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ABSTRACT

According to Atiyah, K-theory is that part of linear algebra that studies

additive or abelian properties (e.g. the determinant). Because linear algebra, and

its extensions to linear analysis, is ubiquitous in mathematics, K-theory has turned

out to be useful and relevant in most branches of mathematics. Let R be a ring.

One defines K0(R) as the free abelian group whose basis are the finitely generated

projective R-modules with the added relation P ⊕ Q = P + Q. The purpose of this

thesis is to study simple settings of the K-theory for rings and to provide a sequence

of examples of rings where the associated K-groups K0(R) get progressively more

complicated. We start with R being a field or a principle ideal domain and end with

R being a polynomial ring on two variables over a non-commutative division ring.

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Modules over PIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Projective modules over local rings . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Unimodular rows and stably free modules . . . . . . . . . . . . . . . . . . . . . 14

5 Unimodular rows for non-commutative rings . . . . . . . . . . . . . . . . . . . 18

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



1

CHAPTER 1

INTRODUCTION

We quote from Atiyah’s K-Theory:“K-theory is that part of linear algebra that

studies additive or abelian properties (e.g. the determinant). Because linear algebra,

and its extensions to linear analysis, is ubiquitous in mathematics, K-theory has

turned out to be useful and relevant in most branches of mathematics.”

A vector bundle over a topological space X is a space E together with a continuous

map p : E → X so that X can be covered by open sets X =
⋃
Uj with the property

p−1(Uj) ∼= Uj × Rn (homeomorphic) and transitions maps are linear. Vector bundles

can be added (Whitney sum) and it turns out that vector bundles are “projective”:

If X is compact and p : E → X is a vector bundle then there exists another vector

bundle p : E ′ → X so that E ⊕ E ′ ∼= X × Rm. Thus p : E → X is a projection of

an obvious vector bundle X × Rm → X. Let K0(X) be the free abelian group with

basis the set of vector bundles with the added relation E ⊕ E ′ = E + E ′. K0(X)

is an abelian group, accessible via linear algebra and analysis, that measures how

tangled the space X is. For example, if X is contractible, then every vector bundle

is of the form X × Rn for some n, and so K0(X) = Z. The circle S1 already admits

vector bundles that are not products, the line bundle coming from the Möbius band

for example. So K0(S
1) 6= Z.

Now let R be a ring. An R-module M is called projective if it is a summand of a
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free R-module Rm. So M is a projection of an obvious R-module. Let K0(R) be the

free abelian group with basis the set of projective R-modules with the added relation

M ⊕M ′ = M + M ′. K0(R) is an abelian group that reflects the complexity of the

ring R. For example if R is a field, then every projective R-module is of the form Rn

for some n, and so K0(R) = Z.

The purpose of this thesis is to study simple settings of the K-theory for rings

and to provide a sequence of examples of rings where K0(R) gets progressively more

complicated. A unimodular row is a surjective linear map α : Rm → R. The kernel

kerα is a projective R-module that may or may not be projective. We show:

1. The kernel kerα of an unimodular row α : Rm → R is free if and only if it can

be extended to an invertible m×m-matrix.

2. If R is a PID, then every unimodular row can be extended to an invertible

matrix. In fact, every finitely generated R-module is free.

3. If R is a local ring, then every unimodular row can be extended to an invertible

matrix. In fact, every projective R-module is free. However, there do exist local

rings where finitely generated modules are not always free.

4. If R is a commutative ring and the unimodular row has length 2, then it can be

extended to an invertible 2 × 2-matrix. However, there do exist commutative

rings so that a unimodular row of length 3 can not be extended to an invertible

3× 3-matrix. In particular there exists projective R-modules that are not free.

5. For every non-commutative division ring D there does exists a length 2 uni-

modular row over the polynomial ring R = D[x, y] that can not be extended to

an invertible 2× 2-matrix.
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The main sources for this thesis are the first chapter in Weibel’s K-Book [7] Rot-

man’s ”Advanced Modern Algebra” [5], Daniel Chan’s video on vector bundles [1],

Wikipedia’s article on Algebraic K-theory [8], Jason Polak’s blog post on projective

modules over local rings [4], and Nicholson’s book ”Introduction to Abstract Algebra”

[3].
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CHAPTER 2

MODULES OVER PIDS

The main source for this chapter is Rotman, Advanced Modern Algebra [5]

An R-module has the same definition as a vector space, except scalars are in a ring

R instead of a field.

