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ABSTRACT 

Seasonal snowfall is the largest component of the water budget in many mountain 

headwater regions around the world. In addition to sustaining biological water needs in 

drier, lower elevation areas throughout the year, mountain snowpack also provides 

essential water inputs to the Critical Zone (CZ) - the outer layer of the Earth’s surface, 

which hosts a variety of biogeochemical processes responsible for transforming inorganic 

matter into forms usable for life. Water is a known driver of CZ activity, but uncertainty 

exists in its spatial and temporal interactions with CZ processes, particularly in the 

complex terrain of heterogeneous mountain areas. Increasing pressure on the CZ due to 

climate change and human land use needs creates an urgency to better understand the CZ 

system and how it may change in the future. An important variable for water driven CZ 

behaviors in mountain areas is the spatial extent of snow, also known as snow-covered 

area (SCA). SCA in mountain areas can change quickly over small scales of time and 

space with large impacts on the rest of the system. It has been difficult historically, 

however, to measure snowpack extent for large areas on very fine spatial and temporal 

scales due to a lack of remote sensing datasets with both of these fine scale 

characteristics. In this study we use the Spatial and Temporal Adaptive Reflectance 

Fusion Model (STARFM) to fill this historic knowledge gap for the East River watershed 

in Colorado, USA. By fusing low spatial and high temporal resolution data from MODIS 

(500-m, daily) with high spatial and low temporal resolution data from Landsat (30-m, 16 

days), a fine resolution, 30-m daily dataset can be created. This study is one of the first to 
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use this model with the primary intent of monitoring SCA in a mountain watershed. 

The first component of the study in this thesis presents a comprehensive 

validation of STARFM for use in monitoring snow cover in mountain areas. Normalized 

Difference Snow Index (NDSI) values from MODIS and Landsat are used as input to the 

STARFM model, and synthetic NDSI values at 30-m resolutions are obtained for days 

without Landsat data acquisitions. After converting NDSI to binary snow cover, we then 

examine the temporal performance of STARFM for an entire calendar year. The model’s 

performance is also analyzed for different landscape features known to influence snow 

cover. Accuracy, precision, recall, and F-score values indicate that the model is able to 

successfully predict the location of SCA in the landscape when validated with Landsat 

data.  

The second component of the study describes the process of creating the daily, 

30-m NDSI dataset with STARFM for 20 water years of analysis and provides examples 

of how these data can be used to monitor SCA in a mountain watershed. We examine 

patterns of percent annual snow cover for three of the water years from the dataset, a dry, 

average, and wet water year. Here we find that predictable patterns of SCA occur over 

those years, with the highest percent annual snow cover occurring during the wet year 

and the lowest occurring during the dry year. Despite these differences, however, 

elevation is clearly the dominating factor in determining the spatial variability of snow 

cover in the landscape for all three water years. We also connect our snow cover analysis 

back to CZ processes by examining the timing of snow cover disappearance with the 

peak of annual stream discharge at the watershed outlet.   
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The results of this work provide a multi-decadal dataset of snow cover 

information for the East River that can be used for future research into snowpack and 

streamflow forecasting, modeling of the movement of water through the CZ, and the 

effects that climate change may have on these processes. This study also provides 

examples of methods that can be used for further snow monitoring work in the East River 

watershed and other snow-dominated mountain catchments similar to it.  
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CHAPTER ONE: INTRODUCTION AND OVERVIEW 

1.1 The Critical Zone 

The Critical Zone (CZ) is the dynamic region of the Earth’s near-surface 

environment where a wide range of hydrobiogeochemical processes transform inorganic 

ingredients into terrestrial life (NRC, 2001). The boundaries of the CZ (Figure 1.1) are 

broadly defined as the vertical region extending from the vegetation canopy to the base of 

the saturated groundwater zone (NRC, 2001). The exact locations of the CZ boundaries, 

however, vary across the literature depending on the process being studied and the 

scientific field of interest (Anderson et al., 2007; Lin, 2010; Akob & Küsel, 2011; Kim et 

al., 2017; Riebe et al., 2017). As is often the case in rapidly emerging fields of inquiry, 

new insights into CZ processes necessitate the evolution of the fundamental definitions of 

the field and the recognized boundaries of the system. For example, the lower boundary 

of the CZ is often defined as where life no longer influences rock, but microbiological 

life is regularly found at depths much lower than it was previously thought to exist (Akob 

& Küsel, 2011). 
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The CZ is “critical” because it is responsible for many first-order controls on 

biological life. The bedrock base of the CZ contains a host of elements that are gradually 

released into the environment as the structure of the subsurface changes and evolves 

through chemical and physical weathering (Anderson et al., 2007). The release of these 

elements and the resulting structural changes, such as bedrock fracturing, directly control 

the distribution of vegetative cover at the surface (Hahm et al., 2014). Vegetative 

communities in turn have an important role in soil development, adding carbon through 

organic matter input and building a carbon storage reservoir that is significant to the 

global carbon cycle (Eswaran et al., 1993). Evidence suggests that, after the ocean, the 

CZ is the largest reservoir of carbon on the planet (Lal, 2004). Soils in particular contain 

four times more carbon than is found in living biomass and three times more carbon than 

is found in the atmosphere (Lal, 2004). Just 10% of this organic carbon is equivalent to 

Figure 1.1: A conceptual model of the CZ with boundaries defined as the vertical 

region extending from the vegetation canopy to the base of the saturated 

groundwater zone. Source: czo-archive.criticalzone.org 
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all anthropogenic CO2 emissions over a 30-year period (Kirschbaum, 2000), underscoring 

just how invaluable the CZ is not just from a local, but also global, perspective.   

Water is a key driver for the many biogeochemical reactions within the CZ, 

determining their rate, magnitude and oftentimes direction. Because of this, the 

hydrologic cycle is a useful organizing principle by which to gain insight into the myriad, 

complex processes at work within the CZ. For example, the presence of water, along with 

the size of pore spaces in the soil and bedrock substrate, determines the species of 

microorganisms found in the CZ, which in turn make up the foundations of the food and 

energy webs of their ecosystems (Akob & Küsel, 2011). Rock moisture, which is water 

from precipitation stored in shallow weathered bedrock, plays an important role in 

sustaining vegetation through times of drought (Rempe & Dietrich, 2018). Fluxes of 

water from the surface also bring solutions such as dissolved organic matter and gases 

like CO2 and O2 to the subsurface (Anderson et al., 2007). These solutes and the amount 

and frequency of flow largely determine the degree and types of weathering that take 

place in the subsurface of the CZ (Lin, 2010). Weathering processes affecting the CZ 

locally make carbon and other key nutrients available not only to the surrounding 

environment, but also at a larger spatial scale as can be detected by the chemical 

signature in the groundwater exiting the watershed (Kim et al., 2017). As such, the timing 

and magnitude of water inputs to the CZ drive key processes fundamental to the CZ and 

the services it provides to living organisms.  

In recent decades, the urgency to better understand the structure of and constrain 

the processes taking place in the CZ has been widely recognized due to the expanding 

resource needs of human society (NRC, 2001), made more uncertain by the projected 
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impact of climate and land use change on CZ functions (Banwart et al., 2013). Climate 

and land use change have the potential to significantly alter the timing and magnitude of 

water inputs to the CZ, which will, in turn, alter the biogeochemical CZ processes 

necessary for human and ecosystem health. For example, as global temperatures rise, the 

rates of uptake and release of carbon between the CZ and the atmosphere are expected to 

change non-uniformly around the world. Warmer temperatures are expected to speed up 

weathering rates in some areas but increase net primary production in others 

(Kirschbaum, 2000). This non-uniformity is difficult to constrain in part due to 

uncertainty around how climate change will alter soil moisture regimes, particularly 

through changing precipitation patterns (Kirshbaum, 2000; Falloon et al., 2011), the 

primary mechanism of water delivery to the CZ. Additionally, potential changes to CZ 

functions controlled by primary physical processes, such as climate, are expected to be 

exacerbated by the additional pressures of human land use. Land use practices such as 

deforestation and intensive agriculture without complementary conservation practices can 

rapidly deplete CZ resources, including removal of nutrients and vegetation substrate 

through erosion, reduced water holding capacity of the landscape, and degraded surface 

water quality (Lal, 2004). These pressures threatening water delivery mechanisms, and in 

turn the life-sustaining water driven CZ functions, highlight the importance of 

quantifying water driven behaviors of the current state of the CZ system.  

This potential for CZ areas around the globe to respond non-uniformly to climate 

and land use pressures is largely due to heterogeneity within and between controls on CZ 

depth and reactivity throughout the globe (Brantley et al., 2007) driven by dynamic and 

uneven energy inputs into this open system (Lin, 2010). Despite growing 
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acknowledgment that water is the primary driver of biogeochemical reactions in the CZ, 

there remain gaps in our comprehension of hydrological processes within the CZ and 

how they vary across time and space. A better understanding of the heterogeneity of 

water inputs to the CZ and their influence on key CZ processes is a crucial piece to 

improving our understanding of the processes critical to life on Earth, as well as how the 

CZ will react to anthropogenically driven changes, and with what global consequences.  

1.2 Mountain Critical Zones and the Importance of Snow 

With the many unknowns regarding the influence of the hydrologic cycle on the 

CZ, these knowledge gaps are particularly relevant to CZs in the mountain headwaters of 

the world. These headwater areas serve as primary sources of water and solute exports to 

downstream ecosystems (Kim et al., 2017; Winnick et al., 2017), but the mechanisms by 

which they do so, particularly those attributed to the CZ, remain largely uncharacterized. 

Constraining CZ processes is especially problematic in these rugged regions whose 

nature lends itself to considerable variations in the landscape. Steep gradients in 

topography (St. Clair et al., 2015) and lithology (Hahm et al., 2014) drive similarly steep 

gradients in precipitation type and quantity (Marks et al., 2013), which together create 

heterogeneity in infiltration rates and subsurface water distribution (Sprenger et al., 

2019), and lateral transfer of materials (Anderson et al., 2007). These variations in 

timing, quantity, and rate of water input drive differing patterns of weathering and 

subsequent variation in vegetation patterns (Roering et al., 2010; Carroll et al., 2018). 

These combined heterogeneities affect the properties and development of the CZ and, in 

turn, determine the timing, quantity and rate of transport of water and other key nutrients 

to downgradient systems.  
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Because water is so important to CZ mechanisms and their exports, the means of 

how and when a region receives precipitation is key to understanding CZ development 

and function. In many mountainous areas, especially those in arid and semi-arid climates 

such as the western United States, most of the yearly precipitation arrives in the winter as 

snow (Tennant et al., 2015). As temperatures warm and sun angles increase throughout 

the spring, variations in topography create gradients in temperature and radiation that 

melt existing snow and change the dominant precipitation phase from snow to rain (Klos 

et al., 2014) at increasingly higher elevations. The form of precipitation is important 

because precipitation that falls as snow can persist in the landscape for longer timescales, 

gradually releasing water into the rest of the system as it melts (Knowles et al., 2015; 

Carroll et al., 2018). This gradual melting provides water to the surrounding ecosystem 

and downstream areas throughout the dry summer months, including to reservoirs for 

human consumptive uses (Barnett et al., 2005).  

Climate change is predicted to alter the patterns of snow precipitation, snow 

accumulation, and timing of snowmelt in these mountain systems. The past century has 

already seen a decrease in peak SWE on 1 April, the date which is traditionally 

considered to have the maximum amount of snow, in mountain areas throughout the 

western U.S. This is largely attributed to both earlier warming of the snowpack and less 

overall precipitation, especially as snow, in winter months (Mote et al., 2005). Global 

temperatures are expected to increase anywhere from 0.3-4.8°C during the coming 

century (IPCC, 2014). These changes are predicted to significantly affect the timing of 

seasonal, topographically driven shifts in temperature gradients, melting snow and 
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moving the rain/snow transition line higher in elevation and latitude at earlier times in the 

season (Klos et al., 2014; Tennant et al., 2015).  

 Compounding the effects due to likely changes in mountain snowpack from 

climate change are the effects of changes in land use, both locally and regionally, that 

result in disturbance of natural vegetative cover. When soil is left exposed, as sometimes 

happens with agricultural activities or biomass burning, increased aeolian transport of 

sediment can occur (Vicars & Sickman, 2011). If aeolian transported sediment is carried 

to a snow-covered area, it can cause dust on snow events that lower the albedo of the 

snowpack and contribute to increased melt rates (Skiles & Painter, 2017). It is reasonable 

to expect that an increasing human population will continue to drive demand for 

agricultural and commercial development, thereby expanding the amount of area 

disturbed by removed vegetative cover (Smith et al., 2014), and further influencing 

changes to the duration of seasonal mountain snowpack by increased aeolian deposition 

on snow. 

With the changes anticipated to occur regarding mountain snow regimes, it is 

plausible to assume that rates and timing of CZ processes may also be altered in these 

areas. How exactly these changes will likely manifest, however, remains uncharacterized. 

Constraining the controls on snow as a unique and changing moisture input to the CZ in 

mountainous headwaters will allow for identification of the integrated water/CZ behavior 

responses that are essential to mountain CZ formation and function. Identifying these 

controls and their influences on mountain CZs begins with a fundamental understanding 

of how snow is distributed in these landscapes. As previously discussed, however, the 

compounding heterogeneity of CZs and mountain areas renders many traditional forms of 



8 

 

data acquisition unsuitable, requiring innovative thinking as to how we collect spatial 

snow data.  

1.3 Remote Sensing of Snow 

Remote sensing is a viable method for collecting data on landscape changes over 

wide spatial and temporal scales, especially in environments that are difficult to access. 

Gathering any data, but especially snow data, in situ in mountain areas is resource 

intensive and sometimes potentially hazardous. Some infrastructure does exist for the 

purposes of local snow observation and data collection. A primary example is the 

Snowpack Telemetry (SNOTEL) station, which collects observations of snow, weather, 

and other climatological data, and of which there are multiple stations located throughout 

mountain watersheds of the western U.S. (wcc.nrcs.usda.gov/snow/). While SNOTEL 

data are extremely valuable, they only offer information for one spatial point, which is 

often located in flat, easily accessible areas that may not be characteristic of the entire 

region they are meant to represent. Snow monitoring at basin or regional scales requires 

not only observations at the required intervals (temporal resolution), but also at a small 

enough scale where processes of interest can be observed (spatial resolution). 

Fortunately, a wide variety of remote sensing methods currently exist for measuring the 

various properties of snow, including snow depth, snow albedo and grain size, snow 

water equivalent (SWE), and snow covered area (SCA) over vast regions at a variety of 

spatial and temporal resolutions (Nolin, 2010).  

Ground-based and airborne remote sensing methods typically provide the highest 

spatial resolution snow data. Light Detection and Ranging (lidar), both through airborne 

methods and ground-based Terrestrial Laser Scanning (TLS), has been used to monitor 
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snow depth and determine SWE at spatial resolutions of tens of meters or less (Deems et 

al., 2013). Imaging spectrometers are often used in conjunction with lidar airborne 

operations and provide snow albedo measurements (Painter et al., 2016). Temporal 

resolution of these methods is limited, however, by the frequency of both the ability to fly 

over the designated area and ground access of the site in the case of TLS. Another 

airborne method of snow monitoring is Structure from Motion (SfM) photogrammetry 

with airplane flights or Unmanned Aerial Vehicles (UAVs). This technology can generate 

highly accurate digital surface models (DSMs) with centimeter resolution that can be 

used to determine snow depth, SCA, and SWE (Buhler et al., 2016; Fernandes et al., 

2018). Similar to lidar, however, SfM acquisitions are currently limited by flight 

availability, weather conditions, or in the case of UAVs, by aerial coverage due to the 

limitations in signal distance. 

Satellite remote sensing solves problems of temporal frequency and areal 

coverage in that it can monitor large areas at routine intervals. To this effect, several 

satellites with sensors capturing data at varying wavelengths throughout the 

electromagnetic spectrum are currently in operation collecting snow data. Passive 

microwave remote sensing is possible with several different instruments, including the 

Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E), both operated by the National 

Aeronautics and Space Administration (NASA) and the National Oceanic and 

Atmospheric Association (NOAA). Synthetic aperture radar (SAR), or active microwave, 

data is currently being collected on instruments such as the European Space Agency 

(ESA)’s Sentinel-1 satellite and the Canadian Space Agency (CSA)’s Radarsat-2 satellite. 
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These methods are useful because they operate at wavelengths that can penetrate through 

clouds, therefore eliminating many data collection restrictions due to weather conditions. 

Both methods have primarily been used to determine snow depth and SWE with success 

(Bernier et al., 1999; Che et al., 2008; Daly et al., 2012; Vuyovich et al., 2014; Lievens et 

al., 2019). As a by-product of measuring snow depth and SWE, SCA can also be 

determined. Some passive microwave sensors, however, have been found to have 

difficulties in determining the spatial distribution of snow (Vuyovich et al., 2014). The 

spatial resolution of passive microwave data is also more coarse than other instruments 

(several kilometers to tens of kilometers), and therefore is not always suitable for 

studying snow processes at sub-basin scales. SAR imagery, on the other hand, can 

produce products with very fine spatial resolutions (as low as 1-m) at 6-day revisit cycles. 

SAR methods can encounter difficulties in measuring SCA, however, due to the 

differences in signal backscatter from dry and wet snow and from exposed rocks and 

vegetation during partial snow melt, leading to underestimations in snow depth and snow 

cover (Storvold et al., 2006; Lievens et al., 2019).  

Satellite sensors operating in the visible and infrared spectrums, also known as 

optical sensors, can also be used for monitoring snow properties. Some examples include 

NASA’s Advanced Very High-Resolution Radiometer (AVHRR) and Visible Infrared 

Imaging Radiometer Suite (VIIRS). These and other optical data products have been used 

to successfully monitor the spatial distribution of snow (Zhou et al., 2013; Zhang et al., 

2020). Optical data are useful for this task due to snow’s high reflectivity and the strong 

spectral reflectance contrast in the visible and infrared spectrums between snow-covered 

and snow-free areas, and can also be used to measure properties such as snow grain size 
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and albedo (Painter et al., 2009). Some optical remote sensing instruments provide data 

captured at high spatial resolutions, which can be used to identify snow cover patterns in 

highly heterogeneous landscapes. Others provide data at high temporal resolutions, which 

can be used to identify quickly changing snow patterns. Two optical remote sensing 

instruments that fit these descriptions and are of interest to this study are NASA’s 

Moderate resolution Imaging Spectroradiometer (MODIS) and NASA’s Land Remote-

Sensing Satellite System (Landsat). 

