
ENSURING CONSISTENCY AND EFFICIENCY OF THE

INCREMENTAL UNIT NETWORK IN A DISTRIBUTED

ARCHITECTURE

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2021

by
Mir Tahsin Imtiaz

© 2021

Mir Tahsin Imtiaz

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Mir Tahsin Imtiaz

Thesis Title: Ensuring Consistency and Efficiency of the Incremental Unit Network
in a Distributed Architecture

Date of Final Oral Examination: 12th March 2021

The following individuals read and discussed the thesis submitted by student Mir
Tahsin Imtiaz, and they evaluated the student’s presentation and response to ques-
tions during the final oral examination. They found that the student passed the final
oral examination.

Casey Kennington, Ph.D. Chair, Supervisory Committee

Bogdan Dit, Ph.D. Member, Supervisory Committee

Steve Cutchin, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Casey Kennington, Ph.D.,
Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

ACKNOWLEDGMENT

I must acknowledge my adviser, Dr. Casey Kennington, for his immense support and

guidance, which included the graduate assistantship that supported my research and

my pursuit of a Master’s degree in Computer Science at Boise State University. I

must also acknowledge that not only was he an adviser but also a friend throughout

my entire degree. His constant advice, attention, and time is the reason I was able to

come this far and complete this thesis. I would also like to thank the members of my

advisory committee Dr. Bogdan Dit and Dr. Steve Cutchin for providing me with

necessary feedback and advice that shaped this thesis.

I would also like to thank the other professors here at Boise State that I have

interacted with. I must begin with Dr. Michael Ekstrand, who provided me with

the proper knowledge in the area of Data Science that got me started here at Boise

State. I also thank Dr. Gaby Dagher, Dr. James Buffenbarger, Dr. Amit Jain,

Dr. Francesca Spezzano, and Dr. Edoardo Serra for helping me becoming a better

Computer Science student, programmer, and researcher.

I would also like to thank the current and past members of the SLIM research

group who welcomed me in and helped me grow. Every SLIM group member taught

me something valuable during my time as a member of the group. I feel glad and

privileged to meet and work with all these talented people. I also would like to thank

the few people I met in Boise that I can call friends for inviting me in their lives and

iv

making me feel at home.

Finally I would like to dedicate this thesis to my family who supported me in

my decision of taking a big leap and travelling half way across the world to study

abroad.

v

ABSTRACT

An incremental system takes advantage of upcoming data as early as possible. In other

words, an incremental system processes received data incrementally. Incremental

systems can be useful over non-incremental systems to build spoken dialog systems

when we are looking for faster and more human-like behavior. For example, human-

to-human conversations are incremental, as a listener does not wait for a speaker

to finish speaking to begin understanding. Inspired by the fact that Robot-Ready

Spoken Dialog Systems must be incremental and need to work distributedly, and IU

framework “breaks” in a distributed architecture, I attempted to use the IU network

to fulfill the incremental requirements and be able to extend the IU framework to

work flawlessly in a distributed environment. This work aims to answer the question

whether we can make a distributed IU network efficiently and consistently. More

specifically, I explored the optimal ways to establish a complex IU data store that

can facilitate the conservation and accessibility of the total generated IU data network

in a distributed environment avoiding the “breaking” of the IU network, and act as

a backbone for a final and complete “Robot-Ready” incremental dialog system. We

evaluated the HRI response differences happening along with IU store implementation

differences in a live, interactive study with robots and found out that humans do

notice small performance differences and subconsciously become judgmental of robots’

anthropomorphism characteristics in relation to the robots’ performance.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xv

LIST OF ABBREVIATIONS . xvii

1 INTRODUCTION . 1

1.0.1 The “Robot-Ready” Dialog System 2

1.1 Background . 3

1.1.1 Incremental Processing . 3

1.2 IU Network in Distributed Environment 6

1.3 Inter-process Communication . 7

1.4 Platform for Situated Intelligence (PSI) 9

1.5 ReTiCo . 10

1.6 PSI and ReTiCo Features Comparison 10

1.7 Thesis Statement . 12

2 RELATED WORK . 15

vii

3 METHOD . 18

3.1 Preparing Platform for Situated Intelligence (PSI) 19

3.2 PSI Modules in the Network . 20

3.2.1 Joining or Fusing Data . 20

3.2.2 Speech Recognition . 21

3.2.3 Object Detection . 21

3.3 ReTiCo Modules in the Network . 21

3.3.1 Rasa NLU (Natural Language Understanding) Module 21

3.3.2 Keras Object Feature Extractor and WAC 22

3.3.3 The PyOpenDial Module . 23

3.3.4 Interoperability Between the Two Frameworks 24

3.3.5 Module-to-Module Interoperability in the IU Network 25

3.3.6 Conserving and Maintaining the Entire Distributed IU Network 26

3.4 Final Overall Network Structure . 29

3.5 Evaluation Criteria . 29

3.6 Hypothesis . 32

4 EVALUATIONS . 33

4.1 Experiment 1: Systematic Evaluation of Consistency and Efficiency . 33

4.1.1 Evaluation of the IU Store . 33

4.1.2 Further Analysis of the Pipeline 39

4.2 Experiment 2: Live, Interactive Study with Human Participants . . . 41

4.2.1 Participant Recruitment and Study Setting 42

4.2.2 Results . 44

viii

5 CONCLUSION . 56

5.1 Limitations and Future Work . 57

REFERENCES . 58

APPENDICES . 65

A ANSWERS TO THE QUESTIONS IN GODSPEED QUESTIONAIRE . 65

B AUGMENTED GODSPEED QUESTIONNAIRE 81

ix

LIST OF FIGURES

1.1 Example of SLL and Add, Revoke, and Commit operation for an in-

cremental speech recognizer. 5

1.2 IUs from two modules (speech recognizer and parts of speech tagger)

connected by GRIN. 6

1.3 A complex network of IUs generated by multiple modules. 8

3.1 Overview of the multi-framework, multimodal, incremental, distributed

network; the two processes communicate with each other using a mes-

sage passing bus; the goal of this thesis was to maintain a shared data

structure required for incremental processing that both of the processes

can access. 19

3.2 A general structure of one speech recognition IU. 20

3.3 Words grounding into physical modalities affecting robot action. . . . 23

3.4 Distributed IU Network Storage Topologies. 28

3.5 Cozmo robot in its task setting. 31

4.1 NLU creating appropriate IUs corresponding to ASR IUs. 40

4.2 X-axis: Participant ratings from 1: Not at all to 5: All the time.

Y-axis: the % of participants that selected those responses 45

x

4.3 X-axis: Participant ratings from 1: Not at all to 5: All the time.

Y-axis: the % of participants that selected those responses 45

4.4 X-axis: Participant ratings from 1: Not at all to 5: All the time.

Y-axis: the % of participants that selected those responses 46

4.5 X-axis: Participant ratings from 1: Never to 5: Every time. Y-axis:

the % of participants that selected those responses 46

4.6 X-axis: Participant ratings from 1: Not reasonable at all to 5: Rea-

sonable. Y-axis: the % of participants that selected those responses . 47

4.7 Mean participant response to each task-specific questions for each type

of IU Store . 47

4.8 Mean participant response to questions related to the robot’s anthro-

pomorphism, animacy, likeability, and perceived intelligence that pre-

ferred the Shared (Redis) IU Store 49

4.9 Mean participant response to questions related to the robot’s anthro-

pomorphism, animacy, likeability, and perceived intelligence that pre-

ferred the Native (C#) IU Store . 51

A.1 X-axis: Participant ratings from 1: Not at all to 5: Very. Y-axis: the

% of participants that selected those responses 66

A.2 X-axis: Participant ratings from 1: Not at all to 5: Very. Y-axis: the

% of participants that selected those responses 66

A.3 X-axis: Participant ratings from 1: Not at all to 5: Very much. Y-axis:

the % of participants that selected those responses 67

A.4 X-axis: Participant ratings from 1: Fake to 5: Natural. Y-axis: the %

of participants that selected those responses 67

xi

A.5 X-axis: Participant ratings from 1: Machinelike to 5: Humanlike. Y-

axis: the % of participants that selected those responses 68

A.6 X-axis: Participant ratings from 1: Unconscious to 5: Conscious. Y-

axis: the % of participants that selected those responses 68

A.7 X-axis: Participant ratings from 1: Artificial to 5: Lifelike. Y-axis:

the % of participants that selected those responses 69

A.8 X-axis: Participant ratings from 1: Moving Rigidly to 5: Moving Ele-

gantly. Y-axis: the % of participants that selected those responses . . 69

A.9 X-axis: Participant ratings from 1: Dead to 5: Alive. Y-axis: the %

of participants that selected those responses 70

A.10 X-axis: Participant ratings from 1: Stagnant to 5: Lively. Y-axis: the

% of participants that selected those responses 70

A.11 X-axis: Participant ratings from 1: Mechanical to 5: Organic. Y-axis:

the % of participants that selected those responses 71

A.12 X-axis: Participant ratings from 1: Inert to 5: Interactive. Y-axis: the

% of participants that selected those responses 71

A.13 X-axis: Participant ratings from 1: Apathetic to 5: Responsive. Y-

axis: the % of participants that selected those responses 72

A.14 X-axis: Participant ratings from 1: Dislike to 5: Like. Y-axis: the %

of participants that selected those responses 72

A.15 X-axis: Participant ratings from 1: Unfriendly to 5: Friendly. Y-axis:

the % of participants that selected those responses 73

A.16 X-axis: Participant ratings from 1: Unkind to 5: Kind. Y-axis: the %

of participants that selected those responses 73

xii

A.17 X-axis: Participant ratings from 1: Unpleasant to 5: Pleasant. Y-axis:

the % of participants that selected those responses 74

A.18 X-axis: Participant ratings from 1: Awful to 5: Nice. Y-axis: the %

of participants that selected those responses 74

A.19 X-axis: Participant ratings from 1: Incompetent to 5: Competent.

Y-axis: the % of participants that selected those responses 75

A.20 X-axis: Participant ratings from 1: Ignorant to 5: Knowledgeable.

Y-axis: the % of participants that selected those responses 75

A.21 X-axis: Participant ratings from 1: Irresponsible to 5: Responsible.

Y-axis: the % of participants that selected those responses 76

A.22 X-axis: Participant ratings from 1: Unintelligent to 5: Intelligent. Y-

axis: the % of participants that selected those responses 76

A.23 X-axis: Participant ratings from 1: Foolish to 5: Sensible. Y-axis: the

% of participants that selected those responses 77

A.24 X-axis: Participant ratings from 1: Anxious to 5: Relaxed. Y-axis:

the % of participants that selected those responses 77

A.25 X-axis: Participant ratings from 1: Anxious to 5: Relaxed. Y-axis:

the % of participants that selected those responses 78

A.26 X-axis: Participant ratings from 1: Agitated to 5: Calm. Y-axis: the

% of participants that selected those responses 78

A.27 X-axis: Participant ratings from 1: Agitated to 5: Calm. Y-axis: the

% of participants that selected those responses 79

A.28 X-axis: Participant ratings from 1: Bored to 5: Interested. Y-axis: the

% of participants that selected those responses 79

xiii

A.29 X-axis: Participant ratings from 1: Bored to 5: Interested. Y-axis: the

% of participants that selected those responses 80

xiv

LIST OF TABLES

1.1 Features comparison of PSI and ReTiCo. 11

4.1 Latency and IU delivery success rate of each function for each store

type for PSI . 35

4.2 Latency and IU delivery success rate of each function for each store

type for ReTiCo . 36

4.3 Latency and IU delivery success rate of each Function for Shared (Re-

dis) IU Store when it is situated in a third machine. 37

4.4 Latency and IU delivery success rate of each function for Shared (Redis)

IU Store when it is situated in the same machine as PSI. 38

4.5 IU generation latency at different modules. 41

4.6 Mean of participant responses for task-specific questions. 48

4.7 Mean of participant responses for questions that prefer Shared (Redis)

IU Store. 50

4.8 Mean of participant responses for questions that prefer Native (C#)

IU Store. 51

4.9 Correlation between task-setting related questions and other Godspeed

questions that have a higher correlation than 0.45 for Shared IU store. 53

xv

4.10 Correlation between task-setting related questions and other Godspeed

questions that have a higher correlation than 0.45 for Native IU Store

Table 1. 54

4.11 Correlation between task-setting related questions and other Godspeed

questions that have a higher correlation than 0.45 for Native IU Store

Table 2. 55

xvi

LIST OF ABBREVIATIONS

ASR Automated Speech Recognition

GRIN Grounded-in Links

IU Incremental Unit

Mask RCNN Mask “Region Based Convolutional Neural Network”

NLU Natural Language Understanding

POS Part of Speech

PSI Platform for Situated Intelligence

SDS Spoken Dialog Systems

SLL Same-Level Links

WAC Words-As-Classifiers Model of Lexical Semantics

xvii

1

CHAPTER 1:

INTRODUCTION

As robots become more commonplace, there is an increased expectation that humans

will interact with them. The most natural means of communication between people

and robots is not with keyboards or other common interaction devices (e.g. touch

screens), but with spoken dialog since robots are intended to be used by people

with little or no computing experience [1]. In a situation where humans and robots

are partners, collaborative dialog can evade a lot of resource-consuming maneuvers

just by having a natural communication as humans do with others [2]. Therefore,

by extension, I posit that dialog will be the eventual common way for humans to

communicate with robots.

