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ABSTRACT 

Seasonal snowpack accounts for ~70% of the water supply in the western United 

States, and measuring snow accumulation and ablation remotely has long been a stated 

goal of NASA. The 2018 launch of ICESat-2, a spaceborne Lidar system, has offered 

unparalleled spatial and temporal coverage of mountainous terrain with the potential for 

unprecedented vertical accuracy. Data from ICESat-2 are used to measure seasonal snow 

depths using the level-3A ATL08 (land and canopy elevation) product for the Reynolds 

Creek Experimental Watershed in southwest Idaho and the ATL06 (land ice elevation) 

product for Wolverine Creek in the Kenai Mountains of Alaska. The methodology for 

coregistering ICESat-2 transects to reference digital terrain models then estimating snow 

depths as the difference between the ICESat-2 and reference elevations is described. 

Median and MAD snow depths for transects from 2019 and 2020 are 3.1 +/- 6.7m at 

Reynolds Creek EW and are 5.5 +/- 2.1m at Wolverine glacier. Here we find that 

measuring snow depths using ICESat-2 is crude in variable, vegetated terrain covered by 

the ATL08 data product, and that there is not a strong relationship between the residual 

values reported at Reynolds Creek EW and terrain parameters such as slope, aspect, 

vegetative coverage, and elevation. We do find that the ATL06 analysis results in 

reasonable first-order estimates of snow depth but that the evolution of the glacier surface 

elevations must be more accurately constrained in order to ensure the snow depth 

estimates are unbiased.  
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CHAPTER ONE: SNOW DEPTHS AND ICESAT-2 

I. Introduction 

Measuring the seasonal snowpack remotely has long been desired by the water 

resources community (Fiebrich, 2009). The Western United States generally receives 

about 70% of its water as seasonal snowpack (Barnett et al., 2005), and the year-to-year 

variability in streamflow associated with snow accumulation is critically important to 

water resources in this region. Globally, more than one billion people rely on water at 

least partially supplied by seasonal snow or glacial melt (Beniston et al., 2003; Barnett et 

al., 2005), but in situ measurements of snow water equivalent (SWE) are expensive and 

notoriously spatially and temporally variable (Anderton et al., 2004; Grunewald et al., 

2010). In glacierized regions, seasonal snow influences both annual water resources as 

well as the mass balance of glaciers (Huss and Hock, 2018). Changes in the mass balance 

of mountain glaciers also negatively impacts local biology, economy, society, and culture 

(Archer et al., 2010; Mishra et al., 2018; O’Neel et al., 2015). 

Various satellite systems and methodologies have been applied to the problem of 

measuring snow depth and SWE, but challenges remain with accuracy and resolution. 

One of the most recent remote sensing approaches relies on Lidar (light detection and 

ranging) and visible light cameras mounted to aircraft, data from which are used to 

generate outputs such as structure from motion (SfM) and dense point clouds 

representing a three-dimensional map of the imaged area (Kelly and Belmont, 2018; Kim 
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et al., 2017). After removing the baseline snow-free ground surface elevations, elevation 

time series can be converted to time series of snow depth.  

Although aerial Lidar can yield highly accurate and spatially-detailed estimates of 

snow depth, Lidar coverage is spatially and temporally sparse. Perhaps the most pertinent 

example of using Lidar to monitor snow depths is the NASA Aerial Snow Observatory 

(ASO) in the Tuolumne River basin in California (Brandt et al., 2020; Pflung & 

Lundquist, 2020). While successful in the Tuolumne, the price of repeat Lidar 

observations over a large (> 1000km2) watershed is prohibitive, and Lidar observations 

are available for only a fraction of the Rocky Mountains in the US. These limitations to 

Lidar, price and otherwise, of targeted aerial Lidar can potentially be overcome by the 

Ice, Cloud, and Land Satellite 2 (ICESat-2) program (Rebold et al., 2019). Here we use 

two level-3A Lidar products from the ICESat-2 program: ATL08 and ATL06. The 

ICESat-2 land and vegetation height (ATL08) data product has a 100 m by ~11 m 

footprint and estimated vertical accuracy of 40cm in sparsely vegetated terrain 

(Neuenschwander and Pitts, 2019), and the land ice height (ATL06) product has a 40 m 

by ~11 m footprint and estimated vertical accuracy of 10cm (Smith et al., 2019). The 

spatial resolution and estimated errors of these data products are small enough that they 

could be reasonably used to measure snow depths on the order of one or more meters. 

Here we assess whether the higher-order ICESat-2 data products ATL06 and ATL08 can 

be used to estimate seasonal snowpack in remote, mountainous terrain. This pilot study 

focuses on two watersheds with dense in situ observational coverage: Wolverine glacier, 

a part of the Wolverine Creek drainage in Alaska, USA (outlet coordinates 60.383, -

148.918) and Reynolds Creek Experimental Watershed in Idaho, USA (outlet coordinates 
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43.3241, -116.6858) (figure 1.1). While snow blankets the terrain, the difference between 

ICESat-2 elevations and reference snow-free elevations yields estimated snow depth. We 

compare preliminary snow depth estimates with in situ data for the watersheds of interest 

to assess the utility of ICESat-2 to accurately map snow depth in different terrain types, 

discuss current methodological limitations, and propose future methodological 

improvements.  

 

 
Figure 1.1. Wolverine Glacier in coastal Alaska (A) and Reynolds Creek 

Experimental Watershed in southwestern Idaho (B).  
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Figure 1.2. An artist’s depiction of the ICESat-2 system orbiting above sea ice 

(Magruder et al., 2019). Image is not to scale.  

II. Background 

In many ways, water resource engineering has been the driving force behind the 

study of hydrology and snowpack in the United States. From the first gages on the 

Colorado and Columbia Rivers to the constant expansion of the National Resource 

Conservation Service snow telemetry (SNOTEL) network (NRCS, 2012), there is 

considerable investment in placing observational constraints on mountainous snowpack 

each winter and the rate at which it melts out in the spring and summer (Fiebrich, 2009). 

Despite the development of numerous methods to broadly constrain the water equivalent 

of melted snow (i.e., snow water equivalent or SWE) using satellite data, we still lack the 

ability to remotely sense SWE from space. Early Landsat imagery was used to map the 

spatial extent of snow coverage (Itten, 1975; Orheim and Lucchitta, 1987), but the data 

lacked depth and density measurements and proved generally a poor approximation for 

snow depths and SWE. Passive satellite radar observations are promising in theory since 

microwave emissions from the Earth’s surface should vary with snow depth (Rango et 
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al., 1989; Rott et al., 2009; Pettinato et al., 2011; Lievens et al., 2019), but these 

measurements have thus far failed to live up to the promise of basin-scale measures of 

snow water equivalent, not the least of the reasons being their generally poor spatial 

resolution. Repeat airborne Lidar has been used extensively as part of NASA’s SnowEx 

program, and other observational efforts, to accurately measure snow depths over several 

square kilometers (Kim et al., 2017; Brucker et al., 2018). Lidar-derived snow depths are 

combined with in situ measures of snow density and simple linear relationships between 

terrain parameters to estimate snow water equivalent over a large area. The weaknesses 

of this approach, however, are the cost and temporal resolution: the flights are too 

expensive to be practical in large watersheds (> 1000 km2) without dedicated state or 

national funding and generally only capture peak snowpack rather than intraseasonal 

variability. 

Launched in 2018, ICESat-2 improves significantly on the spatial coverage and 

temporal resolution of aerial Lidar snow depth estimates. While not a primary mission 

objective of ICESat-2, application of these high-resolution Lidar datasets to snow depth 

estimation across variable terrain would be a significant benefit to the water resource 

community. ICESat-2’s onboard Advanced Topographic Laser Altimeter System 

(ATLAS) instrument is a six-beam laser altimeter that records the roundtrip times of 

photons and, using the satellite’s position and attitude, calculates the elevation of the 

surface below (figure 1.2). The six beams are separated into three beam pairs that consist 

of a strong beam and a weak beam; the strong beams transmit four times as many photons 

per shot as the weak beams. The interpair distance is ~3km and the intrapair distance is 

~90m, enabling the computation of surface slopes in gentle terrain from a single pass and 
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more precise slope adjustments to ice sheets and sea ice elevation time series. The ground 

footprints of the shots are ~11 m in diameter and, at a shot frequency of 10,000 Hz, the 

shots allow for surface measurements every ~0.9 m along track (Markus et al., 2017). In 

polar regions the satellite track is repeated every 91 days, but below the polar latitudes 

the pointing geometry is tilted with each successive orbit to optimize spatial coverage in 

non-polar latitudes (Neuenschwander and Pitts, 2019).  

After collection, data are preprocessed into various products made available to the 

public. The ATL03 dataset includes data for all individual photons, with the exception of 

background photons filtered using an elevation threshold and those flagged as clouds, and 

is a dense and unwieldy package. A typical ATL03 segment spanning the western US is 

about one gigabyte of data. To increase user accessibility, ATL03 data are further 

processed into level-3A data products which report elevations for a swath of photon 

returns. The level-3A products used herein are ATL08, which measures land and canopy 

elevations every 100m along track, and ATL06, which measures land ice elevations every 

40m along track with 50% overlap between successive measurements. A typical ALT08 

or ATL06 segment spanning the western US is only about 50 megabytes, or about one-

twentieth the size of the ATL03 product.  