The MODIS instrument onboard the Terra and Aqua satellites, whose missions 

began in 1999 and 2000, respectively, collects data in 36 spectral bands covering the 

visible and infrared wavelengths at various resolutions of 250-m, 500-m, and 1000-m, 

and has a daily revisit time for most areas around the globe. Due to its high temporal 

resolution, MODIS data are often used to observe rapid changes in landscapes. As such, 

MODIS data have been used in conjunction with, or as validation for, other remote 

sensing datasets used in snow studies. For example, in a snow depth study conducted by 

Che et al. (2008), optical remote sensing data from MODIS was used as a validation for 

passive microwave estimates of SCA due to it having finer spatial resolution than the 

passive microwave data. MODIS data have also been used to create several SCA remote 

sensing products. One example is the widely used MOD10A1 (Hall et al., 2016) product, 

whose current version also contains snow albedo and fractional snow-covered area 

(fSCA) data. Another is the MODIS Snow-Covered Area and Grain Size (MODSCAG) 

product (Painter et al., 2009), which contains fSCA and grain size data obtained by using 

MODIS surface reflectance data with a multiple endmember spectral mixture analysis 

(Roberts et al., 1998).  
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NASA’s Landsat satellite mission began with Landsat 1, launched in 1972, and 

continues with the current satellite, Landsat 8, with Landsat 9 expected to be launched in 

September 2021 (usgs.gov/core-science-systems/nli/landsat/landsat-9). The Landsat 

missions have captured data in the visible and infrared spectral bands at progressively 

higher spatial resolutions, with current data available in 30-60-m resolution. These high 

spatial resolutions allow for identification of heterogeneities in a landscape, including 

distribution of snow cover at the sub-basin scale (Vikhamar & Solberg, 2002; 

Salomonson & Appel, 2004) that is not always possible with data of coarser spatial 

resolution. Similar to MODIS data, SCA data products derived from Landsat are 

available, which include a Landsat Fractional Snow-Covered Area product (Selkowitz et 

al., 2017). Landsat data have also been used as a method of validating snow models and 

as “ground-truth” data for in the development of other remote sensing snow products. 

Landsat Thematic Mapper (TM) data were used as model validation in the development 

of the MODSCAG model and subsequent snow product. Salomonson & Appel (2004) 

also used Landsat data for validation in the development of the SNOMAP algorithm, a 

method of using the normalized difference snow index (NDSI) to find sub-pixel fSCA 

from MODIS surface reflectance data.  

As useful as Landsat data is because of its high spatial resolution, its temporal 

resolution of 16 days limits its ability to observe rapid changes occurring in a landscape. 

This limitation is particularly disadvantageous for observing snowpack in mountain 

regions, where large changes in SCA can occur from day-to-day during the snow 

accumulation and snowmelt seasons. As such, developing an understanding of where 

water from snowpack enters the subsurface in a highly heterogeneous region requires 
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detailed characterization of the locations of early snow accumulation as well as areas of 

persistent snow cover as melting is occurring, a demand which cannot be met by Landsat 

data alone.   

This trade-off between remote sensing datasets with high spatial or temporal 

resolution, but not both, has been a common problem with remote sensing datasets until 

very recently. The Sentinel-2 mission, launched in June 2015 by the ESA, provides a 

bottom-of-atmosphere (BOA) corrected reflectance data product at 10, 20, or 60-m 

spatial resolution and a temporal resolution of 5 days. Although this is a vast 

improvement in data resolution, any analysis of remote sensing data prior to this high-

resolution data availability must deal with spatial and temporal resolution limitations. 

These limitations have often been dealt with by downscaling high temporal, low spatial 

resolution data, such as MODIS data (Emelyanova et al., 2012; Gevaert & García-Haro, 

2014; Walters et al., 2014), to spatial resolutions at which fine landscape features can be 

identified. In this study we explore one such method of data downscaling using the 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and evaluate its 

potential to be used to monitor daily, fine-spatial resolution changes in SCA. 

1.4 East River Watershed Scientific Focus Area 

The location for this study is the East River watershed, located in the Upper 

Colorado River Region, USA and encompassing the town of Crested Butte, CO (Figure 

1.2). Contained within it is a study watershed that supports scientific investigation 

through the Watershed Function Scientific Focus Area (SFA) supported by the 

Department of Energy (DOE)’s Subsurface Biogeochemical Research Program (SBR). 

The Watershed Function SFA is led by the Lawrence Berkeley National Laboratory 
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(LBNL) (watershed.lbl.gov), and uses the East River watershed as one of many testbeds 

in its network for investigating its grand challenge compound question of “How do 

mountainous watersheds retain and release water, nutrients, C and metals over episodic to 

decadal perturbations, and what are the ramifications for downgradient water availability 

and quality?” (Hubbard et al., 2018). Our study addresses two of the six supporting 

scientific questions being investigated specifically at the East River watershed (Hubbard 

et al., 2018):  

1. How do perturbations to individual watershed subsystems, including early 

snowmelt and drought, lead to downgradient exports of water, C, N, and P 

from that subsystem? 

2. Which insights and methods are critical for improving operational 

forecasting predictions of water quantity and quality in response to a range 

of pulse and press perturbations?  

The East River watershed drains approximately 750 km², has a mean elevation of 

3137-m, and a topographic relief of 1869-m. The area listed here is slightly larger than 

the boundaries of the East River SFA (Hubbard et al., 2018). This is because we include 

the entire drainage area of the East River as calculated from its confluence with the 

Taylor River at the south end of the watershed. The large topographic relief enables the 

catchment to sustain alpine, subalpine, montane, and riparian ecosystems, with most of 

the area covered by conifer and aspen forests (Carroll et al., 2018). The region has a 

continental climate with long, cold winters and short, cool summers. Two SNOTEL 

(wcc.nrcs.usda.gov/snow/) sites are included within the watershed area. The Schofield 

station (site number 737) and the Butte station (site number 380) are located at elevations 
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of 3,261-m and 3,097-m, respectively.  For the almost 40-year period of record, mean 

annual temperature has been recorded as ~0.5°C at the Schofield station and ~2.4°C at 

the Butte station. Mean annual precipitation is 1222 mm at Schofield and 663 mm at 

Butte, the majority of which falls during the winter months as snow in both locations 

(Carroll et al., 2018). The geology of the SFA has been mapped and consists mainly of 

Paleozoic and Mesozoic sedimentary layers, including the large Mancos Shale layer, with 

multiple Cenozoic igneous intrusions (Gaskill et al., 1991). 

Because this area is mid-continental and high elevation, it is expected that the 

timing and amount of winter snowpack will be less affected under a warming climate 

than other mountain regions. Climate modeling completed by Klos et al. (2014) showed 

that although the Colorado Headwaters, and specifically the Gunnison River watershed  

 

Figure 1.2: The East River watershed, located in western Colorado, USA in the 

headwaters of the Upper Colorado River Region. The Butte and Schofield SNOTEL 

sites located within the watershed are identified in green. The East River at Almont 

USGS gauging station is identified in blue. 
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(which encompasses the East River watershed), are predicted to experience a 

decrease in snow-dominated area by 30% and 26%, respectively, by the mid-21st 

century, these areas are expected to retain some of the largest snow-dominated area 

compared to other major watersheds in the western U.S. Although these predictions 

appear promising for the future of the Upper Colorado River Region, climate change is 

predicted to make regions that depend on the Colorado River as a major source of water, 

particularly the southwestern U.S. and northwestern Mexico, drier and hotter, thereby 

increasing the demand for water from the river (Garfin et al., 2013).  

1.5 Thesis Organization 

This study addresses the issue of the lack of historical fine spatial and temporal 

resolution remote sensing data needed to fully understand the distribution of snow cover 

in mountain watersheds. Snow cover patterns and the resulting rate and timing of water 

delivery to the CZ in mountain areas is a significant knowledge gap in the understanding 

of CZ processes. Using STARFM, our goal is to explore the use of a method that can 

realize the goal of observing small scale, day-to-day changes in snow cover in a mountain 

landscape. This is accomplished within the broader context of understanding how these 

changes in snow cover affect water distribution and delivery to the Critical Zone. Specific 

outcomes of this thesis will be discussed in the following chapters. 

Chapter 2 provides a detailed assessment of the ability of the STARFM model to 

correctly predict SCA over time and space by creating synthetic snow cover data for 

dates when no high spatial resolution data were collected via satellite remote sensing. A 

sensitivity analysis is first completed to tune STARFM’s parameters to the East River 

study area, a mid-latitude mountain watershed area in the Upper Colorado River Region, 
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USA. The STARFM model is then validated by running it for an entire calendar year and 

using a data denial method to exclude Landsat images from input and then compare them 

to model output from that date. With these results, model performance can be evaluated 

temporally across the year and spatially by topographic and vegetative features known to 

influence snow cover. Additionally, data from an Airborne Snow Observatory (ASO) 

overflight during the year of analysis is used for further model validation.   

Chapter 3 describes the creation of the final multi-sensor, high spatiotemporal 

resolution snow cover dataset and provides examples of analyses of landscape-level 

controls on snow cover dynamics that can be accomplished with these data. We achieve 

this through an in-depth look into the snow cover data of three separate water years, one 

average water year, one dry water year, and one wet water year as determined by peak 

annual SWE values over an almost 20-year period. Finally, we provide a use case for 

relating snow cover trends observed with STARFM back to water delivery to the CZ by 

examining snow covered area trends with stream discharge behavior. 
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CHAPTER TWO: VALIDATION OF THE STARFM MODEL FOR USE IN 

TRACKING SNOW-COVERED AREA CHANGES IN A MOUNTAIN WATERSHED 

2.1 Introduction 

Understanding the distribution of snow in a landscape, referred to as snow-

covered area (SCA) or fractional SCA (fSCA), is a fundamental starting point for 

answering many key questions related to the hydrologic behaviors of watersheds with 

snow-dominated precipitation regimes. For this reason, SCA/fSCA is an input in many 

hydrological models, largely used to determine changes in the amount of water stored in 

the landscape in the form of snow water equivalent (SWE) (Elder et al., 1998; Homan et 

al., 2011). Data assimilation methods incorporating SCA/fSCA into hydrological models 

where it was absent before has been shown to improve many models’ ability to replicate 

basin wide SWE measurements (Andreadis & Lettenmaier, 2006) and timing and volume 

of spring runoff (Roy et al., 2010). Franz & Karsten (2013) even went as far as to 

successfully use only SCA data to optimize parameters in snow and discharge models 

that had traditionally been calibrated using observed streamflow. 

SCA has been measured with a variety of well-established remote sensing 

methods (Hall et al., 1995; Maurer et al., 2003; Nolin, 2010), but historically, the use of 

these data in hydrologic modeling has often been constrained by the data’s coarse spatial 

resolution. NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), 

commonly used to determine SCA in a landscape (Roy et al., 2010; Homan et al., 2011; 

Franz & Karsten, 2017), captures data at spatial resolutions of 250-1000 m, much greater 
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than the length scales that differences in SCA have been shown to occur (Anderson et al., 

2014). The inability to capture these small-scale changes in a landscape with remote 

sensing can also create other difficulties such as attempting to validate snow remote 

sensing products with in situ data (Roy et al., 2010). 

   Even when fine spatial resolution SCA data does exist, its usefulness is often 

limited by infrequent acquisitions and long revisit times, a problem that can be 

exacerbated by winter cloud cover obscuring available observations (Selkowitz et al., 

2017). The launch of recent satellite missions such as Sentinel-2, which acquires optical 

data at high spatial resolutions of 10, 20, and 60-m and has a shorter revisit time of 5 

days, are greatly enhancing our ability to monitor these quickly occurring, small-scale 

changes of SCA in a landscape. Any comparable SCA analysis using prior data, however, 

must rely on methods of downscaling high temporal, low spatial resolution data to 

observe snow conditions at these scales. 

Various methods of downscaling coarse optical spatial resolution data with 

shorter revisit times have been utilized in previous studies. These include low-computing 

cost linear interpolation methods (Emelyanova et al., 2012), Bayesian unmixing methods 

(Gevaert & García-Haro, 2015), and more recently, advanced methods such as deep 

learning convolutional neural networks (Tan et al., 2018). Until approximately the last 

decade, however, methods such as these had largely been untested for applications of 

high-resolution snow cover monitoring (Walters et al., 2014; Berman et al., 2018; 

Margulis et al., 2019), and thus is still a developing area of study.  

Our study utilized the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) with the purpose of downscaling daily MODIS data to a finer spatial 
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resolution for the specific purpose of SCA monitoring. STARFM is a multi-sensor data 

fusion model that was created to address the absence of high spatial resolution, frequent 

coverage datasets (Gao et al., 2006). STARFM was designed to preserve reflectance data 

during downscaling and was developed using Land Remote-Sensing Satellite System 

(Landsat) 7 Enhanced Thematic Mapper Plus (ETM+) and MODIS data due to the large 

amount of overlap in their spectral bands (Table 2.1) (Gao et al., 2006). Although it has 

historically been employed to capture rapid phenological changes at the landscape scale 

by generating synthetic data from spectral wavelengths used to monitor vegetation 

patterns (Hilker et al., 2009; Singh, 2011; Wang et al., 2017; Gallagher, 2018), Olsoy et 

al. (2017) found that STARFM also performed well when synthetic data was generated 

from spectral wavelengths traditionally used for identifying snow cover. Due to the 

promising results of Olsoy et al. (2017), it is reasonable to expect that STARFM could be 

used to successfully monitor daily changes in snow cover, which our study was first to 

do. 

Table 2.1: Band numbers and bandwidth for the Landsat 7 ETM+ and MODIS 

sensors 

Landsat EMT+ 
Band 

ETM+ Bandwidth 
(nm) 

MODIS Land Band MODIS Bandwidth 
(nm) 

1 450-520 3 459-479 

2 530-610 4 545-565 

3 630-690 1 620-670 

4 780-900 2 841-876 

5 1550-1750 6 1628-1652 

7 2090-2350 7 2105-2155 
 

A full review of the STARFM algorithm can be found in Gao et al. (2006). The 

model is available for download at no cost from the United States Department of 

Agriculture (USDA) Agricultural Research Service (ARS) website (www.ars.usda.gov). 
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We implement STARFM in this study with an R-shell. The data pre-processing and 

STARFM methods outlined in the following sections are modified from work by Peters 

(2016) and Gallagher (2018). In brief, STARFM uses one or more Landsat images and 

daily MODIS imagery to predict the surface reflectance at 30-m spatial resolution for the 

days when no Landsat data were obtained (Figure 2.1). STARFM uses a moving window 

centered around a single Landsat pixel and finds neighboring Landsat pixels from the 

same image that are spectrally similar to the central pixel. Next, the spectrally similar 

neighboring Landsat pixels are assigned a weight based on the spectral differences 

between them and their corresponding MODIS pixels (which are required to have been 

resampled to 30-m), the temporal differences (from one MODIS image to the next) of the 

pixels’ values, and the actual spatial distance between the central and neighboring pixels. 

Finally, the surface reflectance value of the central pixel is calculated for the synthetic 

image. This process repeats for every MODIS image between the Landsat-MODIS pairs 

and can be characterized by Equation 2.1  

 

𝐿 (𝑥
𝜔

2
, 𝑦

𝜔

2
, 𝑡ₖ) =  ∑ ∑ ∑ 𝑊𝑖𝑗𝑘 ∗  (𝑀 (𝑥𝑖, 𝑦𝑖, 𝑡𝑘) + 𝐿(𝑥𝑖 , 𝑦𝑖, 𝑡0) − 𝑀(𝑥𝑖, 𝑦𝑖, 𝑡0))

𝑛

𝑘=1

𝜔

𝑗=1

𝜔

𝑖=1

 

(2.1). 

 

The value of the Landsat, 𝐿(𝑥𝑖 , 𝑦𝑖, 𝑡0) and MODIS, 𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡0) base pair pixels are 

considered at time 𝑡0 along with the value of the MODIS pixel, 𝑀(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘) at the 

prediction time 𝑡ₖ to find the value of the central pixel 𝐿 (𝑥
𝜔

2
, 𝑦

𝜔

2
, 𝑡ₖ) at time 𝑡ₖ of the 

synthetic image with a moving window size 𝜔. 𝑊𝑖𝑗𝑘 is the weight assigned to each 
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neighboring pixel that is determined to be similar to the central pixel based on the spatial, 

temporal, and spectral differences described above.  

 

 

In this chapter we outline our validation process for determining the suitability of 

STARFM to accurately predict snow cover in heterogeneous mountain areas on days 

when no fine spatial resolution remote sensing data were acquired. We compare our 

STARFM output with corresponding Landsat acquisitions from the same dates, as well as 

data from the Airborne Snow Observatory (ASO)’s Light Detection and Ranging (lidar) 

overflight of our study area. We analyze STARFM’s accuracy temporally over an entire 

calendar year, and spatially over a variety of landscape features known to influence snow 

cover.  

 

 

 

Figure 2.1: A schematic of the STARFM model. High resolution Landsat data 

from days 1 and 17 along with daily coarse resolution MODIS data are inputs to the 

model. Outputs are high resolution imagery predictions for days 2-16. Figure 

modified from Cammalleri et al. (2014). 
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2.2 Methods 

2.2.1 Study Area 

The East River watershed, located in the Southern Rocky Mountains of Colorado, 

USA and in the headwaters of the Upper Colorado River Region, (Figure 2.2) drains 

approximately 750 km², has a mean elevation of 3137-m, and a topographic relief of 

1869-m. The large topographic relief enables the catchment to sustain alpine, subalpine, 

montane, and riparian ecosystems, with the majority of the area covered by conifer and 

aspen forests (Carroll et al., 2018). The region has a continental climate with long, cold 

winters and short, cool summers. Two Snow Telemetry (SNOTEL) 

(wcc.nrcs.usda.gov/snow/) sites are included within the watershed area. The Schofield 

station (site number 737) and the Butte station (site number 380) are located at elevations 

of 3,261-m and 3,097-m, respectively.  For the almost 40-year period of record, mean 

annual temperature has been recorded as ~0.5°C at the Schofield station and ~2.4°C at 

the Butte station. Mean annual precipitation is 1222 mm at Schofield and 663 mm at 

Butte, the majority of which falls during the winter months as snow in both locations 

(Carroll et al., 2018). The geology of the SFA has been mapped and consists mainly of 

Paleozoic and Mesozoic sedimentary layers, including the large Mancos Shale layer, with 

multiple Cenozoic igneous intrusions (Gaskill et al., 1991). 
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A unique characteristic of the East River Watershed from a remote sensing 

perspective is that it is located in an area where Landsat Path 34 Row 33 and Path 35 

Row 33 overlap (Figure 2.3), making images available every 7-9 days as opposed to 

every 16 days as is the case for most locations around the globe. This overlap in coverage 

is convenient for this study, as it provides additional dates for model input and 

validation.  

Figure 2.2: The East River watershed, located in western Colorado, USA in the 

headwaters of the Upper Colorado River Region. The Butte and Schofield SNOTEL 

sites located within the watershed are identified in green. The East River at Almont 

USGS gauging station is identified in blue. 
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2.2.2 Data 

The time frame chosen for the following sensitivity analysis and validation of the 

model is the water year (WY) 2016, although our validation analysis begins in July 2015 

and concludes in July 2016 (Table 2.2). WY 2016 was chosen after reviewing maximum 

snow water equivalent (SWE) data (Figure 2.4) from the Butte Snow Telemetry 

(SNOTEL) station. The station is within the East River watershed and is located 

approximately 3 km from the town of Crested Butte, CO at an elevation of 3,097-m. The 

mean maximum SWE as shown in Figure 2.4 for WYs 2000-2018 is 14.39 in. The 

maximum SWE value for WY 2016 is 13.3 in, which is close to, but not above, the mean  

Figure 2.3:  Landsat 8 OLI Path 35 Row 33 and Path 34 Row 33 areas with the 

East River watershed study site identified by the blue marker in the overlapping 

area. Source imagery: Landsat Acquisition Tool 

(https://landsat.usgs.gov/landsat_acq) 
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Table 1.2 Landsat test periods and dates removed for STARFM validation 

analysis. 