This thesis is concerned with the infrastructure for making spoken dialog systems

(SDS) more “ready” to work with different robot platforms. Specifically, we explored

the ways to make a dialog system achieve all the desired capabilities while keeping the

infrastructure consistent and efficient as well as minimizing the workload of rebuilding

a new framework to facilitate all of the requirements. We brought in two existing

frameworks each having a subset of the desired capabilities for a robot-ready spoken

dialog system in order to make them work together building one common robot-ready

spoken dialog system that works consistently by holding all the information without

breaking the overall network. Namely, we used PSI [3] which is a framework from

2

Microsoft for building multimodal, integrative AI systems and ReTiCo [4]) which

is a framework for construction of incremental spoken dialog systems. We explored

different ways of building and holding a common robot-ready incremental network

using the two frameworks and evaluated their performance based on stress tests and

live human-robot interaction experiments.

1.0.1 The “Robot-Ready” Dialog System

Following [5], a standard dialog system for use in an embodied agent (e.g. a robot)

should fulfill the following requirements:

• modular: the system is composed of multiple modules, and new modules can

be integrated with the system

• multimodal: the system can take in and integrate inputs from multiple sensors

• distributive: modules are able to communicate in distributed environments

flawlessly (i.e. communication should be reliable)

• incremental: modules in the system process received inputs quickly and in-

stantly

• temporally aligned: multiple sensor inputs must be aligned with each other

(e.g. aligned with respect to time)

When it comes to facilitating the infrastructure of systems that fulfill the above

requirements, there have been several implementations that are multimodal including

PSI [3] and Pythia [6], each written in different programming languages for different

environments or for particular purposes that helps with the development and study

of complex, multimodal AI systems. What is meant by incremental processing is that

3

speech input is processed word-by-word. For research purposes in the area of dialog

systems, which is inherently incremental [7], multiple incremental frameworks have

been developed (e.g. InproTK [8], ReTiCo [4]) that support incremental processing

and can be used to build complex speech-based human computer interfaces. Although

the frameworks developed so far are useful to the research community, no single

framework exists that fulfills all five requirements mentioned above and ensures the

consistency of the incremental network both within and outside of that particular

framework. However, two different implementations put together, PSI and ReTiCo,

could fulfill all five requirements given that we solve the preservation problem of the

data network generated by a given IU network for a distributed architecture.

The problem we seek to address in this thesis is whether we can bring multi-

ple incremental processes together merging their incremental properties so that they

communicate with each other efficiently and consistently, and preserve the incremen-

tality in the process. In the following section, I give additional necessary background

for incremental processing and how it might be negatively affected by a distributed

environment. Then I give background about PSI and ReTiCo, and explain how they

could potentially, taken together, fulfill all five requirements.

1.1 Background

1.1.1 Incremental Processing

An incremental system takes advantage of upcoming data as early as possible. In other

words, an incremental system processes the received data incrementally [9]. Instead

of waiting for all information to come in, the modules in an incremental system

4

start processing as soon as they start getting the minimal amount of input [10] from

the previous modules, taking advantage of being able to output smaller chunks and

updating it as more information is revealed as input later on. The minimal amount

of input or data that an incremental module receives is called Incremental Units (IU)

[11]. An IU framework [7] is a structural and conceptual approach of implementing

incremental systems based on IUs.

A typical IU network consists of multiple IU modules each having a left and a

right buffer. Modules receive data as IUs from the previous module using its left

buffer, perform computation on the received data, and pass the newly processed IUs

using the right buffer [12]. Each of the IUs in a particular module is connected using

Same-Level Links (SLL), whereas IUs from different modules are connected using

Grounded-in Links (GRIN) (more explanation is given below).

Since incremental networks work by processing data as early as possible with the

amount of data at hand, they need some kind of mechanism to update IUs based

on updated information from time to time. ADD, REVOKE, and COMMIT are the

three main types of operations we can perform on IUs [8]. ADD is the operation of

adding a new IU when new information is available. As new information keeps being

revealed, modules may determine that information of some particular IUs previously

generated may not be relevant or useful anymore. In this kind of case, an incremental

module REVOKES a previous IU as well as let other modules know of its action

because some modules may have already processed those IUs. Finally, when it is

determined that certain IUs added to the network have no chance of being changed

or updated and is the final result at that time, modules mark that IU as a COMMIT.

A classic example of an incremental module is an incremental speech recognizer

5

I

Add

will

Add

I

Add

I

Add

will

Add

live

Add

I

Add

will

Add

live

Revoke

leave

Add

now

Add

I

Add

will

Add

live

Revoke

leave

Add

now

Add

I

Commit

Time

will leave now

SLL

SLL

Figure 1.1: Example of SLL and Add, Revoke, and Commit operation for
an incremental speech recognizer.

module which processes output word-by-word rather than waiting for silence or the

user to finish the entire utterance. Figure 1.1 shows how IUs are connected together

in an incremental speech recognizer module using Same-Level Links and how IUs are

added, revoked, and added further as more information becomes available from the

previous module (a microphone module listening to user utterances). The speech

recognizer initially predicts the partial results as “I will live”. However, after getting

more information, it realizes that the result is actually “I will leave now”, revokes the

IU “live”, adds the IUs “leave” and “now”, and finally commits the final result as

“I will leave now”. Figure 1.2 shows how IUs of an ASR (Automated Speech Recog-

nition) module and POS (Part of Speech) module are connected using Grounded-in

Links.

6

I

Add

will

Add

live

Revoke

leave

Add

now

Add

Pronoun

Add

Verb

Add

Verb

Revoke

Verb

Add

Adverb

Add

POS

ASR
SLL

SLL

GRIN GRIN

Figure 1.2: IUs from two modules (speech recognizer and parts of speech
tagger) connected by GRIN.

Incremental systems can be useful over non-incremental systems when we are

looking for faster and more human-like behavior. For example, human-to-human

conversations and language processing is incremental, as a listener does not wait for

a speaker to finish speaking to begin understanding [13], and incremental systems

perform relatively faster than non-incremental systems since components or modules

work simultaneously instead of waiting for a module to complete its entire processing

[14]. Since an incremental system works with a minimum amount of input, it is

expected that an incremental dialog system will be able to capture behaviors like

concurrent feedback, fast turn-taking, and collaborative utterance construction, which

is not possible for a non-incremental system [15].

1.2 IU Network in Distributed Environment

If we look at Figure 1.1 and Figure 1.2, and inspect how information is flowed and

shared through the modules of an IU network, we can see that all the modules in

7

an IU network create a complex network of IUs together. As mentioned above, the

IUs in a particular module are connected using Same-Level Links (SLL) whereas

surrounding modules maintain connection with each other’s IUs using Grounded-

in Links (GRIN) resulting in the complex network of IUs. Any module can query

other modules starting from a particular IU object to find out its history just by

traversing this network. This network of IUs can be realized more from Figure 1.3. If

these modules are situated in different systems, we use mechanisms like inter-process

communication to establish the network and use standard message format like JSON

or standard binary format like Thrift [16] to send the appropriate data. However,

for the IU network, this is not enough because when there are such connections

between two modules situated in different systems, the destination module loses the

capability of traversing back to certain points in the IU network that are situated in

the other system since the object properties connecting it to the remaining network

get lost. In other words, an overall incremental system consisting of modules situated

in different processes faces breaking the overall IU network although a minimum level

of connection is achieved, and certain jobs are completed by the system.

1.3 Inter-process Communication

One of the issues we need to address is how do we make two incremental processes

talk to each other? In other words, how do these two systems exchange necessary

information (relevant IUs and how they are connected to the other IUs) so that they

work flawlessly? This is where interoperability comes in, which is the ability of two

implementations of systems or components from different processes to co-exist and

work together by only relying on each other when necessary [17]. If we consider our

whole project as one full system, “Interoperability” is the term that is used to refer

8

Module 1

Module 2

IU1 IU2 IU3 IU4

IU1 IU2 IU3 IU4

Module 3

Figure 1.3: A complex network of IUs generated by multiple modules.

to the idea of using two processes in two programming languages together to the nec-

essary extent [18]. It is important that we find a common and conventional way that

works efficiently given the systems in question. Programmers often enable the use of

existing libraries written in another language using interoperability techniques since

it is not always feasible rewriting whole libraries in the new language due to its large

and complicated implementation, and interfacing with the existing implementation

is the more realistic approach [19]. For example, dotnet manages this with C++

by supporting direct interoperability with only a subset of C++ (Managed C++ or

C++/CLI) [20]. Python also provides foreign function interface support for running

extension modules which are written in lower level languages such as C, although the

support is limited for modern implementations of dynamic languages [19]. We can

also use message-based inter-process communication instead of composing language

implementations at their implementation level. Examples of this kind of implemen-

tation supporting message passing between systems written in different languages are

9

Protocol Buffers [9] from Google and Thrift [16] from Facebook. While using these

types of implementations, engineers and programmers work with a language-agnostic

interface definition language. This kind of interface marshals the data into a common

representation that can be interpreted on both sides.

In order to maintain the entire IU network while two processes are running and

communicating using an inter-process communication technique, we need to store and

update the network from the perspective of both the processes in some kind of logical

shared database. The performance will depend on how we send data between the

two processes and how we implement this shared database. While sharing data with

each other, we can keep sending reference to the entire data-structure or only send

the new chunks of data. In addition to that, we can implement the database in one

of the processes where the other process can query for relevant data (e.g. PSI holds

the database and ReTiCo queries to PSI), or we can implement a shared database

where both processes will have access to (more details and explanation about the

implementation strategies are given in the experiment subsection). In the next three

sections, we will briefly introduce our two target frameworks, PSI and ReTiCo, and

compare them in terms of their features.

1.4 Platform for Situated Intelligence (PSI)

PSI [3] is a framework from Microsoft written in C# that opens the door to easy

development and study of multimodal and integrative AI systems. In spite of not

being written in one of the most popular programming languages in Machine Learning

[21], PSI works by providing a parallel programming model centered around data

streams, enables easy development and connection of components while keeping the

performance properties of a natively written system, and encapsulates various AI

10

technologies allowing quick composition of complex AI applications.

One of the main reasons to bring PSI into our research is the properties and

features it affords. PSI already fulfills some of the requirements for robot-ready SDS

as mentioned above. Moreover, the framework provided by PSI is time-aware and

has the capability of meaningful stream fusion which is one of the core requirements

for an incremental system depending on the network topology [9]. This feature has

not been introduced before in any other frameworks as efficiently as PSI. In addition

to this, PSI brings in tools and APIs enabling multimodal data visualization and

analysis in real time.

1.5 ReTiCo

ReTiCo [4] is an incremental framework written in Python and enables the con-

struction of incremental spoken dialog systems providing a wide range of incremental

modules (e.g. Rasa NLU, PyOpenDial Dialog Manager, etc.). The framework is

user-friendly and allows construction of a network with a few lines of code initializing

modules and connecting them according to their left and right buffers.

While ReTiCo is a classic example of an easy-to-use standard incremental frame-

work based on spoken dialog systems, it is missing some of the key features required

for research in incremental, modular, and multimodal systems. Namely, it is missing

the appropriate mechanisms that can work with concurrent data streams coming from

different modules and standard data storage facilities for data analysis.