Definition 2.0.1. Let R be ring with an identity element 1. A left R−module is

an (additive) abelian group M equipped with a scalar multiplication such that the

following axioms hold for all m,m′ ∈M and all r, r′, 1 ∈ R:

(i) r(m+m′) = rm+ rm′

(ii) (r + r′)m = rm+ r′m

(iii) (rr′)m = r(r′m)

(iv) 1m = m

Definition 2.0.2. A PID (Principal Ideal Domain) is an integral domain where

every proper ideal can be generated by a single element.

Examples of PIDs:

(i) The ring of integers

(ii) Any field

(ii) Euclidean rings
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Examples of Rings which are not PIDs:

(i) Z[x]

(ii) Q[x, y]

Definition 2.0.3. An R-module F is called a free R-module if there exists a

linearly independent generating set B = {bi : i ∈ I}, called a basis. Note that in that

case F is isomorphic to a direct sum of copies of R: The isomorphism

F →
⊕
i∈I

Ri

send a linear combination
∑

i∈I ribi to the tupel (ri)i∈I .

Lemma 2.0.4. Suppose we have an epimorphism f : M → F where M is an R-

module and F is a free R-module. Then there exists a splitting g : F →M (f ◦g = id)

and the homomorphism h : M → F ⊕ ker(f) defined by h(m) = (f(m),m− g ◦ f(m))

is an isomorphism.

Proof. Since F is free, it has a basis: b1, ..., bk. We know that f is onto so choose

m1, ...,mk so that f(mi) = bi. Thus, we can define a homomorphism g : F → M by

g(bi) = mi and it follows that f(g(bi)) = f(mi) = bi. Now, h is a homomorphism. Let

us consider the coordinates in the image of h. f is an epimorphism, so it is a homo-

morphism. Further, the composition of two homomorphisms is a homomorphism, so

m 7→ m−g ◦f(m) is also a homomorphism. We now show that the homomorphism h

is an isomorophism. First, suppose h(m) = (0, 0). Then clearly f(m) = 0 and so we

have m − g(0) = 0. Since g is a homomorphism we have g(0) = 0 and can conclude

that m = 0, and therefore h is injective. To show that h is onto, we must show that
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given (p, q) ∈ F⊕ ker (f) there exists an m so that h(m) = (p, q). Let m := g(p) + q.

Then it follows:

f(m) = f(g(p))

= p

From this we see that

m− g(f(m)) = g(p) + q − g(p)

= q

So we have

h(m) = (f(m),m− g(f(m))

= (p, q)

Definition 2.0.5. Let M be an R−module. The annihilator of m ∈M is defined

as the following: ann m = {r ∈ R : rm = 0}.

Definition 2.0.6. An element m 6= 0 in an R-module M is called a torsion element if

ann m 6= 0. An R-module M is torsion-free if it does not contain torsion elements.

M is a torsion module if every nonzero element in M is a torsion element.

Definition 2.0.7. If N is a submodule of an R−module M , then the quotient

module is the quotient group M/N equipped with the scalar multiplication

r(m+N) = rm+N .
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Theorem 2.0.8. (Rotman [5])If R is a PID, then every finitely generated torsion-free

R-module M is free.

Proof. The theorem is proven by induction on the number of generators of M .

So suppose M is a torsion-free R-module generated by the set of non-zero elements

{v1, ..., vn}. Each m ∈ M has the form m = r1v1 + ... + rnvn where the ri’s are

elements of R. For the base case, assume M = 〈v1〉, which means that if m ∈ M ,

then m = rv1 for some r ∈ R. Since M was assumed to be torsion-free and v1 6= 0,

rv1 = 0 implies r = 0. This shows independence, hence {v1} is a basis for M .

