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ABSTRACT

When fitting a model to a data set, the goal is to create a model that captures

the trends present in the data. However, data often contains regions where the

underlying model changes or exhibits shifts in certain parameters due to economic

events. These locations in the data are known as changepoints, and ignoring them

can result in high error and incorrect forecasts. By developing a specific cost function

and optimizing using the genetic algorithm, we are able to locate and account for the

changepoints in a given data set. We specifically apply this process to the retail sales

of electricity in the United States by examining data sets from each state’s residential,

commercial, and industrial sectors. We demonstrate that, when changepoints are

accounted for, model trends can be computed more accurately. We specifically explore

this in the case of data sets that exhibit changepoints due to the 2020 (and ongoing)

pandemic.
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CHAPTER 1

INTRODUCTION

Almost all parts of life in the 21st century rely on direct or indirect use of

electricity. Electricity has become a requirement in residential life, commercial indus-

try, government, business, healthcare, transportation, communication, etc. Because

electricity is so important, when shortages or blackouts occur, almost all parts of daily

life are impacted. Thus, the models that energy companies and electricity utilities

rely on must provide reliable predictions so that the supply of electricity will always

meet demand.

Most electricity models fall into two basic categories: models built off of previous

daily, monthly, or annual electricity demand, and models built off of “end use” con-

sumption. Because the data required for end use consumption models is proprietary,

we will be examining models that are built from public historical data. Historical

data sets include not only accurate demand or supply values, but also locations in

the data where anomalous events may have occurred that are not consistent with the

true underlying nature of the demand patterns. Additionally, these data sets contain

regions where the true demand pattern shifts. Changes to the underlying demand

pattern can sometimes be explained by large scale power outages, energy intensive

business openings or closures, rapid increase or decrease of regional population, etc.

We use the term “changepoints” to refer to a location where the data signals a change
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in pattern. Mathematically, if a model is being fitted to the data, a changepoint

indicates a parameter change. While the events leading to these changepoints may

be recorded in local news or through other qualitative means, they are rarely noted

in data documentation. Because of this, models built on historical data may unknow-

ingly produce erroneous results if changepoints are not accounted for.

When fitting any theoretical model to real world data, it is well known that data

disruptions, changes in instruments, or shifts in economic variables all can alter the

underlying model and thus indicate a changepoint. This changepoint could manifest

itself as a shift in the mean or slope of the data, a change in the type of underlying

model, or a change in some other parameters [2]. Due to these shifting parameters,

data that contains changepoints should not be modeled using the same parameters

across the entire data set. Rather, once changepoints are located in the data, data

points between the changepoints may then be fitted with region specific parameters

that adjust part or all of the model for that section of the data set [2].

Detection of these locations is important in many industries such as finance,

climatology, medical modeling, bioinformatics, speech recognition, and energy, and

because of this, many changepoint detection methods exist [3]. “Offline” methods

rely on entire historical data sets to determine changepoint locations, while “online”

methods account for new data points as they occur using sliding windows of data [3].

While both methods have useful applications, offline methods are typically applied

when large amounts of historical data are available, and when the interpretation

of historical changepoints should be considered. Additionally, parametric and non-

parametric changepoint techniques have been developed. Non-parametric methods

do not rely on estimating an underlying distribution and are useful when little about

the structure of the data can be determined. They also show promise when working
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with extremely large data sets, but, for smaller data sets and situations where data

already fits a given distribution, a parametric method may perform best [3].

Regardless of method, most changepoint detection algorithms rely on developing

a cost function and a search method to locate a known or unknown number of

changepoints. The search space is usually fully or partially divided into a certain

number of regions, such as in the Shapelet method or minimum description length

(MDL) method, or the function may simply rely on Bayesian inference techniques [4].

All of these can be used in combination with likelihood models to aid in parameter

optimization [3].

Once a cost function has been selected, a method of optimization must be chosen.

In this paper, we will be making use of the genetic algorithm (GA) to optimize the

cost function. The GA was first introduced by John Holland and is based on the

theory of natural selection [5]. In this theory, an initial population of some species is

identified, with some members of that population having more desirable traits than

other based on the environment in which they must survive. As the species breeds

the next generation, members of the parent generation with the best features pass

those down to their children more often than members with less desirable traits. If

there is enough variety in the starting population, subsequent generations will become

better and better suited to their environment. Ultimately, after many generations,

the resulting species will be better adapted to it’s environment than it’s far removed

ancestors [6]. When translated into mathematical terms, an initial population of

candidate solutions is proposed, and, as the algorithm iterates, subsequent iterations

of proposal solutions pass down their best changepoint options allowing the algorithm

to get closer and closer to the optimal number of changepoints and their locations.

This mechanism of optimizing a cost function may be applied to any type of
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data that contains changepoints. However, these methods are not typically used

by utility companies when forecasting the amount of electricity that certain sectors

demand. Within the utility industry, historically, bottom up end-use models have

been frequently used [7]. In these models, the amount of electricity required in a

given sector is estimated based on the electricity consumption profile of the utility’s

individual customers. These include estimates for heating, cooling, appliances, etc.

[7]. These models require very detailed personal data concerning the characteristics

of individual customers, and, due to the highly protected nature of such data, are

thus only feasible for utilities themselves to model. A more modern approach is based

on top down econometric models that incorporate elements like historical electricity

sales from a shorter time frame (five years or less) and that break down historical

consumption variables by regional groups of consumers, as well as other economic

and qualitative variables [7]. Some utilities employ a combination of these methods

to assist with forecasting the long term impact of future electricity consumption and

sales. Changepoints are not typically identified as such by utility companies, rather

the historical time period is shortened to minimize the inclusion of outdated trends

[7] [8]. Due to laws guarding individual customer consumption information, the data

required to replicate current end-use and econometric models is not available to those

outside utility companies. This poses many drawbacks to those attempting analysis

in the utility industry. Therefore, our methodology relies only on public data that is

aggregated by sector. Additionally, our method only incorporates historical electricity

data, so no other economic data needs to be collected and evaluated for correlation.