1.6 PSI and ReTiCo Features Comparison

As mentioned already, standard dialog systems should fulfill certain requirements al-

though it is not necessary to achieve all of them in order to achieve a fully incremental

11

dialog system. Table 1.1 shows a comparison between PSI and ReTiCo in terms of

these requirements.

Table 1.1: Features comparison of PSI and ReTiCo.

Requirement PSI ReTiCo

Modular Yes Yes

Multimodal Yes Yes

Distributive Only data passing using third party Only data passing using third party

Incremental Logically Logically and Structurally

Temporally Aligned Meaningful stream fusion w.r.t time No

As shown in Table 1.1, neither PSI nor ReTiCo fulfills all the requirements com-

pletely. While PSI holds the temporal alignment capability, it does not hold incre-

mentality by following a standard structure. ReTiCo on the other hand is structurally

incremental which means IUs are passed on between modules following a standard.

However, it cannot achieve temporal alignment. In addition to that, both PSI and

ReTiCo only support distributive features by allowing data passing in JSON only.

There is no structure or mechanism to facilitate structural connection between mod-

ules or hold overall IU network output consistent. As a result, in the event of an

actual distributed setting, both lose the ability to build a genuine shared IU network,

and they can only be used for certain simple jobs (e.g. one building an incremental

network, the other storing the final result as a logger).

12

1.7 Thesis Statement

How can we use the IU network to fulfill the incremental requirements and be able to

extend the IU framework to work flawlessly in a distributed environment? My work

aims to combine multiple complex incremental processes so that they work together

to maintain a common IU network across the two processes, taking advantage of each

other’s strengths (properties only one of the processes have that both can utilize) to

do complex tasks that they could not do alone. More specifically, I explored ways to

answer the question whether we can make two multimodal frameworks come together

while making the best use of both, adding incremental properties to one, then merging

their incremental capabilities, avoiding breaking the IU network, ensuring accessibility

of the full network to both frameworks, and maintaining efficiency and consistency

of the incremental network in the distributed environment while building a complete

“Robot-Ready” Dialog System. Moreover, I explored the optimal ways to establish a

complex IU data store that can facilitate the conservation and accessibility of the total

generated IU network in a distributed environment avoiding the “breaking” of the IU

network, and act as a backbone for the final and complete “Robot-Ready” incremental

dialog system. When it comes to building large and scalable software systems, a better

way for managing software complexity is using a collection of components ensuring

reusability, modularity, and fault isolation [22]. In software development, it is common

for programmers to use the most suitable language for a particular job, combining

different sets of languages, and reusing existing source code [23]. This allows them to

pick the best system for particular tasks while accomplishing an overall complex job.

This thesis seeks to apply the similar approach for standard incremental systems

to achieve a complex task combining tool sets from different environments. Previ-

13

ous research already attempted to use multiple systems together that share common

interoperability techniques where one system contributes into building the major por-

tion of the network, and the other system does rather a small particular portion of

the overall task [5]. The IU network already has the theoretical potential to work in

a distributed environment without breaking from previous research in this area [7]. I

hypothesize that the proposed approaches of constructing a distributed IU network

along with building a custom IU store that holds the overall data facilitating the

conservation of IU data generated by the network will be consistent and efficient, and

overall, the proposed system should motivate further research consisting of distributed

IU networks.

We designed an experiment where we brought in two incremental frameworks with

different sets of capabilities, together performing a complex task (more details about

the overall approach are in the following chapters) of a robot-ready spoken dialog

system. We used systematic approaches to evaluate the final implementation and

used the Cozmo1 robot to interact with human partners to understand the percept

of humans of our different approaches. The humans asked questions and gave com-

mands to the robot, expecting appropriate answers or actions as feedback. The robot

used our two processes in the background together to get done different parts of the

overall task. This, along with our systematic evaluation, assessed the efficiency and

consistency of the implementation.

The problem we addressed in this thesis is important because it gives us insight on

building consistent incremental networks that can facilitate a stable increment of data

inside incremental modules that are not only isolated in one place, but can be dis-

1https://www.digitaldreamlabs.com/pages/cozmo

14

tributed in different machines without breaking the network, which is a common issue

in multimodal incremental systems. Hopefully, this study will enable and motivate us

to build more complex and efficient incremental systems that will eventually lead to

more advanced research in this area. Merging the advantages of multiple frameworks

of a particular area and facilitating easier access to complex systems can accelerate

research and development as well as make more people interested in working in those

areas.

15

CHAPTER 2:

RELATED WORK

Prior research in the area of AI, robotics, and dialog systems demonstrated the use

and advantages of working with or building on existing systems and connecting them

together. MultiBot [24] was built by using and leveraging already-existing compo-

nents from ScoutBot [25] by extending the mode of interaction to multi-participant

dialog. In the development of smart office space facilitating collaborative learning,

Wang et al. [26] used multiple software systems to integrate their capabilities where

the Bazaar toolkit [27] was used for the foundation for the dialog-based support of-

fered within the space, and PSI was used for coordination of data streams. In general,

Bazaar was mainly used as an extension module, and in order to ensure proper mes-

sage passing between the two tools, they used an internally developed multimodal

message format which consisted of any combination of location, speech text, body

position, facial expression, and any detected emotion.

Kennington et al. [12] extended the incremental processing toolkit InproTK [8] to

InproTKS in order to enable it to receive multimodal sensor data, and achieve situated

and real-time dialog. Being an incremental system, InproTKS was another potential

candidate for this thesis that focuses on building a complete and ready dialog system.

However, the two chosen frameworks (PSI and ReTiCo) bring together all the men-

tioned requirements. Namely, PSI brings in perfect temporal alignment of data, and

16

ReTiCo, being written in Python and already being incremental, represents multiple

existing tools related to dialog systems. Kousidis et al. [28] created a multimodal

In-Car dialog system by using the OpenDS [29] toolkit as a driving simulator and

using InproTKS [12] to build the dialog system for their experiment. Although their

dialog system was incremental, they used the different message passing techniques

available to them (Robotics Service Bus (RSB) message passing architecture1 [30],

and InstantIO/InstantReality2) only for logging results in XML file format for further

analysis. Carlmeyer et al. [31] combined InproTK [8] with PaMini [32] in order to

allow closed feedback loops in HRI so that their interactive system can adapt to the

user. In their experiment, they used Robotics Service Bus (RSB) as well. In order to

structurally send and receive messages between InproTK and PaMini, they modified

InproTK listener and informer so that appropriate dialog acts can be sent and incom-

ing verbalizations can be split and processed as small phrases. Moreover, since PaMini

only reacted to inputs with “COMMIT” state, they created a new input source for

PaMini that reacts to dialog acts from InproTK. In other words, they attempted to

solve the issue of connecting one external module (dialog manager PaMini) to the

incremental framework InproTK. Kennington et al. [5] worked towards a robot-ready

spoken dialog system by integrating multiple toolkits in ReTiCo. They only used PSI

as a logging tool in order to take advantage of its data storage utilities and have not

utilized its temporal alignment capabilities. Although all this prior work deals with

building multi-framework systems (incremental or non-incremental), they have not

built their systems from the IU network perspective. In other words, they did not

focus on resolving issues with the consistency of the IU network in the distributed

1https://code.cor-lab.de/projects/rsb
2https://www.instantreality.org/

17

environment–the goal of this thesis.

18

CHAPTER 3:

METHOD

In order to show that a complex incremental network can be constructed and used

efficiently using two incremental frameworks in a distributed environment preserving

and maintaining the IU network, we ran a similar experiment as mentioned in [5]

where a robot receives data from a microphone and camera and the overall processing

of the total pipeline is done using two of our frameworks together.

We used PSI and ReTiCo, one of which is an open, extensible framework written

in C# enabling the development and study of integrative AI systems, and the other is

a Python framework which is based on [7] and enables the construction of incremental

spoken dialog systems. In our experiment, we made them work together building a

common incremental network as shown in Figure 3.1. The details of the construction

are in the following sections.

19

Camera
Stream
Fusion

Rasa NLU

Mask RCNN
Object

Detector

Process B (ReTiCo, Linux)Process A (PSI, Windows)

MicrophoneVoice Activity
Detector

Azure Speech
Recognizer WAC

Keras Object
Feature Extractor

PyOpenDial
Dialog Manager

Cozmo Action

Figure 3.1: Overview of the multi-framework, multimodal, incremental,
distributed network; the two processes communicate with each other using
a message passing bus; the goal of this thesis was to maintain a shared data
structure required for incremental processing that both of the processes
can access.

3.1 Preparing Platform for Situated Intelligence

(PSI)

Although PSI already works incrementally in that it can handle continuous intput, it

lacks one of the most basic requirements of communication in an incremental network:

a standard way of breaking down or dividing up larger units of data into smaller ones.

In other words, PSI needs to be made to work within the IU framework (something

that ReTiCo does natively). To resolve this issue, we have implemented a deltafier

that takes in the smallest possible data and packages the data as an IU. Each IU is

composed of an EditType which explains whether the data is being Added, Revoked

20

or Committed, TimeStamp which is a variable of type double holding the Epoch time1

during the creation of the IU (although the ToString method will convert that to a

Date and Time as shown in Figure 3.2), a reference to the relevant previous IU (SLL)

in the module that has not been revoked, a reference to the Grounded-in IU, and the

payload of that IU. A payload for a speech recognizer is a text (e.g. a word) holding

the recognition result. The entire data generated in a module is stored and held as

a list of IUs and each module defines its own IU and payload. Figure 3.2 shows this

structure for one IU of a speech recognizer.

ADD Text: “Leave” Speech Recognition IU Microphone module IU 9/10/2020 6:28:19 AM

EditType Payload PreviousIU GroundedInIU DateTime

Speech Recognition IU

Figure 3.2: A general structure of one speech recognition IU.

3.2 PSI Modules in the Network

As shown in Figure 3.1, the total network has been split between the two frameworks,

each doing a fair share of the processing. In the network, PSI is responsible for voice

activity detection, meaningful stream fusion of incoming foreign and native data,

object detection from image data, and speech recognition from audio data.

3.2.1 Joining or Fusing Data

Being able to join or fuse streams appropriately (temporal alignment of data with

respect to time) is a unique feature of PSI that ReTiCo does not possess. In our ex-

periment, PSI was in charge of fusing the incoming microphone stream received from

1https://en.wikipedia.org/wiki/Unix time

21

ReTiCo with the voice activity detection stream generated in PSI. This demonstrates

that meaningful stream fusion can be done in the distributed environment.

3.2.2 Speech Recognition

The PSI was responsible to implement the speech recognition module. We used Azure

Cognitive Speech services to implement a speech recognition module that worked

along with the deltafier mentioned above to perform incremental speech recognition.

3.2.3 Object Detection

PSI object detection module uses the Google MaskRCNN [33] for proper object de-

tection on camera streams received from ReTiCo in order to pass it again back to

ReTiCo for feature extraction.

3.3 ReTiCo Modules in the Network

ReTiCo has existing implementations of modules to perform common tasks related to

dialog systems. Therefore, ReTiCo is used in the network to support those segments.

Specifically, ReTiCo is responsible for reading sensor inputs (microphone and camera),

natural language understanding, dialog management, and sending the final signal to

the robot to demonstrate proper action.

3.3.1 Rasa NLU (Natural Language Understanding) Module

The Rasa NLU module in ReTiCo receives speech reccognition IU from PSI and

generates appropriate dialog act IUs containing the appropriate act and concepts.

This module is responsible for primarily controlling all the actions of the robot that

are related to language inputs only. The output from Rasa NLU is sent to PyOpenDial

[34] module for proper dialog management.

22

3.3.2 Keras Object Feature Extractor and WAC

The Keras Object Feature Extraction module takes in IUs from Google MaskRCNN

in PSI to produce a vector that is fed into to words-as-classifiers (WAC) [35] model.

In addition to the IUs from Keras Feature Extractor, WAC also receives speech recog-

nition results from PSI. The WAC model or word-as-classifiers model is a grounded

model of lexical semantics that can link words to the physical world. In other words,

WAC is a way to map the visual world to the user utterance. Therefore, it is useful

when the robot has to interact with the physical world in response to a command

or a question. For example, when a participant says “Is the block red?”, the vectors

generated by Mask RCNN is fed into WAC to decide whether “red” is the best answer

for the particular object, and the robot action is generated based on that informa-

tion. Figure 3.3 shows the idea of word grounding into physical features and how

that decides the robot action. The output from WAC is also sent to the PyOpenDial

module for dialog management.