For the inductive step, let M = 〈v1, ..., vn+1〉 and define

S = {m ∈M : there is r ∈ R, r 6= 0, with rm ∈ 〈vn+1〉}

First, we check that S is a submodule of M . To show closure under addition, suppose

we have two elements of S : m1,m2. Then we have the following:

r1m1 = r′1vn+1

r1r2m1 = r2r
′
1vn+1

and we have:

r2m2 = r′2vn+1

r1r2m2 = r1r
′
2vn+1

Adding the equations together, we see that r1r2(m1+m2) = (r2r
′
1+r1r

′
2)vn+1. Thus, S

is closed under addition. Furthermore, if m ∈ S, then r′m = r′′vn+1 where r′, r′′ ∈ R.

Multiplying both sides of the equation by r we have: r′rm = rr′′vn+1. Since rr′ ∈ R,

we can conclude that S is closed under scalar multiplication.
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Now, to show that M/S is torsion-free, we assume otherwise and arrive at a contra-

diction. So suppose x ∈M,x /∈ S, and r(x+ S) = 0 + S = S , with r 6= 0 . Then we

have the following:

r(x+ S) = S

rx+ S = S

Thus, rx ∈ S. Since this is the case, there exists an r′ ∈ R with r′ 6= 0 and

rr′x ∈ 〈vn+1〉. Since rr′ 6= 0, we have x ∈ S, a contradiction. So M/S is torsion-free.

Now we have the following:

m+ S = (r1v1 + ...+ rnvn) + S

= r1v1 + S + ...+ rnvn + S

= r1(v1 + S) + ...+ rn(vn + S)

So M/S is generated by n elements. Thus, M/S is free by the inductive hypothesis.

Note that we have a projection map M → M/S with kernel S. So it follows from

Lemma 2.0.4 that

M ∼= S ⊕ (M/S)

Since the direct sum of free modules is free, all we have left to show is that S ∼= R. If

x ∈ S, then there is some nonzero r ∈ R with rx ∈ 〈vn+1〉; that is, there exists a ∈ R

with rx = avn+1. Define ϕ : S → Q =Frac(R) by ϕ : x 7→ a
r
. Let r1x = a1vn+1 and

r2x = a2vn+1. Then x = a1
r1
vn+1 and x = a2

r2
vn+1, so it follows that a1

r1
= a2

r2
. Thus, ϕ

is well-defined. Suppose x1, x2 ∈ S and ϕ(x1) = ϕ(x2). Then we have
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r1x1 = a1vn+1

r2x2 = a2vn+1

a1
r1

=
a2
r2

If r = r1r2, a = a1r2 = a2r1, then it follows that rx1 = avn+1 and rx2 = avn+1. We

have

rx1 = rx2

r(x1 − x2) = 0

x1 − x2 = 0

x1 = x2

Thus, ϕ is injective. If D =imϕ, then D is a finitely generated submodule of Q. (D

is finitely generated because it is the image of S, and S is finitely generated because

S is a direct summand of the finitely generated module M) We know that D is a

submodule of Q because if a
b
, c
d
∈ D, then clearly their sum is in D as well. It is also

clear that if a
b
∈ D, and r ∈ R, r · a

b
is in D. Now suppose

D = 〈 b1
c1
, ... bm

cm
〉

where bi, ci ∈ R. Let c =
∏

i ci and define f : D → R by f : d 7→ cd for all d ∈ D.

It is clear that f has values in R because for each d ∈ D we have d = r1
b1
c1

+ ...rm
bm
cm

and c = c1 · c2 · ... · cm · ..., so multiplying d by c clears all denominators. Since D is

torsion-free, f is an injective R-map, and so D is isomorphic to an ideal of R. Since R

is a PID, every nonzero ideal in R is isomorphic to R; hence, S ∼= imf = D ∼= R. Since

S is isomorphic to R, it follows that S is free and since M/S is free, M ∼= S⊕ (M/S)

is free as well.
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CHAPTER 3

PROJECTIVE MODULES OVER LOCAL RINGS

The main result in this chapter is due to Kaplansky [2]. Our discussion follows the

blog entry of Jason Polak [4].