Date Before: Date Removed: Date After: 
2015: 
June 26 July 12 July 28 
July 21 July 28 August 7 
July 28 August 6 August 13 
August 6 August 13 August 22 
August 13 August 22 August 29 
August 22 August 29 September 7 
August 29 September 23 October 9 
September 30 October 9 October 16 
October 9 October 16 October 25 
October 25 November 1 November 10  
November 1 November 10 November 17 
November 10 November 17 November 26 
November 17 December 3 December 28 
December 19 December 28 January 4, 2016 
2016: 
December 28, 2015 January 4 January 13 
January 4 January 13 January 20 
January 20 January 29 February 6 
March 1 March 8 March 17 
March 8 March 17 March 24 
March 17 March 24 April 2 
March 24 April 2 April 9 
April 18 April 25 May 4 
April 25 May 4 May 11 
May 4 May 11 May 20 
May 27 June 5 June 12 
June 5 June 12 June 21 
June 12 June 21 June 28 
June 21 June 28 July 7 
June 28 July 7 July 14 
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maximum SWE for the entire time period, and therefore makes a fairly representative 

data point for a typical WY for analysis. 

The fine temporal resolution dataset used in this study was the MODIS product 

MOD09GA.006 (Terra Surface Reflectance Daily L2G Global 1 km and 500-m) of daily 

surface reflectance values. This dataset provides daily 500-m reflectance values for 

Bands 1-7, which have been gridded and corrected for atmospheric gases and aerosols 

(Vermote et al., 2015), and has imagery available from 24 February 2000 to present. 

This choice of MODIS dataset is in contrast to Walker et al. (2012)’s findings that 

MODIS products with Nadir Bidirectional Reflectance Distribution Function-Adjusted 

Reflectance (NBAR) produce fewer errors due to Landsat viewing angle differences 

when used as the coarse resolution dataset for STARFM. Being aware of this, we first 

attempted to use the MODIS NBAR product MCD43A4, which is a daily 500-m 

Figure 2.4: SWE values by WY from the Butte SNOTEL station located within 

the East River watershed. The orange bar represents the mean maximum SWE 

value from the 2000-2018 WY period. 



36 

 

composite of 16 days of imagery from both Terra and Aqua. We found these data 

unusable for our study area, however, due to large, consistent data gaps that occurred in 

our spectral bands of interest and excluded large amounts of area from analysis. 

For the fine spatial resolution dataset, United States Geological Survey (USGS) 

Landsat 8 Surface Reflectance Tier 1 (LC08/C01/T1_SR) was used. These data are 

processed from the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) to the Level-1 Precision and Terrain Correction standards (L1TP). These 

data have been atmospherically corrected using LaSRC. They include cloud, shadow, and 

snow masks produced with CFMASK, a per-pixel saturation mask, and are projected onto 

a standardized reference grid (USGS, 2020). Landsat 8 OLI imagery is available from 11 

April 2013 to present. 

2.2.3 Pre-Processing of Remote Sensing Data 

Google Earth Engine (GEE) was utilized for its ability to quickly access, pre-

process, and export the large amount of data required for this study. GEE is an internet-

based, analysis-ready data catalogue with an application programming interface (API) in 

a high-performance computing environment (Gorelick et al., 2017). One of the main 

advantages of GEE is that it allows the user to sort, filter, and perform analyses on large 

datasets on a cloud-based platform, thereby eliminating the need to download large image 

files to the user’s local machine.  

Within GEE’s web interface, we filtered our MODIS and Landsat data by dates of 

interest, area of interest, and set them to a common projection. MODIS data were then 

filtered via the State QA Scientific Data Set, whose information about the characteristics 

of each pixel is contained in the “state_1km” band, which is then used to select MODIS 
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pixels based on their binary number values. In this manner, pixels that are flagged as 

“clear”, “snow and ice”, and “assumed clear” are selected, and the remaining pixels not 

matching these criteria are masked out. Landsat data were filtered similarly using the 

“pixel_qa” band to select clear and snow scenes and mask out the remaining pixels.  

After filtering MODIS and Landsat pixels for cloud cover, all remaining pixels 

were assigned a Normalized Difference Snow Index (NDSI) value. NDSI is a spectral 

band ratio that is calculated from the green and short-wave infrared (SWIR) bands 

(Equation 2.2) calculated as 

 

𝑁𝐷𝑆𝐼 =  
(𝑅𝑔𝑟𝑒𝑒𝑛 − 𝑅𝑆𝑊𝐼𝑅)

(𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑅𝑆𝑊𝐼𝑅)
 (2.2). 

NDSI is useful for identifying snow, which has high reflectance in the visible spectrum 

and low reflectance in the SWIR bands, from other features, particularly clouds, which 

give stronger signals in the SWIR spectrum, but can be difficult to identify from snow in 

the visible spectrum. NDSI values resulting from Equation 2.2 range between -1 and 1. 

Prior to export from GEE, MODIS imagery was rescaled to 30-m/pixel to match 

the pixel size of the Landsat imagery, a requirement for STARFM. The final outputs were 

two image collections of NDSI values that had the same number of bands as the number 

of days in the date range specified, with matching dates aligned between both raster 

stacks. For the Landsat image collection, the bands for the dates of Landsat data 

acquisition contained actual data, and the bands with no Landsat data remained empty. 

The image collections were then exported from GEE onto Google Drive as 

Georeferenced Tiff (GeoTiff) files, along with a separate .csv file containing the dates of 

analysis for reference.  
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2.2.4 STARFM 

Inputs to STARFM were the GeoTiff files of NDSI values calculated from 

Landsat and MODIS imagery in GEE. Because STARFM had never before been used to 

identify and predict snow cover in a mountain watershed, a sensitivity analysis was first 

performed to identify the spatial scale at which the model performed the best, as well as 

to tune the parameters of the model to the study area.   

To determine how STARFM handled increasing levels of heterogeneity in the 

mountain landscape, we developed a four-tiered model domain approach. Landsat NDSI 

data were used as “ground-truth” data to evaluate model performance for three separate 

dates during the 2016 spring snowmelt season. We chose this time of year as a 

representative timeframe for when heterogeneity is likely to be highest in the landscape 

as snow cover is decreasing but large patches of snow still remain in the landscape. The 

imagery dates used in analysis and the corresponding SCA for both Landsat and 

STARFM images are shown in Tables 2.3 and 2.4. For each of the four STARFM runs, 

the size of the modeled area, or area of interest (AOI), was progressively increased 

(Figure 2.5). AOIs tested were approximately 12 km², 405 km², and 990 km², 

encompassing approximately the area of a single mountain-top, one-half, and two-thirds 

of the watershed area, respectively. The largest AOI measured around 2200 km² and was 

slightly larger than the entire watershed area. Predicted NDSI values from each model 

run were then plotted against Landsat NDSI values from the same AOI, and the 

coefficient of determination was calculated for each pair. The optimal AOI was 

determined to be 2200 km², as it was the domain area with the highest consistent R² 
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values across all test dates. For the remainder of the study, and AOI of at least 2200 km² 

was used for analysis. 

 

Table 2.3: Fraction of AOI with snow cover for each date of Landsat images 

used in sensitivity tests  

 

Table 2.4: Fraction of AOI with snow cover for each date of STARFM images 

used in sensitivity tests 

 

 

 

Size of AOI 12 km² 405 km² 990 km² 2200 km² 

     

24 March 2016 0.82 0.76 0.60 0.40 

2 April 2016 0.93 0.90 0.90 0.75 

25 April 2016 0.65 0.38 0.52 0.38 

Size of AOI 12 km² 405 km² 990 km² 2200 km² 

     

24 March 2016 0.94 0.90 0.87 0.31 

2 April 2016 0.83 0.72 0.56 0.21 

25 April 2016 0.69 0.42 0.53 0.15 
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With the optimal domain for the study area determined, parameter tuning was 

used to find the ideal specifications for the model. According to the theoretical basis of 

the moving window method of STARFM, a highly heterogeneous landscape such as our 

study area should require a large weighted moving search window size (tens to hundreds 

of meters) for optimal model performance (Zhu et al., 2010). During our parameter 

tuning, however, we found that STARFM performed better with a smaller search window 

size range of 25-15 m, much smaller than what is typically used when running STARFM 

in other, more homogenous landscapes (Gao et al., 2006; Gallagher, 2018). 15-m was the 

search window size selected for the remainder of the study. We also tested the spectral 

slice value parameter, which tells STARFM the number of land cover classes expected in 

Figure 2.5: Modeled AOIs for the STARFM sensitivity test, a) 12 km², b) 405 km², 

c) 990 km², and d) 2200 km². The East River watershed is outlined in black in each 

image. Source imagery: Google Earth Engine. 
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the image. A larger number represents stricter conditions for selecting spectrally similar 

pixels from the fine-resolution pixels within the search window distance (Zhu et al., 

2010). We did not notice a difference in model performance, however, when we 

experimented with changing the values of this parameter. We left the value at 40 spectral 

slices, which is the median value of the range used in other studies (Gevaert and García-

Haro, 2015). The final parameter, the Landsat and MODIS uncertainty values, were kept 

at their default values.   

The STARFM output is a stack of GeoTiff files (one for each day of analysis) of 

the interpolated, synthetic NDSI values. 

2.2.5 Temporal Analysis of STARFM Performance 

To validate the results of the STARFM model and understand how the model 

performs at different times of the year as snow cover changes, we used a data denial 

method where single Landsat images were excluded from the input data one at a time. In 

each instance, the model was run as if that date did not have a Landsat acquisition. The 

synthetic image produced by STARFM was then compared to the Landsat data from that 

date to determine how well the model performed at the prediction date. This was done for 

every date of Landsat acquisition from July 2015 to July 2016 (see Table 2.2) where data 

were available for an AOI of approximately 2,600 km², which included the East River 

watershed and surrounding area. Dates that were more than 80% cloud covered were not 

used for analysis. Although this is a high threshold for cloud covered area (Andreadis & 

Lettenmaier, 2006; Roy et al., 2010; Walters et al., 2014), the large AOI meant there was 

enough data to calculate meaningful performance metrics even with only 20% of data 

available (approximately 520 km²) for a single date. Above 80% cloud coverage, 
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however, too little data was left to calculate performance metrics for any meaningful 

comparison. Additionally, a data gap exists in our analysis in February and early March 

2016 when the MODIS sensor went offline from 19-27 February 2016. Even with these 

data restrictions, we still retained 29 dates with varying cloud cover and SCA for analysis 

(Figure 2.6).  
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The NDSI was the metric used to determine SCA for both Landsat acquisitions 

and synthetic modeled data (Figure 2.7). We used a threshold of NDSI = 0.4 to indicate 

the presence of snow, with any pixel value at or above this threshold being classified as 

“snow”, similar to the SNOWMAP algorithm classification by Hall et al. (1995). 

Although we recognize recent findings have shown that optimal NDSI threshold values 

can be dependent on many factors, including but not limited to study area, elevation, time 

of year, land cover, and snow depth (Tong et al., 2020; Zhang et al., 2020), an extensive 

evaluation of the optimal NDSI threshold for our study area was beyond the scope of this 

study. 

 

All pixels in both images were classified into binary “snow” and “no-snow” 

categories based on their NDSI value (Figure 2.8). Once all pixels had been classified, a 

confusion matrix was generated using “snow” as the positive class. True positive (TP), 

False Positive (FP), True Negative (TN), and False Negative (FN) occurrences were 

Figure 2.7: Distribution of calculated NDSI values for 3 December 2015 from a) 

Landsat data and b) STARFM synthetic data.  

a. b. 
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obtained by comparing a Landsat pixel value to its corresponding STARFM output pixel 

value. If the NDSI value of the model pixel classifies as “snow”, but the NDSI value of 

the Landsat pixel classifies as “no snow” at that location, this results in a false positive. 

Conversely, if the model NDSI value classifies as “no-snow”, but Landsat classifies as 

“snow”, this results in a false negative. If both the model pixel value and the Landsat 

pixel value both result in a classification of “snow” or “no-snow”, then this results in a 

true positive or true negative, respectively. 

The results from the confusion matrix can be used to calculate the accuracy, 

precision, recall, and F-score of the model. Accuracy (a) is the value of the fraction of 

pixels (both “snow” and “no-snow”) that the model classified correctly, and is calculated 

in Equation 2.3 by  

 

𝑎 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁)
  (2.3). 

 

Figure 2.8: Binary snow distribution for 3 December 2015 from a) Landsat data 

and b) STARFM synthetic data. 

a. b. 
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 This metric alone, however, cannot be used to evaluate model performance. As 

snowmelt progresses throughout the spring season, the “no-snow” category becomes the 

majority classifier, which can falsely inflate the accuracy value. In other words, the 

number of “no-snow” pixels become so numerous that even an unskilled model 

predicting all pixels as “no-snow” would have a high accuracy value. Because of this, it 

is important to consider other classification metrics that directly measure the model’s 

performance to correctly identify the positive class, even when its total instances are low. 

For this reason, we calculate the values of precision (p), recall (r), and F-score (F) in a 

manner similar to Rittger et al. (2013) and Walters et al. (2014). Precision (Equation 2.4) 

is the fraction of model pixels classified as “snow” that actually were “snow”, 

𝑝 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (2.4). 

Recall (Equation 2.5) is the fraction of total observed “snow” pixels that are 

correctly modeled, or the probability of detection of a snow-covered pixel, 

𝑟 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2.5). 

These metrics, in other words, tell us how well the model does at predicting snow. 

Additionally, the F-score, which is the harmonic mean of p and r and provides a robust 

statistical balance for binary testing, can then be calculated by Equation 2.6,  

 

𝐹 = 2 (
𝑝∗𝑟

𝑝+𝑟
) (2.6) 

to evaluate the overall performance of the model in identifying the positive (“snow”) 

class.  
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2.2.5.1 ASO Data 

A secondary “ground-truth” dataset used to validate STARFM output came from 

the Airborne Snow Observatory (ASO), a coupled scanning lidar system and imaging 

spectrometer with the objective of generating comprehensive time-series datasets of SWE 

and snow albedo in select mountain basins in the western U.S. (Painter et al., 2016). At 

present, airborne ASO snow depth data for the East River watershed is available for the 

dates of 4 April 2016, 30-31 March 2018, 24 May 2018, 7 April 2019, and 10 June 2019 

(Painter, 2018). We used ASO 50-m resolution snow depth data from the 4 April 2016 

sample date (Figure 2.9) Due to uncertainty in snow depth values below 20 cm (H.P. 

Marshall, personal communication, 3 June 2019), all depth data below 20 cm was 

classified as “no snow”, and all remaining data as “snow”. These data were then 

resampled bilinearly to the 30-m STARFM grid, a confusion matrix was generated with 

Figure 2.9: Distribution of ASO snow depth data at 50-m spatial resolution for 4 

April 2016. 
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STARFM data from the same date, and a, p, r, and F calculated for all pixels with 

overlapping data (Figure 2.10).  
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2.2.5.2 Random Raster Test 

The final STARFM temporal validation method was a test to confirm that the 

STARFM model was better at identifying the correct location of snow on the landscape 

than a random algorithm placing snow on the landscape. We expected the accuracy of 

both the model results and results generated by a random algorithm to be high during 

times when the domain was majority snow covered or majority snow free. During times 

when SCA was between the two extremes, however, we expected that if our model was 

correctly predicting snow cover it would outperform a raster with randomly placed snow 

pixels.  

We generated random rasters with the same SCA value for each date in the data 

denial analysis by randomly resampling the model data 100 times, which preserved the 

same number of positive (“snow”), negative (“no-snow”), and no data pixels as the model 

results (Figure 2.11). A confusion matrix was then generated for each of the 100 

randomized rasters to compare pixel classifications between the two. In the same manner 

that the pixel classification of the STARFM data was compared to the Landsat data, the 

pixel classification of the randomized raster data was compared to the STARFM data. A, 

p, r, and F were computed and stored for each of the 100 confusion matrices for each 

date. Once this was complete, the mean and standard deviation of the classification 

metrics for the 100 randomized rasters were calculated for comparison against the same 

metrics from the STARFM/Landsat validation analysis.   



51 

 

 

 

2.2.6 Spatial Analysis of STARFM Performance 

In addition to understanding how STARFM performs at different times of the 

year, it is also important to determine if the large heterogeneities in the mountain 

landscape affect the ability of STARFM to accurately determine snow cover. A spatial 

analysis of STARFM results as they relate to landscape features can assist in answering 

this question. We decided to examine the relationship between the accuracy of each pixel 

of STARFM results over the entire one-year validation timeframe and a variety of 

landscape features that often influence snow cover, which included elevation, slope, 

aspect, and vegetation class (Anderton et al., 2004; Anderson et al., 2014) .  

To determine per-pixel accuracy for model results over the entire year, we 

counted the number of instances where each pixel was classified correctly (Figure 2.12b), 

as well as the number of times a prediction was made for that pixel, regardless of 

correctness (Figure 2.12a), and the difference between the two (Figure 2.12c). As stated 

Figure 2.11: a) STARFM binary snow distribution for 25 April 2016 with a SCA = 

0.15; b) randomized raster of a. 

a. b. 
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previously, of the 45 dates where a Landsat acquisition was acquired between July 2015 

and July 2016, a comparison between the Landsat and STARFM data could only be made 

for 29 of those dates due to cloud cover, missing data, or data overlap issues. Of those 

dates, however, not every Landsat pixel had data all 29 times to be compared to the 

STARFM output, and vice versa. Therefore, the data were normalized by calculating per-

pixel accuracy. This metric was determined by the number of times a pixel was correctly 

identified as “snow” or “no-snow” by STARFM divided by the number of times the pixel 

had data in both the Landsat and STARFM datasets. Once per-pixel accuracy had been 

determined where possible for the entire study area (Figure 2.13), smaller subset areas 

defined by landscape features could be examined for relationships with model 

performance. 
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Figure 2.12: a) The distribution of the total number of model predictions per pixel, 

regardless of whether the prediction was correct or not; b) the distribution of the 

sum of the instances per pixel in which that pixel was identified correctly; c) the 

distribution of the differences between a and b. 

a. 

b. 

c. 
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2.2.6.1 Elevation 

We first considered the relationship between model performance and elevation. 

While there are strong demonstrated relationships between increasing elevation and 

increasing snow cover duration (Daly et al., 2012; Che et al., 2016), high elevation areas 

can also contain large variabilities in terms of snow cover. High elevation areas tend to 

have sparse or no vegetation, so wind scour can leave some areas devoid of snow while 

depositing that snow in nearby locations (Buhler et al., 2016). Due to these variations and 

inconsistencies, we divided our watershed into three elevation bands to examine how 

well our model captures these SCA patterns.  