23

RED

SIGMOID

SUM

X1 X2 X2 X2
X2 X2

X0

Yes

No

“Is the block red?”

Object from Mask RCNN

Figure 3.3: Words grounding into physical modalities affecting robot ac-
tion.

3.3.3 The PyOpenDial Module

PyOpenDial [34] is a dialog manager that controls the final behavior of the Cozmo

robot in response to a query. It utilizes speech recogniztion IUs from PSI ASR, dialog

act IUs from ReTiCo RASA NLU, and grounded frame IUs from ReTiCo WAC either

directly or by grounding into the IU network when necessary. In others words, among

all the other modules, this module most leverages the capability of traversing the

distributed network using the IU store to access relevant IUs to make its decisions.

This module signals the Cozmo action module to make the robot perform certain

appropriate actions.

24

3.3.4 Interoperability Between the Two Frameworks

One of the core requirements for our overall framework to work is the interoperabil-

ity of the two target systems, or how they communicate with each other (as per

the distributive robot-ready requirement). In our experiment, we mainly attempted

two options for achieving interoperability. Namely, we evaluated different foreign

function interface options that are available for C# and Python, and message queue

implementations.

In terms of foreign function interfaces, it would have been helpful and easier in

terms of implementation if these libraries supported all the complex functionalities

required by our two incremental frameworks. Unfortunately both for .NET plat-

form and Python, these interfaces only support a limited subset of certain low-level

languages (e.g. C++). There are also open source projects that help with the inte-

gration of Python and the .NET platform such as Python.NET2 and IronPython3.

While Python.NET provides seamless integration with the .NET Common Language

Runtime (CLR), and IronPython is a good candidate being an implementation of

the Python programming language targeting the .NET Framework, none of these

projects can access the Generic Extension methods4 that PSI uses to actually cre-

ate and complete a pipeline network since references to these functions are resolved

during compilation time and are not possible to get access to during runtime.

The next logical option to achieve interoperability is using message queue since

both PSI and ReTiCo support message passing using ZeroMQ, which is a universal

2https://github.com/pythonnet/pythonnet
3https://ironpython.net/
4https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-

structs/extension-methods

25

message passing library. It builds and maintains sockets that carry atomic messages

across various transports. Both frameworks use JSON format to send data using

ZeroMQ.

3.3.5 Module-to-Module Interoperability in the IU Network

From previous research, we have witnessed attempts of solving module-to-module con-

nectivity. However, they mostly apply to connections between two specific modules

[26; 28] and do not specify or explain any general structure. As mentioned above, our

experiment consists of multiple module-to-module communication in the distributed

environment. Therefore, for our experiment to work it is important that both our

target framework does similar IU packaging while sending IUs from one module to

another and follows a certain structure during interoperability to achieve flawless

connection. By default, ReTiCo has standard IU packaging for its modules which

contains payload information, previous IU linked in the network, the Grounded-in

IU information, and age. PSI, on the other hand, did not initially have similar IU

packaging. As mentioned above, we have already implemented that functionality.

Currently PSI holds IUs as a list where each element in the list is an IU-holding

payload, reference to previous and Grounded-in IU, and timestamp, which is similar

to ReTiCo.

In order to convey this information, every time we interop from one module to

the other that is situated in another framework or process, we need to make sure

this structure does not get lost or broken and all the Same-Level Links (SLL) are

preserved. To guarantee that, we need to ensure that we treat the network elements

as objects [7] and use a middleware module in the destination framework that will

do the job of appropriate data-to-object conversion and reestablish all the same level

26

connections in the receiving framework before passing the data along to the next

module. I implemented this middleware in two ways considering the effects in terms

of consistency and efficiency.

The first approach required sending a reference to the entire SLL network every

time new IUs are generated. This ensures maximum consistency but sacrifices effi-

ciency. In this approach, efficiency is made better by only parsing the new IUs and

ignoring the old ones in the destination middleware. The second approach focuses on

efficiency by only sending the newly generated IUs. In this approach, the middleware

achieves consistency by rebuilding the entire SLL network at the destination in order

to reestablish the object connections and keep track of the history.

3.3.6 Conserving and Maintaining the Entire Distributed IU

Network

The structures mentioned in section 3.3.4 ensure that module-to-module communi-

cation is established by properly transferring IUs and preserving their Same-Level

Links (SLL). However, in terms of Grounded-in Links (GRIN), interoping IUs from

one system to another results in losing reference to the part of the network that is

situated in the other process or machine since most of the network properties get

lost resulting in breaking the overall network. It is infeasible to try to traverse the

network when different parts of the network are in different environments. In order

to solve this dilemma, we attempted to implement an IU data store that holds onto

the entire IU data generated by the modules in the processes. Regardless of the type

and implementation strategy, all of our IU store implementations (implementation

details follow) have the following main functions:

• InsertIU: This function inserts an IU to the store.

27

• RetrieveIU: Given the ID or key of the IU, this function returns that particular

IU.

• GetPreviousIU: Given the ID or key of an IU, this function returns the pre-

vious IU of that particular IU (e.g. giving the ID of the IU that holds the word

“now” will return the IU that holds the word “leave” in Figure 1.2)

• GetGroundedInIU: This function returns the grounded IU of a particular IU

given the ID of that particular IU (e.g. giving the ID of the IU that holds the

payload “Adverb” will return the IU that holds the word “now” in Figure 1.2)

This way the modules in the different processes can use these functions to retrieve

any data necessary for running the pipeline and need not to think about the complex

implementation. These functions create a IU-storage-request (RetrieveIU function

requests or queries for a “Retrieve” request) to the under-the-hood database to get

the relevant data. In other words, the different types of IU store I implemented

facilitates the logical traversal of the incremental network and thus the IU network

gets conserved and avoids “breaking”. I implemented two main ways to facilitate this

logical IU data store for robot-ready dialog system pipeline as follows.

• Storing IUs in PSI: In our first approach, we chose one framework (PSI) that

is responsible for holding the entire IU network as a database. Both the chosen

framework (PSI) and the other framework (ReTiCo) send their IU network

information to the database. PSI can store its IUs directly to the store whereas

ReTiCo sends its IUs to PSI using message-passing IU store request. In this way,

PSI holds and views the entire IU network directly whereas ReTiCo queries PSI

to retrieve certain information from the network. (We treat our two systems as

28

client (ReTiCo) and servant (PSI), and follow a Remote-write protocol5. The

servant framework (PSI) holds a database storing the network from both the

frameworks. Since there is only one server in our case, this approach enables

us to achieve sequential consistency6. While the servant framework has direct

access to the storage, the other client framework queries the server framework

for relevant information.) We attempted two types of native implementation of

the PSI storage: one in C# since PSI is written in C# and another in C++ to

compare the efficiency of a relatively lower-level implementation with the native

C# implementation and the second approach.

Camera
Stream
Fusion

Rasa NLU

Mask RCNN
Object

Detector

Process B (ReTiCo, Linux)Process A (PSI, Windows)

MicrophoneVoice Activity
Detector

Azure Speech
Recognizer WAC

Keras Object
Feature Extractor

PyOpenDial
Dialog Manager

Cozmo Action

Camera
Stream
Fusion

Rasa NLU

Mask RCNN
Object

Detector

Process B (ReTiCo, Linux)Process A (PSI, Windows)

MicrophoneVoice Activity
Detector

Azure Speech
Recognizer WAC

Keras Object
Feature Extractor

PyOpenDial
Dialog Manager

Cozmo Action

IU Network
Storage IU Network

Storage

PSI controlled data storage Shared data storage

Figure 3.4: Distributed IU Network Storage Topologies.

• Storing IUs in Redis: In the second approach, we attempted a shared data

storage to which both of our frameworks have access and can store their respec-

tive generated IUs. One of the fundamental issues in any distributed system is

achieving sequential consistency with concurrent operations. In any given IU

network, no IU is generated before its parent IUs and modules have obvious

5https://en.wikipedia.org/wiki/Consistency_model#Remote-write_protocols
6https://en.wikipedia.org/wiki/Sequential_consistency

https://en.wikipedia.org/wiki/Consistency_model#Remote-write_protocols
https://en.wikipedia.org/wiki/Sequential_consistency

29

latency between them. Therefore, an implementation of a shared data storage

for a distributed IU network achieves sequential consistency, since we are only

dealing with one logical data server. For this approach, we used the popular

data-structure-project Redis [36]. These kinds of projects are known to be rel-

atively fast, efficient, and support shared memory [37]. Figure 3.4 shows the

comparison between the two approaches.

3.4 Final Overall Network Structure

Figure 3.1 shows the final network I have used in this thesis. We used two machines

to setup our two frameworks. PSI was situated in a Windows machine (a Windows 10

laptop) whereas ReTiCo was situated in a Linux machine (a Ubuntu desktop). The

native IU storage was within the Windows machine (within PSI whether it is C# or

C++), and the Redis instance was hosted in the same Linux machine as ReTiCo. Both

the machines were connected to the same private network. The Windows machine was

connected using a Wi-Fi connection whereas the Linux desktop was wired connected

to the network.

3.5 Evaluation Criteria

For the evaluation of our system with all the key combinations mentioned above,

we mainly focused on consistency and efficiency of different parts of the system and

the system as a whole. We divided our evaluation into two parts, one of which

systematically evaluated consistency and efficiency of the network, and the other

experiment used a live evaluation of the system with humans.

The first experiment focuses on two metrics: the first solely focuses on the consis-

tency of the system. We tested whether the connections were consistent throughout

30

the entire network. This consisted of checking whether each module-to-module com-

munication is consistent (e.g. ASR output from PSI generating proper IUs in ReTiCo

NLU without losing any data), the final output of the entire construction is correct,

and the entire network is stored correctly. In order to do this, we generated unit

tests for each module-to-module communication when the modules were situated in

different systems. Unit tests were also generated to check the output of the overall

system. Checking the final output using unit tests also ensures that the entire net-

work is preserved and is consistent since some of the modules look for history in the

IU network to perform correctly (e.g. PyOpenDial dialog management module asks

for the speech recognition word associated with the Rasa NLU IU).

The second metric was based on determining efficiency. Although the entire net-

work is consistent, we needed to check if the entire process is efficient and actually

feasible for bigger networks. We evaluated our module-to-module and overall connec-

tion of the network by a similar approach to [38] and evaluated our implementation

based on latency and IU delivery success rate.

31

Figure 3.5: Cozmo robot in its task setting.

The second experiment is based on human interaction. Although the different

metrics mentioned above show that my implementation effectively works as expected

at an implementation level, it is important to evaluate how the full system mentioned

above affects interaction with humans when we deploy the distributed robot-ready

standard dialog system. In order to examine that, we designed a similar task setting

as [5] using the Cozmo robot. Figure 3.5 shows the task setting of the Cozmo robot

for our experiment design. Cozmo is surrounded by colored objects, can see its

surroundings, listens to the humans, and waits for humans to interact with it. Detailed

explanation of the setup and results of the human-robot interaction is presented in

32

section 4.2.

3.6 Hypothesis

We hypothesize that establishing communication between the two frameworks using

the two mentioned methods of establishing module-to-module communication will be

consistent. However, it will be more efficient for the second choice of only sending

new chunks of data and rebuilding the IU network in the destination. As for holding

the entire IU network, we hypothesize that the overall IU network will be consistent,

preserved, and can be accessed from both processes with both IU store options, how-

ever, the network will be more efficient where IUs are stored natively in one of the

processes.

33

CHAPTER 4:

EVALUATIONS

4.1 Experiment 1: Systematic Evaluation of

Consistency and Efficiency

As mentioned in the previous chapters, the goal of this thesis is to demonstrate a

working robot-ready dialog system pipeline in a distributed architecture where we

use two processes (PSI and ReTiCo) to perform their fair share of the workload help-

ing each other with their unique features. In order to achieve that, we implemented

the robot-ready dialog system pipeline showed in Figure 3.1, and we implemented

three types of IU data store to achieve the capability of holding the entire IU net-

work generated by the pipeline so that both processes can traverse the network when

necessary. We evaluated the pipeline and the different implementations of the data

store separately.