Definition 3.0.1. A local ring is a ring in which the set of nonunits forms an ideal.

Note that this ideal of nonunits is the unique maximal ideal in the ring. In fact,

local rings are exactly the rings with unique maximal ideals. A local ring does not

have to be commutative.

Examples of Local Rings:

(i) All fields are local rings since the only non-unit, {0}, forms an ideal.

(ii) The ring of rational numbers with odd denominator is local. The set of non-units

consist of the fractions with an even numerator and an odd denominator.

Definition 3.0.2. An R-module is projective it is a direct summand of a free module.

It is clear that a direct summand of a projective module is projective.

An Example of a Projective Module Which is Not Free:

It is well known that projective modules need not be free. As an example, consider

the abelian group: Z6 = Z3 ⊕ Z2. Since Z6 is a free Z6-module, (basis {1̄} or {5̄},

it follows that Z3 is a projective Z6-module. Now Z3 ⊕ {0} = {(0, 0), (1, 0), (2, 0)}

has three elements. Let’s say that each free Z6 module has a basis with n elements.
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A finitely-generated free Z6-module is a direct sum of n copies of Z6 , so any free

Z6-module has 6n elements. Hence, Z3 ⊕ {0} is a projective Z6-module that is not

free.

Corollary 3.0.3. Let S be a finite ring. Then S⊕{0} is a projective S⊕S−module

that is not free.

Proof. Suppose that S = {r1, ..., rn}. Then S⊕S has n2 elements. Also suppose that

{x1, ..., xk} is a basis for S ⊕ {0}. Then S ⊕ {0} = (S ⊕ S)x1 ⊕ ... ⊕ (S ⊕ S)xk and

is a direct sum of k copies of S ⊕ S. So any free S ⊕ S-module has (n2)k elements.

Hence, S ⊕ {0} is not a free S ⊕ S-module.

Lemma 3.0.4. Let R be a ring and M a finitely generated R-module. Suppose that

any direct summand N of M has the following property: for any element x ∈ N ,

there exists a free direct summand F of N such that x ∈ F . Then M is free.

Proof. . Let {x1, . . . , xn} be a generating set for M . Since M is a direct summand

of M thus there exists a decomposition M = F1 ⊕M1 with x1 ∈ F1. Let yi be the

projection of xi to M1. Then {y2, . . . , yn} is a generating set for M1. Some of the

yi might be zero, throw them out. If they are all zero then M = F1 and we are

done. Assume without loss of generality that y2 is not zero. Then there exists a

decomposition M1 = F2 ⊕M2 so that y2 ∈ F2. We proceed in this fashion and in the

end arive at M = F1 ⊕ F2 ⊕ · · · ⊕ Fk. So M is free.

This Lemma has the following consequence.

Lemma 3.0.5. Let R be a ring and suppose that every finitely generated projective

R-module P has the following property: for any element x ∈ P there exists a free

summand of P that contains x. Then all finitely generated projectives are free.
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Proof. Let P be a finitely generated projective. Let N be a summand and x ∈ N .

Then N is a finitely generated projective and hence N contains a free summand that

contains x. Thus P satisfies Lemma 3.0.4. So P is free.

Theorem 3.0.6. (Kaplansky [2]) A projective module over a local ring is free.

Proof. We show the theorem only for finitely generated projectives P . Let x ∈ P . By

Lemma 3.0.5 it suffices to construct a free summand S of P that contains x. Because

P is projective, we can write F = P ⊕ Q where F is free. Choose a basis {ui} of F

so that the number of generators required to express x is minimal, and write

x = a1u1 + ...+ anun

Because of minimality no ai in this sum can be expressed in terms of the other aj.

For suppose the simplest case, x = a1u1 + a2u2 and a2 = ra1. Then x = a1(u1 + ru2).

We can now switch to the basis u′1 = u1 + ru2, u2, u3, . . . , and in that basis x = a1u
′
1,

which contradicts minimality. Let yi be the image of ui under the projection F → P .

