2 ∪ . . .Qi

Let i = 2. Then by the induction hypothesis dim(Q1),dim(Q2) ≥ n. Since Q is

irreducible, dim(Q1∩Q2) ≥ n ≥ 0, which is a contradiction since these sets are disjoint.

This theorem will be useful later when we start to develop some pieces of the

dimension theory of Zariski geometries in chapter 4.

Now that we have defined the notion of a Zariski structure, let us consider more

properties about algebraic varieties. In particular, let us note the following theorem;

which should elucidate some of the connections between these properties and classical

algebraic geometry in a more concrete way.
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Theorem 3.30 (Algebraic Varieties over ACFs are Zariski Structures). Let M be

an algebraic variety over some An(K) for some algebraically closed field K with its

induced subspace topological structure from An(K), and dimension notion defined as

its Krull dimension. Then M is a Zariski structure. Furthermore M satisfies (PS) if

M is smooth, and M satisfies (EU) if and only if K is uncountable.

Outline and References. Verifying that varieties are Noetherian topological structures

is a fairly standard set of properties proven in standard textbooks in algebraic ge-

ometry. As we also noted, the given definition of dimension can be easily shown

to satisfy (DP), (DU), and (SI) in the definition of a good dimension notion. The

proof of (AF) and (FC) can be found in [9] as Theorem 1.25 in Chapter 1, Section 6.

(PS) is proven using basic arguments about dimensions of tangent spaces and local

dimension of varieties, which can be found in Chapter 2 of [9].

We will remark in the next chapter that the model-theoretical properties of alge-

braic varieties are much richer than the model theory of general Zariski structures.

We will seek to isolate the properties which capture this amount of model-theoretical

characterization in the notion of a Zariski geometry, which will encompass the kinds of

structures whose geometries will even more closely ressemble algebraic varieties. Until

then, let us turn our attention to some other constructs pertaining to the analysis of

Zariski structures which will be useful for us later when we develop such geometries.

3.3 Elementary Extensions of Zariski Structures

With some of the general definitions, properties, and examples of Zariski structures

provided; we can now go ahead and start to develop some more of the theory of how

the properties of Zariski structures are preserved under operations such as taking
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elementary extensions and substructures, so that we can later develop some theory

of how to construct new topological and Zariski structures from old ones while still

remaining within the same general classes of topological structures. In particular, we

can canonically define a Zariski structure on any elementary extension of a Zariski

structure.

Construction 3.31 (Zariski Topology of Elementary Extensions). Let ′M ≽M . We

declare any set of the form ′S = S(a, ′Mm) is closed whenever S is a closed subset of

M (l +m) and a ∈ ′M l. If a closed set is defined with parameters from A, we call the

set A-closed.

Furthermore, we can extend the dimension notion of M to ′M by letting

dim(S(a, ′M)) = max{k ∈ N ∶ a ∈ P(S, k)} + 1

where

P(S, k) = Ppr(S, k) = {a ∈ pr(S) ∶ dim(S ∩ pr−1(a)) > k}

from the augmented fiber condition in Proposition 3.24. This holds because if S ⊆

M `+m is M -closed, then there is a bound b =mdim(M) on the dimension of the fibers

of S by (AF). So there is a maximal b ∈ N such that a ∈ P(S, b), and since this set is

definable, then we know that this set will be satisfied in ′M precisely for each k for

which it is satisfied in M .

With some extra verification, we can demonstrate that this Zariski structure on ′M

is well-defined so long as we assume M is an essentially uncountable Zariski structure.

This is captured in Theorem 3.5.25 in Chapter 3, Section 5 of [14]. An important
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tool in studying the elementary extensions of Zariski structures is the following, which

is indeed used to prove the well-definedness of this extension.

Definition 3.32 (Combinatorial Dimension). For a ∈ ′Mn and A ⊆ ′M , define the

locus of a over A to be the intersection of all A-closed sets containing a. Then define

the combinatorial dimension of a over A as

cdim(a/A) = dim(locus(a/A))

This definition is indeed a generalization of the notion of transcendence degree

used in algebraic geometry and field theory. In particular, suppose that ′K is a field

extension of an algebraically closed field K, and suppose that a ∈ ′Kn and A ⊆ ′K,

then

cdim(a/A) = tr.d(a/A)

In this sense, the function cdim gives a means of defining the algebraic dependence

of a on the set of objects A. The following proposition captures this more precisely,

and will be useful later when we discuss elementary extensions of Zariski geometries.

Proposition 3.33 (Loci Minimize dimension of Fibers). Assume S is closed in M l+k

and pr ∶M l+k →Mk is the projection map, and assume pr(S) = locus(a/M) for some

a ∈ ′Mk. Then

dim(S(a, ′M)) = min
a′∈pr(S)

{dim(S(a′,M))}

Proof. Let ` = dim(S(a, ′M)). Then a ∈ P(S, `−1), and hence P(S, `−1) = pr(S).

With some of these basic facts in mind, let us turn towards other tools which

are useful for analyzing Zariski structures. In particular, let us note some basic
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results about how topological structure with dimension can be analyzed by irreducible

relations over them.

3.4 Coverings of Zariski Structures

Another tool useful in algebraic geometry and topology is the notion of covering

spaces and branched coverings. To generalize these to the context of topological

structures with dimension, we use the following definition, along with some of the

properties these covers can have

Definition 3.34 (Coverings and some related definitions). Let M be a topological

structure with dimension. If F (x, y) ⊆cl V ⊆op Mn ×Mk is irreducible and pr ∶Mn ×

Mk →Mn such that pr(F ) =D, then we say F is an (irreducible) covering of D

� (Discrete Covering): The covering is called discrete over a ∈D if dim(F (a, v)) =

0.

� (Finite Covering) : The covering is called finite over a ∈D if F (a,Mk) is finite.

� (Dimension of Generic Fiber) : We define r = min
a∈D

(dim(F (a,Mk))) the dimen-

sion of a generic fiber of the cover F .

� (Regular Point of a Cover) : We call a point a ∈ D a regular point of F if

dim(F (a, y)) is equal to the dimension of a generic fiber. Let us denote the set

of regular points of F over D by reg(F /D)

With branched coverings, the main idea is that we can identify all the points of

the base space (the space being covered) which have zero-dimensional fibers – which

in the ordinary context corresponds to identifying points over which the branched

covering is simply a covering map. The next proposition and its corollaries aim to
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elucidate some of our choices in our previous definition and how they will serve as a

nice tool for doing dimension theory on topological structures.

Proposition 3.35 (Bound on Dimension of Irregular Points). Let F be a covering

of D. Then

dim(D/reg(F /D)) ≤ dim(D) − 2

Proof. Let the set of points in F over irregular points F ′ = {(a, b) ∈ F ∶ a ∈ (D/reg(F /D))}

is a proper closed subset of F . But (SI) we know dim(F ′) < dim(F ). By the addition

formula for reducible sets in Proposition 3.24,

dim(F ′) ≥ r + 1 + dim(D/reg(F /D))

The inequality follows from some algebraic manipulation.

This upper bound allows us to isolate some nice cases of coverings. In particular,

we get the following case almost trivially

Corollary 3.36 (One-dimensional base spaces are regular). Let F be a covering of an

irreducible set D where dim(D) = 1. Then every a ∈D is regular under the covering.

Also, even without using the proposition, we can recover a case similar to the

ordinary case of regular points in the context of branched coverings. This is captured

in the next proposition, which is trivial from the definitions.

Proposition 3.37. Let F be a finite cover of D at a. Then the dimension of a

generic fiber of F is 0. Furthermore, for every a′ ∈ Va we have a′ ∈ reg(F ∗/D∗) where

(∗M,π) is a universal pair with saturated ∗M over M .
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While there are some interesting properties of coverings in the context of general

Zariski structures, their true power can be recognized when we study covers over pre-

smooth sets, and what those covering properties will tell us in context of studying the

Zariski geomtries we have been anticipating throughout this chapter. In particular,

we will recognize that our notion of pre-smoothness is defined purely dimensionally,

and so these theorems regarding the dimensions of fibers at points will give us ways

to see how pre-smoothness transfers between covering spaces and their base spaces.
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CHAPTER 4

CLASSICAL ZARISKI GEOMETRIES

Zariski structures provide an excellent building block towards the kinds of classi-

fication theorems we expect to resolve the Zilber trichotomy problem, but we will see

in chapter 5 that these axioms are not quite sufficient to complete our classification.

Throughout this chapter, we will develop the notion of a Zariski geometry, which will

be a special kind of Zariski structure which admits a notion of infinitesimal analysis

and a notion of families of curves which have branches with trajectories that can be

classified according to their tangency. We will then use these notions to define group

and field structures on the curves of sufficiently ample Zariski geometries, which will

then allow us to determine that these ample Zariski geometries consist only of curves

which can be interpreted in in these field structures that the curves define.

4.1 Zariski Geometries

Before we define Zariski geometries, we will need to first generalize the definition

of pre-smoothness to all constructible sets. Fortunately, this is mostly just a simple

lift of the previous definition of pre-smoothness to the induced subspace topology

on the contructible subset, but with some extra condition that guarantee properties

pertaining to pre-smoothness transfer well when passing to substructures defined by

constructible subsets.
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Definition 4.1 (Pre-smooth set). A constructible set A of M will be called pre-

smooth in M if for any two relatively closed subsets S1, S2 ⊆cl Ak ×Mm and any

irreducible component S′ ⊆cl S1 ∩ S2 we have

dim(S′) ≥ dim(S1) + dim(S2) − dim(Ak ×Mm)

We now define a Zariski geometry as a Zariski structure in which all constructible

sets are constructible. Following our analogy, if we could establish affine spaces are

Zariski geometries, then that would be equivalent to proving that every set defined

by a quantifier-free formula is smooth.

Definition 4.2 (Zariski Geometry). Let M be a Zariski structure. We say that M

is a Zariski geometry if it is essentially uncountable (EU) and satisfies the following

strong presmoothness property, abbreviated (sPS):

(sPS) A topological structure with dimension M is strongly presmooth if all of its

constructible subsets are presmooth in M .

Some of the nice properties of Zariski geometries follow from the following lemma

that essentially says that fibers of pre-smooth subsets – and thus all constructible

subsets of Zariski geometries – are all uniformily composed of irreducible components

with dimension no less than the dimension of the smallest fiber.

Lemma 4.3 (Uniform Lower Bound on Fiber Dimension). Let A be an irreducible

pre-smooth subset of M , and let S ⊆ Ak × M ` be closed and irreducible. Let pr

be a projection map with domain containing S such that pr(S) = A and let r =

min
a∈pr(S)

dim(S(a,M `)). Then for each a ∈ Ak every C ⊆ S(a,M `) has dimension no
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less than r. In particular, if dim(S(a,M `)) = r, then all components of S(a,M `)

have dimension r.

Reference. Proved as Proposition 3.6.2 in [14] in Chapter 3, Section 6.

With this in mind, we can go ahead and distinguish between local dimension, or

dimension of a fiber at a point, and the ordinary definition of dimension we have

used until now. This lemma then should indicate that this local dimension of any

fiber should always be bounded below by the smallest of the local dimensions they

could have. Furthermore, this should also give us an expanded context for what

pre-smoothness means for a Zariski structure.

Definition 4.4 (Local Dimension). Let D be a definable set and let b ∈D. We define

the local dimension of b in D as

dimb(D) = max{dim(C) ∶ C ⊆D is an irreducible component and b ∈ C}

With this notion of local dimension, we can actually show that pre-smoothness of

constructible sets can actually be described as a local property.

Corollary 4.5 (Local Dimension definition of Pre-smoothness). Let A be a definable

subset of M . Then A is pre-smooth if and only if for any k,m ∈ Z+ and any relatively

closed subsets S1, S2 ⊆cl Ak ×Mm it holds that

dimx(S1 ∩ S2) ≥ dimx(S1) + dimx(S2) − dim(Ak ×Mm) for any x ∈ S1 ∩ S2

There’s another corollary about pre-smooth sets that will be useful for us later

when we discuss local functions and talk about different formulations of the implicit

function theorem in context of Zariski geometries.
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Corollary 4.6 (Open subsets of Pre-smooth components are pre-smooth). If A is

irreducible and pre-smooth, then any open subset B ⊆op A is also pre-smooth.

Strong pre-smoothness, in addition to being a characterizing property of Zariski

geometries, is also preserved under elementary extensions. To prove this, we will need

the following lemma

Lemma 4.7 (Pre-Smoothness of Constructible Sets transfers over Extensions). Let A

be an irreducible, pre-smooth set definable in M and let S ⊆ Ak×M ` is closed and irre-

ducible. Let pr be a projection of S such that pr(S) = Ak and r = min
a∈pr(S)

{dim(S(a,M `))}.

Then for every a′ ∈ Ak( ′M), every component of S(a′, ′M) has dimension no less

than r. In particular, if dim(S(a′, ′M)) = r, then all components of S(a′, ′M) have

dimension r.

Now we prove the preservation theorem.