Although ICESat-2’s pointing geometry is adjusted so that reference ground 

tracks are offset outside the polar regions, meaning they do not collect repeat acquisitions 

of the same swath, many watersheds in middle and high latitudes are overlapped by 

multiple reference ground tracks during each 91-day repeat cycle. Since multiple 

reference ground tracks will intersect large mid-latitude watersheds and each satellite 

pass contains data from six beams, there is the potential for dense spatial coverage of 
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snow depth transects from ICESat-2. The satellite’s laser altimeter is modeled to be 

accurate to within 40 cm for unvegetated or brushy terrain and within 2 m for complex, 

highly vegetated terrain (Neuenschwander and Pitts, 2019). Thus, there is the potential 

for highly accurate snow depth transects in sparsely vegetated mountain regions and first-

order estimates of snow depth in vegetated terrain. These transects of snow depths could 

be used as inputs for snow energy balance models to better constrain measurements of 

snow depth and SWE across watersheds. 

III. Methods 

A. Study Areas 

ICESat-2 data were gathered for both Reynolds Creek Experimental Watershed 

(EW) in southwestern Idaho and Wolverine Glacier on the Kenai Peninsula of Alaska. 

These two study sites were selected because they have extensive in situ observations 

from strikingly different climate regimes, which allows us to assess the detection 

threshold of our satellite-derived snow depths in different geographic areas and 

precipitation regimes. The areas of interest, described below, are fairly typical of 

watersheds in their geographic region and span an array of slopes, aspects, and, for 

Reynolds Creek EW, vegetation types and densities. 

Reynolds Creek EW spans about 240 km2 and slopes from the southern highlands 

to its outlet at the Snake River (figure 1.3); a full physical and biological description can 

be found in Seyfried et al. (2001). Reynolds Creek flows northwards from southern 

highlands near Slack Mountain to the Snake River Plain before joining the Snake River 

near Walters Ferry, Idaho. Located in the rain shadow of the Cascade Mountains, the in 

situ data for Reynolds Creek between 2010 and 2019 suggest the typical maximum snow 
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depth is 0.47 m at the SNOTEL site at 1700 m (SNOTEL data for Reynolds Creek site 

2029). The watershed is an experimental watershed and has a long history of data 

collection and scientific endeavor (Hanson, 2001; Ilangakoon et al., 2016; Seyfried et al., 

2018).  Importantly, Reynolds Creek EW has a 2007 summertime Lidar data set that we 

use as our reference elevations for comparison with the ATL08 data (Idaho Lidar 

Consortium, 2007). Reynolds Creek EW is also the focus of US Agricultural Research 

Service snow model tuning and therefore contains a variety of snow courses and in situ 

instrumentation (Baffaut et al., 2020). While in situ observations may not be coincident in 

space or time with ICESat-2 transects, the data are valuable for validation of ICESat-2 

derived snow depths and snow depth gradients.  

Wolverine Glacier in Alaska is a USGS Benchmark Glacier. Wolverine Glacier 

also has a long data and scientific history as well as a long time series of mass balance 

fluxes (McNeil et al., 2019; O’Neel et al., 2019; Zeller et al., 2020). Rasterized elevations 

from the USGS Alaska Science Center’s Geodetic Data repository are used as our 

reference elevations for comparison with the ATL06 data (figure 1.4) (McNeil et al., 

2019). Low in elevation and close to the north Pacific, Wolverine glacier is heavily 

influenced by the cool, moist, maritime climate typical of southeastern Alaska. The total 

ice-covered area is ~15.6 km2, and the equilibrium line lies at ~1235 m above mean sea 

level (Zeller et al., 2020). Located in a maritime polar setting, the in situ data from 2007-

2017 suggest the typical maximum annual snow depth is 6.56 m (Baker et al., 2018). 
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Figure 1.3. Reynolds Creek EW in southwestern Idaho (outlet coordinates 

43.3241, -116.6858). The white triangles mark the locations of Reynolds Creek 
Critical Zone Observatory instruments. Elevations and seasons of 47 available 

ICESat-2 transects are shown in panel a. The base map is the digital terrain model 
(elevations in legend). The location of the watershed in relation to the Treasure 

Valley area is shown in panel b, and in relation to Idaho in panel c.  

 



10 

 

 
Figure 1.4. Wolverine glacier on the Kenai peninsula near Anchorage, AK, USA 

(outlet coordinates 60.383, -148.918). The locations and seasons of 42 available 
ICESat-2 transects are shown in panel a. The approximate glacier extent is from the 
most recent available GLIMS data. The base map is the digital terrain model from 
September 2018 Lidar data (elevations in legend). Wolverine glacier’s location in 

relation to the Kenai Peninsula is shown in panel b, and to Alaska in panel c. 

B. Reference Elevations 

For low-slope, unglaciated polar regions, ground elevation time series can be 

differenced over time to construct time series of snow depth (Hall et al., 2001; Hislop et 

al., 2018). However, the non-repeat footprints of ICESat-2 below polar latitudes 

necessitates the use of independent, highly accurate reference (i.e., snow-off) datasets to 

construct time series of snow depth via elevation differencing.  

For the Reynolds Creek EW, the reference elevation dataset contained >4 billion 

irregularly-spaced discrete Lidar point elevation observations. The Lidar data were down-
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sampled to a 2 m-resolution raster grid to create a digital terrain model (DTM) that 

excludes vegetation cover (see LASReadLastReturn.m, Appendix A; Alexander, 2021). 

Reported errors from the Lidar data are presented in the Discussion section. The 

rasterized elevations were cropped to the outline of Reynolds Creek EW as defined using 

a surface flow path algorithm (see Watershed Delineation, Appendix A.E) with the 

Reynolds Creek’s outlet into the Snake River as the outlet point. Finally, because the 

2007 Lidar flight didn’t cover the lowest ~20 km2 of Reynolds Creek EW, the polygon 

was further clipped to only area covered by Lidar data.  

A Lidar-derived 0.5 m-resolution DTM from early September 2018 was used as 

reference elevation dataset for Wolverine Glacier (McNeil et al., 2019). Wolverine 

Glacier’s boundary was defined with the most recent Global Land Ice Measurement from 

Space (GLIMS) polygon available through the USGS (McNeil et al., 2019). Elevations 

that lay within the GLIMS polygon are subject to both movement of ice and 

accumulation or ablation of snow. We dealt with these shifting reference elevation issues 

with a process described in section 3.B.ii, below. We used the entire area covered by the 

Lidar dataset for coregistration, which includes some 20 km2 of additional unglaciated 

area adjacent to Wolverine Glacier (figure 1.4).  

C. Coregistration and Snow Depth Estimation 

In order to estimate snow depths using ICESat-2 data, all ICESat-2 transects had 

to be precisely coregistered to their respective reference elevation DTMs. We considered 

the reference DTMs to be true elevations and individually coregistered each ICESat-2 

transect to the DTMs. Both the ATL08 and ATL06 products include different elevations 

at each footprint within the transect; these different elevations are the mean, median, and 
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interpolated elevation values. In order to remain consistent, we considered only the mean 

elevation reported by ICESat-2, and we compared it to the mean reference elevation for 

the corresponding footprint within the transect. A gradient descent approach (see 

coregister_icesat2.m script included in Appendix A) was applied to efficiently identify 

and minimize the difference in elevation values between ICESat-2 and the reference 

DTMs. Each ICESat-2 segment was coregistered as a transect, not point-by-point, with 

the assumption that any error in coregistration was approximately uniform along the 

transect. The means were first shifted in the x (easting) and y (northing) directions until 

the minimized the root mean squared difference (RMSD) between ICESat-2 and 

reference elevations was found. An example ATL08 elevation transect is shown with the 

corresponding reference DTM elevation transect prior to and following horizontal 

coregistration in figure 1.5. The process was repeated for each snow-free (i.e., summer) 

ATL08 track in the Reynolds Creek EW. The method was refined, as described in the 

subsections below, for all Reynolds Creek EW ATL08 transects that potentially 

contained snow (i.e., October-June transects) so that only snow-free regions were used 

for coregistration. At Wolverine glacier, footprints inside the GLIMS polygon were 

excluded from the coregistration process because glacier mass loss and flow cause the 

glacier surface elevation to change over time and coregistration should only be performed 

using static terrain. 
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Figure 1.5. An example of the coregistration process for ATL08 transects for an 

August 26, 2019 ICESat-2 pass at Reynolds Creek EW. Panel (a) shows the raw 
ATL08 elevation transect in red and the reference DTM transect in black. Panel (b) 

shows the same elevation transects after horizontal coregistration of the ATL08 
data. For this transect, the optimal northing shift was 58.4m and the optimal easting 

shift was -81.9m. Coordinates are referenced to UTM Zone 11N. 

i. ATL08 

For the ATL08 data product, photon return statistics (i.e., mean and median 

elevations, number of returns, etc.) were reported for 100 m-long by ~11 m-wide 

footprints oriented along the track of the beam transect. Elevations for the ground surface 

and for the canopy were reported separately.  