We have

x = a1u1 + ...+ anun = a1y1 + ...+ anyn

Now write yi = (
∑n

j=1 cijuj)+ti where ti is a linear combination of the remaining basis

elements uj not in {u1, ..., un}. We have yi− ti =
∑n

j=1 cijuj. If we can show that the

n× n-matrix (cij) is invertible, then the yi− ti together with the uj, j 6= 1, . . . , n is a

basis for F . And therefore the yi together with the uj, j 6= 1, . . . , n is a basis for F .

Then the yi are a basis for a free summand S of F (and hence of P ) that contains x

and we are done.

If we input the yi into the equation a1u1 + ...+ anun = a1y1 + ...+ anyn and it is

easy to see that
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aj = a1c1j + ...+ ancnj

Rearranging the above equation, we see that (1− cjj) is a non-unit. Indeed, we have

(1− cjj)aj = aj − cjjajj = a1c1j + . . . aj−1cj−1j + aj+1cj+1j + · · ·+ ancnj.

So if (1 − cjj) were a unit, we could divide and express aj in terms of the other a’s,

a contradiction to minimality (see the first paragraph of the proof). It follows that

since (1− cjj) is a non-unit, cjj must be a unit. Here we use that our ring R is local.

In a similar way, we conclude that cij is a non-unit. Thus, we have a matrix with

units on the diagonal and non-units off the diagonal. Such a matrix over a local ring

is invertible. In order to see this decompose the C into C = D + OD, where D is

diagonal part of C and OD is the off-diagonal part. To see that C is invertible, we

use the Jacobson ideal and its properties. See Rotman [5]. The Jacobson radical

J(R) of a ring is the intersection of all maximal ideals. So if R is local then J(R)

are the nonunits. In general we have that J(M(n,R)) = M(n, J(R)). Now look

at C = D + OD. We have OD ∈ M(n, J(R)) and so OD ∈ J(M(n,R)). Thus

C + J(M(n,R)) = D + J(M(n,R)). Since D is a unit, C has to be one as well (see

Rotman [5] page 544, Proposition 8.3).



14

CHAPTER 4

UNIMODULAR ROWS AND STABLY FREE MODULES

The main source for this chapter is Weibel’s K-book [7].

Let R be a ring with identity that satisfies the rank invariance property. R-modules

are right R-modules. Let α : Rm → Rn be an onto map (m ≥ n). We say α̂ : Rm →

Rn ⊕ Rm−n is an isomorphic extension of α if α̂ is an isomorphism and p ◦ α̂ = α,

where p is the projection on the first n coordinates.

Theorem 4.0.1. Let α : Rm → Rn be an onto module homomorphism (m ≥ n).

Then α has an extension α̂ if and only if kerα is free of rank m− n

Proof. Let us assume first that α has an isomorphic extension α̂. Note that kerα =

ker(p ◦ α̂) = α̂−1(Rm−n). So kerα is free of rank m− n.

Next suppose that M = kerα is free of rank m−n. Choose an isomorphism β : M →

Rm−n and a splitting s : Rn → Rm of α. We have α ◦ s = 1. Note that

α(~r − s(α(~r))) = α(~r)− α(s(α(~r)))

= α(~r)− α(~r)

= 0

so ~r − s(α(~r)) ∈ kerα. It follows that every element in Rm can be uniquely written

as ~r = s◦α(~r) + (~r− s◦α(~r)), so Rm = s(Rn)⊕M . Now define α̂ : Rm → Rn⊕M →
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Rn⊕Rm−n by α̂(~r) = α(~r) +β(~r− s◦α(~r)). This is an isomorphism with the desired

property.

Here is the matrix version of the above theorem.

Theorem 4.0.2. Let α be a n × m matrix (n rows and m columns), m ≥ n, that

defines a surjection α : Rm → Rn with kernel M . Then M is isomorphic to Rm−n if

and only if α can be extended to an invertible m×m matrix α̂ ∈ GL(m,R).

The (m−n)×m matrix α′ : Rm → Rm−n which, together with the matrix α gives

α̂ (in case kerα is free) is given by α′(~r) = β(~r − s ◦ α(~r)). Note that α̂ is obtained

by stacking α and α′ on top of each other.