4.1.1 Evaluation of the IU Store

In order to facilitate the conservation of the entire IU Network, we constructed two

main variations of the IU data store as previously shown in Figure 3.4. The first

type of IU store is constructed by choosing one process (PSI) and implementing it

natively in that process. The other process (ReTiCo) relies on ZeroMQ to query

34

relevant information (e.g. requesting the Grounded-in IU of a particular IU) from the

other process. We built two variations of the native IU store: one in C# since PSI

itself is based off of the .NET environment, and another in native C++ to explore

the efficiency of a relatively lower-level language.

The second variant of IU store is constructed as a shared data storage to which

both the processes have access, and they can both query the IU store directly to

retrieve relevant data. As shown in Figure 3.4, this IU store acts as a middleman being

a standalone entity and holds the entire IU network generated by both the frameworks.

We used the in-memory data structure store Redis for the implementation of this IU

store.

As mentioned in section 3.3.6, regardless of the type and implementation strategy,

all of our IU store implementations have the following main functions: InsertIU,

RetrieveIU, GetPreviousIU, and GetGroundedInIU. All of these functionalities are

stress-tested in terms of latency and IU delivery success rate. We tested our IU store

by generating, inserting, and retrieving current, previous, and Grounded-in IUs of

5000 IUs, and averaging the latency and IU delivery success rate for 50 iterations for

each variant. For the PSI counterpart, we generated 5000 dummy Speech Recognition

and Incrementalized Speech Recognition IUs each connected to its respective previous

and Grounded-in IUs, whereas for the ReTiCo counterpart, the same amount of Dialog

Act IUs (Rasa) and Dialog Decision IUs (PyOpenDial) were generated with the same

requirements fulfilled for each iteration. For this test, I used the final completed

network structure mentioned in section 3.4. Table 4.1 and Table 4.2 show the results

for all of the variants of the IU store for PSI and ReTiCo respectively.

35

Function Store Type Latency IU delivery success rate

RetrieveIU

Native (C#) 0.003ms 100%

Native (C++) 0.098ms 100%

Shared (Redis) 6.249ms 100%

GetPreviousIU

Native (C#) 0.007ms 100%

Native (C++) 0.203ms 100%

Shared (Redis) 12.513ms 100%

GetGroundedInIU

Native (C#) 0.005ms 100%

Native (C++) 0.151ms 100%

Shared (Redis) 10.498ms 100%

Table 4.1: Latency and IU delivery success rate of each function for each
store type for PSI

36

Function Store Type Latency IU delivery success rate

RetrieveIU

Native (C#) 15.661ms 100%

Native (C++) 15.941ms 100%

Shared (Redis) 0.098ms 100%

GetPreviousIU

Native (C#) 16.659ms 100%

Native (C++) 16.744ms 100%

Shared (Redis) 0.331ms 100%

GetGroundedInIU

Native (C#) 16.570ms 100%

Native (C++) 16.605ms 100%

Shared (Redis) 0.163ms 100%

Table 4.2: Latency and IU delivery success rate of each function for each
store type for ReTiCo

As we can see, a native implementation (C#, C++) favors the native process

with very low latency, but it is costly for the other process due to message pass-

ing and implementation constraints (e.g. continuous serialization/deserialization and

traversing through the network to reach the destination process). On the other hand,

the shared data storage implementation shows better performance than raw imple-

mentation that uses message passing as a means of communication. Redis performs

better for ReTiCo than PSI because the shared data storage was facilitated in the

same machine as ReTiCo. In order to determine whether that is true or if there are

other factors to consider, I performed more stress-tests for Redis alone by moving

Redis into a third machine and moving Redis to the machine where PSI is situated.

Table 4.3 shows the result for Redis being situated into a third machine, whereas

37

Table 4.4 shows the result for Redis being situated in the same machine as PSI.

These two tables suggest that the performance of the Shared IU store also depends

of the connectivity. Specifically, the fact that the PSI machine was connected using

Wi-Fi resulted in the increased latency for any communication with that particular

machine. Additionally, we can see that the native C++ implementation was outper-

formed by the native C# implementation on every aspect due to its dependency on

serialization and deserialization of objects. For that reason, we only used the native

C# implementation and shared implementation by Redis in Experiment 2.

Function Process Latency IU delivery success rate

RetrieveIU
PSI 6.658ms 100%

ReTiCo 0.528ms 100%

GetPreviousIU
PSI 13.296ms 100%

ReTico 1.918ms 100%

GetGroundedInIU
PSI 11.063ms 100%

ReTiCo 1.099ms 100%

Table 4.3: Latency and IU delivery success rate of each Function for Shared
(Redis) IU Store when it is situated in a third machine.

38

Function Process Latency IU delivery success rate

RetrieveIU
PSI 0.988ms 100%

ReTiCo 6.472ms 100%

GetPreviousIU
PSI 1.977ms 100%

ReTico 22.216ms 100%

GetGroundedInIU
PSI 1.643ms 100%

ReTiCo 11.094ms 100%

Table 4.4: Latency and IU delivery success rate of each function for Shared
(Redis) IU Store when it is situated in the same machine as PSI.

Based on the data represented in Table 4.1 through Table 4.4, we can come to the

following conclusions:

• If we build a distributed pipeline where one process more extensively traverses

the network to get information than the other process, then implementing the

IU store natively in that process will enable that process to access the IU store

information with very low latency. In other words, a native implementation is

preferred in that scenario.

• The performance has obvious dependency on the connectivity as well. An en-

closed and wired connection ensures better communication for the IU store than

a wireless connection.

• Although the latency for a Shared (Redis) IU store is not as low as a native

store for the native process, a shared implementation is preferred when the

distributed processes are using the IU store equally or almost equally.

39

4.1.2 Further Analysis of the Pipeline

Since the pipeline is distributed, we created unit tests for module-to-module commu-

nications where the modules are situated in different processes to ensure that IUs from

the source modules produces the right IUs in the destination module. For example,

speech recognition IUs generated in PSI Speech Recognition modules must produce

the correct Rasa NLU IUs in ReTiCo as shown in Figure 4.1. The unit tests evalu-

ated both the approaches mentioned in section 3.3.5. Both the approaches of sending

reference to the entire SLL network and only sending the newly generated IUs and

rebuilding the network in the destination module are stable, consistent, and preserve

the network. However, during our rigorous testing, we found out that the first ap-

proach is not always stable for modules that deal with sensor data (e.g. microphone

or camera). Since the communication between the two processes are done using Ze-

roMQ, sending the total reference to the entire SLL over and over from a source that

is very fast and exhaustive (e.g. microphone) makes the network unstable. Due to

that fact, the remaining evaluations were performed using only the second approach

of sending the newly generated IUs and rebuilding it in the destination module.

40

Cozmo

Add

go

Revoke

good

Add

morning

Add

None

Add

Command

Revoke

Greet

Add

Greet

Add

NLU

ASR
SLL

GRIN GRIN

Figure 4.1: NLU creating appropriate IUs corresponding to ASR IUs.

When it comes to efficiency, we recorded the average time it takes for an IU to

be generated starting from the moment the input IUs to that respective module is

created. This information is illustrated in Table 4.5. For example, this table shows

the time it takes for a Rasa NLU IU in ReTiCo to be created from the generation

time of its input IUs (Speech Recognition IUs in PSI). We can see that modules

that are in separate processes have higher latency in terms of IU generation in the

destination module due to its dependency on message passing and serialization tasks

between the two processes. Moreover, the PyOpenDial module uses the data store

most extensively by calling the GetGroundedInIU and GetPreviousIU functions, since

it needs information about several types of IUs (e.g. Speech Recognition, Object

Detection, Natural Language Understanding). Since we proceeded with the structure

mentioned in section 3.4, we can see the obvious advantage of implementing a shared

41

data storage since Redis returns necessary data to PyOpenDial (which is part of

ReTiCo machine in our implementation) in 95ms where the native store has an average

latency of 301ms.

Table 4.5: IU generation latency at different modules.

Store Type Rasa NLU IU Keras Feature Extraction IU PyOpenDial DM IU

Redis 0.613s 0.851s 0.106s

Native 0.581s 0.843s 0.286s

4.2 Experiment 2: Live, Interactive Study with

Human Participants

Although we have our numerical and constructional results that demonstrate which

methods are preferable over others based on IU data storage creation and IU module

network construction, it is important to know about their impact on an actual dialog

system setting where humans interact with the system. In order to evaluate this

effect, we conducted a live experiment with users using the Cozmo robot in a setting

as shown in Figure 3.5. Moreover, for the live interactive study with humans, I

decided to stay with the setup mentioned in section 3.4 to get more diverse results

from two IU store implementations, one of which is implemented natively with a non-

wired connectivity away from the process that would utilize the store the most and

the other one implemented in a shared structure in the same machine as the process

that would utilize the store the most.

42

4.2.1 Participant Recruitment and Study Setting

We recruited fourteen study participants to interact with the Cozmo robot twice,

each time being a ten-minute period over the course of a single session. Following

each ten-minute interaction, the participants were asked to fill out a questionnaire that

contained all the questions from the Godspeed Questionnaire (found in the Appendix)

[39] along with additional questions related to our particular format of task setting.

The additional questions are as follows:

• How much did the robot respond to your request/command?

• How much did the robot respond correctly to your request/command?

• How many times did the robot correctly identify an object color?

• How many times were you able to help the robot make it to the desired object?

• Do you think the robot responded to you within reasonable amount of time?

The Godspeed Questionnaire is a Likert-scaled questionnaire with 24 questions

ranging from negative to positive ratings of a robot’s anthropomorphism, animacy,

likeability, perceived intelligence, and perceived safety. The entire study takes ap-

proximately one hour for each participant. In exchange for their valuable time, the

participants were paid eight U.S. dollars. The study participants were mostly uni-

versity students recruited from the Department of Computer Science at Boise State

University, although 28.5% of the participants are from different disciplines. While

57% of the participants are native speakers, the remaining participants are near na-

tive. Five of the participants are women and nine are men.

43

We deployed two versions of the IU store (Native (C#) and Shared (Redis)) to

construct the pipeline shown in Figure 3.1 to be used by the robot in the two ten-

minute sub-sessions where the robot had three main functionalities as follows:

• The users can greet the robot, and the robot greets back (e.g. Hello, Good

morning, Good Bye).

• The users can command the robot and make it move around the task setting

(e.g. Go forward, Turn left, Drive back, Stop, Keep going, etc.) as shown in

Figure 3.5.

• Once the robot is near an object, users can ask questions about the color of

the blocks and expect appropriate response (e.g. What color is the block?, Is it

blue?).

The researcher remained present near the task setting to monitor the state of

the robot, troubleshoot any problems that might arise, and answer any questions

or queries the participants might have over the course of the interaction with the

robot. The researcher was permitted to offer a constrained set of coaching tips to

the participant during the interaction. Part of the study was observed with cameras,

which recorded audio and video from the interaction. Following each interaction,

the user moved to the researcher’s seat to complete the related questionnaire on the

researcher’s laptop. Following the completion of both interactions and subsequent

surveys, the participant is paid eight dollars and signs a form acknowledging receipt

of payment.

44

4.2.2 Results

Figure 4.2 through Figure 4.6 shows the answer for the “task-setting” specific ques-

tions and we can see that there is a general pattern about the preference of store

type. For the first four questions, although the majority of participants thought that

the robot was working correctly for both types, a few participants reported that the

robot response could be better for type native (C#). This means that those partic-

ular participants recognized the response time difference between the Shared storage

implemented in the same machine and the Native storage implemented in the other

process. For example, for the first question (as shown in Figure 4.2), 35.71% of the

participants agreed that the robot responded to a command all the time for both

types, 64.29% and 50% of the participants agreed that the robot responded to a

command most of the time for Shared and Native store type respectively. However,

14.29% of the participants reported that the response of the robot for the Native type

could be better. For the fifth “test-setting” specific question of whether the robot

responded to the participants in a reasonable amount of time, 85.72% and 64.28%

of the participants agreed with a positive answer for Shared and Native type respec-

tively. However, 14.28% and 35.72% of the participants for Shared and Native type

respectively agreed that the response time can be improved. In addition to that, the

mean of each of the “task-specific” questions for each type of IU Store is shown in

Figure 4.7 and Table 4.6 which clearly suggest that although both types have positive

means, the Shared IU store implemented in the same machine is desirable in terms

of the performance of the robot.