During the winter, only snow-free surfaces should be used for coregistration. Here 

we used the ATL08 brightness flag to identify snow-free portions of each transect. The 
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brightness flag uses a radiometric approach to identify regions of snow and ice: if the 

average number of return photons is >3 per shot for the strong beam, then the brightness 

flag records that the surface below is highly reflective, which generally indicated snow or 

ice. For reference, the average number of return photons expected over normal terrain 

was one per shot for the strong beam and a quarter photon per shot for the weak beam 

(Neuenschwander & Pitts, 2019), with ~110 shots and therefore ~110 photons per strong 

beam footprint and ~30 photons per weak beam footprint. The brightness flag was used 

to select non-flagged (snow-free) areas for horizontal coregistration throughout the year 

for consistency, with the expectation that summer transects will contain zero brightness 

flags and the number and distribution of flagged regions will vary with snow cover 

throughout the rest of the year. We repeated the coregistration process for each of the 47 

ATL08 transects that passed over Reynolds Creek EW.  

The use of the brightness flag during registration should ensure that only snow-

free regions are included in the coregistration process, enabling transect-specific 

horizontal and vertical coregistration. However, to account for the potential failure of the 

brightness flag, we used only summer transect observations to vertically coregister all 

transects. During the summer, coregistration should be highly accurate (i.e., the 

differences between reference and ICESat-2 elevations should be centered at zero meters) 

if both the reference DTM and the ICESat-2 transects include accurate estimates of snow-

free, ground elevations and not vegetation. All transects were shifted vertically so that the 

summer difference median was forced to 0 m.  
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ii. ATL06 

For the ATL06 data product, photon return statistics (i.e., mean and median 

elevations, number of returns, etc.) are reported for 40 m-long x ~11 m-wide footprint 

oriented along the track of the beam transect. These footprints overlap each other by 

50%, so that ATL06 reports a mean elevation every 20 m along the transect. However, 

because the ATL06 data product is designed for land ice where most of the terrain will be 

highly reflective, there is no corresponding brightness flag that can be used for 

coregistration. Additionally, because ice can move both laterally and vertically, and 

because glaciers can gain or lose surface elevation due to mass change, glacierized 

regions cannot be used for coregistration. Therefore, we used only the transect elevations 

outside of the GLIMS polygon outline (i.e., outside the glacier extent) as static reference 

elevations to coregister transects.  

Coregistration was only performed for transects with non-glacierized elevation 

residuals that exceeded the reported vertical uncertainties for ATL06 (i.e., transects with 

significantly different elevations than the reference DTM), which were indicative of poor 

horizontal and/or vertical coregistration. Figure 1.6 shows representative transects for a 

summer (figure 1.6a) and winter (figure 1.6b) over Wolverine glacier. For the summer 

transects, a gradient descent approach was used to identify the horizontal offsets required 

to minimize the root mean squared difference (RMSD) between ICESat-2 and reference 

elevations. Since there is no brightness flag to identify snow-free regions in the ATL06 

dataset, we did not attempt to coregister non-summer (i.e., October-June) transects. As 

with the ATL08 data, all transects were vertically shifted using the median elevation 

difference from summer transects. 
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Figure 1.6. Two transects from Wolverine Glacier and  corresponding reference 

elevations. A representative summer transect from 26 August 2019 is shown in (a); a 
representative winter transect from 26 February 2019 is shown in (b). The vertical 

error bars are the respective reported vertical geolocation errors.  

 

Estimation of on-glacier snow depths from elevation residuals is complicated by 

the evolution of the glacier’s surface over time. Inside of the GLIMS polygon, several 

geodetic DTMs for the glacier were used to approximate the annual end-of-melt-season 

(i.e. September) glacier surface elevation and assess uncertainties. Geodetic DTMs for 

Wolverine Glacier for 2008 and 2018 were obtained from the Benchmark Glacier data 

portal (McNeil et al., 2019). Each DTM was clipped to the GLIMS polygon and the 

elevations were bilinearly interpolated to the grid of the 2018 reference DTM. The end-

of-melt-season glacier surface elevations for 2019 and 2020 were extrapolated assuming 

a constant rate of elevation change from 2008-2020, using the elevation change between 

the 2008 and 2018 DTMs (figure 1.7). The ATL08 vertical residuals presented in the 

following sections are with respect to the preceding end-of-melt-season elevations. These 
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residuals represent temporal changes in the elevation of the glacier surface elevation due 

to seasonal snow accumulation as well as summer snow and ice melt. Potential biases in 

these estimated due to intra-annual variability in glacier mass change and flow are 

discussed below. 

 
Figure 1.7. Scatterplot of Wolverine glacier elevations from 2008 (x-axis) and 

2018 (y-axis). The red line represents a line of no elevation change over the period, 
and points below that line (the area shaded grey) indicate that a negative elevation 
change. The average annual rate of change in elevation between 2008 and 2018 is -

1.1 m a-1 with a standard deviation of 0.03 m a-1.  
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IV. Results 

A. Reynolds Creek Experimental Watershed 

For Reynolds Creek, our coregistration process yielded median ± median of 

absolute deviation (MAD) easting and northing offsets of 6.12 ± 46.9 m and 33.5 ± 19.6 

m, respectively. We find no obvious pattern in coregistration offsets in the easting and 

northing directions for either satellite orientation or beam strength (figure 1.8).  
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Figure 1.8. Histograms of coregistration offsets in the easting (left column; a, c, 

and e) and northing (right column; b, d, and f) directions extracted from snow-free 
regions for the Reynolds Creek EW transects. The top row (a, b) shows offsets for 

all 47 transects. The middle row (c, d) shows offsets segregated by the orientation of 
the satellite (reverse or forward), and the bottom row shows the offsets segregated 

by beam strength (strong or weak). 
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After horizontal coregistration, the summer transects had a median RMSD +/- 

MAD of 2.3 +/- 4.7 m (figure 1.9), suggesting a slight positive bias in ATL08 elevations 

with respect to the reference DTM. The data are not normally distributed, but exhibit 

right skew. Therefore, each ICESat-2 transect was shifted vertically downward 2.3 m to 

eliminate elevation bias. The final median ± MAD elevation residuals for the summer 

(July – September), autumn (October – December), winter (January – March), and spring 

(April – June) are 0 ±  6.6 m, -0.7 ± 5.7 m, 3.1 ± 6.7 m, and 2.5 ± 7.1 m, respectively 

(figure 1.10).  The distributions of elevation residuals for each season are statistically 

different from each other at P = 0.05 with the exception of spring and winter. Elevation 

differences are plotted as a function of vegetation height (figure 1.11), and we find no 

discernable relationship between vegetation height and residual values. 

 

 
Figure 1.9. Histogram of all footprint elevation differences between ATL08 and 
reference DTM elevations at Reynolds Creek EW after horizontal coregistration. 
The histogram includes 5528 ATL08 mean footprint elevations from 2018-2020. 
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Figure 1.10. Histogram of elevation differences (residual values) after 

coregistration for 47 ICESat-2 transects totaling 5528 mean footprint elevations at 
Reynolds Creek EW in 2019 and 2020. Histograms are shown for summer (a), 
autumn (b), winter (c), and spring (d). Seasons are defined as summer (July – 

September), autumn (October – December), winter (January – March), and spring 
(April – June). 
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Figure 1.11. Plots of measured elevation difference as a function of reference 

elevation above sea level for ATL08 transects at Reynolds Creek EW for (a) winter, 
(b) spring, (c) summer, and (d) autumn.  
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Figure 1.12. Plots of measured elevation difference as a function of slope for 

ATL08 transects at Reynolds Creek EW for (a) winter, (b) spring, (c) summer, and 
(d) autumn.  
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Figure 1.13. Plots of measured elevation difference as a function of aspect for 

ATL08 transects at Reynolds Creek EW for (a) winter, (b) spring, (c) summer, and 
(d) autumn. 



25 

 

 
Figure 1.14. Histogram of elevation differences (residual values) as a function of 

vegetation height at Reynolds Creek EW for all 5528 sample points. 

 

B. Wolverine Glacier 

Of the 42 transects of the Wolverine Glacier watershed included in our study, 7 

transects are horizontally coregistered, with median ± MAD offset of 5.4 ± 2.8 m in the 

easting and 0.8 ± 0.6 m in the northing directions. To estimate the error associated with 

the lack of horizontal coregistration for non-summer transects, we compared the RMSD 

for summer transects without any horizontal coregistration to the coregistered RMSD. If 

the reference elevations fell within the vertical geolocation error of the ICESat-2 

elevation reported at the same footprint, then the vertical offset used in calculating the 

RMSD was zero. For the seven horizontally-coregistered transects, coregistration 

decreased the median ± MAD RMSD by 0.6 ± 0.2 m. 
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The seasonal distributions for Wolverine Glacier elevation residuals are shown in 

figure 1.12). The median ± MAD are 0 ± 0.5 m, 1.5 ± 0.8 m, 5.5 ± 2.1 m, and 2.7 ± 2.1 m 

for summer, autumn, winter, and spring, respectively. Seasons were again defined as 

winter (January – March), spring (April – June), summer (July – September), and autumn 

(October – December). For Wolverine glacier, the distributions of elevation residuals for 

each season are statistically different at the P = 0.05 confidence level. For reference, the 

maximum annual snow depths retrieved from in situ snow pits and snow courses for the 

period 2007 – 2017 at Wolverine Glacier have a mean of 6.56 m and a standard deviation 

of 2.32 m (Baker et al., 2018).  

The residual elevation distributions in figure 1.12 for winter and spring are 

strongly bimodal. Residual values for winter and spring are mapped in figure 1.13. 