Corollary 4.0.3. If R is a field then an n ×m-matrix α, m ≥ n, of rank n can be

extended to an invertible m×m-matrix α̂. The (m− n)×m matrix α′ that extends

α to α̂ can be chosen so that every row of α′ is orthogonal to every row of α.

Proof. We give an independent elementary proof. Let ~a1, . . . , ~an be the rows of α.

Since the rank of α is n we know that these rows are linearly independent. Note that

Rm = (kerα)⊥ ⊕ kerα and that (kerα)⊥ is the row space of α with basis ~a1, . . . , ~an.

Let ~a′m−n+1, . . . , ~a
′
m be a basis for kerα. Then the rows ~a1, . . . , ~an together with the

rows ~a′m−n+1, . . . , ~a
′
m form a set of m linearly independent vectors. So they make up

an invertible m×m-matrix.

A unimodular row is a matrix [a1, . . . , am] consisting of a single row that defines

a surjection Rm → R.

Theorem 4.0.4. Let [a b] be a unimodular row over a commutative ring R. Then it

can be extended to an invertible 2× 2 matrix.
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Proof. If

[
a b

]
is a unimodular row then there exists c, d ∈ R such that ac+ bd = 1.

Thus, we can extend

[
a b

]
to

 a b

−d c

, which is invertible because its determinant

is 1.

This is not true for longer unimodular rows: there does exist a unimodular row of

length 3 over a commutative ring that does not extend to an invertible 3× 3 matrix.

Before we give an example we recall some algebraic topology.

A tangent vector field on Sn is a continuous map v : Sn → Rn+1 so that the dot

product x · v(x) = 0, i.e. x and v(x) are orthogonal.

Theorem 4.0.5. Sn admits a non-zero tangent vector field if and only if n is odd.

For a proof see Hatcher, Theorem 2.28, page 135. We are now ready to give our

example. Let R = R[x, y, z]/(x2 + y2 + z2 = 1), a quotient of a polynomial ring. Note

that α = [x y z] is a unimodular row because

xx+ yy + zz = 1.

Suppose this row could be extended to a invertible 3× 3 matrix


x y z

f21 f22 f23

f31 f32 f33


where the fij are polynomials in x, y, z, considered modulo the given ideal. Let
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V : S2 → R3

defined by V (a, b, c) = π(f21(a, b, c), f22(a, b, c), f23(a, b, c)), where π : R3 → R3 is the

projection onto the orthogonal complement of (a, b, c). Since the vectors (a, b, c) and

(f21(a, b, c), f22(a, b, c), f23(a, b, c)) are linearly independent for every (a, b, c), this is a

non-zero tangent vector field on S2, contradicting Theorem 4.0.5

Remark. The tangent bundle T(S2) on the 2-sphere S2 is a non-trivial 2-dimensional

real vector bundle. If we add the normal line bundle we get the trivial bundle. The

connection between T (S2) and the non-free projective module we considered (the

kernel of the unimodular row [x y z]) is made explicit in Swan [6], Example 1.
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CHAPTER 5

UNIMODULAR ROWS FOR NON-COMMUTATIVE

RINGS

The next example illustrates that there are unimodular rows of length 2 over non-

commutative rings whose kernels are not free. See Exercise 1.6 in Weibel’s K-book

[7].

Consider the following: Let D be a division ring which is not a field. Choose α, β ∈

D such that αβ − βα 6= 0. Note first that σ = [x + α y + β] is a unimodular

row over R = D[x, y]: We must show that there exists d1, d2 ∈ D[x, y] such that

x+ α)d1 + (y + β)d2 = 1. Consider the following combination:

(x+ α)(y + β)− (y + β)(x+ α) = xy + βx+ αβ + αy − yx− αy − βx− βα

= αβ − βα

Since we assumed αβ− βα 6= 0, we can divide both sides of the equation by αβ− βα

to arrive at our intended result. Therefore, there exists d1, d2 ∈ D[x, y] such that

(x+ α)d1 + (y + β)d2 = 1: d1 = (y+β)
αβ−βα and d2 = −(x+α)

αβ−βα .