To locate and account for changepoints, we will develop a cost function which we

will optimize using the GA to mathematically determine the location and number

of changepoints. Once changepoint locations have been determined, we’ll use a time
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series regression model with varying slopes and intercepts to fit a model to the data

between each set of changepoints. We expect this method to improve modeling

accuracy for electricity demand. Additionally, we expect this process to allow for

better understanding of the regional impact of policies and economic events across

sectors in the United States.
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CHAPTER 2

DATA

This research was conducted on data from the U.S. Energy Information Agency

(EIA). This data set provides the monthly retail sale of electricity by state in million

kilowatthours (kWh), and can be downloaded at https://www.eia.gov/electricity/

data/browser/. Each state’s data is further broken down into sales to residential,

commercial, and industrial sectors, making for three data sets per state. Data

classifications for transportation and “other” are also provided, but some states do not

report any values in these categories, so, for the sake of consistency across each state,

we will only focus on the main three reported categories of residential, commercial,

and industrial sales. Additionally, we will only be analyzing the 48 contiguous states,

as the data from Alaska and Hawaii are incomplete and are impacted by trends that

are not easily grouped along with other regions in the United States. Note also that

the term “retail sales” refers to sales of electricity made to the end consumer and

does not account for any sales made on the wholesale energy market where electricity

producers sell excess electricity to one another [9].

The data was reported to the EIA by regional utility companies through the

form EIA-826, EIA-860, EIA-923, and EIA-861 [10]. Due to federal and state level

requirements and controls for utility companies, true missing values in this type of

data are very rare, and, in instances where these occur, the EIA fills in these values
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with estimates calculated by regression based on historical annual values prior to

publicly releasing the data [10]. The resulting data set has no missing values, and no

pre-processing was done on the data prior to analysis.

There are a total of 144 data sets, (three from each state), that will be examined.

Observations begin in January 2001 and are recorded monthly through December

2020 providing a total of 240 observations per data set. As illustrated in Figure 2.1,

Texas is by far the largest state consumer of electricity, followed by California. The

least amount of retail sales of electricity were made to Vermont with other states’

sales falling somewhere in between [1]. The balance between residential, commercial

and industrial consumption varies greatly by state depending on each state’s primary

industries, population size, and natural resources.

Figure 2.1: 2020 Retail Sales of Electricity by State [1]

All three of the data sets for each state are made up of time series data, meaning

that the data is time dependent and exhibits seasonality and autocorrelation. Fig-

ure 2.2 shows each sector’s data from Washington state, and, visually, the seasonality

and time series nature of the data is apparent. For example, residential electricity
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consumption peaks in the winter months and falls as temperatures become more

moderate in spring, summer, and fall. This gives it a visible cyclic trend which is time

dependent and can be described by quantifying the correlation of the data to itself

at specific lag lengths (for example, every 12 months or every 6 months). Industrial

and commercial data sets for Washington exhibit time series trends as well, but with

more pronounced underlying trends.

While typically time series analysis is performed on data sets that have a large

number of observations, prior to 2001, this data was not reported to a central agency

and is not publicly available, limiting the time frame of this analysis. Additionally,

the data does not account for all retail sales of electricity in each state, rather it only

reports the electricity sales that fall into the three main categories. Non-retail sales

and sales that fall into other categories are not included in this analysis but may be

important in understanding a state’s electricity consumption and production makeup.

Potential jumps in the data may occur when a consumer newly meets or ceases

to meet the criteria to fit into the residential, industrial, or commercial categories.

Additionally, with the start of the 2020 pandemic, a severe drop can be seen in the

trend of some of the data sets. While it can be challenging to accurately model such

irregular events, they may offer excellent examples of changepoint locations.
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Figure 2.2: Retail Sales of Electricity in Washington in Million kWh
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CHAPTER 3

METHODS

3.1 Piece-wise linear trend regression with autocorrelated

errors

To arrive at a fitted model that accounts for changepoints, we must go through two

main steps. Firstly, we will develop a regression model that fits the data for a known

configuration of changepoints. Then, since the true configuration of changepoints is

unknown, we must implement a process to locate the changepoints in the data set.

Suppose we have a data set of length n that contains time dependent monthly

data as well as k known changepoints which occur in the data set at times τ1, . . . , τk.

This results in a total of k + 1 segments within the data set, each of varying lengths.

The goal is to fit a linear regression model to each segment of the data between the

changepoints, resulting in a partial piece-wise regression model that still accounts for

autocorrelated data. In this regression model, let β
(i)
0 be the intercept term and β

(i)
1

be the slope term for the linear regression over the ith segment of the data. Due to

the periodicity of the data, we also will include several harmonic terms to capture

the cyclicity of the seasonal mean. Specifically, we include sin(2πt/T ), cos(2πt/T ),

sin(4πt/T ), and cos(4πt/T ), where periodicity of T = 12 as the data is monthly. This

provides offset convex and concave waves whose periodicity aligns at six month and
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yearly locations in the data, modeling these periodic first moment changes. Once the

coefficients α1, . . . , α4 have been applied to these terms, seasonal changes to the mean

that occur every year and every six months will be effectively accounted for in the

model. It is worth noting that, in practice, not all sine and cosine terms are significant

for each data set. However, the goal is to construct a parsimonious periodic regression

model that can be applied accurately to many data sets. We therefore include all four

terms to ensure the significant sine and cosine options are available to model each

data set. Then our piece-wise regression model can be written as follows:

Yt =



β
(1)
0 + β

(1)
1 t+ st + εt if 1 ≤ t < τ1

β
(2)
0 + β

(2)
1 t+ st + εt if τ1 ≤ t < τ2

...

β
(k+1)
0 + β

(k+1)
1 t+ st + εt if τk ≤ t ≤ n,

(3.1)

where

st = α1 sin(2πt/T ) + α2 cos(2πt/T ) + α3 sin(4πt/T ) + α4 cos(4πt/T ),

and εt represents the errors for the data that are not accounted for by the other terms

in equation (3.1).

Because the data is time dependent, we need to determine the best model to

account for the time series nature of the εt terms. We selected the seasonal autore-

gressive moving-average (SARMA)(p, q)×(P,Q)T model as the mechanism to account

for the time dependency. Specifically, this model allows us to calculate the month

to month dependency as well as annual autocorrelation which are visually suggested
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by the raw data. Here, p and q are the degree of the respective autoregressive and

moving average parts of the model, while P and Q denote the degree of the seasonal

autoregressive and seasonal moving average parameters. Unlike the harmonic terms

which account for seasonal changes to the mean, the SARMA parameters adjust based

on autocorrelation, a second moment property. The SARMA(p, q) × (P,Q)T model

has the general form

εt = (φ(B))−1(Φ(BT ))−1θ(B)Θ(BT )Zt, (3.2)

where

φ(B) = 1− φ1B − · · · − φpBp, θ(B) = 1 + θ1B + · · ·+ θqB
q,

Φ(B) = 1− Φ1B
T − · · · − ΦPB

PT , Θ(B) = 1 + Θ1B
T + · · ·+ ΘQB

QT .