Residual values are plotted against elevation in figure 1.14, slope in figure 1.15, and 

aspect in figure 1.16. Residual values are strongly positively correlated with elevation (r2 

= 0.62), with a linear polynomial slope of 0.005m/m (95% confidence interval [0.00405, 

0.00595]).  
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Figure 1.15. Histograms of elevation differences (residual values) after 

coregistration for 42 ATL06 transects totaling 5110 mean footprint elevations at 
Wolverine glacier in 2019 and 2020. The seasons are defined as winter (January – 

March), spring (April – June), summer (July – September), and autumn (October – 
December).  
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Figure 1.16. Estimated snow depths (residual values) at Wolverine glacier for 

winter (January-March) and spring (April – June) of 2018-2020. Residual values at 
each point along the transects are interpreted as estimated snow depths. 
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Figure 1.17. Plots of measured elevation difference as a function of reference 

elevation above sea level for ATL06 transects at Wolverine glacier for (a) winter, (b) 
spring, (c) summer, and (d) autumn.  
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Figure 1.18. Plots of measured elevation difference as a function of slope for 

ATL06 transects at Wolverine glacier for (a) winter, (b) spring, (c) summer, and (d) 
autumn.  
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Figure 1.19. Plots of measured elevation difference as a function of aspect for 

ATL06 transects at Wolverine glacier for (a) winter, (b) spring, (c) summer, and (d) 
autumn.  
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V. Discussion 

A. Error Quantification 

The utility of ICESat-2 for snow depth estimation is dependent on uncertainties in 

both the ICESat-2 and reference elevation data as well as potential biases between the 

two datasets, as discussed below. 

The first source of error comes from ICESat-2 measurements of terrain and 

canopy elevations. For the ATL08 data product, the estimated vertical accuracy is 0.40 m 

in sparsely vegetated regions and up to 2 m in densely vegetated regions 

(Neuenschwander and Pitts, 2019). For the ATL06 product, the vertical geolocation error 

variable is reported for each footprint. For the Wolverine Glacier transects, the median 

vertical geolocation error is 5.4 m but with considerable seasonal variability, as 

demonstrated in figure 1.6. The median vertical geolocation error reported is 5.6 m, 4.9 

m, 4.7 m, and 12.1 m for summer, autumn, winter, and spring, respectively. Although 

assessment if controls on errors is outside the scope of our analysis, we hypothesize that 

the errors are smallest in winter due to strong returns from relatively smooth and highly 

reflective snow surfaces and peaks in spring when photons are reflected from both the 

surface and bottom of shallow supraglacial meltwater features. 

Uncertainties in the reference DTMs also influence the vertical residuals. The 

Reynolds Creek EW Lidar data used herein have a reported vertical error of 0.25 m, 

although the Lidar returns are averaged into 2m raster cells during the downsampling 

process. The resulting uncertainty depends on the number of returns in each grid cell but 

is often much greater than 100. The expected uncertainty in each grid cell, therefore, is on 

the order of 0.025 m. The Wolverine glacier DTM sourced from the USGS has a reported 
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vertical error of 0.10 m. These DTM errors shrink proportionally to the root of the 

number of observations included in ICESat-2 footprint. For Reynolds Creek EW, there 

are 275 raster cell elevations included in each footprint. At Wolverine glacier, where both 

the ATL06 footprint and the raster cell resolution are smaller, there are 1600 raster cell 

elevations in each footprint. The expected ATL08 uncertainties and DTM uncertainties 

sum to a vertical error on elevation residuals of 0.10 m in sparsely vegetated terrain and 

.26 m in densely vegetated terrain. However, because the mean DTM elevation for each 

footprint inherently uniformly weights elevations over the entire footprint but the ICESat-

2 photon returns are unlikely to adhere to a uniform distribution, spatial averaging 

increases the uncertainty of elevation residuals by an unquantiable amount. 

There are also unique, terrain-specific sources of errors for Reynolds Creek and 

Wolverine Glacier. Vegetation varies throughout the Reynolds Creek watershed. In order 

to accurately estimate snow depths from elevation residuals, vegetation must be 

accurately removed from both the reference DTM and the ATL08 ground heights. A 

comparison of the elevation residuals to the difference between the first and last returns 

from the reference Lidar data, which approximates vegetation heights, suggests that 

inaccurate removal of vegetation from ATL08 ground heights cannot explain the large 

spread in our elevation residuals. However, a more rigorous comparison is needed to 

fully assess the influence of vegetation on both elevation datasets.  

Although Wolverine Glacier does not suffer from uncertainties introduced by 

vegetation,  glacier movement and mass change can potentially bias elevation residuals 

and their interpretation. The reference DTM elevations inside of the GLIMS polygon are 

subject to change from translation of ice (lateral flow), emergence or submergence of ice 
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(vertical flow), snow accumulation, and ablation of snow, firn, and ice. We attempt to 

account for glacier movement and mass change through the construction of 2019 and 

2020 end-of-melt-season DTMs using the decadal trends in elevation change for the 

glacier. Our extrapolation approach is computationally efficient but physically crude. 

Long-term mass balance estimates for the glacier suggest a constant rate of mass loss 

over decadal time scales since the late 1980s but with considerable inter-annual 

variability (O’Neel et al., 2019). Inter-annual variations in the glacier’s mass balance can 

cause deviations in the rate of surface lowering due to firn compaction and ice melt 

relative to long-term trends. Firn compaction and vertical ice flow cause surface lowering 

at rates of up to 4.12 m a-1 in the glacier’s accumulation zone (Zeller and McGrath, 

personal communication). As such, winter ATL06 elevation residuals calculated with 

respect to the end-of-melt-season DTM may under-estimate snow depths by several 

meters at high elevations. The glacier’s steep mass balance gradient also results in large 

rates of upwards ice flow in the ablation zone, with emergence velocities as high as 5.5 m 

a-1 of at 800 m a.s.l. (Zeller and McGrath, personal communication). Thus, winter ATL06 

elevation residuals calculated with respect to the end-of-melt-season DTM may over-

estimate snow depths by several meters at low elevations. Failure to include intra-annual 

glacier surface elevation changes results in an apparent flattening of the winter snow 

accumulation gradient, as illustrated from ~800-1600 m a.s.l. in figure 1.14a.    

B. Reynolds Creek Experimental Watershed and the ATL08 Product 

Mean maximum annual snow depths from the in situ SNOTEL site at 1700 m 

a.s.l. for the period 2010 – 2019 are 0.47 m and have a standard deviation of 0.24 m. 

Although the ATL08 snow depths inferred from the elevation residuals during the winter 
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and spring cannot be directly compared to the SNOTEL data because they are neither 

coincident in time or space, it is problematic that the residuals are nearly an order of 

magnitude greater than maximum in situ snow depths (3.1 m and 2.5 m, respectively). 

Furthermore, the median absolute deviations for each season at Reynolds Creek EW are 

~7 m, such that snow depths cannot be confidently inferred from the individual point 

elevations. 

The large spread in the elevation residuals is likely in part due to the need for 

precise coregistration to a reference DTM before they can be used to calculate snow 

depths. In theory, snow-free regions identified using the ATL08 brightness flag can be 

used for horizontal and vertical coregistration, yielding precise estimates of snow depth 

for each transect. We find, however, that the brightness flag fails to distinguish snow-free 

and snow-covered regions. For example, the SNOTEL site for Reynolds Creek (site 

2029), which is in the southern highlands of the watershed, recorded 0.28 m of snow on 

26 January 2020 (Table 1.1). Landsat-8 images from before and after 26 January 2020 

both show snow cover across the majority of Reynolds Creek EW, supporting the 

widespread presence of snow. However, for the 632 ATL08 footprints that were recorded 

for the six beam transects on 26 January 2020, there was not a single brightness-flagged 

point. This indicates that the ATL08 brightness flag severely and systematically 

underreports snow- or ice-covered areas. In fact, none of the 2580 individual footprints 

from typical snow accumulation months (November to March for Reynolds Creek EW) 

included a brightness flag indicative of snow cover. Based on preliminary radiometry 

work done by Neuenschwander et al. (2020), the brightness flag should be adjusted from 

>3 photons per shot for the strong beam down to >1 photon per shot for highly reflective 
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ground conditions (i.e., snow and ice cover) for better performance. Given the failure of 

the brightness flag, we attribute our large and highly variable elevation residuals to 

coregistration difficulties and recommend further work to refine the brightness flag 

before the ATL08 data can be used to accurately map snow depths in non-glacierized 

mountainous watersheds.  
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Table 1.1. Reynolds Creek SNOTEL Site 2029 data for the month of January 
2020.  

Date Snow Depth 
(cm) 

Snow Water Equivalent (cm) 

1 Jan 2020 25 8 
2 Jan 2020 25 8 
3 Jan 2020 25 8 
4 Jan 2020 27 8 
5 Jan 2020 27 10 
6 Jan 2020 25 10 
7 Jan 2020 25 8 
8 Jan 2020 27 8 
9 Jan 2020 30 10 
10 Jan 2020 30 10 
11 Jan 2020 33 13 
12 Jan 2020 33 13 
13 Jan 2020 38 13 
14 Jan 2020 41 13 
15 Jan 2020 46 15 
16 Jan 2020 46 15 
17 Jan 2020 43 15 
18 Jan 2020 43 15 
19 Jan 2020 41 13 
20 Jan 2020 36 13 
21 Jan 2020 36 13 
22 Jan 2020 36 10 
23 Jan 2020 30 10 
24 Jan 2020 33 10 
25 Jan 2020 33 8 
26 Jan 2020 30 8 
27 Jan 2020 25 8 
28 Jan 2020 25 8 
29 Jan 2020 25 8 
30 Jan 2020 30 10 
31 Jan 2020 30 10 
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C. Wolverine Glacier and the ATL06 Product 

In general, we find that the ATL06 data product is adequately coregistered. 