Let P =ker(σ). We have P ⊕ R ∼= R2 by Lemma 2.0.4. So P is a rank 1 stably

free projective.
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Theorem 5.0.1. P is not a free R-module.

Lemma 5.0.2. P does not contain a vector

f
g

 where both f and g are constant

or both are linear.

Proof. Let f = c1 + c2x+ c3y and g = d1 + d2x+ d3y. Set up the equation:

(x+ α)(c1 + c2x+ c3y) + (y + β)(d1 + d2x+ d3y) = 0

Solving for the coefficients yields c2 = d3 = 0 and so we have the following equations:

c1 + βd2 = 0

c3 + d2 = 0

αc3 + d1 = 0

αc1 + βd1 = 0

Doing the appropriate substitutions we obtain the following:

c1 = −βd2

c1 = −α−1βd1

c3 = −d2

c3 = −α−1d1

Setting the c′1s equal we see that d1 = β−1αβd2. Substituting d1 into the c3 equation,

we see that c3 = −α−1(β−1αβ)d2. Finally, we set this c3 equal to −d2 and obtain a

contradiction: αβ = βα. Thus, f and g cannot both be linear.
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Lemma 5.0.3. P does contain a vector

f
g

 where both f and g are quadratic

without constant term: f = c1x + c2y + c3xy + c4y
2 and g = d1x + d2y + d3xy +

d4x
2, (ci, di ∈ D).

Proof. Start by solving the following equation:

(x+ α)(c1x+ c2y + c3xy + c4y
2) + (y + β)(d1x+ d2y + d3xy + d4x

2) = 0

You will then get the following equations from the coefficients:

c1 + βd4 = 0

c2 + αc3 + d1 + βd3 = 0

c3 + d4 = 0

c4 + d3 = 0

αc1 + βd1 = 0

αc2 + βd2 = 0

αc4 + d2 = 0

Making some substitutions and letting d2 = u we obtain the following solutions:
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c1 = −βd4

c2 = −α−1βu

c3 = −d4

c4 = −α−1u

d1 = β−1αβd4

d2 = (α−1β − βα−1)−1(−α + β−1αβ)d4

d3 = α−1u

d4 = d4

Lemma 5.0.4. P does contain a vector

f
g

 where both f and g contains a constant

term. In fact, f and g can be chosen to have the special form

f = γ0 + γ1y + y2, g = δ0 + δ1x− αy − xy

and both γ0 = βu−1βu and δ0 are nonzero.

Proof. We first show that P contains a vector of the form given. First, we solve the

equation:

(x+ α)(γ0 + γ1y + y2) + (y + β)(δ0 + δ1x− αy − xy) = 0

We obtain the following equations:
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γ0 + βδ1 = 0

γ1 + δ1 = β

αγ1 + δ0 = βα

αγ0 + βδ0 = 0

By substitution we have the following solution for γ0:

γ0 = β(−(βα− αβ)−1 · β(−(βα− αβ))

So indeed γ0 is a constant. Completing some substitutions in the above equations,

we see that δ0 = βα− α(β − (−β−1γ0)), which again is a constant.

We can now prove Theorem 5.0.1. Assume P is free, say P = Rn. Since P ⊕R ∼=

R2 it follows that Rn⊕R ∼= R2 and hence n = 1 (R has the rank invariance property).

So P is cyclic. Say it is generated by

r
s

. Let

f
g

 be a vector where f and g are

both quadratics without constant terms as in Lemma 5.0.3. We have

f
g

 =

r
s

h

for some h ∈ R. So 2 = deg f = deg r + deg h and it follows that deg r = 2 − deg h.

Similarly deg s = 2 − deg h. From Lemma 5.0.2 it follows that deg h = 0 and so

deg r = deg s = 2. So 0 6= h ∈ D and it follows that

r
s

 is a vector of quadratic

polynomials without constant term. But then it follows that every vector in P has

polynomials without constant term. This contradicts Lemma 5.0.4.
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