We used NASA Shuttle Radar Topography Mission (SRTM) V3 Digital Elevation 

30-m data (Farr et al., 2007) to classify each pixel of our study area into either a Low, 

Medium, or High elevation band. These classifications were determined by using an 

Figure 2.13: Distribution of per-pixel accuracy values calculated with results from 

all 29 data denial instances. 
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Empirical Cumulative Distribution Function (ECDF) of elevation values (Figure 2.14). 

Elevation values that fall into the lower one-third of the distribution (2399-2963 m) 

comprise the Low band, those that are within the top one-third of the distribution (>3314-

4332 m) make up the High band, and everything else in between (>2963-3314 m) falls 

into the Medium band. The mean and standard deviations of accuracy values of the pixels 

that fall into each of these categories could then be analyzed separately to evaluate model 

performance by elevation. 

  

 

2.2.6.2 Slope 

Slope, or the change in vertical distance over the change in horizontal distance, 

can also have an influence on snow cover. Areas in mountain watersheds with very steep 

slopes tend to accumulate the least amount of snow, and due to this often melt earlier 

when compared to more gently sloped areas (Elder et al., 1998; Kerr et al., 2013). Slope 

Figure 2.14: a) The empirical cumulative distribution of elevation values for the 

study area. The elevation values marking the first and second one-thirds of the 

distribution (y = 0.33, 0.66) are labeled; b) the spatial distribution of the elevation 

bands. 

a. 

b. 
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degree values were first calculated from the STRM DEM data using the Horn (1981) 

method with 8 neighbors. Slope values were classified similar to elevation values into 

Low (0-11°), Medium (>11-20°), and High (>20-74°) bands using an ECDF and the 

distribution divided into thirds (Figure 2.15). Due to the way slope values are distributed 

in our watershed, any slope measuring greater than 20° is considered a high slope area. 

Much of the high slope area is well above 25°, the threshold above where movement of 

snow due to avalanching and or sluffing is likely to occur (McClung & Schaerer, 2006).  

The same method used to analyze model performance by elevation was used to 

analyze model performance by slope. Each pixel was placed into a slope band based on 

its slope degree. The mean and standard deviation of the accuracy values of pixels 

located in each slope band were then calculated. 

 

 

Figure 2.15: a) The empirical cumulative distribution of slope values for the study 

area. The slope values marking the first and second one-thirds of the distribution   

(y = 0.33, 0.66) are labeled; b) the spatial distribution of the slope bands. 

a. 
b. 
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2.2.6.3 Aspect 

Aspect, or the direction a slope faces, can influence snow cover in a variety of 

ways that often change throughout a winter season. Aspect influences snow accumulation 

patterns through primary wind direction and storm events and also snow melting patterns 

due to variability in solar radiation (Anderton et al., 2004; Anderson et al., 2014; Buhler 

et al., 2016).  

Aspect was calculated in degrees from the SRTM DEM data also using the Horn 

(1981) method with 8 neighbors. Each pixel was then classified by their degree value as 

either north, east, west, or south-facing. All pixels with values between 315° and 45° 

were classified as north-facing, 45° and 135° as east-facing, 135° and 225° as south-

facing, and 225° and 315° as west-facing (Figure 2.16). Mean and standard deviation of 

accuracy values for pixels classified as having the same aspect were analyzed to evaluate 

model performance by aspect.  

Figure 2.16: a) The range of degree values used for classifying aspect; b) spatial 

distribution of hillslope aspects identified using this classification. Figure a from Boz 

et al. (2015). 

a. 

b. 
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2.2.6.4 Land Cover Type 

The final metric used to analyze model performance by landscape feature was 

land cover type. Snow patterns and land cover type can be difficult to quantify, and this is 

especially true when it comes to trees. Trees influence both snow accumulation and melt 

rates by intercepting and sublimating falling snow and shading snow on the ground from 

incoming solar radiation (Veatch et al., 2009). Vegetation also shades snow underneath it 

from overhead view, and thus can cause difficulties in identifying and predicting snow 

cover with optical data. We wanted to examine whether STARFM’s performance 

predicting snow cover was influenced by land cover type within the watershed.        

The USGS Landfire 30-m raster maps of Existing Vegetation Type data 

(Landfire, 2016) were used to classify land cover by five dominant features in a manner 

similar to Carroll et al. (2018). The dominant features included trees (60%), shrubs 

(13%), grass (15%, which included agricultural areas), clear/unvegetated (11%), and 

other (1%) (Figure 2.17). The “other” land cover feature class included areas of human 

development, water, and permanent snow/ice, all of which individually occupied too 

small of an area to perform any meaningful analysis with model performance.   
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2.3 Results 

2.3.1 Sensitivity Analysis 

From our sensitivity analysis, conducted by running STARFM at three spring 

dates with four AOI sizes and evaluating model performance, we determined that the 

optimal region size for the model was the largest AOI, which encompassed the entire 

East River watershed and surrounding area at 2200 km². The coefficient of determination 

values steadily increased with each increase in area, with the exception of two instances 

at 990 km² for the 24 March 2016 and 25 April 2016 dates, where a slight decrease in the 

R² values (-0.3) occurred with the increase in AOI (Table 2.5). The highest R² values for 

all dates occurred for the model runs covering the largest area.  

 

 

Figure 2.17: a) Spatial distribution of landcover classes; b) percent area of each 

class from a. 

a. 

b. 
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Table 2.5: R² values for each date and AOI tested in the sensitivity analysis 

Size of AOI  12 km² 405 km² 990 km² 2200 km² 

          

24 March 2016 0.44 0.52 0.49 0.69 

2 April 2016 0.37 0.55 0.58 0.76 

25 April 2016 0.32 0.63 0.60 0.79 

 

2.3.2 Temporal Analysis of STARFM Performance 

STARFM performance varied by season over the WY 2016 analysis. The 

accuracy of the model ranged from a minimum value of 0.72 for 17 November 2015, to a 

maximum of 1.00 for multiple dates in the summer months of both 2015 and 2016 and 

some early fall dates of 2016 (Figure 2.18a). All dates with perfect accuracy values occur 

when the SCA for the entire Landsat scene is <= 0.1, indicating that the model can easily 

predict the majority class of “no snow” in these cases.  High accuracy values also 

occurred during the winter months, which is also a time when the majority classifier is 

highly skewed towards “snow”, with values of 0.98 for 28 December 2015, and 4 and 13 

January 2016. The distribution of accuracy values over the entire year, however, had a 

mean, a𝜇, of 0.95 and a standard deviation, a𝜎, of 0.07, indicating the model is highly 

effective at correctly identifying the snow state of the pixels regardless of the season and 

the heterogeneity in the landscape. 

Precision and recall, the metrics that inform how capable the model is at detecting 

the positive class of “snow”, exhibited wide ranges with very low values in the summer 

and very high values in the winter (Figures 2.18b and 2.18c). Precision ranged from a 

minimum value of 0.02 on 29 August 2015 to a maximum value of 1.00 on 28 December 

2015, and recall had a minimum of 0.17 on 6 August 2015 and a maximum of 1.00 on 22 
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August 2015. Precision had a mean, p𝜇, of 0.72 and a standard deviation, p𝜎, of 0.31, and 

recall had a mean, r𝜇, of 0.75 and a standard deviation, r𝜎, of 0.23. F-score, the harmonic 

mean of precision and recall, ranged from a minimum value of 0.04 on 29 August 2015 to 

a maximum of 0.99 on 28 December 2016, 4 January 2016, and 13 January 2016 (Figure 

2.18d). The mean f-score, F𝜇, was 0.69 and the standard deviation, F𝜎, was 0.28. These 

metrics tell us that STARFM is generally identifying snow cover correctly where it exists 

and not misidentifying non-snow pixels as snow. 
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2.3.2.1 ASO Data 

ASO data is only available for a single date in the WY 2016 timeframe of our 

analysis, but it is still a useful data point to test the validity of STARFM predictions for 

that day. While there are issues with clouds obscuring large areas of our satellite data on 

this date, there is still a 17%, or approximately 360 km², overlap of pixels for the area 

where ASO data were obtained. When these two datasets were compared, STARFM 

b. a. 

c. d. 

Figure 2.18: The green bars are the values of a) accuracy, b) precision, c) recall, 

and d) F-score for the year-long model validation runs. The black lines in all figures 

are the 7-day centered moving averages. The gap areas highlighted in gray are due 

to MODIS being offline from 19-27 February. All other gaps are due to cloud cover. 
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performed with an accuracy (a) of 0.89, precision (p) of 0.90, recall (r) of 0.99, and an F-

score (F) of 0.94.  

2.3.2.2 Random Raster Test 

If STARFM can better predict the location of snow-covered pixels in the 

landscape than a random placement of snow-covered pixels over the same area, then the 

classification metrics for the former should have higher values than the latter. To 

compare these scenarios, the mean accuracy (a2), precision (p2), recall (r2), and F-score 

(F2) for the 100 random raster tests were compared against the same metrics from the 

STARFM/Landsat validation analysis. 

The a2 for the random raster tests varied within a range of 0.44 to 1.00 (Figure 

2.19a). Very high accuracies, 0.99 or 1.00, occurred for dates when the STARFM 

synthetic image had no snow cover, so randomly resampling the data here did not provide 

us with any new information. The mean of a2 was 0.82 and the standard deviation was 

0.20.  

Mean precision, p2, ranged from 0 to 0.96 (Figure 2.19b). We expected high 

precision values (0.90 or above) when the watershed was fully snow covered due to 

random resampling being able to easily predict the correct classification. When precision 

values were high, the SCA of the available data for the region was 92% snow covered or 

higher. As shown in Figure 2.19a, however, the high precision values in the winter 

months were still consistently below the precision values calculated from the 

STARFM/Landsat comparison. Zero values in precision occurred during the summer 

months when there was no snow or too little snow to compute this value. The mean of p2 

was 0.34 and the standard deviation was 0.38. 
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Mean recall, r2, ranged from 0 to 0.98 (Figure 2.19c). Similar to precision, we 

also expected high recall values when the watershed snow cover was high. Recall values 

of 0.90 and above occurred on dates when the SCA of available data for the watershed 

was 72% or higher. There were two instances in which the mean of the 100 recall values 

from the random rasters was greater than the recall value from the STARFM/Landsat 

evaluation on the same date, and one date in which the two values were the same. In the 

same manner as precision, recall values were zero in the summer months when there was 

too little snow for them to be calculated. The mean of r2 was 0.41 and the standard 

deviation was 0.41.  

Mean F-score, F2, varied within a range of 0 to 0.97 (Figure 2.19d), which was 

also reflective of the trends in maximum and minimum values seen with mean precision 

and mean recall. Because F-score is the harmonic mean of precision and recall, instances 

in which one of these values equals zero meant that the F-score could not be calculated 

for that date, which is why some data are missing in Figure 2.19d. The mean of F2 was 

0.56 and the standard deviation was 0.36.  

 

 

 

 

 

 

 

 



65 

 

 

2.3.3 Spatial Analysis of STARFM Performance 

2.3.3.1 Elevation 

We did not find a significant relationship between STARFM performance and 

elevation band (Figure 2.20). STARFM was able to correctly predict snow for low 

elevations with an mean accuracy of 0.97 and standard deviation of 0.06, medium 

elevations with a mean accuracy of 0.96 and a standard deviation of 0.08, and high 

elevations with a mean accuracy of 0.98 and a standard deviation of 0.08 (Figure 2.21).  

b. a. 

c. d. 

Figure 2.19: The green bars are the values of a) accuracy, b) precision, c) recall, 

and d) F-score for the year-long model validation runs with 7-day centered moving 

averages (black) for all metrics. Blue bars are values of a-d for the random raster 

tests with 7-day centered moving averages in dark blue. The gap areas highlighted 

in gray are due to MODIS being offline from 19-27 February. All other gaps are due 

to cloud cover. 
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Figure 2.20: Spatial distribution of accuracy values by pixel for the a) low 

elevation band, b) medium elevation band, and c) high elevation band. 

a. 

b. 

c. 
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When analyzing accuracy results, we noticed that there appeared to be fewer total 

model observations for pixels in the high elevation band. This is a known issue with 

remotely sensed satellite data that can be caused by greater instances of cloud cover at 

higher elevations (Hou et al., 2019) or issues with the Landsat and MODIS cloud masks 

that can misidentify snow as clouds at higher elevations (USGS, 2020). As a result, the 

input files to STARFM are often missing data at these pixels, and therefore the model 

cannot synthesize an image at that date and location. To better understand the availability 

of modeled data at each elevation band, we evaluated the distributions of the number of 

times all pixels in each elevation band had a model prediction, regardless of correctness. 

This analysis revealed that the distribution of the numbers of predictions per pixel did 

decrease with increasing elevation (Figure 2.22). When plotted numerically, the 

distribution of the number of predictions per pixel for those in the lower elevation band 

had a lower quartile (Q1) of 10, a median of 15, and an upper quartile (Q3) of 18 (Figure 

2.23). 

Figure 2.21: Mean accuracies by elevation band. Standard deviations represented 

by the error bars for low, medium, and high elevations are 0.06, 0.08, and 0.08, 

respectively. 
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Figure 2.22: Spatial distribution of data availability per pixel for the a) low 

elevation band, b) medium elevation band, and c) high elevation band. 

a. 

b. 

c. 
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The pixels in the medium elevation band had a Q1 of 6, a median of 9, and a Q3 of 13, 

and pixels in the high elevation band had a Q1 of 4, a median of 7, and a Q3 of 10.  

2.3.3.2. Slope 

STARFM also performed equally well across all slope steepness bands (Figure 

2.24). Low slope steepness had a mean accuracy of 0.97 and a standard deviation of 0.07. 

Medium slope steepness had a mean accuracy of 0.97 with a standard deviation of 0.08, 

and high slope steepness had a mean accuracy of 0.97 with a standard deviation of 0.08 

(Figure 2.25).  

 

 

 

 

Figure 2.23: Distribution of the number of predictions per pixel, regardless of 

correctness, for each elevation band. 
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Figure 2.24: Spatial distribution of accuracy values by pixel for the a) low slope 

band, b) medium slope band, and c) high slope band. 

a. 

b. 

c. 
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2.3.3.3 Aspect 

Performance of STARFM across hillslope aspect was also consistent (Figure 

2.26). Snow cover was correctly predicted for north aspects with a mean accuracy of 0.97 

and a standard deviation of 0.08, for east aspects with a mean accuracy of 0.97 and a 

standard deviation of 0.07, for south aspects with a mean accuracy of 0.97 and a standard 

deviation of 0.07, and for west aspects with a mean accuracy of 0.97 and a standard 

deviation of 0.07 (Figure 2.27).  

 

 

 

 

 

 

 

Figure 2.25: Mean accuracies by slope band. Standard deviations represented by 

the error bars for low, medium, and high slopes are 0.07, 0.08, and 0.08, 

respectively. 
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Figure 2.26: Spatial distribution of accuracy values by pixel for the a) north aspect, 

b) east aspect, c) south aspect, and d) west aspect. 

a. 

b. 

c. 

d. 
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We also wanted to examine whether our cloud mask might be treating hillslopes 

differently, and thus affecting data availability, depending on aspect. Since snow tends to 

persist longer on north and east aspects (Anderson et al., 2014), it is possible those pixels 

were classified as clouds and masked out during the data pre-processing stage more 

frequently, leading to fewer numbers of predictions in those areas. This trend was visible 

in our data, with north aspects having the least number of model predictions (Figures 2.28 

and 2.29). Numerical distribution of predictions for north aspects had a Q1 of 4, a median 

of 7, and a Q3 of 12. Pixels on east and west aspects had a similar distribution of numbers 

of observations, with east facing pixels having a Q1 of  6, a median of 10, and a Q3 of 14, 

and west facing pixels having a Q1 of 6, a median of 10, and a Q3 of 15. South facing 

pixels had the highest numbers of observations, with their distribution having a Q1 of 6, a 

median of 10, and a Q3 of 15.  

Figure 2.27: Mean accuracies by aspect direction. Standard deviations represented 

by the error bars for north, east, south, and west aspects are 0.08, 0.07, 0.07, and 

0.07 respectively. 
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Figure 2.28: Spatial distribution of data availability per pixel for the a) north 

aspect, b) east aspect, c) south aspect, and d) west aspect. 

a. 

b. 

c. 

d. 
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2.3.3.4 Land Cover Type 

STARFM performed well regardless of land cover class (Figure 2.30). Similar to 

the results from our other landscape characteristics, there appeared to be no relationship 

between model accuracy and data availability. In fact, the largest land cover class, trees, 

had the lowest mean accuracy and largest standard deviation values at 0.96 and 0.08, 

respectively. The next largest land cover class of grass had a mean accuracy of 0.98 and a 

standard deviation of 0.04. The shrubs class had a mean accuracy of 0.98 and a standard 

deviation of 0.05, clear/unvegetated areas had a mean accuracy of 0.99 and standard 

deviation of 0.06, and the class encompassing all other land cover classes had a mean 

accuracy of 0.97 and standard deviation of 0.08 (Figure 2.31).  

 

 

 

Figure 2.29: Distribution of the number of predictions per pixel, regardless of 

correctness, for each aspect direction. 
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Figure 2.30: Spatial distribution of accuracy values by pixel for the a) tree areas, b) 

shrub areas, c) grass areas, d) clear areas, e) all other areas. 

a. b. 

c. d. 

e. 
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2.4 Discussion 

In this study we found that STARFM is effective at tracking snow-cover in a 

heterogeneous, mountain area regardless of time of year or landscape feature and is 

subject mainly to limitations related to data gaps and cloud cover. These findings have 

the potential to improve the resolution of snow data inputs to hydrologic models, 

including those that seek to better understand water related processes in the CZ.  

The limitations of using surface reflectance data with minimal pre-processing to 

identify and monitor SCA have been well documented and will be discussed in the 

following paragraphs. While we were aware of many of these limitations throughout the 

course of this study, we chose not to do extensive pre-processing with our data, as that 

was beyond the scope of our goal of this study. Due to the fact that STARFM has never 

before been used to monitor SCA in mountain landscape, our primary goal was to assess 

whether or not the model was capable of being used in this manner with the 

understanding that the methods may need to be further tailored to other datasets and study 

Figure 2.31: Mean accuracies by landcover class. Standard deviations represented 

by the error bars for tree, shrub, grass, clear, and all other areas are 0.08, 0.05, 0.04, 

0.06, and 0.08, respectively. 
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areas in future work. In other words, our intention was to provide a preliminary study of 

an as-is, “off-the-shelf”, method with minimal pre-processing as a proof of concept for 

using STARFM to monitor SCA. With this perspective and the goals of this study in 

mind, we chose to calculate our own NDSI values using surface reflectance data rather 

than using data from other available snow cover products, such as the MODIS daily snow 

cover product, MODA110. Surface reflectance is a more “raw” form of data, and thus 

allowed us greater flexibility to choose our own data filtering methods consistent with the 

level of pre-processing we desired. 

A significant limitation we found with this choice of data, however, was the large 

data gaps in our Landsat and MODIS input files resulting from overly robust cloud cover 

and cloud shadow filters. Cloud masking algorithms informed by QA pixel flags often 

have difficulties differentiating between snow and clouds, especially at high elevation 

areas. This can occur due to brightness or temperature differentials between the surface 

and clouds in these areas being too small for the cloud to be distinguished from snow 

(USGS, 2020). This is likely the reason why the number of per-pixel observations 

decreased with increasing elevation. While it is also likely that there were more cloud-

covered days with increasing elevation (Hou et al., 2019), visual inspections of true-color 

images revealed that areas masked out as clouds were often actually snow-covered areas. 