Transects from July, August, and September -- the summer months -- have a small 

proportion of footprint elevations out of agreement with the reference elevations once the 

vertical geolocation errors are considered. Summer transects have a median of 3.9% of 

footprint elevations that differ from the reference elevations by more than the reported 

vertical error. Disagreement between the ATL06 and reference elevations is greater 

throughout the rest of the year – autumn, winter, and spring transects have a median of 

26% of footprint elevations out of agreement – due to the presence of snow. Snow 

increases surface elevations and, we hypothesize, decreases the reported vertical error 

because it is highly reflective and has a smoother macrosurface than rock outcroppings or 

glacial ice (Wiscombe & Warren, 1980; Filhol & Sturm, 2019), which increases the 

number of return photons per shot and compresses the distribution of photon elevations in 

each footprint. Figure 1.6b demonstrates the elevation bias and reduced uncertainty 

observed outside the summer months. Future work could focus on examining the total 

vertical geolocation error as a function of days since the last fresh snowfall event to test 

the aforementioned hypothesis. 

The bimodal winter and spring distributions apparent in figure 1.12 appear to be 

forced by differences in snow accumulation as a function of elevation. Figure 1.13 plots 

elevation residuals as a function of elevation. There is a positive relationship between 

elevation residuals and elevation with an average slope of 0.005m/m, which is consistent 

with previously observed snow depth gradients for Wolverine Glacier despite the strong 

dependence of high elevation snow depths on wind redistribution and terrain effects 
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(McGrath et al., 2018). We do not find relationships between elevation residuals and 

aspect or slope (figure 1.15-1.16). However, as previously discussed in the section on 

error quantification, our elevation residuals likely under-estimate snow depths at high 

elevations and over-estimate snow depths low on the glacier because we do not account 

for intra-annual surface elevation change due to emergence and submergence of ice. In 

short, while the methodology described in this paper yields first-order estimates of snow 

depths for glaciated areas covered by the ATL06 data product, further refinement and 

greater quantitative error assessment is needed before the ATL06 data can be used for 

precise snow depth estimation.  

VI. Conclusions 

Seasonal snow depths in remote, mountainous terrain are difficult to measure and 

often have inconsistent spatial and temporal coverage. Here we explore whether the 

ICESat-2 level-3a data products can be used to efficiently and accurately estimate snow 

depths. We find that largely due to coregistration difficulties, the ATL08 product cannot 

be used to map spatial variations in snow depths in vegetated mountainous watersheds. 

However, further refinement of the brightness flag included in the ATL08 product could 

reduce vertical uncertainties associated with imprecise coregistration and potentially 

enable snow depth estimation.  

In contrast, the ATL06 product provides reasonable first-order estimates of snow 

depth in glacierized terrain when paired with annual end-of-melt-season DTMs. More 

precise estimates of annual snow accumulation is possible for glaciers with either well-

constrained or relatively small submergence and emergence velocities. Based on our 

analysis, we suggest that the ATL06 data are used to examine the snow depths on a large 
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scale, and to refine the relationships between snow depths and terrain parameters such as 

slope, aspect, and elevation to snow depths in glacierized mountainous watersheds.  
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Code 

Each of the following scripts and live scripts were written by the author of this 

paper, Colten Elkin, and were written in Matlab R2020b under an academic use license. 

For more information or for a complete user guide contact the author at 

coltenelkin@u.boisestate.edu. 

A. Coregister_icesat2.m 

function rmsez = coregister_icesat2(icesat2, elevations, R2, A) 
% Function COREGISTER_ICESAT2 coregisters icesat-2 data with a 

corresponding digital 
% terrain model  
% INPUTS: icesat2 = a csv file with icesat 2 elevations created using the 
%                       h5 to csv jupyter notebook 
%      elevations = the matrix created using geotiffread() 
%              R2 = the cell map refernce created as the second output in 
%                       geotiffread() 
%               A = a [2 1] vector that serves as the spatial offsets in 
%                       the x and y directions (meters) 
% OUTPUTS:  rmsez = the root mean squared difference between the icesat-2 
%                       elevations and their corresponding (offset) DTM  
%                       elevations 
  
% Created 19 October 2020 by Colten Elkin (coltenelkin@u.boisestate.edu) 
% last modified 30 Jan 2021 
  
% most recent update: added ATL08 brightness flag lines 
  
elevations(elevations < -10) = nan; % throw out trash data 
elevations(elevations > 10000) = nan; % more trash takeout 
  
T = readtable(icesat2); 
  
zmod = T.Elevation(1:end-1); % save the 'model' elevations (icesat-2 elevations) 
  
easts = T.Easting(:); % pull out the easting values 
norths = T.Northing(:); % pull out the northings 
footwidth = 11; % approx. width of icesat2 shot footprint in meters 
  
% for ATL08 files only use snow-free data (brightness flag negative) 
if strcmp(icesat2(end-44:end-40), 'ATL08') == 1 % ATL08 commands 
    bright = T.Brightness_Flag;  
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    ib = find(bright == 0); 
    easts = easts(ib); 
    norths = norths(ib); 
    zmod = zmod(ib); 
end 
  
  
theta = zeros(size(norths)); % initialize empty matrices 
xs = {}; 
ys = {}; 
xpoly = nan([1,5]); 
ypoly = nan([1,5]); 
  
  
for r = 1:length(theta)-1 
    if strcmp(icesat2(end-44:end-40), 'ATL08') == 1 % ATL08 commands 
        theta(r) = abs(atan((norths(r+1) - norths(r))/(easts(r+1) - easts(r)))); % trig to 

get angle theta along-track 
         
        % get the x and y vectors to form the polygon 
        xpoly(1) = easts(r) + (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); % 

calculate the 4 corners in the x direction 
        xpoly(2) = easts(r) + (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(3) = easts(r) - (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(4) = easts(r) - (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); 
        xpoly = xpoly+A(1); % adjust by the easting offset 
        xs{r} = [xpoly(1), xpoly(2), xpoly(3), xpoly(4), xpoly(1)]; % save the 

corners as a vector in the x-es cell array 
         
        ypoly(1) = norths(r) - 50 - footwidth/2*cos((pi/2) - theta(r)); % calculate the 

4 corners in the y direction 
        ypoly(2) = norths(r) - 50 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(3) = norths(r) + 50 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(4) = norths(r) + 50 - footwidth/2*cos((pi/2) - theta(r)); 
        ypoly = ypoly+A(2); % adjust by the nothing offset 
        ys{r} = [ypoly(1), ypoly(2), ypoly(3), ypoly(4), ypoly(1)]; % save the 

corners as a vector in the y-s cell array 
         
    elseif strcmp(icesat2(end-44:end-40), 'ATL06') == 1 % ATL06 commands 
        theta(r) = abs(atan((norths(r+1) - norths(r))/(easts(r+1) - easts(r)))); % trig to 

get angle theta along-track 
         
        % get the x and y vectors to form the polygon 
        xpoly(1) = easts(r) + (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); % 

calculate the 4 corners in the x direction 
        xpoly(2) = easts(r) + (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
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        xpoly(3) = easts(r) - (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(4) = easts(r) - (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); 
        xpoly = xpoly+A(1); % adjust by the easting offset 
        xs{r} = [xpoly(1), xpoly(2), xpoly(3), xpoly(4), xpoly(1)]; % save the 

corners as a vector in the x-es cell array 
         
        ypoly(1) = norths(r) - 20 - footwidth/2*cos((pi/2) - theta(r)); % calculate the 

4 corners in the y direction 
        ypoly(2) = norths(r) - 20 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(3) = norths(r) + 20 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(4) = norths(r) + 20 - footwidth/2*cos((pi/2) - theta(r)); 
        ypoly = ypoly+A(2); % adjust by the nothing offset 
        ys{r} = [ypoly(1), ypoly(2), ypoly(3), ypoly(4), ypoly(1)]; % save the 

corners as a vector in the y-s cell array 
    end 
end 
  
  
x = 

R2.XWorldLimits(1)+0.5*R2.CellExtentInWorldX:R2.CellExtentInWorldX:R2.XWorld
Limits(end)-0.5*R2.CellExtentInWorldX; % get a vector of x coords 

y = 
R2.YWorldLimits(1)+0.5*R2.CellExtentInWorldY:R2.CellExtentInWorldY:R2.YWorld
Limits(end)-0.5*R2.CellExtentInWorldY; % get a vector of y coords 

  
  
[xgrid, ygrid] = meshgrid(x, y); % create grids of each of the x and y coords 
elevation_report = zeros([1, length(xs)]); 
  
for t = 1:length(xs) 
    xv = xs{t}; % bounding box x vector 
    yv = ys{t}; % bounding box y vector 
     