Note that B is the backshift operator Xt−1 = BXt, and, once this model has been

applied to εt, the final residuals will be uncorrelated with a distribution of Zt ∼

N(0, σ2). The parameters φ,Φ, θ, and Θ all will be estimated from the data once the

specific SARMA model has been chosen. Data driven SARIMA model selection for

this research will be discussed in further detail in Chapter 4.

3.2 Optimization via minimum distance length criterion

We now have the information needed to estimate parameters and fit this model to

a data set when the location and number of changepoints is given. In actuality, the

true number and location of changepoints within a given data set is almost always

unknown; it must be estimated using an optimization process. Using equation (3.1),
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we will develop a cost function (also referred to as a fitness function) that will be

optimized when calculated using the most accurate changepoint estimates that the

data can provide. While fitness functions can take on many forms, we’ll be using a pe-

nalized likelihood function. This fitness function type contains a likelihood value that

offers a way to measure the model’s “goodness of fit”, as well as a penalty term that

reduces the likelihood value in a way that is proportional to the model’s complexity.

Common penalized likelihood fitness function options include the corrected Akaike

Information Criterion (AICC), or Bayesian Information Criterion (BAC). While both

of these include a likelihood term and a penalty term, these types of function place

the same penalty on all model parameters; they do not tailor the penalty strength

to fit the type of parameter [11]. In our model, we will be utilizing the minimum

description length criterion (MDL) penalty as this penalty function often provides

optimal result when applied to time dependent changepoint problems [12] [13].

The MDL penalty specifically allows different parameter types to be penalized

by different amounts depending on whether they are real valued, such as the slope

parameters in our model, or integer valued, such as the number of changepoints [13].

Because our model requires both types of estimates, this penalty type is ideal for

creating a fitness function where certain parameters are weighted more or less heavily

[11].

The MDL fitness function is made up of a log likelihood term and a penalty term,

giving it the following basic form:

MDL(k, τ1, ..., τk) = −2 ln(Lopt) + P,

where Lopt is the optimized likelihood model found using the piece-wise regression
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equations in equation (3.1) for a given changepoint configuration, and P is the MDL

penalty term which penalizes both the number and type of model parameters. Let

ψ denote a vector of all the parameters that must be estimated in order to calculate

equation (3.1) including the time series parameters in equation (3.2). Then, the

expression for the likelihood value can be found using the following equation

Ln(ψ;Y1, . . . , Yn) = f(Y1;ψ)
n∏
t=2

f(Yt|Yt−1, ..., Y1;ψ),

which accounts for the time dependent nature of the data. We further clarify this

likelihood expression by writing it in terms of prediction errors where Ŷt is the best

one-step ahead linear predictor of Yt. Then we can say

Ln(ψ;Y1, . . . , Yn) =

(
1

2πσ2

)n/2(
1

r0r1 · · · rn−1

)1/2

exp

{
− 1

2σ2

n∑
t=1

(Yt − Ŷt)2

rt−1

}
,

where rt−1 = E[(Yt−Ŷt)2]
σ2 . This expression allows us to assess how closely the model

can be fit to the data for a given configuration of changepoints. However we want

to penalize solutions that contain an excessive number of parameters, unless that

additional complexity allows for a better fit to the data. Since the data only contains

240 observations it can only accurately support a limited number of parameter cal-

culations. We mathematically account for this by amending the likelihood function

to include the MDL penalty.

To calculate the MDL penalty, we will adjust the penalty amount based on

parameter type. Each real valued parameter being estimated from all n observations

in the data set is charged a penalty of ln(n)/2. These parameters include the values

for the time series portion of the model, the coefficients for the harmonic terms, and
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the variance estimate. Next we penalize the parameters that are estimated by the

sections of data between subsequent changepoints by ln(τj − τj−1)/2. Each of the

slope and intercept terms receive this penalty. We also want to charge a penalty of

ln(k + 1) for the (k + 1) regions that our data set is split into by the changepoints.

Finally, each changepoint τj itself is penalized by ln(τj+1). Adding all these penalty

components leads to the full MDL penalty:

(
p+ q + P +Q+ 5

2

)
ln(n) +

k+1∑
j=1

ln(τj − τj−1) + ln(k + 1) +
k+1∑
j=2

ln(τj),

with τk+1 = n + 1. And, since the penalty value will only change as the number of

changepoints (k) and their locations (τj) change, all terms that do not rely on k or

τj may be removed. This means the penalty simplifies to:

P =
k+1∑
j=1

ln(τj − τj−1) + ln(k + 1) +
k+1∑
j=2

ln(τj),

Which gives us our final fitness function:

MDL(k, τ1, . . . , τk) = −2 ln(Lopt) +
k+1∑
t=1

ln(τj − τj−1) + ln(k + 1) +
k+1∑
j=2

ln(τj), (3.3)

This function will be minimized when calculated using the optimal number and

configuration of changepoints, so any possible estimation of changepoints can now

objectively be evaluated.
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3.3 Changepoint estimation via genetic algorithm

With very small data sets, it may be possible to perform an exhaustive search

over the full sample space, testing all possible numbers of changepoints as well as

each possible configuration. However, there are
(
n
k

)
different ways to configure the

changepoints, which, by the binomial theorem, requires 2n different evaluations of

the fitness function. For this data set where n = 240, it clearly is preferable to

use an algorithm that can begin by testing different random configurations in the

sample space, then iteratively converge towards an optimal solution. Otherwise

the number of evaluations required may become computationally unrealistic. For

analogous problems that may have many more years worth of data, or may have more

frequent data points, clearly an exhaustive search is prohibitive, and an intelligent

algorithm must be applied. The algorithm we have selected for this task is the GA.

The GA is not the fastest algorithm used to locate regime changes in data,

however, it is the best suited to a situation where some parameters must be esti-

mated by the full data set, while others are only estimated by a small segment of

observations. More specifically, parameters such as αi in equation (3.1), and the time

series parameters φ, θ,Φ and Θ in equation (3.2) all are estimated by the full data

set and cannot accurately be calculated by a small region of data, while the slope

and intercept terms are calculated by only the data between changepoints. Common

changepoint search algorithms such as Wild Binary Segmentation (WBS) method and

Pruned Exact Linear Time (PELT) method are much faster, but they require that

the data be fully partitioned k + 1 regions. They then optimize the fitness function

using only the data within a specific region to compute all parameters [14][15]. They

do not allow for the long-term parameters to be computed by the full data set. If our
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data set was very large, it is possible that a parameter from the full data could be

estimated with reasonable accuracy from a subsection of the data. However, with only

240 observations, such parameters cannot be accurately estimated from a subsection

of the data. Fortunately, the GA gives us a way to compute both types of parameters

while iteratively optimizing the number of changepoints, their locations, and the

region specific slopes and intercept terms until an optimal solution is obtained.