Proposition 4.8 (Strong Pre-Smoothness is preserved under Elemenetary Exten-

sion). Let M be a topological structure with dimension satsifying (sPS). Then if

∗M ≽M , then ∗M also satisfies (sPS).

Outline. We let C be a definable irreducible subset of M r+n and let c ∈ ∗M and

C(c, ∗Mn) is an irreducible subset of ∗Mn. We can find C0 open subset of C and then

we note C0(c, ∗Mn) is an open subset of C(c, ∗Mn). We then take irreducible subsets

S1 and S2 of C0 and take the irreducible decomposition of the fibers of the intersection

S1 ∩ S2. Then without loss of generality, we can assume that the projections of S1,

S2, C, and all the irreducible components of the fiber over S1 ∩S2 are a locus of some

point over M . You then take an element of this locus and consider that the fiber of

S1 ∩ S2 over that locus has fibers all of the same dimension by Proposition 3.33, and
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that the irreducible components of the fibers all have the same dimension as the total

fibers themselves by Lemma 4.7, making us have that every component of the fibers

over S1 and S2 satisfies the pre-smoothness inequality.

With all these things said about Zariski geometries, let us look at an example

of Zariski geometries in context of algebraic varieties to get a better understanding

about what properties they give us.

Following our motivations for Zariski geometries, one can prove that the Zariski

topologies on smooth algebraic varieties over uncountable fields are also define Zariski

geometries. This follows from our previous theorem that every algebraic variety is a

Zariski structure. Also since subvarieties of smooth varieties are smooth, we know that

all of the subvarieties of the smooth variety will be pre-smooth, including constructible

subsets.

The main result we want to note about algebraic varieties will be our motivating

theorem for classifying Zariski geometries. In fact, our classification theorem of Zariski

geometries will essentially be a generalization of the following theorem.

Theorem 4.9 (Smooth semi-covering of algebraic curves). Let C be an irreducible

algebraic curve over an K ⊧ ACF and {a1, a2, . . . , an} is the set of all singular points

of C. Then

(1) There is a smooth algebraic curve A and a regular finite-to-one map f ∶ A → C

such that f is a biregular bijection on C/{a1, a2, . . . , an}

(2) C is pre-smooth if and only if f is a bijection.

References. Part (1) of this theorem is proven from content in [9] using the resolution

of singularities technique found as Chapter 2, Section 2, Theorem 2.12 to develop
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the method of normalization, found in Chapter 2, Section 5 of the same book. Part

(2) of the theorem is proven in [14].

With some of these basic results established about Zariski geometries, let us

start investigating more precisely what makes these Zariski structures appear more

geometrical in flavor than ordinary Zariski structures.

4.2 Coverings and Local Functions in Zariski Geometries

We would like to start studying how the covering notion we developed in our theory

of Zariski structures interacts with our strong pre-smoothness and pre-smoothness

properties in more detail. Our goal will be to use the notion of coverings on Zariski

geometries to define a notion of local functions, which will be useful to develop a

theory of infinitesmial analysis on Zariski geometries. In particular, we will develop

an implicit function theorem for Zariski geometries and turn our attention towards

using these functions to study families of curves in Zariski geometries.

First we will recall coverings, and develop some of the additional properties that

coverings have over pre-smooth sets. The first property will be developed in this

proposition, which will be useful when generally discussing coverings of pre-smooth

sets. We present it here without proof, but the proof can be found in [14].

Proposition 4.10 (Combinatorial Dimension captures Dimension of Generic Fibers).

Let F be an irreducible covering of a pre-smooth set D. Let (a, b) ∈ F such that a is

regular in D for F . Then for each a′ ∈ Va∩∗D, there is a b′ ∈ Vb such that (a′, b′) ∈ ∗F

and cdim(b′/a′) is equal to the dimension of a generic fiber of F .

Next, we develop the following lemma, which indicates to us that we can define a

notion of multiplicity of coverings at points, which will provide us a means to count, for
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any infinitesmial of a base point of a fiber of a covering, the number of infinitesimals

of a fiber element that map to that infinitesimal of the base point. In particular, the

next lemma tells us the multiplicity will be maximized at generic points, as so generic

points will serve as the best representative points for multiplicity. The proof for this

lemma can be found in [14] as Lemma 3.6.6.

Lemma 4.11 (Maximized Multiplicities at generic base points). Let F ⊆D×Mk be an

irreducible finite cover of D in a where D is pre-smooth. If F (a, b) and a′ ∈ Va∩D(∗M)

is generic in D, then

∣F (a′, ∗M) ∩ Vb∣ ≥ ∣F (a′′, ∗M) ∩ Vb∣ for each a′′ ∈ Va ∩D(∗M)

This lemma justifies the following definition for multiplicity.

Definition 4.12 (Multiplicity). Let (a, b) ∈ F and F be a finite covering of D. We

define the multiplicity of F at a over D as :

multb(a,F /D) = ∣F (a′, ∗Mk) ∩ Vb∣ for any a′ ∈ Va generic in D over M

Also, assuming a ∈ reg(F /D) we define

mult(a,F /D) = ∑
b∈F (a,Mk)

multb(a,F /D)

An fairly trivial property to note about multiplicity is the following, which is

partly motivated by the lemma as well.

Proposition 4.13 (Invariance of Multiplicity under Change of Base Point). Let D

be pre-smooth and let a ∈ reg(F /D). Then
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mult(a,F /D) = ∣F (a′, ∗Mk)∣

for a′ ∈ D(∗M) generic over M (not necessarily in Va). Furthermore, this number

does not depend on the choice of a ∈D.

With a notion of multiplicity defined, we can use this notion to define a notion of

an unramified cover, which will be a cover where each infinitesimal of the base point

is mapped to by precisely one infinitesimal for each fiber point.

Definition 4.14 (Unramified Covering). Let F be a finite cover of D. We say that

F is unramified at (a, b) ∈ F if multb(a,F /D) = 1. Furthermore, we can define :

unr(F /D) = {(a, b) ∈ F ∶ multb(a,F /D) = 1}

With the notion of an unramified cover, we can now start discussing situations in

which a cover of a definable subset of a Zariski geometry defines an implicit function

from the base space of the covering to the fibers. In particular, let us start by defining

the notion of a local function.

Definition 4.15 (Local Functions and Isomorphisms). Let F ⊆D×Mk be a definable

relation and (a, b) ∈ F . We say F defines a local function from Va ∩D into Vb if the

restriction of F to Va × Vb is the graph of a function from Va ∩D to Vb.

Now let F ⊆D×R be a finite-to-finite irreducible relation which is relatively closed

in F ×R and prD(F ) =D where πD is the projection function onto D. We now say F

defines a local function from D to R if for every (a, b) ∈ F , we have F defining a local

function from Va to Vb – that is, F ∣Va∩Vb is a bijection between Va ∩D and Vb ∩R.

If F is a local function from D to R with πR(F ) = R, then we call F a local

isomorphism from D to R.
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Given this definition of a local function, we can see almost immediately from the

definition of unramified points, the definition of local function, and from Lemma 4.3.

Corollary 4.16 (Unramified Points define Local Functions). Let F ⊆ D ×Mk be,

generically, a finite covering of D and D be pre-smooth. Then F is unramified at a

point (a, b) ∈ F if and only if F defines a local function from Va to Vb. In particular,

if

D1 = {a ∈ reg(F /D) ∶ ∀b(F (a, b)→ (a, b) ∈ unr(F /D))}

then F defines a local function on D1.

Theorem 4.17 (Implicit Function Theorem). Let M be a strongly pre-smooth Zariski

structure, D ⊆ Mn be irreducible, and F ⊆ D ×M r be an irreducible finite covering

of D with dim(F ) = dim(D). Then there is an open dense subset D1 ⊆ D such that

F ∩ (D1 ×M r) defines a local function on D1.

Proof. We note by strong pre-smoothness that there is a D1 ⊆ D such that D1 is

pre-smooth, open, and dense in D. This means that F ∩ (D1 ×M r) will form a local

function on D1 by the preceding corollary.

We can further expand the usefulness of this result with the following theorem. In

particular, in the corollary we used to prove the Implicit Function Theorem, we can

replace the assumption that D is pre-smooth and replace it with the assumption that

M is a one-dimensional, pre-smooth Zariski structure. It also allows us to replace

the assumption that M is strongly pre-smooth with the assumption that M is one-

dimensional and pre-smooth in the Implicit Function Theorem. We omit the proof

here, but a proof of this theorem can be found as Theorem 3.6.21 in [14] in Chapter

3, Section 6.
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Theorem 4.18. Let M be a one-dimensional, uncountable, pre-smooth, irreducible

Zariski structure. Then M is a Zariski geometry.

To prove this theorem, Zilber first proves the following lemma, which provides a

useful fact about coverings of pre-smooth sets in general.

Lemma 4.19 (Induced Pre-Smoothness of Local Functions). Let F ⊆D ×Mk where

F is an irreducible cover of D defining a local function on D. If D is pre-smooth,

then so is F .

Finally, we end our discussiong by noting that our notion of local isomorphism

allows us to finally strengthen pre-smoothness by saying a subset it smooth if and

only if it is locally isomorphic to a Zariski curve.

Definition 4.20 (Smooth Set). Given M is a one-dimensional, pre-smooth Zariski

structure, we call a definable D ⊆ Mn smooth if D is locally isomorphic to an open

subset of Mk for some k.

We note without proof the following theorem, which lists some fairly trivial

examples of smooth sets.

Theorem 4.21 (Smoothness Theorem). Assuming M is a one-dimensional pre-

smooth Zariski structure, the following are all true

(1.) Any open subset of Mn is smooth.

(2.) For every irreducible definable D ⊆ Mn, there is an open irreducible D0 ⊆ D

which is smooth.

(3.) If D1 and D2 are smooth definable relations, then so is D1 ×D2
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With the preceding theory now developed, we can take these results to begin

constructing new Zariski structures and geometries from old ones in more robust

ways. In particular, we will try to get a rough generalization of moduli spaces from

more standard treatments of geometry in the notion of topological sorts, and we will

use constructs like these to study families of curves and what it means for them to

be tangent in our context.

4.3 Well-Behaved Kinds of Zariski Geometries

To begin our discussion of constructing new kinds of nice Zariski structures, we

will define the following notion of a topological sort, which can be thought as a kind

of quotient map of a substructure of a Zariski structure along some mutually disjoint

closed subsets of the Zariski structure.

Definition 4.22 (Topological Sort). Let N be an irreducible subset of Mn and let E

be a relatively closed equivalence relation on N . A subset T ⊆ (N/E)k is called closed

in (N/E)k if p−1(T ) is closed in Nk. The set (N/E) together with the structure of

the closed subsets on them will be called a topological sort in M . In particular, let

us define the equivalence relation E(k) by

(a1, . . . , ak)E(k)(b1, . . . , bk)⇔ aiEbi for each i = 1, . . . , k

so we may identify (N/E)k with Nk/E(k) by the natural mapping preserving the

equivalence relation σ ∶ ([x1], . . . , [xk]) ↦ [(x1, . . . , xk)]. Then we see the quotient

maps pk ∶ Nk → Nk/E(k) define the quotient topology on each Nk/E(k).
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As a remark on notation, for a definable equivalence relation E, we may sometimes

use E(a, b) to say an element a is equivalent to b, or we may use aEb as we used in the

definition above. Generally, we will use the formula E(x, y) for the relation whenever

we want to use it to reference its definable sets, such as [a] = E(a,M).

To clarify an earlier remark : topological sorts correspond to moduli spaces in the

sense that they identifiy closed subsets (think objects like varieties, which more or

less correspond to curves and surfaces in our ordinary algebro-geometric setting) as

indivisible objects represented by our equivalence classes, and we’ve taken a quotient

of our space to identify these objects with individual points. This essentially collapses

our space into one where the points represent some definable objects of our geometry,

and the resulting quotient space codifies some sense of closeness this object has with

the other classes we’ve defined along with it. To see a concrete example of this,

consider the following examples

Example 4.23 (Projective Spaces as Topological Sorts). Let An+1(K) be the affine

n-space over a field K. Consider the irreducible subspace N = An+1(K)/{0} where 0

is the origin of the affine space. Let us then define the equivalence relation by

E = {(x, y) ∈ N ×N ∶ ∃λ ∈K such that x = λ ⋅ y}

where here, x = λ ⋅ y is understood as representing a system of equations rather

than a vector arithmetic expression. Hence the equivalence relation is definable on

N . We call Pn(K) = N/E with its quotient topological structure induced from this

relationship the projective n-space of K. We note that the natural quotient of this

map sends a point to its homogeneous coordinate representation :
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θn ∶ N → N/E by θn ∶ (x0, x1, . . . , xn)↦ [x0, x1, . . . , xn]

The quotient topology is the Zariski topology of projective space, and the closed

subsets of this space are called projective varieties.

The following fact about topological sorts is not only something useful that we

hoped to get by design, but it is also fairly trivial to prove from the definitions. It

will be presented without proof.