In addition, when we look at Figure 2.12 we can see that locations exist in the study area 

where no model predictions were made over the entire year of analysis, many of which 

are located at the highest elevations at the north end of the watershed. The QA pixel flags 

also had trouble at times with areas in mountain shadows, flagging these areas as cloud 

shadows, or at the very least as not “clear” pixels, and thus masking them out.  
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Other data products have attempted to correct for misclassification errors in cloud 

masks with additional pre-processing. The MODIS Snow-Covered Area and Grain Size 

(MODSCAG) (Painter et al., 2009) and Thematic Mapper Snow-Covered Area and Grain 

Size (TMSCAG) (Selkowitz et al., 2017) datasets have been developed to address these 

issues. MODSCAG is created by applying a spectral mixture analysis to MODIS surface 

reflectance data (MOD09GA, the same MODIS dataset we use here in our study). A 

library of spectral endmembers for snow at various grain sizes, rock, soil, vegetation, and 

lake ice are used to estimate fSCA and snow albedo in the image. In addition to this more 

sophisticated method of identifying snow cover, MODSCAG data is processed with its 

own cloud mask that considers particle size. Above a certain threshold value, a particle is 

considered a cloud, even if the algorithm originally classifies as snow, and under the 

threshold value, a particle is considered snow, even if it is originally classified as cloud. 

The TMSCAG model is similar to MODSCAG, with the main difference being that the 

former is designed to handle radiometric saturation in bands 1-4 (Selkowitz et al., 2017). 

As STARFM is not able to make predictions for pixels on dates where input information 

is missing, future work with STARFM where a more selective cloud filtering 

methodology is preferred will benefit from using datasets such as those described above 

as input files to the model. 

Finally, we must also consider the assumptions that are made and the limitations 

that result from validating STARFM’s performance with Landsat data. Withholding 

Landsat data from STARFM and using it as “ground-truth” to evaluate model error is a 

method commonly used with STARFM and similar models (Hilker et al., 2009; Gevaert 

& Garcío-Haro, 2014; Wang et al., 2014), as the goal of the STARFM model is to 
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accurately replicate Landsat-like data (Gao et al., 2006). While we can be confident in 

STARFM’s ability to replicate Landsat data for our study area as shown by our results, 

we did not validate STARFM’s snow cover predictions against in situ snow cover data. 

We operate under the assumption that our algorithm, which identified snow cover by 

NDSI values, accurately located snow in the landscape for both STARFM output and our 

Landsat and MODIS input data. We are aware of instances in which binary identification 

has been shown to misidentify snow cover within both Landsat and MODIS data (Elder 

et al., 1998; Rittger et al., 2013), and thus we suspect that these same errors are present in 

our STARFM data, although we did not explicitly identify them in this study.  

The incorporation of ancillary ASO data as part of the model validation process, 

however, does provide some insight into possible sources of error regarding STARFM 

data and the location of actual snow cover on the ground. Some specific potential sources 

of error are examined in greater detail below in Section 2.4.2.1. We also recognize that 

the inclusion of ASO data in our study provides us with only one data point by which to 

draw these conclusions. In addition, this single data point was collected as close as 

possible to the time of peak SWE, the time when snow cover is most homogeneous and 

remote sensing methods have the least difficulty in identifying SCA.  

Future work quantifying STARFM errors can benefit from the use of lidar data 

acquired over multiple years, and if available, at different dates throughout the snow 

season. Other satellite remote sensing data sources with finer spatial and temporal 

resolutions, such as Sentinel-2 data with its 5-day revisit time and spatial resolution as 

fine as 10-m at some bands, can also be used as validation information to increase 

confidence in STARFM’s predictions of snow cover.  
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2.4.1 Sensitivity Analysis 

The results of our sensitivity analysis indicated that in snow-covered 

environments, STARFM was able to more accurately replicate the heterogeneous nature 

of the landscape when a larger model domain and a smaller search window is used. Our 

search window size of 15-m was significantly smaller than the search window sizes used 

in most other STARFM studies, which commonly used distances of 750-1500 m (Gao et 

al., 2006; Gevaert & García-Haro, 2014; Gallagher, 2018). Few studies have completed 

sensitivity analyses to optimize STARFM performance over highly heterogeneous 

landscapes, but those that have optimized model performance by increasing search 

window sizes, even though it resulted in increased computational costs (Gao et al., 2006; 

Gevaert & García-Haro, 2014). We suspect that our model’s optimal performance with a 

smaller window size may be due to the large spectral contrasts between snow covered 

and non-snow covered pixels, which allows the model to easily differentiate between 

these areas without the need for increased information from greater search distances. This 

theory, however, seems to be in direct contrast with the better model performance we 

achieved by enlarging the model domain. Future work optimizing STARFM performance 

in a variety of snow-covered, mountainous landscapes may provide a better 

understanding of this inconsistency. 

2.4.2 Temporal Analysis 

STARFM produced high accuracy values in the winter and summer when the 

landscape was dominated by either “snow” or “no-snow” classes, respectively. During 

these time frames the model had little difficulty assigning NDSI values into the correct 

class. The 5-day centered moving average of accuracy (a) values displayed a slight 
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decrease in accuracy during the spring months, with the lowest accuracy values occurring 

in the fall months. We expect to see a decrease in model a during times of the year when 

landscape heterogeneity increases, such as during these shoulder seasons.  

There are a few key differences in snow properties during the fall and spring that 

may contribute to differences in model performance during these times. Early snow 

precipitation that falls before the snowpack is established can be quickly melted away by 

sudden increases in temperature. New snow has lower densities and is much more easily 

blown around the landscape (Hiemstra et al., 2006). As snow persists longer in the 

landscape and accumulates more layers, field observations have shown that the entire 

snowpack becomes more dense overall, with the greatest densities in the middle of the 

snowpack as one moves away from the surface (Skiles & Painter, 2017). Therefore, we 

can reasonably assume that even if the top layers of new, less dense snow are blown 

around by late season storms, the rest of the snowpack will remain largely stationary on 

the landscape, resulting in more consistent snow patterns between observations in the 

spring than in the fall. These seasonal differences are important as quicker, smaller scale 

landscape changes are more difficult for STARFM to catch. Although increasing the 

spatial and temporal resolution is the goal of STARFM, the model is still limited by 

subtle changes in the landscape that occur between Landsat images but are unable to be 

seen by the coarse scale of the MODIS imagery. However, the lowest accuracy value of 

0.72 indicated that the model is still able to perform reasonably well even with the above 

limitations. 

Precision (p), recall (r), and F-score (F) values all follow similar trends 

throughout the year. The high recall values achieved in the winter months indicate that 
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STARFM was able to recognize and identify the majority of snow present in the 

landscape and assign NDSI values accordingly. The high precision values of this same 

time period indicated that the majority of the pixels to which STARFM is assigning 0.4 

and above NDSI values are indeed snow covered. Similar to what we see in our accuracy 

plots, 5-day centered moving averages of precision and recall values decreased for the 

shoulder seasons of the year, and again were lower in the fall than in the spring. Precision 

values were especially low for the fall, indicating that the model was greatly 

overpredicting snow cover during these times. As the harmonic mean of precision and 

recall, F-score values are similar to precision and recall values for the spring, summer, 

and winter, but display the large decrease in value during the fall, as seen with precision. 

Other reasons why STARFM performance was worse in the fall as opposed to the 

spring, especially in terms of overpredicting snow, may be due to differences in 

landscape characteristics unrelated to snow. Because the model was overpredicting snow, 

we know that the STARFM synthetic data had a higher NDSI than the “ground-truth” 

Landsat data. One possible explanation may be that our study area is 60% tree covered, 

many of which are deciduous aspen as identified by Carroll et al. (2018). The colors of 

these leaves change and become brighter in the fall, which may in turn artificially raise 

the NDSI values of the input data. This potential for misclassification from higher NDSI 

would disproportionately affect the coarser MODIS data, as the NDSI of pixels covering 

a larger area will be influenced by reflectance values from both higher reflectance tree 

and lower reflectance non-tree areas. Landsat pixel NDSI values would similarly be 

affected, but the total area of affected pixels would be reduced since smaller Landsat 

pixels are less likely to cover both tree and non-tree areas. Incorporating the Normalized 
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Difference Vegetation Index (NDVI), a spectral band ratio used for identifying vegetation 

health and sometimes incorporated along with NDSI to identify snow cover in forest 

areas (Klein et al., 1998), may improve STARFM results in the fall season. 

Unlike accuracy, precision, recall, and F-score moving averages were at their 

lowest in the summer. Because precision and recall metrics are specific to the presence of 

our positive class of “snow”, they can experience large changes in value when the 

number of positive class pixels are low. In this case, a misclassification of even a small 

amount of positive class pixels will drastically increase the value of the denominator in 

Equations 2.4 and 2.5, which in turn decreases the p and r values. As the harmonic mean 

of p and r, F values (Equation 2.6) are also low in the summer for the same reasons. 

2.4.2.1 ASO Data 

High accuracy, precision, recall, and F-score were also observed when comparing 

overlapping STARFM and ASO lidar data. Although the values of these metrics are 

slightly lower than those computed from comparisons with Landsat data, the accuracy 

value of 0.89 and precision, recall, and F-score values at 0.90 or above indicate that 

STARFM does provide information on snow cover that is comparable with snow cover 

information acquired from lidar acquisition. We recognize that this is only one data point, 

as only one ASO flight occurred during our model validation time frame. STARFM is 

clearly not a substitute for airborne lidar data when it comes to monitoring SCA as it is 

limited by cloud cover where airborne lidar data is not. Although airborne lidar data is 

widely recognized as one of the most accurate sources of information on snow depth, and 

therefore snow presence (Nolin, 2010; Painter et al., 2016), it has a high operational cost 

and is therefore temporally limited. It is encouraging then that STARFM optical data, 
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when available, can replicate airborne lidar SCA observations with approximately 90% 

accuracy.   

Satellite optical remote sensing data are limited compared to airborne lidar snow 

data, however, when identifying snow cover in forested areas. While airborne lidar data 

can detect and identify snow under forest canopy, surface reflectance datasets from 

satellites cannot. This means that a forested area can be falsely identified as having no 

snow when snow is present but hidden from the overhead view. Selkowitz et al. (2017) 

addressed this problem by designing an algorithm that uses a local window search to 

further evaluate Landsat pixels in forested areas that are identified by the TMSCAG 

model as non-snow-covered but are acquired during times when snow cover is likely. 

These algorithms take ancillary data on land cover type, forest canopy cover, digital 

elevation models, and incoming solar radiation and identify thresholds that must be met 

to determine if the pixel in question should be adjusted to an fSCA value greater than 

zero.  

Conversely, it is possible that STARFM may be identifying forested areas as 

snow-covered due to high NDSI values resulting from intercepted snow on tree canopies, 

when in fact there may be no snow on the ground underneath them. This is likely not a 

noteworthy source of error in our analysis of STARFM and ASO data due to our date of 

comparison being at or near peak SWE. This may be a more significant source of error, 

however, during other times of the year when snow has not yet accumulated beneath 

forest canopy but is instead stored within the canopy. Snowfall that has been intercepted 

by forest canopy can often sublimate before it has the chance to reach the ground. 

Broxton et al. (2015) found that this behavior can happen with up to 25% of snowfall in 
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mid-latitude, mountainous environments. Misidentifying this snow in the forest canopy as 

snow on the ground should be considered as a possible source of error in overestimating 

water inputs to hydrologic and CZ models.  

We did not attempt to correct our results based on forest canopy density, nor did 

we incorporate measurements of NDVI into our binary snow cover classification for tree-

covered areas (Klein et al., 1998) for the sake of the simplicity of using consistent model 

inputs over our entire domain. Thus, we suspect limitations in the ability of our satellite 

data to detect snow on the ground due to canopy cover are the primary cause of the 

deviation of SCA derived from STARFM and SCA derived from ASO. In addition, 

Lundquist et al. (2013) found that forests in climates with colder, drier winters, such as 

the East River watershed, retain snow longer under tree canopies than in open areas 

during the spring. This is largely due to the greater influence of shortwave radiation in 

inducing melting in areas with colder winter temperatures rather than emitted longwave 

radiation from trees and other vegetative material, which is more dominant in melt 

regimes in climates with warmer winter temperatures. Addressing this optical data blind 

spot in future work would greatly improve the predictive ability of STARFM in forest 

areas, which is the majority land cover type of the East River watershed, especially 

during the spring melt season.  

2.4.2.2 Random Raster Test 

The random raster tests we conducted were intended to determine whether or not 

our model was better at correctly identifying snow in the landscape than an algorithm that 

produced a random spatial distribution of snow, with the underlying assumption that the 

location of snow cover in a landscape is non-random. When we compared the accuracy, 
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precision, recall, and F-score from our temporal analysis of STARFM to the same metrics 

from our random raster tests, we saw a clear gap in performance between the two, with 

the model outperforming the random raster tests in its placement of snow throughout the 

landscape in all but a handful of instances. This indicates that, for the majority of the 

time, our model was able to capture the spatial variability of snow in the landscape 

related to non-random snow distribution processes.  

On two occasions, random pixel placement recall values were slightly above those 

achieved by STARFM, indicating that in these few cases, the random algorithm provided 

better information regarding snow cover than STARFM. We believe both of those 

instances can be attributed to skewing from a lack of data due to cloud cover and due to 

the February-March 2016 MODIS outage.  

The gap between modelled and randomly assigned precision, recall, and F-score 

values was largest in spring and fall, the time when both algorithms were expected to 

have the most difficulty in identifying snow placement on the landscape due to increased 

heterogeneity. While performance dropped for both algorithms during these times, the 

fact that STARFM significantly outperformed the random raster tests, even during the 

fall when STARFM was underpredicting snow cover, is again an indicator that the model 

was able to provide more information regarding snow placement in a heterogeneous 

landscape than the algorithm placing snow at random. 

We saw a similar relationship when considering accuracy values for the two 

methods. Again, the largest gaps in accuracy values between STARFM and the random 

raster test occurred in spring and fall. One major difference, however, was that during the 

middle of winter accuracy was consistently much higher for STARFM, a relationship 
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which was not as strong for our other metrics. We once again attribute this improved 

performance to the way the metrics were calculated. By only considering the positive 

class – “snow” - precision, recall, and F-score are much less sensitive to small changes 

when there are a very large number of positive class pixels. Accuracy, by contrast, 

considers the correct instances of identification of both classes equally, and so can be a 

better metric to consider when the number of positive class instances is high. The 

opposite is true, meaning accuracy is less useful, when the positive class – “snow” - is 

nearly non-existent in the summer months. During this time, accuracy values for both 

methods were equally high at 100%. This suggests that when the number of positive 

pixels is extremely small, they are largely insignificant in the calculation of accuracy. 

2.4.3 Spatial Analysis 

While we expected to see clear relationships between landscape features and 

model performance in a heterogeneous landscape, we found surprisingly little 

relationship between accuracy and differences in elevation, slope, aspect, and land cover 

type. The highest mean accuracy value achieved by STARFM was for clear/unvegetated 

areas at 0.99, and the lowest was for mid-elevation areas at 0.96, a difference of only 

0.03. We expected to see lower STARFM performance for areas of the landscape with 

greater heterogeneity, such as mid-elevations where the rain-snow transition zone 

fluctuates throughout the year (Klos et al., 2014) influencing the snowline, or on north-

facing slopes with longer spring snowpack retention (Anderson et al., 2014). It appears, 

however, that STARFM does not have difficulties identifying these heterogeneities in the 

landscape at the 30-m spatial scale and can do so just as well as the Landsat data used for 

ground-truthing.  
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While mean accuracies are consistent, some landscape characteristics display 

slightly more variation, as indicated by larger standard deviations. The largest standard 

deviation value was calculated at 0.08 for tree areas and the lowest at 0.05 for grass areas, 

resulting in a difference of 0.03. Landscape characteristics that had higher standard 

deviation values included mid- and high elevation areas, north aspects, and land cover 

areas that fall into the tree and “other” land cover categories. While the standard 

deviation values were still quite small, some of the variability can likely be explained by 

low data availability resulting from cloud-cover, tree canopy obstruction, and cloud 

misidentification at high elevations. It is reasonable to expect larger variability in smaller 

datasets, as outliers will have more of an effect on their overall statistics. We suspect this 

is what influenced the standard deviations of all categories except for the tree areas. The 

tree area dataset was the largest dataset, covering 60% of the watershed. These data, 

however, are also fairly evenly distributed across all elevations, slopes, and aspects, 

which may explain why these data also have larger variabilities when considered on their 

own. Grass areas, the dataset with the smallest variability, are similarly distributed 

throughout the watershed, however, they cover much less area at only 15%. Differences 

in standard deviations between grass and tree areas may be due to inconsistencies in the 

model identifying snow among tree canopies, as explained in detail in Section 2.4.2.1. 

Similar to the patterns in our data revealed by the differences in standard 

deviations, we saw similar patterns attributed to systematic relationships of data 

availability by obstructions from cloud-cover, tree canopies, and cloud misclassifications. 

The median values of the number of per-pixel predictions for mid- and high elevations 

and north aspects, the datasets with the smallest number of predictions due to the above 
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factors, are well below the midpoints for the ranges of these data. Larger variations in 

data availability for tree and “other” land cover areas can likely be explained by 

considering the amount of the watershed these land cover types occupy. Tree areas cover 

the largest amount of area at 60% of the watershed, and areas classified as “Other” cover 

only 1% of the watershed. The distribution of data availability of tree areas is likely due 

to their distribution on the landscape as previously mentioned. Conversely, “other” areas 

of the watershed have a high median number of predictions per pixel, but the number of 

data points is extremely small and contains vastly different types of land cover (e.g. 

developed areas and those covered permanently by water), therefore large variations in 

data availability in these locations is also not surprising. 

Given our high mean accuracies and the fact that even our highest standard 

deviation values are still quite small, the slight discrepancies in model performance by 

landscape feature can be largely explained by data availability as opposed to errors from 

the model itself. This suggests that STARFM is viable at successfully replicating snow 

cover in complex, heterogeneous mountain landscapes. Future work with STARFM 

employing more detailed data pre-processing of model inputs may be able to test these 

conclusions through verification at higher resolutions.  

2.5 Conclusion 

We describe here a comprehensive method for validating STARFM for use in 

complex, heterogeneous mountain terrain to track seasonal snow cover. We identifiy the 

optimal model parameters and model domain for our study area. STARFM performance 

is validated using a data denial method to exclude individual Landsat images from model 

input files for comparison of model output to the real data acquired at that date. Binary 
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snow maps were created for the Landsat and STARFM data on the dates in consideration 

using an NDSI threshold. A confusion matrix derived through a classification analysis 

was employed to find accuracy, precision, recall, and F-score over the course of the year 

of analysis. Additional validation was provided by evaluating model results with ASO 

data and SCA maps created by random pixel placement. In addition to a temporal 

performance validation, STARFM was also validated spatially by considering its 

performance in relation to landscape features including elevation, slope, aspect, and land 

cover type.  