     
    % first trimming 
    in = inpolygon(xgrid, ygrid, xv, yv); % get logical array of in values 
    pointsinx = xgrid(in); % save x locations 
    pointsiny = ygrid(in); % save y locations 
    in2 = flip(in); % create a flipped in-grid (need row, column instead of column, 

row) 
    elevationsin = elevations(in2); % save elevations 
    elevation_report(t) = nanmean(elevationsin); 
end 
ztruth = elevation_report(:); 
  
differences = zmod - ztruth; 
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differences(differences > 80) = nan; 
differences(differences < -80) = nan; 
  
rmsez = sqrt(nanmean((differences).^2)); 
 
 

B. Icesat2_residuals.m 

function [rmsez, residuals, differences] = icesat2_residuals(icesat2, elevations, 
R2, Abest, offset) 

% Function ICESAT2_RESIDUALS calculates residuals of a given ICESat-2 
track 

% INPUTS: icesat2 = a csv file with icesat 2 elevations created using the 
%                       h5 to csv jupyter notebook 
%      elevations = the matrix created using geotiffread() 
%              R2 = the cell map refernce created as the second output in 
%                       geotiffread() 
%           Abest = a [2 1] vector that serves as the best spatial offsets in 
%                       the easting and northing directions (meters) 
%          offset = the offset in elevation values 
%                       pulled from the function value using the fminsearch approach 
% OUTPUTS:  rmsez = the root mean squared difference in elevation values 
%                       before offset 
%       residuals = the calculated residuals (vector) between the icesat-2 
%                       elevations and their corresponding (offset) DTM  
%                       elevations 
%     differences = the vector of point-by-point elevation differences 
%                       before elevation offset 
  
% Created 30 October 2020 by Colten Elkin (coltenelkin@u.boisestate.edu) 
% last modified 30 January 2021 
  
% most recent update: added two lines to deal with various no data values 
% used in DTM storage (-9999; 4.02e38, etc.); 
  
elevations(elevations < -10) = nan; % throw out trash data 
elevations(elevations > 10000) = nan; % more trash takeout 
  
A = Abest; % save as the name that's in the loop below 
  
T = readtable(icesat2); % read in the first icesat-2 atl08 csv file 
  
zmod = T.Elevation(1:end-1); % save the 'model' elevations (icesat-2 elevations) 
  
easts = T.Easting(:); % pull out the easting values 
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norths = T.Northing(:); % pull out the northings 
footwidth = 11; % approx. width of icesat2 shot footprint in meters 
  
theta = zeros(size(norths)); % initialize empty matrices 
xs = {}; 
ys = {}; 
xpoly = nan([1,5]); 
ypoly = nan([1,5]); 
  
  
for r = 1:length(theta)-1 
    if strcmp(icesat2(end-44:end-40), 'ATL08') == 1 % ATL08 commands 
        theta(r) = abs(atan((norths(r+1) - norths(r))/(easts(r+1) - easts(r)))); % trig to 

get angle theta along-track 
         
        % get the x and y vectors to form the polygon 
        xpoly(1) = easts(r) + (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); % 

calculate the 4 corners in the x direction 
        xpoly(2) = easts(r) + (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(3) = easts(r) - (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(4) = easts(r) - (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); 
        xpoly = xpoly+A(1); % adjust by the easting offset 
        xs{r} = [xpoly(1), xpoly(2), xpoly(3), xpoly(4), xpoly(1)]; % save the 

corners as a vector in the x-es cell array 
         
        ypoly(1) = norths(r) - 50 - footwidth/2*cos((pi/2) - theta(r)); % calculate the 

4 corners in the y direction 
        ypoly(2) = norths(r) - 50 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(3) = norths(r) + 50 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(4) = norths(r) + 50 - footwidth/2*cos((pi/2) - theta(r)); 
        ypoly = ypoly+A(2); % adjust by the nothing offset 
        ys{r} = [ypoly(1), ypoly(2), ypoly(3), ypoly(4), ypoly(1)]; % save the 

corners as a vector in the y-s cell array 
         
    elseif strcmp(icesat2(end-44:end-40), 'ATL06') == 1 % ATL06 commands 
        theta(r) = abs(atan((norths(r+1) - norths(r))/(easts(r+1) - easts(r)))); % trig to 

get angle theta along-track 
         
        % get the x and y vectors to form the polygon 
        xpoly(1) = easts(r) + (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); % 

calculate the 4 corners in the x direction 
        xpoly(2) = easts(r) + (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(3) = easts(r) - (footwidth/2) + footwidth/2*cos((pi/2) - theta(r)); 
        xpoly(4) = easts(r) - (footwidth/2) - footwidth/2*cos((pi/2) - theta(r)); 
        xpoly = xpoly+A(1); % adjust by the easting offset 
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        xs{r} = [xpoly(1), xpoly(2), xpoly(3), xpoly(4), xpoly(1)]; % save the 
corners as a vector in the x-es cell array 

         
        ypoly(1) = norths(r) - 20 - footwidth/2*cos((pi/2) - theta(r)); % calculate the 

4 corners in the y direction 
        ypoly(2) = norths(r) - 20 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(3) = norths(r) + 20 + footwidth/2*cos((pi/2) - theta(r)); 
        ypoly(4) = norths(r) + 20 - footwidth/2*cos((pi/2) - theta(r)); 
        ypoly = ypoly+A(2); % adjust by the nothing offset 
        ys{r} = [ypoly(1), ypoly(2), ypoly(3), ypoly(4), ypoly(1)]; % save the 

corners as a vector in the y-s cell array 
    end 
end 
  
  
x = 

R2.XWorldLimits(1)+0.5*R2.CellExtentInWorldX:R2.CellExtentInWorldX:R2.XWorld
Limits(end)-0.5*R2.CellExtentInWorldX; % get a vector of x coords 

y = 
R2.YWorldLimits(1)+0.5*R2.CellExtentInWorldY:R2.CellExtentInWorldY:R2.YWorld
Limits(end)-0.5*R2.CellExtentInWorldY; % get a vector of y coords 

  
  
[xgrid, ygrid] = meshgrid(x, y); % create grids of each of the x and y coords 
elevation_report = zeros([1, length(xs)]); 
  
for t = 1:length(xs) 
    xv = xs{t}; % bounding box x vector 
    yv = ys{t}; % bounding box y vector 
     
     
    % first trimming 
    in = inpolygon(xgrid, ygrid, xv, yv); % get logical array of in values 
    pointsinx = xgrid(in); % save x locations 
    pointsiny = ygrid(in); % save y locations 
    in2 = flip(in); % create a flipped in-grid (need row, column instead of column, 

row) 
    elevationsin = elevations(in2); % save elevations 
    elevation_report(t) = nanmean(elevationsin); 
end 
ztruth = elevation_report(:); % create column vector 
  
differences = zmod-ztruth; % calculate differences 
differences(differences > 80) = nan; % toss bad points 
differences(differences < -80) = nan; % toss bad points 
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rmsez = sqrt(nanmean((differences).^2)); % calculate rmsez 
  
residuals = (zmod+offset)-ztruth; % calculate residuals 
 

C. Downsampling.mlx 

% clean downsampling live script. The goal is to read in csv files 
% output by the las2csv.mlx live script, downsample those data,  
% and turn them into an elevation raster at [binsize]-meter resolution 
 

% created 12 September 2020 by C. Elkin 
 

% last modified 3 October 2020. Code seems to be at reasonable 
% efficiency. Got estimated time for RC raster creation down from 
% ~86 days to ~4 hours 
 

% most recent change: lines at bottom before export that fill in vertical 
% and horizontal NaN striping 
 

% this is the user input section.  
 

% read in the desired folder with txt extensions. * is the wildcard operator 
infolder = 

'/Users/glaciologygroup/Desktop/elkin/ms_code/LASRead/output_test/rc_LAS/BIN*.txt'; 
% path to files 

 

% mac (/) or PC (\) directory divider 
divider = '/'; % input which divider your OS uses to separate directories 
 

 

% set bin size (in meters, integer >= 1) 
binsize = 2;  
 

% path to a shapefile with the bounds of the watershed (UTM Coordinates) 
shapepath = 

'/Users/glaciologygroup/Desktop/elkin/ms_code/RC_shapefile/reynoldsck_utm.shp'; 
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% desired ouput name for the final raster and csv products (same base name 
% with different file extensions) 
tiffname = 'RC_Downsampled_lastreturn.tif'; 
csvname = 'RC_downsampled_lastreturn.csv'; 
 

% the CRS EPSG Code for the projection of the output tiff.  
% 32611 is the code for UTM zone 11 N 
crs_code = 32611; 
 

% this subsection sets the files for the outermost loop 
files = dir(infolder); % call all of the files in the input folder name 
numfiles = length({files.name}); % get the number of files in the directory for 

looping 
filenames = {files.name}; % create a cell array of just the file names 
folder = {files.folder}; % create a cell array of just the path 
folder = folder(1); % pull out the first path (each of the paths should be identical) 
folder = folder{:}; % turn the cell variable into a character array 
 

% this subsection sets up the initial grid for the watershed. It also sets 
% up a NaNs array to store the eventual elevation values 
shp = shaperead(shapepath); % read in the vectorized shapefile for the watershed 
xlower = floor(nanmin(shp.BoundingBox(:, 1))); % get lower x value from the 

read shapefile 
xupper = ceil(nanmax(shp.BoundingBox(:, 1))) + binsize; % get upper x value 

from the read shapefile 
ylower = floor(nanmin(shp.BoundingBox(:, 2))); % get lower y value from the 

read shapefile 
yupper = ceil(nanmax(shp.BoundingBox(:, 2))) + binsize; % get upper y value 

from the read shapefile 
 

xbins = xlower:binsize:xupper; % set x bins for the watershed 
ybins = ylower:binsize:yupper; % set y bins for the watershed 
 

elevation_raster = nan([length(xbins), length(ybins)]); % set the elevation array 
 