Proposition 4.24 (Topological Sorts are Noetherian Topological Structures). If N/E

is a topological sort, then N/E is a topological structure satisfying (DCC) and (SP).

Furthermore, N/E is complete if M is complete.

The next proposition will also contains some fairly trivial propositions to prove,

and they will also be useful for us whenever we develop some of the theory of

topological sorts.

Proposition 4.25 (Some facts about Topological Sorts). The following are true about

topological sorts :

(1.) The map p1 ∶ N → N/E is a continuous, closed, and open map.

(2.) A subset T ⊆ (N/E)k is irreducible if and only if there is an irreducible S ⊆ Nk

such that pr(S) = T .

With topological sorts in mind, we might be interested in how the dimension

of notion from N (or rather M) transfers to the topological sort. There is some

legwork needed to demonstrate that dimension can be transferred at all, but we will

particularly use the following definition :
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Definition 4.26 (Dimension of Irreducible Closed Sets in Topological Sorts). Let

N/E be a topological sort, and assume T = pk(S) ⊆ (N/E)k for some S ⊆ Nk which

is closed and irreducible. The dimension of T in N/E is defined as

dim(T /S) = dim(S) −min
t∈T

{dim(p−1k (t) ∩ S)}

The legwork in choosing the definition mostly consists in demonstrating the choice

of S does not affect the dimension. We will omit the demonstration that this is the

case, but this fact is demonstrated in [14] as Lemma 3.7.5. So we can simply define

dim(T ) = dim(T /S) for any S closed and irreducible such that pk(S) = T . We can go

ahead and start talking about the properties preserved under the map. We also can

extend the notion of dimension to all closed sets, recalling that our topological sorts

are Noetherian.

Definition 4.27 (Dimension of Closed Sets in Topological Sorts). Let T be a closed

set of a topological sort N/E, and let T1, . . . , Tn be the irreducible components of T

in N/E. Then

dim(T ) = max
1≤i≤n

dim(Ti)

Proposition 4.28 (Topological Sorts inherit some Nice Dimension Properties). Let

(N/E) be a topological sort with dimension notion inherited from N . Then (N/E)

satisfies (DP), (DU), and (SI).

Outline. (DP) is trivial, and (DU) follows fairly easily from (SI); but (SI) probably

can use an inequality argument on the minimum subtracted from the dimension of

the lifted sets when doing the lifts.
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Unfortunately there are counterexamples that show the properties (FC) and (AF)

are not necessarily preserved when topological sorts are constructed from topological

structures. Such a counterexample is given in [14] with a topological sort build

from the topological structure on the projective line – and it fails both axioms

simultaneously. On the other hand, we can further isolate some kinds of topological

sorts that actually define full Zariski structures. We will call these Zariski sets, or

more simply Z-sets.

Definition 4.29 (Zariski Set). A topological sort in M satisfying all the axioms of

a Zariski structure will be called a Zariski set, or Z-set, in M .

We also have a notion of morphisms between such sets defined as follows

Definition 4.30 (Zariski Morphism). Given two topological sorts T1 and T2 and a

pair of subsets S1 ⊆ T k1 and S2 ⊆ T l2, we call a map ϕ ∶ S1 → S2 a (Zariski) morphism,

or Z-morphism if the graph of ϕ is closed in S1 × S2. If ϕ is a bijection, we say that

ϕ is an isomorphism between S1 and S2.

One easy fact following from the definition of Z-morphism is that they all are

automatically continuous maps between the induced subspace topologies of their

domains and codomains, since we can show that preimages of closed sets are closed

under such maps using the axioms of topological structures. We now provide our

first example of topological structures which turn out to satisfy the Zariski structure

axioms.

Definition 4.31 (Pre-Manifold). A topological sort T is called a pre-manifold in M

if there exists a finite collection U1, U2, . . . , Uk of subsets which are open and dense in

T such that
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(1.) T = U1 ∪U2 . . . ∪Uk

(2.) For every i ≤ k, there is an irreducible subset Vi ⊆ Mn, pre-smooth in M, and

an isomorphism ϕi ∶ Ui → Vi.

Proposition 4.32 (Pre-manifolds are nice Z-sets). Every pre-manifold is an irre-

ducible, pre-smooth Z-set.

Proof. Note that each Ui is irreducible by isomorphism. If T = S1∪S2 for some closed

subsets S1 and S2, then we know Ui ⊂ Sj for some j ∈ {1,2}. But since we know Ui

is dense, we then see that Ui = T ⊆ Sj. So T = Sj, and thus T is irreducible. Next

we note that we have already proven that topological sorts satisfy the axioms to be

Noetherian topological structures whose dimension notions satisfy (DP), (DU), and

(SI). Thus we only need to show the dimension notion on T satisfies (AF) and (FC),

and that T is also pre-smooth. Since these are local properties, it is sufficient to prove

the theorem on each chart Ui. So for (AF) and (FC), we need to prove the theorem

on each pr(S ∩ Ui) instead of each pr(S), and prove (PS) on S1 ∩ Ui and S2 ∩ Ui

instead of S1 and S2. It is trivial to verify these conditions hold, since isomorphisms

between topological sorts will preserve open and closed sets in both directions, as well

as dimension.

The notion of a pre-manifold can be strengthened to a notion of a manifold, which

will be the kind of structure that we allow to constitute a family of curves in the next

chapter.

Definition 4.33 (n-Manifold). Let M be a Zariski structure and C be an irreducible

pre-smooth Zariski structure of dimension 1 (sometimes C is called a Zariski curve).

Let U be a Z-set in M . We call U an n-manifold with respect to C if U is locally

isomorphic to Cn, for some n.
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With some of the basic building blocks of Zariski structres expanded to the context

of Zariski geometries, and with the notions we have defined notions of a more explicitly

geometric nature for Zariski geometries, we can now start putting these pieces together

to construct the objects used to classify Zariski geometries. In particular, we want

to start talking about the families of curves definable in Zariski geometries, and

understand how tangency between curves is defined inside these structures.

4.4 Curves, Branches, and Tangency

Throughout the development of this chapter, we will assume that C refers to a

one-dimensional, irreducible, essentially uncountable Zariski structure on the universe

C. In other words, we will assume that C is a nice Zariski curve. We will also

assume that our saturated elementary extension ∗C of C is a universal domain in the

model-theoretic sense, which will guarantee that every definable set in ∗C will contain

generic points. In this kind of Zariski curve, we can develop a rich geometry which

readily admits a well-behaved definition for families of curves and some notion of

tangency between curves. This notion of geometry still admits singularities, however;

so the theory of tangency will need to refer to tangency between different branches of

curves instead to account for different tangential trajectories that could occur near a

singular point. These tools will eventually allow us to start defining a nice algebraic

structure on branches of curves up to tangency, and give us a nice way to algebratize

these kinds of Zariski geometries.

Definition 4.34 (Definable Family of Curves). A (definable) family of curves in Cm

is defined as a triple (P,L, I) where P is an open subset of Cm, L is a k-manifold
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with respect to Ck for some k ≥ 1, I ⊆ P ×L is a irreducible relation in P ×L, closed

in P ×L, and :

(1.) The projections of I cover P and L respectively.

(2.) For every l ∈ L, the set I(P, l) is one-dimensional, and for l generic the set is

irreducible.

We call I an incidence relation on L. We also say our family of curves is faithful if

additionally :

(3.) For any l1, l2 ∈ L, the intersection I(P, l1) ∩ I(P, l2) is at most finite, provided

acl(l1) ≠ acl(l2)
We also say that the family of curves passes through p ∈ Cm if for every l ∈ L, the

relation I(p, l) holds.

Generally, when it’s clear from context, we say that L represents the family of

curves, and we identify every curve l ∈ L with I(P, l) = {p ∈ Cm ∶ I(p, l)}.

One detail to note about these families of curves is that we can remove small

closed subsets of points so that the only points which remain in our family are ones

incident on at least one curve, and so no points belong to almost all curves. In other

words dim(p,L) < dim(L) for every p ∈ P .

An axiom that we want for our definable curves which will be important for

proving our classification theorem for Zariski geometries will be an assumption that

the space has an abundance of curves.

Definition 4.35 (Ample Zariski Geometry). C is called ample if it satisfies the

condition :

�(AMP) Ampleness : There is a two-dimensional, irreducible, faithful family L of curves

on C2 which is locally isomorphic to an open subset of C2.



75

In particular, one fact that follows from this assumption of ampleness is that if

we take the family of curves L on C2 guaranteed by the property and a generic point

(a, b) ∈ C2, then we can define

L(a,b) = I((a, b), L)

which represents a family of curves on C2 through (a, b) with incidence relation I ∩

(L(a,b) × C2). It can be shown that this family of curves as dim(L(a,b)) = 1 and by

the Smoothness Theorem in the previous chapter, we can choose a one-dimensional,

irreducible, smooth subfamily of curves G ⊆ L(a,b) which passes through (a, b). In

other words, we have the following proposition :

Proposition 4.36 (Ample Geometries have an Ample Supply of Curves). Let C be

ample. For any (a, b) ∈ C2 there is an irreducible, faithful, one-dimensional, smooth

family G of curves through (a, b).

With some notion of families of curves defined, we now want to define an abstract

notion of trajectories for curves. In particular, we want to create an object that

mimicks something like building a curve with all of its tangent vectors by introducing

something like a line bundle

Definition 4.37 (Branch of a Curve at a Point). Let (a, b) be a point in C2. A

subset γ ⊆ V(a,b) is said to be a branch at a curve at (a, b) if there are m ≥ 2, c ∈ Cm−2,

and irreducible, smooth family G of curves through the concatenated tuple (a, b)⌢c

with an indicence relation I and a curve g ∈ G such that the cover I of G×C defined

by

(u, (x, y)⌢z)↦ (u,x)
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is regular and unramified at (g, (a, b)⌢c), and for some g′ ∈ Vg ∩G(∗C)

γ = {(x, y) ∈ V(a,b) ∶ ∃z ∈ Vc such that (g′, (x, y)⌢z) ∈ I}

One characterization we want to make about branches of curves at points is to

realize that they can essentially be characterized by local functions passing through

(a, b) with their trajectories characterized by the corresponding points c for each

branch. In particular, we will call γ = g̃′ from this definition, which is graph of a local

function from Va to Vb by Proposition 4.10 regarding combinatorial dimension. We

call this function the local function from Va to Vb in family G with trajectory c.

Proposition 4.38 (Faithful Representation of Branches by Local Functions). Let G

be an irreducible, faithful, smooth family of curves through (a, b) and (g1, g2) ∈ ∗G =

G(∗M). If g̃1 = g̃2 as functions from Va → Vb, then g1 = g2.

Proof. This is essentially trivial from the faithfulness axiom for families of curves,

which is (3) under the definition of a family of definable curves.

Definition 4.39 (Branch Tangency Relation). Let I1 and I2 be two families of local

functions from a and b, with trajectories c1 and c2. We say that the corresponding

branches defined by g1 ∈ G1 and g2 ∈ G2 are (mutually) tangent at (a, b), written as

g1Tg2

if there is an irreducible component S = S(I1,I2,a,b,c1,c2) of the set

{(u1, u2, x, y, z1, z2) ∈ G1×G2×C2×Cm1−2×Cm2−2 ∶ (u1, x, y, z1) ∈ I2 and (u2, x, y, z2) ∈ I2}
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such that the following hold :

(1.) (g1, g2, a, b, c1, c2) ∈ S

(2.) The image of the projection

(u1, u2, x, y, z1, z2)↦ (u1, u2)

is dense in G1 ×G2.

(3.) For i ∈ {1,2}, the images of the maps

(u1, u2, x, y, z1, z2)↦ (x, y, zi, ui)

are dense in Ii and the corresponding coverings are regular at the points in

(a, b, ci, gi)

One way to understand this definition is that we say two branches of curves are

tangent if there is an irreducible cover that covers some dense subsets of the pairs of

curves and some dense subsets of the incidence relations such that the relation defined

by the cover also says that the two branches, the point at which they intersect, and

their trajectories relate to each other.

Of all the facts to note about the tangency relation, one of the most powerful

facts is the following equivalent formulation of tangency in terms of the requirement

that at the infinitesimal neighborhood of the intersection, and every local function of

that point in one of the family of curves, there is another local function in the other

family of curves which mimicks its behavior at that point. In other words, tangent

functions are exactly ones which locally approximate each other.
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Proposition 4.40 (Local Function Characterization of Tangency). Let G1 and G2

be families of curves defining local functions from a to b, and let g1 ∈ G1 and g2 ∈ G2

– both generic in their respective families. The following conditions are equivalent :

(1.) g1Tg2

(2.) ∀x ∈ Va∀g′1 ∈ Vg1∃g′2 ∈ Vg2 ∶ g̃′1(x) = g̃′2(x)

(3.) ∀x ∈ Va∀g′2 ∈ Vg2∃g′1 ∈ Vg1 ∶ g̃′1(x) = g̃′2(x)

Furthermore, there are Zariski-open subsets G0
1 ⊆ G1 and G0

2 ⊆ G2 such that the

conditions are still equivalent for any g1 ∈ G0
1 and g2 ∈ G0

2

Reference. Proven as Proposition 3.8.14 in [14] in Chapter 3, Section 8.