45

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00% 0.00%

64.29%

35.71%

0.00% 0.00%

14.29%

50.00%

35.71%

How much did the robot respond to your request/command?

StoreType
Shared(Redis)
Native(C#)

Figure 4.2: X-axis: Participant ratings from 1: Not at all to 5: All the
time. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00% 0.00%

57.14%

42.86%

0.00% 0.00%

14.29%

35.71%

50.00%

How much did the robot respond correctly to your request/command?

StoreType
Shared(Redis)
Native(C#)

Figure 4.3: X-axis: Participant ratings from 1: Not at all to 5: All the
time. Y-axis: the % of participants that selected those responses

46

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00% 0.00%

57.14%

42.86%

0.00% 0.00%

14.29%

50.00%

35.71%

How many times did the robot correctly identify an object color?

StoreType
Shared(Redis)
Native(C#)

Figure 4.4: X-axis: Participant ratings from 1: Not at all to 5: All the
time. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

0.00% 0.00% 0.00%

21.43%

78.57%

0.00% 0.00%

7.14%

42.86%

50.00%

How many times were you able to help the robot make it to the desired object?

StoreType
Shared(Redis)
Native(C#)

Figure 4.5: X-axis: Participant ratings from 1: Never to 5: Every time.
Y-axis: the % of participants that selected those responses

47

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge

0.00%

7.14% 7.14%

71.43%

14.29%

0.00%

14.29%

21.43%

35.71%

28.57%

Do you think the robot responded to you within reasonable amount of time?

StoreType
Shared(Redis)
Native(C#)

Figure 4.6: X-axis: Participant ratings from 1: Not reasonable at all to 5:
Reasonable. Y-axis: the % of participants that selected those responses

3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
value

Question_1:
response

Question_2:
response_correct

Question_3:
response_color

Question_4:
move_correct

Question_5:
reasonable_time

va
ria

bl
e

StoreType
Shared (Redis)
Native (C#)

Mean of task-setting related questions

Figure 4.7: Mean participant response to each task-specific questions for
each type of IU Store

48

Table 4.6: Mean of participant responses for task-specific questions.

Question Redis Native

How much did the robot respond to your request/command? 4.357143 4.214286

How much did the robot respond correctly to your request/command? 4.428571 4.357143

How many times did the robot correctly identify an object color? 4.428571 4.214286

How many times were you able to help the robot make it to the desired object? 4.785714 4.428571

Do you think the robot responded to you within reasonable amount of time? 3.928571 3.785714

Although this thesis focused more on building a consistent robot-ready distributed

dialog system pipeline fulfilling all the requirements of a IU network, I have recorded

important pieces of information that are related to the robot’s anthropomorphism,

animacy, likeability, and perceived intelligence. It appears that although the two IU

storage implementations are different in terms of performance, the response to these

questions from the Godspeed questionaire are not always proportional to the perfor-

mance metrics. Figure 4.8 and Table 4.7 show the mean response to questions that

preferred the Shared (Redis) IU Store whereas Figure 4.9 and Table 4.8 show the

mean response to questions that preferred the Native (C#) IU Store. This indicates

that although we chose two distinct types of IU store to implement with one hav-

ing significant performance advantage over the other, the difference does not always

directly reflect on the answer to these questions.

49

1.5 2.0 2.5 3.0 3.5 4.0 4.5
value

Attached

Fake/Natural

Stagnant/Lively

Mechanical/Organic

Inert/Interactive

Apathetic/Responsive

Unpleasant/Pleasant

Incompetent/Competent

Ignorant/Knowledgeable

Foolish/Sensible

va
ria

bl
e

StoreType
Shared (Redis)
Native (C#)

Mean of related questions that prefer Shared (Redis) IU Store

Figure 4.8: Mean participant response to questions related to the robot’s
anthropomorphism, animacy, likeability, and perceived intelligence that
preferred the Shared (Redis) IU Store

50

Table 4.7: Mean of participant responses for questions that prefer Shared
(Redis) IU Store.

Question Redis Native

How attached to the robot did you feel? 4.071429 3.714286

Fake/Normal 3.785714 3.500000

Stagnant/Lively 3.571429 3.357143

Mechanical/Organic 2.076923 2.071429

Inert/Interactive 3.928571 3.857143

Apathetic/Responsive 3.857143 3.571429

Unpleasant/Pleasant 4.500000 4.428571

Incompetent/Competent 3.785714 3.642857

Ignorant/Knowledgeable 3.785714 3.571429

Foolish/Sensible 3.571429 3.428571

51

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
value

Interesting

Spend More Time

Dislike/Like

Unfriendly/Friendly

Unkind/Kind

Awful/Nice

Unintelligent/Intelligent

va
ria

bl
e

StoreType
Shared (Redis)
Native (C#)

Mean of related questions that prefer Native (C#) IU Store

Figure 4.9: Mean participant response to questions related to the robot’s
anthropomorphism, animacy, likeability, and perceived intelligence that
preferred the Native (C#) IU Store

Table 4.8: Mean of participant responses for questions that prefer Native
(C#) IU Store.

Question Redis Native

How interesting was the robot to interact with? 4.500000 4.571429

Would you like to spend more time with the robot? 4.142857 4.214286

Dislike/Like 4.357143 4.500000

Unfriendly/Friendly 4.214286 4.285714

Unkind/Kind 3.857143 3.928571

Awful/Nice 4.428571 4.500000

Unintelligent/Intelligent 3.500000 3.642857

52

In order to understand the interdependence of the Godspeed questions with the

performance of the IU stores even further, I have also evaluated the correlation be-

tween task-specific questions and other questions in the Godspeed questionnaire which

is represented in Table 4.9, 4.10, and 4.11. We can see that the Shared (Redis) store

has a high correlation between the reasonable response time and whether the robot

is responsible/irresponsible, responsive/apathetic, and nice/awful. In other words, a

better response time from the robot is treated as responsible, responsive, and nice.

However, we can see that the Shared (Redis) store do not express as extensive cor-

relation for these questions as the Native (C#) store. This demonstrates that an

IU store with even only a small difference with a high performance IU store has

a significant effect on how humans perceive the robot’s anthropomorphism-related

characteristics. In other words, a minor difference in performance results in human

participants concerning the overall aura of the robot more. It affects how much the

participants perceive the robot as natural, sensible, friendly, and how calm it made

them feel. For example, there is a very high correlation between the robot respond-

ing correctly and being responsible/irresponsible which is not present for the Shared

(Redis) store. This illustrates that even a small delay in performance changes the

way human participants evaluate the robot. When the performance decreases, other

factors gets highlighted more in deciding the overall perception. When the pipeline

is very efficient, humans tend to overlook some characteristics being pleased with

the efficient performance and being a little apathetic about the anthropomorphism-

related characteristics. But when it is even slightly delayed, humans subconsciously

get more judgemental to the robot’s characteristics in relation to the performance.

Moreover, these results verify the results in Novikova et al. [40] and Plane et al. [41]

53

that showed how robot movements affect human perceptions of those robots; in this

case, any processing delay in understanding and responding to spoken utterances was

perceived negatively.

Table 4.9: Correlation between task-setting related questions and other
Godspeed questions that have a higher correlation than 0.45 for Shared
IU store.

Question1 Question2 Correlation (Shared) Correlation (Native)

response color lively stagnant 0.452267 0.251985

response color pleasant unpleasant 0.460566 0.350592

response color responsible irresponsible 0.559793 0.269862

reasonable time interesting 0.485529 0.456488

reasonable time spend more time 0.527589 0.498726

reasonable time natural fake 0.570420 0.350211

reasonable time moveElegantly moveRigidly 0.563213 0.195482

reasonable time responsive apathetic 0.561328 0.456488

reasonable time like dislike 0.607751 0.556567

reasonable time friendly unfriendly 0.551019 0.696761

reasonable time kind unkind 0.465491 0.222393

reasonable time nice awful 0.671647 0.281336

54

Table 4.10: Correlation between task-setting related questions and other
Godspeed questions that have a higher correlation than 0.45 for Native
IU Store Table 1.

Question1 Question2 Correlation (Shared) Correlation (Native)

response competent incompetent 0.399667 0.515672

response correct lively stagnant 0.276385 0.516888

response correct interactive inert 0.199681 0.473950

response correct friendly unfriendly 0.216085 0.696984

response correct competent incompetent 0.053376 0.647699

response correct knowledgable ignorant 0.047946 0.502320

response correct responsible irresponsible 0.353553 0.759972

response correct sensible foolish 0.276385 0.460385

response correct end relaxed anxious -0.345582 0.534919

response correct begin calm agitated -0.172345 0.516888

response correct end calm agitated 0.000000 0.662004

response color attracted -0.087932 0.469200

response color interesting 0.000000 0.478130

response color interactive inert 0.199681 0.474292

response color responsive apathetic 0.389249 0.478130

response color like dislike 0.138233 0.450376

response color friendly unfriendly 0.342134 0.552106

response color begin relaxed anxious 0.299504 0.495769

response color begin calm agitated 0.229794 0.774619

55

Table 4.11: Correlation between task-setting related questions and other
Godspeed questions that have a higher correlation than 0.45 for Native
IU Store Table 2.

Question1 Question2 Correlation (Shared) Correlation (Native)

response color end calm agitated 0.394405 0.559314

response color begin interested bored 0.228218 0.514174

move correct natural fake -0.166070 0.632817

move correct conscious unconscious -0.339945 0.597284

move correct lifelike artificial 0.028239 0.453423

move correct friendly unfriendly 0.097728 0.473849

move correct pleasant unpleasant -0.138866 0.479234

move correct nice awful 0.060606 0.549031

move correct competent incompetent -0.144841 0.455860

move correct responsible irresponsible 0.035533 0.817689

move correct sensible foolish -0.272727 0.593171

reasonable time attracted 0.298969 0.587700

reasonable time humanlike machinelike 0.189629 0.523799

reasonable time interactive inert 0.386281 0.539582

reasonable time pleasant unpleasant 0.404983 0.454304

reasonable time sensible foolish 0.318148 0.489525

reasonable time end relaxed anxious 0.040517 0.490710

reasonable time end calm agitated 0.208084 0.647270

56

CHAPTER 5:

CONCLUSION

In this thesis, I attempted to bring all the key characteristics a standard dialog system

should have into one place facilitating the preservation of entire IU network without

breaking the connection, and I have accomplished that in two main different ways and

compared their strengths and differences. Although I have used two main versions

of my implementation in the final experiment, I have shown ways to maximize the

performance of each of the different versions and where one can be more useful over

the other. In terms of connecting modules distributed between processes, we have

seen that the second approach of only sending new chunks of data and rebuilding the

IU network in the destination is the better choice. In addition to the main objective

of building a complete robot-ready dialog system pipeline, I have also demonstrated

that meaningful stream fusion is feasible between distributed streams of data, and

multiple NLU modules can be integrated in the same pipeline to work together.

Furthermore my work demonstrates the effect of implementational changes on how

humans perceive a robot’s anthropomorphism-related characteristics, and that can

be improved with a more efficient implementation. I believe this thesis will inspire

the construction of larger and more complex implementations, and that will lead to

further research in this area.

57

5.1 Limitations and Future Work

As mentioned above we have not explored all the possible combinations that would

maximize the performance of the two types of IU Store. Instead, I experimented with

one IU Store with obvious advantages above the other in order to realize the effect

on overall response about the robot’s anthropomorphism, animacy, likeability, and

perceived intelligence. A live study on the two stores maximizing the performance of

both variants should reveal more information about their application. In addition to

that, comparing the complete distributed robot-ready dialog system pipeline with a

non-distributed analogous pipeline will also reveal insights about its performance.

In my experiment, I relied on message passing techniques based on JSON in order

to establish connections between modules situated in difference processes. Using

other types of serialized structured data (e.g. Protocol Buffers from Google and

Thrift from Facebook) that have faster serialization time than JSON should increase

the performance as well.

58

REFERENCES

[1] D. Spiliotopoulos, I. Androutsopoulos, and C. D. Spyropoulos, “Human-robot

interaction based on spoken natural language dialogue,” in Proceedings of the

European workshop on service and humanoid robots, 2001, pp. 25–27.