Our results indicate that STARFM was able to successfully replicate Landsat 

resolution SCA data over a heterogeneous mountain area for an entire year, and that it 

performed equally well when given data including a variety of landscape features and 

land cover types. The primary limitation of STARFM in this study was data availability. 

When STARFM was given data, it performed well, but characteristics that make all 

remote sensing analyses challenging in mountain watersheds, including clouds, shadows, 

and data viewing angles, can limit its effectiveness. We recommend future studies using 

STARFM in mountain areas be aware of these limitations and attempt to mitigate them 

by utilizing more selective cloud masks or input datasets that contain their own cloud 

identification algorithms validated for mountain areas.  
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CHAPTER THREE: SPATIAL ANALYSIS OF SNOW-COVERED AREA PATTERNS 

BY WATER YEAR FROM STARFM RESULTS 

3.1 Introduction 

In highly heterogeneous mountain areas, the distribution of snow cover typically 

follows predictable patterns driven by elevation, slope, aspect, and vegetation. In general, 

higher elevations are more snow precipitation dominated as opposed to rain precipitation 

dominated (Tennant et al., 2015), and often have greater snow depths (Anderson et al., 

2014) that persist longer in the landscape once melting begins (Anderton et al., 2004). 

Flatter slopes tend to accumulate more snow than steeper slopes due to gravitational 

forces (McClung & Schaerer, 2006), with very steep slopes often staying almost 

permanently snow-free (Farinotti et al., 2010). In the northern hemisphere, differences in 

solar radiation between slopes with north and south aspects promotes greater 

accumulation and later melt on predominantly north-facing slopes (Elder et al., 1998, 

Buhler et al., 2016). Vegetation, particularly forest canopy, can both intercept falling 

snow, creating a shallower snowpack directly beneath them, and help with snowpack 

retention by shading snow from incoming solar radiation (Veatch et al., 2009). 

These relationships, however, are not always this straightforward. Localized 

differences in topographic features can create variability in snow cover behaviors. For 

example, while measuring snow depth with an unmanned aerial system, Buhler et al. 

(2016) found much higher variability in snow depth on their mountain top study site than 

their valley bottom site, which had much smaller depth gradients. At high elevation they 
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observed instances where bowls with deep snowpack were located near areas where all 

snow had been blown away. Slopes with varying steepness and aspects can also exhibit 

patterns of snow accumulation contrary to the general rules of gravity or solar radiation. 

Wind scour can be very effective at removing snow on windward-facing slopes, while 

more sheltered environments on leeward-facing slopes promote more snow accumulation, 

regardless of aspect or steepness (Hiemstra et al., 2006). In addition to influencing snow 

accumulation and melt by physically blocking falling snow and solar radiation, trees can 

have a significant influence on snow melt patterns through their release of longwave 

radiation. Lundquist et al. (2013) found that snow in warmer climates tended to persist 

longer in the openings between trees due to emitted longwave radiation exceeding 

incoming shortwave radiation, while snow persisted longer beneath tree canopies in 

colder climates. 

Capturing these fine scale variabilities in snow cover in heterogeneous landscapes 

has been challenging with traditional remote sensing and in situ data collection methods. 

In their review of previous field studies considering the spatial variability of snow 

processes, Clark et al. (2011) noted that spatial variability of snow generally increased 

with spatial scale, so studies with limited spatial extents risked underestimating this 

natural variability. Conversely, field studies that attempted to capture a larger area by 

increasing space between point data capture risked missing these small-scale spatial 

correlations in the landscape. Remote sensing can make up for limitations of spatial 

extent due to the ability to capture data over large areas, but has limitations due to data 

resolution, both spatial and temporal. Remote sensing instruments have historically been 

able to provide data captured at high spatial resolutions, which can be used to identify 
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snow cover patterns in highly heterogeneous landscapes, or at high temporal resolutions, 

which can be used to identify quickly changing snow patterns, but not both.  

While emerging remote sensing technology has increased both the temporal and 

spatial resolution of snow cover products (e.g. the Sentinel-2 instrument provides optical 

data at higher spatial resolutions of 10-20 m every 5 days), model and data downscaling 

are still required to produce daily high spatial resolution datasets. Such fine-scale 

resolutions, however, are necessary to fully capture the variability in snow cover due to 

catchment specific landscape characteristics and understand how snow patterns evolve 

overtime. 

Here we describe the creation of a 20-year, daily 30-m dataset developed with 

STARFM for the purpose of monitoring SCA in the East River watershed. This effort 

builds on our previous work validating STARFM as an effective method to represent 

variability in SCA in a mountain landscape over the course of an entire year. We also 

perform preliminary analyses of this dataset to both address high-level scientific 

questions related to annual patterns of SCA in our watershed and demonstrate the type of 

analyses that this dataset, and others like it, can enable for answering further questions 

related to snow cover processes in the future.  

3.2 Methods 

3.2.1 Data 

The study area used for the creation of the 20-year, daily dataset with STARFM is 

the same model domain area described in section 2.2.1. The time period used in the 

creation of the dataset spans WYs 2001-2020. The MODIS instrument came online in 

early 2000, so the first complete WY for which MODIS data is available is WY 2001. 
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We again used the MODIS product MOD09GA.006 (Terra Surface Reflectance Daily 

L2G Global 1 km and 500-m) daily surface reflectance values pre-processed in the same 

manner described in Section 2.2.2. 

We used several different Landsat surface reflectance products to create the 20-

year dataset, as several missions occurred throughout the study period and were, at times, 

discontinuous (Table 3.1). For the period spanning WY 2001 through May 2003, we used 

the USGS Landsat 7 Surface Reflectance Tier 1 (LE07/C01/T1_SR) product. These data 

are processed from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor. The 

last ETM+ data acquisition used was collected on 25 May 2003, just prior to when the 

Scan Line Corrector (SLC) failed on the instrument on 31 May 2003 (Markham et al., 

2004). For the period spanning 24 May 2003 (Landsat 5 and 7 data acquisitions were one 

day apart) through 15 November 2003, we used the USGS Landsat 5 Surface Reflectance 

Tier 1 (LT05/C01/T1_SR) product. These data are processed from the Landsat 5 

Thematic Mapper (TM) sensor. TM data became unavailable on GEE after 15 November 

2011. For the period spanning 15 November 2011 through 4 May 2013, we again used 

Landsat 7 ETM+ data, despite known SLC errors for this period. We chose not to apply 

any SLC error correction methods to the ETM+ data or the STARFM results produced 

from it, instead leaving the decision to future users of these data to decide if and how they 

wish to apply SLC corrections. Sufficiently cloud-free Landsat 8 OLI data were not 

available on GEE until 3 May 2013. For the final period spanning 4 May 2013 through 6 

October 2020, we used USGS Landsat 8 Surface Reflectance Tier 1 (LC08/C01/T1_SR). 

All Landsat surface reflectance data described herein have been processed to radiometric 

and geodetic accuracy with Level-1 Precision and Terrain Correction standards (L1TP). 
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ETM and ETM+ data have been atmospherically corrected using LEDAPS, they include 

cloud, shadow, water, and snow masks produced with CFMASK, a per-pixel saturation 

mask, and are projected onto a standardized reference grid (USGS, 2020). As described 

in Section 2.2.2, OLI surface reflectance data are processed similarly, with the exception 

of being atmospherically corrected using the updated method LaSRC (USGS, 2020), but 

otherwise meet the same standards as ETM and ETM+ data.  

 

Table 3.1: Landsat datasets and the dates each was used for the generation of the 

20-year, daily STARFM NDSI dataset. 

Landsat Dataset Beginning Date End Date 

Landsat 7 ETM+ 28 September 2000 25 May 2003 

Landsat 5 ETM 24 May 2003 15 November 2011 

Landsat 7 ETM+ 14 November 2011 4 May 2013 

Landsat 8 OLI 3 May 2013 6 October 2020 
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3.2.2 Data Pre-Processing and STARFM 

Landsat and MODIS data pre-processing were completed using GEE as described 

in Section 2.2.3, with the only notable difference being the band numbers used for the 

calculation of NDSI. Landsat 5 ETM and Landsat 7 ETM+ band orders are slightly 

different than Landsat 8 OLI band order, requiring the use of ETM and ETM+ Band 2 

(green) and Band 5 (SWIR 1) to calculate NDSI instead of OLI Band 3 (green) and Band 

6 (SWIR 1).  

Pre-processed MODIS and Landsat data were used as inputs to the STARFM 

model, described at length in Section 2.2.4. The model parameters used during validation 

analysis remained unchanged, however, this time STARFM was run on a Boise State’s 

R2 high-performance computing cluster due to the size of data files and R2’s storage 

capabilities.  

3.2.3 Post-Processing of STARFM Data 

In addition to generating daily NDSI results from STARFM for WYs 2001-2020, 

we also extracted daily cloud cover information for MODIS, Landsat, and STARFM 

files. To find this, we calculated the amount of data present for each layer in the MODIS, 

Landsat, and STARFM raster stacks for each date of analysis. We assigned a value of 1 

to all pixels that contained any non-NA value, summed these values by layer, then 

normalized them by the total number of pixels in each layer. This produced values 

between 0-1 that represent the fraction of pixels in each layer that containing data. For the 

MODIS and Landsat input files, this value between 0-1 was the fraction of data that 

remained after the cloud mask was applied (described in detail in Section 2.2.3), also 

known as the inverse cloud fraction. For STARFM results, a value of less than 1 for a 
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raster layer implies that there were pixels in that layer for which STARFM could not 

predict a value. There are a few reasons this may happen, the first being that the 

corresponding Landsat and MODIS pixels for that date were cloud covered, and therefore 

STARFM had no information by which to use to make a prediction. A no-value 

STARFM pixel can also occur when just one of the input files is missing a value for the 

corresponding pixel.  

According to the theoretical underpinnings of STARFM, we can assume that 

when a prediction is made on a date when an input pair (MODIS and Landsat 

acquisitions) are present, the observed Landsat surface reflectance data and the synthetic 

data will be exactly the same (Gao et al., 2006). However, our results show that this is not 

always the case. STARFM generates images identical to Landsat surface reflectance only 

when 100% of MODIS data are present in the prediction pair. If there is any missing 

MODIS data, the fraction of data available in the synthetic STARFM raster layer is 

always less than the fraction of data available in the Landsat image from that same date. 

Our best explanation for why this occurs has to do with the STARFM’s sample filtering 

capabilities. According to Gao et al. (2006), fine-resolution neighbor pixels from the 

Landsat image are selected that are spectrally similar to the fine-resolution central pixel 

of the moving window. Before these pixels are compared to their respective resampled 

MODIS pixels, however, STARFM filters out any neighboring pixels it considers “poor 

quality”, which means they are not able to provide better spectral and spatial information 

than that of the moving window’s central pixel. This sample filtering method is likely the 

reason why Landsat pixels are being excluded from STARFM results, even though both 

images are from the same date. Because of this issue with the output, the fact that the 
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sample filtering algorithm is not a model parameter that can adjusted by the user, and that 

we are using Landsat data as our “ground-truth” data in this study, we made the decision 

to replace any STARFM layer predicted on the date of a Landsat acquisition with the 

Landsat data before performing any analysis on our results. The only exceptions to this 

rule were for dates when 100% of MODIS data were present, and therefore replacing 

STARFM data with Landsat data provided no further information for the results. 

3.2.4 Selection of Individual Water Years for In-Depth Analysis 

After the STARFM dataset had been created, we chose three separate water years 

for in-depth analysis of SCA patterns from our STARFM results with the goal of 

understanding how SCA varies within the East River watershed during an average, wet, 

and dry water year. We selected the years meeting these criteria by reviewing Butte 

SNOTEL station (wcc.nrcs.usda.gov/snow/, site number 380) maximum SWE data in the 

same manner as we did when choosing the water year for the STARFM validation 

analysis in Section 2.2.1. The mean maximum SWE for WYs 2000-2018 was 14.39 in, so 

we chose WY 2010 with a maximum SWE of 13.3 in as our average water year (which 

happened to have the same maximum SWE value as our validation year of WY 2016). 

We chose WY 2008 with the highest maximum SWE value of 23.7 in as our wet water 

year, and WY 2012 with the lowest maximum SWE value of 8.2 in as our dry water year 

(Figure 3.1).  
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3.2.5 Spatial Snow-Cover Analysis of STARFM Results 

We created binary “snow” and “no-snow” maps for each day of our STARFM 

results for our chosen water years using the NDSI threshold of 0.4 in the same manner as 

described in Section 2.2.5. We then determined the number of snow-covered days by 

pixel for each water year by summing all raster layers (one for each day) for that year 

together. Because each snow-covered pixel had already been assigned a value of 1, the 

resulting sum for each pixel was equal to the number of days for that year when that pixel 

was classified as “snow” (Figure 3.2).  

 

 

 

Figure 3.1: SWE values by WY from the Butte SNOTEL station located within 

the East River Watershed. The orange bar represents the mean maximum SWE 

value from the 2000-2018 WY period. 
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Figure 3.2: The total number of snow-covered days by pixel for each water year 

of analysis, a) WY 2008, b) WY 2010, and c) WY 2012. 

a. 

b. 

c. 
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A simple per-pixel sum of snow-covered instances, however, may not be 

representative of actual SCA trends due to missing data filtered out by our cloud and 

cloud-shadow masks (see Section 2.2.3 for further detail). For example, this analysis 

reports more snow-covered days in the lower elevations of the watershed (Figure 3.2a), 

which is not what we would expect to see for a water year with an extremely high max 

SWE. It is possible that persistent cloud-cover in the valleys was consistently being 

misidentified as snow, but as we saw in our data availability analysis (Section 2.3.3.1), 

our cloud filters are much more likely to misidentify snow as clouds at higher elevations. 

Therefore, we chose to normalize the data by dividing the number of snow-covered days 

for each pixel by the total number of days valid data were available, regardless of snow 

cover status, for that pixel. Sproles et al. (2018) used a similar method to calculate 

monthly snow cover frequencies from MODIS data for input into their streamflow 

forecasting model. This produced a value representing the percent of snow-covered days 

for which a pixel had data (Figure 3.3) and the numerical distribution of those percent 

values for all pixels (Figure 3.4), repeated for all three water years. The numerical 

distributions of percent snow-covered days provide a perspective for which to evaluate 

differences in snow cover duration for the entire watershed over multiple water years. For 

example, Figure 3.4a shows that a clear majority of pixels for WY 2008 were snow-

covered less than 50% of the time. However, the presence of the right tail of the 

distribution for this year shows that the pixels that did retained snow did so for much 

longer than for other water years (Figures 3.4b and 3.4c).  
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Figure 3.3: Percent annual snow-covered days for a) WY 2008, b) WY 2010, and 

c) WY 2012.  

a. 

b. 

c. 
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Figure 3.4: The distribution of percent annual snow-cover for a) WY 2008, b) WY 

2010, and c) WY 2012. 

a. 

b. 

c. 
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3.2.5.1 Elevation 

With the annual percent snow cover determined for the entire study area for each 

water year, we delineated subset areas based on landscape features to examine their 

relationships with percent snow cover. When considering SCA and elevation, we 

expected to see a positive correlation of increasing SCA that persisted for more days in 

higher elevation areas (Anderson et al., 2014). This relationship is not always 

straightforward, however, as high elevations tend to have sparse or no vegetation, so 

wind scour can leave some areas devoid of snow, while depositing that snow in nearby 

locations (Buhler et al., 2016). 

We used the Low (2399-2963 m), Medium (>2963-3314 m), and High (>3144-

4332 m) elevation bands as calculated from the SRTM 30-m DEM (described in Section 

2.2.6.1). We then calculated the mean and standard deviation of the percent annual snow 

cover values for the three representative water years by elevation band (Figures 3.5, 3.6, 

and 3.7). We also counted and displayed the numerical distribution of the annual percent 

snow cover across elevation bands for each water year to explore how the percent snow 

cover was distributed across elevation bands.  
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Figure 3.5: Percent annual snow-covered days by pixel for WY 2008 at the a) low 

elevation band, b) mid elevation band, and c) high elevation band. 

a. 

b. 

c. 
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Figure 3.6: Percent annual snow-covered days by pixel for WY 2010 at the a) low 

elevation band, b) mid elevation band, and c) high elevation band. 

a. 

b. 

c. 
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Figure 3.7: Percent annual snow-covered days by pixel for WY 2012 at the a) low 

elevation band, b) mid elevation band, and c) high elevation band. 

a. 

b. 

c. 
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3.2.5.2 Slope 

Flatter areas of a watershed tend to accumulate more snow due to sluffing and 

avalanching occurring on adjacent slopes with steeper inclines (McClung & Schaerer, 

2006). As a result of this accumulation, snow in these lower sloped areas can be deeper 

and persist longer in the landscape due to slower melting (Elder et al., 1998; Kerr et al., 

2013). However, areas with flatter slopes often occur in lower elevation areas of a 

watershed, as is the case with our study area (Figures 2.14b and 2.15b), indicating that 

relationships with snow cover duration and elevation may be the dominating effect in 

these areas (Daly et al., 2012; Che et al., 2016).  

We use our Low (0-11°), Medium (>11-20°), and High (>20-74°) slope bands as 

calculated from the SRTM 30-m DEM (described in Section 2.2.6.2). As with elevation, 

we calculated the mean and standard deviation of the percent annual snow cover values 

for our three water years by slope band (Figures 3.9, 3.10, and 3.11).We also counted and 

displayed the numerical distribution of annual percent snow cover across slope bands for 

each water year to explore how the percent snow cover was distributed across slope 

bands. 
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Figure 3.8: Percent annual snow-covered days by pixel for WY 2008 at the a) low 

slope band, b) mid slope band, and c) high slope band. 

a. 

b. 

c. 
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Figure 3.9: Percent annual snow-covered days by pixel for WY 2010 at the a) low 

slope band, b) mid slope band, and c) high slope band. 

a. 

b. 

c. 
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Figure 3.10: Percent annual snow-covered days by pixel for WY 2012 at the a) low 

slope band, b) mid slope band, and c) high slope band. 

a. 

b. 

c. 
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3.2.5.3 Aspect 

We expected to see greater SCA on north/east aspects in our watershed due to 

unequal solar loading on north/east and south/west aspects in the Northern Hemisphere. 

We also recognized that variations in SCA due to aspect may be observed due to 

differences in accumulation on western, windward-facing slopes, versus eastern, leeward-

facing slopes (Hiemstra et al., 2006).  