This theorem is important, not only because it gives us a convenient equivalent

definition of the tangency which makes some later proofs easier, but because this

equivalent definition vastly simplifies the process of proving that our notion of tan-

gency is reflexive and transitive. The proof that tangency is indeed an equivalence

relation can be found in Section 3.8 of [14]. One of the intermediate propositions

which is proven in that book to establish tangency as an equivalence relation is the

following, which can be used to demonstrate the symmetry of the tangency relation.

Proposition 4.41 (Dimension of Tangency classes). Let G1 , G2 be smooth, faithful

families of branches of curves through (a, b), and let g1 be generic in G1. Then

T (g1, y) of curves in G2 tangent to g1 is at most of dimension dim(G2) − 1.

Furthermore, if the tangency relation T ⊆ G1 ×G2 densely projects on G1 or G2,

then dim(T ) = dim(G1) + dim(G2) − 1. In particular, this will be the case when

G1 = G2.
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Using this proposition, we motivate the following definition, and use it to establish

precisely how tangency defines an equivalence relation.

Definition 4.42 (Sorts of Branches of Curves Through a Point). Let (a, b) ∈ C2, and

let c ∈ Cm for some m ∈ N be a trajectory of a the family of the definable, irreducible,

smooth family of curves Gc,i through (a, b) where i denotes an arbitrary indexing

scheme for the families of curves.

G(a,b) =⋃Gc,i

The tangency relationship is specifically defined over G(a,b), and as we have stated

and will use in the following chapter

Lemma 4.43 (Tangency Equivalence Relation). T defines an equivalence relation

over G(a,b).

Now let us work towards using tangency to classify Zariski geometries.

4.5 Obtaining the Z-field and Classification Theorem

We will now aim to develop a group structure from the tangency classes of a

Zariski curve, use this group structure to develop a field from the curve, and then use

this to prove a fundamental classification result of Zariski geometries.

We start by explicitly stating the goal we have in mind for defining a group

structure on our curve. We want to find some Zariski structrure on a manifold, such

as a Zariski curve, which defines a group operation. More precisely, we want the

following
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Definition 4.44 (Z-group). Let G be a manifold and P ⊆ G3 a closed ternary relation

which is the graph of a binary operation

(u, v)↦ u ⋅ v

over G. We say that (G,P ) is a Z-group if (G, ⋅) is a group for the binary operation

defined by P .

To work towards building such a group, let us start by trying to build a group

structure out of the tangency classes from the previous chapter. First we note that

our branches at a point (a, b) will define local functions from Va to Vb. Let us try to

instead find a way to work with local functions from Va to itself at each point (a, b)

by using some of the following constructs.

Definition 4.45 (Inverse Family of Curves). Let g ∈ Gc ⊆ G(a,b) and identify g with

its local function g̃ ∶ Va → Vb. We define the inverse as

g−1 = {(y, x) ∈ Vb × Va ∶ (x, y) ∈ g}

and define the inverse family G−1
c to be a copy of the definable set Gc but with the

inverse action induced by its elements mapping Vb → Va.

From this definition, it is fairly easy to verify the following lemma using the local

function characterization of tangency in Proposition 4.40.

Lemma 4.46 (Inversion Preserves Tangency). For every g1, g2 ∈ G(a,b),

g1Tg2 if and only if g−11 Tg
−1
2
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With this inversion operation in place, we can go ahead and define the notion of

composing pairs of branches of curves using the following operation.

Definition 4.47 (Composition of Curves). For any g1 ∈ Gc1 and g2 ∈ Gc2 with

Gc1 ,Gc2 ⊆ G(a,b), define the composition curve

g−12 ○ g2 = {(x1, x2) ∈ C2 ∶ ∃y, z1, z2 such that (x1, y, z1) ∈ g1 and (z2, y, x2) ∈ g−12 }

and its branch at (a, a) is defined by

(g−12 ○ g1))(a,a) = {(x1, x2) ∈ Va × Va ∶ x2 = g̃−12 (g1(x1))}

Some other details about this operation are discussed in [14], but the key idea will

be that this composition will define an operation which can be used to define a group

structure out of some branches of curves up to tangency.

To construct our Z-group, we will first show that this composition defines a pre-

group structure, which will be a partially-defined group operation on a manifold that

will obey many group properties on some open set, but will more importantly be a

structure which we can extend to a full group in a later result.

Proposition 4.48 (Pre-group of Jets existence). There is a one-dimensional irre-

ducible manifold U with respect to the Zariski curve C and a constructible irreducible

ternary relation P ⊆ U3 which is the graph of a partial operation ⊙ ∶ U2 → U and

determines a partial Z-group structure on U – that is, there is an open subset V ⊆ U2

such that :

(1.) For any (u, v) ∈ U2, there is a unique w = u⊙ v ∈ U such that (u, v,w) ∈ P

(2.) For any generic (u, v,w) ∈ U3, we have u⊙ (v ⊙w) = (u⊙ v)⊙w
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(3.) For each (u, v) ∈ V , the equations

u⊙ x = v and y ⊙ u = v

both have solutions in U.

Outline. Let N be the family of curves through a point (a, b) obtained from the

ampleness of C. We let (N−1 ○N) be a family of curves H(a,a) passing through the

point (a, a). By the dimension of tangency classes in Proposition 4.41, this tangency

relation T will have dimension 1 on an open subset H of N2, making dim(H/T ) = 1.

Since N is locally isomorphic to our ample C, there must be an irreducible curve

S which interesects infintely many equivalence classes of T . U = S/T will be our

manifold, and consequently by irreducibility and dimension arguments

U = S/T =H/T

Finally, it can be shown (such as in Lemma 4.1.8 in [14] in Chapter 4, Section 1 )

that composition of branches will preserve tangency on this manifold, and so it forms

a partial map, and it can be show that the composition of branches corresponds to

composition of local functions, which will induce the partial map with the desired

properties.

Finally, we build a Z-group from our pre-group using the following theorem. The

proof of the following theorem will be summarized, but a more detail proof can be

found in [14]. This theorem will establish the existence of our Z-group of jets.

Theorem 4.49 (Z-version of Weil’s theorem on pre-groups). For any partial irre-

ducible Z-group U , there is a connected Z-group G and a Z-isomorphism between



83

some dense open U ′ ⊆ U and a dense open G′ ⊆ G.

Outline. We start by building a semi-group G out of the partial functions generated

by translations of U by elements of U under the pre-group operation. In other words,

the elements are of the form

sa ∶ u→ a⊙ u

for each a, u ∈ U . We consider two elements of G equal if they agree on an open subset

of U . We can then prove that the semi-group is identifiable with a constructible sort

(U ×U)/E where E is an equivalence relation which considers two pairs (a1, a2) and

(b1, b2) equal if and only if they have

a1 ⊙ (a2 ⊙ u) = b1 ⊙ (b2 ⊙ u) for all u in an open subset of V ⊆ U

The last condition can be made constructible by restating it in terms of the dimension

of the set on which the operations agree. This gives us a way of embedding the

pre-group of U into the semi-group G. Then one can prove G is a group using some

facts about the non-definability of the identity in the stable semi-group structures –

ie, a semi-group whose definable subsets cannot encode an infinite linear ordering on

any Gn for n ∈ Z+. (This term stable is explained in [1] in Chapter 9, Section 4 ). The

final properties are verified using dimension arguments.

Note that by this theorem, we can take any irreducible pregroup U , such as the

one obtained by our pre-group of jets existence theorem, and topologically embed its

structure into that of the topological structure of a Z-group. In particular, we use

our pre-group of jets to now build our group of jets.
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Corollary 4.50 (Group of Jets). The group of jets J of a Zariski curve C generated

by pre-group U =H(a,a)/T is a connected Z-group of dimension 1.

One fact that we can note from the ampleness of our Zariski geometry is that if

we have any Zariski curve J with its Abelian group structure endowed on it, then any

point (a, b) has a one-dimensional, smooth, faithful family of curves passing through

it, and the product group structure endowed on J2 can be used to translate this point

to the origin point (0,0) of the product group. For the rest of the construction of the

Z-field, we will assume without loss of generality that we are working over a family

of curves passing through (0,0).

Let us denote the group operation on J using ⊕, and let us represent its subtraction

operation (ie, adding the inverse of the right-hand operand) by ⊖. The graphs of these

binary operations can be shown to be Zariski isomorphic to J × J by the projection

map, and the graph of ⊕ will be irreducible, making it an irreducible cover of J × J

in particular. This will endow V0 with a commutative group structure.

Definition 4.51 (Sums and Differences of Branches). Let g̃1, g̃2 be two branches of

curves in J2. We define the sum of g̃1 and g̃2 as

g̃1 ⊕ g̃2 = {(x, y) ∶ ∃z1, z2 ∈ J such that (x, z1) ∈ g̃1, (x, z2) ∈ g̃2, and (z1, z2, y) ∈ ⊕}

or in other words, in the notation of local functions from V0 to V0 :

(g̃1 ⊕ g̃2)(x) = g̃1(x)⊕ g̃2(x)

We also define an analogous relationship for defining ⊖ for branches of curves in J2
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Once again, in [14], care is taken to prove that these operations are indeed

well-defined. We will omit the proofs were and instead move on to defining our

multiplication for our field. To define our multiplication operation for our field, we

simply take our function composition operation ○ and inversion ⋅−1 for branches of

curves through (0,0), which we used to get our Z-group, and observe the following

property.

Lemma 4.52 (Composition distributes over Sums of Branches). Let G1, G2, and G3

be families of curves through (0,0) and let gi ∈ Gi for i ∈ {1,2,3}. Then

(g1 ⊕ g2) ○ g3T (g1 ○ g3)⊕ (g2 ○ g3) and g3 ○ (g1 ⊕ g2)T (g3 ○ g1)⊕ (g3 ○ g2)

Proof. Let us prove left distributivity without loss of understanding the proof strategy.

By definition of ⊕, we have for each x ∈ V0 and g′i ∈ Gi that

(g′1 ⊕ g′2) ○ g′3(x) = g′1(g′3(x))⊕ g′2(g′3(x))

= (g′1 ○ g′3)(x)⊕ (g′2 ○ g′3)(x)

Then we can choose, for any z1, z2 ∈ V0, an element g′i ∈ Vgi ∩Gi for each i ∈ {1,2,3}

such that g′i(z1) = z2. We then use this for any x, y ∈ V0 to find such g′i such that

(g′1 ⊕ g′2) ○ g′3(x) = y. This gives the equation above, and therefore the tangency.

We now apply our same argument we used for the existence of pre-groups to obtain

the following theorem which establishes the existence of a pre-field.

Theorem 4.53 (Pre-field Existence Theorem). There is a one-dimensional manifold

U and constructible, irreducible ternary relations P,S ⊆ U3 which are graphs of partial

maps U2 → U and determine a partial Z-field structure on U . That is
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(1.) P is a pre-group structure on U with binary operation (u, v)↦ u ⋅ v

(2.) S is a pre-group structure on U with binary operation (u, v)↦ u + v

(3.) The following distribution laws hold for the binary operations

(u + v) ⋅w = uw + vw and w ⋅ (u + v) = wu +wv

The proof strategy for the Z-field existence can then be replicated from the proof of

Z-group existence, but the proof strategy can be fairly unwieldy having to reconcible

two binary operations simultaneously, so Zilber proves Z-field existence using an

additional lemma to simplify the process in [14]. We will omit the technical details

involved with using that proo and simply end on the statement of Z-field existence.

Theorem 4.54 (Z-field Existence Theorem). There exists a Z-field in the Zariski

geometry C.

Before we prove the Zariski classification theorems, we need to develop some pieces

of the projective geometry and the induced intersection theory that Zariski structures

give their Z-fields. Particularly, we need to understand the Zariski structures defined

on projective spaces, and how some of their properties will help us classify Zariski

geometries.

Construction 4.55 (Zariski Structure on Projective Space). Let Pn(K) be projective

n-space over the field K. Furthermore let θn ∶ An+1(K)/0 → Pn(K) be the natural

quotient map from An+1(K) to projective n-space. We can present Pn(K) as a Z-set

by letting

Ui = {(x0, x1, . . . , xn) ∈ An+1(K) ∶ xi ≠ 0}
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and identifying the image θn(Ui) with

Ũi = {(y0, y1, . . . , yn) ∈ An+1(K) ∶ yi = 1}

via the normalization technique for homogeneous coordinates :

[x0, x1, . . . , xi, . . . , xn] ∼ [x0
xi
,
x1
xi
, . . . ,1, . . . ,

xn
xi

]

Given this, we can see that Pn(K) = ⋃ni=0 Ũi where this union satisfies the conditions

for making Pn(K) a pre-manifold over K. By Proposition 4.32, we then see Pn(K)

is an irreducible, pre-smooth Zariski structure with θn a Z-morphism.