 

 

% this subsection is the looping section that reads in the files, averages 
% the elevation values that fall within a given grid cell, and repeats for 
% each grid cell.  
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tic % time the loop 
 

for a = 1:numfiles 
    filecall = filenames(a); % pull the a-th filename 
    filecall = filecall{:} % turn the cell variable into a character array 
    infile = [folder, divider, filecall]; % create the character array pointing the loop 

to which file to load 
     
    elevationdata = readtable(infile); % read in the data 
    elevations = table2array(elevationdata); % turn the table data to array data 
     
    minx_in_file = nanmin(elevations(:,1)); % find the smallest x value in the 

currently open bin 
    maxx_in_file = nanmax(elevations(:,1)); % find the largest x value in the 

currently open bin 
    x_start_and_stop = find(xbins>=minx_in_file & xbins<ceil(maxx_in_file)); % 

find bins that have data for this file 
     
    test_count_z = 0; % count the number of elevations that get stored 
     
    for i = 1:(length(x_start_and_stop)-1) 
         
        elevations = elevationdata; % we only want to load the file in once, and this 

keeps us from doing 
        % it over and over again a bit further down 
         
        elevations = table2array(elevations); % make the data an array instead of a 

table 
        Ix = find(elevations(:,1)>=xbins(x_start_and_stop(i)) & 

elevations(:,1)<xbins(x_start_and_stop(i+1))); % find the x data inside the bin 
         
        miny_in_file = nanmin(elevations(:,2)); 
        maxy_in_file = nanmax(elevations(:,2)); 
        y_start_and_stop = find(ybins>=miny_in_file & ybins<ceil(maxy_in_file)); 
         
        elevationsx = elevations(Ix,:); % subset to just the x indices of interest 
         
        for j = 1:(length(y_start_and_stop)-1) 
            elevations = elevationsx; % reset the elevations array to the x indices of 

interest 
            Iy = find(elevations(:,2)>=ybins(y_start_and_stop(j)) & 

elevations(:,2)<ybins(y_start_and_stop(j+1))); % of the remaining values in 
            % 'elevations', find the y indices falling within the y bin 
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            elevations = elevations(Iy, :); % save only those data in the y bounds 
             
            zreport = nanmean(elevations(:,3)); % average and save the remaining 

elevation values 
             
            if ~isnan(zreport) % only report if the zreport value is NOT a NaN 
                test_count_z = test_count_z+1; 
                if isnan(elevation_raster(x_start_and_stop(i),y_start_and_stop(j))) % 

only report if the elevation_raster value IS a NaN 
                    elevation_raster(x_start_and_stop(i),y_start_and_stop(j)) = zreport; 

% report the elevation into the raster 
                end 
            end 
        end 
    end 
    % print the number of elevations recorded in boxes 
    fprintf("For file %3.0f the z count value was %3.0f.\n \n", a, test_count_z) 
     
    % save to be safe every 50 iterations through the loop 
    if isinteger(a/50) 
        writematrix(elevation_raster, 'RC_downsampled.csv'); % save the elevations 

as a csv every 50 files 
        fprintf(' \n The matrix has been saved as a csv file. \n') 
    end 
end 
% rotate the matrix 90 degrees. Somewhere in my loop I have my Xs and Ys 
% confused and I don't want to try and figure out how to switch the 
% scanning 
true_elevations = rot90(elevation_raster); 
 

% fill in the gaps in the matrix (interpolate in case of stripes of no data/NaN 
values in final raster 

[numrow, numcol] = size(true_elevations); % get number of rows and columns 
for indrow = 2:(numrow-1) 
    for indcol = 2:(numcol-1) 
        if isnan(true_elevations(indrow, indcol)) % loop through and replace 

horizontal nan bars with average from cell above and below 
            true_elevations(indrow, indcol) = ((true_elevations(indrow-1, indcol) + 

true_elevations(indrow+1, indcol))/2); 
        end 
        if isnan(true_elevations(indrow, indcol)) % now replace vertical nan bars 

with average from cell left and cell right 
            true_elevations(indrow, indcol) = ((true_elevations(indrow, indcol-1) + 

true_elevations(indrow, indcol+1))/2); 
        end 
    end 
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end 
 

% at the end of the loop save the elevation matrix as a csv file 
writematrix(true_elevations, csvname); 
 

toc % report the total elapsed time 
Elapsed time is 23682.340072 seconds. 
 

 

 

 

% export the matrix as a geotiff 
R = maprefcells(); % create a map cells reference object 
R.XWorldLimits = [xlower xupper]; % modify R to suit our needs using known 

vars 
R.YWorldLimits = [ylower yupper]; 
R.RasterSize = size(true_elevations); 
R.ColumnsStartFrom = 'north'; 
 

geotiffwrite(tiffname,true_elevations,R,"CoordRefSysCode",crs_code) 
 

 

 

 

 

D. LASReadLastReturn.m 

function outfile = LASReadLastReturn(infilename, outfilename) 
% LASREAD reads in files in LAS 1.1 format and outputs comma delimited text 

files 
% note: In order to make the program work for LAS 1.2 format go to  
% line 40 and change it to "if VersionMajor ~= 1" 
% 
% INPUT 
% infilename:   input file name in LAS 1.1 format  
%               (for example, 'myinfile.las')  
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% outfilename:  output file name in text format  
%               (for example, 'myoutfile.txt') 
% nFields:      default value of 1 outputs X, Y and Z coordinates of the  
%               point - [X Y Z].  
%               A value of 2 gives Intensity as an additional attribute - [X Y Z I]. 
%               A value of 3 gives the Return number and the Number of returns  
%               in addition to the above - [X Y Z I R N].                 
%            
% OUTPUT 
% outfile:      the output matrix 
%  
% EXAMPLE 
% A = LASRead ('infile.las', 'outfile.txt', 3) 
% 
% Cici Alexander 
% September 2008 (updated 26.09.2008) 
%  
% Modifications 4 October 2020 by Colten Elkin: 
% changed bottom few lines of script to only save last return. 
% The object is to save only terrain (not canopy) elevations 
% in order to create a digital terrain model using the downsampling.mlx 
% live script. Contact coltenelkin@u.boisestate.edu for info.  
  
% Open the file 
fid =fopen(infilename); 
  
% Check whether the file is valid 
if fid == -1 
    error('Error opening file') 
end 
  
% Check whether the LAS format is 1.1 
fseek(fid, 24, 'bof'); 
VersionMajor = fread(fid,1,'uchar'); 
VersionMinor = fread(fid,1,'uchar'); 
if VersionMajor ~= 1 %|| VersionMinor ~= 1 
    error('LAS format is not 1.1') 
end 
  
% Read in the offset to point data 
fseek(fid, 96, 'bof'); 
OffsetToPointData = fread(fid,1,'uint32'); 
  
% Read in the scale factors and offsets required to calculate the coordinates 
fseek(fid, 131, 'bof'); 
XScaleFactor = fread(fid,1,'double'); 
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YScaleFactor = fread(fid,1,'double'); 
ZScaleFactor = fread(fid,1,'double'); 
XOffset = fread(fid,1,'double'); 
YOffset = fread(fid,1,'double'); 
ZOffset = fread(fid,1,'double'); 
  
% The number of bytes from the beginning of the file to the first point record 
% data field is used to access the attributes of the point data 
% 
c = OffsetToPointData; 
  
% Read in the X coordinates of the points 
% 
% Reads in the X coordinates of the points making use of the 
% XScaleFactor and XOffset values in the header. 
fseek(fid, c, 'bof'); 
X1=fread(fid,inf,'int32',24); 
X=X1*XScaleFactor+XOffset; 
X = X(:); % turn vectors into column vectors for matrix generation below 
  
% Read in the Y coordinates of the points 
fseek(fid, c+4, 'bof'); 
Y1=fread(fid,inf,'int32',24); 
Y=Y1*YScaleFactor+YOffset; 
Y = Y(:); % column vector 
  
% Read in the Z coordinates of the points 
fseek(fid, c+8, 'bof'); 
Z1=fread(fid,inf,'int32',24); 
Z=Z1*ZScaleFactor+ZOffset; 
Z = Z(:); % column vector 
  
  
% Read in the Intensity values of the points 
fseek(fid, c+12, 'bof'); 
Int=fread(fid,inf,'uint16',26); 
Int = Int(:); % column vector 
  
  
% Read in the Return Number of the points. The first return will have a 
% return number of one, the second, two, etc. 
fseek(fid, c+14, 'bof'); 
Rnum=fread(fid,inf,'bit3',221); 
Rnum = Rnum(:); % column vector 
Rnum = round(Rnum); % turn into integers 
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% Read in the Number of Returns for a given pulse. 
fseek(fid, c+14, 'bof'); 
fread(fid,1,'bit3'); 
Num=fread(fid,inf,'bit3',221); 
Num = Num(:); % column vector 
Num = round(Num); % turn into integers 
  
counter = 1:length(X); % create indexing column for cutdown purposes 
counter = counter(:); % column vector 
  
matrix  = [counter, X, Y, Z, Int, Rnum, Num]; % create matrix from values 
  
% use logical indexing to eliminate rows where Rnum does not equal num 
% (i.e. where the return is not the last return) 
  
cutdown = matrix(matrix(:,6) == matrix(:,7)); % rows with wanted data 
  
matrix = matrix(cutdown, [2 3 4]); % shrink matrix down to just X, Y, and Z of 

last return 
  
X = matrix(:,1); % create new X column vector with only wanted data 
Y = matrix(:,2); % new Y column vector 
Z = matrix(:,3); % new Z column vector 
  