The selected GA requires the number of potential changepoints and their locations

to be formatted in a “chromosome” structure. Each chromosome represents a change-

point configuration as (k; τ1, . . . , τk) where k is the number of changepoints and each τi

is the location of a changepoint in the data set. As we apply this algorithm, we will be

able to create subsequent “generations” of chromosomes that exhibit more and more

of the characteristics that make them fit for their “environment.” Mathematically, this

means that the new iterations of chromosomes will have a better chance of optimizing

the fitness function in equation (3.3) as they will carry forward the best changepoint

configurations from the prior iteration at a higher rate.

The GA process is started by generating L chromosomes. For this data set,

L = 125. In the first generation, the number of changepoints per chromosome is

limited to four, as we do not want to begin the algorithm with an unrealistic number

of changepoints for the given 20 year period. With enough iterations, the GA will

shift that number to include a larger or smaller number of changepoint locations if

the underlying data indicates that this provides a more optimal solution. We also

include one chromosome with zero changepoints. Additionally, we ensure that all

changepoints are at least six data points away from each other so that all segments

contain at least six months worth of data. Without this stipulation, our algorithm

may detect false trends that are only a few data points long and do not contain
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enough information to support accurate parameter calculation.

Once the initial L chromosomes are generated, the “fitness” of each chromosome

must be assessed by evaluating the fitness function in equation (3.3). The result of

this calculation is referred to as a chromosomes fitness score. The next generation of

chromosomes are calculated in a way that favors more “fit” chromosomes, but still

allows some randomness to keep the algorithm from premature convergence. The

most fit chromosome is pulled directly into the next generation of chromosomes, and

the remaining chromosomes are calculated as follows: two parent chromosomes are

selected from the L chromosomes in the initial generation. Let Ri be the rank (based

on fitness score) of the ith chromosome where the the rank of the worst scoring

chromosome is 1 and the best is rank L. Then the ith chromosome is selected to be

the first parent with probability Ri/(
∑L

j=iRj). The second parent is chosen the same

way without replacement.

To create a child chromosome from the two parents, let the two parent chromo-

somes be as follows: (i; τ1, τ2, . . . , τi) and (j;ω1, ω2, . . . , ωj). Then the two parent

chromosomes are combined resulting in a child chromosome of (i+ j; k1, k2, . . . , ki+j)

where the ks are all the ordered changepoints contributed by both parents. Change-

point locations that the parents have in common are only represented once in the

child. Next, each changepoint is saved or removed with probability of 0.5. This

ensures that the number of changepoints in a child chromosome is close to that of

the parents. Finally, each changepoint time remaining in the child chromosome shifts

upwards one point with a probability of 0.3, downwards one point with a probability

of 0.3, and remains unchanged with a probability of 0.4. This allows for more

changepoint locations to be tested, and maintains robustness as the algorithm iterates.

Additionally, we confirm that the child’s changepoint locations are still spaced at least
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6 data points away from each other. In GA codes, this process of assembling a member

of the next generation from members of the previous generation is called crossover,

and it is what allows the algorithm to “intelligently” evolve towards more and more

optimal solutions.

Finally, chromosomes may occasionally mutate which helps prevent the algorithm

from converging prematurely. Each changepoint for each child mutates with 0.1

probability. When mutation occurs, the selected changepoint time is replaced with

a random time from the data set (excluding changepoint times already in the child

chromosome, as well as times that are within 6 data points of these values). This mu-

tation rate provided the most stable sets of solutions given this data, and, since each

new generation carries over the best chromosome from the previous generation, a high

mutation rate will not unnecessarily extend the iterations required for convergence.

The selection, crossover, and mutation process is repeated until L members of

the new generation have been created. Members of the generation all must be

unique, however, two parent chromosomes could produce multiple children in a given

generation as long as the crossover and mutation processes resulted in non-identical

offspring.

Once a complete new generation has been created, fitness scores are calculated

and another new generation of chromosomes is formed through selection, crossover,

and mutation. The process continues until the most fit members of several subsequent

generations no longer improve in terms of fitness score. At this point, the GA

is terminated, and the most fit member of the final generation is selected as the

best changepoint configuration. In this research, the GA was terminated after 100

iterations.

Although this algorithm effectively optimizes the fitness function, it may po-
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tentially to converge to multiple optimal solutions due to the randomized values

chosen in the algorithm. While we cannot quantify the precise error inherent in

the changepoints the GA selects, others who have applied the GA in similar time

dependent contexts have found through extensive simulation study that the GA does

locate true changepoint locations with a very high degree of accuracy [16]. Specific

simulation studies and sensitivity analysis have been conducted using models and

simulated data derived from temperature data, sea level data, and snow depth data,

among others [12] [17] [18]. Because our data exhibits similar characteristics to the

data sets in these studies, specifically autocorrelation and seasonality, we have not

conducted a simulation study in this research. We have simply made an effort to test

this algorithm with many seed values to ensure robustness.
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CHAPTER 4

CASE STUDY: WASHINGTON STATE

In this section, we’ll be fitting the theoretical model from Chapter 3 to the data

sets for residential, commercial, and industrial retail sales of electricity for Washington

state. Each data set has a different pattern to it, and the underlying trends also

appear to differ. Once we have used the GA to fit our model to the optimal number

of changepoints, we’ll then qualitatively examine the changepoint locations to see if

they can be substantiated by historical events and trends.

Before we can fit equation (3.1) to the data, we need to select a specific SARMA

model that will best fit the time series nature of the residuals in equation (3.2).