We cannot necessarily prove that the Zariski structure defined on P n(K) will be

complete for our Z-field K, but we can weaken the condition to define a new property

that it satisfies. It will turn out that this property is sufficient for the purposes we

have for classifying Zariski geometries.

Definition 4.56 (Weak Completeness). A Zariski structure N is called weakly com-

plete if for any pre-smooth P , closed subset S ⊆cl P ×N , and projection pr ∶ P ×N → P

such that pr(S) is dense in P ; we have that pr(S) = P .

Proposition 4.57 (Projective Spaces are Weakly Complete). P n(K) is weakly com-

plete for any field K.

With all the theorems so far, we can finally prove the main classification theorems

in the theory of Zariski structures. Our first version of the theorem will be a

generalization of the theorem which tells us that any irreducible algebraic curve has

a surjective regular map onto some smooth algebraic curve which is biregular and

bijective on the nonsigular points.
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Theorem 4.58 (First Classification Theorem for Zariski Geometries). Let M be a

Zariski structure satsifying the essential uncountability axiom, and let C be a non-

linear, pre-smooth Zariski curve in M . Then there is a non-constant continuous map

f ∶ C → P1(K)

(where K is the Z-field interpretable in C by previous results). Furthermore, f−1(x)

is finite for each x ∈ P1(K) and the images of definable relations over Cn are con-

structible (in the sense of algebraic geometry) over (P1(K))n.

Proof. Uses Z-field K constructed from Theorem 4.52. K will be a 1-manifold with

respect to C. This means there will be a finite-to-finite closed relation F ⊆ C ×K

projecting onto an cofinite, open subset of D ⊆ C and an open subset of R ⊆ K. We

then prove the following claim

Claim 4.59. There is a cofinite subset D′ ⊆ C and a non-constant continuous map

s ∶D′ →K.

To prove this claim, pick a generic x ∈ D. Then F (x,K) is finite with n distinct

elements {y1, y2, . . . , yn}. Consider the symmetric polynomials

si(t) = ∑
1≤k1<k2<...<ki≤n

tk1tk2 . . . tki

Let si(x) denote the evaluation si(y1, y2, . . . , yi) for each point x ∈ D. At each fiber,

the fiber {y1, . . . , yn} is the set of solutions of

px(v) = vn − s1(x)vn−1 + s2(x)vn−2 − . . . + (−1)nsn(x)
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Once we’ve constructed these function, we can take at least one si as a non-constant

function with cofinite image in K since {y ∈ K ∶ ∃x ∈ D′F (x, y)} is cofinite in K.

The graph of si can be made constructible by possibly removing finitely-many points,

which means we can get the graph of si to be closed in D′ × K. Therefore si us

continuous on D′. This proves the claim.

Once the function s ∶ D′ → K has been constructed from this claim, we take the

closure of its graph in C × P1(K) to be the set S. S is irreducible because the graph

of s is irreducible. By the weak completeness of projective spaces, we know S is a

covering of C. We can show S is a finite cover of multiplicity 1 at generic points,

which entails from Corollary 3.36 that S is finite over all points in C. Furthermore,

by Proposition 4.13, we know S has multiplicity 1 at every point in C as well. This

means S is the graph of a function f ∶ C → P 1(K). This proves the theorem.

This first classification theorem gives us our most powerful tool in the theory of

Zariski geometries – it tells us that under the given preconditions, we can guaran-

tee that our Zariski geometries can be endowed with some kinds of field-theoretic

algebraic structure; which means that we can study these excruciatingly abstract

mathematical objects through the lens of some classical constructs of algebraic geom-

etry, up to some singularities where the curve is many-to-one. Another classification

theorem can be found in Chapter 4, Section 4 of [14], but we will not discuss Zariski

geometry classification here, since this theorem is sufficient to establish what we

aimed to accomplish with these previous two chapters about topological structures

and Zariski geometries. We understand now that Zariski geometries can be thought

of as abstract mathematical structures (in the sense of model theory) whose induced
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topological and geometrical properties from the structure makes them reducible to

commutative geometry over algebraically closed fields. We would now like to apply

these to understand what kinds of noncommutative structures can arise out of general

Zariski structures, particularly if we build them from these classical Zariski structures

which are reducible to varieties.
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CHAPTER 5

NONCLASSICAL ZARISKI GEOMETRIES

5.1 An Example of Nonclassical Structures

With the classification theorem in mind, we may be interested in deciding whether

our irreducible, pre-smooth Zariski structures are always interpretable in ACF from

the covering map constructed. Some counterexamples to this assertion can be built

by developing techniques which allow us to add some obstructive structure to our

classical Zariski structures to turn them into so-called nonclassical Zariski structures.

On one hand, this may seem unfortunate since this indicates that classical algebraic

geometry does not universally algebratize all of our Zariski structures. On the other

hand, this tells us that our new class of Zariski structures may be more expressive

than what we can express in algebraic geometry, and the shared Zariski structure

properties could give us a way to translate results from algebraic geometry to our

new Zariski structures.

Later in the chapter, we will give some demonstrations of the new kinds of Zariski

structures we encounter in the nonclassical setting, and some of these new Zariski

structures will be appied in the next chapter when we finally apply our results about

Zariski structures to quantum mechanics. For now, let us begin by demonstrating

the basic principles of constructing some nonclassical Zariski structures from some of

our ordinary examples.
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Theorem 5.1 (Non-Classical Zariski Structure Existence Theorem). There is an

irreducible pre-smooth Zariski structure which is not interpretable in ACF .

We will construct this Zariski structure by beginning with an arbitrary irreducible,

pre-smooth Zariski structure (M,C), a subgroup of its Zariski-automorphism group

G ≤ AutZar(M), and some G̃ with finite subgroup H such that G acts freely on M

and such that they form a short exact sequence

1→H → G̃
prÐ→ G→ 1

Furthermore, consider a set X ⊆M where X is a representative of for each orbit

of G on M . Because G is free and X contains precisely one element for each G-orbit,

we know that for each a ∈ M the set (G ⋅ a) ∩X is a singleton. We will now start

building an extension of M using G̃ and X. Let

M̃ = G̃ ×X

and define the projection map

p̃r ∶ (g, x)↦ pr(g) ⋅ x

We can then interpret each group element of G̃ as a function on M̃ by

f ∶ (g, x)↦ (fg, x)

We can then define the model-theoretic structure
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M̃ = (M̃,{f}f∈G̃ ∪ p̃r−1(C))

where the signature is defined by taking the preimages of each closed subset of M

under the projection map p̃r interpreted as precisely the subsets they represent in

M̃ , and each f ∈ G̃ is interpreted using the specification above. We then take the

closed sets defining the topological structure on M̃n for each n to be all of the positive

atomic formulas of M̃ using parameters from M̃ .

A further point to note about the topological structure of M̃ is that the map p̃r

and the structure M are both definable. M is definable since it was a closed subset

in its own topological structure, and p̃r is definable In particular, the following holds

for each f ∈ G̃ :

∀x p̃r(f(x)) = f(p̃r(x))

So the image of a closed subset of M̃n is closed in Mn, which means we can canonically

define dimension in M̃ as

dim(S) = dim(p̃r(S))

Lemma 5.2 (Principal Extension of Zariski Structures). The isomorphism type of

M̃ is determined by M and G̃ alone. Also the M̃ is an irreducible, pre-smooth Zariski

structure. In particular, M̃ admits quantifier elimination.

Outline. The proof involves using some nice choices of automorphisms of M̃ which

can show that every existential formula can be reduced to a quantifier-free formula.

One can then check all of the conditions exhaustively to show this structure is Zariski.

A full proof can be found in [4].

An immediate corollary of this construction is the rather obvious lemma, which

tells us that M̃ expands the automorphism group of M to contain G̃.
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Lemma 5.3 (Automorphism Expansion Theorem). G̃ is a subgroup of AutZar(M̃).

With these basic properties in mind, we can now turn some special attention to

the finite subgroup H we designated. In particular, this subgroup will give us a way

of controlling the degree of reducibility for the expanded structure M̃ .

Lemma 5.4 (Irreducible Expansions in Nonsplitting Case). Suppose H does not split

in G̃ – that is, for every proper subgroup G0 < G̃

G0 ⋅H ≠ G̃

Then every equidimensional Zariski expansion ′M̃ of M̃ is irreducible.

Outline. Every equidimensional expansion will induce an equidimensional cover of M

with ∣H ∣-many irreducible components. Every fiber has to intersect one component,

so H must act transitively on the set of components of the expansion. We note

that only one of these components can exist or else the setwise stabilizer of the one

component can be used with H to contradict our splitting assumption.

For sake of brevity, we will omit the proof of the following lemma, but its proof

can be found in [14]. This lemma will prove our theorem for us, and an interesting

point to note about this is that our counterexamples from the lemma are objects

constructed from classical algebro-geometric objects.

Lemma 5.5 (Non-Classical Rational and Elliptic Curves). Suppose M is a rational

curve or an elliptic curve over K ⊧ ACF0 where H does not split, G̃ is nilpotent, and

for some big integer µ there is a non-Abelian subgroup G0 ≤ G̃ such that

∣G̃ ∶ G0∣ ≥ µ
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Then M̃ is not interpretable in an algebraically closed field.

In other words, this lemma proves that the theory of Zariski structures is not

completely reducible to classical algebraic geometry over algebraically closed fields

by demonstrating that Zariski expansions can be obtained just from adding some

obstructive Zariski properties to certain kinds og varieties. Therefore we’ve proved

our theorem above, and the existence of such Zariski structures motivates a new

dichotomy :

Definition 5.6 (Classical Zariski Structure). An irreducible pre-smooth Zariski struc-

ture M which is interpretable in ACF will be called a classical Zariski structure.

Otherwise we call M a nonclassical Zariski structure.

This kind of construction becomes more difficult to analyze when the dimension

of M is greater than 1, but there is a nice collection of tools which can be used to

analyze some of these higher-dimensional situations in the case of varieties, which can

still provide nice tools if one were to want to construct some of these more eccentric

structures. Some additional theorems can be found in Chapter 5 of [14] – including

some theorems for the case of Abelian and semi-Abelian varieties.

5.2 Noncommutative Geometry for the Nonclassical Case

With the existence of such nonclassical Zariski structures, we reframe our question

: under what circumstances can be say that a Zariski structure is classical? To exposit

all we know of this classification is a fairly arduous task, so here we will only present

a class of example constructions directed at the application of these constructions

towards physics.
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Our main principle will be to develop a kind of correspondence between Zariski

structures and what we will consider quantum algebras. This construction will follow

not only follow the analogy between classical and quantum (ie, nonclassical) mechan-

ics, but the constructions presented here will provide our main source of algebraic

objects for computation when applying our theory of Zariski structures to quantum

mechanics. The key analogy will be that, in some sense, the classical setting of our

Zariski structures will correspond to when the operators of our algebra commute,

whereas the nonclassical cases will be precisely the cases where the commutation

relations hold up to a nontrivial scalar multiple in our quantum algebras.

We will demonstrate the general method of construction by beginning with an

arbitrary algebraically closed field K and an algebra A over K such that the following

properties hold, and any algebra which satisfies these properties will be our notion of

a quantum algebra :

(1.) A is an associative, unital affine K-algebra with generators U1, U2, . . . , Ud with

relations defined from a finite set of parameters C ⊆K. We also assume A is a

finite-dimensional module over its central subalgebra Z = Z(A)

(2.) The central subalgebra Z is a unital, finitely generated, commutative K-algebra

without zero divisors. In other words, if Max(Z) is the set of maximal ideals

of Z, then Max(Z) can be identified with the K-points of an irreducible affine

algebraic variety V over C.

(3.) There is some N ∈ Z+ such that for each m ∈ Max(Z) we can correspond m

to an A-module Mm of dimension N over K such that m annihilates Mm.

Furthermore, the isomorphism type of each of these modules is uniformily

determined by a solution to a system of polynomial equations PA over K and V ,



97

with variables tijk as variables over K and m as a variable over V , such that for

each m ∈ V there is a set T = {tijk ∶ i ≤ d and j, k ≤ N} satisfying PA(t,m) = 0

we can associate a basis e1, e2, . . . , eN to the K-vector space of Mm with the

relation

⋀
i≤d;j≤N

Ui(ej) =
N

∑
k=1
tijkek

Any basis satisfying these properties is called canonical.