[2] T. Fong, C. Thorpe, and C. Baur, “Collaboration, dialogue and human-robot

interaction, 10th international sumposium of robotics research (lorne, victoria,

australia),” in Proceedings of the 10th International Symposium of Robotics Re-

search, 2001.

[3] D. Bohus, S. Andrist, and M. Jalobeanu, “Rapid development of multimodal

interactive systems: a demonstration of platform for situated intelligence,” in

Proceedings of the 19th ACM International Conference on Multimodal Interac-

tion, 2017, pp. 493–494.

[4] T. Michael and S. Möller, “Retico: An open-source framework for modeling real-

time conversations in spoken dialogue systems,” Studientexte zur Sprachkommu-

nikation: Elektronische Sprachsignalverarbeitung 2019, pp. 134–140, 2019.

[5] C. Kennington, D. Moro, L. Marchand, J. Carns, and D. McNeill, “rrsds: To-

wards a robot-ready spoken dialogue system,” in Proceedings of the 21th Annual

Meeting of the Special Interest Group on Discourse and Dialogue, 2020, pp. 132–

135.

59

[6] A. Singh, V. Goswami, V. Natarajan, Y. Jiang, X. Chen, M. Shah, M. Rohrbach,

D. Batra, and D. Parikh, “Mmf: A multimodal framework for vision and lan-

guage research,” https://github.com/facebookresearch/mmf, 2020.

[7] D. Schlangen and G. Skantze, “A general, abstract model of incremental

dialogue processing,” Dialogue and Discourse, vol. 2, no. 1, pp. 83–111,

2011. [Online]. Available: https://journals.linguisticsociety.org/elanguage/dad/

article/download/361/361-2892-1-PB.pdf

[8] T. Baumann and D. Schlangen, “The inprotk 2012 release,” in NAACL-HLT

Workshop on Future directions and needs in the Spoken Dialog Community: Tools

and Data (SDCTD 2012), 2012, pp. 29–32.

[9] C. Kennington, T. Han, and D. Schlangen, “Temporal alignment using the in-

cremental unit framework,” in Proceedings of the 19th ACM International Con-

ference on Multimodal Interaction, 2017, pp. 297–301.

[10] L. W. J.M., Speaking. Cambridge, USA: MIR Press, 1989.

[11] C. Kennington, “Incrementally resolving references in order to identify visually

present objects in a situated dialogue setting,” 2016.

[12] C. Kennington, S. Kousidis, and D. Schlangen, “Inprotks: A toolkit for incre-

mental situated processing,” in Proceedings of the 15th Annual Meeting of the

Special Interest Group on Discourse and Dialogue (SIGDIAL), 2014, pp. 84–88.

[13] M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eberhard, and J. C. Sedivy,

“Integration of visual and linguistic information in spoken language comprehen-

sion,” Science, vol. 268, no. 5217, pp. 1632–1634, 1995.

https://github.com/facebookresearch/mmf
https://journals.linguisticsociety.org/elanguage/dad/article/download/361/361-2892-1-PB.pdf
https://journals.linguisticsociety.org/elanguage/dad/article/download/361/361-2892-1-PB.pdf

60

[14] G. Aist, J. Allen, E. Campana, and C. G. Gallo, “Incremental understanding in

human-computer dialogue and experimental evidence for advantages over non-

incremental methods,” Decalog 2007, p. 149, 2007.

[15] O. Buß and D. Schlangen, “Modelling sub-utterance phenomena in spoken di-

alogue systems,” in Proceedings of the 14th International Workshop on the Se-

mantics and Pragmatics of Dialogue (Pozdial 2010), 2010.

[16] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-language

services implementation,” Facebook White Paper, vol. 5, no. 8, 2007.

[17] A. S. TANENBAUM and M. VAN STEEN, “Processes,” Distributed Systems

Principles and Paradigms,, pp. 69–114, 2006.

[18] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère, “Popularity,

interoperability, and impact of programming languages in 100,000 open source

projects,” in 2013 IEEE 37th annual computer software and applications confer-

ence. IEEE, 2013, pp. 303–312.

[19] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, M. Luján, and

H. Mössenböck, “Cross-language interoperability in a multi-language runtime,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 40,

no. 2, pp. 1–43, 2018.

[20] D. Chisnall, “The challenge of cross-language interoperability,” Communications

of the ACM, vol. 56, no. 12, pp. 50–56, 2013.

[21] A. Verma, “Most popular programming languages for ma-

61

chine learning and data science,” https://fossbytes.com/

popular-top-programming-languages-machine-learning-data-science/, 2016.

[22] M. Wegiel and C. Krintz, “Cross-language, type-safe, and transparent object

sharing for co-located managed runtimes,” ACM Sigplan Notices, vol. 45, no. 10,

pp. 223–240, 2010.

[23] M. Grimmer, C. Seaton, R. Schatz, T. Würthinger, and H. Mössenböck, “High-

performance cross-language interoperability in a multi-language runtime,” in

Proceedings of the 11th Symposium on Dynamic Languages, 2015, pp. 78–90.

[24] M. Marge, S. Nogar, C. J. Hayes, S. M. Lukin, J. Bloecker, E. Holder, and

C. Voss, “A research platform for multi-robot dialogue with humans,” arXiv

preprint arXiv:1910.05624, 2019.

[25] S. M. Lukin, F. Gervits, C. J. Hayes, A. Leuski, P. Moolchandani, J. G.

Rogers III, C. S. Amaro, M. Marge, C. R. Voss, and D. Traum, “Scoutbot: A

dialogue system for collaborative navigation,” arXiv preprint arXiv:1807.08074,

2018.

[26] Y. Wang, R. C. Murray, H. Bao, and C. Rose, “Agent-based dynamic collabora-

tion support in a smart office space,” in Proceedings of the 21th Annual Meeting

of the Special Interest Group on Discourse and Dialogue, 2020, pp. 257–260.

[27] D. Adamson, G. Dyke, H. Jang, and C. P. Rosé, “Towards an agile approach to

adapting dynamic collaboration support to student needs,” International Journal

of Artificial Intelligence in Education, vol. 24, no. 1, pp. 92–124, 2014.

https://fossbytes.com/popular-top-programming-languages-machine-learning-data-science/
https://fossbytes.com/popular-top-programming-languages-machine-learning-data-science/

62

[28] S. Kousidis, C. Kennington, T. Baumann, H. Buschmeier, S. Kopp, and

D. Schlangen, “A multimodal in-car dialogue system that tracks the driver’s

attention,” in Proceedings of the 16th international conference on multimodal

interaction, 2014, pp. 26–33.

[29] R. Math, A. Mahr, M. M. Moniri, and C. Müller, “Opends: A new open-source

driving simulator for research,” GMM-Fachbericht-AmE 2013, vol. 2, 2013.

[30] J. Wienke and S. Wrede, “A middleware for collaborative research in experimen-

tal robotics,” in 2011 IEEE/SICE International Symposium on System Integra-

tion (SII). IEEE, 2011, pp. 1183–1190.

[31] B. Carlmeyer, D. Schlangen, and B. Wrede, “Towards closed feedback loops in

hri: Integrating inprotk and pamini,” in Proceedings of the 2014 Workshop on

Multimodal, Multi-Party, Real-World Human-Robot Interaction, 2014, pp. 1–6.

[32] J. Peltason and B. Wrede, “Pamini: A framework for assembling mixed-initiative

human-robot interaction from generic interaction patterns,” in Proceedings of the

SIGDIAL 2010 Conference, 2010, pp. 229–232.

[33] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[34] Y. Jang, J. Lee, J. Park, K.-H. Lee, P. Lison, and K.-E. Kim,

“PyOpenDial: A python-based domain-independent toolkit for developing

spoken dialogue systems with probabilistic rules,” in Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

63

(EMNLP-IJCNLP): System Demonstrations. Hong Kong, China: Association

for Computational Linguistics, Nov. 2019, pp. 187–192. [Online]. Available:

https://www.aclweb.org/anthology/D19-3032

[35] C. Kennington and D. Schlangen, “Simple learning and compositional

application of perceptually grounded word meanings for incremental reference

resolution,” in Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). Beijing, China:

Association for Computational Linguistics, Jul. 2015, pp. 292–301. [Online].

Available: https://www.aclweb.org/anthology/P15-1029

[36] J. L. Carlson, Redis in action. Manning Publications Co., 2013.

[37] S. Sun, J. Gong, A. Y. Zomaya, and A. Wu, “A distributed incremental infor-

mation acquisition model for large-scale text data,” Cluster Computing, vol. 22,

no. 1, pp. 2383–2394, 2019.

[38] A. Venkataraman and K. K. Jagadeesha, “Evaluation of inter-process communi-

cation mechanisms,” Architecture, vol. 86, p. 64, 2015.

[39] C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi, “Measurement instruments for

the anthropomorphism, animacy, likeability, perceived intelligence, and perceived

safety of robots,” International journal of social robotics, vol. 1, no. 1, pp. 71–81,

2009.

[40] J. Novikova, G. Ren, and L. Watts, “It’s not the way you look, it’s how you move:

https://www.aclweb.org/anthology/D19-3032
https://www.aclweb.org/anthology/P15-1029

64

validating a general scheme for robot affective behaviour,” in IFIP Conference

on Human-Computer Interaction. Springer, 2015, pp. 239–258.

[41] S. Plane, A. Marvasti, T. Egan, and C. Kennington, “Predicting perceived age:

Both language ability and appearance are important,” in Proceedings of the 19th

Annual SIGdial Meeting on Discourse and Dialogue, 2018, pp. 130–139.

65

APPENDIX A:

ANSWERS TO THE QUESTIONS IN

GODSPEED QUESTIONAIRE

66

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

0.00% 0.00%

21.43%

50.00%

28.57%

0.00%

21.43%

14.29%

35.71%

28.57%

How attached to the robot did you feel?

StoreType
Shared(Redis)
Native(C#)

Figure A.1: X-axis: Participant ratings from 1: Not at all to 5: Very.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge

0.00% 0.00%

14.29%

21.43%

64.29%

0.00% 0.00%

14.29% 14.29%

71.43%

How interesting was the robot to interact with?

StoreType
Shared(Redis)
Native(C#)

Figure A.2: X-axis: Participant ratings from 1: Not at all to 5: Very.
Y-axis: the % of participants that selected those responses

67

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

0.00%

7.14%

21.43% 21.43%

50.00%

0.00%

7.14%

14.29%

28.57%

50.00%

Would you like to spend more time with the robot?