To determine the best fit and complexity, we tested a variety of simple SARMA

options over the WA data sets along with data sets from multiple other states and

calculated the corrected Akaike information criterion (AICC). The lower this value

or “score,” the more appropriate the SARMA model is for the data. The AICC

score was specifically considered because it penalizes the number of parameters in a

way that is proportional to the number of data points. This data only contains 240

observations, and we want to avoid models where a large number of parameters must

be estimated by a proportionately small amount of data when possible. The AICC

formula can be found below:
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AICC = −2 lnL

(
φ, θ,Φ,Θ,

S(φ, θ,Φ,Θ)

n

)
+

2(p+ q + P +Q+ 1)n

n− p− q − P −Q− 2
,

where

S(φ, θ,Φ,Θ) =
n∑
t=1

(Yt − Ŷt)2

rt−1

,

rt−1 =
1

θ2
diag{v0, v1, ...vn−1},

and vi is the diagonal entry of the Cov(Yt − Ŷt) matrix and L is the likelihood of

equation (3.1). Using the AICC scores, we selected the SARMA(1, 1) × (1, 0)12

model to account for the time dependency in each data set. While certain other

SARMA models may provide slightly lower AICC scores on single specific data sets,

the SARMA(1, 1) × (1, 0)12 model offers greater flexibility as it fits well to a wide

variety of data sets, and we want to make use of the same model for the data from

the remaining 47 states. As this research does not focus solely on a single data set, a

simple model that can work well with many different data configurations is an optimal

choice.

The SARMA(1, 1) × (1, 0)12 model gives us the following representation for the

model errors εt in equation (3.1)

εt = (1− φB)−1(1− ΦB12)−1(1 + θB)Zt,

where Zt are the final uncorrelated errors that have mean zero and standard deviation

σ2. The parameters φ and θ are associated with the AR(1) and MA(1) parts of the

model, and Φ is associated with the seasonal AR(1) part of the model. Each parameter

is estimated from all n observations, but their specific values will change depending
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on the changepoint configuration being tested.

Firstly, we will examine the data from Washington’s residential sector. This

data has been plotted in Figure 4.1, with the year on the x-axis and the amount

of electricity in million kWh on the y-axis. The top graph shows the slope and

intercept that would be fitted without any changepoint consideration. As we do not

see any large jumps or dips. we cannot visually estimate likely changepoint locations,

however they may still be present in the data.

When we run the residential data through the GA, the changepoint configuration

that optimizes the fitness function is (4; 101, 160, 192, 205), which corresponds to May

2009, April 2014, December 2016, and January 2018. These locations are represented

by the blue vertical lines in Figure 4.1.

Most of these changepoints are justified when qualitative and quantitative data of

the time period are considered. The first changepoint in May of 2009 coincides with

a period of reduced population growth in Washington state as the great recession

impacted population growth. From 2001 to 2008, the growth rate of the state was

between 1- 2 percent each year, but in 2009 the rate dropped to just under 1 percent,

and from 2010 to 2013, the population growth rate in the state was around half of

what it had been in the previous decade [19]. Visually we can see that, while the

trend in residential electricity sales still increased after this time, the rate of growth

has slowed and the intercept value has shifted downwards.

The next changepoint, located in April of 2014, indicates the beginning of a three

year period where Washington temperatures were warmer than they had been for

decades, and, in heavily populated regions such as Seattle, they were the warmest

ever on record [20]. Residential electricity consumption in the more populated west

side of the state is very correlated to temperature [7]. Thus it makes sense that, during
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Figure 4.1: Washington residential electricity sales with and without
changepoints

these warmer years of 2014, 2015, and 2016, electricity consumption fell, leading to

a shift down in intercept and reduction in slope of the data across this period. This
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warm period was followed by a colder than average winter across the Pacific Northwest

during the winter of 2017, which coincides with the next changepoint in December of

2017 [21].1 Since this spike, winter temperatures have remained within expected lows

and highs, and the final changepoint in April of 2018 indicates the beginning several

years where temperatures fell within typical averages.

While the changepoints located appear to have justification, to fully understand

how well the model is working mathematically, we next want to examine some model

diagnostic figures. In Figure 4.2 we can see that the final residuals almost follow

a normal distribution. While the slightly heavy center and tails of the histogram

and Quantile-Quantile (QQ) plot keep the the fit from being perfect, it is reasonably

close. Additionally, the autocorrelation function (ACF) and partial autocorrelation

function (PACF) plots in Figure 4.3 show that almost all significant autocorrelation

has been removed from the data, leaving uncorrelated residuals. Further diagnostic

values for tests of correlation and normality can be found in the appendix.

The next data set we’ll examine comes from Washington’s commercial electricity

sales. This data contains severe jumps and dips that clearly cannot be captured

well by the single linear slope and intercept model in the top graph in Figure 4.4.

The optimal changepoint configuration for this data set determined by the GA is

1Though not mentioned in any data documentation, these temperature extremes were regularly
noted in local news at the time. For example, articles from KOMO news each year remarked on
the unusual warmth in 2014, 2015, and 2016. Such articles can be found at the following sites:
https://komonews.com/weather/scotts-weather-blog/2014-weather-review-seattle-had-warmest-
year-in-decades
https://komonews.com/weather/scotts-weather-blog/2015-weather-year-in-review-seattle-
smashes-all-time-hottest-year-records
https://komonews.com/weather/scotts-weather-blog/2016-seattle-weather-another-toasty-year-
but-cold-enough-to-keep-a-bug-from-being-eaten

Temperature trends during this time can be visually compared using climate data available
at https://cefa.dri.edu/Westmap/Westmap home.php?page=timeplot.php
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Figure 4.2: QQ plot and histogram for residential residuals

Figure 4.3: ACF and PACF for residential residuals

(4; 25, 54, 104, 230) corresponding to January of 2003, June of 2005, August 2009,

and February 2020, and it is clear immediately from the graph that this changepoint

configuration allows slopes and intercepts to be fitted much more closely to the data,

thus greatly reducing the error of the model.

The initial changepoint in January of 2003 can be explained by a reporting

change on EIA form 861M which collects this data from utilities. Previously separate

categories were adjusted and aggregated into the commercial and industrial sector

[10]. While many states already were reporting their sales in this way, Washington
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Figure 4.4: Washington commercial electricity sales with and without
changepoints

was not, which lead to the jump in the data after this first changepoint. After this

categorization shift, the next changepoint location is in June of 2005, and we can
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see that the slope of the model after this changepoint grows steeper. Technology

based businesses such as Amazon and Microsoft were expanding rapidly during this

time, specifically with Amazon focusing on building and developing its corporate

headquarter complex leading to large amounts of commercial growth in Seattle.2

The changepoint in August 2009 signals the end of this strong increase in retail

electricity sales to commercial customers. Following this changepoint, electricity sales

to commercial customers stagnated. Through the financial recession and subsequent

economic recover during this time, commercial consumption of electricity did not

grow. Notably, during the period, the Seattle region shifted more and more towards

online based, technology focused businesses, and, across the US this trend seemed

typical.3

The final changepoint location is in February of 2020, which, again closely co-

incides with the pandemic related shut downs which completely or partially closed

commercial businesses for large portions of 2020. Following the initial drop in Febru-

ary, we can see that the remaining months of 2020 show a slow upward trend in

electricity sales as businesses begin partial reopening. However, commercial sales of

electricity did not reach their pre-pandemic level through the end of 2020.