(4.) There is a finite group Γ and a map g ∶ V × Γ → GLN(K) such that, for each

γ ∈ Γ, the map g(⋅, γ) ∶ V → GLN(K) is rational and C-definable (that is,

defined on an open subset of V ). Also, for any m ∈ V the domain of definition

Domm for the map g(m, ⋅) ∶ Γ → GLN(K) is a subgroup of Γ. Furthermore

g(m, ⋅) is an injective homomorphism on its domain, and for any two canonical

bases e1, e1, . . . , eN and e′1, e
′
2, . . . , e

′
N of Mm there is some λ ∈K∗ and γ ∈ Domm

such that

e′i = λ ∑
1≤j≤N

gij(m,γ)ej

Remark 5.7 (Some Explanation of these Assumptions). To give some brief explanation

of these assumptions, and how they contribute to our analogy and constructions, we

will first note that (1) tells us that our operator algebra is somehow generated from

some finite-dimensional operator structure adjoined to some commutative algebra

Z, and whose operator relations are sufficiently representable using a finite set of

parameters from the field K. When this assumption is conjoined with (2), the

assumption becomes much more meaningful, since (2) says that our commutative

algebra Z can be regarded as coming from a variety over K – such as a coordinate

ring of an affine variety. Thus (1) and (2) in conjunction say that our algebra A is

constructed from adjoining some potentially noncommutative operator structure to
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an algebra coming from a classical kind of Zariski structure.

(3) tells us that the variety defined by the maximal spectrum of our classical

algebra Z is equipped with a vector bundle whose fibers are all A-modules consisting

of elements that become trivialized when multiplied by m. Furthermore, the points

m on the variety correspond bijectively to the isomorphism types of their modules

Mm, and two different points of the variety correspond to non-isomorphic modules.

Furthermore, we think of each of these modules as having representations of each

operator Ui in terms of matrices consisting of the tijk coefficients.

(4) tells us that there is a parameterized representation of a subgroups of a

finite group Γ in K that rationally varies along the variety V . This representation

faithfully represents the subgroup represented at each point, and the representations

at each point correspond to the change-of-basis operators between canonical bases.

Let Γm = Domm and let us denote g(m,γ) for γ ∈ Γm as simply γ or possible γm when

the point of evaluation m ∈ V is not clear from context.

With these rules specified for our algebra A, and all of its related objects, we can

now try to build a new Zariski structure from such an algebra.

Construction 5.8 (Associated Zariski Structure of a Quantum Algebra). Let A be

a quantum algebra and let V = V (A) stands for the K-points of the variety Max(Z)

which can be treated as the set of A-modules Mm with m ∈ Max(Z). Begin by

defining the disjoint union

Ṽ = ⊍
m∈V

Mm

Then, for each m ∈ V , choose a canonical basis Bm = {e1(m), e2(m), . . . , eN(m)} for

Mm, and obtain all other canonical bases from actions by elements of Γm :
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Em = ΓmBm = {(e′1(m), . . . , e′N(m)) ∶ ∃γ ∈ Γm such that e′i(m) = ∑
1≤j≤N

γijej(m)}

We also identify V as its subset of Ak(K) for some k ∈ Z+ and define the projection

map π ∶ Ṽ → V by

π(x) =m if x ∈Mm

We then define the full language on the multi-sorted structure (Ṽ , V,K) (which we

will generally abbreviate by Ṽ ) by the following relations

(1.) A ternary relation S(x, y, z) such that S(x, y, z) holds if and only if there is a

m ∈ V such that x, y, z ∈Mm and x + y = z

(2.) A ternary relation a ⋅x = y defined for a ∈K and x, y ∈Mm as interpreting scalar

multiplication by a in the module Mm.

(3.) Binary relations Uix = y for each operator Ui, which for each x, y ∈Mm interprets

the action of Ui on the module Mm.

(4.) Relations Em ⊆ V × Ṽ N with E(m,B) interpreted as B ∈ Em (E defines a

predicate for identifying canonical bases at each point ).

Finally, we also assume that the sort V is endowed with its Zariski structure as a

variety. With all of this, we say that (Ṽ , V,K) is the associated Zariski struture of

the quantum algebra A in the full language. If we omit (4) from our language (the

canonical bases predicate), then we obtain (Ṽ , V,K) endowed with the weak language

over A.

Remark 5.9. We note that the sorts V and K are bi-interpretable over C, and that

the parametered representation g of Γ in the quantum algebra is definable in the weak

language of Ṽ since it is rational.
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Definition 5.10 (Th(A − mod)). The first order theory Th(A − mod) describing

(Ṽ , V,K) is the set of axioms described by

(1.) K is algebraically closed with characteristic p, and V is the Zariski structure

on the K-points of the variety Max(Z).

(2.) For each m ∈ V , the action of scalars of K on U1, . . . , Ud defines the structure

of an A-module of dimension N on π−1(m).

(3.) Assumption 3 about quantum algebras holds for the given PA.

(4.) For the parameterzied representation g ∶ V ×Γ→ GLN(K) given by assumption

4 about quantum algebras, and any pair of canonical bases B = {e1, . . . , eN} and

B′ = {e′1, . . . , e′N} in Em, there is a γ ∈ Γ such that

e′i = ∑
1≤j≤N

gij(m,γ)ej

Moreover, Em is an orbit under the action Γm.

Here we will give two examples of these kinds of quantum algebras and their as-

sociated Zariski structures to demonstate some of our assertions about these algebras

and the supposed analogy with different kinds of physical mechanics.

Example 5.11 (Trivial Line Bundle on Affine Variety). Let A be a commutative unital

affine K-algebra. Thus Z = A, and so V = Max(Z) = Max(A) is the corresponding

affine variety. The maximal ideals m ∈ Max(A) will annilate irreducible A-modules

Mm which are all one-dimensional as K vector spaces. This gives us that Ṽ is a trivial

line bundle of each Mm over their respective points in V . Since the bundle is trivial,

it will be definable over K and will have a global section which is a rational map

s ∶ V → Ṽ
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where each s(m) is a canonical basis of Mm for each m ∈ V , and each Γm is the trivial

group for all m. In this sense, this object is a classical Zariski structure since all

components of its structure are reducible to algebraic geometry over K.

Example 5.12 (Quantum 2-Torus at Roots of Unity). Let ε be an `-th root of unity

in K and let A now be the quantum algebra generated by U,U−1,V,V−1 satisfying

the following relations

UU−1 = VV−1 = 1 and UV = εVU

We will denote this algebra T 2
ε = A.

Note that the center Z of T 2
ε is generated by U`,U−`,V`,V−` and that the variety

V = Max(Z) is isomorphic to K∗ ×K∗.

Any irreducible T 2
ε -module M will be a K-vector space with dimension N = `,

and with a basis given by the space of U-eigenvectors {e0, e1, . . . , e`−1} satsifying for

eigenvalues µ of U and ν of V

Uei = µεiei

Vei =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

νei+1 if i < ` − 1

νe0 if i = ` − 1

We also have a basis of V eigenvectors {g0, . . . , g`−1} satisfying the change of basis

relation

gi = e0 + εie1 + . . . + εi(`−1)e`−1

and therefore
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Vgi = νεigi

Ugi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µgi+1 if i < ` − 1

µg0 if i = ` − 1

We can let a = µ` and let b = ν`. Then (U` − a) and (V` − b) are generators for

Ann(M). The module is determined uniquely once a and b are given. Therefore V is

isomorphic to the two-dimensional torus K∗ ×K∗. Furthermore, the coefficients for

the matrix representations

T = {tijk ∶ i ≤ d and j, k ≤ `}

for the operators U and V are determined by µ and ν satisfying the polynomial

equations

µ` = a and ν` = b

With respect to this basis, the group Γm = Γ becomes the nilpotent group of order `3

generated by the matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0

0 0 1 . . . ⋮

0 0 0 . . . ⋮

⋮ ⋮ ⋮ ⋱ 1

1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0

0 ε 0 . . . ⋮

0 0 ε2 . . . ⋮

⋮ ⋮ ⋮ ⋱ ⋮

0 . . . . . . . . . e`−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

representing the operators U and V in the eigenbases we used to define the canonical

bases. This associated Zariski structure Ṽ (T 2
ε ) to the quantum algebra T 2

ε defined
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by this construction is called the quantum 2-torus.

We will remark without proof the following theorem whose proof can be found in

[14] in Chapter 5, Section 3, derived from a general case proven for quantum n-torus.

Proposition 5.13 (Quantum Tori are (generally) Nonclassical). The associated Zariski

structure Ṽ (T 2
ε ) is not interpretable in any algebraically closed field for any ε ≠ 1.

There will be a generalization of quantum 2-tori can be defined for any ε ∈ K∗,

but the resulting structure may not always be a Noetherian Zariski structure (as

opposed to a different kind of Zariski structure which are often called analytic Zariski

structures, which are discussed in chapter 6 of [14]). This kind of torus will be

presented in the next chapter. For now, one idea to note about quantum tori at roots

of unity is that we can imagine the root ε = exp(2πimn ) for some m,n ∈ Z. We can then

ask whether or not there is an appropriate way to turn the rational number m
n into a

convergent sequence of rational numbers to approximate an aribtary real number, and

let the limiting process represent an approximation of structures. Before we do this

however, we will end this chapter with the following properties which demonstrate

the logical strength of these kinds of Zariski structures.

Proposition 5.14 (Isomorphism Lifting to Associated Structures). Let Ṽ1 and Ṽ2

be associated Zariski structures of A in the weak (or full) language with the same

PA system of polynomial equations over the field K. Then the natural isomorpism

i ∶ V1 ∪K → V2 ∪K over C can be lifted to a Zariski isomorphism

ĩ ∶ Ṽ1 → Ṽ2

Proof. We can assume that the natural isomorphism between i ∶ V1 ∪K → V1 ∪K is

the identity map on V ∪K without loss of generality.



104

We know that π−11 (m) and π−12 (m) each have the structure of a module for

each m ∈ V . We can then build an isomorphism between π−11 (m) and π−12 (m) by

assumption (3) about quantum algebras that at each m we can find T = {tijk ∈

K ∶ i ≤ d and j, k ≤ N} solving the polynomial equations PA and choose for each

such solution pair of canonical bases {e(1)1 (m), e(1)2 (m), . . . , e(1)N (m)} for π−11 (m) and

{e(2)1 (m), e(2)2 (m), . . . , e(2)N (m)} for π−12 (m) which can be used to represent each oper-

ator Ui in terms of the basis using coefficients from T . This means the relationship

will be preserved if we extend our map i by the mapping

im ∶ ∑
1≤j≤N

zje
(1)
j (m)↦ ∑

1≤j≤N
zje
(2)
j (m)

for any choice of z1, z2, . . . , zN ∈ K. This induces an isomorphism im ∶ π−11 (m) →

π−12 (m). Therefore we can build the isomorphism

ĩ ∶ Ṽ1 → Ṽ2 defined by ĩ = ⋃
m∈V

im

This proves that there is an isomorphism between Ṽ1 and Ṽ2 under the weak language.

To prove the full language case, note that the maps im will also preserve the orbit

relation between any two canonical bases in Em, and so they will preserve the structure

of the full language.

An immediate corollary of this result is the following theorem.

Theorem 5.15 (Categoricity of Associated Structures of Quantum Algebrass). For

any quantum algebra A, the theory Th(A−mod) is uncountably categorical in both the

full and weak languages.
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The importance of this theorem for physical application can perhaps be roughly

interpreted as saying there is only one model of the associated Zariski structure of

a quantum algebra, which as we hope we can modify to represent constructs such

as operator algebras of observables in quantum mechanics. There is plenty more

nice results about these kinds of nonclassical Zariski geometries which were originally

developed in [12] and represented in [14]. Most of these facts are deeper model-

theoretic results about Zariski structures, such as properties regarding how certain

formulas can be simplified modulo the theories of these Zariski structures, but we will

omit these and leave them to the curiousity of the reader.

We note that our main examples have consisted of building operator structures

over some classical geometries and realizing that these additional structures seem to

be reducible to classical structures precisely in the cases where the operators commute,

but will induce nonclassical geometric objects in the . This can be seen as analogous

to the idea that quantum mechanical operators commute in precisely the setting of

classical mechanics, but their commutators are essentially just a nontrivial scaling

operation. In this sense, this motivates our eagerness to label our structures built

here as quantum structures, since these methods can be seen as a kind of quantization

of classical Zariski structures. With this being said, let us turn our attention towards

applying our theory of Zariski structures to quantum mechanics.
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CHAPTER 6

APPLICATIONS TO QUANTUM MECHANICS

Now that we have demonstrated some of the basic methodological principles of

nonclassical Zariskis structures, let us now turn more explicitly towards applying

these constructs to quantum mechanics. In particular, we will operate under the

following principle : there is a kind of semantic-syntactic correspondence which

we would like to utilize between our notion of quantum algebra, and our notion of

associated Zariski structure. A quantum algebra essentially prescribes some kind of

algebraic rules pertaining to how some collection of operators works on some vectors

spaces. We then create a canonical way of associating that algebra with some kind

of geometrical space which encodes the behavior of the algebra on its elements. One

could compare this correspondence principle we used as somewhat analogous to the

correspondence of finite-dimensional Lie algebras to some kind of natural choice of

matrix Lie group by Lie’s third theorem.