We evaluated these potential SCA trends by using our aspect directions as 

calculated from our STRM 30-m DEM data (described in Section 2.2.6.3). We calculated 

mean and standard deviations from the percent annual snow cover values for our three 

water years by aspect direction. We counted and displayed the numerical distribution of 

annual percent snow cover across all aspect directions for each water year to explore how 

the percent snow cover was distributed across aspect direction. 
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Figure 3.11: Percent annual snow-covered days by pixel for WY 2008 at the a) 

north aspect, b) east aspect, c) south aspect, and d) west aspect. 

a. 

b. 

c. 

d. 
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Figure 3.12: Percent annual snow-covered days by pixel for WY 2010 at the a) 

north aspect, b) east aspect, c) south aspect, and d) west aspect. 

a. 

b. 

c. 

d. 
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Figure 3.13: Percent annual snow-covered days by pixel for WY 2012 at the a) 

north aspect, b) east aspect, c) south aspect, and d) west aspect. 

a. 

b. 

c. 

d. 
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3.2.5.4 Land Cover Type 

Land cover and vegetation type and their distribution can influence SCA patterns 

in a variety of ways. Trees often vertically intercept falling snow (Anderson et al., 2014), 

while bushes influence small-scale heterogeneity in snow depth by laterally trapping 

snow (Clark et al., 2011). Forest canopy cover shades snow on the ground from solar 

radiation and induces slower melting than open areas (Veatch et al., 2009). In other 

instances, however, trees can enhance melting by emitting longwave radiation that 

exceeds incoming solar shortwave radiation (Lundquist et al., 2013).  

Additionally, factors such as elevation, slope, and aspect that influence 

persistence in snow cover can also influence vegetation distribution. For example, 

Anderson et al. (2014) found that forested areas in the Dry Creek Experimental 

Watershed in southwest Idaho tended to be located on high elevation, north-facing slopes, 

factors which also contributed to greater snowfall amounts at those locations.  

To evaluate relationships between land cover and SCA, we used our land cover 

classifications determined from USGS Landfire 30-m data (Landfire, 2016) (described in 

Section 2.2.6.4). We omit the “other” land cover classification as this area is small (1% of 

the watershed) and consists of very different land cover types (human development, 

water, and permanent snow/ice, which itself is a negligible 0.04% of the watershed area), 

and is thus likely to not generate meaningful relationships. For the rest of our land cover 

types, we calculated the mean and standard deviation of the annual percent snow cover 

values for our three water years by land cover classification area. We also counted and 

displayed the numerical distribution of annual percent snow cover across all land cover 
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types for each water year to better understand the spatial distribution of snow cover as 

determined by land cover type. 

 

 

Figure 3.14: Percent annual snow-covered days by pixel for WY 2008 for a) tree 

areas, b) shrub areas, c) grass areas, and d) clear areas. 

a. b. 

c. d. 
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Figure 3.15: Percent annual snow-covered days by pixel for WY 2010 for a) tree 

areas, b) shrub areas, c) grass areas, and d) clear areas. 

a. b. 

c. d. 
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3.2.6 Comparison of SCA with Stream Discharge Data 

To provide an example of how information regarding changes in SCA over a 

water year can be related to CZ processes in the local watershed, we examined the East 

River’s discharge at the watershed outlet for each of the three analyzed water years. The 

volume, timing, and shape of an annual stream discharge curve for a snow-dominated 

watershed can be heavily influenced by snow accumulation and melt patterns (Knowles 

Figure 3.16: Percent annual snow-covered days by pixel for WY 2012 for a) tree 

areas, b) shrub areas, c) grass areas, and d) clear areas. 

a. b. 

c. d. 



128 

 

et al., 2015), surface and subsurface conditions (Barnhart et al., 2016), and routes the 

water takes before it becomes streamflow (Tokunaga et al., 2019). Thus, we expected to 

see signals from these characteristics reflected in our data.  

We retrieved discharge data for all three water years from the USGS gauging 

station 09112500 East River at Almont, CO (waterdata.usgs.gov). This gauging station is 

located immediately upstream from the East River’s confluence with the Taylor River at 

the south end of the watershed (Figure 3.17). Figure 3.18a shows the variation in the size 

and shape of the hydrograph peaks for the three analyzed water years, and Figure 3.18b 

displays the differences in the cumulative sums of the discharge for the entire water year.  

 

 

 

 

Figure 3.17: Location of the USGS gauge station 09112500 East River at Almont 

(blue) 
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Figure 3.18: a) Discharge at the watershed outlet for the three water years of 

analysis, and b) the cumulative summations of the discharge values from a. 

a. 

b. 
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To compare SCA and stream discharge, we found the percent SCA of the entire 

watershed for each day of the water year (Figure 3.19). We then smoothed these SCA 

data by calculating a 10-day, centered moving average to correct for missing data due to 

cloud cover. To compare SCA with stream discharge, we found the latest day of the 

water year when our watershed SCA as calculated from our moving average was 50% or 

above. We identified the time lag between that point and the time at the center of mass of 

the hydrograph, or when 50% of the stream discharge for that water year occurred. The 

amount of time between when the majority of water as snow cover disappears from the 

watershed to when it is detected as streamflow at the outlet should provide a first order 

understanding of the CZ pathways by which water transitions from melt to streamflow. 

We repeated this process for all three water years of interest and compared the 

differences in the time lags for each. 
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Figure 3.19: SCA and stream discharge (Q) by day of water year for WYs a) 2008, 

b) 2010, and c) 2012. In each graph: SCA as percent of the watershed by day (blue 

bars), SCA 10-day centered moving average (red line), daily discharge at the 

watershed outlet (black line), the last day the watershed had 50% or more SCA 

observed (green vertical line), and the center of mass of the hydrograph (purple 

vertical line).  

 

 

a. 

b. 

c. 
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3.3 Results 

3.3.1 STARFM 20-Year Dataset 

We created a 20-year, daily dataset of 30-m resolution NDSI values for WYs 

2001-2020. The dataset contains NDSI values derived from Landsat data on all days of 

Landsat acquisition, and synthetic NDSI values predicted by STARFM for all other days 

in between. Because STARFM works by downscaling coarse spatial resolution data 

acquired on the date of interest, our dataset was not able to include information for dates 

when MODIS data was unavailable from GEE. These dates include 16 June-2 July 2001, 

20-27 March 2002, 17-23 December 2003, 15 February 2016, 19-27 February 2016, 1 

January 2019, 9 February 2019, and 28 February 2019.  

3.3.2 Spatial Snow-Cover Analysis of STARFM Results 

To demonstrate the utility of STARFM synthetic data, we closely analyzed daily 

SCA patterns for 3 individual water years from the 20-year dataset representing below 

average (dry, 2012), average (2010), and above average (wet, 2008) annual peak SWE. 

We accomplished this by calculating the annual percent of snow-covered days for each 

water year and analyzing how percent snow cover varied for the landscape features of 

elevation, slope, aspect, and land cover type. 

3.3.2.1 Elevation 

This analysis indicates that mean annual SCA increases with elevation, regardless 

of annual peak SWE, though variability in these values increases in drier years (Figure 

3.20). Mean annual percent snow cover was the highest within each elevation band for 

WY 2008, the wettest water year, at 38% for low elevations, 43% for mid-elevations, 

65% for high elevations, with standard deviations of 6%, 10%, and 16%, respectively. 
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For WY 2010, the average water year, mean annual percent snow cover was 34% for low 

elevations, 39% for mid-elevations, 54% for high elevations, with standard deviations of 

8%, 11%, and 12%, respectively. Mean annual percent snow cover was lowest for all but 

the highest elevation band for the driest water year, WY 2012, with 27% for low 

elevations, 36% for mid-elevations, 55% for high elevations, with standard deviations of 

11%, 15%, and 15%, respectively.  
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Figure 3.20: Mean annual snow-covered days and their standard deviations (error 

bars) by water year for a) low elevation band, b) mid elevation band, and c) high 

elevation band. 

a. 

b. 

c. 
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Analysis of the numerical distribution of percent annual snow cover by pixel also 

displayed a clear trend of increasing snow cover percent with elevation (Figure 3.21). 

This relationship was present for all three analyzed water years. Among these years, the 

wettest year, WY 2008, had considerably higher variation in percent annual snow cover 

for high elevations with a difference of 23% between the lower (Q1) and upper (Q3) 

quartiles (Table 3.2). The driest year, WY 2012, had considerably higher variation in 

percent annual snow cover for mid-elevations, with a difference of 26% between Q1 and 

Q3. The difference in percent snow cover is larger between the mid- and high elevations 

than between the low and mid-elevations. Median percent snow values are 5%-11% 

higher for mid-elevations than low elevations, whereas median percent snow values are 

12%-23% higher for mid-elevations than high elevations.  
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Figure 3.21: Numerical distributions of percent annual snow-covered days by 

elevation bands for a) WY 2008, b) WY 2010, and c) WY 2012. 

a. 

b. 

c. 
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Table 3.2: Percent annual snow-covered area metrics by elevation band for all 

water years. 

 

3.3.2.2 Slope 

Mean annual percent snow cover also displayed a positive relationship with 

increasing slope, although not as pronounced as that observed for elevation (Figure 3.22). 

The wettest year, WY 2008, had the highest mean percent snow cover value of the three 

at 44% for low slopes, 49% for mid-slopes, 54% for high slopes, with standard deviations 

of 13%, 16%, and 19%, respectively. Mean annual percent snow cover for the average 

water year, WY 2010, was 40% for low slopes, 42% for mid-slopes, 45% for high slopes, 

with the smallest variations in the data as shown by standard deviations of 12%, 13%, 

and 14%, respectively. The driest water year, WY 2012, had the lowest mean annual 

percent snow cover values of 35% for low slope areas, 39% for mid-slope areas, 45% for 

high slope areas, and again had the largest variations in the data with standard deviations 

of 16%, 18%, and 19%, respectively.  

 

Elevation Q1 Median Q3 Mean St. Dev. 

Water Year 2008 

Low  35 38 42 38 6 

Mid  38 43 48 43 10 

High  54 66 77 65 16 

Water Year 2010 

Low  28 34 40 34 8 

Mid  32 39 47 39 11 

High  47 55 62 54 12 

Water Year 2012 

Low  19 25 34 27 11 

Mid  24 36 49 36 15 

High  28 48 60 55 15 
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Figure 3.22 Mean annual snow-covered days and their standard deviations (error 

bars) by water year for a) low slope band, b) mid slope band, and c) high slope 

band. 

a. 

b. 

c. 
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Numerical distribution of annual percent snow cover by slope band also showed 

increasing percent snow cover with increasing slope (Figure 3.23). WY 2012, the dry 

year, had the most variation in the data, with differences of 25%, 30%, and 32% between 

Q1 and Q3 for low, mid-, and high slopes, respectively (Table 3.3). As with elevation, the 

differences in percent snow values between mid- and high slopes were larger than the 

differences between low and mid- slopes. Median percent snow values were 3-5% higher 

for mid-slopes than low slopes, and 6%-11% higher for high slopes than mid-slopes. In 

all water years the high slope bands had the greatest variation in the data compared to 

other slope bands for their same years. This is possibly because the high slope band 

contains the largest range of slopes, from 20° to the maximum slope value at 74°.  
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Figure 3.23: Numerical distributions of percent annual snow-covered days by slope 

bands for a) WY 2008, b) WY 2010, and c) WY 2012. 

a. 

b. 

c. 
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Table 3.3: Percent annual snow-covered area metrics by slope band for all water 

years. 

 

3.3.2.3 Aspect 

Mean annual percent snow cover values show clear, though still relatively weak, 

relationships between north/east and south/west aspects (Figure 3.24). WY 2008, the year 

with the highest mean annual percent snow cover, was the only year in which the highest 

value was found for north aspects (52%), followed by east aspects (51%), west aspects 

(48%), and its lowest annual value occurred for south aspects (46%). Standard deviations 

for the above were 18%, 16%, 16%, and 14%, respectively.  For WY 2010, however, the 

mean annual percent snow cover was slightly lower for north aspects (43%) than it was 

for east aspects (45%), and higher for south aspects (41%) than for west aspects (41%). 

Standard deviations were 15%, 13%, 12%, and 13% respectively. Mean annual percent 

snow cover for WY 2012 was the lowest of the three years for north aspects (41%), east 

aspects (43%), south aspects (37%), and west aspects (38%). This water year also had the 

largest standard deviations of 20%, 18%, 18%, and 18%, respectively. 

Slope Q1 Median Q3 Mean St. Dev. 

Water Year 2008 

Low  37 41 48 44 13 

Mid  38 44 56 48 16 

High  40 50 68 54 19 

Water Year 2010 

Low  31 38 47 40 12 

Mid  32 41 52 42 13 

High  35 46 56 45 14 

Water Year 2012 

Low  23 32 47 35 16 

Mid  23 37 54 39 18 

High  28 48 60 45 19 
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Numerical distributions of annual percent snow cover by aspect also showed a 

weak distinction between north/east aspects and south/west aspects (Figure 3.25). Median 

values for north/east aspects were 3%-4% higher than south/west aspects for WY 2008, 

1%-5% higher for WY 2010, and 4%-9% higher for WY 2012 (Table 3.4). Similar to the 

distributions of percent snow cover by slope, WY 2012 also had the largest variations in 

the data of all three water years.  

 

 

Figure 3.24: Mean annual snow-covered days and their standard deviations (error 

bars) by water year for a) north aspect, b) east aspect, c) south aspect, and d) west 

aspect. 

a. b. 

c. d. 
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Figure 3.25: Numerical distributions of percent annual snow-covered days by 

aspect direction for a) WY 2008, b) WY 2010, and c) WY 2012. 

a. 

b. 

c. 
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Table 3.4: Percent annual snow-covered area metrics by aspect direction for all 

water years. 

Aspect Q1 Median Q3 Mean St. Dev. 

Water Year 2008 

North 39 46 64 52 18 

East 39 45 60 51 16 

South  37 42 52 46 14 

West 37 43 56 48 16 

Water Year 2010 

North 31 41 53 42 15 

East 35 44 54 45 13 

South  32 40 50 41 12 

West 31 39 51 41 13 

Water Year 2012 

North 25 39 57 41 20 

East 28 43 57 43 18 

South  23 35 52 37 18 

West 23 35 53 38 18 
 

3.3.2.4 Land Cover Type 

Mean annual percent snow cover varied widely by land cover type, though 

consistent patterns emerged across water years within each type, with unvegetated or 

clear areas typically holding the highest values and shrub areas holding the lowest 

(Figure 3.26). For WY 2008, mean annual percent snow cover was 46% for tree areas, 

40% for shrub areas, 52% for grass areas, and 73% for unvegetated or clear areas. 

Standard deviations for the above were 13%, 10%, 17%, and 16%, respectively. For WY 

2010, mean percent annual snow cover was 40% for tree areas, 35% for shrub areas, 47% 

for grass areas, and 58% for unvegetated or clear areas. Standard deviations for WY 2010 

for these land cover types were 12%, 10%, 12%, and 12%, respectively. For the dry WY 

2012, mean annual percent snow cover was 36% for tree areas, 29% for shrub areas, 46% 
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for grass areas, and 62% for unvegetated or clear areas. WY 2012 standard deviations for 

the above were 17%, 14%, 17%, and 13%, respectively.  

 

The numerical distributions of annual percent snow cover by land cover type 

varied widely but also displayed consistent patterns between land cover type for all water 

years (Figure 3.27). Percent snow cover for clear/unvegetated areas was consistently the 

highest of all land cover types, with median values of 75%, 59%, and 63% for WYs 

2008, 2010, and 2012, respectively (Table 3.5). Conversely, percent snow cover for shrub 

Figure 3.26: Mean annual snow-covered days and their standard deviations (error 

bars) by water year for a) tree areas, b) shrub areas, c) grass areas, and d) clear 

areas. 

a. b. 

c. d. 
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areas was consistently the lowest of all land cover types, with median values of 38%, 

34%, and 25% for WYs 2008, 2010, and 2012, respectively. We believe the patterns 

between these two land cover types is largely due to where they are primarily located in 

the landscape. Most clear/unvegetated areas are at high elevations above tree line, 

whereas most shrub areas are at lower elevations. Grass and tree areas are dispersed 

evenly throughout the watershed at a variety of elevations, aspects, and slopes, which 

may help to explain the generally larger variations in the data for these land cover types.  
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Figure 3.27: Numerical distributions of percent annual snow-covered days by land 

cover type for a) WY 2008, b) WY 2010, and c) WY 2012. 

a. 

b. 

c. 
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Table 3.5: Percent annual snow-covered area metrics by land cover type for all 

water years. 

Land Cover 
Type 

Q1 Median Q3 Mean Std. Dev. 

Water Year 2008 

Trees 38 44 52 46 13 

Shrubs 35 38 42 40 10 

Grass 38 45 65 52 17 

Clear 63 75 84 73 16 

Water Year 2010 

Trees 32 40 49 40 12 

Shrubs 28 34 40 35 10 

Grass 37 47 56 47 12 

Clear 52 59 66 58 12 

Water Year 2012 

Trees 23 35 50 36 17 

Shrubs 20 25 36 29 14 

Grass 30 49 60 46 17 

Clear 55 63 70 62 13 
 

3.3.2.5 Spatial Snow Cover by Water Year 

Snow cover patterns across landscape characteristics predictably trended within 

the relative amount of precipitation received (as represented by max SWE amounts) that 

year. Mean and median percent snow cover were highest for the wet WY 2008 and 

lowest for the dry WY 2012 in almost all instances. Exceptions included: mean annual 

percent snow cover at high elevations, where the dry WY 2012 was 1% higher than the 

average WY 2010; median annual snow cover at high slopes, where WY 2012 was 2% 

higher than WY 2010; mean annual snow cover for clear/unvegetated areas, where WY 

2012 was 4% higher than WY 2010; and median annual snow cover clear/unvegetated 

areas, where WY 2012 was higher than WY 2010 by 4%. Median annual snow cover 

values for grass areas were highest for the dry WY 2012 at 49% and lowest for the wet 

WY 2008 at 45%. 
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3.3.2.6 In-Depth Elevation Analysis 

 This initial analysis presented data for percent snow cover distributions for slope 

that looked markedly similar to distributions for elevation (Figures 3.20 and 3.22), raising 

the question of potentially confounding variables. We therefore sought to explore 

whether SCA for these landscape characteristics were in fact primarily influenced by 

elevation, and whether a relationship with elevation existed for landscape characteristics 

whose data distributions had large variability. For example, if elevation had a greater 

influence on percent annual snow cover than did slope, we expected to see increasing 

annual percent snow cover by elevation within each slope band. If this was not the case, 

then annual percent snow cover values within each slope band should be relatively 

similar regardless of the elevation where they were located. 