When we examine these changepoints from a mathematical point of view, they

appear to do an excellent job of fitting the model to the data. In Figure 4.5, the

final residuals fit a normal distribution almost perfectly, and Figure 4.6 shows that

2With Amazon’s massive growth came large scale developments in previously sparsely
populated regions of Seattle. Such commercial growth is outlined here: https://www.seattletimes.
com/business/amazon/ten-years-ago-amazon-changed-seattle-announcing-its-move-to-south-lake-
union/

3Across the united states, the rate of growth for commerce based business grew much more
than traditional brick and motor stores: https://www.digitalcommerce360.com/article/e-commerce-
sales-retail-sales-ten-year-review/
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Figure 4.5: QQ plot and histogram for commercial residuals

Figure 4.6: ACF and PACF for commercial residuals

the time series portion of the model has completely removed all significant correlation

from the data. The residuals are normally distributed and uncorrelated, as desired.

The final case study data set is from Washington’s industrial sector. This sector

is dominated by manufacturing in the aerospace and transportation segments due in

large part to Boeing’s production plants. Other top industries include agriculture and,

historically, aluminum smelting [22]. In Figure 4.7 we can see the retail electricity

sales to the industrial sector 2001 through 2020. The data appears to have several

spikes, plunges and regions with both positive and negative slopes. The top graph in
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Figure 4.7 shows the best fit of the model slope and intercept from equation (3.1) if

no changepoint values are included. Clearly this single slope does not fit well to any

section of the data and underscores that changepoints must be considered in order to

fit a reasonable model.

The optimal changepoint configuration for this data according to the GA was (5;

7, 56, 62, 154, 232) which corresponds to July 2001, August 2005, February 2006,

October 2013, and April 2020.

The very first segment of data falls extremely steeply until it hits the first change-

point in July 2001. The main driving factor behind this drop seems to be the

abrupt closure of almost all aluminum smelting plants within the state by the end

of 2001. This primarily was driven by the energy crisis during the early 2000s, as

the electricity required was too expensive for smelting to be profitable [23]. Coupled

with the September 11 terrorist attacks impacting the airline industry (and subse-

quently, Boeings airplane manufacturing), and the plunge in electricity use seems well

substantiated.4

Following this dip, an increase in trend can be seen, as economic pressures on

the industrial sector began to ease. The industrial sector grew across the country, as

evidenced by industrial indices such as the Industrial Production Index [24].

The next two changepoints are located in August 2005 and February 2006. These

contain a region in the data that has a steep spike. Looking at the source data, this

spike is caused by a single extremely large value in January of 2006. No widely noted

4Beoing’s own annual report from the following year details some of the challenges faced during
2001 and the start of 2002: https://www.annualreports.com/HostedData/AnnualReportArchive/
b/NYSE BA 2002.pdf

Additionally, US markets dropped in the wake of the September 11 terrorist attacks indicating a
challenging economic period of time: https://money.cnn.com/2001/12/17/markets/markets review/
index.htm
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Figure 4.7: Washington industrial electricity sales with and without
changepoints

regional event seems to account for this outlier, so it likely is an erroneously entered

value which the GA was able to detect and contain to its own small region.

The slope after 2006 continues to rise at a rate minimally impacted by the financial
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recession. Partially this could be due to the energy intensive server farms that were

built and brought online during this time, increasing electricity consumption even as

other industrial businesses closed.5

By October of 2013 (the location of the next changepoint), manufacturing as

a whole in Washington markedly decreased which appears to be mirrored in the

decreasing trend of electricity consumption in this segment [22]. Generally speaking,

industrial production across the United States was in a slow decline through out this

period as well.6 Additionally, the aluminum smelting industry, which had only been

operating at a minuscule percentage of its capacity from previous years, fully closed

one of its two remaining plants in Wenatchee Washington as low aluminium prices in

China continued to reduce profitability. 7

Finally, the last changepoint is located in April of 2020, a month after full lockdown

measures were imposed. This final slope shows steep decline through the end of the

year as many industrial businesses were still heavily impacted by lockdowns and a

struggling economy.

Mathematically, the model satisfactorily fits the data by use of these changepoints.

The diagnostic figures in Figure 4.8 satisfy our expectation that residuals are normally

distributed, as desired. In Figure 4.9 we can also see from the ACF and PACF that

all significant correlation in the data has been accounted for by the time series model,

leaving uncorrelated residuals.

5Server farm’s vast electricity requirements were noted in articles such as this: https://www.
nytimes.com/2012/09/24/technology/data-centers-in-rural-washington-state-gobble-power.html

6US based manufacturing information is outlined here: https://tradingeconomics.com/united-
states/industrial-production

7For details regarding aluminum pricing during this time, see: https://www.indexmundi.com/
commodities/?commodity=aluminum&months=240
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Figure 4.8: QQ plot and histogram of industrial residuals

Figure 4.9: ACF and PACF for industrial residuals

Figure 4.10: Rate of convergence for residential (left), commercial (center),
and industrial (right) data sets
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Overall, both by qualitative evidence as well as mathematical diagnostics, the

algorithm appears to locate viable changepoints for each data set, and the final check

is to determine if the algorithm runs for enough iterations to reach convergence. As

stated in the methods section, the GA is terminated after 100 iteration. At this point,

the best changepoint configuration is selected as the optimal solution. To visually

confirm that the algorithm converged within this iteration limit, we plotted best

fitness score vs. iteration, see Figure 4.10. Multiple iterations transpire without an

improvement in fitness score for each data set, thus the GA appears to easily obtain

a minimizing solution within the 100 iterations.

From these graphs and diagnostics, we conclude that, for the data sets from

Washington state, the GA converged to changepoints that could be substantiated

by local news and economic events, as well as by mathematical diagnostics. Because

the model appears to be performing satisfactorily, we now will proceed to apply it to

the remaining data sets from other states.
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CHAPTER 5

RESULTS

When all the data sets were run through the GA, we found that, on average,

the residential data sets had 2.8 changepoints, the commercial data sets had 4.8

changepoints, and the industrial data sets had 5.6 changepoints for the 20 year period.