% Write out the file with X, Y and Z coordinates, representing only last 
% returns 
  
outfileheader = ['X' 'Y' 'Z']; 
outfile = [X Y Z]; 
  
  
  
dlmwrite(outfilename,outfileheader); 
dlmwrite(outfilename,outfile, '-append','precision','%.2f','newline','pc'); 
 

E. Watershed Delineation  

https://giscrack.com/automatically-delineate-a-watershed-in-qgis/ 

 

F. write_icesat2_csv.m 
 
function write_icesat2_csv(inputdir, outputdir, shapefile) 

% function WRITE_ICESAT2_CSV reads in an h5 file and outputs csv files of 
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% individual beams and their pertinent data 
% INPUTS: inputdir = directory pointing to .h5 files (ends with '/') (string) 
%        outputdir = directory where you want to save csv files (also ends 
%                      with '/') (string) 
%        shapefile = directory and name of shapefile of the region of 
%                      interest that serves for clipping the icesat-2 data  
%                      down (string) 
  
% created 21 December 2020 by Colten Elkin (coltenelkin@u.boisestate.edu) 
% requires matlab function deg2utm.m (available here: 
% https://www.mathworks.com/matlabcentral/fileexchange/10915-deg2utm ) 
% also requires that path to deg2utm is added in the add path line below: 
addpath('/Users/glaciologygroup/Desktop/elkin/ms_code/matlab_scripts'); % add 

path for calling deg2utm later 
  
% last edited: 25 January 2021 
% most recent update: made to work with both ATL08 and ATL06 
  
if(~isfolder(outputdir)) % create the output directory if it doesnt already exist 
   mkdir(outputdir)  
end 
  
watershed = shaperead(shapefile); 
h5files = dir([inputdir,'*.h5']); % pull out the h5 files 
beams = {'gt1r', 'gt1l', 'gt2r', 'gt2l', 'gt3r', 'gt3l'}; % list of icesat2 beams for inner 

loop 
for filecounter = 1:length(h5files) % loop through icesat2 files 
    % check to see whether it's ATL08 or ATL06 
    if strcmp(h5files(filecounter).name(1:5), 'ATL08') == 1 % ATL08 commands 
        h5test = [h5files(filecounter).folder,'/',h5files(filecounter).name]; % get 

string pointing to n-th h5 file 
         
        for beamcount = 1:length(beams) 
            beam = beams{beamcount}; % set beam 
            % read in data 
            terrain = h5read(h5test, ['/',beam,'/land_segments/terrain/h_te_mean']); % 

read terrain means 
            lat = h5read(h5test,  ['/',beam,'/land_segments/latitude']); % read lats 
            lon = h5read(h5test,  ['/',beam,'/land_segments/longitude']); % read lons 
            bright = h5read(h5test,  ['/',beam,'/land_segments/brightness_flag']); % 

read in brightness of shot 
            std = h5read(h5test,  ['/',beam,'/land_segments/terrain/h_te_std']); % 

standard deviation 
            can = h5read(h5test,  ['/',beam,'/land_segments/canopy/h_canopy']); % 

canopy elevation 
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            % crop data to area of interest 
            % first, crude cropping 
            lonlims = watershed.BoundingBox(:, 1); % save upper and lower 

longitudes of the watershed 
            latlims = watershed.BoundingBox(:, 2); % save upper and lower latitudes 

of the watershed 
             
             
            % note: this trimming process is ~4x faster than just using inpolygon 
            Ix = find(lon > min(lonlims) & lon < max(lonlims)); % find longitudes 

between limits 
            lon = lon(Ix); % cut down based on longitudes 
            lat = lat(Ix); 
            terrain = terrain(Ix); 
            bright = bright(Ix); 
            std = std(Ix); 
            can = can(Ix); 
             
            Iy = find(lat > min(latlims) & lat < max(latlims)); % find lats between 

limits 
            lat = lat(Iy); % cut down based on latitudes 
            lon = lon(Iy); 
            terrain = terrain(Iy); 
            bright = bright(Iy); 
            std = std(Iy); 
            can = can(Iy); 
             
            % now do a final trip to the actual watershed bounds 
            wats = [watershed.X', watershed.Y']; % save coordinate tuples from the 

waterhsed shapefile 
            Ifinal = inpolygon(lon, lat, wats(:,1), wats(:,2)); 
             
            lat = lat(Ifinal); % save data as vectors after final clipping 
             
            if ~isempty(lat) % continue if data is inside the region of interest 
                lon = lon(Ifinal); % conitnue saving data 
                terrain = terrain(Ifinal); 
                bright = bright(Ifinal); 
                std = std(Ifinal); 
                can = can(Ifinal); 
                can(can > 1000) = nan; % change canopy elevation no data value to nan 
                 
                 
                % use deg2utm script to write easting and northing values 
                [easts, norths] = deg2utm(lat, lon); 
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                % create a final structure with all of the data 
                s = struct(); % set structure for fields 
                s.Latitude = lat; % set lats 
                s.Longitude = lon; % set lons 
                s.Elevation = terrain; % fill additional fields 
                s.Elevation(s.Elevation >= 10e20) = NaN; % set Nans (icesat2 default 

nan value is 4.028e38) 
                s.Canopy = can; 
                s.std = std; 
                s.Easting = easts; 
                s.Northing = norths; 
                s.Brightness_Flag = bright; 
                 
                 
                table = struct2table(s); % convert to a table 
                h5filename = h5test(end-38:end-3); % save h5 filename 
                outputname = [outputdir, h5filename, '_', beam, '.csv']; % save full 

filename 
                writetable(table, outputname) 
            end 
        end 
        % if not ATL08, ATL06? 
    elseif strcmp(h5files(filecounter).name(1:5), 'ATL06') == 1 % enter ATL06 

commands 
        h5test = [h5files(filecounter).folder,'/',h5files(filecounter).name]; % get 

string pointing to n-th h5 file 
        for beamcount = 1:length(beams) 
            beam = beams{beamcount}; % set beam 
            % read in data 
            terrain = h5read(h5test, ['/',beam,'/land_ice_segments/h_li']); % read 

terrain means 
            lat = h5read(h5test,  ['/',beam,'/land_ice_segments/latitude']); % read lats 
            lon = h5read(h5test,  ['/',beam,'/land_ice_segments/longitude']); % read 

lons 
            bright = h5read(h5test,  ['/',beam,'/land_ice_segments/sigma_geo_h']); % 

read in vertical geolocation error 
            std = h5read(h5test,  ['/',beam,'/land_ice_segments/h_li_sigma']); % 

standard deviation 
             
            % crop data to area of interest 
            % first, crude cropping 
            lonlims = watershed.BoundingBox(:, 1); % save upper and lower 

longitudes of the watershed 
            latlims = watershed.BoundingBox(:, 2); % save upper and lower latitudes 

of the watershed 
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            % note: this trimming process is ~4x faster than just using inpolygon 
            Ix = find(lon > min(lonlims) & lon < max(lonlims)); % find longitudes 

between limits 
            lon = lon(Ix); % cut down based on longitudes 
            lat = lat(Ix); 
            terrain = terrain(Ix); 
            bright = bright(Ix); 
            std = std(Ix); 
             
            Iy = find(lat > min(latlims) & lat < max(latlims)); % find lats between 

limits 
            lat = lat(Iy); % cut down based on latitudes 
            lon = lon(Iy); 
            terrain = terrain(Iy); 
            bright = bright(Iy); 
            std = std(Iy); 
             
            % now do a final trip to the actual watershed bounds 
            wats = [watershed.X', watershed.Y']; % save coordinate tuples from the 

waterhsed shapefile 
            Ifinal = inpolygon(lon, lat, wats(:,1), wats(:,2)); 
             
            lat = lat(Ifinal); % save data as vectors after final clipping 
             
            if ~isempty(lat) % continue if data is inside the region of interest 
                lon = lon(Ifinal); % conitnue saving data 
                terrain = terrain(Ifinal); 
                bright = bright(Ifinal); 
                std = std(Ifinal); 
                 
                 
                % use deg2utm script to write easting and northing values 
                [easts, norths] = deg2utm(lat, lon); 
                 
                % create a final structure with all of the data 
                s = struct(); % set structure for fields 
                s.Latitude = lat; % set lats 
                s.Longitude = lon; % set lons 
                s.Elevation = terrain; % fill additional fields 
                s.Elevation(s.Elevation >= 10e20) = NaN; % set Nans (icesat2 default 

nan value is 4.028e38) 
                s.std = std; 
                s.Easting = easts; 
                s.Northing = norths; 
                s.Vert_Geo_error = bright; 
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                table = struct2table(s); % convert to a table 
                h5filename = h5test(end-38:end-3); % save h5 filename 
                outputname = [outputdir, h5filename, '_', beam, '.csv']; % save full 

filename 
                writetable(table, outputname) 
            end 
        end 
    end 
end 
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