6.1 Generalizing Quantum Tori

First, let generalize the notion of quantum 2-torus that we used before. In partic-

ular, we would like our operators U and V to eventually represent the position and

momentum operators of quantum mechanics in one-dimension. With that being said,

a fundamental component of the mathematical structures used in quantum mechanics
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is the inner product, which allows us to compute the probability distributions of the

observable quantities associated with these operator. After we develop the newer

quantum torus definition from [13], we will then develop our notion of structural

approximation based on ultraproducts, and then apply these two tools to physics to

demonstrate a way these tools can help physicists avoid the process of renormalization

in an example of computing a Feynman propagator.

Construction 6.1 (Generalized Quantum 2-torus). Let K be an algebraically closed

field, and let Aε be the K-algebra generated by the operators U, U−1, V, and V−1

satisfying the relations

UU−1 = VV−1 = 1 and VU = εUV (6.1)

where ε ∈ K∗. Recall that V = Max(Z) is isomorphic to K∗ × K∗ under these

assumptions. Furthermore, let us note that

G = {εm ∶m ∈ Z}

is a multiplicative subgroup of K∗ ×K∗.

Now for each (u, v) ∈K∗×K∗, let us construct a pair of Aε-modules denoted M∣u,v⟩

and M⟨v,u∣. In the case where ε is a root on unity as before, M∣u,v⟩ will be isomorphic

to M⟨v,u∣.

In this case, our canonical bases can be infinitary, and they will be labelled by

the notation B∣u,v⟩ = {u(gu, v) ∶ g ∈ G} to represent the eigenvectors of U with their

corresponding eigenvalues g ∈ G. In the case of the a root of unity (in which G is

torsion), we note that our basis will reduce to a finite one. We will now interpret the
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operator U as a linear operator on M∣u,v⟩ defined by its action on the canonical basis

U ∶ u(gu, v)↦ gu ⋅ u(gu, v) (6.2)

V ∶ u(gu, v)↦ v ⋅ u((ε−1g)u, v) (6.3)

Dually, we interpret the operators on M⟨v,u∣ by their actions on the canonical eigen-

basis B⟨v,u∣ = {v(gv, u) ∶ g ∈ G} by

U ∶ v(gv, u)↦ u ⋅ v((ε−1g)v, u) (6.4)

V ∶ v(gv, u)↦ gv ⋅ v(gv, u) (6.5)

We would like to identify these modules as submodules of some common ambient

module, but for now we will just note that when ε is a root of unity, we should expect

these two modules to be the same modulo some change of basis.

Let K∗/G be the cosets of K∗ by G. Define some choice function ρ ∶ K∗/G → K∗

which chooses a representative from each coset, and let R be the range of this choice

function, and so it is a set consisting of precisely one representative from each coset.

Let

Uρ = {g1 ⋅ u(g2u, v) ∶ (u, v) ∈ R2 and g1, g2 ∈ G} ⊆ ⋃
u,v∈K∗

M∣u,v⟩

Vρ = {g1 ⋅ v(g2v, u) ∶ (u, v) ∈ R2 and g1, g2 ∈ G} ⊆ ⋃
u,v∈K∗

M⟨v,u∣

We can now add the predicates U and V as unary predicates designating the sorts

Uρ and Vρ respectively. We will now consider the actions on each of the sorts

KUρ = {x ⋅ u(gu, v) ∶ (u, v) ∈ R2 and g ∈ G and x ∈K}
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KVρ = {y ⋅ v(gv, u) ∶ (u, v) ∈ R2 and g ∈ G and y ∈K}

We now consider a pairing to be a ternary relation representing a function

⟨⋅∣⋅⟩ ∶ Uρ ×Vρ →K

defined as such : for any (u, v) ∈K∗×K∗ and any εsv(εmv, u) ∈ Vρ and εru(εku, v) ∈ Uρ

we set

⟨εsv(εmv, u)∣εru(εku, v)⟩ = ε−km−s+r (6.6)

and we leave the pairing undefined for any situation ⟨εsv(v′, u)∣εru(u′, v)⟩ where v′ ∉

v ⋅ G or u′ ∉ u ⋅ G

The triple (Uρ,Vρ,K) with the structure of a field on K, the operators U and

V acting on the sorts as described above, and the pairing function between the two

sorts will be the structure of the (geometric) quantum 2-torus associated with Aε.

This finishes our construction.

With this construction in mind, we claim that the technique of proof which was

used in [14] to prove that our previous notion of quantum tori are nonclassical Zariski

geometries, and that constructions built from these techniques are uncountably cate-

gorical in their theories, one just needs to perform a simple adaption of those proofs.

We summarize the results in the following theorem.

Theorem 6.2 (Classification Results of Generalized Tori). Given an algebraically

closed field K and some ε ∈ K, then for any two choice functions ρ1 and ρ2 from

K∗/G to K∗ and the two corresponding quantum tori (Uρ1 ,Vρ1 ,K) and (Uρ2 ,Vρ2 ,K),

there is an isomorphism over K between the two structures.
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If ε is a root of unity, then the quantum torus will be a Noetherian Zariski

structure. (ie, nonanalytic Zariski structure). Furthermore, if ε ≠ 1, then the torus

is not definable in (K,G), the field K adjoined with a predicate for defining the

multipicative subgroup G.

With these results in mind, let us now define the inner product on this structure

in the situation where the ε is a root of unity. Of course, we now will assume that

K = C so the inner-product can be well-defined.

Construction 6.3 (Inner Product on 2-torus at Roots of Unity). Let (Uρ,Vρ,C) be

a quantum torus corresponding to Aε with ε a root of unity of order N . We define

our inner-product on M(u,v) =M∣u,v⟩ =M⟨v,u∣ by the map (⋅∣⋅) ∶M(u,v) ×M(u,v) → C by

inducing a sequilinear map on the following basis evaluations

(u(εku, v)∣v(εmv, u)) = 1√
N

⟨v(εmv, u)∣u(εku, v)⟩ = ε
−km
√
N

(6.7)

(u(εku, v)∣u(εmu, v)) = δkm (6.8)

(v(εkv, u)∣v(εmv, u)) = δkm (6.9)

where δkm denotes the Kronecker delta function. Note that these rules tell us that our

canonical bases are defined as orthonormal, and that the transition matrices between

them can be given by

u(εku, v) = 1√
N

N−1
∑
m=0

ε−kmv(εmv, u) (6.10)

v(εmu, v) = 1√
N

N−1
∑
k=0

εkmv(εku, v) (6.11)
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6.2 Structural Approximation

Now that we have a notion of inner product defined, we have now adapted the

tools of our nonclassical geometries to suit our needs. In particular, let us not that if

we were to let ε = exp(2πih̵) where h̵ denotes the reduced Planck constant of physics,

and we take U = exp(iP ) and V = exp(2πiQ) for P the momentum operator and Q

the position operator satisfying the Heisenberg commutation relations

QP − PQ = [Q,P ] = ih̵I

then the operators U and V will form a quantum torus assuming they follow the

Weyl commutation relations

VU = εUV

which corresponds precisely with the commutation relation (6.1) that we used to

define our quantum algebras. We will remark more on this later, but first let us

introduce the notion of structural approximation.

Definition 6.4 (Structural Approximation). Let M be a topological structure, and

let (Mi ∶ i ∈ I) be a family of structures each under the same language as M . We

say that M is structurally approximated by (Mi ∶ i ∈ I) along an ultrafilter U on I if

for some elementary extension of the ultraproduct ∗M ≽∏Mi/U there is a surjective

homomorphism lim
U

∶ ∗M →M

Remark 6.5 (Different Approximation Notions). In a more recent draft written by

Zilber, there is a distinction made between so-called syntactic approximation and

semantic approximation as kinds of approximations. In our case, the notion of

structural approximation means precisely the same thing as semantic approxima-
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tion. Furthermore, in the case of quasi-compact structures, the notions of syntactic

approximation and semantic approximation become equivalent.

Notation 6.6 (Use of Limit Function). Sometimes when we have a family of struc-

tures {Mi ∶ i ∈ I} which we know approximate M under some ultrafilter U , we will

sometimes skip writing out the ultraproduct (or the extension of the ultraproduct

used in the approximation) and simply say that

M = lim
U
Mi

if the sequence of structures approximates M .

To get a grasp of the properties of structural approximation, let us look at

some examples of how structural approximation pertains to some of the topological

structure notions we discussed. In particular, we can derive the following theorem

which can sometimes give an intution about what kinds of structures result from this

approximation.

Proposition 6.7 (Quasi-Compact Approximations). Let M be a topological structure

approximated by (Mi ∶ i ∈ I) over an ultrafilter U , where Mi = M for each i ∈ I. If

the elementary extension ∗M ≽∏Mi/U which surjectively maps onto M is saturated,

then M must be quasi-compact.

Proof. First, note that for each a ∈M the singleton closed set of that point is precisely

defined by a positive formula that expresses that a is the only element of M in that

singleton set. We can then choose a point â ∈ MD for each a such that uniquely

lim
U

(â) = a by surjectivity (if this point wasn’t unique, then the surjective map

wouldn’t preserve the statement that this set consists uniquely of one element). So
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we can map i ∶ a ↦ â as an embedding of M into MD. This can be shown to mean

that MD is a total specialization onto M , and therefore by Proposition 3.15, we know

M must be quasi-compact.

This proposition indicates a theme about structural approximation that we will

use to our advantage when studying their application to physics : structural approx-

imation is well-studied for approximating quasi-compact structures. This makes the

structural approximation somewhat reminiscent of notions like the Gromov-Hausdorff

limit of a family of compact metric spaces. With this in mind, one can actually

prove that the Gromov-Hausdorff limit can be understood as an instance of structural

approximation under an appropriate choice of language for metric spaces, which is

proven in [15].

We also get the next result, which will be useful for our particular case for what

it says about approximation in the class of compactified cyclic groups. Particularly,

consider the following construction.

Construction 6.8 (Two-End Compactifications of Z and Z/nZ). Let Z have the

additive integer group structure and let Z̄ = Z ∪ {∞,−∞} with the ternary relation

x + y = z intepreted on Z as addition, but interpreted for infinities as

x + (−∞) = −∞ for all x ∈ Z

x +∞ =∞ for all x ∈ Z

∞+ (−∞) = x for all x ∈ Z̄

Then we let C consist of all relations of the form x + y = z, the unary relations x = n

for each n ∈ Z̄, and all positive existential formulas generated in this language. We
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note that (Z̄,C) is quasi-compact, and that this same language for compactification

can also be applied to Z/nZ for each n ∈ Z. Let us write the compactification of Z/nZ

as Z̄/nZ̄

We now say that an ultrafilter U of subsets of Z+ is profinite if for every m ∈ Z+

the subset mZ+ is in U , and we can state the following fact which will be useful for

us in doing our physics approximations.

Proposition 6.9 (Compact Approximation of Cyclic Groups). Given an ultrafilter

U of Z+, we have Z̄ = limU Z̄/nZ̄ if and only if U is profinite.

Once again, the proof for this proposition can be found in [15], but for our purposes

we will simply state the theorem and notes its uses in our situation.

In particular, with these structural approximation tools in place, we now note that

we can work in the compactification of the quantum torus (Ū, V̄, C̄) instead. In this

compactified structure, we let C̄ be the usual one-point compactification C̄ = C∪{∞},

and we let Ū and V̄ be our compactifications determined by all the other structure

whenever we compactify our group G, which we note is isomorphic to Z/nZ whenever

ε is a root of unity, and is isomorphic to Z otherwise. That means that G can be

compactified using the two-end compactification above.

Furthermore, we note that if we let {εn}∞n=1 be a sequence of roots of unity of the

form exp(2πimnn ), and we let mn
n metrically converge to h̵, then we can structurally

approximate the quantum 2-torus which models our Weyl commutation relations

using our quantum tori at roots of unity. In fact, the argument for the proposition

about compactifications of cyclic groups can be adapted to this scenario to prove the

following theorem (assuming that some appropriate structure has been added to the

group to define the metric within the structure).
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Theorem 6.10 (Approximation by Tori at Roots of Unity). A quantum torus at ε is

approximated by a sequence of quantum tori at roots of unity exp(2πimnn ) for n ∈ Z+

if and only if the ultrafilter of the approximation U is profinite and mn
n metrically

converges to ε along U .

We now have our geometries and approximation schemes set up, and now we will

end our discussion with an application of these tools to computing some quantities

from quantum mechanics which are often computed heuristically.

6.3 Dirac Calculus and Applying the Torus

We will now survery some of the proposed applications by Zilber in [13], which aims

to provide an alternative way to rigorously compute some quantities in physics using

these techniques in model theory; and constitutes a general project that Zilber has

pursued seemingly beginning with his work on constructing examples of nonclassical

Zariski geometries in [12].

To give a brief background, the Dirac calculus refers to a method that initially

developed as a heuristic for calculating certain transformations of wave functions by

operators expressed in terms of the position Q and momentum P operators satisfying

the Heisenberg commutation relations. Using this method, we represent our wave

functions as elements of some Hilbert space, expressed in terms of the eigenvectors of

Q (or, we could express the space in terms of eigenvectors of P by Fourier duality).