In order to more clearly understand if changepoints were more common in certain

regions or during certain years, we divided the state data sets into five categories:

Pacific, Mountain, Southern, Midwestern, and Eastern states (see Figure 5.1). The

states contained in each of these divisions are listed in the appendix, and were chosen

by combining geographically adjacent regions that were originally categorized by the

EIA. These categories should allow us to better understand if trends impact the

electricity sales in specific regions and sectors as a whole.

As noted, changepoint occurrence was most infrequent in the residential sector,

as can clearly be seen in Figure 5.1. Interestingly, there are few regions that contain

a notable number of changepoints during the 2020 pandemic outside the East Coast

states. Rather, the financial crisis during 2008 and 2009 corresponds to many more

shifts in the residential consumption trends in all regions, as indicated by the number

of changepoints that occur during these years. It also appears that the Midwestern

and Southern states have relatively fewer changepoints overall, and more years where

no changepoint occurred, leading to the conclusion that the residential electricity



36

MAP 5.1: United States Regions

consumption trend is the most stable in these regions. The Eastern states only

have three years where no changepoint was detected in any state in the region, so,

additionally, the overall trends in the East Coast exhibit the most frequent changes

in consumption behavior.

In Figure 5.2, the number of commercial sector changepoints is shown by regional

histograms. From these histograms it appears that there are more changepoints in

the early 2000s, the late 20-teens and 2020. However, different regions’ commercial

electricity consumption trends do have slightly different changepoint distributions.

For example, in the Mountain and Eastern states, we see many changepoints during

the years of the great recession as well as the 2020 pandemic. In Southern, Midwest-

ern, and Pacific states, while we see fewer changepoints during the recession years,

the pandemic coincides with more changepoints than any other historical events in

our given data. Additionally, in the Eastern states, the GA determined that at least

one state had a changepoint each year, while the Pacific states had five years where

no changepoint was located for any state in the region. While there are many more
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Figure 5.1: Histograms of residential changepoints by region

states in the Eastern region than the Pacific region, it still appears that the models

that best fit the Pacific states’ electricity consumption require less changepoints and

therefore have fewer adjustment in their consumption trends.

Finally, we also can see histograms of the industrial data sets’ changepoints

separated by region in Figure 5.3. This sector contains the most changepoints per

data set, and this increase appears to be equally spread out across all regions. Also,
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Figure 5.2: Histograms of commercial changepoints by region

there are more changepoints occurring during the years of the great recession than

during the 2020 pandemic. With the exception of the Pacific states, each region has at

least seven changepoints during the recession, and at least four during the pandemic.

Regions such as the Mountain, Western, and Eastern states see a large proportion

of their changepoints clustered around 2008, 2009, and 2010–years when recession

impacts were the most heavily felt. We also see that, once again, the Eastern states
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Figure 5.3: Histograms of industrial changepoints by region

have a proportionally large number of changepoints.

From all three histograms we conclude that the GA located changepoints in the

data where we expected to see many shifts to the model (specifically in the years of the

recession and the pandemic). However, we also have seen through case study, that the

GA process easily identified changes in trends at the state level when factors specific

to that state alone may cause additional changepoints. Although we do not see any
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extremely surprising trends resulting from aggregating the changepoints by region,

this analysis suggests that the GA is doing an effective job selecting changepoints

that fit an accurate model consistent with economic events.

Changepoints allow us to fit separate slopes and intercepts to the region of data

before and after the changepoint. If changepoints across the country are occurring

very frequently at certain times, the change in parameter value may offer insight into

the situations behind the data. As of writing, the Covid-19 pandemic is ongoing, and

has had international impact on day to day life as well as electrify consumption

patterns. Since we are working with electricity data and the utility industry is

typically concerned with estimates of rates of growth, we will next analyze the the

slopes of the data from states where electricity consumption changed with the onset

of the pandemic. Because both the slope and intercept parameters are allowed to vary

for each segment between changepoints, a region where the models slope changes from

positive to negative does not mean that less electricity is necessarily being consumed.

If the region with a negative slope is accompanied by an upward shift intercept, the

actual amount of electricity consumed may be similar the amount in the prior section

of the model. The trajectory of the trend may have adjusted but the real amount of

consumption may not be correspondingly larger or smaller.

We began by selecting all residential, commercial, and industrial data sets that

had a changepoint near or during the pandemic. Specifically, we define a changepoint

occurring within six months of March 2020 as a “pandemic” changepoint. Within

each sector, there are 48 data sets. In the residential sector, only nine states had

a pandemic changepoint. However, in the commercial data sets, 36 states had a

changepoint in the pandemic range, and, in the industrial sector, 31 states had a

2020 pandemic changepoint. For maps of the states impacted in each sector, see the
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appendix.

Figure 5.4: Residential pandemic related rates of change

In Figure 5.4 we have graphed the slope of the data prior to the last pandemic

related changepoint on the x-axis and the slope after that changepoint on the y-axis.

Points that fall on the diagonal line indicate no change in rate before and after the

pandemic changepoint, so points along this line signal a shift in the slope parameter

only. We can see from the x-axis that the pre-pandemic rate of change in most

residential states was close to zero for all states impacted. From the y-axis it is

apparent that the slope in the final segment of data had a much greater spread and

demonstrate a decreasing rate of change overall. A small number of data points fall

very close to the diagonal line, so some states consumption trend shifted during the

pandemic in the intercept term of the model only. This does not necessarily mean
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that less electricity is being consumed, but the change in slope does signal an altered

trajectory for the future.

Figure 5.5: Commercial pandemic related rates of change

In Figure 5.5 we see that the commercial data sets had many more changepoints

during the pandemic (likely due to the partial or complete closure of commercial

businesses while strict lockdowns were in place). Once again, from the x-axis we

see that pre-pandemic rates of change are mainly clustered around zero, and, from

the histogram at the top of the figure, we determine these slopes are slightly skewed

toward a negative rate of change. The slopes following the pandemic changepoint

have a greater spread in their rates of increase or decrease. The majority of the rates

fall above the diagonal line, indicating that overall, rates are increasing more quickly

than they were in the pre-pandemic segment of data. Once again, increases in slope
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do not indicate that more electricity is being consumed by the commercial sector

than before the onset of the pandemic. Rather, it is likely that the model places the

intercept term quite low in the final segment of data while the overall positive slopes

for this last segment indicate recovery and upward trend in commercial electricity

consumption.