 To do this, we isolated slope bands, hillslope aspects, and land cover types by 

elevation band and plotted the distribution of percent annual snow cover for each. The 

distribution of annual percent snow cover by low (Figure 3.28), mid- (Figure 3.29), and 

high (Figure 3.30) slopes was similar for all water years with increasing snow cover by 

elevation regardless of slope category. The distribution of annual percent snow cover by 

aspect was highly variable and showed very weak relationships between snow cover and 

hillslope aspect (north and south aspects shown in Figures 3.31, 3.32, and 3.33. east and 

west aspects shown in Appendix A). However, when we examined the distribution of 

percent annual snow cover for all aspects, we saw clear trends of increasing snow cover 

with elevation, regardless of water year.    
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Figure 3.28: Numerical distributions of WY 2008 percent annual snow-covered 

days by elevation band for a) low slopes, b) mid-slopes, and c) high slopes. 

a. 

b. 

c. 
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Figure 3.29: Numerical distributions of WY 2010 percent annual snow-covered 

days by elevation band for a) low slopes, b) mid-slopes, and c) high slopes. 

a. 

b. 

c. 
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Figure 3.30: Numerical distributions of WY 2012 percent annual snow-covered 

days by elevation band for a) low slopes, b) mid-slopes, and c) high slopes. 

a. 

b. 

c. 
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Figure 3.31: Numerical distributions of WY 2008 percent annual snow-covered days 

by elevation band for a) north aspects and b) south aspects. 

a. 

b. 
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Figure 3.32: Numerical distributions of WY 2010 percent annual snow-covered 

days by elevation band for a) north aspects and b) south aspects. 

a. 

b. 
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Figure 3.33: Numerical distributions of WY 2012 percent annual snow-covered 

days by elevation band for a) north aspects and b) south aspects. 

a. 

b. 
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We also examined annual percent snow cover distribution for tree and grass areas 

by elevation band (Figures 3.34, 3.35, and 3.36). These two land cover types had larger 

variabilities in percent annual snow cover and are most widely distributed among 

elevation, slope, and aspect categories in the watershed. Additionally, we examined the 

annual percent snow cover for shrub and clear/unvegetated landcover types (Appendix 

A). We saw apparent trends of increasing snow cover within all land cover types with 

elevation regardless of water year.  
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Figure 3.34: Numerical distributions of WY 2008 percent annual snow-covered 

days by elevation band for a) tree areas and b) grass areas. 

a. 

b. 
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Figure 3.35: Numerical distributions of WY 2010 percent annual snow-covered 

days by elevation band for a) tree areas and b) grass areas. 

a. 

b. 
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Figure 3.36: Numerical distributions of WY 2012 percent annual snow-covered 

days by elevation band for a) tree areas and b) grass areas. 

a. 

b. 
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3.3.3 SCA and Stream Discharge Data 

 The patterns of stream discharge at the watershed outlet exhibited a clear 

relationship to annual peak SWE, and thus fit with our initial categorizations from the 

SNOTEL annual peak SWE data. The wet water year of 2008 had not only the highest 

peak discharge at 2710 cfs, but also the widest hydrograph and the highest volume of 

discharge for the three years at 157,325.8 cfs. Average WY 2010 had a similar peak 

discharge at 2310 cfs but a much narrower hydrograph, resulting in a total volume of 

95,444.9 cfs. The dry WY 2012 had a significantly lower peak discharge at 570 cfs and a 

total volume of 51,118.1 cfs. 

The time lags between the last day the watershed had 50% or higher snow cover 

and the center of mass of the hydrograph were 45 days for WY 2008, 126 days for WY 

2010, and 56 days for WY 2012. We suspect the time lag for WY 2010, however, is 

artificially high due to increased cloud cover from days 120-190 during this time period.  

3.4 Discussion 

3.4.1 STARFM 20-Year Dataset 

In this study we used STARFM to create a daily, 30-m resolution dataset that can 

be used to track seasonal snow cover changes over multiple years. To our knowledge, this 

is the first time STARFM has been used in this manner. The ability to create a multi-

decadal, high resolution dataset of this type to monitor snow cover has major implications 

for snow forecasting and hydrologic modeling, including those hydrologic models that 

seek to better understand timing and delivery of water to the CZ. 

We acknowledge this dataset has limitations that future users must take into 

consideration. As discussed at length in Section 2.4, cloud cover remains a major 
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limitation, as does the availability of high temporal resolution data for downscaling. Gaps 

in our high temporal, low spatial resolution dataset (MODIS) reduced the model’s ability 

to synthesize fine spatial resolution predictions for missing dates. Over longer periods of 

time, however, the impact that these data gaps have on calculations of mean annual snow 

cover is reduced. When the period of analysis is longer than 5 years, irregularity of data 

due to cloud-masking amounts to a semi-random sampling of cloud-free scenes from 

early, middle, and late times of each month for dry, average, and wet snow years 

(Selkowitz et al., 2017). This assumes, however, that the cloud mask is not biased 

towards misidentifying snow as clouds, and that any gaps in data are indeed random, and 

not concentrated during certain times of the year. 

 Future work using our dataset or others like it should also be aware of potential 

errors that may result from inconsistencies involved with using multiple Landsat datasets. 

Bandwidths and band properties vary between generations of Landsat sensors (Chastain 

et al., 2019). In addition, there are gaps in Landsat 7 ETM+ imagery after May 2003 due 

to failure of the Scan-Line Corrector (SLC) (Markham et al., 2004). While methods exist 

to gap-fill these missing areas in ETM+ imagery (Roy et al., 2008; Chen et al., 2011), we 

chose not to gap fill our dataset. We instead took advantage of the Landsat 5 TM data 

overlap from 2003-2011 and used ETM+ data with uncorrected SLC errors only for time 

periods where it was the only Landsat data available. While not included here due to the 

scope of the study and the goal of providing proof-of-concept of an “off-the-shelf” 

method for STARFM, performing data calibration across sensors or choosing to gap fill 

data are additional steps future users may choose to do depending on their accuracy and 

data application needs.  
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Finally, we also recognize the limitations introduced by the methods we used to 

evaluate seasonal snow cover. As discussed in Section 2.4, we acknowledge that using 

binary identification for snow cover tends to over or underestimate snow cover within 

individual pixels (Elder et al., 1998; Rittger et al., 2013) even though we did not 

explicitly evaluate those errors here. In addition, due to the preliminary nature of our 

analysis, we only evaluated trends in SCA inter-annually by finding the percent of the 

year that each pixel was classified as “snow-covered”.  In the following discussion we 

offer possible explanations as to the differences observed in snow cover patterns between 

years, some of which may be due to seasonal variations. Although we did not perform 

any investigations regarding intra-annual snow cover, this analysis could easily be 

accomplished in future work with the dataset we created.  

3.4.2 Spatial Snow-Cover Analysis of STARFM Results 

When we examined relationships between annual percent snow cover and the 

landscape characteristics of elevation, slope, aspect, and land cover type, we found that 

elevation had the strongest relationship to annual percent snow cover. There were 

consistent trends of increasing SCA with elevation for all water years, regardless of the 

differences in annual peak SWE (Figure 3.1). We conclude that elevation differences are 

the primary driver of SCA differences in our study area, in part because many other 

landscape characteristics are themselves highly correlated with elevation (e.g. slope and 

land cover type). Analyzed slope bands had a spatial distribution that was very similar to 

the spatial distribution of the elevation bands of our study area (Figures 2.14 and 2.15), 

and trends in percent snow cover by slope band were similar to those observed for 

percent snow cover by elevation band (Figures 3.20 and 3.22). When we separately 
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considered percent snow cover for low, mid-, and high slopes separated by elevation 

band, we confirmed that elevation does indeed have a strong influence on SCA regardless 

of slope.   

Major land cover types and their snow cover patterns displayed traits that 

suggested they are also controlled by elevation. For example, clear and unvegetated 

areas, the land cover type with the greatest percent snow covered days across all water 

years, were primarily located in the high elevation areas of the watershed. This is 

consistent with findings from Carroll et al. (2018), who evaluated the spatial distribution 

of vegetation types in the East River SFA and found that barren conditions dominated at 

elevations of 3,650-m and above. Conversely, shrub areas, which are located 

predominantly in the lowest elevations of the watershed (Figures 2.14b and 2.17a), have 

the lowest percent annual snow cover of all land cover types for all water years.  

We also found patterns in the variation of percent annual snow cover by 

landscape attribute. For example, percent snow cover had consistently larger variation in 

high slope bands than in low and medium bands. This may be because the majority of the 

slopes in our study area (66%) that fall into our low and mid-slope bands (Figure 2.17a) 

are 20° or less. This means that our high slope band encompasses a much wider relative 

range of slope degrees (20-74°). Slopes at either end of this range behave very differently 

in terms of snow accumulation. According to McClung & Schaerer (2006), slab-

avalanches typically occur on slopes of 25-55°, redistributing snow to flatter areas, and in 

some cases exposing bare ground on the slope from which the avalanche originated. 

Above 55°, sluffing (the falling of loose snow) typically keeps snow from accumulating, 

sometimes to the point where these slopes can remain largely snow-free (Farinotti et al., 
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2010). These differences in snow accumulation due to slope degree likely explain the 

larger variations in our data for high slope areas.  

We were surprised to find a relatively relationship between annual percent snow 

cover and aspect. Though north and east aspects had slightly higher mean annual percent 

annual snow cover than south and west aspects, the differences in most cases were less 

than 5%. The standard deviation and interquartile values of percent annual snow cover by 

aspect indicate relatively high variability in the data, meaning that there is little 

consistency in snow cover trends due to aspect. When we further examined percent snow 

cover by aspect and separated each aspect direction by elevation band, we again saw a 

very clear trend of increasing snow cover with elevation for all aspect directions.  

We suspect this lack of a clear relationship between annual percent snow and 

aspect is largely due to our examination of snow cover at the annual timescale. 

Differences in solar insolation throughout the winter influences patterns of spatial snow 

distribution resulting in shallower snow depths (Buhler et al., 2016) and preferential 

ablation (Anderson et al., 2014) on south/west aspects in the Northern Hemisphere during 

the melting season. An isolated analysis of STARFM snow cover data from the ablation 

season would likely reveal these characteristics, and thus display a stronger relationship 

between aspect and percent snow cover.  

3.4.2.1 Spatial Snow Cover by Water Year 

A noteworthy observation regarding our annual percent snow cover results was 

that the amount of variability in the data for each year was consistent relative to the 

others across all landscape characteristics. Primarily, the data for WY 2012, the driest 

year, displayed the largest variability in percent snow cover of the three years for all 
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landscape characteristics. A possible explanation for this variability is that the driest 

water year is likely to have the lowest snow depths, and thus when melting occurs, areas 

of bare ground under shallow snow will be exposed earlier. This would create variability 

by increasing heterogeneity in the landscape earlier in the season, variability that would 

be captured within the elevation band or hillslope aspect data. This theory agrees with the 

findings of Anderton et al. (2004), who found that spatial patterns of snow disappearance 

were largely due to differences in snow depth when elevation range was small. While we 

did not consider snow depth measurements in our study, we can reasonably assume that 

lower annual peak SWE measurements also indicate lower annual snow depths. 

Similarly, snow cover may not appear until later at the beginning of the snow season 

during a dry year relative to other years, also increasing variation in snow cover data. 

3.4.3 SCA and Stream Discharge Data 

The measurements of the time lag between the last day the SCA of the entire 

watershed was measured at 50% or higher and the center of mass of the hydrograph 

provide initial estimates as to the timescales and potential process pathways by which 

snowpack becomes discharge at the watershed outlet. In their study of seasonal 

groundwater and solute fluxes in the East River SFA for WY 2016 (an average water 

year), Carroll et al. (2018) determined that snowmelt contributed to 69% and 74% of the 

volume of the rising and falling limbs, respectively, of the annual hydrograph. The longer 

the time lag between snowmelt and the hydrograph peak, the more likely it is that the 

water from snowmelt is traveling through longer pathways in the subsurface as opposed 

to becoming surface runoff that quickly makes its way to the stream. Another recent 

study in the East River SFA found that lower snowpack years with slower snowmelt 
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resulted in greater percolation and groundwater recharge, and consequently stream 

discharge that was more influenced by deeper groundwater flows as opposed to lateral 

shallow surface flows during wetter years (Tokunaga et al., 2019). Low snow years can 

also influence streamflow when snowmelt volumes are low and slow enough that the 

yearly hydrograph peaks due to summer rains rather than snowmelt (Knowles et al., 

2015).  

These measurements of time lag are also imperfect due to uncertainties in the 

SCA data from cloud cover. Therefore, using the methods presented here, we are unable 

to confirm whether the last date observed with 50% or more SCA is the latest date in the 

water year with this amount of snow cover. Gap-filling methods of various complexity 

can be employed to fill in missing data due to cloud cover gaps and increase confidence 

that the observed SCA in the data represents SCA conditions on the ground. Sproles et al. 

(2018) developed a set of conditions for identifying cloud-covered MODIS images as 

snow-covered or non-snow-covered depending on the status of the clear images 

immediately preceding and following the cloud-covered images. Dozier et al. (2008) 

developed an algorithm that smooths SCA data along the time axis, considering trends in 

total SCA over time instead of a three dimensional or a neighboring pixel interpolation. 

This method allows all images in a time series to be considered regardless of cloud cover. 

Recent advancements in cloud gap-filling methods using machine learning allows for 

more efficient assessments of multiple criteria that influence the assignment of snow 

status to a cloud-covered pixel. Criteria such as spectral similarity among pixels, snow 

distribution continuity within a spatial domain, topographic features, and others have 
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been evaluated with machine learning methods to gap-fill cloud-covered pixels with 

success (Hou et al., 2019).  

We did not explore the use of any gap-filling methods in this study, as they were 

beyond the scope of this work. Our results showed that the time lag between the last day 

of observed 50% SCA and the center of mass of the hydrograph was 11 days shorter for 

the wettest water year than for the driest water year. This could be due to overland flow 

reaching the stream more quickly due to greater SWE being released from melting 

snowpack during the wet year, but we cannot make this assertion with confidence. We 

suspect that the time lag for the average water year is artificially high due to cloud cover, 

and that the last day of 50% SCA likely occurred later in the water year than what we 

found with our data. 

Future users of STARFM should explore which gap-filling methods best fit their 

data and are most appropriate to their research questions. In addition, efforts to address 

issues with cloud cover via in situ data would greatly improve intra-annual comparison of 

snow cover patterns. For example, the Surface Atmosphere Integrated field Laboratory 

(SAIL) campaign scheduled to take place in the East River SFA from 2022-2023 will 

acquire detailed ground-based observational data of cloud cover, including cloud-over-

snow conditions, in the study area (Feldman et al., 2019). These data have the potential to 

be used to inform models about how to better identify and predict snow cover on the 

ground when satellite-based observations are obstructed by cloud cover.  

3.4.4 Future Work 

As climate continues to change, methods that rely heavily on historical snow 

accumulation and ablation regimes to predict streamflow will become increasingly less 
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effective for water resource management (Milly et al., 2008). Greater variability in 

temperature, precipitation, and extreme weather events (IPCC, 2014) will make point 

measurements at locations that historically served as index sites, especially those in 

sparsely observed areas, less representative of the regions they are designed to typify. 

Meanwhile, the demand in the hydrology and CZ communities for high spatiotemporal 

resolution remote sensing data will continue to grow. 

The 20-year, daily NDSI dataset presented here provides future researches with a 

starting point for answering research questions relating to snow cover in the East River 

watershed. We have provided some examples of how our data can be utilized to monitor 

seasonal changes in SCA, but many other possibilities exist. For example, a temporal 

analysis of snow cover on a daily, weekly, or monthly scale could provide further insights 

regarding what landscape features have the greatest influence on snow cover during 

different times of the year. Such analysis could also provide further insight into the 

greater variability in snow cover observed during WY 2012 which may be common for 

other dry years.  

Conversely, the multi-decadal time span of our dataset provides opportunities for 

answering questions related to if and how snow cover patterns in the East River 

watershed are already shifting under the influence of climate change. Our dataset could 

be used to calibrate/validate climatological models for predicting future snow cover 

patterns in the East River watershed. For example, Carroll et al. (2018) found that the 

upper subalpine region of the East River SFA dominates groundwater recharge due to its 

propensity to retain snowpack later in the year, which is consistent with our findings that 

these high elevation areas consistently have the greatest percent annual snow cover. Our 
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results also showed that high elevation snow cover did not show the same decreases 

during the dry water year as did mid- and lower elevation snow cover. While we did not 

take temperature differences between our water years of analysis into account, future 

work may be able to determine which climatological factors have the greatest impact on 

the retention of this critical upper elevation snow cover, as well as if and how this may 

change in the coming decades.  

Additionally, the ability to monitor snow cover patterns in the landscape on fine 

spatiotemporal scales with our dataset provides an opportunity to gain a more complete 

picture of snowmelt driven hydrological processes in the watershed. Previous work in the 

East River SFA has shown that seasonal subsurface flow regimes directly control 

concentration-discharge relationships of carbon and other key nutrients exiting the 

watershed. The depth to which water from snowmelt percolates is directly influenced by 

the amount of SWE and the timing at which it is released from the snowpack. These 

processes can control which and how many subsurface weathering fronts the water comes 

into contact with, and thus the resulting chemical composition of streamflow (Winnick et 

al., 2017). High spatiotemporal resolution snow cover data has the potential to assist in 

modeling these subsurface reactions, predicting concentration-discharge relationships 

before they show up in streamflow, and understanding what impacts this year-to-year 

variability has on nutrient mobility within the watershed.  

3.5 Conclusion 

The results of our work provide information that can be used for future research 

into snowpack and streamflow forecasting, modeling the movement of water through the 
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CZ, and investigations into both present and future effects of climate change on the East 

River watershed and other similar snow-dominated mountain catchments.  

Specifically, we describe an example of how our 20-year, daily NDSI dataset can 

be used to investigate differences in SCA between three very different water years. Using 

daily NDSI data derived through STARFM, we were able to calculate differences in 

percent annual snow cover across the East River watershed for a wet, average, and dry 

water year. We further examine percent annual snow cover by the landscape 

characteristics of elevation, slope, aspect, and land cover type. This analysis suggests that 

elevation is the primary driver of differences in SCA across all three water years.  

Additionally, we provided an example of how our daily SCA data can be used to 

better understand water delivery to the CZ by examining how percent annual snow cover 

relates to yearly discharge at the watershed outlet for all three water years. Specifically, 

by calculating the time lag between the last day of the water year when 50% of the 

watershed was snow covered and the date of the center of mass of the hydrograph. 

Although we did find a small difference in the time lag between the wettest and the driest 

year, this analysis highlighted the limitations that cloud cover introduces into any 

analysis of optical remote sensing data and the need to address them before overarching 

conclusions can be drawn from these results.  
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APPENDIX A 

Additional Figures  
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Figure A.1: Numerical distributions of WY 2008 percent annual snow-covered 

days by elevation band for a) east aspects and b) west aspects. 

a. 

b. 
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Figure A.2: Numerical distributions of WY 2010 percent annual snow-covered 

days by elevation band for a) east aspects and b) west aspects. 

a. 

b. 
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Figure A.3: Numerical distributions of WY 2012 percent annual snow-covered 

days by elevation band for a) east aspects and b) west aspects. 

a. 

b. 



180 

 

 

 

 

 

Figure A.4: Numerical distributions of WY 2008 percent annual snow-covered 

days by elevation band for a) shrub areas and b) clear/unvegetated areas. 

a. 

b. 
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Figure A.5: Numerical distributions of WY 2010 percent annual snow-covered 

days by elevation band for a) shrub areas and b) clear/unvegetated areas. 

a. 

b. 
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Figure A.6: Numerical distributions of WY 2012 percent annual snow-covered 

days by elevation band for a) shrub areas and b) clear/unvegetated areas. 

a. 

b. 
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APPENDIX B 

Github Link 
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https://github.com/AllisonVincent/StarFM-code 
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APPENDIX C 

MODIS, Landsat, and STARFM File Sizes 
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Table C.1: The approximate summed size of all Landsat, MODIS, and STARFM 

files for a single water year of data for the 20-year East River watershed NDSI 

dataset. 

 Landsat MODIS STARFM 

219.5 MB 1180.3 MB 960.1 MB 