StoreType
Shared(Redis)
Native(C#)

Figure A.3: X-axis: Participant ratings from 1: Not at all to 5: Very
much. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

0.00% 0.00%

35.71%

50.00%

14.29%

0.00%

14.29%

35.71% 35.71%

14.29%

Natural/Fake

StoreType
Shared(Redis)
Native(C#)

Figure A.4: X-axis: Participant ratings from 1: Fake to 5: Natural. Y-
axis: the % of participants that selected those responses

68

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge

7.14%

28.57%

35.71%

21.43%

7.14%

28.57%

21.43%

28.57%

21.43%

0.00%

Machinelike/Humanlike

StoreType
Shared(Redis)
Native(C#)

Figure A.5: X-axis: Participant ratings from 1: Machinelike to 5: Human-
like. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

14.29%

0.00%

35.71%

42.86%

7.14%

14.29%

28.57%

14.29%

42.86%

0.00%

Unconscious/Conscious

StoreType
Shared(Redis)
Native(C#)

Figure A.6: X-axis: Participant ratings from 1: Unconscious to 5: Con-
scious. Y-axis: the % of participants that selected those responses

69

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

7.14%

35.71% 35.71%

21.43%

0.00%

7.14%

50.00%

21.43% 21.43%

0.00%

Artificial/Lifelike

StoreType
Shared(Redis)
Native(C#)

Figure A.7: X-axis: Participant ratings from 1: Artificial to 5: Lifelike.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

7.14%

42.86%

28.57%

14.29%

7.14%

14.29%

35.71%

28.57%

21.43%

0.00%

Move Rigidly/Move Elegantly

StoreType
Shared(Redis)
Native(C#)

Figure A.8: X-axis: Participant ratings from 1: Moving Rigidly to 5: Mov-
ing Elegantly. Y-axis: the % of participants that selected those responses

70

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

0.00%

14.29%

42.86%

28.57%

14.29%

7.14%

14.29%

28.57%

35.71%

14.29%

Dead/Alive

StoreType
Shared(Redis)
Native(C#)

Figure A.9: X-axis: Participant ratings from 1: Dead to 5: Alive. Y-axis:
the % of participants that selected those responses

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

0.00%

7.14%

42.86%

35.71%

14.29%

0.00%

14.29%

42.86%

35.71%

7.14%

Stagnant/Lively

StoreType
Shared(Redis)
Native(C#)

Figure A.10: X-axis: Participant ratings from 1: Stagnant to 5: Lively.
Y-axis: the % of participants that selected those responses

71

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

14.29%

57.14%

21.43%

0.00% 0.00%

21.43%

57.14%

14.29%

7.14%

0.00%

Mechanical/Organic

StoreType
Shared(Redis)
Native(C#)

Figure A.11: X-axis: Participant ratings from 1: Mechanical to 5: Organic.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

7.14%

0.00%

14.29%

50.00%

28.57%

0.00%

14.29% 14.29%

42.86%

28.57%

Inert/Interactive

StoreType
Shared(Redis)
Native(C#)

Figure A.12: X-axis: Participant ratings from 1: Inert to 5: Interactive.
Y-axis: the % of participants that selected those responses

72

1 2 3 4 5
Value

0

10

20

30

40

50

Pe
rc

en
ta

ge

0.00%

14.29%

21.43%

28.57%

35.71%

0.00%

7.14%

35.71%

50.00%

7.14%

Apathetic/Responsive

StoreType
Shared(Redis)
Native(C#)

Figure A.13: X-axis: Participant ratings from 1: Apathetic to 5: Respon-
sive. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge

0.00% 0.00%

28.57%

7.14%

64.29%

0.00% 0.00%

21.43%

7.14%

71.43%

Dislike/Like

StoreType
Shared(Redis)
Native(C#)

Figure A.14: X-axis: Participant ratings from 1: Dislike to 5: Like. Y-axis:
the % of participants that selected those responses

73

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00%

14.29% 14.29%

7.14%

64.29%

0.00% 0.00%

21.43%

28.57%

50.00%

Unfriendly/Friendly

StoreType
Shared(Redis)
Native(C#)

Figure A.15: X-axis: Participant ratings from 1: Unfriendly to 5: Friendly.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

0.00%

7.14%

42.86%

7.14%

42.86%

0.00% 0.00%

42.86%

21.43%

35.71%

Unkind/Kind

StoreType
Shared(Redis)
Native(C#)

Figure A.16: X-axis: Participant ratings from 1: Unkind to 5: Kind.
Y-axis: the % of participants that selected those responses

74

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00%

7.14%

35.71%

57.14%

0.00% 0.00%

21.43%

14.29%

64.29%

Unpleasant/Pleasant

StoreType
Shared(Redis)
Native(C#)

Figure A.17: X-axis: Participant ratings from 1: Unpleasant to 5: Pleas-
ant. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00%

21.43%

14.29%

64.29%

0.00% 0.00%

7.14%

35.71%

57.14%

Awful/Nice

StoreType
Shared(Redis)
Native(C#)

Figure A.18: X-axis: Participant ratings from 1: Awful to 5: Nice. Y-axis:
the % of participants that selected those responses

75

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00%

7.14%

21.43%

57.14%

14.29%

0.00%

21.43%

14.29%

42.86%

21.43%

Incompetent/Competent

StoreType
Shared(Redis)
Native(C#)

Figure A.19: X-axis: Participant ratings from 1: Incompetent to 5: Com-
petent. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00%

7.14%

28.57%

42.86%

21.43%

0.00%

14.29%

21.43%

57.14%

7.14%

Ignorant/Knowledgable

StoreType
Shared(Redis)
Native(C#)

Figure A.20: X-axis: Participant ratings from 1: Ignorant to 5: Knowl-
edgeable. Y-axis: the % of participants that selected those responses

76

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

0.00% 0.00%

42.86% 42.86%

14.29%

0.00%

21.43% 21.43%

42.86%

14.29%

Irresponsible/Responsible

StoreType
Shared(Redis)
Native(C#)

Figure A.21: X-axis: Participant ratings from 1: Irresponsible to 5: Re-
sponsible. Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

7.14% 7.14%

21.43%

57.14%

7.14%

0.00%

21.43%

7.14%

57.14%

14.29%

Unintelligent/Intelligent

StoreType
Shared(Redis)
Native(C#)

Figure A.22: X-axis: Participant ratings from 1: Unintelligent to 5: Intel-
ligent. Y-axis: the % of participants that selected those responses

77

1 2 3 4 5
Value

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

0.00%

7.14%

42.86%

35.71%

14.29%

0.00%

28.57%

14.29%

42.86%

14.29%

Foolish/Sensible

StoreType
Shared(Redis)
Native(C#)

Figure A.23: X-axis: Participant ratings from 1: Foolish to 5: Sensible.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00%

7.14% 7.14%

28.57%

57.14%

0.00%

14.29% 14.29%

28.57%

42.86%

Beginning: Anxious/Relaxed

StoreType
Shared(Redis)
Native(C#)

Figure A.24: X-axis: Participant ratings from 1: Anxious to 5: Relaxed.
Y-axis: the % of participants that selected those responses

78

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge

0.00%

7.14% 7.14%

28.57%

57.14%

0.00% 0.00% 0.00%

28.57%

71.43%

End: Anxious/Relaxed

StoreType
Shared(Redis)
Native(C#)

Figure A.25: X-axis: Participant ratings from 1: Anxious to 5: Relaxed.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

0.00% 0.00%

14.29%

7.14%

78.57%

0.00% 0.00%

21.43% 21.43%

57.14%

Beginning: Agitated/Calm

StoreType
Shared(Redis)
Native(C#)

Figure A.26: X-axis: Participant ratings from 1: Agitated to 5: Calm.
Y-axis: the % of participants that selected those responses

79

1 2 3 4 5
Value

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

0.00% 0.00%

14.29%

21.43%

64.29%

0.00% 0.00%

7.14%

28.57%

64.29%

End: Agitated/Calm

StoreType
Shared(Redis)
Native(C#)

Figure A.27: X-axis: Participant ratings from 1: Agitated to 5: Calm.
Y-axis: the % of participants that selected those responses

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

0.00% 0.00% 0.00%

28.57%

71.43%

0.00% 0.00%

7.14%

14.29%

78.57%

Beginning: Bored/Interested

StoreType
Shared(Redis)
Native(C#)

Figure A.28: X-axis: Participant ratings from 1: Bored to 5: Interested.
Y-axis: the % of participants that selected those responses

80

1 2 3 4 5
Value

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

0.00% 0.00%

21.43%

14.29%

64.29%

0.00%

7.14%

0.00%

14.29%

78.57%

End: Bored/Interested

StoreType
Shared(Redis)
Native(C#)

Figure A.29: X-axis: Participant ratings from 1: Bored to 5: Interested.
Y-axis: the % of participants that selected those responses

81

APPENDIX B:

AUGMENTED GODSPEED QUESTIONNAIRE

82

Questionnaire

1. How attached to the robot did you feel? Mark only one oval.

Not at all 1 2 3 4 5 Very

2. How interesting was the robot to interact with? Mark only one oval.

Not at all 1 2 3 4 5 Very

3. Would you like to spend more time with the robot? Mark only one oval.

Not at all 1 2 3 4 5 Very much

4. Read the statement below and select one of the given options: The robot had a

goal. Mark only one oval.

Yes No

5. If you agreed, what do you think the robot’s goal was? Why do you think that?

6. If you disagreed, why do you disagree? What do you think robot was doing?

7. How many years old do you think the robot is (in terms of its behavior)?

8. Please rate your impression of the robot on this scale: Mark only one oval.

Fake 1 2 3 4 5 Natural

9. Please rate your impression of the robot on this scale: Mark only one oval.

Machinelike 1 2 3 4 5 Humanlike

10. Please rate your impression of the robot on this scale: Mark only one oval.

Unconscious 1 2 3 4 5 Conscious

11. Please rate your impression of the robot on this scale: Mark only one oval.

Artificial 1 2 3 4 5 Lifelike

12. Please rate your impression of the robot on this scale: Mark only one oval.

Moving rigidly 1 2 3 4 5 Moving elegantly

13. Please rate your impression of the robot on this scale: Mark only one oval.

83

Dead 1 2 3 4 5 Alive

14. Please rate your impression of the robot on this scale: Mark only one oval.

Stagnant 1 2 3 4 5 Lively

15. Please rate your impression of the robot on this scale: Mark only one oval.

Mechanical 1 2 3 4 5 Organic

16. Please rate your impression of the robot on this scale: Mark only one oval.

Inert 1 2 3 4 5 Interactive

17. Please rate your impression of the robot on this scale: Mark only one oval.

Apathetic 1 2 3 4 5 Responsive

18. Please rate your impression of the robot on this scale: Mark only one oval.

Dislike 1 2 3 4 5 Like

19. Please rate your impression of the robot on this scale: Mark only one oval.

Unfriendly 1 2 3 4 5 Friendly

20. Please rate your impression of the robot on this scale: Mark only one oval.

Unkind 1 2 3 4 5 Kind

21. Please rate your impression of the robot on this scale: Mark only one oval.

Unpleasant 1 2 3 4 5 Pleasant

22. Please rate your impression of the robot on this scale: Mark only one oval.

Awful 1 2 3 4 5 Nice

23. Please rate your impression of the robot on this scale: Mark only one oval.

Incompetent 1 2 3 4 5 Competent

24. Please rate your impression of the robot on this scale: Mark only one oval.

Ignorant 1 2 3 4 5 Knowledgable

25. Please rate your impression of the robot on this scale: Mark only one oval.

84

Irresponsible 1 2 3 4 5 Responsible

26. Please rate your impression of the robot on this scale: Mark only one oval.

Unintelligent 1 2 3 4 5 Intelligent

27. Please rate your impression of the robot on this scale: Mark only one oval.

Foolish 1 2 3 4 5 Sensible

28. At the BEGINNING of the interaction, how did you feel on this scale: Mark only

one oval.

Anxious 1 2 3 4 5 Relaxed

29. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Anxious 1 2 3 4 5 Relaxed

30. At the BEGINNING of the interaction, how did you feel on this scale: Mark only

one oval.

Agitated 1 2 3 4 5 Calm

31. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Agitated 1 2 3 4 5 Calm

32. At the BEGINNING of the interaction, how did you feel on this scale: Mark only

one oval.

Bored 1 2 3 4 5 Interested

33. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Bored 1 2 3 4 5 Interested

34. Of the following relations, which do you feel describe the robot best? Mark only

85

one oval.

Brother or Sister

Classmate

Stranger

Relative (e.g., cousin or aunt)

Friend

Parent

Teacher

Neighbor

	Acknowledgment
	Abstract
	List of figures
	List of tables
	List of abbreviations
	Introduction
	The ``Robot-Ready" Dialog System
	Background
	Incremental Processing

	IU Network in Distributed Environment
	Inter-process Communication
	Platform for Situated Intelligence (PSI)
	ReTiCo
	PSI and ReTiCo Features Comparison
	Thesis Statement

	Related Work
	Method
	Preparing Platform for Situated Intelligence (PSI)
	PSI Modules in the Network
	Joining or Fusing Data
	Speech Recognition
	Object Detection

	ReTiCo Modules in the Network
	Rasa NLU (Natural Language Understanding) Module
	Keras Object Feature Extractor and WAC
	The PyOpenDial Module
	Interoperability Between the Two Frameworks
	Module-to-Module Interoperability in the IU Network
	Conserving and Maintaining the Entire Distributed IU Network

	Final Overall Network Structure
	Evaluation Criteria
	Hypothesis

	Evaluations
	Experiment 1: Systematic Evaluation of Consistency and Efficiency
	Evaluation of the IU Store
	Further Analysis of the Pipeline

	Experiment 2: Live, Interactive Study with Human Participants
	Participant Recruitment and Study Setting
	Results

	Conclusion
	Limitations and Future Work

	References
	Appendices
	Answers to the questions in Godspeed questionaire
	AUGMENTED GODSPEED QUESTIONNAIRE