Figure 5.6: Industrial pandemic related rates of change

Finally, we have a similar plot for the industrial sector in Figure 5.6. At first

glance, this figure appears quite similar to the corresponding figure for the commer-

cial sector. The initial slopes on the x-axis are clustered around zero and slightly

negatively skewed. Additionally, the majority of post pandemic slopes fall above the

diagonal line on the y-axis. In the industrial sector, however, we see that the slopes

in the final segment of the model are sill near zero, primarily falling between a rate
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of zero and 25, and have far less spread than the post pandemic slopes in figure

Figure 5.5. This indicates that, while the rate of change in impacted states is overall

positive, there is less of a difference state to state in the industrial slopes compared

to the commercial sector slopes in the final segment of the model.

From these graphs, we conclude that consumption in the industrial and commer-

cial sector has a positive rate of change in most states, however, the actual rate of

recovery is slow for most states’ industrial sectors and varies widely for the commercial

sector. Finally, the typically stable residential sector was minorly impacted, and in

places where these impacts were notable, they signal that consumption is decreasing

in trajectory.
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CHAPTER 6

CONCLUSION

Clearly, changepoint detection is a valuable tool that allows many different trends

in the data to be accurately incorporated into a model. We have shown this specifically

in the case of electricity consumption data from Washington state, and additionally

have analyzed data from the continental United States for changepoints. We have

demonstrated that firstly, across the United States as a whole, the onset of the 2020

pandemic has coincided with changes in electricity consumption trend in the industrial

and commercial sectors for most states, but has not impacted many states’ residential

sector. The GA’s detection of the pandemic created changepoints in the US shows

that the algorithm is capable of detecting shifts to consumption that are caused

by both wide sweeping economic events, as well as events that may only impact a

specific state or small region of the country as shown in analysis of its performance

on Washington’s data sets. Changepoints also allow regression models to be fitted to

data much more appropriately, and they greatly decrease the error of models making

them more useful and accurate.

Such results and analysis can be utilized in the electricity industry in many ways.

Changepoint detection and slope categorization techniques can offer insight into the

effectiveness of policies designed to create new consumption patterns. Typically, these

policies are paired with incentives to assist in reaching these goals. It is challenging to
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determine the effectiveness of financial incentives such as tax credits for energy rated

buildings, or social campaigns to encourage residential consumers to change electricity

habits. These models and the GA can detect if these policies have successfully shifted

consumer behavior by fundamentally changing the underlying consumption trend,

leading to a changepoint. If an incentive does not correspond to a changepoint in

a related data set, further action is likely required to achieve the desired economic

outcome and shift consumption.

Similarly, this process can be applied to other energy scenarios. For example, many

countries plan reduce dependency on certain fuel sources (oil and coal for example)

over future decades. Tax incentives are already in place to encourage utilities to sell

more electricity from renewable resources. As incentives are offered to aid in reaching

these goals, changepoint detection techniques can assess if incentives and policies

are having the desired impact on production behavior, and offers an objective way

to categorise states, cities, or regions into groups that have made progress towards

these goals by shifting their supply or demand patterns and groups that have not.

This can better aid understanding the incentive types and levels that are required

for specific populations to adjust their supply and demand patterns towards more

desirable sources.

Finally, utilities themselves can use this model and apply it their service region.

If these regions are divided by consumer ZIP code or county, this model can help

determine areas of more rapid growth and areas that are undergoing economic con-

traction. This model type allows long term time series trend calculation for certain

parameters that are not typically incorporated into current models due to concerns

about including outdated linear trends. In turn, this leads to lower error estimates

which allows for more accurate planning.
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Overall changepoint analysis and detection has uses in many areas, and is an

important tool for creating accurate models across many industries and data sets.

When model accuracy is paramount, these techniques provide ways to closely fit a

model, even when underlying trends may be complex.
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APPENDIX A

FURTHER DIAGNOSTICS AND MAPS

(a) Residential (b) Commercial

(c) Industrial

Figure A.1: Washington Residuals

In Figure A.1, we can see the final residuals for each sector in Washington. While
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it can be challenging to visually assess stationarity, these residuals no longer appear

to contain any linear trends or seasonal patterns. Thus we deem them satisfactory

for this analysis.

Table A.1: Residual Diagnostic Test p-values for Washington Data

Kolmogorov-Smirnov Shapiro-Wilk Ljung-Box
Sector Normality Test Normaility Test Correlation Test
WA Residential 0.2697 0.001618 0.0001154404
WA Commercial 0.974 0.9146 0.0172447
WA Industrial 0.803 0.329 0.0008653737

In Table A.1, the p-values that pertain to each test are listed. all three data

sets pass the Kolmogorov-Smirnov normality test, and the commercial and industrial

data sets also easily pass the Shaprio-Wilk normality test at any significance. The

residential data does not pass this test, but we can see from the visuals that the

residuals are not heavily skewed, so we will accept that the model is getting us quite

close to a normal distribution, but it is not perfect.

The Ljung-Box test checks for correlation remaining in the data, and it appears

that, with the exception of the commercial data set, this test is failed. While we

do visually see that there is a small amount of potential correlation in the data in

Figure 4.3, Figure 4.6, and Figure 4.9, this test should not be considered to be fully

accurate. In the Ljung-Box test, the degrees of freedom is equivalent to the lags we

are testing minus the number of parameters that are being estimated. However, the

number of parameters that we are estimating in some cases could be around 20, which

means that, unless we compute these tests for a very large lag value, the degrees of

freedom will be negative, or artificially very small. These values were found using

lag = 50, and we have included them as they are a standard test for correlation,
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but because of the high parameter to data ratio, we do not find them to be accurate

estimates on their own. Instead we prefer to visually inspect the ACF and PACF

graphs which indicate that a very small amount of correlation may be present, but in

most cases, this correlation is not significant.

Table A.2: States by Region

Pacific Mountain Southern Midwestern Eastern
WA AZ TX ND ME
OR ID OK SD VT
CA NM AR NE NH

UT LA KS MA
MT MS MN RI
CO AL IA NY
WY GA MO CT
NV FL WI NJ

KY IL PA
TN MI VA

IN WV
OH NC

SC
DE
MD

The main code for this research can be found at https://github.com/johannamarcelia/

Genetic-Algorithm.
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MAP A.1: Residential 2020 Changepoints

MAP A.2: Commercial 2020 Changepoints

MAP A.3: Industrial 2020 Changepoints