We then consider the time evolution operator of the quantum mechanical system

given by

Kt = e−itHh̵ (6.12)
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where H is the Hamiltonian operator of the quantum mechanical system, which is

normally a self-adjoint operator given by some

H = P
2

2h̵
+ V (Q)

where V (Q) is the potential function with respect to positionQ, and is often expressed

as a polynomial.

The choice of V (Q) essentially characterizes the particle under consideration, and

the interactions of the particle will be determined by computing the time-evolution

operator of the particle for its wave function, which is done by taking an integral.

The only hiccup one encounters is that not all of these integrals converge, but due

to the use of heuristic methods, physicists have still been able to find some ways to

evaluate these integrals which still provides results that accurately predict physical

phenomena.

The Hilbert space specified can usually be regarded in analogy to the Hamiltonian

state space of classsical mechanics which is a 2-space with coordinates encoding one-

dimensional position and momentum of a particle, particularly with respect to the fact

that the Hilbert space has a pair of mutually dual bases representing the eigenvectors

of the position and momentum operators. In either mechanics, the spaces consist of

all the different physical states of the particle. It is this quantum state space from

which we would like to extract a Zariski structure.

Recall that if we let Vb = exp(biP ) and Ua = exp(2aπiQ) for a = 1 and b =

1 (although we could assign a and b to be any rationals to obtain different kinds

of operators), then we get that Vb and Ua will satisfy the following commutation

relations by the Baker-Campbell-Hausdorff formula from Lie theory
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VbUa = εabUaVb where εab = exp(2abπih̵) (6.13)

Furthrmore, the eigenvectors ∣p⟩ of P corresponding to eigenvalue p will be eigenvalues

of V corresponding to eigenvalue exp(bip), and the analogous result holds for the

eigenvectors ∣x⟩ of Q for U with eigenvalue exp(2aπix). This use of bra-ket notation

for one-dimensional quantum mechanics represents an eigenvector by its eigenvalue

inside the ket brackets. For example, the eigenvector ∣x⟩ of the position operator Q

will be a wave function whose probability distribution guarantees with probability

1 that a particle in the state represented by ∣x⟩ is located at the position x – the

eigenvalue of the wave function.

In particular, by our theorem for generalized quantum tori, the (Ua,Vb)-system

will form a Zariski structure. In particular, we can take the following maps

expa,b ∶ ∣x⟩↦ u(e2aπλx ,1) (6.14)

expa,b ∶ ∣p⟩↦ v(ebλp ,1) (6.15)

from the Hilbert space H to the respective eigenvectors of the (Ua,Vb)-system. We

can then treat ∣x⟩ and ∣p⟩ as the limits of u(e2aπx,1) and v(ebp,1) respectively when

we let a and b both converge to 0. This will pass our Dirac calculus problem to

a structural approximation of Zariski structures problem, which we can avoid cases

where Dirac calculus is ill-posed. From here forward, let us use the notation U = U1

and V = V1

We now will compute a time-evolution operator in the Zariski structure setting.

We will start by expanding the (Ua,Vb)-system by a time-evolution operator Kt

for some choice of a Hamiltonian operator H. In particular, we will start with the
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Hamiltonian of a free particle, whose potential V (Q) is everywhere 0

H =Hfree =
P 2

2h̵

Now, by density, we can initially work by only considering values of time t such that

2πt is rational. We can then use the Baker-Campbell-Hausdorff formula to compute

the following conjugations from the definitions

KtUK−t = ε−πtUV−2πt and KtVK−t = V (6.16)

We then define our (U,V2πt,Kt)-algebra as an algebra generated by these operators

and their inverses such that U and V2πt satisfy the Weyl commutation relations and

Kt satsifies these conjugation relations above. Indeed, an operator Kt satisfying the

conjugation relations will be unique up to multiplication by a normalizing constant

over the every finite-dimensional (U,V2πt)-module. Note that any (U,V2πt) algebra

can be extended to such an algebra by simply adjoining the Kt operator with the

conjugation relations.

Once again, we note that adjoining the time-propagator to create our (U,V2πt,Kt)-

system will uniquely determine the system up to isomorphism over C, and the system

will be a Zariski structure. With all of this setup, we are almost ready to perform

our calculations, but we will make some final observations and assumptions. First,

we can assume by our structural approximation theorem of quantum tori by tori at

roots of unity that h̵ can be treated approximately as a rational number M
N where

gcd(M,N) = 1 and N divides every feasible integer – where feasible is taken informally

to mean that N is some integer with which computations can be performed (maybe
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a number like lcm(2,3,4, . . . ,2128 − 1) for example). We will also assume that 2πt is

specifically chosen where its numerator is one of these feasible integers. Furthermore,

in mathematical applications, numbers with associated dimensions (meters, seconds,

Newtons, etc.). Furthermore, physical units can always be refined by some absorption

of constants. In particular, we can always adjust the units of our rational approxima-

tion of the reduced Planck constant h̵ so that the constant is replaced, up to change

of units, by the quantity 1
N for any N ∈ Z+ by absorbing a factor of h̵N into the units

of the reduced Planck constant.

To start the computation, let us look at some of the properties of the (U,V2πt,Kt)-

system we have constucted. Let {u(u, v) ∶ u ∈ C∗ and v ∈ R} be the system U-

eigenvectors, where R is the range of the choice function used in the construction of

the (U,V2πt)-system. So

U ∶ u(u, v)↦ u ⋅ u(u, v) and V2πt ∶ u(u, v)↦ v2πt ⋅ u(u, v)

Note that the dimension of the modules are N
2πt where this number is an integer by our

assumptions about how we are representing the reduced Planck constant. In situations

where it is convenient without obscuring the computation, we will abbreviate

M = N

2πt

Let us now denote the following

s(u, v) =Ktu(u, v) and St = ε−πtUV−2πt =KtUK−t

Therefore we can see, from this conjugation, that for each u ∈ C∗, v ∈ R, and k ∈ Z
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Sts(u, v) = us(u, v) and V2πkts(u, v) = v2πkts(ε−2πktu, v) (6.17)

We can then compute the inner product using the formulas to get

(s(u, v)∣u(uε2πkt, v)) = cεπtk2v−2πkt (6.18)

where c is a function of (u, v) defined by

c = c(u, v2πt) = ε−πt (s(u, v)∣u(u, v)) (6.19)

It can be show, however, that c does not depend on (u, v) – hence the choice of

notation. c only depends on the choice of (U,V2πt,Kt).

Next, let us assume that for the moduli of u and v that ∣u∣ = ∣v∣ = 1, and that also

U and V2πt are unitary operators on the inner product space. Then we see there is

some c0 ∈ C with ∣c0∣ = 1 such that

c = c0
√

2πt

N

which allows us to express each s(u, v) in terms of the basis of u(uε2πkt, v) using the

inner products in (6.18) and our found value for c0

s(u, v) = c0
√

N

2πt

M−1
∑
k=0

(επtk2v−2πktu(uε2πkt, v)) (6.20)

Let us now find a way to solve for c0. We can do this by noting that for any

P -eigenvector ∣p⟩ with eigenvalue p, then ∣p⟩ is also an eigenvector of
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exp(−itP
2

2h̵
) ∶ ∣p⟩↦ exp(−it p

2

2h̵
) ∣p⟩

This means that since e−ith̵p
2 = ε−tp2 by (6.13), we note that

Kt ∶ v(ε2πpt,1)↦ ε−πtp
2

v(ε2πpt,1)

and from this we can recall that in an irreducible (U,V2πt)-module, we have the

relation

u(u,1) =
N
2πt

−1

∑
p=0

v(ε2πpt, u)

And therefore we have the mapping

Kt ∶ u(1,1)↦
√

2πt

N

M−1
∑
p=0

ε−πtp
2

v(ε2πpt,1)

The output of this operation, using formula (6.20) with u = v = 1, is thus

s(1,1) =Ktu(1,1) =
√

2πt

N

M−1
∑
p=0

ε−πtp
2

v(ε2πpt,1) (6.21)

which, upon change of basis of each v(ε2πpt,1) vector using formula (6.11), gives

s(1,1) =
√

2πt

N

M−1
∑
p=0

ε−πtp
2 ⎛
⎝

√
2πt

N

M−1
∑
k=0

ε2πpktu(ε2πkt,1)
⎞
⎠

= 2πt

N

M−1
∑
k=0

M−1
∑
p=0

(ε−πt(p2−2pk)u(ε2πkt,1))

which now, once we equate with our previous general formula for s(u, v) in terms of

the u(ε2πktu, v) basis vectors while setting u = v = 1, we can equate the coefficients

between the two linear combinations and get
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2πt

N

M−1
∑
p=0

ε−πt(p
2−2pk) = c0

√
2πt

N
επtk

2

(6.22)

which for k = 0 will give us
M−1
∑
p=0

e−i
πp2

M = c0
√
M

where ε−πtp
2 = e−2(πtp2)πh̵ = e−iπp

2

M by (6.13). We note that the left-hand side of this

equation is a Gauss sum from analytic number theory if M is an even integer, which

we will go ahead and assume, to obtain

√
Mc0 =

M−1
∑
p=0

e−i
πp2

M = 1 − i√
2

√
M

which finally gives us that

c0 =
1 − i√

2

Finally, we will compute the kernel of the Feynman propagator of our free particle

system. This will be defined as

⟨x1∣Kt∣x0⟩

where each ∣xi⟩ represents a position eigenvector, and the formula should be read to

mean the inner product of Kt∣x0⟩ and ∣x1⟩.

We note that e2πixi = ε
xi
h̵ . Let us assume each xi

h̵ as a rational number and rewrite

our Feynman propagator as

N

2πt
⋅ (s(ε

x0
h̵ ,1)∣u(ε

x1
h̵ ,1))

We now use our inner product formula with x0 = 2πtmh̵, u = ε2πtm, x1 = 2π(m+ k)th̵,

and uε2πkt = ε2π(m+k)t to get
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(s(ε
x0
h̵ ,1)∣u(ε

x1
h̵ ,1)) = c0

√
2πt

N
ei
(x1−x0)2

2th̵

but we have already demonstrated that c0 = 1−i√
2
=
√
−i =

√
1
i , and therefore

⟨x1∣Kt∣x0⟩ =
√

1

2πih̵t
ei
(x1−x0)2

2th̵

is the kernel of the Feynman propagator for a free particle. This coincides with the

formulas obtained from the usual heuristics obtained in physics, as can be seen in [10]

as formula (7.76). The usual method to obtain the result would involve considering

the Gaussian integral

I(a) = ∫
R
e−a

x2

2 e−ipxdx

and assign some meaning to the integral for a = i
th̵ . The integral is divergent for

imaginary values of a, but it converges for a in the right half-plane of C. This

computation is performed for a by taking the analytic continuation of I(a) from the

right half-plane to its boundaries.

Along with this result, Zilber shows that much of the same methodology can be

applied to also compute the kernel of the Feynman propagator for the case where the

Hamiltonian operator that of the simple Harmonic oscillator

Hosc =
P 2 + ω2Q2

2h̵

This result can be found in [13].

To summarize the process taken again, the tools we have developed for studying

nonclassical Zariski structures were able to be adapted to the setting of quantum

mechanics by finding some Zariski structures which could help us model our quantum
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state spaces, and then isolating a family of nice Zariski structures which essentially

had a family of self-dual modules as its fibers at each point over their classical geo-

metrical spaces (particularly, the quantum tori at roots of unity). We then developed

a notion of structural approximation from the notion of ultraproducts from model

theory, which gave us a result which said our setting of quantum mechanics could be

obtained by deforming a family of quantum tori to represent the space, thus giving

us the ability to approximately represent our quantum mechanical model in terms of

quantum tori. Then finally, after some grinding through inner product computations

with a newly-adjoined time-propagator operator, we developed a technique which has

allowed us to obtain the same formulas that heuristic physics methods obtain, but in

a fairly mathematically rigorous fashion.
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CHAPTER 7

CONCLUDING REMARKS

After all this said about Zariski geometries and their applications to quantum

mechanics, the work presented here only scratches the surface of the theory of Zariski

structures and Zilber’s trichotomy principle. Not only have Zariski geometries been

applied by Hrushovski to prove the case of the Mordell-Lang conjecture for function

fields [3], but there has also been work to apply the theory of Zariski structures to

differential closed fields, such as Pillay’s theorem regarding finite Morley rank subsets

of differentially closed fields [7]. Zilber’s trichotomy principle has also seemingly

inspired works in the classification of other kinds of minimal structures, such as

a form of trichotomy theorem proven by Peterzil and Starchenko about o-minimal

structures – lineared ordered structures whose definable sets are reducible to Boolean

combinations of points and intervals [6].

The applications of Zariski structures to quantum mechanics is also still a work

in progress by Zilber, and some of his most recent work on the matter can be found

in [16], where the technique of structural approximation is developed in more robust

ways, and with an open avenue of research being to find ways to adapt these techniques

to computing propagators for higher-order polynomials expressing the potential of a

particle.
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